
UNCLASSIFIED cop 3 1 of.3 copi,

AD-A277 803

IDA DOCUMENT D- 1452

THE SMART MINEFIELD SIMULATOR USER'S GUIDE
AND ALGORITHM DESCRIPTION

R. E. Schwartz, Project Leader 017 T
MAR 3 1'19941

December 1993

CJ 94 3 31 086

0= Pepaed for
IAdvanced Research Projects Agency

I INSTITUTE FOR DEFENSE ANALYSES
1801 N Beauregard Street, Alexandria Virginia 223 1 1-1772

UNCLASSIFIED IDA Log No. HO 93-44677

DEFINM~ONS
IDA polhhae me onMauing deanmds Is roped the rMobt of f work.

Repjte maths meat astHerinv l eat seeltl senedere Pedal IDA pd~Nhms.
They nrermlly sewhedy reselts of ml.e prelf" whMM (a) hew a diret hearibg a
decaide= Nfl0de major prsrinn me. address lumen af hlg§lten Caonaer to Noe
Exasatve Bransh, the Congress samfr Ihe paoldle or (C) address Iue thaOt have
slmlglfan asanemo plia llosata. IDA Reperts awe reviewed by oelidda panels of esperls
In warsu their Milk qually ead relsemase ltohe prahiam stalled, od they are rlae
by the Preidd aIDA.

Grup Repids
Breop Rop"" record fte kngs and roalsit at IDA askitesnhe warlkin ~ru and
pamel smpeand of ele laluldal addressing Maier losse hsk ethauwi1 would be
the abjest da WDA Nape. WDA Grasp Repasts are reviewd by the sele laMOmala
responeible for the prajeal and athrm n Molse by IDA inen thý O gh M ualit In a

Papers
Papers, else autheutilvef ad Brlly seamldered predicts of IDA, address stallt that
are nanewer In scope tha Mn nousvere Is Reopels. IDA fPage. are reiewed o Winners
that they meet the high taarsexpecled af retereed paPMr In Prsteuulml softier
headl Almas repast.

IDA Decosumauwe areusd fotesevaasea h doner Cm GIO W analysts(a)I inrse
subloutasl work dane In qulsb ruetasl stedles. (h) ao reseed the proceedings at
smenlrese ad meet1ngs (in) to male evalolae prelim"eu OW odotlive results of

malyse, (d) to rese- dafte developed Inn th casetof at inveiplual. oreI) toIn lrwer
lalamiln ha 101 IesenIaIVy m lyzad lieuaed The reie fa IDA Deoumenta
Is mulled11 thIs sealdadt mloeeded an.

1the Department at Defense. The publication of thin IDA dummacet lees net Indilsat

elondsermaut by the Depaten at o Defense, nor should the setet be conutresd as
resltingth etla fini posifle t thaMt Agans. I

Review al thin maaIalW doesa Imet ply Deparmeto Io Defusee Indsresment of atealan

REPORT DOCUMENTATION PAGE IFwm Apprviecd
IM6ow t 0704-0158

OW Waloft ft -i and. OW --II I WWI mIgs on -dim I bI MWiinL Sand hWn~ntb mohot"l "ft buo. "ON" r WVmh~nw udw d OW1
d 1~w. *a- "6AM& venm 1W mnato 3m& bwft%.In fthboaft 14*WiWIM F.*m Obeclari. fordu OpuaW86 &rmA.R1 1215 .behsso

The Smart M1ine Simulator Usee* Guide and Algorithm MDA 903 69 C 0003

L AUTOR(S)TASK A-I 17

* R.E. Schwartz, R.W. Carpenter. MM. Stahl

7.PERFORMING OROANIZATION NAME(S) AND ADORESS(ES) & PERFORMING ORGANIZATION

Institut fo Defene Ana"" REPORT NUMBER
1801 IL Beauregard St. D-1 452
Alexandria, VA 22311-1M7

9. :SPONSR INrSNTRING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORINGIMONITORIIG

Advanced Research Projects Agency Director, FFRDC Programs AEC EOTNME
VirgniaSqua* Paza1601 N. Beauregard St.
3701N. airfx DiveAlexandria, VA 22311-1772

Approved for Public Release. Distribution Unlimited.

* ~~13. ABSTRACT (AUaxyMi2W? war*)

The Smart Mine Simulator (SMS) Is a computer simulation that runs on two UNIX workstations and
operates In the SIMNET/BDS-D distributed simulation environment. ft simulates smart antlarmor mines,
two variations of smart antiheilcopter mines, and conventional antlarmor mines, enabling these mines to
participate In SIMNET exercises for analytic, training, demonstration, or other purposes. This document
describes the SMS structure, its algorithms for simulating mines, and how to Install and use It. The

document Is Intended to support both the planning at distributed simulation exercises and the
* Installation and operation of the SUS on simulation networks.

14. SUBIJECT TER.MS 1i5. NUMBER OF PAGES

SIMNET, BDS-D, DIS, smart mines, wide area mines, WAM, antihelicopter 72
mines, AIIM, simulation, simulator 1iB. PRICE CODE

17. SECURITY CLASSIFICATION 1SL SECRIT CLASSIFICATION I 19. SECURITY CLASSIFICATION 20. LBIITATION OF ABSTRACT
OF REPORT IOF THIS PAGE OF ABSTRACT1
UNCLASSiIED UNCLASSIFIED UNCLASSIFIED _SAME AS REPORT

NSN 7640-1-UO.6M0 SWandd Form 298 (Rev. 2-69)
Pmsate by ANSI Sed. ZW516
211-102

UNCLASSIFIED

0

IDA DOCUMENT D-1452

0

THE SMART MINEFIELD SIMULATOR USER'S GUIDE
AND ALGORITHM DESCRIPTION

Accesion For
NTIS CRA&I r

R. E. Schwartz, Project Leader DTIC TAB

Ur~announced D]
R. W. Carpenter Justification

M . M . Stahl

By-------
Distr ibution I

Availability Codes

Avail and/or

December 1993 Dist Special

* -A
Wpins tIf paubli me=,ma umiiW" ilwtbug.

I DA
INSTITUTE FOR DEFENSE ANALYSES

Contract MDA 903 89 C 0003
ARPA Assignment A-I117

UNCLASSIFIED

PREFACE

This document describes the Smart Mine Simulator (SMS), a simulator of smart

and conventional mines that operates in the SIMNET distributed simulation environment.

The SMS was developed under a joint taskI from the Advanced Research Projects Agency,

and the Armament Research and Development Center (ARDEC) of the Army.

