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TIME-DEPENDENT LINEAR DAE’S

WITH DISCONTINUOUS INPUTS!

BY
PATRICK J. RABIER AND WERNER C. RHEINBOLDT?
ABSTRACT. Existence snd uniqueness results are proved for initial value problems associated
with linear, time-varying, differential-algebraic equations. The right-hand sides are chosen in
a space of distributions allowing for solutions exhibiting discontinuities as well as “unpulses”
This approach also provides a satisfactory answer to the problem of “inconsistent initial
conditions” of crucial importance for the physical applications. Furthermore, our theoretical

results yield an efficient numerical procedure for the calculation of the jump and impulse of

a solution at a point of discontinuity. Numerical exampies are given.

1. Introduction.

In this paper, we prove existence and uniqueness results for initial value problems asso-

ciated with differential-algebraic equations (DAE’s) in R”
(1.1) Ai + Br =,

where A, B are smooth time-varying linear operators, and b belongs to a class of distribu-
tions with values in R" containing the functions that are sm soth in (—co, 0} and [0, o¢) and
have a discontinuity at the origin. Such discontinuities on the right side occur frequently
in physical problems modelled by DAE’s. For instance, in electrical network problems a

discontinuity of b may correspond to the operation of a switch at a given time.

The existence and uniqueness theory for problems of the form (1.1) with smooth b (and

consistent initial conditions) is now well understood, see, e.g., [C87], [KuM92], [RR93a} and

!The work was supported in part by ONR-grant N-00014-90-J-1025, and NSF-grant CCR-9203488
?Departiment of Mathematics and Statistics, University of Pittsburgh, Pittsburgh, PA 15260




the references given there. But elementary examples show that th. setting of distributions
is indispensable for handling discontinuous right-hand sides. For example, if A is constant
with A2 = 0, B = I, and b = boH where b, € R" and H is the Heaviside function, then
the solution of (1.1) (in this case unique: no initial condition needs to be or should be

prescribed) is = by H — Abyé and hence involves the Dirac delta distribution.

When A and B are constant and b exhibits jumps, Laplace transform methods are
available to find the solutions of (1.1), but the problem appears to remain open for time
dependent coefficients A, B. This is the case considered in this paper. Our results depend
essentially upon our recent work (RR93a} on a reduction procedure that transforms the

distribution solutions of (1.1) into the distribution solutions of an explicit ODE.

The “consistency” of initial conditions represents another topic of considerable theoret-
ical and practical importance in the study of DAE’s. As is well known, even for smooth
b, (1.1) will not have a solution starting at arbitrary points z¢ € R". Rather, existence
of a solution in the classical sense requires that z satisfies certain constraints called the
consistency conditions. On the other hand, suppose that the physical process modelled
by (1.1) starts at time t = 0, and that for ¢ < 0 the state variable z(t) has evolved in a
way totally unrelated with (1.1). If ,E?_t(t) = zg exists this zy represents a natural data
value for the initial condition at t = 0. But, since zo has no reason to be consistent with
(1.1) at t = 0, the mathematical theory only provides that (1.1) has no solution for this

choice of initial condition, which is, of course, a physically unacceptable statement.

It turns out that the consistency question is closely related to the problems addressed
here. By viewing this question as that of extending a known state 7{#) for t < 0to a solution
of (1.1) for ¢t > Q via a solution of (1.1) in (D'(R))", we show that the ambiguity can be
resolved: From zp = ‘l_i.rgx_x(t) we find that a unique, computable jump to a consistent
value occurs at t = 0. Furthermore, for problems with index v > 2, the sudden transition
between x¢ and the consistent initial value may also create a (computable) impulse; that
is, a linear combination of é and its derivatives. Further evidence that our solution is
the correct one is provided by showing that it is the limit of the classical solutions of

the problems obtained by smoothing out the right-hand side near ¢ = 0. These results
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complement in various ways those already obtained for problems with constant coefficients

in [VLK81], [C082], or [G93].

Section 2 gives a brief review of the reduction procedure developed in [RR93a). Initial
value problems for (1.1) are then considered in Section 3 for right-hand sides in a class of
distributions which is a close relative of the class C?

imp

introduced in [HS83]. The application of these results to the problem of inconsistent initial

of “impulsive-smooth” distributions

conditions is discussed in Section 4, and some straightforward generalizations are presented
in Section 5. Finally, Section 6 presents some computational results that illustrate the

resulting algorithms.

2. Reduction procedure for linear DAE’s.

Let A, B € C®(R; L(R")) and set Aq = A, By = B. The reduction procedure developed
in [RR93a] generates, under appropriate conditions, a new pair (441, B,+1) from the pair
of coefficient functions (A;,B;), 7 > 0. More precisely, set r_; = n and assume that

A;,B; € C=(R; L(R™-")) for some integer 0 < r;_; < n. Moreover, suppose that

(2.1) rank 4;(t) =r;, VteR,

where 0 < r; < r;_, is a fixed integer, and that

(2.2) rank A;(t)® B,(t) =r,.,, VtER,

where Aj(t)® B;(t) € L(R"-' xR~ R™~1) is defined by A,(t)® B,(t)(u,v) = A)(tJu+
Bj(t)v.

Under the conditions (2.1) and (2.2), it is shown in [RR93a] that the following mappings
exist:

(i) P, € C®(R; L(R"-")) such that P;(t) is a projection onto rge 4,(t), vt € R.

(i) C; € C=(R; L(R" ,R%~1) such that C;(t) € GL(R" ,ker Q,(t)B,(t)}, Vt € R, where
Q,=I1-P,




— —— -

(iii) D; € C=(R; L(R7-*,R™)) such that D,(t) € GL(rge 4,(t),R™), vt € R.

With C, and D, as in (ii) and (iii) atove, we define
(2.3) A, = D;A;C;, Bjy, = Dj(B;C; + A,C)).

so that AJ+),BJ'+] € CN(R, E(R" ))

If (2.1) and (2.2) hold for every index 7 2 0, the procedure can be continued indefinitely.
At the same time, siuce the sequence r; is non-increasing, there is a smallest integer v > 0
such that r, = r,.,. By (2.1), we then have 4,(t) € GL(R™-'), Vt € R, and further
reductions produce pairs (4,,B,), equivalent to the pair (A,,B.) in a sense defined in
[RR93a). The integer v > 0 is called the index of the pair (A4, B), and it can be shown
that v is independent of the specific choices of P,, Cj and D;, 0 < j < v — 1 made during

the process.

Remark 2.1. For constent A and B it can be shown that (A4, B) has index v for some
v > 0 if and only if the matrix pencil AA + B is regular, and that v is exactly the index of
the matrix pencil AMA+ B. O

From now on, when referring to the pair (A4, B) with index v > 0, it will always be
implicitly assumed that the reduction was»possible up to and including step v (and hence
beyond); that is, for the time being, that (2.1) and (2.2) hold for 0 < j < v (and hence for
j2v+1).

