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1 Abstract

The goal of this research is the development of adaptive computational methods to numer-
ically simulate fluid flows around complex configurations in an automatic fashion. Grid
generation continues to be a huge impediment for computer simulations of realistic fluid
flows. This is true for both body-fitted structured grid solvers and unstructured grid ap-
proaches. We are developing a Cartesian grid representation of the geometry, where the
object is simply “cut” out of the Cartesian grid. We are also investigating the suitability
of adaptive methods on parallel computers.

Here we summarize results of our previous work in the last three years, supported by
AFOSR grant 91-0063.

2 Summary of Accomplishments

Our research in the last three years has concentrated on three fronts: (i) we have continued
to develop the basic adaptive methodology for compressible flows in the context of hyper-
bolic conservation laws, (ii) we have developed a strategy for simulating time-dependent
flows around complex geometries using a Cartesian grid representation in two space dimen-
sions, and (iii) we have studied the suitability of local adaptive mesh refinement for massively
parallel architectures such as the Connection Machine. I will describe these projects in turn.

The development of a (serial) three dimensional adaptive mesh refinement (henceforth
AMR) algorithm for hyperbolic conservation laws has been completed. This work is in




collaboration with John Bell and Michael Welcome, at Livermore National Laboratory, and
Jeff Saltzman, of Los Alamos National Laboratory. To test the algorithm we conducted
numerical experiments of the interaction of a shock and an ellipsoidal bubble of Freon (see
figure 1. This is analogous to the laboratory experiments of Haas and Sturtevant. Our tests
indicate that AMR reduced the computational cost by a factor of at least 20 over uniform
fine grid computations of the same resolution. This work is described in (1]

Although most of the algorithm development was a straightforward extension of the
two dimensional case, a new grid generation algorithm was developed. Our previous grid
generation algorithm worked remarkably well at creating grids with efficiency ratings of
approximately 50%, (i.e. at least half the points in the new fine grid needed to be refined),
using no geometric information at all. (The rest of the points are included to make a
rectangular fine grid, but didn’t need to be refined based on the error estimate criterion). If
a fine grid was inefficient, it simply bisected the grid in the long direction, the flagged cells
were partitioned into their respective halves, and two new fine grids resulted. Unfortunately,
when requesting efficiencies around 80%, this algorithm produced unacceptably many tiny
grids. Since memory (to store the refined grids) and CPU time (to integrate them) is at
a premium in three dimensions, we developed a better grid generation algorithm. The
new procedure can be viewed as a “smart” bisection algorithm. Using techniques from
computer vision and pattern recognition, such as a variation of the Marr-Hildredth operator
and coordinate-based signatures, our new algorithm can obtain efficiencies around the 80%
level, even if the feature is not aligned with a coordinate direction. This was described in
[2).

In collaboration with Prof. Randy LeVeque at the University of Washington we have
developed an algorithm for computing time dependent flows around complex geometries
using a non-body-fitted Cartesian grid. This strategy fits in naturally with our previously
developed AMR strategy of using locally uniform meshes. We retain the advantages (effi-
ciency and accuracy) of uniform grids and are able to resolve fine scale flow features induced
by complex geometries. We use our previously developed adaptive mesh refinement algo-
rithm to achieve accuracy comparable to the body-fitted meshes, where grid points can be
bunched in an a priori manner to improve the accuracy of the solution.

We have developed a rotated difference scheme for use at the irregular boundary cells.
Essentially, this difference scheme uses an auxiliary coordinate system that is locally normal
and tangential to the boundary. This “artificial” grid is obtained at each interface by
creating a box extending a distance h away from the interface in the normal and tangential
directions. Solution values for the new box are obtained by conservatively averaging the
states in the underlying Cartesian grid. By differencing over a box of size h rather than the
irregular neighboring cell with (potentially orders of magnitude) less cell volume, we retain
stability using a time step At based on the uniform grid cells. Figure 2 shows a snapshot
of a time-dependent computation of shocked flow around two cylinders. Notice that the




Figure I: Interaction of a shock and ellipsoidal bubble.




pressure plots around the cylinders show smooth pressure despite the irregularity of the cut
cells adjacent to the cylinders.

In more recent work with John Melton (at NASA Ames Research Center), we are de-
veloping a steady state compressible flow solver around objects with complex geometry
using a Cartesian grid. With this work, since there is no time stepping stability limitation,
we are concentrating on the accuracy question of irregular grid cells, and focusing on the
issue of automating the geometry. We have developed an approach, using a given surface
triangulation, to generate the volume information and data structures needed in the Carve-
sian grid program [4]. In addition, we have the beginnings of an automatic interface usirg
a CAD/CAM system. Figure 3 shows a sample calculation that illustrates the Cartesian
geometry.

As a preliminary part of this study, we have compared the use of hierarchical meshes
with rectangular indexing versus a completely unstructured linked list implementation. An
unstructured grid data structure has a lot of overhead associated with it, since each tetrahe-
dron points to all its neighbors, its faces, its edges, etc. Typical numbers are approximately
80 to 120 words of storage per grid point. A grid based data structure has much less over-
head, but needs to refine more cells than the absolute minimum to form the rectangles. We
have run some experiments comparing the approaches in three dimensions, for flow around
a wing, and a full aircraft. Although this is very simple it appears to have not been done
before. For the wing test case, our results show that although the regular approach refines
one and a half times as many points, it has a factor of 5 less overhead, so it is still preferable.
For the full aircraft, approximately twice as many points are used in the flow solver, but
again with less overhead. Additionally, the regular grid scheme vectorizes without using in-
direct address and scatter gathers, so performance should be the same if not slightly better
than the unstructured approach as well.

Together with Jeff Saltzman from Los Alamos National Laboratory, we have developed
a fully adaptive two dimensional local mesh refinement algorithm for the Euler equations
on the CM-2 and Cm-5. To our knowledge, this is the first time such an adaptive method
has been implemented for structured meshes on a massively parallel machine. Again we
use the AMR approach to adaptive mesh refinement; a collection of logically rectangular
meshes makes up the coarse grid, refinements cover a subset of the domain and use smaller
rectangular grid patches. (There is no complex geometry in this implementation). Many
of the original design choices in AMR were based on considerations of vectorization. The
question was whether this approach was still feasible, and even advantageous on a data
parallel massively parallel architecture.

The main issues in adapting the algorithm for a data parallel environment were parti-
tioning the data to fill the machine (load balancing, rather simple on rectangular grids), and
minimizing communication (which is the main issue for our hierarchical data structure). We
have developed a data layout scheme which preserves locality between fine and coarse grids
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Figure 3:

Cartesian mesh representation of an airplane.
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and minimizes global (router) communication. This data layout turned out to be an impor-
tant component in equidistributing the communication (rather than the more typical load
balancing of computation) even on the CM-5, with its unusual fat-tree interconnection. The
two-dimensional CM-2 results are described in [3]. Essentially, we obtained performance
on an 8K CM-2 that was equivalent to one head of a Cray Y-MP. The three-dimensional
CM-5 research is still underway. Eventually, we will implement a parallel version of adap-
tive mesh refinement with complex geometry. This will not be simply a straightforward
implementation, since the workloads have much more non-uniform, depending on whether
a cell is adjacent to a solid object, or at the boundary of a finer or coarser level grid.

In addition to the above research, the research by Anders Szepessy on adaptive finite
element methods for compressible fluid flow continued. For adaptive flow calculations, one
needs:

1. a robust mesh generator
2. a stable and reasonable accurate discretization method,
3. an adaptive refinement criteria.

The work has concentrated on the less well understood areas (1) and (3). In joint work
with Jonathan Goodman and Margaret Symington, we have been developing a new mesh
generator based on successive not necessarily isotropic refinements using high aspect ratio
elements around shocks and boundary layers. The most commonly used method for gener-
ating anisotropic meshes is the advancing front technique, which is not very robust in my
experience. Computations with our new program show promise. The mesh generator is
very robust.

Currently we are working on techniques to improve the convergence rate when solv-
ing the discrete equations. We have been improving the data structure in the program to
more efficiently handle multilevel techniques. The hierarchical multilevel structure natu-
rally obtained in the successive refinements is known to work well in the case of isotropic
refinements. In our case of anisotropic discretizations and high aspect ratio elements the
condition numbers are even worse as compared to the isotropic case. Preliminary tests
using multilevel techniques indicate that one can obtain convergence rates independent of
the mesh size also with the high aspect ratio elements in our program.

Reacting shock waves, in contrast to non-reacting shocks, sometimes need high resolution
to capture the correct physical behavior. It is therefore of interest to apply our program to
reactions. In previous work with Claes Johnson we have constructed adaptive algorithms
based on a posteriori error estimates for non-reacting shocks using mainly isotropic meshes.
We are currently studying generalizations to reactions, relaxation effects and anisotropic
meshes including implementation aspects.
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Abstract

In this work the compressible Euler equations are solved using finite volume tech-
niques on unstructured grids. The spatial discretization employs a central difference
approximation augmented by dissipative terms. Temporal discretization is done using
a multistage Runge-Kutta scheme. A multigrid technique is used to accelerate conver-
gence to steady state. The coarse grids are derived directly from the given fine grid
through agglomeration of the control volumes. This agglomeration is accomplished
by using a greedy-type algorithm and is done in such a way that the load, which is
proportional to the number of edges, goes down by nearly a factor of 4 when moving
from a fine to a coarse grid. The agglomeration algorithm has been implemented and
the grids have been tested in a multigrid code. An area-weighted restriction is applied
when moving from fine to coarse grids while a trivial injection is used for prolongation.
Across a range of geometries and flows, it is shown that the agglomeration multigrid
scheme compares very favorably with an unstructured multigrid algorithm that makes
use of independent coarse meshes, both in terms of convergence and elapsed times.

1 Introduction

Multigrid techniques have been successfully used in computational aerodynamics for over a
decade [1,2]. The main advantage of the multigrid method when solving steady flows is the
enhanced convergence while requiring little additional storage. In addition, multigrid can
be used in conjunction with any convergent base scheme, with adequate care exercised in
constructing proper restriction and prolongation operators between the grids. Perhaps the
biggest advantage of multigrid is the fact that it deals directly with the nonlinear problem
without requiring an elaborate linearization and the attendant storage required to store
the matrix that arises from the linearization. Thus, multigrid techniques have enabled the
. practical solution of complex aerodynamic flows using millions of grid points.

The initial efforts in multigrid were directed towards the solution of flows on structured
grids where coarse grids can easily be derived from a given fine grid. Typically, this is done
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by omitting alternate grid lines in each dimension. These ideas have been extended to tn-
angular grids in two dimensions and to tetrahedral meshes in three dimensions [3,4,5,6).
In previous work by the second author, a sequence of unnested triangular grids of varying
coarseness is constructed {3]. Piecewise linear interpolation operators are derived during
a preprocessing step by using efficient search procedures. The residuals are restricted to
coarse grids in a conservative manner. It has been shown that such a scheme can con-
sistently obtain convergence rates comparable to those obtained with existing structured
grid multigrid methods. For complex geometries, especially in three dimensions, however,
constructing coarse grids that faithfully represent the complex geometries can become a
difficult proposition. Thus, it is often desirable to derive the coarse grids directly from a
given fine grid.

The agglomeration multigrid strategy has been investigated by Lallemand et al. [7]
and Smith [8]. Lallemand et al. use a base scheme where the variables are stored at the
vertices of the triangular mesh, whereas Smith uses a scheme that stores the variables at
the centers of triangles. In the present work, a vertex-based scheme is employed. Two
dimensional triangular grids contain twice as many cells as vertices (neglecting boundary
cffects), and three dimensional tetrahedral meshes contain 5 to 6 times more cells than
vertices. Thus, on a given grid, a vertex scheme incurs substantially less computational
overhead than a cell-based scl eme. Increased accuracy can be expected from a cell-based
scheme, since this involves the solution of a larger number of unknowns. However, the
increase in accuracy does not appear to justify the additional computational overheads,
particularly in three dimensions.

The main idea behind the agglomeration strategy of Lallemand et al. 7] is to agglom-
erate the control volumes for the vertices using heuristics. The centroidal dual, composed
of segments of the median of the triangulation, is a collection of the control volumes over
which the Euler equations in integral form are solved. On simple geometries, Lallemand et
al. were able to show that the agglomerated multigrid technique performed as well as the
multigrid technique which makes use of unnested coarse grids. However, the convergence
rates, especially for the second order accurate version of the scheme, appeared to degrade
somewhat. Furthermore, the validation of such a strategy for more complicated geometries
and much finer grids, as well as the incorporation of viscous terms for the Navier-Stokes
equations remains to be demonstrated. The work of Smith [8] constitutes the basis of
a commercially available computational fluid dynamics code, and as such has been ap-
plied to a number of complex geometries [9]. However, consistently competitive multigrid
convergence rates have yet to be demonstrated.

In the present work, the agglomeration multigrid strategy is explored further. The
issues involved in a proper agglomeration and the implications for the choice of the re-
striction and prolongation operators are addressed. Finally, flows over non-simple two-
dimensional geometries are solved with the agglomeration multigrid strategy. This ap-
proach is compared with the unstructured multigrid algorithm of Mavriplis [3] which makes
use of unnested coarse grids. Convergence rates as well as CPU times on a Cray Y-MP/1
are compared using both methods.