The authors wish to thank the IDA technical reviewers, Dr. David L. Randall,

Director, System Evaluation Division, Dr. Frederic A. Miercort, and Mr. Frederick

E. Saxe, for their helpful suggestions.

1 Armor/Antiarmor System Concept Analyses, Conract MDA 903-89-C-0003, Task A-117.

moi

CONTENTS

PREFACE ... m..

LIST OF FIGURES ... ix

LIST OF TABLES ... xi

GLOSSARY .. xiii

I. INTRODUC1ION ... 1

A. Mines .. 2

B. SIMNET and BDS-D .. 3

C. Project History and Purpose ... 5

IT. OVERVIEW .. 7

A. General .. 7

B. Architectu ... 8

C. Simulation Manager ... 9

D. Network Manager .. 10

E. Vehicles .. 11

F. Minefields .. 11

G. Stand-Alone Objects .. 12

H. Limitations and Potential Improvements 13

mI. USER'S GUIDE ... 17

A. Introduction .. 17

B. The User Interface Program .. 18

1. Overview ... 18
2. Executing the User Interface Program 19

C. The Host Program ... 23

1. Overview ... 23

v

2. Executing the Host Program ... 24
3. The Test Mode ... 27

D. Working with SMNET .. 29

IV. MINE MODELS AND ALGORITHMS .. 33

A. Basic Operation ... 33

1. Stand-Alone Objects ... 33
2. Sensor Components .. 34
3. Control Components .. 36
4. Munition Components .. 36

B. Conventional Mine Model ... 36

1. Sensor .. 37
2. Control .. 37
3. Munition ... 37

C. Wide Area Mine Model ... 37

1. Sensor .. 37
2. Control .. 38
3. Munition ... 38

D. Indirect Fire AHM Model .. 38

1. Sensor .. 39
2. Control .. 39
3. Munition ... 40

E. Di ct Fire AHM Model .. 40

1. Sensor .. 40
2. Control .. 40
3. Munition ... 40

F. WAM Sublet Model ... 40

1. Sensor .. 41
2. Control .. 41
3. Munition ... 41

G. AHM Sublet Model ... 41

1. Sensor .. 41
2. Control .. 42
3. Munition ... 42

vi

APPENDIXES

A Installation and Computer Requirements

B SMS PDUS

C Parameter Summary

D Approved Distribution List for IDA Document D- 1452

0

0

S

vi'

LIST OF FIGURES

1. Object Control/Containment Hierarchy 9

2. SAObject Class Tree ... 12

A-I. SMS Directory Structure ... A-2

ix

0

LIST OF TABLES

1. Incoming PDUs ... 10

2. Outgoing PDUs ... 11

3. Typographic Conventions .. 17

4. Host Input Commands .. 25

A-1. SMS Directory Contents .. A-2

A-2. Test Case File Names ... A-4

B-1. SMS PDU Fields .. B-2

B-2. Emplacement PDU Fields ... B-3

B-3. SAObject Emplacement Structure Fields B-4

B-4. SAObject PDU Fields ... B-4

6 B-5. Radio Message PDU Fields .. B-5

B-6. Command Structure Fields ... B-5

B-7. Minefield Status PDU Fields ... B-6

* B-8. SAObject Count Structure Fields .. B-6

B-9. SAObject Status PDU Fields ... B-7

B- 10. MineData Structure Fields .. B-7

xi

GLOSSARY

AAM !ntiam or Mine
ACU Autonomous Control Unit
ADST Advanced Distributed Simulation Technology
AHM Antihelicopwr Mine
APC Armored Personnel Carrier
ARDEC (U.S. Army) Armament Research, Development,

and Engineering Center
ARPA Advance Research Projects Agency

BDS-D Battlefield Distributed Simulation - Developmental

CIG Computer Image Generator
CPA Closest Point of Approach

DIS Distributed Interactive Simulation
DSB Defense Science Board

FASCAM Family of Scatterable Mines

IFV Infantry Fighting Vehicle
IR Infrared

0 MCC Management, Command, and Control

OOP Object-Oriented Prgramming

PDU Protocol Data Unit

0
RF Radio Frequency

SAF, SAFOR Semi-automated Forces
SAO, SAObject Stand-alone Object
SGI Silicon Graphics, Incorporated
SIMNET Simulator Networking
SMS Smart Minefield Simulator
SSM Smart Standoff Mine
STRICOM (U.S. Army) Simulation, Training, and

Instrumentation Command

VAP Vehicle Apperan PDU

WAM Wide Area Mine

xuio

0

0

I. INTRODUCTION

The Smart Mine Simulator (SMS) allows a human operator to employ mines during
a simulated battle occurring on the Battlefield Distributed Simulation - Developmental
(BDS-D) network. It allows the user to place minefields on the battlefield using a plan-

view (two dimensional) display of the terrain, and simulates the actions of mines in the

presence of vehicles generated by other simulators. It models four different mine types:
conventional buried landmines, smart antiarmor mines (AAMs), and two variations of

smart antihelicopter mines (AHMs).

The purpose of the SMS is to represent the effects of mines in land warfare, and

particularly the potential effects of developments such as smart standoff mines (SSMs) and

mine command and control (C2) that may greatly extend the effects and uses of mines. The
simulator software uses object-oriented design and implementation, which will allow the

simulation to be extended easily to include variations of the currently implemented mine
simulations, new mine simulations, new command and control options, or new capabilities
such as simulating countermeasures.

The SMS does not itself simulate a complete battle: it does not simulate vehicles or
weapon systems other than the listed mine types. Other simulators, such as manned

* vehicle simulators or Semiautomated Forces (SAF), are needed to conduct a meaningful

simulation exercise. The following sections of this Introduction briefly describe mines,
SIMNET and BDS-D, and the purpose and scope of the SMS development project, but

does not constitute n reference for BDS-D or other simulators. This material is intended to

make the following SMS description understandable to all readers, but is not sufficient to
enable the reader to plan, set up, or conduct a BDS-D exercise.

Chapter II provides an overview of the SMS, including discussions of its design,
capabilities, and missing capabilities.

Chapter iTI is a user's guide. It presumes some knowledge of both SIMNET and
of UNIX.

0 iI il

Chapter IV describes the way the mines are modeled, and is intended to allow the
analyst to understand the capabilities and limitations of the SMS as well as to understand its

results.

A. MINES

Antitank landmines, consisting of buried high explosives with pressure fuzes, were
developed shortly after the advent of armored vehicles. Subsequent developments of these
buried conventional mines have most notably consisted of new fusing mechanisms (such as
tilt-rod fuzes) that trigger an explosion when any part of a tank, not just the treads, passes
over a mine. In the 1970s scatterable mines were developed. These lightweight,
magnetically fuzed surface mines can be delivered by aircraft, artillery, and ground

vehicles.