Suppose now that the pair (4, B) has index v, and consider the DAE (1.1) with b €
(D'(R))". The condition {2.2) is equivalent to the invertibility of [A;(t) @ B,(t)]T and
hence to ker A,T(t)ﬂker B;.r(t) = {0}, or, equivalently, to the invertibility of 4,(¢)4,(t)7 +
B,(t)B,(t)T. We now define sequences ug,... ,u,-1 and by,... b, of distributions as
follows: Set by = b and, generally, if ;, 0 < j < v is known, construct u; by multiplying
the distribution b, by the C* operator BY (A JAT + B,BT)"!; that is,

(2.4) u; = B](A;AT + B,BT)™'s,,

4 Wai.
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Moreover, for 0 < j < v — 1, define

(25) b,+| =D,(b_,-—Bu,—AiL‘),

and

(2.6) Tyt =CaCy---Cuuy € C(R; L(R™ R™))

(27) Vy—y) = Uug + Cqul + CQC|U2 + -+ Co e C,_gu,,_l € (D’(R))"

In [RR93a] it is shown that a distribution z € (D'(R))" solves (1.1) if and only if z has

the form

(28) I= ru—11v+vv—ly

with T',_, and v,_, given by (2.6) and (2.7), respectively, and z, € (D'(R))™-' is a
solution of the ODE

(2.9) i, +A7'B,z, = AJ'b,.

Naturally, the equivalence between (1.1) and (2.9) via (2.8) is true, in particular, for
classical solutions; that is, when (say) b € C*°(R;R"). Then also u; and b,, defined by
(2.4) and (2.5), respectively, are of class C*, and so is v, —; in (2.7). In this case, (2.8) also
transforms initial value problems for (1.1) into initial value problems for (2.9). In fact, z

solves (1.1) under the initial condition z(ty) = z¢ for fixed ¢; € R if and only if 7o verifies

(2.10) zg =Ty 1(to)zvo + vu-i(to),

for some z,9 € R™-! which, of course, is necessarily unique by the injectivity of T', _1(ty).
Such values zg are called consistent with the DAE (1.1) at ty. Evidently, if £ solves (1.1)

then the values z(t) € R" are consistent with (1.1) at t, ¥Vt € R®. Moreover, initial value
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problems for (1.1) with consistent initial values at the given point ¢, have a unique (C*)
solution while initial value problems with non-consistent initial values have no (classical}

solution.

It is an interesting fact that the condition (2.1) is essentially superfluous if A and B
are analytic (see [RR93a]), partly because in that case (2.1) automatically holds with r; =
r?eaix rank A;(t), except perhaps at points of a subset §, consisting only of isolated points
in R. Fort € §;, we have dim rge A;(t) < rj, but it turns out that an “extended range” of
A,(t), denoted by ext rge A;(t), can be defined with the properties that ext rge 4,(t) O
rge A;(t) and dim ext rge A;(t) = r;, ¥Vt € R (and hence ext rge A,(t) = rge A,{t), ¥t €
R\ ;). This allows for the construction of parametrized families P,, C, and D, as before,
except that “ext rge A;(t)” now replaces “rge A,(t)" everywhere. Thus, assuming only
that (2.2) holds for all indices j, we can still construct a reduction (Aj+1,By41) of (4,.B,),
and the index v of (A, B) is defined as before. But now, we have only A4,(t) € GL(R™-!)
for t € R\ S,, and (1.1) reduces to (2.9} via (2.8) only if A.(t) € GL(R™-*) for every
t € R. Thus, in this case, the invertibility of 4,(t) for all ¢ is no longer guaranteed and
must be assumed independently. As a result, future reference to pairs (A, B) of index v
“with invertible A4,(t) for every ¢t € R” should not be viewed as a redundancy but, rather,
as a reminder that condition (2.1) can be dropped if A and B are analytic but that then
invertibility of A,(t) is no longer guaranteed to hold for all t.

All indicated results extend verbatim to the case when R is replaced by an arbitrary

-]
interval J where distributions in J are now understood to be distributions in J. ¥ J
contains one of its endpoints, initial value problems for (1.1) with a consistent initial value

at that endpoint can be considered in the classical setting.

3. Initial value problems with discontinuous right sides.

In [HS83], Hautus and Silverman introduced the class Cirq,, of “impulsive-smooth” distri-
butions in [0, 00). We first need a straightforward variant of this concept for distributions

in R. Throughout the remainder of this presentation, R* denotes R \ {0}.




Definition 3.1. The distribution = € T'(R) is said to be impulsive-smooth, z € Cimp(R*)
for short, if there are functions @, ¢ € C*®(R) such that t~pH — (1 - H) is a distribution

with support {0} where H denotes the Heaviside function.

If £ € Cimp(R*) and ¢y, w2, %1, %2 € C°(R) are such that r —p,H — (1 - H) is a
distribution with support {0}, 1 = 1,2, then (v; —w;)H + (¥ —¥2)(1— H) is a distribution
with support {0} and hence must be a linear combination of the Dirac é and its derivatives.
But, since it is also a function, it must be 0; that is, ) H + ¢, (1 — H) = w2 H +¢¥2(1 - H).
This shows that z — ¢, H — #,(1 — H) is identical for i = 1 and 1 = 2, and hence can be

called the impulsive part of z, denoted by zim,.

Therefore, for given z & Cimp(R*) the difference z — zimp has the form o H + y(1 ~ H)
with o,y € C®(R). Of course, v and ¥ are not uniquely determined by this condition,

but ¥ _, o and @y, ., are. Thus, there is no ambiguity in setting

I = wl(—ae.ﬂ]’ T+ = Plo.oo)

With this definition, z_ € C*((—o0,0]) and =4+ € C*({0,0)), and extending r_ by 0 for

t >0 and z4 by 0 for t < 0, we may write
(3.1) IT=I_+Z4+ Timp,

where each of the three terms on the right side is uniquely determined by r. Conversely,
given z_ € C*®((-oc,0]) and z4 € C®([0,00)) and a distribution z;mp with support {0},

equation (3.1) defines an element z of Cir,p(R*).

Remark 3.1. Despite the terminology “impulsive-smooth”, it should be kept in mind
that for z € Cimp(R*), 2 — Zjmp is not a smooth function in R since it may have a jump at
0. But its restrictions z_ and z, to (—o00,0) and (0, 00), respectively, extend as smooth

functions in (—o0,0] and [0, 0c), respectively. O

Three trivial but essential properties of impulsive-smooth distributions are the following:

(1) Every z € Cimp{R") may be assigned a value at every point t # 0, namely £(t) = z_(t)

7




ift <0and z(t) = z4(t) if t > 0. (ii) The derivative and the primitives (in the sense of
distributions) of z € C,mp(R*) &re themselves in Cimp(R*). (iii) Cimp(R*) is both a vector
space over R and a C*°(R)-module. In fact, if z € Cimp(R*) and (3.1) is used, then we

have

k k- . .

(32) az=az_+azs+ Y (3 (-1) (] ;' ‘) a(0)A4,) 6, Va € C®(R),
i=0 j=0

whenever zimp = Ef:o M66) X €R, 0< i<k The above properties, including (3.1),

have an immediate generalization to elements of Cf}, (R*) = (Cimp(R*))". In particular,

for z € (7, ,(R*), and M € C=(R; L(R",R™)), we have M € O, (R*) and

imp

k k-1 W
(3.3) Mz =Mz + Mzy + Y (D (-1) (J _ ) MOY0)A,4,) 60,

J

=0 =0

whenever
k

(3.4) Timp = Z M6 A ERM, 0<i<k

1=0

Definition 3.2. Let z € C[;, (R*), so that there exists a unique decomposition (3.4). The

impulse order of x, denoted by iord(z), is defined as follows:

(i)If i =0, 0<1 <k and 24(0) = z_(0), and hence € C*(R;R")), then set
jord(z) = -m - 2,

where 0 £ m < oo is the largest integer such that r € C™(R;R").