2 Governing Equations and discretization

The Euler equations in integral form for a control volume  with boundary 9 read

d
-‘E‘/‘.‘udv-{-ﬁnF(u,n)dS:O. (1)

Here u is the solution vector comprised of the conservative variables: density, the two
components of momentum, and total energy. The vector F(u, n) represents the inviscid
flux vector for a surface with normal vector n. Equation (1) states that the tiine rate
of change of the variables inside the control volume is the negative of *he net flux of the
variables through the boundaries of the control volume. This net flux through the control
volume boundary is termed the residual. In the present scheme the variables are stored at
the vertices of a triangular mesh. The control volumes are non-overlapping polygons which
surround the vertices of the mesh. They form the dual of the mesh, which is composed of
segments of medians. Associated with each edge of the original mesh is a (segmented) dual
edge. The contour integrals in Equation (1) are replaced by discrete path integrals over
the edges of the control volume. Figure 1 shows a triangulation for a four-element airfoil
and Figure 2 shows the centroidal dual. Each cell in Figure 2 represents a control volume.
The path integrals are computed by using the trapezoidal rule. This can be shown to be
equivalent to using a piecewise linear finite-element discretization. For dissipative terms,
a blend of Laplacian and biharmonic operators is employed, the Laplacian term acting
only in the vicinity of shocks. A multi-stage Runge-Kutta scheme is used to advance the
solution in time. In addition, local time stepping, enthalpy damping and residual averaging
are used to accelerate convergence. The principle behind the multigrid algorithm is that
the errors associated with the high frequencies are annihilated by the carefully chosen
smoother (the multi-stage Runge-Kutta scheme) while the errors associated with the low
frequencies are annihilated on the coarser grids where these frequencies manifest themselves
as high frequencies. In previous work [3], as well as in the present work, only the Laplacian
dissipative term (with constant coefficient) is used on the coarse grids. Thus the fine grid
solution itself is second order accurate, while the solver is only first order accurate on the
coarse grids.

3 Details of agglomeration

The agglomeration (referred to also as coarsening) algorithm is a variation on the one used
by Lallemana . -l. [7] and is given below:

1. Pick a starting vertex on the surface of one of the airfoils.

2. Agglomerate control volumes associated with its neighboring vertices which are not

already agglomerated.

3. Define a front as comprised of the exterior faces of the agglomerated control volumes.
Place the exposed edges in a queue.
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Figure 1: Grid about a four-element airfoil.

4. Pick the new starting vertex as the unprocessed vertex incident to a new starting
edge which is chosen from the following choices given by order of priority:

¢ An edge on the front that is on the solid wall.

e An edge on the solid wall.

e An edge on the front that is on the far field boundary.
e An edge on the far field boundary.

o The first edge in the queue.

5. Go to Step 2 until the control volumes for all vertices have been agglomerated.

There are many other ways of choosing the starting vertex in Step 4 of the algorithm,
but we have found the above strategy to be the best. The efficiency of the agglomeration
technique can be characterized by a histogram of the number of fine grid cells comprising
each coarse grid cell. Ideally, each coarse grid cell will be made up of exactly four fine grid
cells. The various strategies can be characterized by how close they come to this ideal case.
One variation is to pick the starting edge randomly from the edges currently on the front.
Figure 3 shows a plot of the number of coarse grid cells as a function of the number of fine
grid cells comprising them, with our agglomeration algorithm described above, and with
the variation. It is clear that our agglomeration algorithm is superior to the variant. The
number of coarse grid cells having exactly one fine cell (singletons) is also much smaller
with our algorithm compared to the variant. We have also investigated another variation
where the starting vertex in Step 4 is randomly picked from the field and this turns out be
much worse. It is possible to identify the singleton cells and agglomerate them with the
neighboring cells, but this has not been done.

The procedure outlined above is applied recursively to create coarser grids. Figure 4
shows an example of the agglomerated coarse grid. The boundaries between the control
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Figure 2: Centroidal dual for the triangulation of Figure 1.

volumes on the coarse grids are composed of the edges of the fine grid control volumes. We
have observed that the number of such edges only goes down by a factor of 2 when going
from a fine to a coarse grid. Since the computational load is proportional to the number of
edges, this is unacceptable in the context of multigrid. However, if we recognize that the
multiple edges separating two control volumes can be replaced by a single edge connecting
the end points, then the number of edges does go down by a factor of 4. Since only a
first order discretization is used on the coarse grids, there is no approximation involved in
this step. If a flux function that involved the geometry in a nonlinear fashion were used,
such as the Roe’s approximate Riemann solver, this is still a very good approximation.
It may also be seen from Figure 4 that once this approximation is made, the degree of
a node in this graph is still 3 i.e., each node in the interior has precisely three edges
emanating from it. Thus the agglomerated grid implies a triangulation of the vertices of a
dual graph of the coarse grid. Trying to reconstruct the triangulation is not a good idea,
since this may result in a graph with intersecting edges (non planar graph), which leads to
non-valid triangulations. If a valid triangulation could always be constructed, it would be
possible to use the coarse grid triangulation for constructing piecewise linear operators for
prolongation and restriction akin to the non-nested multiple grid scheme [3]. In practice,
we have often found the implied coarse grid triangulations to be invalid and therefore
the coarse grids are only defined in terms of control volumes. This has some important
implications for the multigrid algorithm discussed below.

Since the fine grid control volumes comprising a coarse grid control volume are known,
the restriction is similar to that used for structured grids. The residuals are simply summed
from the fine grid cells and the variables are interpolated in an area-weighted manner. For
the prolongation operator, we use a simple injection (a piecewise constant interpolation).
This is an unfortunate but unavoidable consequence of using the agglomeration strategy.
A piecewise linear prolongation operator implies a triangulation, the avoiding of which is
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the main motivation for the agglomeration. However, additional smoothing steps may be
employed to minimize the adverse impact of the injection. This is achieved by applying an
averaging procedure to the injected corrections. In an explicit scheme, solution updates
are directly proportional to the computed residuals. Thus, by analogy, for the multigrid
scheme, corrections may be smoothed by a procedure previously developed for implicit
residual smoothing [3]. The implicit equations for the smoothed corrections are solved
using two iterations of a Jacobi scheme after the prolongation at each grid level.

The agglomeration step is done as a preprocessing operation on a workstation. It is
very efficient and employs hashing to combine the multiple fine grid control volume edges
separating two coarse grid cells into one edge. The time taken to derive 5 coarse grids on
a Silicon Graphics work station model 4D /25 (20 MHz clock) for the grid shown in Figure
1 with 11340 vertices is 83 seconds.

4 Results and discussion

Results are presented for two inviscid flow calculations and the performance of the agglom-
erated multigrid algorithm is compared with that of the non-nested multiple grid multigrid
algorithm of [3]. The first flow considered is flow over an NACA0012 airfoil at a fresstream
Mack number of 0.8 and angle of attack of 1.25°. The dual to the fine grid having 4224
vertices is shown in Figure 5. The sequence of unnested grids (not shown) for use with
the non-nested multigrid algorithm contains 1088, 288 and 80 vertices, respectively. The
agglomerated grids are shown in Figure 6. These grids have 1088, 288 and 80 vertices
(regions) as well. Figure 7 shows the convergence histories obtained with the non-nested
and agglomeration multigrid algorithms. Both the multigrid strategies employ W-cycles.
The convergence histories show that the multigrid algorithm slightly outperforms the ag-
glomeration algorithm. The CPU times required for 100 iterations on the Cray Y-MP/1




Figure 4: An example of an agglomerated coarse grid.

are 25 and 24 seconds, respectively. Thus the two schemes orm equally well.
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Figure 3: Dual to the fine grid having vertices.

The next case considered is flow over a four-element airfoil. The freestream Mach
number is 0.2 and the angle of attack is 5°. The fine grid has 11340 vertices and is
shown in Figure 1. The coarse grids for use with the non-nested multigrid algorithm (not
shown) contain 2942 and 727 vertices. The two agglomerated grids are shown in Figure
8. These grids contain 3027 and 822 vertices (regions), respectively. The convergence
histories of the non-nested and agglomeration multigrid algorithms are shown in Figure
9. The convergence histories are comparable but the convergence is slightly better with
the agglomerated multigrid strategy. This is a bit surprising since the original multigrid
algorithm employs a piecewise linear prolongation operator. A possible explanation is that
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the agglomeration algorithm creates better coarse grids than those employed in the non-
nested algorithm. The CPU times required on the Cray Y-MP are 59 and 58 seconds with
the original and the agglomerated multigrid, respectively, using three grids.

Perhaps the biggest advantage of the agglomeration algorithm lies in its ability to
generate very coarse grids without any user intervention. Such extremely coarse grids
should be beneficial in multigrid. Figure 10 shows two coarser grids for the four element
airfoil case. These grids contain 63 and 22 vertices, respectively. With these grids it is now
possible to use a 6 level agglomeration multigrid strategy. However, because these coarse
grids are rather nonuniform, it is imperative that the first order coarse grid operator be a
strictly positive scheme (i.e. one can no longer rely on assumptions of grid smoothness as
conditions for stability). With the original first order operator in place, which is composed
of a central difference plus a dissipative flux, it is difficult to guarantee the positivity of
the scheme for arbitrary grids. In fact, the scheme has been found to be unstable on some
of the very coarse and distorted agglomerated meshes. However, if the flux is replaced by
a truly first order upwind flux, given for example by Roe’s flux difference splitting [10],
a stable scheme can be recovered for these coarse agglomerated grids. Thus, for each of
the coarse grids obtained by agglomeration, a check of the convergence properties of the
coarse grid operator at the desired flow conditions is carried out if problems are experienced
with the multigrid. This step ensures that the coarse grid operators are convergent and
that the problems with the multigrid, if any, come from the inter-grid communication.
Figure 11 shows the convergence history with the 6 grid level agglomerated multigrid
scheme. Also shown is the convergence with the 3 grid agglomeration multigrid scheme.
In this particular case, Roe’s upwind flux is used on the two coarsest grids, where central
differencing proved unreliable. The time taken for the 6 grid agglomeration multigrid is
86 seconds. Thus the improved convergence rate is not entirely reflected in terms of the
required computational resources. This is attributed to the increased time required by the
Roe’s upwind scheme, which involves a substantial number of floating point operations.
This case serves to demonstrate the importance of the stability of each of the individual
coarse grid operators in the multigrid scheme. Although first order upwinding has been
employed on the distorted coarse meshes for demonstration purposes, it should be possible
to construct stable central difference operators on such meshes.

5 Conclusions

It has been shown that the agglomeration multigrid strategy can be made to approxi-
mate the efficiency of the unstructured multigrid algorithm using independent, non-nested
coarse meshes, in terms of both convergence rates and CPU times. It is further shown that
arbitrarily coarse grids can be obtained with the agglomeration technique, although care
must be taken to ensure that the coarse grid operator is convergent on these grids. Ag-
glomeration has direct applications to three dimensions, where it may be difficult to derive
coarse grids that conform to the geometry. In future work, alternate methods of generating
coarse grids will be investigated. These may include the creation of maximal independent




sets to create the coarse grid seed points and using these seed points to agglomerate the
fine grid cells around them. A maximal independent set is a subset of the graph containing
only vertices that are distance 2 apart in the original graph. Since coarsening algorithms
can be viewed as partitioning strategies, there also exists a possible interplay between ag-
glomerated multigrid techniques and distributed memory parallel implementations of the
algorithm, which should be further investigated. Finally, the implementation of the viscous
terms for Navier-Stokes flows on arbitrary polygonal control volumes must be carried out
for this type of strategy to be applicable to viscous flows.
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Figure 10: Three coarser grids for the four-element test case.
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Abstract

We describe a Cartesian grid strategy for
the study of three dimensional inviscid flows
about arbitrary geometries that uses both
conventional and CAD/CAM surface geom-
etry databases. Initial applications of the
technique are presented. The elimination
of the body-fitted constraint allows the grid
generation process to be automated, signifi-
cantly reducing the time and effort required
to develop suitable computational grids for
inviscid flowfield simulations.

1 Introduction

Although the variety of complex aerospace
geometries that can be analyzed with CFD
continues to expand, the grid generation pro-
cess remains both tedious and difficult. The
purpose of this work is to demonstrate the
advantages of integrating the CAD/CAM
system into a fully automated grid gener-
ation and flow solver procedure. This ap-
proach is particularly straightforward when

using a finite volume Cartesian grid-based
flow solver, and makes possible the complete
elimination of the surface gridding task and
the automation of the volume grid genera-
tion.

There are currently three main approaches
for dealing with the problem of complicated
geometry. Body-fitted (structured) grids ac-
commodate complex geometry using multi-
ple blocks, and more recently, overlapping
“composite” blocks as well [1, 2]. Although
body-fitted grids currently produce the most
accurate solutions, they are the most diffi-
cult to generate. This was the motivation for
the second approach which uses unstructured
body-fitted grids (3, 4). Unstructured grids
take advantage of the the complete geomet-
ric flexibility of triangles when defining the
surface of the geometry. Unfortunately, they
do not circumvent the labor-intensive task of
generating acceptable surface triangulations,
and require the generation of efficient, high-
quality tetrahedral grids as well.

A third approach has recently been gain-
ing popularity, namely, the use of non-body-

Copyright © 1993 by the American Institute of Aeronautics and Astronautics, Inc. No
copyright is asserted in the United States under Title 17, U.S. Code. The U.S. Government
has a royalty-free license to exercise all rights under the copyright claimed herein for
Governmental purposes. All other rights are reserved by the copyright owner.




fitted Cartesian grids [5, 6, 7, 8). (There
are at least 3 papers in this conference pro-
ceedings using this technique.) There are
several reasons why the use of this tech-
nique should be further explored. These in-
clude the ease with which high order accurate
integration schemes and multigrid accelera-
tion can be implemented, and the relative
geometric simplicity of the resulting grids.
Cartesian grids can fairly easily incorporate
an adaptive mesh refinement strategy to pro-
vide increased grid resolution. Perhaps the
most widely known Cartesian grid method is
found in TRANAIR, used routinely at Boe-
ing and NASA Ames for the analysis of com-
plete and complex configurations [9].

The most exciting reason to investigate
the Cartesian grid approach is the ease
with which a CAD/CAM-compatible geom-
etry definition can be incorporated into an
automated grid generation procedure. A
CAD/CAM description of a collection of sur-
faces can be used directly in the computa-
tion of the geometric quantities needed for a
fiow solver using finite volume Cartesian grid
cells. The surface modelling algorithms and
software that are needed for these computa-
tions are typically proprietary and generally
unavailable, but the source code for several
modelling systems has recently become avail-
able, allowing this effort to proceed.

The drawbacks to the use of Cartesian
grids stem primarily from the difficulty of
imposing solid wall boundary conditions on
a non-aligned grid. The geometry can inter-
sect the grid in an essentially arbitrary way.
Finite volume discretizations with sufficient
accuracy are needed for the irregular cells of
the Cartesian grid adjacent to a2 body com-
ponent.