Pressure fuzed mines function under the track (or wheel) of the activating vehicle.
Damage consists, for tanks, of broken track and suspension system components,

depending on the weight of the explosive charge. Damaged tanks can be repaired and
returned to action by organizational or direct support maintainence. The crew is generally

uninjured, but may be at risk from covering fire as the tank is immobilized.

Influence fuzed mines will fire a slug through the bottom of the tank (about 60% of
the time) or break the track (about 40% of the time). When the slug perforates the bottom it
causes catastrophic damage, and the crew will not usually survive.

Conventional and scatterable mines are usually deployed in minefields, a
concentration of mines in a given area. (Random emplacement in a large area has also been

done.) Because tanks must pass directly over these mines to trigger them, large numbers

are required for an extensive minefield. Conventional mines are heavy and must be buried,
so that a considerable logistical and manpower burden is incurred in emplacing a minefield.

Scatterable mines are much lighter and more easily emplaced but are still needed in large
numbers. For example, U.S. doctrine calls for emplacing one mine per meter of minefield

front.

Historically, mines have been effective weapons. According to a 1986 Defense

Science Board (DSB) Summer Study, the percentages of tank losses credited to mines in

World War 1I, the Korean war, and Vietnam were 18 to 34 percent, 56 percent, and 69

2

percent, respectively. 2 The DSB study concluded that the United States is not placing
sufficient emphasis on mine or countermine warfare. This was attributed to lack of training

* and organizational support and also to the lack of tools to quantify mine effectiveness
adequately. One of the reasons that landmine effectiveness is difficult to quantify is that the
primary tactical uses of landmines are to deny territory and delay movement, effects that are
more difficult to evaluate than are the losses of forces.

A new type of antitank mine is now under development, called a Wide Area Mine or
WAM. The distinguishing WAM concept is that it is effective at a distance, with the
version under development having a range of about 100 meters. It detects and tracks a tank
(or other vehicle) with acoustic and seismic sensors, and fires a projectile called a sublet
over the path of the tank. The sublet has an infrared sensor that detects the tank's engine
and an explosively formed penetrator that it fires at the tank.

Another type of mine that has been proposed is the antihelicopter mine, or AHM.
Like the WAM, the AHM detects and tracks its target using acoustic sensors, and attacks at
a distance. There are two versions now under development, the direct fire AHM that fires
directly at the helicopter and the sublet-launching (or indirect fire) AHM that like the WAM
fires a sublet that itself detects and fires at the target.

Both WAM and AHM are being designed with a remote control system using a

secure RF link, enabling active command and control of the mines. C2 concepts are
important issues for both types of mines. The new mine types and C2 potential will enable

new deployment options and tactical missions. For example WAM might be used to mine

* roads and other areas where conventional mines are difficult to use, and the ability to turn
mines off may allow their use in areas that friendly forces will traverse.

B. SIMNET AND BDS-D

* SIMNET was an Advanced Research Projects Agency (ARPA) program that

developed networks of manned simulators, primarily as tactical training systems for armor

(tank and armored personnel carrier) crews. The SIMNET program has been completed,

and the networks and simulators that were developed are operational at sites in the
* continental United States and Europe. The simulators and associated equipment have been

transferred to the Army, which operates them as training systems and as the experimental
BDS-D network under STRICOM's Advanced Distributed Simulation Technology (ADST)

2 Defense Science Board Summer Study on MinelCountermine Warfare (U), February 1987, SECRET.

3

program. This technology is now commonly referred to as Distributed Interactive

Simulation (DIS) and is being further developed in several ARPA and Army programs.

The strength of DIS is that a battle outcome is determined by the decisions and

actions of human participants, in addition to technical parameters such as weapon effects.

These decisions are based on data presented to operators in ways simulating actual

presentation, such as views of the battlefield or commands from superiors. The intent is to

simulate tactcal interactions among vehicles and crews in ways that cannot be achieved by

other (constructive) computer simulations.

In addition to armored vehicle simulators, a number of helicopter and a few other

types of simulators have been developed. Each crew member for these vehicles is present

in a simulator and must perform most of the functions that he would perform in a real
vehicle. The simulators are simpler and less expensive than those designed to train crews

in the operation of vehicles. Thus a tank simulator has displays for the vision blocks of a

tank and realistic controls for maneuver and weapons fire, but only static pictures for many

gauges and dials. The visual displays use Computer Image Generators (CIGs) to show

digitized terrain, cultural features, and simulated effects (vehicles, explosions, etc.).

The vehicle simulators are connected with a computer network, with messages

called Protocol Data Units (PDUs) sent between vehicles to simulate their interactions. The

protocol is designed to minimize the communication overhead, with each simulator

maintaining a database of its picture of the battlefield. For example each simulator updates

its estimate of the position of other vehicles using dead reckoning (based on the latest

known true position and velocity), so that new data need be sent only when the true

position deviates from the dead reckoning estimate by more than the allowable error
margin. The protocol is also designed to retain realism while allowing simulators to have

imperfect knowledge of each other's state. For example a vehicle that fires at another

determines whether it scores a hit, as the detection and aiming computations are based on
the firing vehicle's knowledge of the target. But the damage that results from an impact is

determined by the target, as it knows its internal state.

The network includes nodes to support simulations, in addition to the combat

vehicle simulators. A Management, Command and Control (MCC) system simulates a

battalion Tactical Operations Center, artillery and close air support, and resupply depots

and vehicles. A Stealth or Magic Carpet vehicle can observe all aspects of a simulation

without interacting with other elements, and a DataLogger or TableLogger collects data.

4

Semi-Automated Forces (SAF) also have been developed. Using this system, one

commander can control many simulated vehicles without using individual simulators and

crews. SAF vehicles cannot be distinguished from manned simulator vehicles in their

visual representation, and the intent has been to program behavior that cannot readily be

distinguished from manned simulator behavior. SAF was developed primarily to represent

enemy forces without using crews trained in enemy doctrine, to extend the size of a

simulation beyond the available simulator and crew limits, and to train company or higher

level commanders without the need for many fully crewed simulators. SAF is now limited

in the types of systems it represents and the realism of its forces' behavior, but, as with

manned simulators, current programs are extending and enhancing it.

In addition to its use as a training system, BDS-D has been used to a limited extent

as a tool for weapons systems analysis and development and conceptually could be used

for a variety of analytic purposes.