(ii)If), = 0,0 <i < k and z4(0) # £_(0) (and hence = has a discontinuity at the origin),
then set

iord(r) = -1.

(iii) If A # 0 for some 0 <1 < k then set

jord(z) = max{i: 0 <: <k, A\ #0}).
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Remark 3.2: Let M € C(R;L(R",R™)). By (3.3) we have iord(Mz) < iord(z) and
equality holds if n = m and Af(0) is invertible. O

The following letnma provides some more precise preliminary results about the primi-

tives in the sense of distributions of the elements of (]}, (R*).

Lemma 3.1. (i) Let f € C* _(R*) have impulse order k € ZU {-oc} and let y € (D'(R))"

imp

be such that y = f. Then, y € C}, (R*) and y has impulse order k — 1.

(i) Let f € Cp,,(R*) and let zo € R™ and t; € R* be given. Then, there is & unique
y € Chp(R*) such that § = f and exactly one of the following conditions holds

(3.5) (a) y(to) ==z0, (be) ¥4(0) =20, (b-) y-(0) =10

(iii) Let the sequence f! € Cimp(R*), €21, and 14 € R™ and to € R* be given. Suppose

that there are an open interval I;, about to and some f € C[},,(R*) such that
t =
(36) f ey — fl"o‘ \4 2 lv
as distributions in Iy, (i.c. as functions if 0 ¢ I ) and that
(3.7 lim f¢=f in (D'(R)™
t—o0

Let y* € C,(R*) and y € i (R*) be such that §* = f, y(to) = 2o and § = f.

y{te) = xo (see (ii) above). Then, we have
(3.8) ’lirgoy' =y in (DR

(A similar result holds if to = 0 and y', y are char ~terized by ¢* = f', y4(0) = 10 and
y=1f yx(0)=x0.)

Proof: (1) Any two primitives (in the sense of distributions) of an element of (D'(R} ;" differ

from a constant vector of R", and addition of a constant vector does not affect membership
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to Cfh,p(R*) nor the impulse order. Thus, it suffices to show that f has one priniitive in

C* (R*) with impulse order k - 1.

imp
Write f = fi + fo + fimp With fimp = 2:;0 w6, n, € Ry # 0 and choose
to € R. Since the function f, + f_ is locally integrable, set § = f‘:(f+ + f_)(s)ds, so that
¥ € C®({—00,0};R™") N C™=([0,00);R™) N C°(R;R") NChp(R*} and § is a primitive of
f+ + f- in the sense of distributions. Furthermore, it is obvious that § € C™+'(R; R")
whenever f, + f_ € C™(R;R"), 0 < m < 2. Thus, iord(§) = tord(f4 + f-)—1< -2, In
particular, 7 is a primitive of f with impulse order k — 1 when k < O since f = f, + f_ in

this case.

Suppose now that k > 0 and set yimp = ZLI j1:6'71, so that o H + yimp is a primitive
of fimp. Evidently, o H + yimp € Ci'llnp(R.) and iord(po H + Yimp) = k=1 2> ~1since k > 0
and jix # 0. Thus, y = § + poH + yimp € €y (R*) is a primitive of f and jord{y) =k ~ 1
since iord(y) € -2 < -1 < iord(poH + Yimp)-

(i1) The primitive of f obtained in (i) verifies y_ = ¢y_ and y, = ¢4+ + pg. Since
y is continuous and F(ty) = 0, this yields y_(tg) = 0 and y4(tp) = po. Every other
primitive of f (still denoted by y for simplicity of notation) is uniquely characterized by
a vector Ay € R” and verifies y_(tg) = A, y4(2p) = mo + Ap. As a result, Ay = 7, (resp.
Ap = Io — pg) is the only possible choice yielding y_(tg) = o (resp. y4{tg) = zo). Letting
to = 0, we obtain existence and uniqueness of y € ([, ,(R") such that y = f and either
(3.5)(by) or (5.5)(b_) holds. Next, letting ¢, # 0 and observing that y(ty) = v_(to) if
to < 0 and y(to) = y+(to) if to > 0, we obtain existence and uniqueness of y € ([ (R*)
such that y = f and y(t¢) = xo.

(iii) To hegin with, let us briefly recall how primitives of distributions are defined: Let
8 € D(R) be such that [ 8 = 1. For ¢ € (D(R))", there is a unique ¥ € (D(R))" such
that ¢ = ¢ — 8 fg » and the correspondence » — ¢ is continuous for the usual topology of
{D(R))". Note also that supp ;° C supp ¢ U supp 8. Given T = (Ty,--- , T,) € (D'(R))",

the formula

(3.9) (S.0) = —(T.4) +c- /_ o
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with ¢ € R" and the dot denoting the usual iuner product of R™, defines $ as a distribution
with values in R™ and shows that § = T, and all the primitives of T are of the form {3.9)

for some ¢ € R".

In general, the formula (3.9) does not permit us to assign a value 5(t) to § for any
¢t € R. But suppose that there are to € R and an open interval I, about t; such that T“'o
is (say) a C™ function, whence (T, ) = f’-o T-p= [T o forallp € (D(I,))". We may
choose 8 such that supp 8 C Iy, and then, for ¢t € I,, we may defiue Sp(t) = f:o T(s)ds;
that is, S = (So1.--- » Son) With So,(t) = [ Tu(s)ds. In (3.9) let ¢ = {c,.... .cq) with

(3.10) ¢ =/ Sa(t)8(t)dt, 1<:1<n.
R

This makes sense since supp 8 C I, and So,(t) is defined for t € I,,. Let p € (D(1,))".
whence i € (D(7,))" since supp 8, supp @ C Ir,. As T = $p in (D'(I,))". relation (3.9)

reads
(5,90)=—(50‘d')+c'/.¢
=(50,¢’)+c'/.¢=(So,¢—9A¢)+c-A¢
= —{Sp,0- . .
(S0, 9) —{So /;&p)+c /.q
But

<50,0/_¢)=/,'050-0/lw
=/lso.o/lw.‘;(/_so.m/_v.=c~fnw,

by definition of ¢ in (3.10). Thus, (S,) = (So.), for all ¢ € (D(I,))", ie., 5"-0 = So.
Because Sy is a function and vanishes at ¢g, it follows that S in (3.9) may be referred to as
the primitive of 7 vanishing at tg when ¢ is chosen as in (3.10) (and 8 verifies supp 8 C I, ).

The independei.c  * this definition from the choice of 8 is easily seen: If $.§ corresponds

11




to two such choices, we have § = § + ¢,c € R" since both § and § are primitives of T,
and ¢ = 0 from S,,lo =5 = S|,'°. As a result, given 7o € R", § 4+ 7, may be referred to

as the primitive of T verifying S(¢p) = z4.

Now, with T as above, let T! € (D'(R))", € > 1, be a sequence such that T'l'ro = T“'u.
This assumption ensures that T¢, ¢ > 1, as well as T define the same vector ¢ in (3.10).
With this choice of c, the distribution §¢ € (D'(R))" obtained by replacing T by 7! in (3.9)
is the primitive of T vanishing at {9, and, under the assumption ’]i'rgoT’ =T in (D'(R))".
it is then obvious that for ¢ € (D(R))" we have llir{_:c(S',np) = (S.¢), ie. ll_i{ggS’ = S in
{D'(R))*. In turn, this implies that 1‘3?05[ + 29 =S + z¢ for 7o € R".

