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1 Numerical productivity measures
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2 Summary of technical results

The purpose of this investigation is to explore software techniques for reducing the development
costs of scientific applications running on distributed memory MIMD parallel computers. Our
objective is to develop a domain specific software development tool called LPAR. LPAR is targeted
to non-uniform numerical methods that employ elaborate representations-such as adaptive and
multilevel finite difference meshes or particles-to accurately capture irregular phenomena such as
turbulence and shocks.

We are using LPAR to develop new parxallel software techniques and numerical algorithms for the
predictive modeling of technologically important materials using first principles simulations. This is
a multidisciplinary collaboration and involves four other investigators-Alan Edelman (MIT, Math-
ematics); Ryoichi Kawai (U. Alabama, Birmingham, Physics); Beth Ong (UCSD, Mathematics);
and John Weare (UCSD, Chemistry).

A prototype of LPAR is running on the Intel iPSC/860, nCUBE/2, and on workstations. Ap-
plicationks written with LPAR. are portable across diverse computer architectures and qualitatively
simpler than hand-parallelized software, e.g. with explicit message passing. Moreover, this sim-
plicity incurs only a modest overhead: applications running on the Intel and the nCUBE perform
competitively with implementations running on a single processor of the Cray Y-MP. Because
LPAR software is machine independent, we are able to develop parallelized applications on work-
stations; programming environments on these architectures are generally more mature than on
parallel hardware platforms.

LPAR. provides dynamic memory management facilities that are unavailable in conventional C
and Fortran-based programming environments. LPAR enables the programmer to manage local-
ity explicitly and this contributes to the low operating overheads observed in practice. LPAR's
dynamic memory management facilities may coexist with existing programming languages. Our
investigation suggests a plausible way to enhance such languages to adequately treat irregular
scientific applications.

LPAR is based in part on the scientific programming language FIDIL1 . It extends the simple
array model of Fortran-90 to support dynamic, non-uniform, physically distributed arrays in a
shared name space. LPAR supports coarse-grain, irregular array decomposition and enables the
user to manage locality explicitly in order to limit overhead costs such as communication. It
provides high-level communication mechanisms and thus frees the programmer from low-level details
involved in partitioning, synchronization, and communication. Because LPAR hides architecture-
dependent details, applications are portable across a wide range of parallel computers with little
loss in performance.

'P. N. Hilfinger and P. Colella, "FIDIL: A Language for Scientific Programming," Lawrence Livermore National

Lab. Tech Report UCRL-98057, January, 1988.
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LPAR efficiently supports irregular computational domains comprising meshes organized into
levels. These are represented with a single data structure, known as the Map, which is a dynamic
array with an irregular index set. A finite difference grid is represented in LPAR as a Map, and
a level of a mesh hierarchy is represented as a Map of Map. A map of maps is intended to be
decomposed at a coarse level of granularity; typically, only a few map components are assigned
to a processor. Each map element is assigned to a single processor, a process which is a coarse-
grain analogue of Fortran D's irregular array decompositions. Algorithms for decomposing problem
domains and assigning maps to processors are application-specific and are external to LPAR. LPAR
provides a common framework for specifying the decompositions and processor mappings, as well
as a standard library that includes commonly used partitioning and mapping routines.

Associated with each map is a quantity known as a Domain. A domain represents the index set
of a map and is a first class object that may be assigned and manipulated using intrinsic domain
calculus operations such as intersection. Since maps may have irregular domains-with ragged
edges and holes-the domain concept generalizes the Fortran-90 array section.

LPAR provides coarse-grain looping constructs to express concurrent execution. Regions of data
dependence among the elements of a Map of Maps are described geometrically-as intersections
between maps-and dependence data is copied using assignment. Thus, although LPAR requires
the programmer to explicitly manage parallelism, it significantly raises the semantic level of this
activity to a manageable level.