C. PROJECT HISTORY AND PURPOSE

IDA has carried out several tasks studying landmines, AHMs, and mine C2, and

has also participated in SIMNET development in recent years. In FY 1989 an IDA Central

Research Project3 identified landmines as candidate weapon systems for simulation and

evaluation in SIMNET, primarily because:

"* There was DoD interest and IDA tasking relating to landmine analyses.

"* Many of the issues regarding mine effectiveness are difficult to analyze using
traditional methods, primarily because they involve human decision-making
and tactical maneuver on a battlefield (which are incorporated in SIMNET1).

"* The simulation of landmines in SIMNET would be relatively easy, as it would
not require a manned simulator.

Following this report, IDA continued to develop the landmine simulator concept

and in the spring and summer of 1991 worked with a Loral Corporation employee (Paul

Monday) at Fort Knox to develop a very simple, proof-of-principle simulator. Late in

1991 ARPA began this two-year program, partly funded by ARDEC, to develop the SMS

and use it for minefield analyses. The initial tasking was to IDA to specify the simulator

design, and to Loral (through the STRICOM ADST program) to implement the software.

3 Applicability of SIMNET to Evaluation of Military Systems, IDA Document D-640, August 1989,
UNCLASSIFIED.

5

A preliminary version of ahe SMS was completed in the fall of 1992, and has been used for

preliminary analyses and to develop specifications for later versions.

The first releasable version of the SMS (version 1.0) has been developed at IDA

during the second year of the program, and is documented in this report. It has not yet

been used for mine analyses, but has been tested at IDA, demonstrated at IDA and also at

the AUSA convention in October, 1993, and is being installed at ARDEC and other sites.

The SMS development is being continued under new tasking. Section I1-H below

descitbes current limitations and potential improvements.

6

II. OVERVIEW

The SMS consists of two executable programs, a front-end or user interface

program called the smsgui and the back-end or minefield simulation program called the

smshost. The smsgui uses a graphical interface (similar to that used by the SAF, and

based on it) to emplace minefields and perform limited minefield command and control.

The smshost implements the simulation of mines and their interactions with other SIMNET

entities participating in an exercise.

Both the smshost and the smsgui are SIMNET entities and use SIMNET 6.6.1

protocols to communicate with each other and (in the case of the smshost) with other

simulators. In addition to using previously defined PDUs in both the Simulation and Data

Collection protocol families, a new family of SMS-specific PDUs has been defined for the

emplacement of minefields and the sending of mine appearance and data collection PDUs.

These PDUs are now experimental, but have been defined consistently with the existing

protocol families so that they could be incorporated into the existing SIMNET protocols at

some future time.

This chapter describes the smshost. This document does not contain a comparable

description of the smsgui (although the following chapter describes its capabilities, and

how to use it as well as how to use the smshost).

A. GENERAL

The SMS models individual mines and their battlefield interactions with vehicles.

* The interactions vary with the mine type, but in general include detecting, tracking, and

attacking targets. Consistent with BDS-D concepts, a hit target (not the SMS) assesses the

damage it sustains. The SMS simulates a conventional mine, a smart antitank mine

(modeled after the WAM now under development), and two types of AHM (direct fire and

* indirect fire). It also allows minefields to be turned on and off using commands from the

user interface.

The SMS has been designed to allow the addition of other objects within a

minefield including other mine types, stand-alone sensors, control units, and radio relays,

* as well as other landmine command and control options. An object-oriented approach

7

facilitates the use of unique logic modules for different mine types and functions, rather

than (for example) using generalized functions with parameters to distinguish among logic

options for different mine types.

The SMS is in some ways more like SAF than existing BDS-D manned simulators,

as it simulates multiple independent entities and does not require individual human control

of each entity. Each minefield component operates independently in terms of its

interactions with targets. Conceptually there is not an overall flow of logic of the form "the

SMS does this, then this, etc." Rather, there are independent entities that have their own

defining logic, and a simulation manager that controls how and when each module is

invoked.

B. ARCHITECTURE

The SMS uses an object-oriented design and is written in an object-oriented

language, C++. For those unfamiliar with object-oriented programming (OOP), the
programming language provides support for the concept that individual objects (e.g.,

mines) have certain data associated with them (e.g., location, state, list of vehicles currently

being tracked) and further that each object behaves in a way defined for its class of objects

(e.g., one WAM behaves like other WAMs, but AHMs can behave differently).

OOP objects can correspond directly to real-world entities, or can be software

constructs that have more to do with the implementation approach than with the systems

being represented. Vehicles are objects within the SMS that correspond to vehicles

simulated externally, by other simulators. The objects simulated by the SMS that

correspond to real-world entities include minefields, mines, sensors, control units,

munitions, and sublets. Mines and sublets are the essential objects modeled in the SMS,

and are called Stand-Alone Objects (SAObjects). Each SAObject contains a sensor, control

unit, and munition that work together to perform most of the actions of the SAObject. A

minefield is a collection of mines that in the real world is an abstract concept (saying that

two mines are in the same minefield does not affect the behavior of either) and in the SMS

exists partly for the logical correspondence with real-world ideas and partly as a

programming convenience (it keeps track of mines, and allows all the mines in the

minefield to be turned on or off with a single command).

Other SMS objects control various aspects of the simulation. The most important

are the simulation manager, the network interface, the vehicle manager, and the minefield

manager. Figure 1 shows a hierarchy for these classes of objects that at the lower levels

8
4

can best be thought of as a containment hierarchy (a mine is contained in a minefield) but at

the top level is perhaps best thought of as a control hierarchy (the simulation manager

* controls the network interface). A perhaps unexpected feature of this diagram is that

sublets are controlled directly by the simulation manager, and are not contained in

minefields. As explained below, this is to ensure that sublets receive priority processing.

0I
managermanagerl

ý vehicle 1 minefield

0I

sensor -control munition

Figure 1. Object Control/Containment Hierarchy

C. SIMULATION MANAGER

The primary functions of the simulation manager are to:

* Initialize the simulation and read inputs.

The simulation inputs from the invocation command line and input files are
described below in the User's Guide, Chapter III.

* Control time.

BDS-D is a real-time simulation, so the SMS uses the computer's internal
clock to control the timing of simulated events. It operates in cycles of 1/10
second duration. At the beginning of each cycle, the simulation manager
increments the time defining the end of the current cycle. During the cycle,
other objects perform actions needed to update themselves to this time.

Control the subordinate objects.

