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Abstract

A gallium arsenide (GaAs) MESFET operational amplifier for use in composite

operational amplifier (CNOA) configurations i described. This device is guaranteed to be

suitable for, )nstruction in CNOA models. The GaAs op amp design is a general-purpose

device that exhibits a low-frequency gain of approximately 32dB and an open-loop unity

gain frequency of 1.3GHz. The input offset voltage of the op amp is 20mV. These

parameters are essential for optimum composite operational amplifier performance.

Development and simulation of the GaAs op amp is presented.
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L INTRODUCTION

The Operational Amplifier (op amp) is arguably the most powerful analog integrated

circuit (IC) in the electronics industry. Its multiuse is unprecedented. Op asnp applications

can range from simple designs like those found in RC timers to more complex circuitry

involved in high-speed switching, computer signal processing, and radars. Over the years,

op amps have evolved and matured form the early days of huge vacuum tubes the size of

breadboxes to microcomponents that can rest on the tip of a finger. Yet, these devices are

not flawless. Its high unit gain frequency (f), at the cost of increased distortion, limited

bandwidth, and low slew-rate are a few of the drawbacks resident to the op amp. This

research will attempt to develop a general-purpose GaAs op amp that could adequately be

used in composite operational amplifiers (CNOAs), with subsequent use in switched-

capacitor filter networks.

Even though the application of GaAs technology in analog VLSI design is somewhat

recent, it has been employed in digital and microwave systems since shortly after its

discovery. GaAs MESFET technology first stepped onto the scene in the early 1970's.

Early test data results were laboratory based only. Yet, its performance was very promising.

The GaAs MESFET offers superior bandwidth and a high ft as compared to its silicon

competitor. It is for this characteristic that a GaAs MESFET device was chosen for

development with future use in composite op amps.

Composite op amps were developed in 1981, and were designed to extend the

operational bandwidth of a single op amp [1], [2], and [40]. This device is highly versatile.

It guarantees increased bandwidth and slew rate over a single op amp. The generation of

C2OAs is briefly discussed in Chapter IV. C2OA is one of many subcategories of CNOAs,

incorporating two single op amps in the composite. C3OA, C4OA, etc. are also possible.
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Limitations customarily associated with single op amp designs are significantly mitigated

in C2OA configurations. Although, C2OAs will not be designed and simulated in this

research, a background discussion is necessary to provide a framework in which to develop

the GaAs op amp.

By incorporating GaAs technology, C2OA designs will lead to an op amp that

possesses a substantial increase in bandwidth. They will have immediate application in

switched-capacitor filters, analog converters, signal processing, and several other designs.

The following Chapters will provide greater insight concerning the topics just

mentioned. GaAs MESFET physical properties, operation, and equivalent circuit models

are presented in Chapter IH. The actual GaAs op amp design is in Chapter In. Chapter IV

discusses the various composite op amp topologies. Chapter V provides simulation results

of the GaAs op amp. The final Chapter contains the study conclusions and

recommendations for future research.

S. . . . • ! mm i l • om m n • • . . . .. . . . .... . .. ..



H. GALLIUM ARSENIDE (GaAs) MESFET DEVICES

A. General:

Gallium arsenide integrated circuit technology has evolved into an extremely viable

choice for achieving high-speed and wide bandwidth in digital and analog circuits

respectively. This compound semiconductor is formed from gallium and arsenic. It is duly

noted for its high drift mobility (gn) and peak electron velocity as compared to silicon. This

results in higher f, in GaAs transistors than in comparable Si transistors [3] and [6].

While GaAs integrated circuit technology is somewhat new in analog VLSI

applications, it has been used for a number of years in microwave and digital integrated

circuits. As the cost of GaAs decreases its role in analog ICs will increase. Advances in

GaAs ICs will provide inroads for improved switched-capacitor filters, A/D and D/A

converters, and large-signal multipliers. Other applications that have benefitted from this

technology include video processing, radar systems, ground based navigation systems,

FDM telephone, data communications, etc.

This Chapter will focus on the physical properties of GaAs MESFET devices and

some of the key parameters involved in the design of ICs. A brief discussion on level

shifters using schottky-barrier diodes, differential amplifiers (diffamp), bootstrapping,

current mirrors, and other circuit configurations will be presented. Also, some MOS

equivalent circuit models and analog components will be presented. These techniques are

vital in the development of GaAs operational amplifiers. In no way will this section attempt

to cover all the known methods used in building GaAs MESFET ICs. Last, a discussion

about the simulation software tool and its specific parameter values used in the research

will be given.



B. Physical Properties of GaAs MESFETs:

1. Comparison Between MOSFET and MESFET Devices:

GaAs MESFETs offer improved high frequency performance over silicon

MOSFETs. The two major differences between the devices are: (1) how the channel is

formed and (2) how tat gate-control electrode is coupled to the channel. First, the channel

of the device is formed by GaAs or Si semiconductor material, based on the required

application. Second, in a MOSFET, the gate-control electrode is separated from the channel

by a thin oxide dielectric layer. Conversely, a MESFET uses a thin doped channel the

thickness of which is controlled by the depletion of the metal semiconductor junction.

Basically, the metal gate-control electrode is directly connected to the channel [3]. Figure

2.1 illustrates the two different types of gate structures for MOSFET and MESFET devices

respectively.

(a) (b)

+ +

D D

(c) (d)

Fig. 2.1 n-channel cross-sectional areas of (a) MOSFET (b) MESFET
and device symbols (c) MOSFET (d) MESFET
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2. GaAs Physical Device Model:

Currently, n-channel GaAs devices are the most commonly available. The n-

channel device has a much higher drift mobility then the p-channel, thus rendering the p-

channel device less useful. Moreover, the physical design of the MESFET device is very

similar to that of a MOSFET. Also, the analytical expressions used to describe a Si NET

can also be used with GaAs MESFETs. GaAs technology is built around two major

elements, the Schottky-barrier diode (SBD) and the MESFET. The cross-section of a GaAs

schottky-barrier diode and a MESFET are shown in Figure 2.2. The operation of these two

7SB I] MFF I

An d node Source (S) G ) Drai (D)

Contact

Sn.+ L 11 +

S/ Channel

Isolation Regions Semi-iulatg

GaAs Substrate

Fig. 2.2 Cross-section of a GaAs Schottky-barrier
diode (SBD) and a MESFET [6]

key components will be covered later. The use of SBDs can assist with space conservation

during Very Large Scale Integrated (VLSI) circuit layouts. The schottky barrier metal

forms the anode end of the diode, and is identified as such to differentiate it from the n-type

GaAs semiconductor that forms the cathnode. Additionally, the device is called semi-

insulating because the chip is formed on an undoped GaAs substrate; and this substrate has

a very low conductivity. This low conductivity property aids in isolating the devices on a

chip from other components, and reduces stay capacitance effects [14]. The diagram above

5



provides an excellent cross-sectional view of how the MESFET and SBD elements are

comprised. For a more extensive look at these elements see [3], [6], (14], [15], [16], and

(17].

3. DC Design Concerns:

The major advantage a GaAs MESFET has over silicon is its much higher gain-

bandwidth product (GBWP). However, a setback to the device is its dc characteristics as

compared to silicon, such as gain. Low gain in GaAs MESFET causes low DC gain in GaAs

op amps. Another problem often encountered in GaAs IC design is low frequency

oscillation (30]. It is believed that a voltage applied across the semi-insulating GaAs

material could cause a negative resistance which is responsible for the low frequency

oscillations. Specific dc characteristic concerns germane to the operational amplifier used

in this research are presented in sub-paragraph (d) of this Chapter.