LPAR uses a uniform representation for all data-the map-and a uniform representation for
structural information-the domain. Experimentation has revealed an advantage to distinguishing
Maps of scalars (e.g. real numbers) from Maps of Maps, as well as distinguishing rectangular from
irregular domains. There are two major advantages for making these distinctions: a reduction in
run time overheads, and a simplified implementation. We have incorporated these ideas into LPAR,
and call the resulting system LPARX. Irregular domains have been omitted, since the applications
we are are interested in require only rectangular domains. However, the definition of LPARX
naturally admits irregular domains without fundamentally changing the programming model.

LPARX replaces the LPAR Map with two new data types: Grid and XArray. A Grid is a
restricted form of an LPAR Map, which has square domain, the XArray construct replaces the
Map of Map. Parallel caltulations are represented as an XArray of Grid. The XArray is used
to represent the parallel structure of a computation: there is a coarse grained looping construct
defined over XArrays and the Grids comprising an XArray communicate using higher-level copy
operations.

The LPARX implementation is based upon an object-oriented parallel programming library
called Distributed Parallel Objects (DPO). DPO provides high-level abstractions for manipulating
physically distributed objects in a shared name space. It provides facilities for asynchronous inter-
object communication, synchronization, data redistribution, and automatic load balancing. DPO
enables the rapid implementation of efficient object-oriented parallel code.

LPARX and DPO have been implemented as C÷+ class libraries and are currently running on the
CM5 (Los Alamos National Laboratory and Naval Research Laboratory), Intel Paragon (San Diego
Supercomputer Center (SDSC)), nCUBE/2 (SDSC), KSR (Cornell Theory Center), workstations,
and networks of workstations under PVM. We are currently implementing a variety of applications,
including: two- and three-dimensional particle dynamics, multigrid and conjugate gradient solvers
for elliptic systems, and adaptive mesh refinement for solving hyperbolic conservation laws.

To assist in our evaluation of LPARX, we are developing a subset of our applications under
the fine-grained Fortran-90 programming model. Because we require precise control over low level
details such as layout and the generation of temporaries, we have implemented a subset of Thinking
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Machine's CM Fortran as a C++ class library. A prototype system-called PMPL- is running on
the nCUBE/2. A portable production version is currently under development, and will be installed
on the Paragon.

Complimenting the above software investigation is a collaboration with our multidisciplinary
research group to develop fast Poisson solvers for application to first principles simulations. We
have developed 3-D surface charge methods for rapidly computing the Hartree potential in real
space. This is a prerequisite step toward the development of adaptive mesh methods for efficiently
representing electronic wavefunctions over multiple length scales and open structures such as Ca0 .
(Currently, Fourier space representations are employed.)

6
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3 Lists of publications, presentations and reports

Publications

1. S. B. Baden and S. R. Kohn, "Portable Parallel Programming Under the LPAR System," to
be submitted for publication, October 1993.

2. S. R. Kohn and S. B. Baden, "An Implementation of the LPAR Parallel Programming
Model for Scientific Computations," in Proceedings of the Sixth SIAM Conference on Parallel
Processing for Scientific Computing, Norfolk, Virginia, 1993, pp. 442-450.

3. S. B. Baden and S. R. Kohn, "Lattice parallelism: A Parallel Programming Model for Ma-
nipulating Non-Uniform Structured Scientific Data Structures," ACM SIGPLAN NOTICES,
January, 1993, pp. 24-27.

Presentations

1. San Diego Supercomputer Center Steering Committee Meeting; Dec. 14, 1992; Title of
Presentation: "System support for scientific computations."

2. UCSD Connect "Meet the Researcher Series;" January 15, 1993; Title of presentation: "Con-
siderations in Using Massively Parallel Computers: A Minimalist Approach to Writing Robust
Software."

3. University of Maryland, Computer Science Department; March 26, 1993; Title of Presenta-
tion: "The LPAR Programming System for Parallel Computation of Scientific Problems."

4. University of California, Berkeley, Computer Science Division; April 30, 1993; Title of Presen-
tation: "The LPAR Programming System for Parallel Computation of Scientific Problems."