The simulation manager invokes in order the network interface, the vehicle

manager, each flying sublet, and the minefield manager. In order to give

9

priority to the most needed tasks and provide graceful degradation if the
processor is overloaded, minefield processing is interrupted if it is not
completed by the end of a cycle. In the next cycle it resumes where it was
interrupted.

D. NETWORK MANAGER

The network manager handles all incoming and outgoing PDUs that interface the

SMS host with SIMNET. Outgoing PDUs created within the SMS are sent as soon as they

are created. For example, when a mine needs to send a message that a vehicle has been hit,

it calls the appropriate network manager routines to create and send the PDU.

Incoming PDUs are processed at the beginning of each cycle. Each PDU that has

arrived since the last cycle is processed by reading the header information to determine the

nature of the PDU, and forwarding it to the SMS object that handles that PDU. For

example, Vehicle Appearance PDUs are forwarded to the vehicle manager, and minefield

emplacement PDUs are forwarded to the minefield manager. Tables I and 2 show the

PDUs that are handled by the SMS host. The contents of SIMNET PDUs are described in

the BBN document The SIMNET Network and Protocols,4 and the contents of the new

PDUs defined for the SMS are described in Appendix B below.

Table 1. Incoming PDUs

PDU Kind From Handling Object
vehicle appearance other simulator vehicle manager
status query other simulator simulation manager
deactivate request other simulator vehicle manager

+ emplacement user interface (smsgui) minefield manager
+ radio command (on/off) user interface (smsgui) minefield
+ New type of POU for the SMS.

4 The SIMNETNetwork and Protcols, BBN Systems and Technologies Report 7627, June 1991.

10

Table 2. Outgoing PDUs

PDU Kind Creator Destination When Sent

simulation status sirrdation manager broadcast every 5 minutes
satus response simulation manager query sender in response to query
exercise status simulation manager query sender in response to query
mWinefeld satmus mineflield broadcast every 5 minutes
SAObject status SAObject broadcast every 5 minutes
minefeled appearance minefield broadcast every 30 seconds
SAObec appearance SAObject broadcast every 30 seconds
vehicle appearance sublet broadcast every 1/10 sac during flyout
weapon fire mine, sublet broadcast at mine or sublet firing
impact mine, sublet target or broadcast at mine or sublet impact

SNew type of PDU for the SMS.

E. VEHICLES

Simulators that simulate vehicles periodically send Vehicle Appearance PDUs

(VAPs) describing the vehicle's type, location, velocity, and other characteristics. When a

VAP is received the network manager sends it to the vehicle manager. The vehicle manager

maintains a vehicle list, and when an incoming VAP corresponds to a vehicle on the list the

VAP is used to update its data. When a VAP is received for a vehicle not already listed, a

vehicle object is created and added to the lisL After all incoming PDUs are processed at the

beginning of each cycle, each vehicle object is called to dead reckon to where it will be at

the end of the current cycle.

A vehicle is deleted and removed from the list when a deactivate request PDU is

received for the vehicle, or when the timeout period has elapsed without receiving a VAP

for the vehicle.

F. MINEFIELDS

The minefield manager has a list of minefields. When the SMS operator creates a

minefield, an emplacement PDU is sent from the smsgui to the smshost. Within the

smshost it is passed to the minefield manager, which creates the minefield and adds it to the

list.

During each cycle the minefield manager is called to update the minefields, and as

many minefields as possible are updated each cycle. Minefields that cannot be updated

during a cycle are the ones processed first during the next cycle. The purpose for this is to

provide a smooth degradation as the SMS host becomes overloaded. Most mines need not

11

be updated every 1/10 second, but incoming PDUs should all be processed and flying

sublets need to keep up to date.

Each minefield has a list of its mines, and performs functions such as processing

commands (on/off) by routing them to each mine. Updating the minefield consists of

creating a list of vehicles within sensor range of the minefield and passing this list to each
mine to perform its update.

Minefields periodically send Minefield PDUs, which are the counterpart of VAPs,
and status PDUs which provide additional data about the minefield.

G. STAND-ALONE OBJECTS

SAObjects comprise a family of classes, as shown in Figure 2, that includes all

mines and the sublets that they fire. The mine classes include direct fire AHMs (cAhmDir),

indirect fire (or sublet launching) AHMs (cAhmInd), conventional mines (cConv), and

smart antitank mines modeled after WAMs (cWAM). The sublet classes include those fired

by the indirect fire AHMs (cSubletAhmInd) and those fired by WAMs (cSubletWAM).

Each SAObject contains a sensor, a control unit, and a munition component. Each of these

component types is specialized for a particular SAObject type, so that there are six classes
each of sensors, control units, and munitions corresponding to the six actual SAObject

classes. 5

JeSAObsect]nd

cbet ubletAhmlnd]

4cSubIetWAM]

Figure 2. SAObject Class Tree

5 The six actual SAObject classes are those on the right side of Figure 2. The classes cSAObject.
cMine, and cSublet are abstract classes, and no objects of these classes exist. Similarly, there are
cSensor, cControl, and cMunition abstract classes that are base classes for those that are actually created
in the simulation. For those unfamiliar with OOP, this is a way to treat objects similarly and to
provide them with some common characteristics, while allowing specialized characteristics when

12

* During each cycle, each SAObject is called to update itself (unless the simulation is

overloaded, as described above). This update consists of checking nearby vehicles (a list is

provided by the minefield) and taking action as necessary. Chapter IV explains how the

SAObjects and components are modeled.

* SAObjects periodically send SAObject appearance PDUs, which are the counterpart

of VAPs for vehicles, and status PDUs, which provide additional data about the SAObject.

In the SIMNET protocols there are standard sequences or conceptual models for

sending fire and impact PDUs when a vehicle is attacked, with the normal sequence being a
* fire PDU followed by an impact PDU. In most cases the actions of mines in the SMS do

not correspond directly to these conceptual models, so that the sequence of sending the fire

and impact PDUs has been adapted. Conventional mines send an impact PDU but no fire
PDU, and mines that have sublets send a fire PDU when the sublet is launched, a fire PDU

* when the sublet attacks, and an impact PDU.

H. LIMITATIONS AND POTENTIAL IMPROVEMENTS

Not all of the capabilities that were originally envisioned for the SMS have been
implemented in the current version, and in any case it is envisioned as a research tool that

can be extended as new requirements (e.g., new C2 ideas) are defined. Some of the
improvements that may be made in future versions (that in some cases reflect limitations in

the current version) include:

0 DIS protocol

The current version uses the SIMNET version 6.6.1 protocol. A goal for the
SMS is to use it in environments (such as BattleLabs) that will require the DIS
protocol.

