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TIME-DEPENDENT LINEAR DAE'S

WITH DISCONTINUOUS INPUTS'

BY

PATRICK J. RAWIER AND WERNER C. RllEINBOLDT2

ABSTRACT. Existence and uniqueness results are proved for initial value problems associated

with linear, time-varying, differential-algebraic equations. The right-hand sides are chosen in

a space of distributions allowing for solutions exhibiting discontinuities as well as "impulses"

This approach also provides a satisfactory answer to the problem of "inconsistent initial

conditions" of crucial importance for the physical applications. Furthermore, our theoretical

results yield an efficient numerical procedure for the calculation of the jump and impulse of

a solution at a point of discontinuity. Numerical examples are given.

1. Introduction.

In this paper, we prove existence and uniqueness results for initial value problems asso-

ciated with differential-algebraic equations (DAE's) in R"

(1.1) Ax + Bx = b,

where A, B are smooth time-varying linear operators, and b belongs to a class of distribu-

tions with values in R" containing the functions that are smi.oth in (-oo, 01 and 10, oo) and

have a discontinuity at the origin. Such discontinuities on the right side occur frequently

in physical problems modelled by DAE's. For instance, in electrical network problems a

discontinuity of b may correspond to the operation of a switch at a given time.

The existence and uniqueness theory for problems of the form (1.1) with smooth b (and

consistent initial conditions) is now well understood, see, e.g., [C87], [KuM92I, [RR93a] and

'The work was supported in part by ONR-grant N-00014-90-J-1025, and NSF-grant CCR-9203488

'Department of Mathematics and Statistics, University of Pittsburgh. Pittsburgh, PA 15260
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the references given there. But elementary examples show that th- setting of distributions

is indispensable for handling discontinuous right-hand sides. For example, if A is constant

with A2 = 0. B = I, and b = b0H where b0 E R' and H is the Heaviside function, then

the solution of (1.1) (in this case unique: no initial condition needs to be or should be

prescribed) is x = b0H - Abo6 and hence involves the Dirac delta distribution.

When A and B are constant and b exhibits jumps, Laplace transform methods are

available to find the solutions of (1.1), but the problem appears to remain open for time

dependent coefficients A, B. This is the case considered in this paper. Our results depend

essentially upon our recent work [RR93a] on a reduction procedure that transforms the

distribution solutions of (1.1) into the distribution solutions of an explicit ODE.

The "consistency" of initial conditions represents another topic of considerable theoret-

ical and practical importance in the study of DAE's. As is well known, even for smooth

b, (1.1) will not have a solution starting at arbitrary points xo E R". Rather, existence

of a solution in the classical sense requires that x 0 satisfies certain constraints called the

consistency conditions. On the other hand, suppose that the physical process modelled

by (1.1) starts at time t = 0, and that for t < 0 the state variable x(t) has evolved in a

way totally unrelated with (1.1). If lim x(t) = xo exists this x0 represents a natural data

value for the initial condition at t = 0. But, since xo has no reason to be consistent with

(1.1) at t = 0, the mathematical theory only provides that (1.1) has no solution for this

choice of initial condition, which is, of course, a physically unacceptable statement.

It turns out that the consistency question is closely related to the problems addressed

here. By viewing this question as that of extending a known state x(f) for t < 0 to a solution

of (1.1) for t > 0 via a solution of (1.1) in (P'(R))", we show that the ambiguity can be

resolved: From x0 = lirmn (t) we find that a unique, computable jump to a consistent

value occurs at t = 0. Furthermore, for problems with index v > 2, the sudden transition

between x0 and the consistent initial value may also create a (computable) impulse; that

is, a linear combination of 6 and its derivatives. Further evidence that our solution is

the correct one is provided by showing that it is the limit of the classical solutions of

the problems obtained by smoothing out the right-hand side near t = 0. These results
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complement in various ways those already obtained for problems with constant coefficients

in [VLK81], [co821, or [G031.

Section 2 gives a brief review of the reduction procedure developed in [RR93aI. Initial

value problems for (1.1) are then considered in Section 3 for right-hand sides in a class of

distributions which is a close relative of the class COp of "impulsive-smooth" distributions

introduced in [HS83]. The application of these results to the problem of inconsistent initial

conditions is discussed in Section 4, and some straightforward generalizations are presented

in Section 5. Finally, Section 6 presents some computational results that illustrate the

resulting algorithms.

2. Reduction procedure for linear DAE's.

Let A, B E Cm(R; £(Rn)) and set A0 = A, B0 = B. The reduction procedure developed

in [RR93a] generates, under appropriate conditions, a new pair (Aj+2 , B,+,) from the pair

of coefficient functions (AJ,Bj), j ? 0. More precisely, set r- = n and assume that

Aj, Bi E Cý(R; £(Rr,-, )) for some integer 0 < rj-l !< n. Moreover, suppose that

(2.1) rank A(t) = rp, Vt E R,

where 0 < r j _5 r- 11 is a fixed integer, andthat

(2.2) rank Aj(t) E Bj (t) = r3 -, Vt E R,

where Aj(t)eB,(t) E £(R'j-' x Rr-,R,-') is defined by A.(t)eB,(t)(u,v) = A,(t)u +

Bi(t)v.

Under the conditions (2.1) and (2.2), it is shown in [RR93a] that the following mappings

exist:

(i) P, E Co(R; C(R'j-')) such that Pj(t) is a projection onto rge A,(t), Vt E R.

(ii) C, E Co(R; C(R'i, R'i- )such that C.(t) E GL(R", ker Q,(t)B,(t)), Vt E R, where

Q= I -Pi,.
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(iii) D, E C¶(R;£(R'-,Rr' )) such that D,(t) E GL(rge A,(t),Rr' ), Vt E R.

With C, and D, as in (ii) and (iii) alove, we define

(2.3) A)+, = DACj, Bj+j = Dj(BCj + AC,),

so that A,+ 1 ,B3 +1 E Co(R; C(Rl')).

If (2.1) and (2.2) hold for every index j 2! 0, the procedure can be continued indefinitely.

At the same time, since the sequence r, is non-increasing, there is a smallest integer v > 0

such that r. = r.-I. By (2.1), we then have A.(t) E GL(Rr'--), Vt E R, and further

reductions produce pairs (A,,B)), equivalent to the pair (A,,B,) in a sense defined in

1RR93a]. The integer v > 0 is called the index of the pair (A,B), and it can be shown

that v is independent of the specific choices of P1, C, and D, 0 <_j _< v - I made during

the process.

Remark 2.1. For constant A and B it can be shown that (A, B) has index v for some

v > 0 if and only if the matrix pencil AA + B is regular, and that v is exactly the index of

the matrix pencil AA + B. 0

From now on, when referring to the pair (A,B) with index v > 0, it will always be

implicitly assumed that the reduction was possible up to and including step v (and hence

beyond); that is, for the time being, that (2.1) and (2.2) hold for 0 < v (and hence for

j> v-+ ).