It should be clear that part (iii) of the lemma follows from the above considerations
with T = f and T! = f¢, so that § + z¢ = y and S’ + o = y’. The proof that a result
similar to (3.8) holds when to = 0 and y', y are characterized by y¢ = f% y4(0) = 1o
and § = f,y+(0) = zo, easily follows from the above considerations with T = f4 + f_,
T = fi + f!, and the remark that fi’mp = fimp. for all £ > 1, since f¢ and f coincide as

distributions in some open interval about the origin by hypothesis. Details are left to the

reader. O

Remark 3.3: Because of condition (3.6), Lemma 3.1 (iii) gives an unusual result about
continuous dependence for initial value problems. The incorrectness of this result under
condition (3.7) alone can be seen even in the case when n = 1 and f, f* € C®(R). In fact,
by the theory of Fourier series, the sequences £° cos £t and ¢° sin {¢ tend to 0 in D'(R) for
every a € R. In particular, if f = 0, f4(t) = £sin#t, we have ll_ifgpf’ = fin D'(R) as in
{3.7). Choosing t; = 0, we find y = 0, y’(t) = 1 — cosft in Lemma 3.1 (iii). But then,
lli_‘r&y' =1#yin D'(R) and (3.8) fails to hold. O

Lemma 3.1 has a direct application to initial value problems for the ODE
(3.11) T+ Mz=f,

considered in the following theorem:




Theorem 3.1. Let M < C™(R;L(R")) and let f € C},.(R*) have impulse order k €
Z U {-o0}. Then

(1) The solutions 1 € (D'(R))" of the ODE (3.11) belong to Cli,,(R*) and have impulse
order k — 1.

(ii) For given ry € R™ and ty € R*, the ODE (3.11) together with one of the initial

conditions
(3.12) (a) z(to) = z0, (b4) 74(0) =zq, (b-) z_(0) = x0,

has a unique solution r € C}, (R*), but in the cases (3.12)(b, ) and (3.12)(b_) the solutions

imp

corresponding to x4(0) = o and 2_(0) = zo need not be the same.

(iii) Let the sequence f¢ € C;:,,P(R‘). ¢>1,and rg € R™ and t;, € R* be given. Suppose

that there is an open interval Iy, about to such that
(3.13) f',,m =fu,,. V€21
as distributions in I,, (i.e., as functions if 0 ¢ I, ) and
(3.14) Jim f0= 1 in (D'R)"

Let z (resp. z%) € Citmp(R*) denote the unique solution of the ODE (3.11) (resp. (3.11)
with f replaced by f!) verifying z(to) = zo (resp. %(to) = zo) whose existence is ensured

by part (it) of the theorem. Then

(3.15) limz! =z in (D'(R))"

t—oo

(A similar result holds if t, = 0 and the initial condition for x!, z is chosen as z4.(0) = z,

and z4(0) = zo, respectively.)

Proof: (i) Fix to € R and denote by U € C®(R; L(R")) the solution of the initial value
problem U/ + MU = 0, U(te) = I. It is well known that U(t) € GL(R") for all t € R",
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Then, z € {D'(R))" solves {3.11) if and only if y = U~ 'z € (D'(R))" solves the equation
y=U""'f. Since f € C};, (R*), we have U~ f € [ ,(R") and iord(U~1f) = iord(f) = k
from Remark 3.2. Next, by Lemma 3.1 (i) the solutions of j = U~! f are in ()}, ,(R*) and
iord(z) = iord(y) = k — 1 by another application of Remark 3.2.

{ii) Since U{to) = I, we have z(tg) = zo (resp. to = 0 and z4(0) = o) if and only if
y(to) = z¢ (resp. o = 0 and y4(0) = ¢). Existence and uniqueness of z thus follows from

existence and uniqueness of y ensured by Lemma 3.1 (ii).

(iii) From conditions (3.13) and (3.14) and using the continuity of multiplication of
distributions by C> matrix-valued functions, we infer that U~! fll:, = U-'f,, and
lli_r{.loU"f' = U~1f in (D'(R))". Denoting by y’ the solution of §* = ;/"f‘, y4(0) = zo,
we find that 'lix?oy' =y in (D'(R))" by Lemma 3.1 (iii). Thus, ll_i_'rgot' =1 in (D'(R))"

since ¢ = Uy?, z = Uy and multiplication by U is continuous. O
Remark 3.4: Let fi,p = E:;o pi6 with py # 0. From Theorem 3.1, we have r;p,, =

T i 2,8 for every solution z € Clhy (R*) of & + Mz = f. Comparing impulsive parts
and using (3.3) - (3.4) yields

Ap-y = Bk
k=i-1 -
Xiar+ Y (-1Y (’ ‘.”)M""<0)A.-+, =p, 1Si<k~-1,
=0 J
k-1
24(0) —z-(0) + Y _(=1 MUN0)); = po.
=0
By inverting these formulas, we find Ag.---,Ax-y (depending only upon g, - . ) as

well as z,(0) — £—_(0). Thus, both zjmp and z4(0) — z_(0) are calculable and depend
solely upon fimp. O

We now focus on initial value problems for the DAE
(3.16) Ai + Br=b,

where A, B € C=(R; L(R")) and b € Cf},,(R"). Under the assumption that the pair (4, B)

14




has index v > 0 in R and that A4,(t) is invertible for every t € R (see Section 2), the DAE's

(3.172) A(t)z_ + B(t)z_ = b_(t) in (~oc,0),
and
(3-17+) A(t)i'+ + B(t)l'.* = b+(t) in (O,W).

have coefficients and right-hand sides of class C*™ in (—o0, 0] and [0, 00}, respectively. Asa
consequence, it makes sense to speak of values £y € R™ which are consistent with (3.17_)

(resp. (3.174)) at a point o < 0 (resp. ¢y > 0) in the sense of Section 2.

Theorem 3.2. Let the pair (4,B), A,B € C®(R; L(R")) have index v > 0, and with
the notation of Section 2, suppose that A,(t) is invertible for every t € R. If b € Chp(R*)
has impulse order k € ZU {—oc}, then, the solutions z € (D'(R))" of the DAE (3.16) are

in Ci':“p

(R*) and have impulse order at most k + v — 1. Moreover,
(i) ifto < 0 (resp. tp > 0) and 79 € R™ is consistent with the DAE (3.17_) (resp.

(3.17,)) at ty, the initial value problem

(3.18) Ai+Bz=}, z(to) = 70,

has a unique solution z € Cimp(R*). Furthermore, if I,, is an open interval about ty and
b € 1, (R*) is a sequence such that bf'-o = b, , for all € > 1, as distributions in I, and
(lix{.nob' = b in (D'(R))", then z, is consistent with all the DAE’s obtained by replacing b
by b¢ in (3.17_) (resp. (3.17,), and denoting by z! € C? (R*) the unique solution of the

imp

initial value problem

(3.19) Azt + Bz =¥, z(ty) =z,

we have

(3.20) limz! =z in(D'(R))".
{—oo
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(ii) If ty = 0 and 1o € R" is consistent with the DAE (3.17_) (resp. (3.17;)) at tg = 0,

the injtial value problem
(3.213) Az + Bz = b, 2-(0) = 74 (resp. z4(0) = zy),

has a unique solution r € Chap(R*). Furthermore, if Iy is an open interval about 0 and
e Cip(R®) is a sequence such that bflo = by, , for all £ > 1, as distributions in Iy and
‘lil{.lo bt = b in (D'(R))™, then zq is consistent with all the DAE's obtained by replacing b
by b in (3.17_) (resp. (3.17,)) and denoting by z* € C, (R*) the unique solution of the

initial value problem

{3.22) At* + Br' = b, 28 (0) = 2o  (resp. z4(0) = x).
we have
(3.23) limzf=z in (D'(R))"

t—o0

Proof: In this proof, we use the notation of Section 2 without further mention. From the
reduction procedure we know that every solution r € (D'(R))" of the DAE (3.16) has the
form z =, 1z, + vy— where T',_; and v, ) are given by (2.6) and (2.7), respectively,
and z, solves the ODE