In this paper we describe a Cartesian mesh

algorithm for computing the inviscid flow-
fields about complex geometries. We use
the DTNURBS software library [10] to ob-
tain the geometric quantities required for
the finite volume flow field computations.
Our main objective is to demonstrate the
automatic grid generation procedure using
Cartesian grids. An unstructured Cartesian
grid flow solver (TIGER) previously devel-
oped by viie author [11] was modified and
used to integrate the Euler equations to
steady state using Jameson’s Runge Kutta
timestepping algorithm with central differ-
encing [12]. The modifications to the bound-
ary conditions were only first order accurate;
the next phase of this work will be to further
develop the flow solver for more accurate so-
lution on Cartesian meshes.

Section 2 of this paper describes the flow
solver as it has been adapted for use with
non-body-fitted Cartesian grids. Section
3 describes the geometry input definitions
and the Cartesian grid generation algorithm.
Computational results are presented in sec-
tion 4. For a demonstration case, we com-
pute the transornic flow about the ONERA
M6 wing. We compare the results from
CAD/CAM and faceted geometry input. We
also include a more complex configuration
(without the flow solution) to show the po-
tential of this type of Cartesian grid repre-
sentation. Conclusions are in section 5.

2 Cartesian Grid
Solver

Flow

The flow solver used in this report is a mod-
ified version of Jameson’s four stage Runge
Kutta algorithm for the solution of the Euler
equations [12]. In integral form, the equa-




tions to be solved are

i// wdzdydz:—f f-ndS
dt s

where w = (p, pu, pv, pw, pE)* and

pvV-n
pUV -n + pny
pvV -n + pny
pwv-n+ pn,
(PE+p)v-n

These equations place no restrictions on
the shape of an individual control volume.
The main difference between a regular (non-
body-intersecting) hexahedral cell and an in-
tersected cell is the addition of a boundary
term in the surface integrals which is used to
impose the no normal-flux boundary condi-
tions. The method uses central differencing
in space, with second and fourth order dissi-
pation added using a variable coeflicient that
is scaled by the local value of the second dif-
ference in pressure. At the irregular cells ad-
jacent to the body, this scheme degenerates
to first order differencing in space.

To implement the no-flux boundary condi-
tion, a surface area and a normal vector are
required for the portion of the surface that
lies within each intersected cell. We use the
following observation to simplify the com-
putation of the surface normal within each
cell. The components of the surface normal
vector can be obtained from the difference
in exposed areas of opposing cell face pairs.
This follows directly from the fact that the
sum of the normals of each face multiplied by
the area of the faces gives zero. Thus we do
not explicitly compute the area of the inter-
section of the boundary surface within each
cell. For simplicity, this is illustrated in two
dimensions in figure 1. The z and y compo-
nents of the surface normal vector are given

n

2-yix2-xl)

e
Figure 1: The normal vector can be com-
puted from the exposed cell lengths y1,y2,
and x1,x2.

Figure 2: These two boundary surfaces have
the same geometric description, i.e. surface
normal and exposed cell face areas.

by the difference in the exposed areas y2 -yl
and z2 — z1, respectively. Note that in this
formulation the flow solver can not tell the
difference between the two surfaces shown in
figure 2.

At the outer boundary, variables are ex-
trapolated or specified depending on the Rie-
mann invariants. Currently, the basic Jame-
son 4-stage Runge-Kutta algorithm with lo-
cal time stepping is used to advance the solu-
tion. In future versions of the flow solver we
will include a multigrid strategy to accelerate
the convergence to steady state.




3 Automatic Cartesian Grid
Generation

From the finite volume formulation of the
Euler equations, the geometric information
needed for each control volume includes

o Area of each cell face

¢ Direction of outward normal vector for
body surface

¢ Centroids of cell faces and exposed cell
volume (for second order schemes).

If steady state rather than time accurate so-
lutions are required, the exposed cell vol-
ume is not actually necessary, and can be re-
placed by the hexahedral volume in the time-
stepping scheme.

The automated grid generation techniques
described in this report accept two basic sur-
face geometry input formats. For the first,
we use the NURBS format (Non-Uniform
Rational B-Spline), used in most modern
CAD/CAM systems as the typical entity
for geometry description [13]. NURBS are
able to represent complicated curved geome-
tries with a relatively small number of con-
trol parameters, and provide a complete de-
scription of the surface and its derivatives.
One difficulty in the use of NURBS is re-
flected in the algorithms required for their
interrogation. For example, the calcula-
tion of NURBS surface-surface intersections
typically requires finding all solutions to a
high order nonlinear polynomial equation,
thus requiring an iterative procedure and the
specification of a root-finding tolerance. An
additional difficulty is the lack of any guar-
antee that all intersections will be found.
A probability factor is used to control the

amount of searching performed by the root-
finding subroutines. Despite these complica-
tions, there is no reason why these algorithms
cannot be used in an approach that elimi-
nates the tedious and time consuming tasks
of interactive surface and volume grid gener-
ation while retaining the complete geometric
accuracy of the NURBS surface definition.

We have chosen to use the DTNURBS col-
lection of computational geometry routines
because of the availability of the FORTRAN
source code, but many of the other propri-
etary packages contain essentially the same
functionality. One limitation of the current
version of DTNURBS is the lack of routines
capable of operating on trimmed surfaces, so
all of the geometries discussed in this report
were composed of multiple natural surfaces.
The creation of these NURBS surfaces is the
only part of the grid generation procedure
that requires human intervention.

Our goal then is to compute the finite vol-
ume cell geometric information directly from
the NURBS description of a geometry ob-
tained from the CAD/CAM system via the
IGES file format [14]. The approach elim-
inates the need to generate a surface dis-
cretization before a volume (flowfield) grid
can be created. We generate the Carte-
sian volume grid in two steps. We begin
by creating a coarse, equi-spaced mesh of
cells. Each cell face is then checked for an
intersection with the surface. For compu-
tational efficiency, this step is performed in
three stages. In the first stage, the edges
of each face are checked for surface inter-
sections. If none are found, each individual
grid cell face is then converted into a NURBS
description and input to the surface-surface
intersection routine. This second stage at-
tempts to detect any intersections between




the surface NURBS geometry and the inte-
rior of the cell face. If no intersections are
found in the first two stages, a third stage is
used to determine if the face is wholly inter-
nal or external to the surface. We proceed
in this way since the surface-surface inter-

section algorithm is the least efficient of the-

NURBS interrogation routines.

Local refinement for the purpose of geome-
try definition is done as the grid is generated.
If a cell needs to be refined, it is done during
the first step immediately after ,rocessing
the parent cell. This saves some computa-
tional expense. For example, after comput-
ing intersections, we mark non-intersecting
cell faces with a flag that denotes them as
fully internal or fully external. If the cell is
then refined, the children cells inherit this
property and need not be further examined.

After the cell vertices of the initial re-
fined grid have been established, the second
step is the calculation of the face areas for
those cells that intersect the surface. DT-
NURBS does not currently provide the ca-
pability needed to do this with a single sub-
routine call. Instead, we proceed in an in-
direct manner by first computing the spline
curve describing the intersection of the plane
containing the cell face and surface geometry.
This spline is then converted into a piecewise
linear curve describing the body cross sec-
tion. This conversion is done with high accu-
racy using a curvature-sensitive DTNURBS
subroutine. Finally, the area of the portion
of the cell face exterior to the body is com-
puted. (The details of this last step are ex-
plained in the discussion of the triangular ge-
ometry input format).

When used with the NURBS geometry, we

currently refine all cells that intersect the
surface geometry to a maximum prescribed

level. However, the DTNURBS package pro-
vides a subroutine that calculates curvature
at a given point. Our plan is to use this
(and other) geometric refinement criterion in
conjunction with flowfield criteria in order
to develop a fully automated grid refinement
procedure applicable to arbitrary geometries
and flow conditions.

The second geometry input format that
this program accepts is the more familiar one
consisting of a collection of triangles describ-
ing the surface of the geometry. The only re-
quirements for the surface triangulation are
that it not contain any zero-thickness com-
ponents and that it be watertight, i.e., all
edges of each triangle must be matched by
the edge of another triangle. The intersec-
tions between the Cartesian grid cells and
the body triangles and the amount of face
area external to the geometry can then be
determined using well known planar compu-
tational geometry algorithms. With care-
ful programming, many of these geometri-
cal computations can be vectorized, resulting
in an efficient and automated Cartesian grid
generation algorithm for arbitrarily shaped
triangulated geometries.

The generation of the refined Cartesian
grid proceeds using the same two steps de-
scribed previously. First, each cell face is
checked for intersection with the triangular
facets that compose the surface. Since both
the cell face and triangle are planar polygons
this is a simple operation: each edge of each
polygon is checked for an intersection within
the interior of the other polygon. In the sec-
ond step, the cell areas exterior to the geom-
etry are computed in the following manner.
First, a planar cross-section of the surface tri-
angulation is computed, yielding a collection
of line segments coplanar with an intercepted




cell face. These segments are then ordered
and joined into closed polygons describing
the cross-section. Finally, the Sutherland-
Hodgman polygon clipping algorithm [15] is
used to determine the portions of the cross-
section polygons that lie within each rectan-
gular cell face.

Because of the general nature of the sur-
face geometry, the cross sections that result
from a planar slice can intersect the cell in
an arbitary manner. For example, the cross
section of an engine nacelle located entirely
within the face of a coarse grid cell is shown
in figure 3. One indication that further cell
refinement is needed is given by the existence
of multiple independent regions (such as A
and B) within a cell. Care must therefore be
taken to determine the topology of the cross
sections, including those composed of multi-
ple independent and/or concentric polygons,
in order that decisions about additional cell
refinements can be made automatically. One
step of this topology determination process is
illustrated in figure 3. We determine whether
the area enclosed within each cross-section
polygon is interior or external to the geome-
try by casting a ray emanating from a point
on the cross-section and counting the num-
ber of intersections that the ray makes with
other cross sections. If this number is even,
the region enclosed by the contour must be
internal to the geometry.

4 Computational Examples

We show three flow solutions computed for
the ONERA M6 wing. The final example il-
lustrates a grid generated for a complex con-
figuration without flow solution.

In figure 4, we show Cp distributions for
the ONERA M6 wing at the standard test

9]
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Figure 3: IHustration of the intersection-
counting procedure for cross sections.

conditions of Mach 0.84 and 3.06 degrees
angle of attack [16]. Two coarse grids of
equivalent density were generated using the
NURBS and triangle input geometry for-
mats. The NURBS surface input file con-
tained four surfaces. The tip and the trail-
ing edge thickness were modeled with single
surfaces, and the remainder of the wing was
split into two NURBS that defined the up-
per and lower surfaces. An additional fine
mesh was generated using the triangle input
file. Figure 5 shows the improvements in the
Cp distributions obtained on this fine grid.
Figure 6 shows the fine grid and Mach num-
ber distribution along the centerline sym-
metry plane and at two outboard wing sta-
tions. The various levels of surface grid re-
finement are also evident, and correspond to
the different colorings of the wing surface
triangles. These figures demonstrate that
the lack of agreement between the NURBS
solution and the experimental data results
from inadequate flowfield resolution (espe-
cially near the leading edge), and not from
any inaccuracies in the NURBS geometrical
computations. The two coarse grids were
created on a Silicon Graphics Indigo Elan
workstation. For the NURBS definition of
the wing, the complete grid generation pro-
cess required approximately four hours for
a mesh of 20,804 cells, 3,286 of which in-




tersected the body geometry. The corre-
sponding triangle geometry grid had 20,814
cells, but was generated in 5 minutes. The
high resolution grid was generated on the
NAS Cray C90, and required 124 seconds
to produce a total of 134,198 cells, 11,402
of which intersected the surface. The flow
solver was run for each of the grids on the
NAS Cray C90, and executed at a rate of 8.8
microseconds/cell/timestep. All of the solu-
tions shown were converged to four orders of
magnitude in the density residual. Figures
7 and 8 show two views of a Cartesian grid
generated using a quadrilateral - description
of an F16XL. Each quadrilateral was decom-
posed into two triangles before being input to
the grid generator. The resulting grid con-
tained eight levels of refinement, with a total
of 277,657 cells in the flowfield and 56,205
surface-intersecting cells. The grid required
375 seconds to generate on the Cray C90.

5 Conclusions

The use of Cartesian grids generated di-
rectly from the CAD/CAM surface definition
makes possible an automated grid generation
procedure applicable to arbitrary three di-
mensional configurations. We have demon-
strated the geometric capability; the next
step is improvement in the numerical algo-
rithm for the flow simulatic:«.. This approach
shows promise for drama:icaily reducing the
time required to produce accurate CFD sim-
ulations about complicated vehicles.

Acknowledgements

M. Berger was supported in part by DOE
grant DE-FG02-88ER25053, by AFOSR

grant 91-0063, and by a PYI, NSF ASC-
8858101.

References

[1] 3. Thompson. Nsmerical Grid Generation.
North-Holland, 1982.

{2) J. Steger, Benek, and Dougherty. A Flex-
ible Grid Embedding Technique With Ap-
plication to the Euler Equations. AJAA-83-
1944, July 1983. 6th Computational Fluid
Dynamics Conf., Danvers, Mass.

[3] D. J. Mavriplis and A. Jameson. Multigrid
Solution of the Euler Equations on Unstru-
tured and Adaptive Meshes. In Proc. Third
Copper Mountain Conf. Multigrid Methods,
Lecture Notes in Pure and Applied Mathe-
matics, 1987. ICASE Report No. 87-53.

[4] 3. D. Baum and R. Lhner. Numerical
Design of a Passive Shock Deflector Using
an Adaptive Finite Element Scheme on Un-
structured Grids. AIAA-92-0448, 1992.

(5] R. Gaffney, H. Hassan, and M. Salas. Eu-
ler Calculations for Wings Using Cartesian
Grids. AIAA-87-0356, January 1987.

{6] M.J. Berger and R.J. LeVeque. An Adap-
tive Cartesian Mesh Algorithm for the Euler
Equations in Arbitrary Geometries. AIAA-
89-1930, June 1989. 9th Computational
Fluid Dynamics Conf., Buffalo, NY.