5. University of Wisconsin, Madison, Computer Science Department; June 28, 1993; Title of
presentation: "Programming Scientific Calculations with LPAR."

6. MetaCenter Computational Science Institute in Parallel Computing, San Diego Supercom-
puter Center; Aug 11, 1993; Title of presentation: "Programming Scientific Calculations with
the LPAR Programming System."

7. Lawrence Livermore National Laboratory; Aug 13,1993; Title of presentation: "Programming
Scientific Calculations with the LPAR Programming System."
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4 Description of research transitions and DoD interactions

We are also collaborating with Dr. Bill Crutchfield and Dr. Chuck Rendleman of the Applied

Mathematics Group at Lawrence Livermore National Laboratory (group leader: Dr. John Bell) to
develop portable adaptive mesh refinement software for 2-D and 3-D gas dynamics. The Livermore
group is adopting LPARX in order to avoid the proliferation of architecture dependent code streams.

The research also involves interactions with scientists at Los Alamos National Laboratory, in
particular a group under the supervision of Dr. Jeffrey Saltzman and Dr. David Brown. The

Los Alamos group is developing an array class library, called P++, for adaptive mesh methods.

Together, LPAR. and P++ are helpful in simplifying the implementation of complex, adaptive mesh

refinement algorithms for the study of applications such as the integrated circuit trenching problem.
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5 Description of software and hardware prototypes

LPAR and LPARX are implemented as C++ class libraries. The LPAR prototype is available via
anonymous ftp. A beta test version of LPARX will be released in November, 1993 (via anonymous
ftp), and a production version also distributed to the NSF Metacenters through our local contact
with the San Diego Supercomputer Center. The Distributed Parallel Object class library (DPO)
will also be made available along with the NP+. class library which supports stream-oriented,
architecture-independent message passing facilities. (LPAR .is written on top of DPO, which is in
turn written on top of MP+÷.)
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6 Briefing material

Please see attachment on following pages.

10



Parallel Programming Methodologies
for Non-Uniform Structured Problems

in Materials Science

Scott B. Baden

Computer Science and Engineering
University of California - San Diego

La Jolla, CA 92093 - 0114

Contract number: N00014-93-1-0152



Motivation fr LjPAR

"* Existing programming languages do not support dynamic non-
uniform data structures

"* Fortran models support only uniform static arrays

- Programmer manages bookkeeping

- Some use C to do memory management - pointers problematic

"* High-accuracy numerical methods employ irregular representa-
tions

- Hierarchies of arrays

- Particles

- Non-uniform computational effort

* Important class of methods are non-uniform, locally structured

- Particle methods

- Multi-level and adaptive finite difference methods

Shock.Front Grid Refiewuents Shock Front

Ch Grnd Channel

Grid XeflD.DIInts Fortran Arrays



Overview of LPAR

9 Coarse-grained data parallel programming model

* User is aware of parallelism, but at a high level

* Programmer has a clear model of how to achieve high perfor-
mance but details are hidden

* Domain specific: above class of non-uniform, locally structured
methods

* Portability across distributed memory MIMD architectures

- Hides machine-dependent details

- Uniform model of data structure manipulation

* Dynamic memory management facilities

- Dynamic, irregular arrays

- Coarse-grained irregular decompositions

- Explicit management of program locality

* LPAR's dynamic array facilities may coexist with existing pro-
gramming languages

- LPAR provides coordination and control only

- LPAR allows low-level performance tuning



LPAR Coding Example

* Applications consist of arrays individually assigned to processors

* Communication among arrays is managed by LPAR's high-level
abstractions

function FillPatch( distributed (*) Nap 1*1] of Nap (.2] of double bins,
Nap (1:PJ of Domain (.2] partition )

distributed foreach I in dmn(bins)
foreach J in dmn(bins)

bins[IJ <<= bins[J] on partition[JJ;
end foreach

end distributed foreach

end function

* Equivalent code is thousands of lines long in message passing
Fortran or C



LPAR Implementation

* Prototype LPAR implemented as a C++ class library

- Workstation for code development and debugging

- Parallel architectures: iPSC/860 and nCUBE/2

9 LPAR applications

- Two dimensional fast N-body solver for vortex dynamics (shown
in figure below as "Method of Local Corrections")