The most fundamental difference between the MOSFET and ME.SFET device is

the forward dc conduction limit of the MESFET at the gate-to-channel junction. Because

of this dc conduction, the MESFET circuit is less robust in a noisy environment. Figure 2.3

depicts a MOSFET (NMOS) simple inverter device characteristics with a load resistor RL

ID Device Slope=i/rON

Di.ode Slope=l/rD

7tloSe=-N/RL

0 VOMIN VOMAX Vv VDS
Fig. 2.3 Device characteristics of a simple inverter
NMOS and MESFET equivalent circuit.

and a diode for a MESFET p-channel equivalent circuit model. Using the basic NMOS

circuit model already developed makes it easier to design new circuit models for GaAS

6



MESFErs. Consider a simple inverter circuit with a NMOS switching transistor and a load

RL. When the switch is closed, the output voltage is in a minimum state (logic low level)

and the output voltage minimum, VOMM can be represented by the voltage divider

equation:

VDDrON (EQ:2.1)
VO(MIN)- rON+ RL

Therefore, the value of VO(N can be computed, given the necessary

parameters. Now suppose the switch is open, the output voltage is in a maximum state

(logic high level), and VO(MAX) is equal to VDD. This occurs because the circuit responds

to the effects brought on by the load resistor RL. However, at no time will Vq(MAX) exceed

the value of VDD" As seen from Figure 2.3, the load line characteristic curve with slope -I/

RL, crosses the device characteristic curve whose slope is I/rON, (where rON is the

transistor channel resistance) resulting in what was the minimum resistance output voltage

increasing to the maximum resistance output voltage.

VDD

RL RL
RL• "•RL

I gnd

Fig. 2.4 MESFET inverter pair

In developing an equivalent MESFET circuit model from a MOSFET model

using a simple inverter circuit, the diode in Figure 2.3 was needed. In MOSFET technology,

the second stage would not require a dc conduction from the output of the first stage, see

7



Figure 2.4. However, the doped n-GaAs material composes the gate-to-channel junction

and has a conduction limit of about 0.7 volts. The diode and its characteristic curve with

slope I/rD (rD = parasitic series resistance of the diode) are shown in Figure 2.3. This

forward bias voltage is sufficient potential to turn the second stage transistor on.

Accordingly, for GaAs when the output voltage is in its maximum state, VO(MAX) will

never reach the value of VDD. This reduction in VO(MAX) of a GaAs inverter is given by

the intersection of the load line curve and the diode characteristic line. Thus, the reduced

voltage experienced by the GaAs technology adversely affects its ability to properly

operate in a noisy environment [3].

4. GaAs MESFET Frequency Analysis:

The primary reason GaAs MESFETs are used in analog ICs is to take advantage

of their high ft. To illustrate this inherent property and loading effects of the device, the

equivalent circuit model Figure in 2.5 will be discussed. The transconductance parameter

gm depends inversely on the gate length and the depth of the gate-to-channel depletion

layer. The gate length is controlled by design fabrication standards and the depletion layer

depth is determined by the amount of doping in the channel. The depletion layer depth is

reduced by increasing the channel doping. Consequently, this also increases the input

capacitance CIN in Figure 2.5. Depending on the design application, the trade-off between

gm and CIN should be carefully considered. The resistance RS is the parasitic resistance

associated with the channel resistance rON.

VDD

CIN R - Vout

VGS jj j gnd m(VGsVT)

Fig. 2.5 Equivalent circuit model of inverter
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The behavior of the MESFET dependent drain current ID is a key performance

parameter of FET IC design. Its characteristics can best be shown by using the curves in
Figure 2.6. It is clear from the curves below that the drain current, with respect to the drain-

ID VGS1

VGS2

VGS3
VD~sat VGS VT

VD, sadsVDS

D tl YVD . VDs

Fig. 2.6 MESFET drain current vs. drain-to-source voltage

to-source voltage, is nonlinear. The family of MESFET curves is generated by equally

incrementing VGS' beginning at VT as indicated in the Figure. VD.Sat represents the drain

current saturation point for each curve. The effects of this saturation current is a function
of the velocity of the electrons not increasing proportionally with the electric field in the
channel. This effect also relates to the gate length adjustment shown on Figure 2.2.
Therefore, the gate length plays a critical role in the amount of drain current in the device.

Decreasing gate length and increasing the electric field in the channel will result in an

earlier saturation drain current. So, in order to produce a small VDS, a short gate length

should be employed. The transconductance parameter scales inversly in MESFETs for long

gate length (L>5gtm), as previously mentioned. Usually, this capacitance is managed
during the layout phase of the design. Increased capacitance can often be obtained by
increasing layout capacitance between transistor stages. Additionally, a short gate length is

advantageous to increasing device transconductance and reducing input capacitance (CIN).

This will be explained in further detail in the GaAs FET operation paragraph. Lastly, the

9



gate length and width of the device are two critical design parameters in the fabrication of

GaAs integrated circuit technology.

5. GaAs FET Operation:

Now to explore how the device works and some of the analytical equations that

are associated with its operation. The MESFET operates somewhat like the Si JFET device

and many of the expressions used to describe the IET are applicable to the MESFET, so

long as no design properties are ignored. In a MESFET, a depletion region forms under the

gate contact surface and the rate and depth of this depletion area is determined by the gate-

to source voltage VG$. The depletion in the channel changes the dimensions of the channel,

and the current that flows from drain to source for some applied ac voltage vDS. Moreover,

it is through this ac drain-to-source voltage that abating occurs at the drain end, which

ultimately results in pinch-off.

Currently, depletion mode GaAs MBSFETs are the most used devices in industry.

The circuit symbol for an n-channel depletion-type GaAs MESFET is shown at Figure 2.7.

The arrow on the device will always point inward, since p-channel devices aren't used. The

threshold voltage for these devices typically range from -0.4 to -4.0. MESFETs normally

operate with a vGS from negative Vt to a small positive voltage not to exceed the breakdown

schottky-barrier voltage at the gate-to-channel junction, which is roughly 0.7 volts. Once

the gate-to-source voltage approaches the barrier breakdown voltage, gate conduction

occurs. Recall from earlier discussion that gate conduction does not take place in a

MOSFET. Gate conduction in a MESFET is a considerable drawback in the operation of

GaAs devices. Once gate conduction occurs, the gate-to-source voltage no longer controls

the critical drain-to-source current IDS. For this research, depletion type devices were used

to design the GaAs amplifier.

Even though enhancement mode MESFETs are not used in this research, some

are available. The enhancement MESFET has a threshold voltage between 0. 1 and 0.3.

Refer to [8] for a more detailed study on enhancement MESFETs.

10



In [31] it was manifested that equation 2.2 is a valid drain current-to-gate voltage

relationship for long gate length MESFETs without being greatly influenced by the doping

quantity:

'D, Sat= 0 (VGs - VT ) 2  (EQ:2.2)

The parameter P is the transconductance parameter of the FET. An analytical

expression for 0, [32] is given in equation 2.3.

2esI'nVsatW (EQ:2.3)

b (gnVpo +3vsa)

This is an excellent expression to illustrate the relationship of the drain current ID

and other key design parameters of the device. It shows how the drain current depends on

both the drift mobility and saturated drift velocity. Furthermore, the equation indicates that

the width and length can improve the current by selecting the appropriate values for each.

Note, that for long L, equation 2.3 reduces to I/L. Now, for shorter gate length, the current

increases less rapidly than the ratio I/L as the gate length is reduced. Also, adjusting the

width and length of the MESFET is a common practice used by IC designers to improve

device performance. The necessary models and equations needed to execute a program are

often already included in the circuit simulation software tool (HSPICE was used in this

research). More on MESFET width and length adjustment in Chapter III. Vpo is the pinch-

o.f voltage, and the reader should refer to [32] for information on E. and b.