Suppose now that the pair (A,B) has index v, and consider the DAE (1.1) with b E

(V'(R))'. The condition (2.2) is equivalent to the invertibility of [Aj(t) T B,(t)]T and

hence tokerAT(t)flkerBr(t) = {0}, or, equivalently, to the invertibility of A,(t)Aj(t) T +

B,(t)B,(t)T. We now define sequences u0 ,-.. ,u- and b0 ,... ,b of distributions as

follows: Set b0 = b and, generally, if bj, 0 < j v i is known, construct uj by multiplying

the distribution b, by the C' operator Br(AjAT + B,BT)-,; that is,

(2.4) u, BT(AAT + B,BT)-'b,,

4 Vi.. Jeý
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Moreover, for 0 <j < v - 1, define

(2.5) b,+, = D,(b, - Bu, - At,),

and

(2.6) r,- = CoC - C...C_ E C'(R;L(R'..',R'))

(2.7) v. 1 = uo + CouI + CoCIu 2 + . . + Co ... .C-2u•- 1 E (V'(R))".

In [RR93a] it is shown that a distribution x E (V'(R))" solves (1.1) if and only if x has

the form

(2.8) x = ,-. 1 x. + v.- 1 ,

with F.-- and v.-. given by (2.6) and (2.7), respectively, and x. E (V'(R))'.. is a

solution of the ODE

(2.9) i. + A;'BBx, = A-'b_.

Naturally, the equivalence between (1.1) and (2.9) via (2.8) is true, in particular, for

classical solutions; that is, when (say) b E C¶(R;R"). Then also ui and bi, defined by

(2.4) and (2.5), respectively, are of class C', and so is v.-I in (2.7). In this case, (2.8) also

transforms initial value problems for (1.1) into initial value problems for (2.9). In fact, x

solves (1.1) under the initial condition x(to) = xo for fixed to E R if and only if xo verifies

(2.10) x0 = r. 1 (t0 )x 0 + v. -_I (to),

for some x, 0 E R'-' which, of course, is necessarily unique by the injectivity of r.,-(to).

Such values x0 are called consistent with the DAE (1.1) at to. Evidently, if x solves (1.1)

then the values x(t) E Rn are consistent with (1.1) at t, Vt E R". Moreover, initial value



problems for (1.1) with consistent initial values at the given point to have a unique (C')

solution while initial value problems with non-consistent initial values have no (classical)

solution.

It is an interesting fact that the condition (2.1) is essentially superfluous if A and B

are analytic (see [R.R93a]), partly because in that case (2.1) automatically holds with r, =

max rank A,(t), except perhaps at points of a subset 3, consisting only of isolated points

in R. For t E ,, we have dim rge A,(t) < rj, but it turns out that axn "extended range" of

A,(t), denoted by ext rge A,(t), can be defined with the properties that ext rge A,(t) D

rge A,(t) and dim ext rge A,(t) = rj, Vt E R (and hence ext rge A,(t) = rge A,(t), Vt E

R \S,). This allows for the construction of parametrized families P,, C, and D, as before,

except that "ext rge A,(t)" now replaces "rge A,(t)" everywhere. Thus, assuming only

that (2.2) holds for all indices j, we can still construct a reduction (A,+ ,, B,+1 ) of (A,, B,),

and the index v of (A,B) is defined as before. But now, we have only A.(t) E GL(R'.... )

for t E R \ S,, and (1.1) reduces to (2.9) via (2.8) only if A,(t) E GL(R' -...) for every

t E R. Thus, in this case, the invertibility of A.(t) for all t is no longer guaranteed and

must be assumed independently. As a result, future reference to pairs (A, B) of index V

"with invertible A,(t) for every t E R" should not be viewed as a redundancy but, rather,

as a reminder that condition (2.1) can be dropped if A and B are analytic but that then

invertibility of A,(t) is no longer guaranteed to hold for all t.

All indicated results extend verbatim to the case when R is replaced by an arbitrary

interval '7 where distributions in 7 are now understood to be distributions in 3. If 3'
contains one of its endpoints, initial value problems for (1.1) with a consistent initial value

at that endpoint can be considered in the classical setting.

3. Initial value problems with discontinuous right sides.

In [HS83], Hautus and Silverman introduced the class Ciap of "impulsive-smooth" distri-

butions in [0, oo). We first need a straightforward variant of this concept for distributions

in R. Throughout the remainder of this presentation, R* denotes R \ {0).



Definition 3.1. The distribution X E 1Y(R) is said to be impulsive-smooth, X E Cimp(R°)

for short, if there are functions p, 0' E C'"(R) such that x - H - ¢'( 1-H) is a distribution

with support {0} where H denotes the Heaviside function.

If x E Cmp(R°) and ýpj, p2, 01, 02 E Co(R) are such that x - ý,H - V,,(1 - H) is a

distribution with support {O}, i = 1,2, then (4p -V 2 )H+(4' 1 -•• 2 )(1-H) is a distribution

with support {O} and hence must be a linear combination of the Dirac 6 and its derivatives.

But, since it is also a function, it must be 0; that is, VIH + bi (1 - H) = ýP2H + 02(1 - H).

This shows that x - o,H - V,,(1 - H) is identical for i = 1 and i = 2, and hence can be

called the impulsive part of x, denoted by Xjmp.

Therefore, for given x E Cimp(R*) the difference x - Ximp has the form ýpH + V)(1 - H)

with ý0, 0' E C¶(R). Of course, p and ip are not uniquely determined by this condition,

but and 4 are. Thus, there is no ambiguity in setting

x_ = x+ =

With this definition, x- E C¶((-oo, 0]) and x+ E C'([0, oo)), and extending x- by 0 for

t > 0 and x+ by 0 for t < 0, we may write

(3.1) X = x_ + X+ + Ximp,

where each of the three terms on the right side is uniquely determined by x. Conversely,

given x- E C¶((-oc,01) and x+ E C([0, oo)) and a distribution ximp with support {0},

equation (3.1) defines an element x of Cimp(R*).

Remark 3.1. Despite the terminology "impulsive-smooth", it should be kept in mind

that for x E Cjmp(R*), x - Xrmp is not a smooth function in R since it may have a jump at

0. But its restrictions x- and x+ to (-oo,C) and (0,oo), respectively, extend as smooth

functions in (-oo,0] and [0, oo), respectively. 0

Three trivial but essential properties of impulsive-smooth distributions are the following:

(i) Every x E Cimp(R*) may be assigned a value at every point t $ 0, namely x(t) = x-(t)
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if t < 0 and r(t) = z+(t) if t > 0. (ii) The derivative and the primitives (in the sense of

distributions) of x E Cmp(R*) are themselves in Cimp(R*). (iii) Cimp(R*) is both a vector

space over R and a C¶(R)-module. In fact, if x E Cimp(R*) and (3.1) is used, then we

have

k k-s

i=0 j=O

whenever t=O).~6({, )t, ER, 0 < i < k. The above properties, including (3.1),

have an immediate generalization to elements of Ci,,P(R") = (Cimp(R*))". In particular,

for x E C4 P(R*), and M E C¶(R; t(R, ,R-)), we have MN E CIp(R*) and
k k-m

(3.3) AIX = Alr. + MX+ + kZ(Zki(-IP~i C MO')(U)A.+, b"O,
1=0 J=0

whenever

k

(3.4) rimp F AM()', A. E R", 0 < i < k.

-=0

Definition 3.2. Let x E CT!'(R*), so that there exists a unique decomposition (3.4). The

impulse order of x, denoted by iord(x), is defined as follows:

(i) If Ai = 0, 0 < i < k and x+(0) = x -(0), and hence x E C0(R;R')), then set

iord(z) = -m - 2,

where 0 < m < oo is the largest integer such that x E C-(R;R").