[7] D. DeZeeuw and K. Powell. An Adaptively
Refined Cartesian Mesh Solver for the Euler
Equations. AIAA-91-1548, 1991.

[8] B. Epstein, A. Luntz, and A. Nach-
schon. Cartesian Euler Method for Arbi-
trary Aircraft Configurations. AIAA Joxr-
nal, 30(3):679-687, March 1992.

9] D. Young, R. Melvin, M. Bieterman,
F. Johnson, S. Samant, and J. Bussoletti.
A Locally Refined Rectangular Grid Finite
Element Method: Application to Computa-
tional Fluid Dynamics and Computational
Physics. J. Comp. Phys., January 1991.




[10] Boeing Computer Services.  The DT-
NURBS Spline Geometry Subprogram Li-
brary User’s Manual, Version 2.0. Technical
report, October 1992.

[11] J. Melton, S. Thomas, and G. Cappuc-
cio. Unstructured Euler Flow Solutions Us-
ing Hexahedral Cell Refinement. AIAA-91-
0637, January 1991. 20th Aerospace Sci-
ences Mtg., Reno, Nevada.

[12] A. Jameson, W. Schmidt, and E. Turkel.
Numerical Solutions of the Euler Equations
by Finite Volume Methods Using Runge-
Kutta Time-Stepping Schemes. AIAA-81-
1259.

[13] G. Farin. Curves and Surfaces for Compsuter
Aided Geometric Design, a Practical Guide.
Academic Press, 1988.

[14] Kent Reed. The Initial Graphics Exchange
Specification (IGES) Version 5.1. September
1991.

[15] Foley, van Dam, Feiner, and Hughes. Com-
puter Graphics, Principles and Practice.
Addison Wesley, 1990.

[16] V. Schmitt and F. Charpin. Pressure Distri-
butions on the ONERA M6-Wing at Tran-
sonic Mach Numbers. AGARD Report AR-
138, 1979.




A8

1.8

-1

) =
M
2 = 0.2
] 028 -1 ] ars 1
xc

TS

18

-1

[} a3s os 075
e
1.5
e
9 S —
) f E

2.8

° ,_ﬂ‘ .N
as

|M - G‘I
1

0 ozs o8 ors
xc

Figure 4: Coarse grid Cp distributions for the ONERA M6 wing, Mach 0.84, AcA = 3.06

X
) age as ors 1
xc
. Fe=
S— "_(1—"‘\
/'/-.-_.&"%‘_
2% = 0.2
0 028 as ors 1
X
22 .
|
i
e
° 025 as ors 1
xc

15

4 1
.
o5 r-r“/:_.\‘ N
./-r—"'"&
0 r/ N
08
. 1 IM - n«|
0 028 o8 078
xC
1.8
K] KQ

Figure 5: Fine grid Cp distributions for the ONERA M6 wing, Mach 0.84, AcA = 3.06




L
“ 1.

LILH
L11L)
“ 11111
. 111N
11311
1 SR,
LALLE g§ )
nmum

1
il

t shows leading edge detail)

(inse

wing

f ONERA M6

C View ¢

Isometric vi

6




. L L |

T I rIrrrrrrrr
)

-

Figure 7: Aft view of F16XL Cartesian Grid (277657 cells)

LI rrrrerry

1
L4l L L ) ;| ) |

Figure 8: Side view of F16XL Cartesian Grid




Three Dimensional Adaptive Mesh Refinement for Hyperbolic
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ABSTRACT

We describe a local adaptive mesh refinement algorithm for solving hyperbolic systems of conservation
laws in three space dimensions. The method is based on the use of local grid patches superimposed on a
coarse grid to achieve sufficient resolution in the solution. A numerical example computing the interaction
of a shock with a dense cloud in a supersonic inviscid regime is presented. We give detailed timings o
illustrate the performance of the method in three dimensions. '

1. Introduction

Advanced finite difference methods, by themselves, are unable to provide adequate resolution of
three dimensional phenomena without overwhelming currently available computer resources. High-
resolution 3D modeling requires algorithms that focus the computational effort wheze it is needed. In this
paper we extend the Adaptive Mesh Refinement (AMR) algorithm for hyperbolic conservation laws origi-
nally developed in [1] to three space dimensions. AMR is based on a sequence of nested grids with finer
and finer mesh spacing in both time and space. These fine grids are recursively embedded in coarser grids
until the solution is sufficiently resolved. An error estimation procedure automatically determines the
accuracy of the solution and grid generation procedures dynamically create or remove rectangular fine grid
patches. Special difference equations are used at the interface between coarse and fine grid patches to
insure conservation. This is all handled without user intervention by the AMR program.
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Two dimensional versions of the AMR algorithm described here have been used to solve fluid flow
problems in a variety of settings, and has enabled the study of fluid flow phenomena not previously possi-
ble. For exampie, the extra resolution provided by AMR erabled the computation of a2 Kelvin-Helmholtz
type instability along the slip line in a study of Mach refiection off an oblique wedge [2], and aided in the
resolution of the weak von Neumann paradox in shock reflection [3). When combined with a multifiuid
capability, the algorithm was used to compute the interaction of a supernova remnant with an interstellar
cloud [4], and to categorize refraction patterns when a shock hits an oblique material interface (5]. When
extended to use body-fitted coordinates, AMR was used to study diffraction of a shock over an obstacle [6].
In each of these cases the use of adaptive mesh refinement reduced the cost of the computation by more
than an order of magnitude. The improved efficiency associated with using AMR may make similar flows
in three dimensions computationally tractable.

There are several alternative approaches to focusing computational effort in three-dimensional flows.
One approach uses a logically rectangular grid with moving grid points that adjust to the flow. There are
several drawbacks to this approach. First, it is hard to implement a three dimensional high-resolution
integration scheme for moving rectilinear grids. In our approach the integration scheme need only be
defined for uniform rectangular grids; this avoids the complexity and computational cost associated with
metric coefficients in the moving grid approach. Furthermore, in three dimensions it is extremely difficult
to effectively cluster points to capture unsteady phenomena while maintining a grid with sufficient
smoothness in both space and time to permit effective computation. Even if acceptable grid motion can be
determineq, the entire computation is usually performed with a fixed number of zones throughout the com-
putation. The local grid refinement approach dynamically adjusts the number of zones to match the
requirements of the computation. The time step used in moving mesh codes is also limited by the smallest
cell size unless additional work is done by solving the equations implicitly or using techniques that allow
each cell to evolve with its own time step.

Another approach to three dimensional computations uses adaptive unstructured grids. Unstructured
grids offer the most flexibility in optimally placing zones; however, we favor locally uniform patches for
their accuracy and wave propagation properties. The development of discretization techniques that avoid
degradation for strong shocks on highly frregular meshes remains an open issue. Our use of uniform grids
allows us to directly use much of the high resolution difference scheme methodology developed for this
flow regime. Uniform patches also have low overhead, both from the computational and the storage point
of view. The extra information that is needed, in addition to the actual solution values, is proportional to
the number of grids rather than the total number of grid points. Scratch space needed during integration is
also reduced by using uniform grids. The additional storage of AMR is negligible.

An indication of the robustmess of the mesh refinement algorithm is that very few changes were
required in extending it from two to three dimensions. However, time-dependent three-dimensional com-
putations push the limits of current machine resources, both in terms of memory and CPU time. For this
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reason, particular care was taken in the implementation, and the grid generation algorithm was improved ©0
increase the ovenll efficiency of the code.

The starting point for this paper is the version of AMR presented in (2] and we assume the reader is
familiar with that paper. In section 2 we describe the differences in the three dimensional mesh refinement
algorithm which have 1 do with the grid generation algorithm and the error estimator. In section 3 we
describe the operator split integration scheme used in the numerical experiment. In particular, this section
clarifies the interaction of the grid refinement and operator split boundary coanditions on paiched grids
while maintaining conservation at grid interfaces. We include a brief section on implementation since
some simple changes that produce a much cleaner code have been incorporated. We are also rewriting the
code in C++. The results of a numerical experiment of a shock-cloud interaction modeling the laboratory
experiments of Sturtevant and Haas [7] are presented in section 5. Detailed timings are presented as well
as memory usage and grid statistics demonstrating that AMR offers significant savings of computational
resources and can be an important tool in the study of three dimensional fluid dynamics.

2. The Adaptive Mesh Refinement Algorithm

AMR uses a nested sequence of logically rectangular meshes to solve a PDE. In this work, we
assume the domain is a single rectangular parallelepiped although it may be decomposed into several
coarse grids. With the new grid generator described below, grids at the same level of refinement do not
overiap. We require that the discrete solution be independent of the particular decomposition of the
domain into subgrids. Grids must be properly nested, i.e. a fine grid should be at least one cell away from
the boundary of the next coarser grid unless it is touching the boundary of the physical domain. Howevez,
a fine grid can cross a coarser grid boundary and still be properly nested. In this case, the fine grid has more
than one parent grid. This is illustrated in Figure ] in two dimensions. (This set of grids was created for a
problem with initial conditions specifying a circular discontinuity).

AMR contains five relatively separate components. The error estimator uses Richardson extrapola-
tion to estimate the local truncation error; this determines where the solution accuracy is insufficient. The
grid generator creates fine grid patches covering the regions needing refinement. Data structure routines
manage the grid hierarchy allowing access to the individual grid patches as needed. Interpolation routines
initialize a solution on a newly created fine grid and also provide the boundary conditions for integrating
the fine grids. Flux correction routines insure conservation at grid interfaces by modifying the coarse grid
solution for coarse cells that are adjacent to a fine grid.

When all these components are assembled, a typical integration step proceeds as follows. The
integration steps on different grids are interleaved so that before advancing a grid all the finer level grids
have been integrated to the same time. One coarse grid cycle is then the basic unit of the algorithm. The
variable r denotes the mesh refinement factor in both space and time (typically 4), and level refers to the
number of refinements (the coarsest grid is at level 0). The regridding procedure is done every few steps,
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Recursive Procedure Integrate (level)
Repeat riee times . .
Regridding time? - error estimation and grid generation for level grids and finer
Step Alive: 0N all grids at level level
if (level +1) grids exist
then begin
integrate (level+1)
conservation_fixup(level , level +1)
end
end.

level =0 (* coarsest grid level *)
Integrate (level)

Single Coarse Grid Integration Cycle
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2.1. Grid Generation

The grid generation algorithm takes a list of coarse grid points tagged as needing refinement and
groups them in clusters. Fine grids are then defined by fitting the smallest possible rectangles around each
cluster. The objctive of the grid generation is to produce efficient grids, i.e. rectangles contining a
minimum number of cells that are not tagged, without creating a large number of small grids with poor
vector performance and excessive boundary overhead.

The grid generator in [2) uses a simple bisection algorithm. If a single enclosing rectangle is too
inefficient, it is bisected in the long direction, the tagged points are sorted into their respective halves, and
new enclosing rectangles are calculated. The efficiency is measured by taking the ratio of tagged points to
all points in a new fine grid. The procedure is repeated recursively if any of the new recangles are also
inefficient. Since this algorithm uses no geometric information from the tagged points, it often results in
to0 many tiny subgrids and is followed by a merging step. Unfortunately, this results in overlapping grids.
Since the memory usage in three dimensional calculations is at a premium, we want to avoid overlapping.
Furthermore, we expect that there will be large numbers of grids in three dimensions which makes the
merging step costly.

‘We have developed a new clustering algorithm that uses a combination of signatures and edge detec-
tion. Both techniques are common in the computer vision and pattern recognition literature. After much
experimentation, described in [8], we have developed what amounts to a "smart bisection” algorithm.
Instead of cutting an inefficient rectangle in half, we look for an "edge” where a transition from a flagged
point region to a non-flagged one occurs. The most prominent such transition represents a natural line with
respect to which the original grid can be partitioned.

We describe the procedure in two dimensions for purposes of illustration. First, the signatures of the
flagged points are computed in each direction. Given a continuous function f (x,y ), the horizontal and vert-
ical signatures, Z, and Z, are defined as

5= ;f(xa)dy

L={fan

respectively. For discrete binary images, this is just the sum of the number of tagged points in each row and
column. If either signature contains a zero value, then clearly a rectangle can be partitioned into two
separate clusters in the appropriate direction. If not, an edge is found by looking for a zero crossing in the
second derivative of the signature. If there is more than one such zero crossing, the largest one determines
the location for the partitioning of the rectangle. If two zero crossings are of equal strength, we use the one
closest to the center of the old rectangle to prevent the formation of long thin rectangles with poor vectori-
zation. This procedure is also applied recursively if the resulting rectangies do not meet the efficiency
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criterion, with the exception that if no good partition is found, and the efficiency is at least 50%, the rectan-
gle is accepted; otherwise it is bisected in the long direction as a last resort. In computational experiments
in two space dimensions, for the same level of accuracy the new algorithm reduces the CPU time by
approximately 20%.

Figure 2 illustrates the entire procedure on a sample set of points. The first column on each side is the
signature, and next to it is the second derivative. After each partitioning of the points, a new enclosing rec-
tangle is calculated around the tagged points. In this figure, after 3 steps, the fine grids are acceptably
efficient and the procedure stops.

2.2, Error Estimation

The second improvement over the basic approach in [2] is the addition of a purely spatial com-
ponent to the error estimation process to supplement Richardson extrapolation. In Richardson extrapola-
tion, the data on the grid where the error is being estimated is coarsened and then integrated for a timestep.
That result is then compared to the result of integrating first and then coarsening. For smooth solutions, the
difference in these two results is proportional to the truncation error of the scheme. The motivation for
including an additional error measure is to identify structures that are missed by the averaging process
associated with the coarsening in the Richardson extrapolation. For example, in gas dynamics a slow-
moving or stationary contact surface generates little or no error in the Richardson extrapolation process. In
fact, the integrator is not generating any error in this case. However, failure to tag the contact will cause it
to be smeared over a coarser grid. The error associated with deciding whether or not to refine the contact
surface is associated only with the spatial resolution of the discontinuity, not with errors in integration.
Should the contact need to be refined later, (for example if it interacts with another discontinuity), the ini-
tial conditions are no longer available to provide higher resolution. For certain special cases a similar
phenomenon can also occur for shocks. These problems can be avoided by providing the error estimation
routine with the unaveraged grid data so that spatial resolution can also be measured.