D

G

S
Fig. 2.7 n-channel depletion
type GaAs MESFET symbol
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Ignoring the velocity saturation effects of a first order MESFET will allow the use

of ]FET equations with only minor errors. These are basic MET expressions and can be

found in a general textbook on electronic integrated circuits.

The ac small-signal model for a MESFET is the same as for any WFET. Two of the

essential ac parameters are gm and ro. They are determined as shown below:

gtn= 2 0 (VGs - VI) (1 + XVDs) (EQ:2.4)

r ( I (EQ:2.5)

In a MESFET, the valueX ranges from 0.1 to 0.3 V-1 , which results in a small ro

component. The low small-signal model output resistance adversely affects the operation

of the device. This ultimately causes a low voltage gain at each stage. Methods to increase

the ro value are contained in paragraph c. This is a major limiting factor in GaAs op amps,

and limits open-loop gain.

6. Device Gain and Unity Bandwidth:

The greatest advantage a GaAs MESFET has over a silicon MOSFET is its much

higher ft. But, the resulting low open-loop gain in a GaAs op amp is a drawback. An

extremely important ac parameter of the MESFET is transconductance gm. It plays a

significant role in the amount of open-loop ac voltage gain obtainable. Transconductance

is defined as follows:

gm= [ "D ] V,, (EQ:2.6)

(TGS simcnta

It is obvious from the expression above that the transconductance varies as a

differential change in the ratio of ID to VGS for a constant VDS. As such, it is closely related

to the gain of a device. Now to explore the effects of gm in a circuit application. A basic

12



single-stage amplifier will be examined, as pictured in Figure 2.8. Note that the circuit uses

I VDD

E: -vou~t

gnd

Fig 2.8 Single-stage active load GaAs amplifier

an active load in place of a resistor. The active load configuration is commonly used in IC

design. Because it is easier to control the characteristics of a MESFET than the

characteristics of a resistor. The resistor load would occupy more real estate on a chip as

compared to an active load transistor. The load transistor is a depletion-mode MESFET

with VGS=O. Thus, higher gains can be achieved by providing sufficient supply voltage to

maintain the active load device in the saturation region. This technique is employed quite

extensively in MESFET ICs and is presented again in the amplifier design techniques

paragraph. An ac analysis for the voltage gain Av of Figure 2.8 is given as:

AV = VOW = .gMRL (EQ:2.7)
g~s

Here, the ac voltage open-loop gain is a function of the transconductance

component of the device and the load resistor. However, a more useful expression for g.

of a MESFET is one that includes the drain current limit caused by velocity saturation. In

[3] such a relationship for g. is given by:
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=svsatW (EQ:2.8)

gin- d

where d is the doping distribution of N-type material in the channel of the device,

and gm varies inversely with d. Hence, to increase the value of gS, the doping distribution

must be reduced. To accomplish this requires increasing the channel doping. Observe that

g. depends inversely on the gate length L.

The transconductance parameter is vital to increased voltage gain but is not the

only parameter affecting the frequency response. Therefore, the MESFET frequency

response is better described by the unity gain frequency (ft). This is measured by short

circuiting the output of the high-frequency small-signal model of the FET. The unity gain

frequency is expressed as:

gm
gm (EQ:2.9)2n (Cs + Cgd)(

From this relationship it shows that the unity gain frequency is directly dependent

on the transconductance. Thereby, increasing gm has a positive effect on the bandwidth of

the FET. Also, small-signal model gate capacitances Cgs and Cgd are a function of the gate-

to-source and the gate-to-drain voltages. These capacitances should be minimized to

improve the frequency response. An expression for ft in terms of the gate length is more

practical and desirable. Equation 2.10 (see [8] for derivation) below is more concise and

useful:

f Vsat

2nL (EQ:2. 10)

This equation is used to estimate the unity frequency in the amplifier design stage

and it compares favorably with already fabricated and tested ICs. Moreover, ft varies

inversely proportional to the gate length L. This will remain true so long as the gate

capacitances maintain a direct relationship with the gate length. This effect can be disrupted

by the fringing capacitance [33] which is caused by horizontally expanding the depletion
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layer in the direction of the gate metal. Thus, to obtain maximum gain g., through reduction

of gate length, it would require sophisticated fabrication technology and controlling doping

in the channel so that the ratio of fringing capacitance to plate capacitance stays modestly

small. Besides, the added gain would be negligible as compared to the corresponding

increase in bandwidth. Accordingly, a cost-efficiency trade-off analysis may prove

beneficial. The GaAs amplifier analyzed and presented in Chapter MI was simulated with

a minimum gate length of 0.81Lm. This is the smallest length the fabricator could reliably

produce.

C. GaAs Design Techniques:

In this section, a few GaAs circuit design techniques and models associated with the

construction of MESFET amplifier ICs will be presented. Also, a general purpose GaAs

amplifier with reasonable gain (40dB) is offered. In addition, a method frequently used to

overcome the low output resistance ro in FETs when in saturation is given. Techniques

discussed will focus mostly on the specific circuit design of the amplifier used in Chapter

lIf; nevertheless, others will be outlined. This section is not intended to be all inclusive of

the techniques and models that have been developed in recent years. However, other

sources addressing and expanding on this topic are found in [3], [4], [8], and [10].

1. Schottky-Barrier Diodes and Level Shifters:

Both the schottky-barrier diodes (SBD) and voltage level shifter (VLs) are key

elements in GaAs MESFET IC applications. The schottky-barrier diode is a special type of

diode that is formed from carefully doped n-type material. Figure 2.9 provides an excellent

cross-sectional look at the schottky diode composition. As stated in previous sections, the

schottky metal rests on the depletion layer (anode) and the ohmic contact to form the

cathnode.
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metal Channel
Depletion Ohccnatimplant

layer Ohmeta

Source & drain

Semi-insulating GaAs implant

Fig 2.9 cross-sectional of schottky-barier diode

A current-voltage characteristic curve of the schottky diode appears nearly the

same as the pn-junction diode. The current flow of the schottky diode device is significantly

different from the pn-junction diode in that the majority carriers (electrons) allow the

conduction current and reverse saturation current. As a result, there is no large collection

of minority carriers (holes) in the bulk region at doping amounts above a prescribe level.

Since the diffusion capacitance in schottky diodes is negligible, it results in much faster

transition time from forward bias to reverse bias as compared to the pn-junction diode.

Because of these properties, the SBD is also identified as a majority carrier device. A

properly n-type doped schottky metal has a voltage breakdown between 0.60 and 0.70volts,

depending on the concentration of n-type doping. Therefore, significant forward bias

current flow will occur after voltage breakdown. Continuing, the SBD's current-voltage

characteristic curve is identical to the ideal diode I-V curve, and is given by:

ID)= 1,[expqV 5D, -_] (EQ:2.11)
Is~xP(nkT J

Is in this expression is the diode saturation current, n is the ideality factor or the

emission coefficient. The variables q, k and T are charge, Boltzmann's constant, and
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temperature in Kelvin respectively. The VD4 parameter is the intrinsic diode voltage that is

present across the junction and is defined below:

VD, -= VD -IRs (EQ:2.12)

where RS is the series resistance due to contacts, neutral n-GaAs, and current

crowding at the edges of the contacts. The series resistance is a by-product of how the diode

is fabricated on a chip. The voltage gain gm of the device (at each stage) and bandwidth

could suffer [35] from excessive current crowding. Additionally, for simulation and design

purposes, the series resistance is a constant ranging from 8000 to 15000 (depending on

the simulation tool used). Meticulous environmental control and detailed circuit layouts are

just some of the ways to reduce series resistance (RS) and current crowding. Lastly, VD is

the voltage at the diode leads.