(ii) IfA, = 0, 0 < i < k and x+(O) # x_(O) (and hence x has a discontinuity at the origin),

then set

iord(x) = -1.

(iii) If A., 6 0 for some 0 < i < k then set

iord(z) = max{i : 0 < i < k, )., # 0}.
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Remark 3.2: Let M E C¶(R;£(R",R-)). By (3.3) we have iord(Mx) < iord(r) and

equality holds if n = m and M(O) is invertible. -

The following lemma provides some more precise preliminary results about the primi-

tives in the sense of distributions of the elements of Ci".P(R*).

Lemma 3.1. (i) Let f E CmP(R') have impulse order k E Z U { -oc) and let y E (IY(R))"

be such that / = f. Then, y' E Ci"mP(R") and y has impulse order k - 1.

(ii) Let f E Ci"mo(R") and let xo E R' and to E R" be given. Then, there is a unique

y E Ci',p(R*) such that y f and exactly one of the following conditions holds

(3.5) (a) y(to) = xo, (b+) v+(O) = xo, (b.) y_(O) = xo.

(iii) Let the sequence f' E Cj"p(R*), e > 1, and zo E R" and to E R* be given. Suppose

that there are an open interval It. about to and some f E C,",,p(R*) such that

(3.6) ft f= I Vt ? 1,

as distributions in Io (i.e. as functions if 0 ý Ito) and that

(3.7) lim f t  f in (V'(R))".

Let yU E Cinp(R*) and y E Cinmp(R°) be such that y' = ft, yt (to) = zo and p =

y(to) = xo (see (ii) above). Then, we have

(3.8) lir ye = y in (-D'(R))'f.

(A similar result holds if to = 0 and ye, y are char-ýterized by fp y ,' U (0) = x0 and

S= f, +±(O) = x0.)

Proof: (i) Any two primitives (in the sense of distributions) of an element of (V'(R))' differ

from a constant vector of R", and addition of a constant vector does not affect membership
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to Cp(R°) nor the impulse order. Thus, it suffices to show that f has one primitive in

Ci"P(R°) with impulse order k - 1.

Write f = f+ + f- + fmp with fn,,p : - i' E R", lik j 0 and choose

to E R. Since the function f+ + f- is locally integrable, set • = ffo(f+ + f_}(s)ds, so that

ý E C¶((-oo, 0];R") n C-(10,oo);R") n C°(R;R") n C,",P(R*) and ý is a primitive of

f+ + f- in the sense of distributions. Furthermore, it is obvious that .V E C"+l(R;R")

whenever f+ +f- E C-(R;R"), 0 < m < -,. Thus, iord(ý) = iord(f+ + f-')- 1 < -2. In

particular, ý is a primitive of f with impulse order k - 1 when k < 0 since f = f+ + f- in

this case.

Suppose now that k > 0 and set yip = j=1 j10'- so that /AoH + yi,,p is a primitive

of fmp. Evidently, jioH + Y0 ,p E Clm(R*) and iord(poH + yjmp) = k - I > -1 since k > 0

and 1L&5 #0. Thus, y = • + poH + yimp E CIo(RW) is a primitive of f and iord(y) = k - I

since iord(ý) S -2 < -1 _< iord(pvoH + y, mp).

(ii) The primitive of f obtained in (i) verifies y- and y+ , + + P(. Since

T is continuous and ý(to) = 0, this yields y-(to) = 0 and y+(to) = i'o. Every other

primitive of f (still denoted by y for simplicity of notation) is uniquely characteri':ed by

a vector \0 E R" and verifies y-(to) = Ao, 11+(to) = po + A0. As a result, AO = xo (resp.

A0 = x0 -po) is the only possible choice yielding y-(to) = zo (resp. y+(to) = x 0 ). Letting

to = 0, we obtain existence and uniqueness of Yi E C:iP(R*) such that y = f and either

(3.5)(b+) or (3.5)(b-) holds. Next, letting to 5 0 and observing that ytto) = !'-(to) if

to < 0 and y(to) = y+(to) if to > 0, we obtain existence and uniqueness of y E C(,p(R')

such that p = f and y(to) = iO.

(iii) To lwegin with, let us briefly recall how primitives of distributions are defined: Let

0 E P(R) be such that fj 0 = 1. For P E (P(R))", there is a unique V, E (D(R))" such

that 0 = V -Of, o and the correspondence 9 -. V is continuous for the usual topology of

(D(R))". Note also that supp -,' C supp p u supp 9. Given T = (TI,.. ,,) (P'(R))",

the formula

(3.9) (S, #) = -(T, V,) + c. - o,

10
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with c E R" and the dot denoting the usual inner product of R", defines S as a distribution

with values in R" and shows that S = T, and all the primitives of T are of the form (3.9)

for some c E R".

In general, the formula (3.9) does not permit us to assign a value S(t) to S for anly

t E R. But suppose that there are to E R and an open interval ho about to such that Tl,o

is (say) a C' function, whence (T,p p) = f1,0 T.V = fj T.,, for all C (((It,))". We may

choose 9 such that supp 9 C Ito and then, for t E ho, we may define So(t) = fl' T(s)ds;

that is, S = (Sol ..... So,) with So,(t) = f'0 T,(s)ds. In (3.9) let c = (c,.... c) with

(3.10) c, j So,(t)O(t)dt, 1 <_ <.

This makes sense since supp 0 C 1,, and So,(t) is defined for t E Ito. Let 'o E (T(IUo))".

whence V, E (D( rf0))" since suipp 9, supp '; C Iito. As T = So in (1D'(1,J))". relation (3.9)

reads

(S,') +=

=(so, ti) + c. j 'P (So, 'p - 0 isP) + Cj SO

(So "P) - (So, -o ,) + j.f,

But

soSoof V)Sjs 0j f

by definition of c in (3.10). Thus, (S,p) = (SO,V), for all ' • (D(Io))", i.e., S,,o = So.

Because So is a function and vanishes at to, it follows that S in (3.9) may be referred to as

the primitive of T' vanishing at to when c is chosen as in (3.10) (and 9 verifies supp 9 C Ito).

The iadependci.c this definition from the choice of 0 is easily seen: If S, S corresponds

11



to two such choices, we have S S + c,c E R" since both S and S are primitives of T,

and c = 0 from 31,, = So = Sl,. As a result, given ro E R", S + 10 may be referred to

as the primitive of T verifying S(to) = 1o0

Now, with T as above, let T' E (V'(R))", f _> 1, be a sequence such that Tit, = T,,.

This assumption ensures that TV, f > 1, as well as T define the same vector c ill (3.10).

With this choice of c, the distribution S' E (D'(R))" obtained by replacing T by T' in (3.9)

is the primitive of Tt vanishing at to, and, under the assumption lim T, = T in (D'(R))",

it is then obvious that for P E (D(R))" we have lim (Se,p) = (S,'), i.e. lill St = S in

(D'(R))". In turn, this implies that lim S' + x0 = S + x0 for x C R".