- Two and three dimensional multigrid

- Two and three dimensional conjugate gradient solvers

* Performance on 64 nodes of an iPSC/860 comparable to one pro-
cessor of a Cray Y-MP

Method of Local Corrections Execution Time

01- IPSCAISO
4-*nCUSEI2

1000I.
I)

Cray "-MP

100 a 4 7

HyPrvube Dimension



Current Status and Future Directions

* Software distribution in Fall of 1993

- Anonymous FTP

- NSF Metacenters

* Broaden architectural base

- CM-5

- Paragon

- Networks of Workstations (PVM)

- KSR-1

- Cray C-90

* Compiler support

- Automated load balancing

- Performance enhancements

* New applications

- Fast adaptive elliptic solvers for first principles simulations

- Adaptive mesh refinement for hyperbolic conservations laws

- Smoothed particle hydrodynamics

- Genetic algorithms
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PREFACE

The Sixth SIAM Conference on Parallel Processing for Scientific Computing, held in
Norfolk. Virginia. on March 22-24, 1993. focused on themes from the High
Performance Computing and Communications (HPCC) program and, in particular,
on grand challenge problems. There has been a steady stream of accomplishments
over the past few years on various grand challenge problems: major new scalable
parallel computers and distributed networked computing have become available.
new algorithms and computational methodologies have emerged, and software
tools emphasizing generic multi-architecture capability are being perfected In
addition, a large number of scientists and engineers are adopting these new
technologies. This conference provided a forum for these recent advances and
promoted interdisciplinary collaborations among algorithm developers, numerical
analysts, computer architects, and scientists and engineers This conference,
sponsored by the SIAM Activity Group on Supercomputing, was organized by
Richard Sincovec, Chair, Oak Ridge National Laboratory; David Keyes. Yale University.
Mike Leuze, Oak Ridge National Laboratory; Linda Petzold. University of Minnesota;
and Dan Reed. University of Illinois. SLAM conducted this conference with the partial
support of the National Science Foundation and the Department of Energy.

The proceedings contains papers from the invited talks, contributed talks of 30
minutes and 20 minutes, minisymposia, and poster presentations. The proceedings
consists of two parts based on the conference themes: grand challenge problems or
applications and support for grand challenge problems or infrastructure.
Applications include computational fluid dynamics, geophysical modeling, materials
science, molecular dynamics, and others. The infrastructure not only emphasizes the
development and analysis of numerical algorithms for parallel computing as one
would expect at a SIAM conference, but also includes parallel environments and
tools.

Papers in this proceedings highlight improvements in algorithm design and
software technology that are essential to achieving sustained high levels of
computing system performance. Other papers illustrate improvements in algorithms
and software and their successful application to important problems. Finally, papers
on parallel and distributed systems explore new opportunities and challenges for
algorithms, software, and applications. In totality, these papers represent a notable
step in advancing high performance computing technology and facilitating its use
on a wide range of problems in science, engineering, health care, education,
national security, and other areas.

Researchers, scholars, students, educators, scientists, engineers, and managers
who are using parallel computing, designing and analyzing parallel computers, or
developing algorithms, tools and environments for parallel computers should find
these proceedings of interest.

Richard F. Sincovec
Oak Ridge National Laboratory
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Chapter 14
Section 1

Parallel Programming Models

An Implementation of the LPAR Parallel Programming
Model for Scientific Computations*

Scott R. Kohnt Scott B. Badent

Abstract
LPAR is a portable coarse-grain parallel programming model for non-uniform

structured scientific applications running on MIMD message passing architectures.
Non-uniform applications, which include N-body methods and adaptive multilevel
mesh methods, rely on complex dynamic data structures and are particularly difficult
to implement on parallel computers. This paper introduces the LPAR programming
abstractions and discusses some important implementation issues. We also present
performance results on the Intel iPSC/860 and nCUBE/2 for a vortex dynamics
application developed using LPAR.