The schottky-barrier diode is an integral element of GaAs MESFET design and

simulation. For the GaAs amplifier design in Chapter III, the Vitesse simulation parameters

and diode models for the SBD were used. In [3], [8], and [35] are descriptive analysis and

simulation models of the SBD. Relevant to this research are the default and actual values

used in the SBD design. These parameter values are shown in the Table below:

TABLE 2.1: Parameter values used in HSPICE for GaAs schottky diode model with
a lgm length and lnm width [43]

Ums Default Actual
Name Parameter Units val Areavalue value

is Saturation A 1.0e-14 lOf *

current

rs Ohmic Q 200 1500 *

resistance

n Ideality 1.0 1.18
factor

tt transit time s 0 0
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TABLE 2.1: Parameter values used in HSPICE for GaAs schottky diode model with
a 1 im length and Igm width [43]

Name Parameter Units Default ActualArea
value value

cjo Zero-bias F 0 2.0e-15 *
junction

capacitance

vj Built-in V 1 0.8
potential

m Grading 0.5 0.5
coefficient

rd Drain resis- Q 500 3K
tance

r. Source .0 500 3K

resistance

The asterisk (*) above indicates that the parameter is to be scaled with respect to

the diode area. The scaled factor is usually defined in the model line and is intended to

provide the designer greater flexibility in obtaining optimum circuit performance. For most

software simulation tools the SBD's length (1 gm to 3 gm) is preset and the area of the SBD

is determined by scaling the width parameter. Schottky-barrier diodes are constructed by

connecting together the drain and source terminals of a MESFET transistor.

Some of the Vitesse diode parameter values are slightly different from other

SPICE models. For instance, the SBD forward voltage drop can be varied by changing the

scaling factor of the diode. As stated earlier, the drop can vary from 0.60 volts to 0.70 volts.

It is customary for different foundries to use parameter values that closely fit their device

characteristics.

The SBD is used in GaAs MNESFET technology to provide a logic-switching

element in digital systems and as a dc voltage level-shifter in analog integrated circuit

designs. One of the earliest application of dc voltage level-switching networks in analog

GaAs MESFET IC can be studied in [10]. As a level-shifter, the dc bias voltage allows for
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the voltage potential at different nodes in the circuit to be controlled. A level-shifter is used

with the amplifier designed in Chapter MI. A typical level-shifter is shown at Figure 2.10.

The level-shifter below is constructed of three equally sized SBDs. The effects the level-

shifter has on the circuit will depend on the number of SBDs implemented in the diode

series string, along with the length and width dimensions of the diodes.

VIN

I.

Vout

is
Fig. 2.10 Sample SBD level-shifter

2. Current Mirrors:

Another essential high-performance component of the GaAs MESFET analog ICs

is the current mirror network. Current mirrors are added to integrated circuits to provide

high resistance loads, current sources, and level shifters. Probably the greatest benefit of

the current mirror is its increased output resistance which ultimately leads to higher output

voltage if used as a load, and great current stability if used as a current source. A simple

GaAs MESFET current mirror circuit is drawn at Figure 2.11 below:
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VDD

101

Fig. 2.11 GaAs ME.FET current mirror [10I

The current mirror design above can be modified to include SBDs to reduce the

dc voltage potential at certain nodes. Also, dc bias voltages (batteries) can be inserted to

boost the voltage at desired nodes. Of paramount importance to the current mirror's

performance is to ensure that the physical size (gate length and width) and the molecular

composition of transistors 12 and J3 are nearly identical. A very similar current mirror

design to the one above is presented in [10].

3. Small-Signal gmrds Effect:

GaAs MESFET technology suffers from low transistor gmrds which results from

varying drain resistance rds at low-frequency [36] and [37]. The resistance value tends to

be more stable (or constant) at around IMHz and above. A small-signal equivalent circuit

model will be used to illustrate the changing RDS values and its adverse effect on the
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system's performance. A signal analysis of Figure 2.12 below will reveal a voltage gain

given by equation 2.13:

-- = -g.(RDI ro) (EQ:2.13)

VgS

where the negative sign indicates that the output signal at vd (the drain terminal)

is 1800 out of phase with the input signal vgs. Another salient point about equation 2.13 is

that as ro becomes small and gm remains large, the value RD will become negligible. Thus,

equation 2.14 shows the new relationship that can be derived from Figure 2.12

Av = -gmro (EQ:2.14)

A general expression and explanation of ro can be found in [6]. A generic small-

signal equivalent GaAs MESFET model is shown:

Gate rgCgd Drain

r i 
• -C °

rs

Fig. 2.12 Typical small-sig-ni erjuivalent GaAs MESFEr model [9]

Carefully treating (w/ molecular beam epitaxy) and constructing the active

channel layer of the depletion-mode N-channel device will significantly enhance insulating

properties and low-frequency gmrds and reduce backgating and light sensitivity [9]. An
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acceptable value for the resistance R& should be stictly monitored and obtained at each

stage. For MESFET technology, the output resistance ought to be around 20Q. Achieving

this resistance is a 'tricky' and challenging procedure for analog circuit designers. Figure

2.13 represents the varying drain resistance as a function of frequency.

R jS

15k-

OHMS

(0l)

3k

UENCY (f)

Fig. 2.13 MESFET output resistance vs. frequency [10]

The curve clearly shows the degree of variance of the value R& at low-frequency,

and that the resistance settles to a constant value at approximately IMHz. This behavior of

the MESFET drain resistance is also reported in [9], [10], [38], and (39]. Better

environmental control measures and elaborate modelling techniques have significantly

raised the value of gmrds. In recent years, several methods have been developed to improve

or eliminate the undesirable effects of varying drain resistance at low-frequency,

backgating, and low-light sensitivity [9], and [17].

4. Gain Enhancement Techniques:

This section covers techniques often used to improve FET gain and overall FET

performance in IC designs. Many of the models and configurations presented were

originally developed for MOSFET applications but have been adapted for GaAs MESFET

IC technology.
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a GaAs DfereL Ampl•er Pair:

The differential amplifier stage is the fundamental building block of analog

VLSI design and operational amplifiers. Differential amplifiers are frequently used in

comparators, multivibrators, logic gates, operational amplifiers, A/D converters, etc.

Currently, there are several GaAs MESFET differential amplifier topologies available.

References [3], [61, [9), and [10] provide instructional techniques for the construction of

such amplifiers. In Figure 2.14, a general purpose depletion mode GaAs MESFET

differential amplifier is shown. Design considerations for a high performance and high

VDD

+ ~VIN_

VTOJ- J2 J9

J vout

VSS

Fig. 2.14 Depletion-mode GaAs Differential Amplifier [40]

yield differential amplifier stage must include bandwidth, common-mode range, common-

mode rejection, and input-offset voltage requirements. This particular differential amplifier

has exhibited a gain bandwidth product of approximately 4MHz and an average gain of

22dB under typical IC applications. Explicit design techniques and methodology
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concerning this amplifie is contained in [4], [6], [12], and [40]. The topology used in the

amplifier design of Chapter M is very simila to the one in Figure 2.14 above.

b. Curet Source MoedL

The current source is one of the most basic designs of integrated-circuits,

providing both active loads and biasing requirements. Improved amplifier gain can be

accomplished by appropriately adjusting the gate length and width. The current source

circuit can be employed by connecting the gate terminal of the depletion-mode MESFET

to the source terminal. So long as vDS is kept above IV,, the MESFET will operate in the

saturation region and the standard expression for iD is applicable. A current source and its

equivalent circuit design are shown in Figure 2.15 below:
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VDD +

0 VDS

(a)

(b)
Fig. 2.15 (a) M_.FET current source connected
to positive power supply; (b) equivalent circuit
of current source

Refer to previous discussions and references concerning the relationship for ro

and iD in the network above. In most IC applications, the gate width of the current source

is reasonably small, as compared to the gate width of the source follower.

c. GaAs Cascode Current Source:

The cascode current source model is a design used primarily to increase the

output resistance Ro of the current source circuit. The effects of incorporating a second

transistor to the current source is define by:

Ro= gM2 ro2rOj (EQ:2.15)
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A simple circuit analysis of Figure 2.16 shows the output resistance of the current

source component of J I is scaled by gmr02 , the small-signal gain of J2. Typically, the scale

J2

JI

-Vss

Fig. 2.16 GaAs cascode current source

value ranges from 20 -50 in GaAs devices. Additionally, a design requirement for VBiss is

for the voltage potential to be the smallest possible that will maintain the saturation

operation of J2. This will allow for a larger voltage range at the output of the cascode

current source. This technique is frequently employed in GaAs MISFET integrated circuit

designs [11] to boost the voltage gain.

d. Bootstrpfng Current Source:

Much like the cascode current source, the MESFET bootstrapping current

source is another circuit often used to increase the output resistance of a current source.