It should be clear that part (iii) of the lexnma follows from the above considerations

with T = f and Tt = f t, so that S +± x = Y and St + xo =Y'. The proof that a result

similar to (3.8) holds when to = 0 and yt, y are characterized by yt = ft. yt(o) = 1o

and y = f, y+(0) = xo, easily follows from the above considerations with T = f+ + f-,

V = 4rt + f', and the remark that fjimp = flim, for all t > 1, since ft and f coincide as

distributions in some open interval about the origin by hypothesis. Details are left to the

reader. 0

Remark 3.3: Because of condition (3.6), Lemma 3.1 (iii) gives an unusual result about

continuous dependence for initial value problems. The incorrectness of this result under

condition (3.7) alone can be seen even in the case when n = 1 and f , ft E C¶(R). In fact,

by the theory of Fourier series, the sequences P cos ft and P, sin ft tend to 0 in V'(R) for

every a E R. In particular, if f = 0, f1(t) = t sin ft, we have lim f' - f in D'(R) as in
tf-W

(3.7). Choosing t o = 0, we find y = 0, yt(t) = 1 - costt in Lemma 3.1 (iii). But then,

lim yt = 1 i y in V'(R) and (3.8) fails to hold. 0

Lemma 3.1 has a direct application to initial value problems for the ODE

(3.11) + M =f,

considered in the following theorem:
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Theorem 3.1. Let Alf : C:'(R;C(R")) and let f E C~,4P(R*) have impulse order k E

Z U {-oo}. Then

(i) The solutions x E (V'(R))" of the ODE (3.11) belong to Ci"mP(R*) and have impulse

order k - 1.

(ii) For given xo E R" and to E R*, the ODE (3.11) together with one of the initial

conditions

(3.12) (a) x(to) =xo, (b+) x+(0) = xo, (b) x_(0) =xo,

has a unique solution z E CIP(R"), but in the cases (3.12)(b+) and (3.12)( b_-) the solutions

corresponding to x+(0) = xo and x_(0) = xo need not be the same.

(iii) Let the sequence f' E CjnmP(R*), C Ž> 1, and xo C R" and to E R' be given. Suppose

that there is an open interval I't about to such that

(3.13) fel". = fl , V I > 1,

as distributions in Ito, (i.e., as functions if O ý It.) and

(3.14) lrm ft = f in (D'(R))T .

Let z (resp. x1) E Cinp(R') denote the unique solution of the ODE (3.11) (resp. (3.11)

with f replaced by fl) verifying x(to) = xo (resp. zt(to) = xo) whose existence is ensured

by part (ii) of the theorem. Then

(3.15) lirn T = r in (V'(R))".

(A similar result holds if to = 0 and the initial condition for x', x is chosen as xt(0) = xo

and x±(0) = xo, respectively.)

Proof (i) Fix to E R and denote by U E C00(R;C(R")) the solution of the initial value

problem & + MU = 0, U(to) = 1. It is well known that U(t) E GL(R") for all t E Rn.
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Then, z E (D'(R))" solves (3.11) if and only if y = U-1z E (ly(R))" solves the equation

= U-If. Since f E Ci"np(R*), we have U-'f E Ci",p(R*) and iord(U-f) = iord(f) = k

from Remark 3.2. Next, by Lemma 3.1 (i) the solutions of ý = U-f are in C.,"p(R*) and

iord(z) = iord(y) = k - I by another application of Remark 3.2.

(ii) Since U(to) = I, we have x(to) = xo (resp. to = 0 and x*(0) = Xo) if and only if

y(to) = zo (resp. to = 0 and y-(O) = x 0 ). Existence and uniqueness of x thus follows from

existence and uniqueness of y ensured by Leriima 3.1 (ii).

(iii) From conditions (3.13) and (3.14) and using the continuity of multiplication of
distributions by C' matrix-valued functions, we infer that U-1f1I z UI-fA,, and

lim U -f' = U-1f in (D'(R))". Denoting by y' the solution of ýe = U-fe, yt(0) = -o,

we find that lim yl = y in (D'(R))" by Lemma 3.1 (iii). Thus, lirn z' r in (V'(R))-
t1 00 t- o

since x' = Ut', z = Ut, and multiplication by U is continuous. 0

Remark 3.4: Let fimp = -k. pb(') with pk # 0. From Theorem 3.1, we have x 1m =

k-1 AV•O) for every solution z E Cým (R*) of i + Mx - f. Comparing impulsive parts

and using (3.3) - (3.4) yields

Ak-I = Pk,

k--i-I j + .\

A-I + (-1W, i)M o),+, = < 1 < k - 1,

k-I

X+(0) - Z_(0) + -(-1Y)M°)(0)oj = Po.

By inverting these formulas, we find AQ,-- ,Ak- (depending only upon LI,-. ,Uk) as

well as z+(O) - x-(O). Thus, both Ximp and x+(O) - x-(O) are calculable and depend
solely upon limp- 0

We now focus on initial value problems for the DAE

(3.16) Ai + Bz = b,

where A, B E C°(R;.C(Rn)) and b E CimP(R*). Under the assumption that the pair (A, B)

14



has index v > 0 in R and that A.,(t) is invertible for every t E R (see Section 2), the DAE's

(3.17-) A(t)i_ + B(t)x_ = b_(t) in (-oc,0),

and

(3.17+) A(t)i+ + B(t)x+ = b+(t) in (0, oo),

have coefficients and right-hand sides of class C' in (-oo, 0] and [0, oo), respectively. As a

consequence, it makes sense to speak of values x0 E R' which are consistent with (3.17-)

(resp. (3.17+)) at a point to 5 0 (resp. to ? 0) in the sense of Section 2.

Theorem 3.2. Let the pair (A,B), A,B E Co(R;C(R")) have index v > 0, and with

the notation of Section 2, suppose that A,(t) is invertible for every t E R. If b E Ci"mp(R*)

has impulse order k E Z U {-oc}, then, the solutions x E (D'(R))" of the DAE (3.16) are

in Ci"'p(R*) and have impulse order at most k + z - 1. Moreover,

(i) if to < 0 (resp. to > 0) and xo E R" is consistent with the DAE (3.17-) (resp.

(3.17+)) at to, the initial value problem

(3.18) Ax + Bx = b, z(to) = -o,

has a unique solution x E ¢ p(R*). Furthermore, if It. is an open interval about to and

bt E Ci'o(R*) is a sequence such that bf, = bl,,o, for all t > 1, as distributions in It. and

lira b' = b in (D'(R))", then zo is consistent with all the DAE's obtained by replacing b

by bV in (3.17-) (resp. (3.17+), and denoting by x' E C!mp(R*) the unique solution of the

initial value problem

(3.19) Axi + Bx1 
= bt , x1 (to) = xo,

we have

(3.20) lim X1 = r in (D'(R))'.

15



(ii) If to = 0 sad zo E R' is consistent with the DAL (3.17-) (resp. (3.17+)) at to = 0,

the initial value problem

(3.21±) Ai + Bx = b, x-(O) = Xo (resp. x+(O) = xo),

has a unique solution x E Ci",P(R*). Furthermore, if 1o is an open interval about 0 and

be E Ci" p(R*) is a sequence such that b6'* = bl,, for all I > 1, as distributions in Io and

limbe = b in (D'(R))', then zo is consistent with all the DAE's obtained by replacing b

by be in (3.17-) (resp. (3.17+)) and denoting by zX E C" ;(R*) the unique solution of the

initial value problem

(3.22) Ai' + Bx' = b',ri(0) = zo (resp. xt(O) = xo),

ive have

(3.23) liUr X = x in (1'(R))".