(3.24) &, 4+ A7'B,z, = A,

The key point here is the simple fact that the distributions u; and b, of Section 2
belong to C;7-'(R*) and have impulse order at most k + j. Indeed, recall that by = b
R*) and

iord(ug) < iord(b) = & by Remark 3.2. Therefore, iio € CJf,,(R*) has impulse order at

most k + 1 which, in turn, implies that 8, = D(b — Bug — Auq) € C2_(R*) has impulse

imp

and r_, = n, whence, because of up = BT(AAT + BBT)~'b, we have uy € Cl,(

order at most k+ 1. Obviously, the statement about the sequences uq, ... ,uy—1, bg,... b,

now follows inductively by the same argument.
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Since b, € Ciyy'(R*) has impulse order at most k + v — 1, the same is true of 4;'b,.
Therefore, by Lemma 3.1, the solutions of (3.24) are in Ci'"'l;‘(k‘) and have impulse order
at most k+v —1. This implies that the solutions r = I', _; 7, +v, of (3.16) are in Cj7, (R").
Morover, iord (I'y-1z,) €k +v—1since I',-; is C™, and iord (v, ) € k 4+ v — 1, because
the C,'s are C* and iord (u,) < k+j for 0 < ;7 < v — 1. Thus r has impulse order at
most k +v —1.

If now tg < 0 (resp. t5 > 0) and 7o € R" is consistent with the DAE (3.17_) (resp.
(3.17,), there is a unique zo, € R™-! such that 2o = I'y_1(to)z,0 + vu—-1(tg), (noOte
that v,_;(tg) makes sense since ¢ty # 0). Hence, the solution z of (3.18) is obtained as

z =T,-12, + v,~ where, in line with Theorem 3.1, z,, € C_*=*(R*) is the unique solution

imp
of
(3.25) i, +A'B,z, =b,, z,{te) = 1,0,

and no other initial values can be substituted for z,5 because ', _;(tp) is one-to-one.

For the “furthermore” part in (i) of the theorem, observe first that consistency of a
value 1o € R™ with a (linear) DAE at a point ¢, depends only upon the coefficients and
the right-hand side of the DAE in an arbitrarily small neighborhood of tp. As a result,
the hypothesis Ny = b 1, EDSures that rp remains consistent with the DAE obtained by
replacing b by b° in (3.17_) (resp. (3.17,).

For fixed £ > 1, denote by uf{,0 < j < v —1and b}, 0 < ; < v, the sequences
corresponding to u;, b, in the procedure of Section 2 after replacing b by b, and let v _,
be defined by (2.7) with ug,... ,u,.; replaced by uﬂ,... ,uf,__,, respectively. With ', _,
as in (2.6), we find that the solution z¢ of (3.19) has the form

(3.26) =Tzl + vl
where z¢ € C;;;'(R') solves the initial value problem

(3.21) L+ A7 Bz, = AT, zi(to) = zo.

——
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From the hypothesis bf,'° = by, it follows at once that u:”‘o =y, and b;“‘a =by,
for all the indices ¢, j of interest.In particular, bf,l' = b,,“ and hence
to ‘o
- ¢ -
(3.28) A, lb"l.‘, =A4; ‘b,,h.u , Ve>1.

Next, the hypothesis llim b* = bin (D'(R))" and continuity of the multiplication of distri-
— o0
butions by C* matrix-valued functions yield llim uj =u;in (D(R))r,_;,0< ;73 <v—-1
—00

and ’lim b§ = b; in (D'(R))"%-1, 0 < j < v. In particular,
—a0

(3.29) Jim. A7' = AZ'h, in (D/(R))™
and
(3.30) ll_i‘x{.xovf,_,-—-v,_, in (D'(R))".

Since 1, and z¢ solve the initial value problems (3.25) and (3.27), respectively, it follows
from (3.28) and (3.29) and Theorem 3.1 (iii) that tl_i.rgozf, =z, in (D'(R))"™-1. Together
with (3.26) and (3.30), this implies that lli’r{.xn:‘ =T,1z, +v,_) =z in (D'(R))". This
completes the proof of part (i) of the theorem.

Finally, for the proof of (ii), if toa = 0 and zo, € R" is consistent with the DAE (3.17_)
(resp. (3.17,) at tg = O, then the solution z of (3.214) is obtained in the form z =

I'v_1z, + v,—1 where, by Theorem 3.1, z,, is the unique solution of
I, + A:‘Buxv = by, -1'.._(0) =Ty ( resp. Iv+(0) = Fu0)s

and z,9 € R™-! is (by injectivity of I',_,(0)) the unique solution of the equation z4

T,1(0)zu0+v-(0) (resp. zo =T, _1(0)x,9+v4(0)). The proof of the remaining statement
is identical to the proof of the “furthermore” part in (i) of the theorem. O

Remark 3.5: Let “{ ]" stand for “jump at 0". Then, since every solution r of the

DAE (3.16) has the form = = [y 1z, + vy with z, solving the ODE (3.24), we have
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[r] = Tu_1(0)(z,] + [ve-1] and Timp = (Fuvc1Zu)imp + Vv imp. On the other hand, T',_,
and v, are obtained through an explicit procedure. As a result, [z| and 1, can be
calculated if [x,] and z, imp are known (usiug (3.3) - (3.4) for the term ('y_1 7, Jimp)- But
from Remark 3.4, [z,] and z, imp can be evaluated from by jmp. and by imp is calculable

since b, is known explicitly. Thus, both [r] and i, are calculable, at least in principle. O

4. Inconsistent initial values.

Let A,B € C>=(R;L(R")) and b, € C([0,00); R™) be given. As noted in the Intro-

duction, the problem of solving the initial value problem

(4.1) A(t)z 4 B(t)r = by(t), in (0,00),

(42) 2(0) = zo,

for arbitrary zo € R™ that is not necessarily consistent with the DAE (4.1) at to = 0, often
arises when a known function z._ on (—-00,0] verifies z_(0) = zy and is to be extended
into a solution of the DAE in (4.1). A general approach is suggested by the following

observation:

Lemma 4.1. Let z_ € C°°((-oo,0];R’;) be given, and suppose that zo = z_(0) is
consistent with the DAE (4.1) at t, = 0. Assume further that the pair (A, B) has index
v 2 0 in R and that, in the notation of Section 2, A,(t) is invertible for every t € R. Let
x4 € C([0,00); R™) be the unique solution of (4.1) and (4.2). Set

A()i_(t) + B(t)z_(t) ift <O,
(4.3) bt ={

bo(t) ift>0,

so that b € C, (R*) (and bimp = 0). Then, the function

z_(t) ift<0,
(4.4 2(t) = {
z4(t) ift >0,
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verifies z € CL, ,(R*} N (C°(R))" and is the unique solution of both initial value problems

{4.5) AE+Bé=b inR, £_(0)=z,
(4.6) AE+BE=b inR, £,(0)=z,.