However, the complexity of the circuit implementation and its design makes it a less

attractive model. The major idea behind this method is to induce an incremental voltage at

the node of the current source A in Figure 2.17, which will cause a corresponding
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incremental voltage change at the output node B. These two voltages are related by an

Bootstrapping
network

I A

Fig. 2.17 Basic circuit configuration for a GaAs MESFET

bootstrapping current source (6]

incremental change factor a, where a is a constant • 1. Therefore, the output resistance

Ro is determined by a straightforward circuit analysis of Figure 2.17, resulting in:

R 1-a (EQ:2.16)

1

Clearly, from equation 2.16, the output resistance is scaled by the factor 1-"

The output resistance would increase as a approaches 1. Also, maximum bootstrapping

occurs when a = 1, leading to Ro=oo. Finally, a greater amplification of the Ga9s

bootsrtapping current source and derivation for the parameter a can be found at [6]; and a

design application at [ 11].

D. GaAs Device Design Parameters:

All GaAs MESFET models and equations must operate at an acceptable accuracy. It

is critical for the MESFET models to work effectively, as there may be many other

elements and subcircuits comprising the network. There are several simulation software
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tools available, each with slightly different design parameter values. HSPICE was the

simulation software used to simulate the amplifier of Chapter III. HSPICE is extremely

accurate, and provides an excellent Graphical Simulation Interface (GSI) module. The GSI

tool renders the simulation output under a separate file catalog, making it easier for the user

to view, update the file, and to print necessary results. See references [3] and [8) for other

design models and simulation tools.

Additionally, HSPICE employs the Vitesse corporation gallium arsenide MESFET

design models and parameter values. The construction of both the GaAs schottky-barrier

diode and transistor were previously discussed. Furthermore, changes to the Vitesse model,

parameter values, and creation of new parameter values were prohibited, due to future

design layout and fabrication requirements. That is, the only user design parameter

flexibility allowed was to alter the devices gate length and width. The Vitesse MESFET

model parameters are shown below for the gate capacitance and DC model, and the

temperature effect parameters in Tables 2.3 and 2.4 respectively.

TABLE 2.2: Gate Capadtance and DC Model Parameters

Name Parameter Unit Vitesse Default

CAPOP Cap. option F 1.0 0

CGAMDS Threshold F 0.065 0
lowering

factor cap

CRAT Source frac- F 0.666 0.666
tion gate

cap.

GCAP Zero-bias F 1.7e-3

gate cap.

BETA Gain amp/V2  1.9e-4 1.0e-4

LAMBDA Channel I/V 0.065 0
length mod.
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TABLE 2.2: Gate Capacitance and DC Model Parameters

Name Parameter Unit Vitesse Default

VTO Threshold V -0.825 -2.0
voltage

LEVEL FET level mrA 3 1

ALPHA Sat. factor I/V 3.5 2.0

D Dielectric Si=11.7 11.7
constant GaAs= 10.9

K1 Threshold V2  0.350 0
voltage sens

ND Drain fact IN 0.2 0

NG Gate fact. 1.1 0

SAT Sat. factor 3 0

SATEXP Drain volt- 3 3
age exp.

UCRIT Critical V/cm 0.5 0
field

VGEXP(Q) Gate exp. 2 2

TABLE 2.3Temperature Effect Parameters

Name Parameter Unit Vitesse Default

BEX Mobility -0.4 0
temp coeff.

EG Energy gap ev Si=1.17 1.16
SBD=0.69
Ge--0.67

GaAs=1.52

GAP1 1st bandgap ev/deg Si=4.73e-4 7.02e-4
Ge=4.56e-4
GaAs=5.41

e-4
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TABLE 2.3Temperature Effect Parameters

Name Parameter Unit Vitessc Default

GAP2 2d bandgap deg Si=636 1108
Ge=210

GaAs=204

TCV Temp comp I/deg 1. 10e-3 0
coeff VTO

TLEV Temp eqn 2 0

TRD Temp coeff I/deg 3.3e-4 0
drain resist

TRS Temp coef lldeg 3.3e-4 0
source resist

XTI Sat current 2 0
temp exp

The gate length (L) and width (W) parameters for the device are fixed in the

algorithm so that L and W vary between the ranges 0.4: L ! 1.249911m and

0.5•9 W!< 10000ptm. In order to obtain a different L and W range, a new Vitesse model

number must be selected. HSPICE has three Vitesse GaAs transistor devices of semi-fixed

lengths 1,2, and 3pJm. Vitesse also provides enhancement and depletion-mode MESFETs

at the gate lengths already mentioned. The parameter values listed in Tables 2.1, 2.2, and

2.3 were obtained from the hgaas3.model, depletion-mode 1.1 (dpl.l) of the Vitesse

library. Specific equation derivations and relationships can be found in reference (43] Meta

Software.
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mL GaAs MESFET OPERATIONAL AMPLIFIER DESIGN

A. General:

The operational amplifier (op amp) is an essential and reliable component in the

electronic technology industry. Op amps were first introduced in the late 1940s. The single

vacuum-tube op amp, invented by G. Philbrick [51, was one of the first op amp circuits

published. These initial op amps were extremely large (in size), expensive, and performed

only simple mathematical computations.

It wasn't until almost two decades later that solid-state technology (transistors) made

their way onto the scene. In the mid-to-late 60's, Fairchild perfected the now famous LM-

741 integrated circuit op amp. This breakthrough in the electronics industry lead to

remarkable strides in the computer and engineering sciences. The solid-state integrated

circuit technology had taken root by the mid 70's, and new advancements in the field were

rapidly coming to fruition. Additionally, the op amp was exceedingly more robust than its

predecessor. It was physically smaller, less expensive, easier to work with, and far more

capable than vacuum tube op amps.

The IC op amp became a major building block for more complicated designs.

Engineers were able to get away from the rudimentary tasks of designing multiple discrete

component subcircuits to achieve a particular performance level. A new and more powerful

circuit (chip) can be designed from just an op amp, a few capacitors, and resistors. Today,

op amps are readily available in a wide range of specifications, applications, and physical

properties. The op amp is very simple to use and it operates closely to its ideal

characteristics.

This Chapter will mainly focus on the GaAs MESFET operational amplifier design. A

step-by-step design and a completed schematic of the op amp is included. Circuit Models

and gain improvement techniques for the op amp will be covered as well. Most of the

design parameters and specifications are labelled on the diagrams. Lastly, problems
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inherently associated with GaAs op amps will be highlighted, such as: low gain, slew rate,

offset voltage, etc.

B. GaAs Differential Amplifier Input Gain Stage:

The differential amplifier stage is probably the most critical subcircuit of an

operational amplifier. The differential amplifiers' high input resistance and low output

resistance renders it quite useful in the design of logic gates, multivibrators, op amps, etc.