• Standarization of SMS PDUs

The new PDUs defined for the SMS are not now recognized by other
simulators, which precludes, for example, visually displaying mines. The goal
is that after a period of review and development new mine PDUs will be added

* to the DIS standard.

Munition types

The fire and impact PDUs sent by the SMS specify burst descriptors that have
been defined for other weapons (e.g., an artillery shell burst). The reason for
this is that other simulators have effects tables to assess the damage they incur,

13

and specifying a type not in the current tables would result in no damage.
Defining new munition types for mines will require developing effects tables
and adding them to the software for other simulators.

Mine types

Other mine types, or variations on the existing mine types, may be needed.
For example, only a single generic conventional mine is now modeled.

SCountermeasures

The current version has no countermeasure capabilities.

C2 options

The only C2 capability available now is on/off. Possible extensions include the
development of a Minefield Control Unit simulator to provide better direct
operator control, an Autonomous Control Unit (ACU) to provide autonomous
control within a minefield, or cooperative control among the mines in a
minefield.

Intelligent Minefield concepts

In addition to new C2 concepts, the Intelligent Minefield program is analyzing
concepts for smart radio relays (gateways) to communicate with minefields and
special vehicles to help lay, pick up, or control minefields.

* User interface (smsgui) improvements

Improvements might include additional emplacement options, allowing
countermeasures, and correcting some of the difficulties described in the
User's Guide.

* Test capability

The current SMS version has a test mode that allows it to run independently of
other simulations, using internally generated vehicles. This mode could be
extended. Possible benefits might include using it to help plan manned
exercises, or using it for preliminary analyses (reducing the number of
variations needed for manned exercises).

* Force options

The current version requires that minefields are part of the distinguished force
(i.e., U.S. force). S
Emplacement by other simulators

Emplacement PDUs could conceptually be sent by other simulators (e.g.,
vehicles with mine dispensers), but this will require defining a mechanism to
establish a link with the smshost and changes to the other simulators.

14

Miscellaneous software enhancements

A number of minor improvements have been identified.

1

S

15

III. USER'S GUIDE

A. INTRODUCTION

The SMS consists of two executable programs: smsgui and smshost. The
smsgui is a graphical user interface used to emplace mines and perform minefield
command and control. The smshost simulates mines.

Both programs are SIMNET applications and use SIMNET protocols to
communicate with each other and with other simulators. In addition to the PDUs defined in
the SIMNET 6.6.1 protocol, a new SMS set of five PDUs has been defined. These PDUs
are designed to be consistent with the SIMNET protocols, and are sent and received using
the standard SIMNET association, transaction, and datagram services. The SMS PDUs are
described in Section D below and in Appendix B.

In normal operation the two programs are run on separate computers, along with
other simulators participating in an exercise. Each can be run in a stand-alone mode,
without interacting with each other or with other simulators. They cannot be run on the
same machine during an exercise.

The remainder of this section provides an overview of the two programs and
* describes how to execute them. Typographic conventions are shown in Table 3.

Table 3. Typographic Conventions

0 Type Style Used For
bold Commands the user will enter. These must be typed exactly as shown

and followed by pressing the RETURN key.
/talcs Parameters the user will enter. The range of options for each parameter

will be described in the text.
Optional commands or parameter(s). Ellipsis indicates more than one
item may be entered.

Large Bold Menu titles and menu items.

17

B. THE USER INTERFACE PROGRAM

1. Overview a

The SMS user interface program, smsgui, provides a two-dimensional display of

terrain and mines. The minefield operator or analyst will use the interface to emplace a

variety of mine types in one or more fields and perform minefield command and control.

Four kinds of mines are supporred: a generic conventional mine triggered by vehicle

proximity, a sublet-launching antiarmor mine, a direct fire antihelicopter mine, and an

indirect fire or sublet-launching antihelicopter mine. The command and control functions

that can be performed are turning minefields or individual mines on or off during an

exercise.

Like the SAF user interface, smsgui displays a two-dimensional overhead view of

the terrain database used in an exercise. In addition it displays outlines of minefields and

individual mines within the minefields. Most minefield and mine information is transmitted

using the newly defined SMS PDUs. These PDUs are not known to other simulators, so

they do not now display mines. The minefield perimeter is transmitted using a previously

defined PDU, but apparently no current simulator uses this information to display a

minefield.

The SMS user interface program is based on the SAF version 4.3.3 user interface

program.6 The major differences between the two programs are:

"* The SAF code to create and display vehicles is not present in smsgui.

"• The smsgui has the ability to emplace mines at specific locations while SAF
4.3.3 can emplace mines only as a density within a minefield - it does not
determine actual mine locations.

The smsgui can create smart mines and conventional mines while the SAF user
interface can create only conventional mines.

The smsgui can read and send newly defined SMS PDUs.

The smsgui is a SIMNET application that, during an exercise, requires its own

interface to the SIMNET local network. In general this means that the smsgui and the

smshost must be run on two separate machines. However, each can be run without the

other for special purposes such as testing.

6 The SAF has the same structure as the SMS, with the user interface a separate program from the
simulation, running on a different computer.

18

2. Executing the User Interface Program

The smsgui is installed and launched using standard UNIX procedures. Once

running, the basic procedure for creating minefields consists of:

* Moving and sizing the terrain display to focus on the desired area

SCreating an overlay that will contain the minefield

* Drawing an outline of the minefield, adjusting vertex points as desired

* Adding mines within the minefield

* Sending the minefield data to the smshost.

After a minefield has been created and sent to the smshost, it can be controlled

(turned on or off).

The following sections describe how to perform these procedures.

a. Installing and Launching

Appendix A has instructions for installing the smsgui.

The smsgui reads a file named sms.lisp to find the location of the smshost, so this

file should be checked to ensure correct communications. The file includes information
* needed by the part of the smsgui adapted from the SAF and these two lines of text:

(sms host site sitenumber)

(sms host host hostnumber)

* The site and host numbers refer to the Simulation Address of the computer running

the host program. These are typically found in a file named assoc.def on the host
program's computer.

The smsgui is launched with the UNIX command line:

smsgui -terrain tdbname -sim exercise ex# [-nonet]

* rdbname is the name of the compact terrain database, and should be specified
without the full path and without a file extension. The SMS can read only
compact terrain databases, not the older-style databases. The full path name
constructed by the SMS for the terrain database is /usr/saf/terrain/tdbname
Itdbname .ctdb.

* ex# is the exercise ID for this run, 1<= ex# <= 255.

19

-nonet is an optional switch that specifies stand-alone operation. This can be
used to test or practice with the smsgui, or to create minefield overlays in one
session and save them for later use in a subsequent session.