Proof: 1t is obvious that z € C,,(R"). In particular, the derivative r € (D'(R))" is the
function given by _(t) for t < 0 and by z.(t) for t > 0, whence At + Bx = bin R in
the sense of distributions. By definition of z_ and b, zo = z_(0) is consistent with the
DAE (3.17_) at t, = 0, and by hypothesis zq is also consistent with the DAE (3.17,) at
to = 0. It then follows from Theorem 3.2 that (4.5) and (4.6) each have a unique solution
in Ch,p

at 0. O

(R*). In both cases, this solution is z since z_(0) = z4(0) = zo by continuity of z

Lemma 4.1 suggests that we should solve (4.1) for inconsistent 1o by making use of the

extension b of by in (4.3). This approach is taken in the following result:

Theorem 4.1. Let z_ € C®((—00,0};R") and b, € C*([0,00);R") be given. Suppose
that the pair (A, B) has index v > 0 and that, in the notation of Section 2, A,(t) is

invertible for every t € R. Then, for b € C _(R*) defined by (4.3), there exists a unique

distribution z € (D'(R))™ which solves o
(4.7) Ai+Bz=b inR, z)_, ., =7-.
Morever, we have
(i) z € C},,(R*) and z has impulse order at most v — 2.
(i) z4 = z), ,, solves the DAE
(4.8) A(t)i4 + B(t)zy = by(t) in (0,00).

(iii} If o = z_(0) is consistent with the DAE (4.8) at to = 0, then z € (C°(R))" and

T4 is the classical solution of the initial value problem

(4.9) At)iy + B(t)zy =by(t) in(0,00),  74(0) = 0.
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(iv) Irrespective of the consistency of 1o = z_(0) with the DAE (4.8) at ty = 0, the
distribution £ = 24 + Zimp, With 4 extended by 0 in (—oc,0). is the unique solution i
Cimp(R*) of the initial value problem

(4.10) A+ BE =by + A(0)zo6 inR, £-.(0)=0,

where by is extended by 0 in (—00,0). In particular, iord (£} < max(—1,v -~ 2) and hence
iord () £ v =2 for v > 1 (in contrast to jord (§) < v — 1 obtained by a direct application
of Theorem 3.2 to (4.10)).

Proof: Set 7o = z-(0) and b_(t) = A(t)z_(t) + B(t)z.(t) for t < 0, so that by definition
z_ solves the DAE (3.17_) and z, is consistent with (3.17_) at ty = 0. Thus, by Theorem
3.2 there is a unique solution y € C},,(R*) of the initial value problem

(4.11) Ay+By=b inR, y_(0)=z,.

As a result, y_ is another solution of (3.17_) which, just as z_, venfies y_(0) = z4. This
implies that y_ = z_ and hence that z = y solves (4.7). Conversely, if y € (D'(R))" solves
(4.7}, then y € €, ,(R*) by Theorem 3.2, and the equality Vi(-co.0) = T- 2s distributions
in (—00,0) implies at once that y_ = z_. Thus, by continuity, y_(0) = 2_(0) = z¢, and y
solves (4.11). Uniqueness of the solution of (4.7) then follows from the unique solvability

of (4.11).

We now pass to the proof of the statements (i) - (iv). Part (i) follows from Theorem
3.2 and the fact that the right side b in (4.7) and (4.11) (which, as was just seen, have the
same solution) is given by (4.3), and hence has impulse order £ < —1. Property (ii) is a
trivial consequence of (i) and the fact that z solves (4.7). For the proof of (iii) note that if
1o = z_(0) is also consistent with the DAE (4.8) at t5 = 0, then Theorem 3.1 ensures that
the unique solution y = z of (4.11) (and hence also of (4.7)) is given by (4.4) and solves
(4.6). This shows that z € (C°(R))" and that z, solves (4.9).

For the proof of (iv), set £ = z4 + Zimp € %, _(R*), s0 that ¢ = ¢ — z_ with z_

imp
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extended by 0 in (0, 00). Since jord {z) £ ¥—2 and iord(z-) £ —1, we find that iord(§) <
max(—1,v — 2). Moreover, viewing z_ as a function of t € R, we have Ai_ + Br_ =

b_ ~ Axgé, where

A)2_(t) + B(t)z_(t) ift<0,
b_(t) = {
0 ift>0.

From the above discussion and the definition of b in (4.3), it follows at once that A+ BE =
Az + Bx ~ Az_ — Br_. = by + Axyé. Moreover, we have Aryé = A(0)roé and £_(0)

il

z.(0) — z_(0) = 0 whence £ solves (4.10) and thus coincides with the unique solution of

1}

that problem. Note here that the consistency of 0 € R™ with the DAE A(t)f_ + B(t)f_
(b4)-(t) = 0 in (—o0,0) follows from the fact that §_(¢) = 0 is a solution. O

Theorem 4.1 justifies the choice of the solution £ of (4.10) (or of its positive part £,)
to represent the solution z of (4.1} when ¢ is not consistent with (4.1) at to = 0. Further
justification will be provided by Theorem 4.2 Lelow. For the time being observe that the
characterization (4.10) of § = z4 + Zimp Shows that the extension z of z_ as a solution of
(4.7) depends only upon z¢ = z_(0) and b, and hence is independent of z_(t) for t < 0.
For the case when A and B are constant, the characterization (4.10) is exactly that of
[VLK81},{Co82], [G93], but the equivalent characterization (4.7) is not explicitly noticed
in these papers. '

It is noteworthy that for index 1 problems, £ solving (4.10) has impulse order at most
-1, and hence §imp = 0. In other words, { is a function with a possible discontinuity
at the origin. A simple formula can be given for the jump £4(0) of £ (recall £. = 0)
without using the more cumbersome general procedure outlined in Remark 3.5. Indeed,
the relation A€ + BE = by + A(0)zo6 reads A£,(0)6 + A(dE/dt) + BE = by + A(0)zoé,
where df/dt denotes the usual derivative of £ at points of R*. Clearly, this requires that
A(0)64+(0) = A(D)zo and that A(t)(dE/dt)(t) + B(t)é(t) = by(t), Vt € R*. In particular,
for t > 0, we must have Qo(t)B(t){+(t) = Qo(t)bs(t) where Qo € C®(R; L(R")) is as
in Section 2; that is, Qq(t) projects onto a complement of rge A(t), (or of ext rge A(t) in

the analytic case). By continuity, we obtain Qo(0)B(0)¢4(0) = Qo(0)b4+(0). Thus, £4(0)
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solves the system
(4.12) (A(0) + Qo(0)B(0))6+(0) = A(0)ro + Qo(0)54(0).

Conversely, if £,(0) solves (4.12) then A(0)¢4(0) = A(0)z, and because of rge A(0) N
rge Qo(0) = {0} we have Qo(0)B(0)€4+(0) = Qo(0)54(0). It turns out (see [RR93a]) that
invertibility of A(t)+ Qo(t)B(t) for every t € R is implied by the index 1 assumption, and
hence that £,(0) is given by

£+(0) = [A(0) + Qo(0)B(0)] ' (A(0)r0 + Qa(0)b4(0)).

Note that £.(0) = z if and only if Qo(0)B4+(0)zo = Qo(0)b4+(0) (see (4.12)), a condition
that is easily seen to be equivalent to the consistency of 1y with the DAE (3.17,) at tg = 0.