The GaAs depletion-mode MESFEr op amp pictured in Figure 3.1 is the design topology

closely followed in the construction of the final amplifier for this study. Specific

VDD

i

D 
J4

VI-N

VINs

Fig. 3.1 GaAs D-MESFET operational amplifier [4]

dimensions and explanations of all the elements in Figure 3.1 can be reviewed in (4]. This
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medium dc gain and bandwidth amplifier is suitable for moderate rate switched-capacitor

filters, phase-locked loop, and other medium high speed analog applications. Experimental

and simulation results of the above op amp are contained in Table 3.1 below:

TABLE 3.1: Op Amp Performance Parameters [41

Parameter Value Unit

dc gain 40 dB

GBWP 1.3 GHz

Phase mar- 80 Deg
gin

Power dissi- 150 mW
pation

Offset volt- 63 mV
age

Load capac- 0.4 pf
itance

GaAs op amps possessing improved performance over the one mentioned here have

been developed and are available. Such amplifiers can be seen in references [9], [10], [11],

and [19]. The performance of the amplifier used in this thesis is not as great as the amplifier

in Figure 3.1, still it is more than adequate for composite op amp exploration. Table 5.1

contains the key op amp performance parameters for the op amp designed in this thesis.

In wide bandwidth switching applications, as in high frequency switched-capacitor

filter designs, it has been shown that a single-ended single-stage op amp is best [41].

Consider the equivalent circuit model of the single-stage and two-stage op amps in Figure

3.2. In this case, the gain for both models are about the same and is given as:

gain = (gmrd,) 2  (EQ:3.1)

Now, notice that the two-stage amplifier's non-dominant pole location is given by:
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(CL 2 (EQ:3.2)

and the single-stage amplifier's non-dominant pole location is defined by:

C--Q2 (::3.3)

This is a potentially wider bandwidth than the two-stage op amp. Accodingly, the

non-dominant pole plays a key role in the maximum obtainable bandwidth of an op amp
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(4]. Additionally, the single-stage op amp is intrinsically much more robust and increases

the load capacitance compared to the two-stage model. This makes it more stable [42].

Vcdd

Vin

(a)

Vdd

yin C

.' gnd

Vmp (b) V•

Fig. 3.2 Single-ended equivalent circuit model (a) two-

stage (b) single-stage op amp [4]

The discussion above is intended to provide insight on the design models for higher

frequency GaAs op amps. However, these models are more complex to implement and will

not be employed in the final op amp design.

The final amplifier incorporates forward biased SBDs for level-shifting. Additionally,

the high series resistance of the SBDs moderately reduce the amplifier gain. Thus, a careful

design strategy must be used when building the level-shifters. The differential amplifier
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(diffamp) employs a spliced current source, licd transistor, bootstrapping transistor, and
positive feedback from the load transistor. Figure 3.3 shows the components of the
subcircuit diffamp. The spliced cascode current source is included to provide proper
diffamp biasing. Adjusting the bias potential can be accomplished by appropriately altering
the gate width. The effects of which were presented in Chapter II. A load transistor and
bootstrapping transistor working in tandem provides both gain enhancement and stability.

gnTd

- -J-VL

gna Vss TO Current source

Fig. 3.3 diffamp input stage

The diffamp uses an active load transistor J4 to maximize gain and the bootstrapping

transistor J5 offers both gain enhancement and keeps J4 in the saturation region. This is
done through careful selection of the gate width of J5. A positive feedback connection to
the depletion transistor J3 at the proper gate width is needed to maintain its forward bias
operation. The gate width of J3 is required to be not less than the gate width of the cascode
current source transistors J6 and J7 depicted in Figure 3.4. The element dimensions of the
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diffamp are based purely on FEr design tchniques, simulations, and MOSFET equivalent

circuit modelling. These element dimensions are given in Table 3.2

TABLE 3.2: diffamp Element Dimensions

FEr # Gate width Multiplier

1&2 2000 1

3 700 1

4 50 1

5 1500 1

6&7 15 1

8&9 1.0 1

10 110 1

11 2 1

DI -D3 1.5 15

D4 -D7 1.5 20

FEs J6 - Jl I and DI - D7 are shown in Figure 3.4 below. A GaAs D-FET model with

a gate length of 0.8g±m was used for all FETs. Also, the diode gate length was set at 0.Sim.

The gain for the input diffamp was found to be approximately 21.44.

C. Load Stage and Complete Op Amp:

A series of four forward biased SBDs are used to provide the necessary level-shifting

network. The current through these SBDs is kept to a nominal level via the small gate width
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load MESFTs. Doing this ensures highest output resistance and improves overall output

gimn. The complete simulated GaAs D-MESFET schematic is depicted in Figure 3.4.

Vdd

J1o

VINl D5

1 D2 D6

D3 
D7

D4
gnd--76gdVu

Fig. 3.4 GaAs D-MEFET op amp

The cascode current source consisting of J6 and J7 are employed to increase the output

resistance. This was accomplished by following the guidance for gain enhancement

techniques for GaAs equivalent models outlined in Chapter 11. The optimum gate width for

the current source is in Table 3.2 and was determined by several simulation trials. A

discernible gain increase was noted when the gate widths of the load FETs were very small,

while maintaining the source follower transistor in the saturation mode. Lastly, an external

load capacitor of 0.4 or 0.5 pf was used.
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D. Op Amp Drawbacks:

The ideal op amp performance characteristics can never be achieved by any non-ideal

op amp. Because these performance characteristics have been well documented in other

publications, it is not necessary to present all of them here. On-the-other hand, this

paragraph will focus on a few drawbacks associated with non-ideal op amps.

The ideal op amp possesses infinite input impedance, zero output impedance, and

infinite output voltage gain. However, the non-ideal op amp is hindered by finite dc gain,

common-mode rejection ratio, offset voltage, limited bandwidth, slew-rate, finite input

impedance, and nonzero output impedance. These topics are pertinent to the overall

performance of the op amp. A more exhaustive look at these drawbacks are found in [3],

[6], and [28].

1. Finite DC Gain:

As stated above, an ideal op amp possess infinite dc gain, but a non-ideal op amp

generally has a finite range of 1000 to more than 1-Meg. for silicon type devices. Yet, for

GaAs MESFET op amps, the dc gain range is significantly less, around 100 to 1000.

2. Common-Mode Rejection Ratio:

The common-mode rejection ratio (CMRR) of an op amp is defined by:
CMRR = 2og ( IAI (EQ:3.4)

iaOlo o EQ:3.4

where A is the input signal differential gain and ACM is the common-mode gain.

The CMRR value is indirectly related to frequency, in that it decreases as the frequency

increases. So, in silicon, a typical range for CMRR is 70 to 110 dB for low frequency, and

in GaAs, approximately 40 to 60 dB.

3. Offset Voltage:

A general-purpose op amp offset voltage is given as the differential input voltage

needed to force the differential output voltage to zero. Thus, when the inputs of a non-ideal
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op amp are connected together, a small voltage potential appears at the differential inputs.

This voltage potential is amplified at the output. This effect can almost be negated by

applying the appropriate offset voltage at the input. It is worth noting that for ideal op amps

where the inputs have been connected together, the corresponding output voltage is zero.

4. Effective Bandwidth:

Op amps have reduced available gain across the bandwidth (BW). This reduction

in available BW is cause by parasitic capacitances and limited carrier mobility. The

problem gets worse as the frequency increases. Also, internally capacitively compensated

op amps have a 20 dB roll-off cause by the induced poles from the internal capacitors.

Lastly, ideal op amps have infinite gain over the complete BW.