1 Introduction
Recent developments in numerical methods for solving partial differential equations have
emphasized elaborate, dynamic, non-uniform data structures. These methods attempt
to place computational effort and accuracy in regions of high error or rapidly changing
solutions. They are particularly attractive for solving local, non-uniform, time-dependent
problems. Typical applications include fast N-body methods in molecular dynamics,
astrophysics, and computational fluid dynamics; adaptive multilevel mesh methods such
as multigrid, FAC and AFAC [131, and AMR (5]; and finite element methods.

An important characteristic of many of these numerical methods is that most communi-
cation is localized. For example, in fast N-body methods, force calculations are dominated
by short-range interactions; grids in adaptive mesh methods only communicate with over-
lapping or adjacent grids. While these methods may require non-local communication and
computation, such as the calculation of far-field forces, this work is typically inexpensive
compared to the localized computation. A programming model which exploits this inherent
locality can achieve better performance on parallel architectures by reducing communica-
tion overheads. Exploiting locality can also reduce memory requirements t2).

*This work was supported by NSF contract number ASC-9110793. Computer time on the iPSC/860 and
nCUBE/2 at the San Diego Supercomputer Center was provided by a UCSD Division of Engineering Block
Grant.

t Graduate Student, University of California - San Diego, Department of Computer Science and
Engineering, 9500 Gilman Drive, La Jolla, CA 92093-0114. (skohnQca.ucsd.edu).

Ausistant Professor, University of California - San Diego (baden~cs.ucsd.edu).
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760 Kohn and Baden

Implementing dynamic non-uniform calculations on a message pass:ng parallel archi-

tecture is a difficult task. Without support from a high-level parallel programming lan-

guage, the programmer must partition data structures across distributed memory, balance

workloads, and coordinate the communication of data values between p-Locessors. Impor-

tant advances have been made in fine-grain programming models such as Fortran D [101,
CM Fortran, and the proposed IHPF. However, fine-grain models are inappropriate for

certain classes of applications as they may incur high overhead costs in managing commu-

nication.
For example, Clark et al. (7] describe an implementation of the GROMOS molecular

dynamics code in Fortran D. In one stage of the algorithm, the GROMOS code approximates
nonbonded forces by calculating interactions only for atom pairs lying within a specified

cutoff radius. In the Fortran D implementation, atoms are identified with unique integers

used to access one dimensional arrays of position and velocity. However. this form of data
representation destroys the physical locality of the original problem, since the arrays are

distributed across processors according to array indices, which have little to do with the
physical positions of the atoms. Fortran D's irregular array decompositions can be used to

map nearby atoms to the same processor, restoring locality and reducing communication.
However, because this mapping is unstructured and fine-grained, the application mAy incur
substantial run-time overhead in analyzing irregular, unstructured communication patterns.

The LPAR abstractions, described in the following section, preserve the spatial locality

inherent in many scientific applications and therefore avoid the potentially high overheads
of fine-grain models.

2 The LPAR. Programming Model Abstractions

LPAR [3] is a coarse-grain programming model for managing complex, dynamic calculations
on MIMD message passing architectures. It provides high-level abstractions which exploit
the locality found in non-uniform structured scientific computations. LPAR. frees the
programmer from dealing with low-level details involved in partitioning, synchronization,
and communication. LPAR does not hide parallelism from the programmer; rather,
parallelism is considered a fundamental component of program design. However, LPAR
does provide powerful tools for managing the complexity of parallel code. Applications
written in LPARI are portable across a wide range of MIMD architectures at performance
comparable to "hand-coding."