Proof: In this proof, we use the notation of Section 2 without further mention. From the

reduction procedure we know that every solution x E (V'(R))n of the DAE (3.16) has the

form x = r,-irx + v,- where r,- and-d.'- are given by (2.6) and (2.7), respectively,

and z. solves the ODE

(3.24) z + A'Bxzv = A'be.

The key point here is the simple fact that the distributions uj and b, of Section 2

belong to Cnj -I'R) and have impulse order at most k + j. Indeed, recall that bo = b

and r- 1 = n, whence, because of uo = BT(AAT + BB T )- t b, we have u0 E Ci"p(R*) and

iord(uo) :5 iord(b) = k by Remark 3.2. Therefore, ito E Cin'p(R*) has impulse order at

most k + I which, in turn, implies that bi = D(b - Buo - Ad 0 ) E Cimp(R*) has impulse

order at most k + 1. Obviously, the statement about the sequences uo,u. -.,, bo,..... b.

now follows inductively by the same argument.
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Since b5 E Ci'p'(R) has impulse order at most k + v - 1, the same is true of A -b,.

Therefore, by Lemma 3.1, the solutions of (3.24) are in C,'ýP(R) and have impulse order

at most k+v- 1. This implies that the solutions x = r'_ jx +',, of (3.16) are in C,".P(R*).

Morover, iord (Fr,,xv) !5 k + v - I since r,- is C', and iord (t!) 5 k + v - 1, because

the C,'s are C"' and iord (u,) < k +j for 0 < v - 1. Thus x has impulse order at

most k + v -1.

If now to < 0 (resp. to > 0) and X0 E R' is consistent with the DAE (3.17-) (resp.

(3.17+), there is a unique z01 E R'.-. such that zo = rF-(to)xzo + v._(to), (note

that v,- 1 (to) makes sense since to #6 0). Hence, the solution x of (3,18) is obtained as

x = r-_Vx +v-1 where, in line with Theorem 3.1, x. E Cr' -(R*) is the unique solution

of

(3.25) iz. + AT'B.x. = b., zX(to) = Xýo,

and no other initial values can be substituted for r• 0 because r.- 1 (to) is one-to-one.

For the "furthermore" part in (i) of the theorem, observe first that consistency of a

value •o E R" with a (linear) DAE at a point to depends only upon the coefficients and

the right-hand side of the DAE in an arbitrarily small neighborhood of to. As a result,

the hypothesis bel,. = bj, ensures that xr remains consistent with the DAE obtained by

replacing b by be in (3.17-) (resp. (3.17+).

For fixed I Ž 1, denote by ut,0 < j ! i- I and bl, 0 < j ! v, the sequences

corresponding to utj, b, in the procedure of Section 2 after replacing b by be, and let v. 1-_

be defined by (2.7) with u 0 ,. , u.-I replaced by ut,... ,ul 1 , respectively. with r

as in (2.6), we find that the solution : t of (3.19) has the form

(3.26) x1 r._ Xt + V1

where xz E Cr-'(R) solves the initial value problem

(3.27) i' + A-'Bxr = A-'b', T'(t,) = .o.
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From the hypothesis be = bh, , it follows at once that u, =u and b' = b11'. 10 JI 1, )1r,, 10

for all the indices e, j of interest.In particular, bo = b,,, and hence

(3.28) Av-b1 = A'bl Vt > 1.
MI,,o vlo ) -

Next, the hypothesis lint be = b in (V'(R))' and continuity of the multiplication of distri-

butions by C' matrix-valued functions yield lim ti = uu in (V'(R))r,-, 0 5 j ' - 1

and limbt = bi in (V'(R))yi-, 0<_j < v. In particular,

(3.29) olv T -heboe = A;'b in (i((R))D..T t

and

(3.30) lim tI1=v- n(()ý

Since z. and zt solve the initial value problems (3.25) and (3.27), respectively, it follows
from (3.28) and (3.29) and Theorem 3.1 (iii) that lim xt = x. in (!D'(R))' ..... Together

with (3.26) and (3.30), this implies that lira x€ = r,- zI, + v.•- x in (V'(R))". This
t mo

completes the proof of part (i) of the theorem.

Finally, for the proof of (ii), if to = 0 and zo E R" is consistent with the DAE (3.17-)

(resp. (3.17+) at to = 0, then the solution x of (3.21*) is obtained in the form z =

rI•-,xv + v.-I where, by Theorem 3.1, x. is the unique solution of

.i, + A.'BBx,, = b,, X-_(0) = Xo ( resp. x.+(0) -0),

and Xv0 E R•'-' is (by injectivity of r,,1 (0)) the unique solution of the equation x0 =

P,,- 1 (O)zo +v_(0) (resp. -o = P-,,(0),z, 0 +v+(0)). The proof of the remaining statement

is identical to the proof of the "furthermore" part in (i) of the theorem. 0

Remark 3.5: Let "[ I" stand for "jump at 0". Then, since every solution x of the

DAE (3.16) has the form x = r,-,x, + v,,- with x. solving the ODE (3.24), we have

18



[r] = r.,_(0)[x,] + [v_-i] and xm, = (r.-,x.)imp + t,, imp. On the other hand, r.,_

and v.-I are obtained through an explicit procedure. As a result, [xi and ximp can be

calculated if zx.] and x. imp are known (using (3.3) - (3.4) for the term (r.v-.. )imp). But

from Remark 3.4, [x.] and X, imp can be evaluated from b. imp, and b, imp is calculable

since b,. is known explicitly. Thus, both [x] and Zimp are calculable, at least in principle. Dl

4. Inconsistent initial values.

Let A,B E C"O(R;C(R")) and b+ E C'(10,o);R") be given. As noted in the Intro-

duction, the problem of solving the initial value problem

(4.1) A(t)i + B(t)z = b+(t), in (0,oo),

(4.2) X(0) = X0,

for arbitrary xo E R" that is not necessarily consistent with the DAE (4.1) at to = 0, often

arises when a known function x- on (-oo,0] verifies x_(0) = x 0 and is to be extended

into a solution of the DAE in (4.1). A general approach is suggested by the following

observation:

Lemma 4.1. Let x- E C¶O((-oo,0];R') be given, and suppose that xo = x_(O) is

consistent with the DAE (4.1) at to = 0. Assume further that the pair (A,B) has index

t,> 0 in R and that, in the notation of Section 2, A1,(t) is invertible for every t E R. Let

x+ E C'([O, oo);R") be the unique solution of(4.1) and (4.2). Set

rA(t)±_(t) + B(t)x_- (t) if t < 0,
(4.3) b(t)=

( b+(t) ift > 0,

so that b E Ci".(R*) (and bimp = 0). Then, the function

{X_(t) if t < O,

(4.4) X(t) =
9+(t) if t >0,
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verifies z E Cj'mp(R*) 0 (C°(R))" and is the unique solution of both initial value problems

(4.5) Aý-+-B =b inR, ý_(O)=.0,

(4.6) A4+B =b inR, ý+(O)=xo.