5. Slew-Rate:

The slew-rate (SR) of an op amp indicates the maximum speed at which the

output voltage can change. Equation 3.5 is an analytical expression for the SL. The slew-

rate is affected by several factors, including component values, input voltage swing, gain,

dc supply voltages, etc.

dv 0
SR = --t max (EQ:3.5)

In most cases, the output of the op amp is 1-volt below the positive and negative supply

rails.

6. Input and Output impedances:

A general-purpose op amp has finite input impedance in the neighborhood of 10

-20 MK. Conversely, the ideal op amp has infinite input impedance.

Briefly, op amps do not exhibit zero output impedance. If this were the case, op

amps would operate as an ideal voltage source. Therefore, ICs are frequently designed with

buffer stages that have low output resistance in the range of several hundred ohms.
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IV. COMPOSITE OPERATIONAL AMPLIFIERS

A. General:

Composite Operational Amplifiers (CNOAs) were developed to extend the effective

frequency range of a single op amp, and to reduce some of the drawbacks mentioned in the

previous chapter. This is accomplished by using a multiple op amp configuration. In an op

amp, the gain bandwidth product and the 3dB frequency are constants. Furthermore, the

performance parameters of bandwidth and distortion are not readily controlled when using

a single op amp. However, to a certain degree, this has been overcomed and the bandwidth

extended through the use of CNOAs.

The CNOA concept was developed in 1981 by S. Michael and W. Mikhael. Their

research concentrated on extending the operational frequency of a single op amp and is

based on the nullator and norator pairings of some 136 different circuit designs. Each

circuit design was evaluated against the performance requirements outlined in [43]. Since

CNOAs are not being simulated, only a brief discussion will be devoted to these designs.

B. Theory Behind CNOAs:

The fundamental operational characteristics of an ideal op amp are infinite input

impedance, zero output impedance, and infinite gain. These characteristics can directly be

transferred to an idealized model with the use of nullator and norator singular components

[1] and [431. A nullator is a one port device that does not sustain a voltage nor passes a

current. On-the-other-hand, a norator is a one port device that sustains an arbitrary voltage
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and paase an arbitrary independent current [43] and [451. Both the nullator and norator

along with the hybrid nullor op amp are pictured in figure 4.1.

Vl--1 1=Of ii
VI

(a) NuUator

V2 i2 arbitrary

i2

'12

(b) Norato"
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zi -+ 0, Zout -+. 0, A --+ co

10

(c) Nullor op amp (VCVS)
Fig. 4.1 (a) Nullator (b) Norator (c) Nullor op amp

The nullor op amp of figure 4.1c is the re. At of applying a nullator-norator analysis

technique. From this analysis spurred the creation of 136 CNOAs. The number of CNOAs

were reduced to just four, because the others did not meet the performance requirements

listed in reference [43). These four were redesignated as CNOA-1 through CNOA-4, where

N=2. The new composite nullor device symbol is very similar to an ordinary single op amp

with external input and output terminals.

Equation 4.1 defines the open-loop gain of the single pole op amps used in the C2OAs.

These op amps are shown in there composite form at figure 4.2.

Aoioii COi
Ai -9- 1 = lor2 (EQ:4.1)

co0+S + CDLi

where Aoi, Cow, and coi are the dc open-loop gain, 3dB bandwidth, and the gain

bandwidth product (GBWP) of the ith single op amp, respectively. Additionally, the input-

output voltage relationship of the C2OA-i's are given below:
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Voi = Va.a (S) - V A bi (s) = I - 4 (EQ:4.2)

9--

Fig. 4.2 Basic composite op amp symbol

C. Composite Op Amp Topologies:

A brief discussion on each of the four C2OA-i's is presented in the successive

paragraphs. To include analytical expressions and conditions for the 3dB frequency, quality

factor, gain, and a parameters.

1. C2OA-I:

It has been shown [I] that the open-loop gain for C2OA-I is defimed as indicated

in equation 4.3. Also a complete C2OA-I model is depicted in figure 4.3.

A2 (1 +A,) (l+a) AIA 2 (l +a) (EQ:4.3)
SAl + ( 1 ÷+a) -WAl +4 (I +a O)

where a is the internal resistor ratio and is represented in figure 4.3.
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a Vout

C2bA

Fig. 4.3 C2OA-l model

Notice the striking resemblance of the three terminal composite op amp of figure 4.3

to that of a single op amp. Inputs a & b are the noninverting and inverting terminals

respectively. A thorough derivation of the 3dB frequency and the quality factor (Q) for the

model above are found in [1] and [2]. An expression for these parameters are given as:

/o ••• (EQ:4.4)

(1 + a) •2(Q45

(l-j-]+k) (CQ4.5

where a is the internal resistor ratio, o is the 3dB frequency, k is the closed-loop

gain, and o1& co2 are the GBWP for A1, and A2 respectively. The system's stability
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conditions are validated by applying the Routh-Hurwitz criterion, and the resulting

relationship is provided:

(1+ a) <1 +A (EQ:4.6)

2. C2OA-2:

The open-loop voltage gain for C2OA-2 is defined as indicated in equation 4.7.

Also, a complete C2OA-2 model is depicted in figure 4.4.

V A 1A 2 (0 +a) A 1A 2 (1+a) (EQ:4.7)

V A + -(1 +a) VA2+ (1 +a)

where ct is the internal resistor ratio and is represented in figure 4.4.

The 3dB frequency and the Q factor for C2OA-2 are given below:

2 (EQ:4.8)

QP (l+k) (EQ:4.9)

The Routh-Hurwitz conditions for system stability are given at equation 4.10

below:

(I+ a) < 1+k (EQ:4.10)
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3. C2OA-3:

The open-loop voltage gain for C2OA-3 is defined as indicated in equation 4.11.

Also, a complete C2OA-3 model is depicted in figure 4.5.

A 1A 2  A 2 (1 +A 1)(E:.1

A l 
V1u2

V0 V 1 )(+ a)

Qp A2 (E:.3

wher isen-loop internalgresistorfrao a is reprented asindfigured 4.5. quat

The 3dB frequency and the Q factor for C2OA-3 are given below:

(OP (1 OaI(1+k (EQ:4.12)

(1+k (02~ w (EQ:4.13)
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The Routh-Hurwitz conditions for system stability are given at equation 4.14

below:

(I+ +x) > J-1 + k (EQ:4.14)

bvo

b +

Fig. 4.5 C2OA-3 model

4. C2OA.4

The open-loop voltage gain for C2OA-4 is defined as indicated in equation 4.15.

Also, a complete C2OA-4 model is depicted in figure 4.6.

A2 (A,+ a) A2 [AI + (I + a) (EQ:4.15)
V = Va (1+ a) Vb (1 +a)

where a is the internal resistor ratio and is represented in figure 4.6.

The 3dB frequency and the Q factor for C2OA-4 are given below:

48



CP = (EQ:4.16)

(I + k) CO
(O +a) w2  

(EQ:4.17)

The Routh-Hurwitz conditions for system stability are given at equation 4.18

below:

(1 +a) >4(l +k) (EQ:4.18)

b vu

Fig. 4.6 C2OA-4 model

It is worthwhile to point-out that the expressions for a~p, Qp, and the Routh-

Hurwitz criterion are a function of the parameters a and K. These two parameters also play

a key role in implementing a high performance composite op amp. This is described in the
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next paragraph. A more detailed and in-depth look at the generation of composite op amps

is found at [1], [2], [43], [44], and [45].

D. Determining Appropriate a and K Parameter Values:

In the composite op amp configuration, the designer has much the same control of the

closed-loop gain K, as in a single op amp. Once a K value has been chosen, the

corresponding 3dB frequency and quality factor can be computed. Likewise, the a

parameter is selected by the designer and should be adjusted until the frequency response

curve of the composite op amp is maximally flat. Proper and accurate implementation of

anyone of the four C2OAs will result in a stable system, as established from the Routh-

Hurwitz criterion previously manifested and references [1] and [2].