LPAR is based in part on the scientific programming language FIDIL [11] and is
designed to be embedded within a standard programming language suci as C++ or IIPF.
LPAR adds two new abstract data types, the map and the domain. Maps are dynamically
defined arrays with arbitrary bounds. The set of points which may be used to index a

map is called the domain of the map. The domain is a first-class object in LPAR and is a
generalization of array sections found in JIPF. Figure la shows a two dimensional map A
with a lower bound at point (1,3) and upper bound at (5,6); the. domaih. of A, denoted by
dinn(A), is [1:5, 3:6].

Map types are not necessarily limited to floating point numbers o; integers. LPAR

allows maps of structures, maps of maps, or maps of particle lists. For example, in addition
to representing a finite difference grid, a map may also be used to implement the chaining

mesh [12] common in particle codes such as the vortex dynamics application described in
Section 4.

Maps and domains are manipulated using LPAR's domain calculus. Maps and domains
are embedded in a logically shared global coordinate system. Even though maps may

logically overlap within this coordinate system, they do not physically share map elements.



Implementation of the LPAR Parallel Programming Model 761

8I j 7 1I I I

A
A C

B
3 .2 F--H2H Iii i FT TII T1 I1 II!!11

-1 0 ... 6 45 ... 17

dmn(A) = [1:5,3:6] C:= A on dmn (B)

FIG. 1. LPAR Maps: (a) Map and Domain (b) Map Restriction
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FIG. 2. Decompositions: (a) Recursive Bisection (b) Refinement Structure

For example, Figure lb shows maps A and B and an underlying global coordinate system.
Map C is assigned the portion of map A which overlaps the domain of B in the global
coordinate system. This operation, called restriction, is written in the domain calculus as
C := A on dmn(B). Note that even though maps A, B, and C logically oveilap on [10, 3:41,
the three maps are independent and may contain different data values in this region. In
addition to restriction, the domain calculus defines operations for union, intersection, set
difference, coordinate shift, and assignment.

Applications are parallelized in LPAR by decomposing the problem domain into a
collection of maps which are then individually assigned to processors. This process is
a coarse-grain analogue of Fortran D's irregular array decompositions. Algorithms for
decomposing problem domains and assigning maps to processors are application-specific
and are implemented in applications libraries. LPAR. provides a common framework for
specifying the decompositions and mappings, and the programmer is free to select the
strategy which best matches the application. (Refer to [3] for a more detailed discussion.)

Collections of maps represent the high-level structure of the parallel computation.
Because collections are coarse-grained decompositions, they typically contain O(p) maps
when running on p processors. Figure 2 shows two common decompositions ahd mappings.
Figure 2a illustrates the decomposition of a rectangular region into four non-uniform maps
using recursive bisection [4]. The collection of maps shown in Figure 2b is typical of a single
level refinement structure for adaptive mesh methods.

Data dependencies among decomposed LPAR maps such as those in Figure 2 can be
easily expressed using LPAR's domain calculus. These primitives allow the programmer
to specify communication at a very high level; bookkeeping and synchronization details
are completely hidden from the programmer. For example, consider the data dependencies
shown in Figure 3, which typically arise in adaptive mesh refinement algorithms. Grids
are usually extended to include a boundary region, also known as a ghost cell region or
shadow region. These boundary regions are injected with data from the interior regions of
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FIG. 3. Data Dependencies (Shaded) for an Adaptive Mesh Refinement Algorithm

forall i in {(0 .... 4)
boundary :: boundaryOf (mesh (iJ);
forj in{o( .... 4)

it (U # j)
interior := interiorOf(meshEjJ);
dependence := boundary n interior;
mesh[i] on dependence := mesh(j] on dependence;

end it
end aor

end forall

FIO. 4. LPAR Pseudo-Code for Satisfying Data Dependencies

logically overlapping grids. It is trivial to represent these data dependencies using LPAR's
domain calculus. The shaded dependence regions can be expressed as the intersection of the
boundary domain of one map and the interior domain of another map. LPAR pseudo-code
which expresses the communication dependencies between maps is shown in Figure 41. All
communication, gathering and scattering of data values, and synchronization is managed
within LPAR and is invisible to the programmer. Similar code written without LPAR
would be several thousand lines long.