In Theorem 4.1, the function b(t) may be approximated, in the sense of (D'(R))", by
sequences of smooth functions ¢ € C™(R;R"). In practice, considering such a sequence
amounts to viewing the transition from z _ to z, as the limiting case of a perhaps physically
more realistic, situation where a rapid but not discontinuous modification of the input
occurs in the vicinity of t = 0. In this setting, it is perfectly reasonable to assume that
b = b_, for all £ > 1, in some interval (—oo, —a] for some a > 0 independent of €. On the
other hand, the function T has a unique extension as a solution zf € C*(R;R")
of the DAE

Ai'+ Bz'=b, in R.

In fact, z¢ can be obtained as the solution of the initial value problem
(4.13) Az + Bzl =b, in R, z%(ty) =z_(to)

where ty < —a is arbitrarily chosen. Evidently, it would be desirable that the sequence z°
tends to the solution r of (4.7) in some sense. That this is indeed true, and more specifically
that tl:‘n;o z¢ = z in (D'(R))" follows at once from Theorem 3.2 and the hypotheses b¢ = b
in (—o0,—a},forall ¢ > 1, and ll_i.r{.xob' =bin (D'(R))" (just choose ty < —a in (4.13)). We

record this result in the following form:
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Theorem 4.2. Let 2. € C®((~00,0},R) and by € C>(|0,c);R") be given. Suppose
that the pair (A, B) has index v > 0 and that, in the notation of Section 2, A,(1) 1

invertible for t € R. Let b € C* _(R*) be defined by (4.3) aud let b* € C®(R;R"), { > 1,

imp
be a sequence such that b® = b_ in (~o00. ~a] for some a > 0 independent of £ and such that
llim b8 = b in (D'(R))". Denote by ¢ € C*=(R:R") the unique cxtension ofzr_, , as
—o0 t-o0 —al

a solution of the DAE

Ai'+ B =} in R,

and let 1 € CI

imp

(R*) be the solution of (4.7). Then, we have

limz!=zx in (D'R))™

{—oo

5. Some generalizations.

Let J C R be an open interval and let S = (a,)iez be » nondecreasing sequence of
points of RU {£oc} with a, < a,4, if either a, or a,4, is real and l_l_irtne‘,a. ¢ J. Denote by
Cimp(J \ S) the subspace of D'(.J) of the distributions of the form 1 = # + z;mp Where I is
a function such that 5!(.. 7 € C*™([a;,aig1] N F).VieZ, and Iimp 15 a distribution
with support contained in § N J. Equivalently, if é,, is the Dirac delta distribution at a,,
then iy is a finite or infinite linear combination of derivatives of ba, with a, € J. With

this definition of Cimp(J \ S), we have Cimp(J) = C=(J)if T NS = 0.

With the definition €, 0(T \S) = (Cimp(J \ SN", it should be evident how to formulate
Theorems 3.1 and 3.2 for the case b € ([}, ,(J \ S). Of course, the elements of Ci','np(] \S)
have an impulse order at each point a; € 7 NS. It may only be useful to note that for
a given arbitrary sequence po; € R™, a primitive of 3 o _ _ siaiba, is Z:__‘_x(—po,)(l -

Ha )+ Z:o porHa, where H, (1) = H(t —a;)if a, € R.H_5(t) =1, Hx(t) =0, and not

S0 o HoHa, which would not make sense when "' 1., does not converge.

For 0 € J it should be equally obvious how solutions of the initial value problem

Ai+Br=b, inJy=Jn(000), z(0) =z,
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can be defined when 0 ¢ S, by € C, {J+\S), and ro € R" is not consistent with the DAE
AT + Bzr = by in J, att = 0. For problems with index 1» > 2 the solutions may exhibit
a nonzero impulse at ty = 0. The case considered in Section 4 coiresponds to J = R,

S = {o0}.

6. Numerical examples.

For index-one problems the computation of the jump (4.12) caused by inconsistent input
can be easily incorporated into a numerical procedure for solving the initial value problems
(4.1/2). We consider here a recently developed solution process, [RR93b], which is based

on the reduction procedure of [RR93a} summarized in Section 2 above.

Suppose that the DAE (4.1) has index 1. Foragivenstep h > 0sett, = th,: =0,1,...,

and consider the explicit Euler approximation
1
(6.1) A(t:)Z(IHI —-Ti)+B(t|)Tl =b+(tt)~

In (RRI3L], (Theorem 3), it was shown that any solution 7q,7,,... ,7m € R" verifies for

t=0,1,... ,m — 1 the equations Q(¢,)B(t,)z; = Q(t,)b,+(t,> and
(6.2) [A(t) + Qis1)Bltis1)]Tiss = [A-(f-) — hB(t)]x: + hby(ti) + Q(tis1)bs(tis1).

Conversely, for sufficiently small A and any given z4 € R" such that Q(0)B(0)ry =
Q(0)b,(0), the solution zg,2y,... ,7,, of (6.2) is unique and solves also (6.1). Smallness
of h ensures that the operator A(t,) + Q(t,41)B(¢,41) is invertible, given that invertibility
of A(t) + Q(t)B(t) for all ¢ is equivalent to the index 1 assumption.

The difference scheme (6.2) has been used as the base method in an explicit extrapola-

tion integrator, LTV1XE, for general index-one problems (4.1) - (4.2).

Now note that for tg = 0, h = 0, and with z,;; replaced by £,(0) t}= difference equation
(6.2) is identical with (4.12). Thus, the results of Section 4 ensure that for any given z

we only need to apply (6.2) with & = 0 to obtain the consistent starting point from which
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the solution process can then be started. This represents only a minor modification to
the mentioned code LTV1XE. The resulting code accepts any given initial point and then

computes the solution starting from the corresponding solution of (4.12).

As an example consider the index-one problem

1 —t 2 % 1 —(t+1) 2 +2¢ v 0
(6.3) 0 1 -t Y2 + 0 -1 t—1 Y2 = 0
0 0 0 y; 0 0 1 Y3 sin t

given in [CP88] which has the general solution
(6.4) z(t) = (ate' + Be™?, ae' + tsint, sint)’ € R%.
For several randomly selected points (z,, 3, x;)T and starting times, Table 6.1 gives the

corresponding consistent starting points computed by LTV1XE. It is readily checked that

these consistent points verify (6.4) for suitable constants a and 3.

point-type t I, z2 I3
given pnt. 0.0 0.0 1.0 1.0
consistent 0.0 0.0 1.0 0.0
given pnt. 1.0 1.0 1.0 1.0
consistent 1.0 1.0 0.84147098 0.84147098
given pnt. 1.0 | -1.0 4.0 5.0
consistent 1.0 | -1.0 | -0.15852902 | 0.84147098
given pnt. 20| -5.0 2.0 3.0
consistent 2.0 | -5.0 -2.1814051 0.90929743
given pnt. -1.0 1.0 -1.0 2.0
consistent | -1.0 | 1.0 1.8414710 -0.84147098

Table 6.1: Consistent points for (6.3)

For the index-two case a code LTV2XE was developed which incorporates the reduction
discussed in Section 2 for a given index-two problem (4.1) and then applies LTV1XE to
the reduced index-one problem. The central part in the reduction is the computation of

the mappings C and D. This can be implemented, in general, by using a singular value
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decomposition (SVD) to obtain a basis of rge A and the projection @Q, and another SVD
for generating a basis of ker @QB. But, it turns out that in many cases there are much
simpler ways of generating these mappings. Thus LTV2XE assumes that subroutines are
available not only for the coefficients A, B, b and their derivatives, but also for C and D.
This allows us to bypass easily the costly general method for calculating these matrices

whenever a simpler approach is feasible.