Along with the addition of a purely spatial component to the esror estimation, we also directly con-
trol the process of tagging (and untagging) cells for refinement. For example, a user can insist that only a
certain part of the domain is of interest and that the error estimator should be ignored if it says refinement is
needed outside of the interesting regions. Similarly, it can force refinement in a particular region indepen-
dent of the error estimation result.

3. Integration Algorithm

For the computational examples presented in section 5, we use an operator-split second-order
Godunov integration scheme. However, the particular form of the integration scheme is independent of the
remsinder of the AMR shell. Other integration methods and, in fact, other hyperbolic systems can be
casily inserted into the overall AMR framework. The only requirement for the integration scheme is that it




3

» x N
] X o
» x «a
N o
» XWX o
. X

: ] »

" »”
2]

@ o Q )

i i o4 o
w ® o~
L. ] (o]
® ® «a
| . (3]
® ® K o
V] | o
.................. . e , -
»” »” [ o)
2

00

1

2

X X Xx X

X

Figure 2 shows the signature amays Z,,Z, and the second derivatives A ,Ay used to pantition the

clusters.




be written in flux form, i.e.,

Ugit =Ups - At[ Fiﬂ,[%-ﬁiﬂ + Gqﬁ%-fq:g + HijaowHijrm G.1)

where F,G ,H are the numerical fluxes in the x.y,z directions respectively. In its current form, these
numerical fluxes are assumed to be explicitly computable from the values in cell ijk and a localized collec-
tion of its neighbors, as is typical of conventional explicit finite difference methods. When the integrator is
invoked, it is provided data on the grid to be integrated as well as sufficient boundary data (based on the
scheme’s stencil) to advance the solution on the given grid. No special stencils are used at fine/coarse
interfaces. Instead, coarse grid data is linearly interpolated to the fine grid resolution to provide a border of
boundary cells, which is provided to the integrator along with the grid data itself. After the integration step,
fluxes are adjusted to insure conservation at grid interfaces.

When operator splitting is used with local grid patches, the only thing to note is that extra boundary
cells must be integrated during the first sweep to provide accurate boundary values for subsequent sweeps.
For example, for a scheme with four points to the side in the stencil, 4 entire rows of dummy cells along the
top and bottom of the grid must be advanced in the x sweep, so that 4 points are available for the y sweep
at the next stage. For very small grids this additional boundary work can dominate the computational cost
of advancing a grid (particularly for difference methods having a broad stencil such as the Godunov algo-
rithm we are using). This additional boundary work, as well as the vectorization issues, place a premium on
generating large but efficient grids during regridding.

As an example, if one 60 x 60 x 60 grid were replaced by two 30 x 60 x 60 grids, both grids would
redundantly integrate the overlapping boundary cells. This causes approximately 4% of the total computa-
tion to be redundant.

4. Implementation

Two simple decisions had a large impact on the implementation of AMR. The first concerned the
organization and separation of the problem dependent and problem independent parts of the AMR code.
The problem dependent parts include the particular hyperbolic systems to be solved (and a suitable integra-
tion scheme), the initial and boundary conditions, the problem domain, and the error estimation routines.
When a new problem is being set up the changes required to the code are localized to a small number of
subrowines. The integration subroutine advances the solution of the particular differential equations for a
single timestep on a rectangular subgrid, and returns fluxes that are required to insure conservation at
coarse-fine boundaries. Consequently, adapting an existing integration module for use with the AMR algo-
rithm is routine. The remainder of the AMR shell treats the data in terms of conserved variables where the
number of variables is specified as a parameter. Thus, the data structures, memory management, grid gen-
eration algorithms, the logic controlling the timestepping and subcycling on subgrids, interior boundary
conditions, and the interfacing between grids that insure conservation are completely divorced from the




pearticular system being solved.

The second implementation detail that simplified the programming of AMR and also resulted in
much cleaner code than in [2] is the use of a global integer index space covering the domain. These
integers are used in describing the location of the grids. Based on the initial (user-specified) domain, given
in floating point numbers, an integer lattice based on the number of cells in cach dimension (nx sty and nz)
is determined. The domain may then be partitioned into several coarse grids, each located in subcubes with
indices between (1,1,1) and (nx sty uz). If the refinement ratio is 7 between level I and level /+1, then the
fine grid cells corresponding to coarse grid cell i,j k are r-i+p; r-j+p;s-k+p: where the p;j, indcpen-
dently range from O to r-1. This completely eliminates round-off error problems that would otherwise
require careful coding to determine whether two grids overlap or whether a coarse grid is a parent to a fine
grid.

We are currently rewriting the AMR algorithm in C++ with calls to FORTRAN routines for the
numerically intensive parts. By constructing the appropriate classes we are able to define a grid calculus in
which the computation of intersections and, in fact, the entire regridding process, is greatly simplified.
Using the built in macro preprocessor, we are able to0 implement a large portion of the code in a dimension
independent manner with the dimension as a compile time parameter. With the data hiding inherent in C++
we are able to implement AMR in such a way that the underlying data representation is restricted to & few
model dependent classes. Changing the data representation, such as to a sparse data representation for a
multi-fluid version of the code, would be restricted to the member functions of these classes. Since the
majority of the run time for AMR is spent integrating large rectangular meshes, the overhead experienced
by doing the data management in C++ is just a few percent over an implementation done entirely in FOR-
TRAN. Further optimization of the most important member functions reduces the running time to a few
percent less than the pure FORTRAN code.

5. Numerical Example

To test the performance of the 3DAMR algorithm, we have modeled the interaction of a Mach 1.25
shock in air hitting an ellipsoidal bubble of Freon-22. The case being modeled is analogous to one of the
experiments described by Haas and Sturtevant [7]. The Freon is a factor of 3.0246 more dense than the
surrounding air which leads to a deceleration of the shock as it enters the cloud and a subsequent genera-
tion of vorticity that dramatically deforms the bubble.

The computational domain is a rectangular region with length (x) 22.5 cm and width (y) and height
(z) of 8.9 cm. The major axis of the bubble is 3.5 cm and is aligned with the z-axis. The minor axes are
2.5 cm with circular cross-sections of the bubble in the x—y plane. The bubble is centered at the point
(xy.2)=(10cm,0cm,0cm). The shocked fluid is placed at points less than or equal to 14.5 cm in the x
direction. The shock moves in the direction of increasing x. We use the operator split sccond order
Godunov method of [9), with Strang splitting. Reflecting boundary conditions are set on the constant z and
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constant y planes. The inflow and outflow velocities on the constant x planes, as well as the interior fluid
velocities, are set 90 the frame of reference is shifted to one in which the post-shock velocity is zero to
minimize the x extent of the problem. The numerics preserve a four-fold symmetry in y and z, so we only
compute on a quarter of the physical domain. (We have reflected the data in the renderings so that the
entire domain is shown.)

We use a simplified treatment of the equations of multifivid gas dynamics. The features of this
method include using a single fluid solver, only having to advect one additional quantity, and having a set
of equations in conservation form.

We use a y-law equation of state for each gas with y, = 1.4 for air and ¥y = 1.25 for Freon. Mixtures
of the two gases are modeled with an equation of state defined using both ¥’s,
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for energy. Here, I', is used to compute an effective sound speed for the mixture with

and f is the mass fraction of the freon. The harmonic average used to compute I, used by Colella, Fergu-
son and Glaz for multifivid computations {10}, expresses the net volume change of a mixture of the gases
in terms of their individual compressibilities. The sound speed defined by (5.1) is used in the integration
routine for defining characteristic speeds and for approximate solution of the Riemann problem solution.
We also assume that the two components of a mixed fluid cell all are at the same pressure. Pressure is
computed from density and intemnal energy using I', , namely,

p=@-Dpe

The harmonic average used to compute I, insures that mixing of the two fluids at the same pressure does
pot result in a pressure and internal energy change of the composite fluid.

The AMR algorithm was run with an initial coarse grid of 80x16x16 with two levels of refinement,
each by a factor of 4, for 100 coarse grid time steps. The integration used 6 conserved quantities (mass,
momentum, energy, and mass of Freon). The addition of this extra conserved variable besides the usual 5
found in 3-dimensional gas dynamics doesn’t change the AMR structure). The etror estimation procedure
was modified so that the finest level grids (level 3) only existed in a neighborhood of the bubbie and so that
acoustic waves away from the bubble were not refined once the incident shock was well past the bubble.
The computation was performed on a Cray-2 and required 20.16 hours of CPU time. In Figure 3, we show
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volume renderings of the density field at four times during the evolution of the cloud. For the renderings,
we interpolated all the data on to a uniformly fine grid. The effective result of the volume rendering is to
yield an isosurface of the interface between air and freon. The earliest frame is shortly after the incident
shock has complesely passed through the bubble. The bubble evolution qualitatively agrees with the exper-
imental results of Haas and Sturtevant. The dominant features of the flow are a strong jet coming from the
back of the bubble and the unstable evolution of the roll-up of the outer portion of the bubble.

During the computation a total of 1.77x1(P cells were advanced by the integration routine (not
incloding boundary advancements required by operator splitting) for an effective time of 40 pi-seconds per
zone including all of the AMR overhead. Figures 4 and S present a more detailed breakdown of the algo-
rithm performance. Figure 4 is a histogram of each linear dimension of the level 3 grids, an appropriate
measure of the quality of the grids for an operator-split integration algorithm. For this computation the
maximum grid dimension was limited to 50 and most grids were at least 24 cells wide in each direction.
This was done to limit an individual grid size to 125000 zones times 6 variables per zone. Figure 5 shows
the number of level 3 cells as a function of time and indicates a growth in memory requirements as the
solution complexity grows. The maximum memory required at any point during the run was 22.6 Mwords.

Independent measurements of the integration algorithm on a single large grid 160x64x64 indicated a
time of 30 p-seconds per zone. Thus, the additional boundary work, smaller vector lengths and AMR over-
head increased the time per zone by 10u-seconds. However, to achieve the same resolution, a uniform grid
1280256256 would be required. Such a computation would require 500 Mwords of storage and 1100
hours of CPU time. The net speedup with AMR is a factor of 55.

Although it is difficult to predict in advance, only 40 of the 80 zones in the x direction played a
significant role in the computation. The difficulty in prediction of the exteat of the problem is shown by
cruder mesh calculations which indicated a larger computation region. An outflow boundary condition to
handle the reflected shock off of the bubble could have eliminated a region of length 40 zones in the x
direction. Such a computation would require 251 Mwords of storage and 560 hours of CPU time. Alterna-
tively, we estimate that with a carefully designed, exponentially stretched computation mesh, the fixed grid
computational cost also could be halved; however, such an approach also requires substantial knowledge of
the solution in designing the mesh. Thus, even from a conservative viewpoint, AMR reduced the computa-
tional cost by more than a factor of 20 for this problem.

Of course, the performance of AMR is highly problem dependent. For some problems the cost reduc-
tion may be greater and for some problems it may be less. However, AMR will be cost effective as long as
the average number of coarse cells per time step that require the finest level of refinement over the entire
course of the computation is less than 75% of the total number. We also note that sophisticated grid place-
ment strategies can reduce the advantage of using AMR. However, these strategies require considerable
knowledge of the solution to be effective and may add considerable difficulties to problem setup. AMR
provides a high level of performance while making problem setup routine.
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Abstract

We present a Cartesian mesh algorithm with adap-
tive refinement to compute transient flows with strong
shocks around arbitrary geometries. We. develop a
rotated difference scheme for use at the arbitrarily small
scheme is stable using a time step based on the regular
cells away from the body. Adaptive mesh refinement is
used to achieve high resolution in the solution. We pro-
pose a simple but useful test problem with a smooth
solution for comparing schemes for arbitrary geometries
such as ours.

1. Introduction

We present a method for computing dynamic
compressible fiows with strong shocks about complex
geometries. The method combines three ingredients: a
high resolution shock capturing scheme of Godunov
type, an adaptive mesh refinement strategy, and a new
Cartesian mesh method for using rectangular meshes
about arbitrary geometries. Since the first two
ingredients have been well described elsewhere [9,1], we
concentrale on new problems that arise in Cartesian
mesh calculations about general geometries. Some prel-
iminary numerical results confirm the usefulness of the
method.

The overall goal of this work is to preserve the
advantages of uniform grid methods even for flows about
complex geometries. These advantages include simpli-
city and efficiency of data structures, and greater accu-
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racy and resolution of the solution, particularly for com-
plex flows with strong interacting shocks. High local
resolution can be achicved where needed through local
uniform fine grids patches, which can be recursively
nested for accuracy. This technology has been fully
demonstrated before [2,1,5]. Although the boundary
scheme discussed below is somewhat more complex than
the interior scheme, this extra work is done only at boun-
daries and it does not contribute significantly to the
overall computational cost of a8 computation.

We use a finite volume method to solve the system
of conservation laws

U+ f(u), +gm),=0.

Let u}; be the approximate solution in cell (i.j) at
timestep n. Then in each time step we update the cell
values using the flux differencing formula

u?f'=uii-% ZF, O

where the sum is over the faces bounding the (i,j) cell,
A, j is the cell area, [ is the length of the interface, and F
is the flux in the normal direction. Figure 1 shows a typ-
ical Cartesian grid and the irregular cells near the solid
wall boundary. Adjacent to the boundary, a cell can
have 3, 4 or S edges. Also note that cell areas can be
orders of magnitude smaller than the area A of the regu-
lar cells, as is the area of cell (2,1) in Figure 1. Equation
(1) is used to update all celis; however, the flux is com-
puted in a special way at the irregular boundary cells.
There are two main tasks in our treatment of the
small irregular cells that arise at the boundary where a
solid object intersects the Cartesian mesh. The first is to




develop a stable difference scheme for these boundary
cells for use in conjunction with a time dependent finite
volume scheme. The time step should be based on the
area of the regular cells away from the boundary; it must
not be constrained by tiny cells near the boundary.