After launching smsgui, there will be a pause, then a two-dimensional plan view

of the terrain database will be displayed in the middle of the screen, with a menu bar across

the top and two icons along the upper right side of the screen. (The terrain display and the

menu bar operate in the same way as in the SAF, version 4.3.3.)

b. Moving and Sizing the Terrain Display

There are several ways to control the scale of the map display and the area shown.

First, the current scale is shown in a box in the lower left of the screen, which serves as a

popup menu to select the desired scale. The scale can also be changed using either the

mid•nle or right mouse button. To enlarge the display (reduce the scale factor), the middle

button can be clicked on the location desired for the display center, or the middle button can

be held down while framing a rectangle to view. To reduce the display (increase the scale

factor), the right mouse button can be clicked on the desired display center. There are also

scroll slides at the right and bottom of the map to move the area shown without changing

the scale.

c. Creating or Loading an Overlay

Minefield data are kept in a data structure called an overlay (not the underlying

terrain database). There are no fixed limits on the number of overlays that can be created,

or the number of minefields in each overlay. Each overlay can be saved to a disk file and

subsequently retrieved.

To create an overlay, select the command Create from the Overlay menu in the

menu bar. A small window labeled Overlay will appear. Enter a name and if desired a

color for the overlay, and when finished select OK.

An overlay can be saved using the Save command from the Overlay menu, and

a previously saved overlay can be loaded by choosing the Load command and selecting

the saved overlay's file name from the list that appears in the Load Overlay window.

The current smsgui has some bugs when dealing with overlays and minefields

within overlays, and it is recommended that the procedures in this guide be followed

closely. It is not recommended that an overlay loaded from disk be altered (e.g., by adding

20

additional minefields, or copying minefields) or that an overlay be altered after creating or

loading another on top of it.

d. Creating a Minefield

After creating an overlay, one or more minefields can be placed in it. There are two

icon buttons on the upper right of the screen, the top one for placing mines individually

within a minefield and the bottom one for creating the minefield itself. When this bottom

button is selected a Minefleld window appears and these steps should be followed:

"* Name the minefield.

Select the blank box near the bottom of the window and type a name, followed
by <return>. The name will be truncated to eight characters.

"* Draw the minefield.

Use the mouse to click (using the left button) on the desired vertex points of
the minefield. Up to 13 points can be entered. After entering, vertex points
can be dragged to new locations.

The minefield is not complete until mines have been added, so the OK button

should not be pressed yet.

e. Adding Mines

Mines can be added individually using the mouse to specify each location, or placed

uniformly within the minefield by the computer. Both methods may be used within the

same minefield. The smsgui will only send to the smshost a maximum of fourteen mines

in each minefield. The user must be aware of this limitation, as the s'1,sgui will allow any

number to be emplaced. (Only the first fourteen mines will be simulated.)

Individual Mine Emplacement

The procedure for plac ng nines individually within a minefield is:

"* Select individual emplacement.

Select the top icon from the upper right side of the screen. This creates the
Minefield Components window (the Minefield window will
disappear).

"* Select a mine type.

In the Minefield Components window, select the shaded button by the
mine type field and drag the cursor over the desired type. All mines you add to

21

the field will be of this type, until you select a new mine type by repeating this
step.

Place the mine.

Click with the left mouse button at the desired location. The location can be
corrected by clicking again at another location, or dragging to another location.

These steps should be repeated until all mines have been placed, then the OK

button in the Minefield Components pressed.

Uniform Mine Emplacement

The controls for uniform mine emplacement are in the Minefield window: the

individual placement button and the Minefield Components window are not used.

The procedure for placing mines uniformly within a minefield is:

" Choose a mine type.

The mine types are in a scrollable list in the center of the Mineflield window.

" Choose a spacing.

The distance between mines is set by sliding the control bar underneath the list
of mine types.

Display the mines.

Select the Show Changes button in the Minefield window. There will
be a brief delay before the display is updated.

Adjust individual mine locations.

If desired, the mouse can be used to select individual mines and drag them to
new locations.

f. Sending Minefield Data

This step should be performed even if running with the -nonet option, in which

case a PDU is created but not sent. The procedure is:

"* Select the minefield.

If a minefield's Minefield window is visible, it is already selected. If not,
clicking on the name of a minefield (shown next to the first vertex of the
minefield) will select it and cause its Minefield window to be displayed.

"• Create and send a new emplacement PDU to the smshost.

Select the OK button on the Minefleld window. A dialog box will appear
asking if you are really through. If not, select CANCEL, otherwise, select

22

OK. Once OK has been selected, no changcs can be made to the minefield or
to the mines within it (other than turning them on or off).

g. Controlling a minefleld

After the emplacement PDU has been sent, the entire minefield or individual mines

can be turned off or on (they always start on). To do this:

& Select a mine or minefield.

A mine is selected by moving the cursor over the mine and clicking the left
button, while a minefield is selected by moving the cursor over its name and
clicking. This causes the Command and Control window to appear.

0 * Set the state.

The state is controlled by the Activate button. When the button is depressed
(it is shaded to appear below the window surface) it is ON, and when it is not
depressed (it is drawn to appear above the window surface) it is OFF.

0 When the state is set correctly, click the OK button. If the state is different from its
previous value, a message will be sent to the smshost.

h. Saving Overlays

0 Overlays, which include minefield and mine locations (but not ON/OFF state), can
be saved at any time after emplacement by selecting the Save item from the Overlay
menu.

Si. Quitting

The program is terminated by selecting the Quit item from the File menu.

C. THE HOST PROGRAM

1. Overview

The smshost program creates minefields as directed by the smsgui, and simulates
them during an exercise. It also has a test mode in which it operates autonomously, not
communicating with the smsgui or other simulators.

The smshost operates with little direct user interaction. After it is launched it
communicates with other simulators and with the smsgui over the network. Thus, for
example, commands to turn a minefield off are entered at the smsgui and not at the

23

smshoat. The PDUs used by the host are described in Section D and defined in Appendix

B. When an exercise has concluded, typing <Ctrl><C> (pressing the Ctrl and C keys

simultuanosly) terminates host execution.

In addition to PDUs that are required in a simulated exercise and others that collect

data about the status of minefields and mines, the smshost can write detailed information to

local files. Most of the following description of how to use the smshost concerns this type

of output.

2. Executing the Host Program

a. Installing and Launching

Appendix A has instructions for installing the smshost.

The smshost is launched with the UNIX command line:

smshost [-command value...]

where [-command value...] represents a sequence of one or more commands to the host.