3 Implementation Issues
The primary LPAR implementation issue is how to avoid unnecessary communication
between processors in satisfying data dependencies specified using the domain calculus.
As shown in Figure 3, data dependency regions are typically a small fraction of the total
map size. Furthermore, most interactions between maps are empty. LPAR is able to reduce
communication overheads and improve performance by communicating only necessary data
values and eliminating messages for spurious dependencies.

LPAR avoids unnecessary communication through run-time optimizations known as live
transmission analysis [14]. Live transmission analysis determines if communication'between
processors is necessary and, if so, calculates the minimum set of data needed to satisfy the
data dependencies. Analysis must be performed at run-time since map structures are not
usually known at compile time. Adaptive algorithms may dynamically create and destroy
maps. and data dependencies may change in time as workloads are rebalanced.

'For a detailed description of LPAR usage, refer to [3].
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At run-time, LPAR builds and evaluates data dependence trees which express data
dependencies between maps. For example, after executing the code shown in Figure 4 for
the adaptive mesh problem (Figure 3), the LPAR implementation would have built the
data dependence tree in Figure 5 for map mesh[l]. This tree describes the four possible
data dependencies for mesh[I). Each dependence node includes information about the
map object containing the needed data and the region of the dependence.

Evaluation and optimization of data dependence trees is demand-driven. The evaluation
and optimization pass on the data dependence tree determines the ifinimum set of data
to be obtained from other processors and prunes portions of the tree in which domain
intersections are empty. In Figure 5, the intersections in the two rightmost branches of the
tree, which are outlined, are empty; thus, LPAR would prune these branches of the tree.
After completing the optimization pass on the data dependence tree, LPAR sends data
requests to other processors for each remaining dependence. After receiving these requests,
processors reply with their map values. Although two messages are communicated for every
data dependence - one request message and one response message - this overhead does not
significantly impact performance and could be eliminated by an optimizing compiler.

After all data requests have been satisfied, LPAR discards its communication schedules.
LPAR could amortize the cost of creating communication schedules by saving and reusing
them later in the computation. PARTI [9] takes this approach. However, LPAR
applications are dynamic and their communication schedules change frequently, providing
few opportunities for reuse. Fortunately, collections typically contain relatively few maps
since they represent coarse-grained decompositions. Therefore, LPAR. communication
schedules are many times smaller than the schedules produced by libraries sucfi as PARTI,
which use fine-grained decompositions.

When evaluating the domains of dependence, LPAR needs to know the domains of all
maps, even those which lie on other processors. For example, although mesh[2) is only
assigned to one processor, all processors must have a copy of the domain information of
mesh (2) when performing tree optimizations. Therefore, domain descriptions, but not map
elements, are replicated on all processors. The memory overhead of this replication is small,
since maps have a very simple structure and thus can be represented in a compact format.
Furthermore, the cost of maintaining consistency of this distributed domain information is
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* minimal. Although the domains of maps may change in the course of a calculation, they
typically change at approximately the same time in a repartitioning or regridding section
of the code. Therefore, LPAR is able to globally update domain information in unison.

Although live transmission analysis is performed at run-time, because the maps are
assumed to have a simple structure and the domain information is replicated across the
processors, the overhead of these optimizations is negligible. This overhead is discussed in
more detail in the following section.

4 A Fast N-Body Application
A prototype implementation of LPAR has been written as a C++ class library. LPAR is
currently running on a Sun workstation, the Intel iPSC/860, and the nCUBE/2. Both the
iPSC/860 and nCUBE/2 are MIMD message passing architectures. In the near future,
LPAR will also be ported to the Intel Paragon and the CM-5.