Figure 1 A typical Cartesian mesh. Cell (2,1) is
tiny. Cell (2,2) has 5 edges.

The second task is to develop an approach that
maintains accuracy in regions of smooth flow, even on
frregular grids. This appears 10 be much more difficult to
achieve and we can report here only partial success. We
have improved the method proposed in [3,4] by introduc-
ing a piecewise lincar representation near the bousdary
in an attempt t0 compute second order accurate fluxes.
Typical second order accurate methods rely on cancella-
tion of errors in the fluxes during the flux differencing.
This occurs only for smoothly varying grids. Our irregu-
lar boundary celis are not at all smooth. However, recent
results on "supraconvergence” [16] indicate that with
appropriate methods the local error can be one order
lower than normally required in irregular grid cells
without the emor accumulsting 0 destoy the global
accuracy. We are currently attempting to perform such
analysis for methods of the type proposed here. The flux
redistribution method of Chem and Colella (6) also sta-
bilizes calculations with small cells but apparently at an
even greater cost in accuracy.

Careful investigation of the order of accuracy is
often neglecied for CFD methods, particularly for com-
known solutions seem 10 be rare. Here we propose a
simple test problem of expanding flow through a curved
channel for which the exact steady state solution can be
method achieves only a first order convergence rate at
the boundary, and a second arder convergence raie in the
interior. Since our solid wall boundary condition is still
only first order accurate, this is the most we could
expect.

The difference scheme we have developed uses
rotated coordinates at each boundary cell, in directions
normal and tangential to the boundary. A similar differ-
ence scheme, where the directions were chosen o be
aligned with the flow field, was developed in [13]. We
describe our work in the context of the MUSCL scheme
we use (0 update the cell in the interiar of the flow field.
However, these ideas extend naturally to other difference
schemes, and some of the results we show in the last sec-
tion were obtained using an extension of central dif-
ferencing to this rotated framework, with a Runge Kutta
method for the time stepping.

Earlier work using Cartesian meshes in the 1980°s
also used a central differencing method with Runge
Kutta in time [8,10,14), as well as flux vector splitting
[7). A newer approach [17], (presented at this confer-
ence), also combines a MUSCL type scheme with Runge
adaptive grid refinement as well. All of these approaches
are for steady state computations. Time accurate simuls-
tions, which we are focusing on, are particularly difficult
because of the stability issue for the small cells, and the
difficulty in obtaining second order accuracy in time as
well as space. Unsteady shock calculations for irregular
grids are also more difficult than their sicady counter-
parts [13]. We have previously investigated several
ways in which stability can be achieved in the presence
of small cells {4,11,12). The point of this work is to
improve the accuracy of the boundary scheme.

2. The Rotated Difference Scheme

We describe the implementation of the rotated
difference scheme in the context of 8 MUSCL scheme.
Great simplifications are possible however if it is imple-




mented with a central difference scheme instead. We
start with a very brief review of the MUSCL method,
using the approach of [9). To compute a flux at the
interface (i+1/2,j), for example, left and right states
4y, up at the midpoint of the interface and at time n+1/2
are predicted. A solution to the Riemann problem with
this input data produces the flux f))/2; that is used to
update the solution in eq. (1). Since the flux is centered
at time n+1/2, it is second order accurate in time.
Roughly speaking, a linear reconstruction of the solution,
using limited slopes to prevent overshoots, computes the
solution to second order accuracy in space at the cell
edges.

Looking in more detail at the Taylor series for the
approximation of u; gives

a+172
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In the MUSCL scheme we are employing, the slopes
u,andu, are approximated using finite differences and
slope limiting in the primitive variables. We have
extended this to also obtain estimates of the gradient in
irregular cells near the boundary. The term g, is called
the transverse derivative, and is the most difficult term to
compute in our rotated difference scheme.

If the derivatives are computed with first order
accuracy, the resulting approximation at the interface is
second order accurate. For smooth grids, the leading
order error terms cancel when fluxes are differenced,
giving a local truncation error of order (Ar°Ax?). As indi-
cated above, the situation with imegular grids is less
clear.

Near the boundary, we replace the MUSCL
scheme by a rotated version, in which the flux across
each interface is computed as a linear combination of a
fluX £, prma in the direction (a,B) normal to the boundary
and a flux f,,, in the orthogonal direction (B,—a) tangen-
tal to the boundary. Here (a,B) is the unit normal 1o the
boundary in cell (i, /) as shown in Figure 2. The full flux
is then given by

fis112j = Bfian = CSnorma

i i+l

Figure 2 Tangential boxes constructed {=: a verti-
cal interface.

The fluxes foma 80d S are computed based on
appropriate data 4, and uy. For example, in Figure 2 the
tangential flux at the vertical interface (x,-,m.y;)would
be computed based on data that approximaies the aver-
age value of u in the boxes extending a distance & from
the interface in the directions tangential to the boundary.
A cell centered approximation to the solution in these
boxes is computed by area weighted averaging of the
solution on the underlying Cartesian mesh. Our previous
work [4,5) used area weighted averaging of the piece-
wise constant function given by the cell averages u;;. A
second order accurate approximation is computed by
using a linear reconstruction of the solution on the Carte-
sian grid instead, based on the slopes 1, and u, obtained
previously via slope limiting. For central differencing,
nothing more would be needed. For the MUSCL scheme,
we also compute slopes for each box using arca
weighted averaging of the slopes in the underlying
Cartesian grid. This gives a first order accurate approxi-
mation (o the gradient in the box. In two dimensions, the
tangential boxes intersect at most two grid cells. The
weighting coefficients can be precomputed for each
boundary cell and used for the entire calculation.

The motivation for using a rotated difference
scheme and choosing the data based on arca weighted
averaging is described in [4], where it is shown that this
approach leads to fluxes which cancel out 0 O(A;;)
when we compute the flux differences in (1). This gives




stability even when the cell has a very small area A;
relative 10 the time step Az. Note that for tiny cells, this
has the effect of increasing the stencil of the scheme, so
that the numerical domain of dependence extends at least
a distance A in all directions and the CFL condition
remains satisfied.

Given the cell centered states in the tangential
boxes, left and right states at the interface are computed
using eq. (2) appropriately rotated into the tangential
framework. The only missing piece is the transverse
derivative. A discussion of this is deferred until after the
solid wall boundary condition is presented.

This same procedure is also applied in the direc-
tion normal to the boundary at each cell edge. However,
the normal boxes may extend outside the flow field, into
the solid body itself (see figure 3). In this case we need
values from outside the flowfield to use in the area
weighted average of states, and we use the vai. : from
the cells outbox which is described in the next section.
In the present implementation, we do not use slopes in
computing left and right states at cell edges for the nor-
mal Riemann problem.

We have been careful in designing the components
of the algorithm, such as the slope limiting and
transverse derivatives, (o satisfy the following design cri-
terion. If we compute flow through a straight channel
aligned with the grid, and the data is one-dimensional
(varying only with length along the channel), then the
solution should remain one-dimensional and not suffer
two-dimensional distortion due to the small celis at the
boundary. This requires that the fluxes for the irregular
cells be consisten* with the fluxes computed by the
MUSCL scheme at the regular interfaces.

3. Solid Wall Boundary Conditions

At the solid wall boundary itself the flux can be
computed more simply, by solving a single Riemann
problem normal to the boundary. This is shown in figure
3. For each boundary segment we create a box of length
h in the direction (a,B). This is called the inbox for cell
k. An approximate solution ¢, in this box is again
obtained using area weighted averages of the linearly
reconstructed solution on the Cartesian mesh. The solu-
tion is rotated into the boundary coordinate frame and
we then define g, the value in the corresponding outboz,
by negating the normal component of ¢,. A boundary

Riemann problem is solved between ¢, and g, o satisfy
the boundary conditions of no normal flow. The value g,
in the outbox of cell k is also used to help reconstruct the
solution for the normal Riemann problem at interior cell
edges, as described in the previous section. Since no
slopes are used along with the inbox and outbox solution
approximation, this boundary condition is only first order

Figure 3 The boundary flux is computed by a
boundary Riemann problem in the normal direc-
tion. The outbox contributes 0 the normal
Riemann problem for interior edges as well.

To obtain the transverse derivative needed in the
MUSCL scheme for tangential Riemann problems, we
need o estimate flux derivatives normal to the wall
(comresponding to the g, term in (2)). Two rows of
inboxes are created normal to the boundary, each of
length A in the normal direction. The approximate solu-
tion in the second inbox, ¢, is again computed using
area weighted averaging of the piecewise linear function
defined on the Cartesian grid. Riemann probiems
between ¢, and g7 give us one flux, call it gZ. The boun-
dary Riemann problem gives us another flux g;. The flux
difference (g3 - 2:)/h approximates the normal deriva-
tive dg /dn to first order.

In solving Riemann problems normal to the boun-
dary, we also nced to define transverse derivatives.
These are computed by solving Riemann problems based
on data in adjacent inboxes along the boundary How-
ever, because the width of these inboxes varie, and may




be small relative to A, we actually combine the values
from several inboxes, based again on arca weighting
averaging, to define values over boxes of width A.

4, Computational Examples

We present two computational examples illustrat-
ing the use of this method. In the first problem an
incident shock reflects off two cylinders that are offset to
cach other. A complicated pattern of r=flection is set up
between the cylinders. The second test case, described
in Whitham {16), has a smooth steady state solution.
Although we are not primarily interested in steady state
calculations, we use this problem to compute the arder of
accuracy of the method, and propose it in gencral as a
good test problem for irregular grids. The code is writ-
ten to handle general geometries. The only difference
between these two examples is the description of the
geometry of the solid bodies.

4.1 Flow past two cylinders

In the first example we study the behavior of an
incident shock gaveling at Mach 2.31 and its reflection
off of two cylinders. The initial conditions are

2 5.1432 Pr 14

'3 2.04511 Up 0.

VL 0.0 L/ ] 0. ’ (3)
9.04545 10
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The computational domain is the unit square, and the ini-
tial shock location is at x=27. We use a 50 by 50 coarse
grid, with one level of adaptive mesh refinement by a
factor of 4. Figure 4 shows contour plots of the solution
at several times, along with body plots of the pressure
around each cylinder at selected times. The body plots
start at the back of each cylinder and travel clockwise
around the object. In the body plots, object one is the
top cylinder, and object two is the lower cylinder. The
contour plots also include an outline of the location of
the refined grids. The approximate solution is taken from
the finest grid in the region. An indication of the grid
spacing can be seen from the outline of the irregular cells
at the solid wall boundary.
Despite the complete irregularity of the boundary
cells, the pressure plots around the cylinders are quite
smooth. By time .3, the solution has become quite com-

plex. The pressure plot shows the two shocks incident on
the lower cylinder, just above the pressure peak at the
leading edge. A third level of refinement could be used
1o show more fine structure here. The incoming pressure
ratio for this problem is 9 to 1. The pressure ratio across
the reflected shock is roughly 40 10 1.

4.2 Smooth test problem

In order 1o study the accuracy of our boundary
treatment, we consider a steady state problem consisting
of smooth flow in & curved channel. We choose the
channel in such a way that the exact solution consists of
a simple rarefaction wave and can be approximated to
arbitrary accuracy using characteristic theory. We will
briefly describe this procedure here. More details can be
found in Section 6.17 of Whitham [16).

The lower wall of the channel is given by the func-
tion

0302 2501
Yw(x) =1 0.302-0.3(x-0.1)? 01<xs0.7
0.194-0.36(x-0.7) 0.7sx$2.24

At the inflow boundary we usec a Mach 1.30 supersonic
flow given by

] 21.

ul _ 1.0

v 0.0
P 9.04545

In the absence of an upper wall, the resulting steady state
solution is a simple wave in which the flow variables are
constant along characteristics, which are straight lines.
Let 8(x) = tan™' (3,,/(x)) be the angle of the wall to the
horizontal at each point x. Then the characteristic ori-
ginating at the point (x.y,(x)) makes an angle
6(x) + j1(x) with the x-axis, where u is computed from 0
by solving the nonlinear equation

P)~P(uo)=0
where
P()=58un~'Guanp)-p
with
8=V 1)/Ge-1).
Here Jig is the characteristic angle in the free stream,
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Figure 4 shows pressure plots of the flowficld and the pressure along the cylinders, at several different times. The
location of embedded finc grids is indicated on the contour plots.




given by

Mo = sin™! (1/M¢) (M ¢ = Mach number).

For a point (x,y.(x)) lying on the wall, we can
compute the value of the flow variables at this point and
hence along the entire characteristic. We first compute
the sound speed g in terms of the inflow sound speed
a0 = Vpo/po using

_ [ 1+ ariesinug)]
°| T+ orysintg))

The flow variables are then given by

¥=asin0/sinp

v=acos0/sinp

P =po(alagy™ "

p=wla?
In our test problem, we define the upper wall to be a
streamline of the flow, 30 that the exact solution is unal-
tered by the introduction of the wall. In practice we
approximate this upper wall by a curve passing through a
finite number of points. We first choose points ;.y;)
with y;=y,(x;) along the lower wall and then for each
pomdemneaemupondmgpam(x;,y,)onﬂn
upper wall. The point (%;,;) lics on the characteristic
through the point (x;,y;) at a distance determined by the
requirement that the mass flux across each such cross-
section of the channel should be constant. After choos-
ing an initial width wq for the channel at inflow, we can
casily determine the cosresponding distance at other
points. In our test we have chosen wq = 0.2

Finally, in order to evaluate the true solution at an
arbitrary point (x,y) in the channel, we first find the point
(x.y) along the lower wall that lies on the same charac-
teristic, and then evaluate the flow variables at (x,y) as
described above. To compute (x,y) from (x,y), note that
the slope of the characteristic must be G-y)/x-x), lead-
ing to the nonlinear equation
0@ ~y) | & - x) =™ (6R) + u(@)),

which we can solve for X using a numerical root finder.
Figure § shows the exact solution in the interior of the
flow field and along the walls.