E. Greater Bandwidth Using C2OAs:

Probably the most significant performance characteristic of the C2OAs is their

intrinsic capacity to extend the operational frequency of a given single op amp. In a single

op amp configuration, the bandwidth is reduced by a quantity of 1/k. Also, its been

documented that cascaded op amps have a bandwidth reduction factor of approximately

0.66 Alternatively, C2OAs' GBWP can be designed to achieve a smaller shrinkage (as
1k1

compared to the two previous op amp configurations) roughly I for Qp = 0.707, which

is maximally flat [44]. Thus, the composite op amp makes better use of the available

bandwidth than the single or cascaded op amp.

F. C2OAs Component Sensitive:

The composite op amp design is less sensitive to fluctuations in both active and

passive components (2]. Consider, C2OAs' general transfer function shown below:
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T~s) = 1 + as

T(s) +as (EQ:4.19)I + blS + b2s2

where b, is defined:

1
b Q (EQ:4.20)

and b2 is defined:

b (EQ:4.21)

From the relationships above, it is obvious that neither the a nor the b coefficients are

attained by way of difference equations. This precludes the requirement for single op amps

with identical GBWPs, thereby lowering the sensitivity of C2OAs, [2] and [43].

G. Offset Voltages:

All general-purpose op amps have a small differential input voltage between the

noninverting and inverting terminals. This differential input voltage is known as the input

offset voltage. Its corresponding amplification (caused by gain of the op amp) at the output

is called the output offset voltage. If the effects of the offset voltage are not kept to an

absolute minimum it could cause a degraded signal at the output. As with single op amps,

the composite op amp suffers from differential input offset voltage too.

The composite op amp offers a crafty technique for mitigating the effects of

differential input offset voltage. This is accomplished by selecting an op amp A,, that has

a small offset voltage and an op amp A2, that has a relatively high slew-rate. The benefit of

this technique on C2OAs can best be assessed by viewing the definitions for the differential

offset voltages listed in Table 4.1.
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TABLE 4.1: C20A Input Offset Voltage

C2OAs input Offst voltages

C2OA-1 Voe =Van + (VY / a)

C2OA-2 Vf =V•Ij + (V•[ / A,)

C2OA-3 VOH -=VOM + (Vom (I + a)/A,)

C20A-4 Vf =v00 + (VOW (I + a)/A l )

Observe from Table 4.1 above, the input offset voltage Vff is virtually independent

of VMfD (input offset voltage for op amp A2), but is heavily dependent on V 1ffl (input offset

voltage for op amp A,). Subsequently, in C2OA-1, as a is made large, the voltage V.0j2

has practically no influence on Vaif. Moreover, in the other C2OA expressions, V.0 is

scaled by the value 1/A1. Since the open-loop gain is always very high, the effects of V.0l

is negligible. Neutralizing the adverse effects of the input offset voltages, coupled with the

fast slew-rate of A2, makes the composite op amp design extremely intriguing.

H. C2OA Slew-Rate Considerations:

Most general-purpose op amps are designed to have either a fast slew-rate (SR) or a

small offset voltage. Alternatively, a composite op amp makes maximum use of both of

these qualities by employing an op amp with a small offset voltage at A1, and an op amp

with a fast SR, wide bandwidth, and fast settling time at A2. Finally, composite op amps

properly designed and implemented vastly out perform any single op amp.
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V. SIMULATION RESULTS

A. General:

The GaAs op amp described in Chapter MII was simulated in both the open and closed

loop modes. The results are presented in this Chapter.

B. Power Supply:

The power supply voltages used in the simulation are selected to accommodate the

largest desired input signal swing. For the op amp under test, the values for Vdd and Vss

were +7.0 and -7.0 volts respectively.

C. Establish Finite Gain:

A closed-loop gain of k=10 was simulated. This was accomplished by selecting Rj=

6200 and Rf = 62000. This gain is sufficient for testing the design and validating the

circuit's functionality.

D. Open-Loop Analysis:

The open-loop circuit simulation was performed many times to verify the validity of

the design. Input signals of 10mV and 100mV were applied to the circuits of Figures 5.1

and 5.2 respectively. An input offset voltage of 20mV was applied. A load capacitor of

0.4pF was used in each case. Notice that for each curve the unity gain frequency is

approximately 3.0GHz. This unity gain bandwidth is typical of GaAs op amps. The GaAs

op amps at references [4], [9], and [10] have similar gain and bandwidth. However, as

expected, the low-frequency gain was as measured at 32dB.

53



OPEN-LOOP. VII4.IOHV. CLt.o4

Vogt Is
.12. O

. .. . . .....

-5.5w..................... ........................ .... ..............

10..00 0 .0 .. O ......... f0 0 .........
c.KiET LG 00

........... g..... ....1 O pen-loop .......... respon....e ........ ..........

-26.54



OPEN-LOOP. VIN.IOONV. CL0.OAPF

VOG C

V27 50 .........:

0
L -10 0
T

o 12 .50

L -27 .50

-320. 0 ...............................

-37 .50 ............................

-25.0



CLOSCO-LOOP. yIN. DOPEY

14 c) ............... ................. .............................................. ............. ...... _ V U

V......... .. .. ......

!II *1 .0 .

9z

.. . . . . . . . ... . . . . . . . . . . . . . . . . . . . .. . . . . . . .

-20.0 7

L i . . . . . . . . . . . . . . . . . . . . . .

-2.I

N 2.1 00 0.K 1O
1 . 0. . . . . . . .. . . ... .. . . .. . . . ... ... .. ...... .. .....

-20. ~ ~ ig 5. Cltd l o re po s -------- 10)... ........... ......... .. ............

567



E. Closed-loop Analysis:

The closed-loop frequency response of the op amp is shown in Figure 5.3, for K=lO.

The 3dB frequency is approximately 400MHz. This value is better than anticipated,

because an op amp's gain-bandwidth is a constant. Again, the power dissipation for this

circuit was about 135mW.

TABLE 5.1: Op Amp Performance Parameters

Parameter Value Unit

dc gain 32 dB

GBWP 3.0 G-z

Phase mar- 135 Deg
gin

Power dissi- 135 mW
pation

Offset volt- 83 mV
age

Load capac- 0.4 pf
itance

Finally, Table 5.1 provides a summary of the GaAs op amp's key performance

parameters.
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VI. CONCLUSIONS AND RECOMMENDATIONS

A. Condusions:

This research has demonstrated that a general-purpose op amp can be designed using

the Vitesse GaAs MESFET process. The performance of the op amp is more than sufficient

for composite operational amplifier implementations. The design appears quite stable and

should be useful in most high speed applications.

Composite op amps can mitigate the limiting effects of input offset voltage, slew-rate,

and reduced operational frequency commonly found in a single op amp. By carefully

selecting an op amp with a small input offset voltage for Al, and an op amp with a high

slew-rate for A2 , a composite op amp circuit can be constructed that has significantly

improved performance compared to a single op amp.

B. Recommendations for Future Research:

There are many ancillary studies that can be initiated as a result of the findings in this

paper. Some of which are listed in the following paragraphs:

1). Design and test the discrete components of the GAs op amp.

2). Implement the op amp in the design of a composite operational amplifier (CNOAs).

3). Design and fabricate the composite op amp.

4).Determine whether the op amp can be employed in a switched-capacitor network.

6). Revisit the ground level concept of composite operational amplifier generation as

it pertains to GaAs MESFETs. In particular, those issues surrounding the low frequency

gain and open-loop unity gain frequency.
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