LPAR was used to parallelize a two dimensional vortex dynamics calculation which
solves the vortex-stream formulation of the Euler equations. The vortex dynamics algorithm
discretizes vorticity onto marker vortices which are advected according to a velocity field.
Vortex blob velocities are calculated using the Method of Local Corrections (1], in which
computation is dominated by the calculation of many body forces. This method divides
the velocity evaluation into two components: far-field evaluations and local corrections. In
the far-field phase, vortex velocities are projected onto a grid and Poisson's equation is
solved to obtain a discrete global velocity field. This velocity field is locally corrected in
the local corrections step, which directly calculates particle-particle interactions to correct
the velocity contributions of nearby vortices. This application is typical of a broader class
of fast N-body methods.

To maintain the spatial relationships among particles, they are sorted into a two
dimensional array of bins. The LPAR code decomposes this binning array into a collection
of maps using recursive bisection. Because the particles move as the calculation progresses,
the binning array is rebalanced every time step. Communication of particles between maps
is managed using LPAR's domain calculus.

The LPAR. application consists of approximately 3,000 lines of C++ code and was
compiled using the GNU g++ compiler. Figure 6 compares the LPAR code to a "hand-
coded" implementation in Fortran 77 (13,000 lines) for a 50 time step rin with 12,848
vortices. LPAR results are presented for the iPSC/860 and nCUBE/2; the Fortran version
ran on the iPSC/860 and one processor of a Cray Y-MP8/64.

Figure 7 separates LPAR execution times on the iPSC/860 and nCUBE/2 into four
categories: local work, global work, communication, and rebalancing. Local work measures
localized computation and global work reflects time spent solving Poisson's equation; both
sections contain immeasurably small LPAR overheads consisting of an occasional barrier
synchronization. Most LPAR overhead is found in the communication and rebalancing
portions of the code. In communication, LPAR was used to obtain vortices from
maps on other processors and to reassign vortices that had advectedf off of the local
partition. Rebalancing used LPAR,'s domain calculus to reassign particles to processors
while rebalancing workloads.

Table 1 compares the LPAR and "hand-coded" communication times. •The LPAR
overhead in this table is approximately three times greater than the overhead in the
Fortran application. Some of this overhead can be attributed to the more general and
high-level gathering and scattering facilities provided in the LPAR version of the code.
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FIG. 7. LPAR Execution Time Breakdown on the iPSC/860 and the nCUBE/2

LPAR's request-reply communications protocol accounts for the remainder of the difference.
However, as shown in Figure 7, the cumulative LPAR overhead still represents a small
fraction of the total execution time. The ease of programming using LPAR more than
justifies the small increase in overhead.

5 Conclusions
LPAR is a new coarse-grain, portable programming model for MIMD message passing
architectures. LPAR provides high-level abstractions which free the programmer from
low-level details involved in partitioning, synchronization, and communication. LPAR has
been used to implement a non-uniform vortex dynamics code which is typical of many N-
body methods. Performance results on the iPSC/860 and the nCUBE/2 show that LPAR
can be used to parallelize an application without sacrificing performance. Collaboration
is underway to develop an LPAR application for the first principles simulation of real
materials. This work will allow theoretical material scientists to employ more ambitious
simulation techniques, broadening the range of materials which can be studied. LPAR
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a

TABLE 1
Comparison of Communication Overheads on the iPSC/860

Processors 1 -2 4 8- 16 1 32 647

ICommunication (seconds) Hand Coded 0 11.07 13.30 3.55 4.1.5 1 3.38 3.30
LPAR 0 3.19 8.93 12.9 12.5 12.3 12.6

will also be used to develop an adaptive mesh refinement code for hyperbolic PDE's in
computational fluid dynamics. We plan to apply the LPAR abstractions to the irregular
but locally coupled meshes used in finite element methods [8] and to the irregularly coupled
regular meshes 161 used in aerodynamics. We believe that LPAR will substantially reduce
the development time of these codes without impacting performance.
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