We show the results of a convergence study in
Table 1, using the MUSCL scheme with several different

grid sizes. We measure the relative error in density only
along the boundaries, using the following L norm,

lell, =F ot
= k
where the sum is only over the irregular boundary cells,
divided by the same norm of the density. This weighted
norm counts the larger irregular cells more heavily than
the tiny ones, and scales correctly as the mesh is refined.
(However, other L, norms give similar results),

h boundary error (MUSCL)
04 .78%

02 41%
01 20%

'le,l

Table 1 The relative error in density in the con-
verged solution in an L ; norm along the boundary.

The boundary error is reduced by a factor of 2 when 4 is

‘halved. The interior is converged to second order accu-

racy, despite the less accurate boundary scheme. The
error in the interior is an order of magnitude smaller than
the boundary emror. We have also computed the local
truncation error in the irregular cells, by taking a single
time step of the method starting with the exact steady
state as initial conditions. These results, shown in Table
2, also show a decrease by a factor of 2 as & is halved.
Thus the global error behavior is similar to the local
behavior, rather than losing a power of & as happens on
uniform grids. For a comparison, our previous method
of area weighted averages using a piecewise constant
reconstruction of the solution gives approximately 30%
larger errors at the boundary. Recent experiments using
linear extrapolation at the solid wall boundary gives a
factor of 2 improvement in the global error over the
results in Table 1.

A 1 step error (MUSCL)
04 S4(-1)%
f17) A8(-1)%
01 23(-1)%

Table 2 The relative local truncation error in an
L, norm measured along the boundary for the
MUSCL Scheme.
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Figure 5 Pressure contours of the exact solution and the pressure along the walls.

We sre continuing to investigate the behavior of
the emror for irregular grids. Despite this uncertainty, we
feel this is a promising new way to simplify the grid gea-
eration problem for flows in complex geometries. Future
wark will focus on improving the overall accuracy,
developing better limiters for computing the gradient at
the imvegular cells, and incorporating an improved solid
wall boundary condition using the normal momentum
equation 0 improve the prediction of the pressure in
regions of high curvature.
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‘We describe the development of a structured adaptive mesh algorithm (AMR) for the
CM-2. We develop a data layout scheme that preserves locality even for communication
between fine and coarse grids.On 8K of a 32K machine we achieve performance slightly
less than 1 CPU of the Cray Y-MP. We apply our algorithm to an inviscid compressible
flow problem.

1 Introduction

Local Adaptive Mesh Refinement (AMR) is an algorithm that can efficiently compute com-
plex flow fields where only a small fraction of the computational domain needs to be resolved.
Its success has been demonstrated over the last ten years in [1, 4, 3, 15, 20, 21]. A natural
question is whether this approach is still viable on massively parallel architectures. In par-
ticular, can we still take advantage of local regularity of the grids? Can the dynamic and
adaptive character of AMR be maintained while balancing the load on a fine grained data
parallel/SIMD machine such as the CM-2? A new issue not found on serial architectures is
minimizing inter-grid communication forced by the distributed memory.

In the last few years several adaptive unstructured mesh codes have been parallelized |7,
22, 17]. Unstructured mesh methods tend to have much different overheads and efficiencies
than structured mesh codes. Their data structures are lists of elements/edges, leading to
more words of storage per node than structured methods use. However, this generality and
flexibility lends itself to a natural extension to both coarse grained and fine grained parallel
architectures. The issues in the parallelization of unstructured methods are the creation of
subdomain partitions, and the mapping of the partitions onto individual processor nodes to
minimize global communication and balance the load. The communication costs seem to be
the major source of inefficiency in these codes, even for non-adaptive unstructured parallel
codes. For example, Barth and Hammond [14] report 50% of the run time on the CM-2




is spent in communications tasks. The free-Lagrange code X3D (7] has been measured to
spend 93% of its time in communication [18).

In contrast, very little work on structured meshes has been done. Gropp and Keyes have
developed interesting algorithms for adaptive elliptic equations on semi-structured meshes
{13]. Similar looking meshes are found in the parallel AFAC algorithms of [19]. Dynamically
adaptive parallel algorithms for hyperbolic equations on quad tree data structures have been
developed in [5, 6). This work uses a coarse grained model of parallel computation, with
the parallelization coming from different ways of traversing the tree.

Most other work on parallelization of adaptive structured meshes, to our knowledge,
has targeted AMR, and uses coarse-grained parallelization on small numbers of processors.
Since the data structures in AMR keep track of entire grids, rather than individual grid
points, a natural approach here is to distribute the grids to different processors. Berger
[2] has done this on a shared memory Cray X-MP4/16, and Crutchfield {10, 11] on a 32
node BBN TC2000. Neither of these approaches can take advantage of massively parallel
computers. Our largest 3D application so far has used on the order of 500 grids at a given
time. Even allowing for future applications with several thousand grids, this coarse grained
approach would not scale well for a machine with several thousand processors or more.

We have developed a data parallel implementation of a 2-D AMR code for the CM-2.
(For a discussion of the CM-2 architecture see [16).) In this approach the individual points
in a grid are distributed to processors. The key idea in our strategy is the data layout.
We map the points of grids on different levels to minimize intergrid global communication
and preserve locality. In addition, the serial algorithm was modified in several ways, in
particular, we have restricted the adaptive grid patches to be a fixed size. We compare the
efficiency of our implementation on an 8K CM-2 with a functionally equivalent implemen-
tation on a Cray Y-MP. We measure that the ratio of integration time to total CPU time
of a typical run approaches 75% on the CM-2 while this ratio on the Cray Y-MP is closer
to 85%. We also measure the grind time of our integration procedure, defined as the time
to update one grid point one timestep. This is roughly equivalent to the Cray Y-MP time.
Thus, our performance on an 8K CM-2 is slightly less than one head of a Cray Y-MP.

Our work was hampered by inadequacies in the CM slicewise Fortran compiler. There
are additional opportunities for a coarser grained parallelism to be used on top of the
fine grained parallelism, within the data parallel framework. Unfortunately, we could not
exploit it because version 1.1 of the slicewise compiler does not parallelize/vectorize the
outer loop of a serial dimension. However, even without this additional parallelism we
have demonstrated the viability of the fine grained approach using the current compiler
technology. Future releases of the CM Fortran compiler may lead to further exploitation of
parallelism, as will extensions of our work to the CM-5. We hope that future releases also
include richer array section constructions, and more flexible alignment and layout directives;
the lack of which led to considerable programming headache during the course of this work.

The paper is organized as follows. Section 2 gives a brief overview of the serial AMR
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algorithm. Section 3 describes the data parallel version of the algorithm. The important
points here are the data layout and grid generation. Section 4 discusses implementation
details pertaining to the CM-2. Section 5 gives timings of the performance of the integra-
tor alone and the overall AMR algorithm. We describe the numerical simulation of laser
trenching in an integrated circuit substrate using a 2-D gas dynamics approximation of the
physics in a simple geometry. In the conclusion we have several recommendations and a
discussion of the parallelism we currently cannot exploit and its potential impact on the
performance of the algorithm.

2 Overview of the AMR Algorithm

The AMR algorithm uses a nested sequence of rectangular grids to approximate the solution
to a partial differential equation. The state variables are cell-centered, and an explicit finite
volume scheme updates these values by computing fluxes at cell edges:

a1 _ on _ Al Finrsai = Ficipag)  (Gigars = Gij-1ya)
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When the solution resolution is insufficient, rather than refining a single grid cell at a
time, rectangular fine grid patches are generated to cover those cells that need additional
refinement. These grid patches have their own solution storage, with minimal storage
overhead needed to describe the location and size of the grid itself. Grids are properly
nested and aligned with each other, i.e. for every cell in a level I grid there is at least one
level I — 1 cell surrounding it in all directions, although these coarse cells may belong to
different grids. The grids are not rotated with respect to each other. Note that a fine grid
can have more than one parent grid (see figure 1).

Each grid level has its own time step. Typically, if a grid is refined by a factor of 4,
the time step is refined by a factor of 4 because of time step stability restrictions. The
integration procedure on such a grid hierarchy then proceeds recursively: integrate on the
coarse grid (ignoring fine grids); then use the coarse grid values with space time interpolation
to provide boundary conditions for fine grids so that they, too, may be advanced in time.
The algorithm is recursive in that the fine grid is in turn used in advancing still finer grids.

There are four separate components to the AMR algorithm that together generate this
adaptive mesh hierarchy and advance the solution. For a complete description of the AMR
algorithm see {1, 3). The error estimator decides where the solution accuracy on a given
grid level is insufficient and tags those grid cells as needing refinement. The grid generator
creates mesh patches that cover all the flagged points. It takes as input the set of tagged
points from the error estimator, and outputs a set of grid patches that together cover
all the cells needing refinement. The inter-grid communication happens in the following
two components. The interpolation routines initialize a solution on a new fine mesh, from




Figure 1: There is a single level 1 grid, level 2 has 4 grids and level 3 has 2 grids in this
hierarchy.

either old fine meshes (injection) or coarser grids (interpolation), and they provide enough
boundary values for fine meshes so that the integration stencil can be used at every interior
point in a fine grid. The fluz correction routine insures conservation at grid interfaces by
modifying those coarse grid cells adjacent to a fine grid. We strictly enforce the condition
that the flux out of a coarse grid cell during a single coarse time step equals the flux into
the adjacent fine grid cells over all the corresponding fine time steps. This component also
incdludes what we call updating; the fine grid cells update the coarse grid cell “anderneath”
using a conservative, volume weighted average of the fine grid values.

We typically use a high-order Godunov method to integrate a system of conservation
laws [8, 9]. The integrator can be operator split or unsplit, the system of equations can
be augmented by passively advected quantities, such as for multiple species, and the AMR
shell doesn’t change.

3 The SIMD AMR Algorithm

In our data parallel version of the AMR algorithm, individual grid points rather than entire
grids are mapped to processors. We make the restriction that all grid patches are a fixed
size. This allows us to design a data layout scheme for mapping points to processors to
minimize inter-grid global communication and preserve locality. This is the key idea in our
approach.

The grid size restriction is motivated by the following considerations. When we first
considered the mapping of grids to processors, we thought several grids of varying sizes
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Figure 2: Three levels of grids are shown; each has the same number of grid points.

might be integrated at one time. A multi-dimensional type of bin packing could be used to
group the fine grid patches to fill up a two-dimensional view of the machine. However, the
CM-2 at NASA Ames Research Center has 32K processors. One quarter of the machine
(the typical amount attached to a sequencer) has 8K processors, but only 256 floating point
units. This corresponds to a 16 by 16 mesh. To keep the floating point pipes full requires
a minimum of 4 grid points per processor. Hence a single 32 by 32 mesh can use one
quarter of the machine and a single 64 by 64 grid patch can use the whole machine. With
typical grid sizes in this range, a natural choice was to keep all grids the same size. In
practice, on the order of 16-32 points per processor are usually needed for peak machine
performance. Therefore, what fixed size is chosen is extremely important to the performance
of the algorithm. Can we find a tile size small enough to use effectively in an adaptive
setting, yet large enough to be integrated efficiently? In sections 4 and 5 we discuss the
ramifications and efficiencies of this decision. Figure 2 shows an example of three levels of
grids, each has the same number of grid points but smaller and smaller mesh wxdths 80
they occupy a decreasing amount of physical space.

Given this restriction of fixed sizes grids (either 32 or 64 in each dimension), we have
designed a data layout scheme for both the coarse and fine grids that preserves locality
and minimizes communication. The layout is best described using the following indexing
notation. We describe it using one space dimension. Higher dimensions use tensor products
of the one-dimensional case.




Table 1: Mlustration of the mapping from grid points to memory location for the grids in
figure 3.

Each coarse grid cell in the computational domain is given a unique index. K the
computational domain consists of a single coarse grid with tile size 32, the cells are numbered
from 1 to 32. If there are 2 coarse grids in the computational domain, adjacent to each
other, the first is numbered from 1 to 32, and the second from 33 to 64. Suppose now there
is a single coarse grid, and it is completely covered by fine grid patches. If the refinement
ratio is 4, then 4 fine grids make up the computational domain. The i** fine grid will be
numbered from (i — 1) * 32+ 1 to i * 32, corresponding to coarse grid cells (i —1)*32/4+1
to (i — 1) + 32/4 + 8. Of course, the fine grids do not have to start at location that are
multiples of 32; for example a fine grid can be numbered from 25 to 25+ 32 -1 = 56.

Given this numbering convention, we can describe the two different layout strategies for
the fine and coarse grids. (More precisely, the grid patch is mapped to a two-dimensional
view of memory using the usual CM compiler default mapping, but we “interpret” it in a
different way). Suppose for simplicity the tile size is 16. The finest grids are mapped to
memory so that cell ¢ is in memory location ¢ mod 16, or more precisely, ({ — 1) mod 16+ 1.
In other words, the grids are periodically wrapped as they are mapped to the CM memory
so that adjacent cells from adjacent fine grids are in adjacent memory location. This keeps
the injection operation from grids at the same level completely local.

The coarse grid layout is the complicated one. Suppose the refinement ratio is 4. Then
cell 1 on the coarse grid corresponds to cells 1 through 4 on the fine level, coarse cell 2 to
fine cells 5 through 8, etc. To keep the coarse/fine grid communication local, the rows and
columns of the coarse grid are permuted so that no matter where the fine or coarse grid is
located, corresponding cells are within 4 of each other. This enables fast data movement
using nearest neighbor NEWS wires. For a single coarse grid as shown in figure 3, the
grid point to memory mapping is shown in table 1. Note that even for the second fine
grid, the corresponding coarse points are “nearby”. For example, point 17 on the fine grid
is corresponds to cell 5 on the coarse grid, and is one memory location away. This same
correspondence holds regardless of where the fine grid is located, or how many coarse grids
there are.

This coarse grid permutation is derived by sequentially distributing the coarse grid
points, skipping 4 memory locations between points (for a refinement ratio of 4). When the
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Figure 3: One coarse grid with three refined grids, corresponding to the memory layout in
table 1. for a tile size of sixteen

end is reached, wrap around to the next available memory location from the beginning.