Proof: It is obvious that X E C•mp(R'). In particular, the derivative r E (M(R))W is the

function given by x+(t) for t < 0 and by -+(t) for t > 0, whence Ax + Bx = b in R in

the sense of distributions. By definition of x- and b, xo = x_(O) is consistent with the

DAE (3.17-) at to = 0, and by hypothesis z0 is also consistent with the DAE (3.17+) at

to = 0. It then follows from Theorem 3.2 that (4.5) and (4.6) each have a unique solution

in Ci"mP(R*). In both cases, this solution is x since x_(O) = x+(O) = x0 by continuity of X

at O. 0

Lemma 4.1 suggests that we should solve (4.1) for inconsistent x0 by making use of the

extension b of b+ in (4.3). This approach is taken in the following result:

Theorem 4.1. Let z- E C°((-oo,0];R") and b+ E Cý([0,oo);R") be given. Suppose

that the pair (A,B) has index v > 0 and that, in the notation of Section 2, A,(t) is

invertible for every t E R. Then, for b E Cip(R*) defined by (4.3), there exists a unique

distribution z E (D'(R))n which solves

(4.7) Ax + Bx = b in R, xl-_o,,) = x_

Morever, we have

(i) z E C,,,p(R*) and x has impulse order at most v - 2.

(ii) x+ = xl.,_ solves the DAE

(4.8) A(t)±+ + B(t)x.j = b+(t) in (0, oo).

(iii) If xo =- x.(O) is consistent with the DAE (4.8) at to = 0, then x E (C 0 (R))" and

x+ is the classical solution of the initial value problem

(4.9) A(t)xi+ + B(t)x+ = b+(t) in (0, oo), x+(O) = xo.
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(iv) Irrespective of the consistency of xo = -(0) with the DAE (4.8) at to = 0, the

distribution ý = x+ + xj., with x+ extended by 0 in (-oc,0). is the unique solution in

Ci".P(R*) of the initial value problem

(4.10) Aý + Bý = b+ + A(O)xob in R, -(O) =0,

where b+ is extended by 0 in (-oo,0). In particular, iord (ý) 5 max(-1,v - 2) and hence

lord (ý) <_ v - 2 for v 2 1 (in contrast to jord ({) _ v - 1 obtained by a direct application

of Theorem 3.2 to (4.10)).

Proof: Set xO = x_(0) and b_(t) = A(t)x_(t) + B(t)x_(t) for t < 0, so that by definition

x- solves the DAE (3.17-) and xo is consistent with (3.17-) at to = 0. Thus, by Theorem

3.2 there is a unique solution Y E C•7p(R°) of the initial value problem

(4.11) Aý + By = b in R, y_(0) = xo.

As a result, y- is another solution of (3.17.) which, just a& x-, verifies y-(0) = xo. This

implies that y-. = z- and hence that x = y solves (4.7). Conversely, if Y E (TD'(R))" solves

(4.7), then y E Cimp(R) by Theorem 3.2, and the equality 1I- 0) = x- as distributions

in (-oo,0) implies at once that y/ - =x. Thus, by continuity, y_0) = x_(0) = xo, and y

solves (4.11). Uniqueness of the solution of (4.7) then follows from the unique solvability

of (4.11).

We now pass to the proof of the statements (i) - (iv). Part (i) follows from Theorem

3.2 and the fact that the right side b in (4.7) and (4.11) (which, as was just seen, have the

same solution) is given by (4.3), and hence has impulse order k < -1. Property (ii) is a

trivial consequence of (i) and the fact that z solves (4.7). For the proof of (iii) note that if

z0 =- x(0) is also consistent with the DAE (4.8) at to = 0, then Theorem 3.1 ensures that

the unique solution y = x of (4.11) (and hence also of (4.7)) is given by (4.4) and solves

(4.6). This shows that x E (C°(R))" and that x+ solves (4.9).

For the proof of (iv), set x - X+ ximp E CPP(R*), so that x = : - x- with x-
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extended by 0 in (0, oo). Since iord (x) S v - 2 and iord(x -) S -1, we find that iord(ý) !5

niax(-1,v - 2). Moreover, viewing x- as a function of t E R, we have Ai- + Bx- =

b- - Ax0 6, where { A(t)x_(t) + B(t)z_(t) if t < 0,
b_(t)

0 ift >0.

From the above discussion and the definition of b in (4.3), it follows at once that Aý + Bý =

Ax + Bx - Ai-. - Bx. = b+ + Axo6. Moreover, we have Axu5 =- .4(0)xo0 and _(O) =

x-(0) - x-(0) = 0 whence C solves (4.10) and thus coincides with the unique solution of

that problem. Note here that the consistency of 0 E R" with the DAE A(t)ý_ + B(t)c_ =

(b+)_(t) = 0 in (-oo,0) follows from the fact that C_(t) = 0 is a solution. 0

Theorem 4.1 justifies the choice of the solution ý of (4.10) (or of its positive part +

to represent the solution x of (4.1) when x0 is not consistent with (4.1) at to = 0. Further

justification will be provided by Theorem 4.2 below. For the time being observe that the

characterization (4.10) of C = x+ + ximp shows that the extension X of X_ as a solution of

(4.7) depends only upon x0 = x_(0) and b+ and hence is independent of x_(t) for t < 0.

For the case when A and B are constant, the characterization (4.10) is exactly that of

[VLK81],[Co82], [G931, but the equivalent characterization (4.7) is not explicitly noticed

in these papers.

It is noteworthy that for index 1 problems, C solving (4.10) has impulse order at most

-1, and hence &i.p = 0. In other words, C is a function with a possible discontinuity

at the origin. A simple formula can be given for the jump C+(0) of t (recall ý_ = 0)

without using the more cumbersome general procedure outlined in Remark 3.5. Indeed,

the relation Aý + BC = b+ + A(0)x0 6 reads AC+(0)6 + A(d•/dt) + BC = b+ + A(O)xob,

where d•/dt denotes the usual derivative of C at points of R*. Clearly, this requires that

A(0)(+(0) = A(0)xo and that A(t)(dt/dt)(t) + B(t)C(t) = b+(t), Vt E R*. In particular,

for t > 0, we must have Qo(t)B(t)C+(t) = Qo(t)b+(t) where Qo E C'(R;C(R")) is as

in Section 2; that is, Q0(t) projects onto a complement of rge A(t), (or of ext rge A(t) in

the analytic case). By continuity, we obtain QO(0)B(0)ý+(0) = Q 0 (0)b+(0). Thus, C+(0)
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solves the system

(4.12) (A(O) + Qo(0)B(0))X+(0) = A(O),ro + Qo(O)b+(O).

Conversely, if ý+(O) solves (4.12) then A(O) 4+(O) = A(O)xo and because of rge A(O) n

rge Qo(O) = {a} we have Qo(O)B(O)C+(O) = Q0(O)b+(O). It turns out (see [RR93a]) that

invertibility of A(t) + Qo(t)B(t) for every t E R is implied by the index 1 assumption, and

hence that C+(O) is given by

C+(0) = [A(O) + Qo(O)B(O)]~'(A(O)xo 4- Q(O)b+(O)).

Note that C+(O) = x0 if and only if Qo(O)B+(O)x =- Qo(O)b+(O) (see (4.12)), a condition

that is easily seen to be equivalent to the consistency of x0 with the DAE (3.17+) at to = 0.