In this form LTV2XE will work as long as the coefficients of the problem are smooth.
When the right side of the original equation has a jump, then, in general, the right side of
the reduced equation exhibits not only a jump but also an impulse. Hence the earlier given
simple jump computation (4.12) for index one problems is insufficient for the index-two

case.

As an illustration consider the simple DAE

100 00 1 1
(6.5) 01 0fs+f0 1 0]z=1] ¢
000 100 (1)

with the initial condition z° = (0,0,1)7. When r is a smooth function with r(0) = 1,

#(0) = 0 then the unique solution is
(6.6) z1(t) = 7(t), z2(t) =t — 1 + exp(—~t), z3(t) =1 - 7(1).

Suppose now that 7(¢) = H,(t) where H, is the Heaviside function with the step at t = 1.
Then the solution has the same form as (6.6) but with 7,(t) = H;(t) and z3(t) =1 -6 (¢).
Thus at t = 1 we have a jump of size 1 in the first component and an impulse of size -1
in the third component. A graph of this solution does not show the impulse. But if we

approximate the step of H, by a cubic spline; that is, if we consider (6.5) with
0, for0<t<1—g¢,

(6.7) )= $+1ot)3-0(t)?), forl-e<t<l+e oft)=1L
1, fort >1+e,
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with small € > 0, then (6.6) shows that z3(1) = 1 ~ 3/(4¢). In other words, this solution

approximates the impulse.

For the general computation of the jump and impulse in the index-two casc, suppose
that for the given DAE (4.1) we have b = b + [b]H;, where b is the smooth part of the
function and [b] a jump at the time ;. Then, we have [ug)H,, = B(to)T(A(to)A(ty)7 +
B(t)B(10)7 )"} [b]H,, which implies that 1, has the impulse BT(t, ) A(ty)A(ty)T + B{to)

B(to)T)~!{b]é:,. Accordingly, the right side b, = D(b — Atig — Bug) has the impulse

(6.8) B16,, = ~DABT(AAT + BBT)7}(t,)[b]é,,.
Now let
(6.9) Ay 214+ Byxy=by. by =by +[by]He + Brde,

be the reduced equation and consider its solution in the form z, = #, + [z;}H,, + £16¢,-

By substituting this into (6.5) and comparing terms we obtain the conditions

A(to)6r =0, Ay(to)z1] + Bi(to)ér = B, Qi(te)Bi(te)[z)] = Qi(to)[b1]

which can be combined into the two systems

(6.10a) (Ai(te) + Qi (to)B;(t0))61 = Gh(to)B
(6.100) (A1(te) + Qi{te)Bi(to))zy] = @i(ta)[b1] + By — Bi(to)é,.

Since the DAE is assumed to have index two, the matrix A;(t¢) + Q;(to)B1(to) is nonsin-
gular and hence the two systems (6.10a/b) can be solved successively. A brief calculation

shows that (6.10b) reduces to (4.12) exactly if 8y — By (tg)€, = 0.

The relations (6.8), (6.10a/b) were incorporated into LTV2XE to allow for the compu-
tation of the jump and impulse at any point t, where the right side b of the original DAE

(4.1) has a jump.
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As numerical example we consider the following index-two problem

Ty 4+ -2 -Tg—7T5=0
Iz+z) —r2+tra—z5=0
(611(1) i‘g-tl‘l —-1'3—'!1‘4 =0

1"4+(t—1)12+1‘3—12‘4=0

tzftl + (l - t)21'2 + (l — 2)13 = T(t)

where 7(t) =1 for t < 1 and 7(t) = —1 for t > 1. For the consistent starting point

(6.115) z; =05, 7 =00, z3 = -0.5, z4 = 0.0, 5 = 0.0,

Table 6.2 shows all steps computed by LTV2XE for the problem (6.11a/b) for 0 < t <

1.2. A relative tolerance of 107° and a maximal step of 0.1 was used.

The discontinuity at ¢ = 1 causes a recalculation of the point obtained at t = 1 from
which the solution proceeded. Clearly, in order to capture the discontinuity exactly at
t = 1, this value has to be included in the list of required output-points of the code. This
was indicated in the table by a dividing line. At any jump point the output of the code
includes the values of the jump and the impulse of the solution. In this case, we found that
at t = 1 the solution has the jump (-2, ~2,0,0,2)7H; and the impulse (0,0,0,0,2)74;.

Of course, the jump is also clearly seen in Table 6.2.

In analogy with the simple problem (6.5) we approximate the step by

1, for0<t<1l-eg,
(6.11) )= %a(t)’—%a(t), forl1 —e<t<1l+e, a(t)::'-:—] .
-1, fort >1+e,

29




t I 3 I3 r4 Is
0.0000 0.5000 0.0000 -0.5000 0.0000 0.0000
0.5000(-1) 0.4724 -0.2763(-1) | -0.5250 | 0.2500(-1) | -0.1340
0.1500 0.3984 -0.1010 -.5751 0.7502(-1) | -0.4573
0.2500 0.2941 -0.2033 -0.6263 0.1252 -0.8372
0.3475 0.1612 -0.3317 -0.6788 0.1752 -1.184
0.4475 0.3369(-2) -0.4816 -0.7384 0.2297 -1.351
0.5406 -0.1384 -0.6120 -0.8014 0.2875 -1.193
0.6406 -0.2494 -0.7057 -0.8780 0.3635 -0.7034
0.7060 -0.2862 -0.7284 -0.9317 0.4246 -0.3105
0.7919 -0.2890 -0.7094 -1.003 0.5225 0.1445
0.8639 -0.2570 -0.6571 -1.060 0.6224 0.3976
0.9305 -0.2073 -0.5875 -1.105 0.7306 0.5071
0.9969 -0.1452 -0.5060 -1.141 0.8545 0.5046
1.000 -0.1421 -0.5020 -1.142 0.8608 0.5020
1.000 -2.142 -2.502 -1.142 0.8608 2.502
1.002 -2.137 -2.496 -1.146 0.8644 2.504
1.003 -2.134 -2.493 -1.149 0.8663 2.505
1.010 -2.111 -2.468 -1.167 0.8818 2.511
1.034 -2.037 -2.387 -1.224 0.9341 2.513
1.058 -1.962 -2.303 -1.281 0.9910 2.490
1.082 -1.887 -2.220 -1.334 1.052 2.444
1.105 -1.813 -2.136 -1.386 1.116 2.379
1.129 -1.740 -2.053 -1.435 1.184 2.296
1.151 -1.668 -1.971 -1.481 1.255 2.197
1.174 -1.597 -1.889 -1.523 1.330 2.086
1.196 -1.528 -1.810 -1.563 1.408 1.963
1.200 -1.516 -1.797 -1.569 1.422 1.941

Table 6.2: Solution of (6.11a/b)

system becomes too stiff to capture the impulse.
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with small € > 0, then we exnc.ct the solution to approximate the impulse (0,0,0,0,2)76,.

Figure 6.1 show the fifth comg a:nts in the case of ¢ = 0.05. For smaller values of € the
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It may be noted that we did not succeed to compute the solutions of this problem either

with DASSL (see e.g.[BCP89]) or RADAUS (see [HW91]). Both codes failed at start-up.
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