As often happens, an improvement to the serial AMR algorithm for proper nesting was
discovered by rethinking the algorithm for the SIMD implementation. The proper nesting
requirement for fine grids can be simply checked using a “domain calculus” with simple
logical operations and a bitmap of the domain. The description of the set of all grids at
a given level is simple to compute regardless of how complicated the domain at that level
is. Given a domain at a certain level, properly nested subgrids must be one cell away
from the boundary of the domain. Again this is simply computed with some shifts and
logical operations. Previous (serial) implementations used complicated testing along fine
grid boundaries to verify proper nesting.

The grid generation component of the AMR algorithm was greatly simplified by the use
of fixed sized tiles. The serial version uses a pattern recognition algorithm to find “edges” in
the tagged points; these edges form the edges of the new grid patches. (See [1] for details).
Although rather sophisticated, this grid generation algorithm used negligible run time, and
usually produced grids with approximately 80% efficiency, i.e., 80% of the points in the
new grids were tagged, only 20% were additionally included to keep grids rectangular. The
new grid generator simply tiles the smallest rectangular region bounding all the tagged cells
using the fixed size tiles. It may happen that tiles have no tagged points underneath them,
(for example, if the tagged points form a large circle and the tile is inside the circle). In this
case the tile is deleted. This unsophisticated approach produces refined grids around the
50% efficiency level. Also, the use of fixed size tiles and the requirement of proper nesting
may necessitate the use of overlapping grids. This rarely happens in practise, although it
does slightly increase programming complexity.

In the original work of [3], Richardson extrapolation was used to estimate the error in
the computation. This however had to be augmented by additional procedures depending




Two Dimensions Three Dimensions

PatchSize | 2 Ghost Cells | 4 Ghost Cells || 2 Ghost Cells | 4 Ghost Cells
32 7% 56% 67% 42%
64 88% 7% 82% 67%

Table 2: Percentage of interior cells a: a function of tile size

on the type of fluid flow being computed, for example, density gradients or compressibility
and divergence were computed. We use only the latter, more ad hoc estimates in this work.

4 Implementation Details

The implementation decision with the most impact on performance concerned the treatment
of ghost cells. To avoid special boundary stencils, each grid is surrounded by the additional
number of points needed to apply the same finite volume stencil everywhere. Qur simplified
version of the high-order Godunov method uses 3 points to the side. These so-called ghost
cells, or dummy cells, are obtained from adjacent fine grids or interpolated from coarser
grids. Every grid contains space for these ghost cells along with the regular interior cells.
For a grid of size 32, if there are 3 ghost cells on each side, only 26 cells are left for what
we call the “real” interior grid cells. Since 26 is not divisible by 4 (our usual refinement
ratio), in fact we must allocate 4 ghost cells on each side (all 4 are actually used in the more
sophisticated version of the integrator). ’

Table 2 shows the fraction of interior cells as a function of tile size for 2 and 3 space
dimensions. As can be seen, in 3 dimensional calculations for 32 sized tiles the fraction
drops below 50%. In 2 space dimensions, 32 sized tiles is a possibility, although there are
other reasons to prefer the larger sized tile.

In section 5, we measure the efficiency of the algorithm using grind time (the time to
update one cell one timestep). The effective grind time is computed as the total CPU time
divided by the number of interior zones. Strictly speaking, almost all the work for updating
a cell must also be done at the first ghost cell, so this measure overestimates the grind
time. This is due to the fact that for n cells, there are n + 1 fluxes, which use information
from both cells adjacent to it. The other ghost cells however are only used to calculate
slope information and to add a little extra artificial viscosity for problems with very strong
shocks. We investigated several approaches to eliminating the permanent storage of these
ghost cells, or alternatively, using slightly larger grids so that the interior grid mapped to the
fixed size tile, with borders that wrapped around the processor array. However, given the
restricted layout and alignment directives, these approaches were much slower than the 30
to 40% penalty paid by not using the ghost cell processors for the bulk of the computation.
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This remains a problem with an unsatisfactory solution.

There are two ways we take advantage of the additional communication on the CM-2
beyond treating it as a mesh mackine: we use Fastgraph and the power of 2 NEWS wires.
Although the calculation is adaptive, with most of the communication patterns changing
dynamically through the course of the computation, there is a pattern that does not depend
on grid placement and can be precomputed. The coarse grid is stored in memory using tk
permuted, or shuffled memory layout described in section 3. However, every now and
then the coarse grid itself is integrated. For this step the solution is unshuffled, and then
reshuffled at the end of the integration step. Regardless of how many levels there are, or
where the grids are located, the permutation is identical (modulo the periodic offset). We
use the communication compiler Fastgraph [12] to precompute an optimized routing for
the shuffling operation and its inverse. Fastgraph itself is expensive to use, but it is only
called once, it depends only on the refinement ratio, and the routing may be saved between
runs, so we do not include Fastgraph in our run time results. Fastgraph saves a factor
of 2 in the shuffling time over using the router; this is approximately 5% of the total run
time on a typical run. Other users have reported much larger time savings when using the
communication compiler; we surmise that because the permutation itself is so simple, the
router does a good job of it to begin with. Nevertheless, for other classes of architectures
besides a CM-2, and other .pplications besides AMR, an optimized preconfigurable routing
would be extremely useful.

The second way we use the CM-2 as more than a mesh machine is with shifts (CSHIFT,
EOSHIFT) of more than 1 location at a time. This is useful in the updating step of the
AMR algorithm. For example, to compute the average of a 4 by 4 sub-block of fine grid
cells so that the result may be injected onto the coarse grid, we sum by using a shift of one
and then two in each direction. In the reverse procedure, the sum is logarithmically spread
back to all 16 fine cells, so that the one lying on top of the coarse cell can do the actual
injection. This reduces the number of shifts from 3 to 2 in each dimension for the sum and
the spread, with the run time for this routine reduced by 1/3 as well. Even the NEWS
network communication is much more expensive than floating point operations, and the
updating routines involve very little computation. We also experimented with segmented
scans (adds and copies), but found our implementation faster for such small segment lengths
as 2 or 4.

5 Numerical Results

We present two types of measurement to indicate the performance of the AMR algorithm
on the CM-2. First, we demonstrate the performance of the integrator as a function of grid
size, without any adaptivity. The performance of the overall algorithm can be no better
than this, since we count all other CPU time as overhead in the algorithm. Next we show




PatchSize lby1l 2by 2 4 by 4
Integ. time | BC time | Integ. time | BC time || Integ. time | BC time

32 1.93 | .96 7.76 2.27 ~ 30.69 3.07
64 5.40 3.25 21.55 7.56 86.45 19.34
128 18.60 7.34 74.55 29.05 208.82 73.41
256 70.63 20.87 281.56 73.84 1125.93 | 289.27

Table 3: CPU times with no refinement as a function of grid size and number of grids

numerical results and timings for experiments with 3 levels of grids. All the timings use the
CM timer with version 1.1 of the slicewise compiler with optimization, on one sequencer
attached to 8K processors of the CM-2 at NASA Ames Research Center. Our results show
only the CM CPU time; the elapsed time (the sum of CPU and idle time) varies greatly,
depending on how heavily loaded the CM/front end is. Our best idle times are typically
between 2 and 5% of CPU time, depending slightly on the grid size. .

Table 3 shows the CPU time for the integrator and the periodic boundary condition
routine as a function of tile size. For this experiment we do not use any refinement (i.e.
only coarse grids at the base level), but we do use several grids at that level. Notice that for
patch sizes of 64 or more, doubling the number of points in each dimension gives integration
times that increase by a factor of 18.60/5.40 = 3.4, and 70.63/18.60 = 3.7, unfortunately
less than, though close to 4. When we go from a patch size of 32 to 64, this is far from the
case (5.40/1.93 = 2.80). Although we would prefer to use the smaller patch size for greater
efficiency in resolving localized flow features in the solution, the extra cost of integration
on such a small patch makes this choice infeasible, at least for the current compilers. For 3
dimensional calculations, we expect this to change.

The time for the periodic boundary conditions is sublinear. With one coarse grid, peri-
odic boundary conditions must be applied at all four sides of the grid. This type of boundary
condition is the most expensive since data must be shifted approximately halfway across
the computational domain due to the ghost cells. (Reflecting wall boundary conditions are
less expensive, but since they must be computed inside the integrator , the interpretation
of the integration run-time as a function of tile size becomes more complicated.) When
there are several coarse grids in the computational domain, each grid also gets (interior)
boundary conditions from the adjacent grids, which is an efficient operation.

The grind times for this problem (microseconds per cell per update) are summarized in
table 4. For a given tile size, the grind times decrease due to the decreasing cost of the
periodic boundary conditions. For a fixed number of base grids, (looking down a column),
the grind times decrease due to the better performance of the CM-2 on larger blocks of
data. We feel that reasonable performance is possible with 64 sized patches, and use that
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PatchSize | 1by 1 |2by 2| 4 by 4
32 52 45 38
64 28 24 22
128 19 19 17
256 15 15 15

Table 4: u secs to updace one zone for one timestep (includes all overhead) as a function of
tile size

size in our the two dimensional calculations with adaptive refinement. Although the grind
time for a 64 sized patch is 50% more than the grind time for a 256 sized patch, the latter
has 16 times the number of points. The total cost of the computation will be cheaper using
smaller sized patches as long as there are fewer than 8 of them. (We hope to improve this
break even point with future release of the compiler).

We wrap up this section by describing a calculation modeling the flow of a hot dense
gas leaving a square trench into a low density and temperature medium. This calculation
is a prototype for modeling laser deposition of energy into an integrated circuit substrate.
Ultimately lasers will be used to dig micron scale trenches in integrated circuits. Before this
can be done, it is important to understand the dynamics of the laser induced flow so that
debris patterns can be categorized or even predicted as a function of energy deposition.

The setup of this problem is straightforward. The entire computational region is em-
bedded in a unit square. Within this region, a box of size 1/8 wide by 7/8 height is cut out
of the computational domain from the upper left corner. This rectangle is a void region,
meaning it is not part of the computational region, but is part of the solid wall exterior
boundary. All boundaries of the computational domain are set to be reflecting boundaries,
8o no fluid escapes from the computational region. The 1/8 by 1/8 region in the lower left
has initial density of 1.0 and pressure 10.0. The 7/8 wide by 1 high region in the right part
of the domain, called the ambient region, has initial density and pressure set to 0.1 and 1.0
respectively. The velocities everywhere in the domain are initially set to zero and an ideal
equation of state with a oy of 1.4 is used to relate density, internal energy and pressure. An
illustration of the problem setup is shown in figure 4.

The major feature of the flow at late time (illustrated in figure 5) is a large bow shock
penetrating into the ambient fluid. Even at this early time, the initial conditions look like
a point source for the bow shock as the shock is already quite spherical. Behind the shock
is the contact discontinuity delineating the boundary between the hot gas and the ambient
gas. As the hot gas flows out into the ambient region, a shear layer forms causing the
vortical rollup of the gas. The gize of the rollup region will play an important part in the
size of the debris regions around the trench.
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Figure 4: A schematic of the initial conditibns for the prototype calculation modeling laser
deposition of energy into an integrated circuit substrate.

Table 5 is a breakdown of CPU times for the AMR code when run for ten coarse grid
time steps. The bulk of the time taken outside of the integration routine is taken by the
boundary conditions routines. Within this category, 72 % of the time is taken interpolating
from coarse grids to fine grids. The grind time for this calculation is 25.1 microseconds/cell
which fits within the bounds shown in table 4. Although the grind time is a little under
a factor of two for the best uniform case (256 x 256), the savings in computation costs is
still great as only a fraction of the computation region is computed using a fine mesh. The
number of cells advanced by the AMR algorithm is only 12% of the number of cells that
would need to be advanced by the uniform case. Therefore a factor of four overall gain in
efficiency is achieved.

6 Conclusions

Despite the disappointing performance of the CM-2 for small grid sizes, we feel that the
two dimensional implementation of AMR is a useful tool. Our overall performance on
an 8K CM-2 is roughly equivalent to a single head of the Y-MP. We hope in the future
that richer array constructs, and layout and alignment directives will make possible further
improvements in the efficiency. Although our current choice of tile size does not scale to
use the full machine in an efficient manner, we believe that three dimensional calculations,
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Figure 5: Prototype integrated circuit problem results at time .124 and cycle 70. Figure
(a) is a raster plot of the logarithm of density, (b) and (c) are plots of x and y momentum
respectively, and (d) is a plot of the logarithm of total energy. Values range from the low
color blue (cold) to the high color red (hot).
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Routine CPU Time | Percent
Tntegration 587.70 | 76%
Boundary Cond. 107.35 14%
Cell Updates 10.92 1%
Error Est./Regrid 49.01 %
[~ Flux Correction 40.96 5%
Fastgraph 23.03 -

Table 5: Distribution of CPU usage by category within the AMR code for the integrated
circuit calculation.

(or improved two dimensional calculations with tile size 32) would scale to use the full
Connection Machine. Research along these directions is in progress.

Our greatest disappointment in working on the CM-2 came from its inability to exploit
a coarser grained parallelism we found, on top of the fine grained data parallelism that is
the basis of our approach. The source of this additional parallelism is the multiple grids at
any given level. For example, instead of integrating one grid at a time, integrate all grids
at a given level. Exactly the same operations are done to integrate any grid. We were
particularly excited about the possibility of parallelizing the boundary condition routines.
Ghost cells might possibly cause a load imbalance, but the periodic offsets in the layout
of the grids would mitigate this by distributing the locations of the ghost cells in memory.
When grids are shifted, the ghost cells often end up interior to the grid, rather than around
the perimeter of the grid. Figure 6 illustrates this schematically.

Unfortunately, version 1.1 of the compiler does not parallelize (vectorize) across serial
dimensions, and all our attempts to restructure the do loops to force it to do so failed. By
integrating (interpolating, updating, etc.) many patches at a single time, we feel the 32
sized tile would be practical, allowing greater overall efficiency in the AMR algorithm. In
fact, when a fully operational version of the CM-5 becomes available this coarser grained
parallelism would make an interesting case study in a hybrid SIMD/MIMD model of com-
putation. ‘
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Figure 6: The boundary ghost cells are shaded on each grid patch. They are distributed to
a different memory location in each patch.
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