In Theorem 4.1, the function b(t) may be approximated, in the sense of (IY(R))", by

sequences of smooth functions bt E CI(R;R"). In practice, considering such a sequence

amounts to viewing the transition from x- to x+ as the limiting case of a perhaps physically

more realistic, situation where a rapid but not discontinuous modification of the input

occurs in the vicinity of t = 0. In this setting, it is perfectly reasonable to assume that

bt = b-, for all t > 1, in some interval (-oo, -a] for some a > 0 independent of (. On the

other hand, the function z~ - .. has a unique extension as a solution xt E C-(R; R")

of the DAE

Ax' + Bz' = be in R.

In fact, xt can be obtained as the solution of the initial value problem

(4.13) Ait + Bxt = b, in R, Xt(to) = -_(to),

where to _< -a is arbitrarily chosen. Evidently, it would be desirable that the sequence xt

tends to the solution x of (4.7) in some sense. That this is indeed true, and more specifically

that lira xt = x in (D'(R))" follows at once from Theorem 3.2 and the hypotheses bf = b

in (-oo, -a], for all t > 1, and lim bt = b in (V•(R))" (just choose to < -a in (4.13)). We

record this result in the following form:
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Theorem 4.2. Let x- E COO((-oo, 0,R) an- b+ E CI(IO, oc);R") be given. Suppose

that the pair (A,B) has index v > 0 and that, in the notation of Section 2, A,(t) is

invertible for t E R. Let b E Cj,,p(R") be defined by (4 3) and let b' E C'(R;R"), t > 1,

be a sequence such that bt = b- in (-oo. -a] for some a > 0 independent of f and such that

lim bt = b in (D'(R))". Denote by xt E C¶(R;R") the unique txtension of x_- as

a solution of the DAE

Ai' + B' =Vb in R,

and let x E Ci,.p(R*) be the solution of(4.7). Then, we have

lir xt = x in (D"R))".

5. Some generalizations.

Let 3J C R be an open interval and let S = (a,,Ez be 7i iondecreasing sequence of

points of RU 1±oc} with a, < a,+, if either a, or a,+, is real and lim a, • .. Denote by

C,mp(j \ S) the subspace of D'(J) of the distributions of the form x = i + r,,, where i is

a function such that ij(...'+,j E Cw([a,,a.+,] n 1), Vi E Z, and xip is a (listribution

with support contained in S n ". Equivalently, if b., is the Dirac delta distribution at a,,

then 2'ir.p is a finite or infinite linear combination of derivatives of b., with a, E J. With

this definition of Ci,.p(j \ S), we have C.mp(J) = C'(J) if " n S = 0.

With the definition CjP(j \ S) = (Cimp(j \ S))', it should be evident how to formulate

Theorems 3.1 and 3.2 for the case b E Ci"inp(j \ S). Of course, the elements of Ci"p(J \ S)

have an impulse order at each point a, E 37 n S. It may only be useful to note that for

a given arbitrary sequence p,i E R", a primitive of 1--6, is i,=(-,i0 ,)(1 -

Ha.) + =o poHa, where H.,(t) = H(t - a,) if a, E R. H_,(t) = 1, H,,(t) = 0. and not

,_ p,Hai which would not make sense when E--_ Mo. does not converge.

For 0 E J' it should be equally obvious how solutions of the initial value problem

Ai+Bx =b+ in J+ = j n (0, oo), X(0) = zo,
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can be defiued when 01 f S, b+ E CI 1A(J+ \ S), and '0 E R" is not consistent with the DAE

Ai + Bx = b+ in J+ at t = 0. For problems with index v > 2 the solutions may exhibit

a nonzero impulse at to = 0. The case considered in Section 4 corresponds to J = R,

s = (00).

6. Numerical examples.

For index-one problpms the computation of the jump (4.12) caused by inconsistent input

can be easily incorporated into a numerical procedure for solving the initial value problems

(4 1/2). We consider here a recently developed solution process, [RR93b], which is based

on the reduction procedure of [RR93a] summarized in Section 2 above.

Suppose that the DAE (4.1) has index 1. For a given step h > 0 set t, = ih, = ,1.

and consider the explicit Euler approximation

1
(6.1) A(t,)T-(r,+m - x.) + B(t,)x, = b+(t,).

In (RR93bl, (Theorem 3), it was shown that any solution xo,xl,. .. ,,, - R" verifies for

S= 0, 1 .... m - 1 the equations Q(t,)B(t,)x, = Q(t,)b+(t,> and

(6.2) [A(t,) + Q(ti+1 )B(t,+1 )Jx,+1 = [A(t,) - hB(t,)]ri + hb+(ti) + Q(ti+2 )b+(t,+1 ).

Conversely, for sufficiently small h and any given xo E R" such that Q(0)B(0)xo =

Q(0)b+(0), the solution ro,x.... x,. of (6.2) is unique and solves also (6.1). Smallness

of h ensures that the operator A(t,) + Q(t,+1 )B(t,+, ) is invertible, given that invertibility

of A(t) + Q(t)B(t) for all t is equivalent to the index 1 assumptioi,.

The difference scheme (6.2) has been used as the base method in an explicit extrapola-

tion integrator, LTV1XE, for general index-one problems (4.1) - (4.2).

Now note that for to = 0, h = 0, and with x,+, replaced by ý+(0) tJ-' difference equation

(6.2) is identical with (4.12). Thus, the results of Section 4 ensure that for any given xo

we only need to apply (6.2) with h = 0 to obtain the consistent starting point from which
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the solution process can then be started. This represents only a minor modification to

the mentioned code LTV1XE. The resulting code accepts any given initial point and then

computes the solution starting from the corresponding solution of (4.12).

As an example consider the index-one problem

I -t (), + (1 -(t+1) t'+2t (0 (
(6.3) 0 -t Y2 + -1 t - I Y2 0

(0 10 - )(3) 0 0 1 •3 sin t

given in [CP88] which has the general solution

(6.4) x(t) = (ate' + Ie-', aet + tsint, sin t)'" E R3 .

For several randomly selected points (XI X2, X3)T and starting times, Table 6.1 gives the

corresponding consistent starting points computed by LTV1XE. It is readily checked that

these consistent points verify (6.4) for suitable constants a and 0.

point-type t XI X2 X3
given pnt. 0.0 0.0 1.0 1.0
consistent 0.0 0.0 1.0 0.0
given pnt. 1.0 1.0 1.0 1.0
consistent 1.0 1.0 0.84147098 0.84147098
given pnt. 1.0 -1.0 4.0 5.0
consistent 1.0 -1.0 -0.15852902 0.84147098
given pnt. 2.0 -5.0 2.0 3.0
consistent 2.0 -5.0 -2.1814051 0.90929743
given pnt. -1.0 1.0 -1.0 2.0
consistent -1.0 1.0 1.8414710 -0.84147098

Table 6.1: Consistent points for (6.3)

For the index-two case a code LTV2XE was developed which incorporates the reduction

discussed in Section 2 for a given index-two problem (4.1) and then applies LTV1XE to

the reduced index-one problem. The central part in the reduction is the computation of

the mappings C and D. This can be implemented, in general, by using a singular value
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decomposition (SVD) to obtain a basis of rge A and the projection Q, and another SVD

for generating a basis of ker QB. But, it turns out that in many cases there are much

simpler ways of generating these mappings. Thus LTV2XE assumes that subroutines are

available not only for the coefficients A, B, b and their derivatives, but also for C and D.

This allows us to bypass easily the costly general method for calculating these matrices

whenever a simpler approach is feasible.

In this form LTV2XE will work as long as the coefficients of the problem are smooth.

When the right side of the original equation has a jump, then, in general, the right side of

the reduced equation exhibits not only a jump but also an impulse. Hence the earlier given

simple jump computation (4.12) for index one problems is insufficient for the index-two

case.

As an illustration consider the simple DAE

1 0 0 0 0 /1\

(6.5) 0 1 0 + 0 1 0 =

(00 0 10 0 r ()

with the initial condition x, = (0, 0, 1)T. When r is a smooth function with r(O) = 1,

r(0) = 0 then the unique solution is

(6.6) x1(t) = r(t), x2 (t) = t - 1 + exp(-t), X3 (t) = 1 - ir(t).

Suppose now that 7(t) = HI(t) where H, is the Heaviside function with the step at t = 1.

Then the solution has the same form as (6.6) but with xi(t) = Hi(t) and x 3 (t) = 1 - 61 (t).

Thus at t = 1 we have a jump of size 1 in the first component and an impulse of size -1

in the third component. A graph of this solution does not show the impulse. But if we

approximate the step of H, by a cubic spline; that is, if we consider (6.5) with

0, for 0<t < 1-E,

(6.7) T~t -+¼oat)(3-,7t)2), for 1-e<t<1+e, a(t)= j•

1, for t > 1 +,
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with small e > 0, then (6.6) shows that X3 (1) = I - 3/(4t). In other words, this solution

approximates the impulse.

For the general computation of the jump and impulse in the index-two casc, suppose

that for the given DAE (4.1) we have b = b + [b]Ht0 where b is the smooth part of the

function and [b] a jump at the time to. Then, we have [uJ]H,0 = B(to)T(A(to)A(to)T +

B(to)B(to)")-1[b)H1 o which implies that u0 has the impulse BT(to)(A(to)A(ts)T + B(to)

B(to)T)-l[bJ6,0 . Accordingly, the right side b, = D(b - Auio - Buo) has the impulse

(6.8) b,0 = -DABT(AAT + BBT) -(to)[b],o,.

Now let

(6.9) A, i + B, x, =b. b1 =b, + jb,]H1 0 + 1 o

be the reduced equation and consider its solution in the form :rx = il + [x1 ]Ht0 + •beto-

By substituting this into (6.5) and comparing terms we obtain the conditions

A,(to), = 0, A1(to)[x1 ] + BI(t 0 )f, = 0, QI(to)BI(to)[xi] = Q1(to)[b1 ]

which can be combined into the two systems

(6.10a) (A,(to) + Q,(to)B1 (to))ý, = Q,(t0)

(6.10b) (A1 (t0 ) + Q,(to)B1(to))[x1] = Q1(t0 )[1,b + #6 - B,(to),.

Since the DAE is assumed to have index two, the matrix AI(to) + Ql(to)BI(to) is nonsin-

gular and hence the two systems (6.10a/b) can be solved successively. A brief calculation

shows that (6.10b) reduces to (4.12) exactly if i31 - BI(to)CI = 0.

The relations (6.8), (6.10a/b) were incorporated into LTV2XE to allow for the compu-

tation of the jump and impulse at any point t0 where the right side b of the original DAE

(4.1) has a jump.
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As numerical example we consider the following index-two problem

iJ + I --1 2 - :r4 - X5 = 0

i2 + X1 - X2 + tX3  XS = 0

(6.11a) i3 - tX1 - X3 - tX4 = 0

-i4 + (t - 1)X2 + X3 - = 0

t1x' + (1 - t)
2 X2 + (t - 2)x3 = r(t)

where r(t) = I for t < 1 and r(t) = -1 for t > 1. For the consistent starting point

(6.11b) Xl = 0.5, X2 = 0.0, X 3 = -0.5, X4 = 0.0- X5 = 0.0,

Table 6.2 shows all steps computed by LTV2XE for the problem (6.lla/b) for 0 < t <

1.2. A relative tolerance of 10- and a maximal step of 0.1 was used.

The discontinuity at t = 1 causes a recalculation of the point obtained at t = I from

which the solution proceeded. Clearly, in order to capture the discontinuity exactly at

t = 1, this value has to be included in the list of required output-points of the code. This

was indicated in the table by a dividing line. At any jump point the output of the code

includes the values of the jump and the impulse of the solution. In this case, we found that

at t = 1 the solution has the jump (- 2 ,-2,0,0,2)THi and the impulse (0 , 0 ,0 , 0 , 2)T 6T.

Of course, the jump is also clearly seen in Table 6.2.

In analogy with the simple problem (6.5) we approximate the step by

S1, for 0< t < -,

(6.11) f(t)= xa(t) 3 -2_-a(t), for 1-f<t< 1+e, ar(t)=!j--

-1, for t > l+9
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t rI X2 X3 45

0.0000 0.5000 0.0000 -0.5000 0.0000 0.0000
0.5000(-1) 0.4724 -0.2763(-1) -0.5250 0.2500(-1) -0.1340

0.1500 0.3984 -0.1010 -0.5751 0.7502(-1) -0.4573
0.2500 0.2941 -0.2033 -0.6263 0.1252 -0.8372
0.3475 0.1612 -0.3317 -0.6788 0.1752 -1.184
0.4475 0.3369(-2) -0.4816 -0.7384 0.2297 -1.351
0.5406 -0.1384 -0.6120 -0.8014 0.2875 -1,193
0.6406 -0.2494 -0.7057 -0.8780 0.3635 -0.7034
0.7060 -0.2862 -0.7284 -0.9317 0.4246 -0.3105
0.7919 -0.2890 -0.7094 -1.003 0.5225 0.1445
0.8639 -0.2570 -0.6571 -1.060 0.6224 0.3976
0.9305 -0.2073 -0.5875 -1.105 0.7306 0.5071
0.9969 -0.1452 -0.5060 -1.141 0.8545 0.5046
1.000 -0.1421 -0.5020 -1.142 0.8608 0.5020
1.000 -2.142 -2.502 -1.142 0.8608 2.502

1.002 -2.137 -2.096 -1.146 0.8644 2.504
1.003 -2,134 -2.493 -1.149 0.8663 2.505

1.010 -2.111 -2.468 -1.167 0.8818 2.511
1.034 -2.037 -2.387 -1.224 0.9341 2.513
1.058 -1.962 -2.303 -1.281 0.9910 2.490
1.082 -1.887 -2.220 -1.334 1.052 2.444
1.105 -1.813 -2.136 -1.386 1.116 2.379
1.129 -1.740 -2.0,3 -1.435 1.184 2.296
1.151 -1.668 -1.971 -1.481 1.255 2.197
1.174 -1.597 -1.889 -1.523 1.330 2.086
1.196 -1.528 -1.810 -1.563 1.408 1.963
1.200 -1.516 -1.797 -1.569 1.422 1.941

Table 6.2: Solution of (6.11a/b)

with small e > 0, then we ext' the solution to approximate the impulse (0, 0, 0,0, 2)Tb 1 .

Figure 6.1 show the fifth comralG"nts in the case of e = 0.05. For smaller values of f the

system becomes too stiff to capture the impulse.
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It may be noted that we did not succeed to compute the solutions of this Problem either

with DASSL (see e.g.[BCP89j) or RADAU5 (see [HW91). Both codes failed at start-up.
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