These commands tell the host the terrain database, exercise ID, and optionally other

information such as flag settings that control output or the name of an input file from which

to read additional commands.

b. Commands

Table 4 is a summary list of the commands available to the smshost. The -terrain

and -sim.exercise commands are required, while the others are optional. In general,

commands can be repeated with the last one encountered overriding earlier ones. Thus,

-terrain name] followed by -terrain name2 will result in the use of the name2 terrain

database. However, the -testrun command is not changeable (although the length of the

test run can be changed), and the -input, -vehicle, and -minefield commands are

cumulative in that all occurrences of these commands are processed. •

0

24

Table 4. Host Input Commands

Command Value type Description

-terrain name use terrain database "name"

-aim_exerclse number participate in exercise 'number"

-output name write output to file 'name'

-input name read additional input from file name*

-testrun number perform a test run (not connected to network) for-number"
seconds

-fAnalData on/off turn on/off all other flags

-fVehlcleData on/off turn on/off writing data for vehicles

-IMlneflildData on/off turn on/off writing data for minefield stats

-ISAODsta on/off turn on/off writing data for SAO activity

-fSensorData on/off turn on/off writing data for sensor activity

-fControiData on/off turn on/off writing data for control activity

-fMunitionData on/off turn on/off writing data for control activity

-fPDUData on/off turn on/off writing data for PDU activity
"+ -vehicle number reed "number" vehicle descriptions

"+ -minefield number read *number' minefield descriptions

* + -reset reset host for next run (no value is entered)
+ / text comment, written to output
1+ text comment, ignored

+ available only from input fies

Some commands are available only from input files (not the UNIX command line

that launches the smshost), and in general setting inputs from a command file can reduce

errors or omissions even for standard runs. Thus, the smshost might often be launched

with the command

Ssmshost -input inputfile

The available commands are:

-terrain tdbname

The smshost constructs the full path name of the compact terrain database
from the name given as the value of the -terrain command. The
constructed full path name is:

/usrlsaflterrainhdbname/tdbname.ctdb

-sim.exercise number

The exercise number, which must be between 1 and 255 inclusive.

-output name

A filename to use for output. Output is directed to this file as soon as the
command is processed, so in general this command should precede any

25

command that generates output (e.g., the -terrain command writes the

name of the terrain database).

-input name

When this command is encountered the file is opened and read immediately,
before any additional commands in the current input stream (except if a
-reset command is encountered, as described below). Input files can
include -input commands, so that input can be nested.

-testrun number

The smshost operates in test mode, independently of the network. Number
is the duration of the run, in seconds. All vehicles and minefields used
during the run are specified by following -vehicle and -minefield
commands. The test mode is described more fully in subsection 3 below.

-fAnalData on/off

Turns on or off all of the other output flags described below.

-fVehicleData on/off

-fMinefieldData on/off

-fSAOData on/off

-fSensorData on/off

-fControlData on/off

-fMunitionData on/off

-fPDUData on/off

These commands turn on or off flags that control smshost output. Output
will be written to a file if the -output command is used to specify the file,
otherwise it will be written to the default output (terminal).

-vehicle number

The -vehicle command is available only from input files, and only during a
test run (after the -testrun command is processed). Number specifies the
number of vehicle descriptors to read, which must immediately follow the
command line (but which may be interspersed with comment lines). The
format of the vehicle descriptor and other aspects of the test mode are
described in subsection 3 below.

-minefield number

The -minefield command is available only from input files, and only
during a test run (after the -testrun command is processed). Number

26

specifies the number of minefield descriptors to read, which must
immediately follow the conmmand line (but which may be interspersed with
comment lines). The format of the minefield descriptor and other aspects of
the test mode are described in subsection 3 below.

-reset

The -reset command is available only from input files, and only during a
test run (after the -testrun command is processed). When the reset
command is encountered, reading from the file containing the -reset stops,
the run is made, and then input resumes for an additional run. If input
streams are nested only the input from the file containing the reset is
stopped, and input from higher level files continues. Thus, for example, if
the launch command line is:

smshost -input name] -input name2

and the file name 1 contains a reset, processing the command line continues
following the -reset command and file name2 is read. (Only one reset file
is remembered so that if file name2 contains a reset, file name 1 is never
finished.)

/comment

Echo the line to the output file.

*comment

Ignore the line.

3. The Test Mode

The primary purpose for incorporating a test mode was for software development,
but it has been left in the deliverable version so that new installations can test the smshost
operation before actual exercises. In the test mode, minefields and vehicles are created
from input data (rather than from messages received from the smsgui and external
simulators). The test mode is initiated using the -testrun input command, and vehicles
and minefields are input using the -vehicle and -minefield commands described above.

The number following the -vehicle command specifies the number of vehicle
records to read, which must immediately follow the command (but which may include

nomments on lines starting with / or *). A vehicle record describes a single vehicle, and
consists of a line describing the vehicle type and initial position and velocity, and zero or
more lines describing changes to the vehicle velocity. The association between the input

27

fields (environment, class, etc.) and the vehicle type is described in the SIMNET protocol
sc ao7 The vehicle record has these fields, separated by spaces or tabs:

* vehicle ID

e environment

* class

*country

* series

• model

* function

* force

* duration (life, in seconds)

• location (x, y, and z coordinates in successive fields)

"* velocity (x, y, and z components in successive fields)

"* the number of motion changes, to follow on successive lines.

Each motion change is controlled by a line with these fields:

• time (in milliseconds)

• velocity (x, y, and z components in successive fields).

The number following the -minefield command specifies the number of minefield

records to read, which must immediately follow the command (but which may include

comments on lines starting with / or *). A minefield record is a single line describing the

minefield, followed by one line for each mine in the minefield. The minefield record has -

these fields, separated by spaces or tabs:

* name

"* minefield ID number

"* number of vertex points

"• time (not used)

"* force

"• output channel number (not used)

* number of mines (each defined on a following line)

7 The SIMNETNetwork and Protocols, BBN Systems and Technologies Report 7627, June 1991.

28

Svertex points (x and y coordinates in successive fields, with all points on the
same input line).

Each line defining a mine has these fields, separated by spaces or tabs:

* mine ty*

* identification number

0 location (x, y, and z coordinates in successive fields)

* iniial state.

D. WORKING WITH SIMNET

This section describes important considerations to be aware of when using the SMS

in an exercise.

1. The two executable programs of the SMS must be run on separate machines.

The two programs, smsgui and smshost, are both SIMNET applications that read
and send messages on the network, and with the current SMS design each must be a

separate network node. This is also true of SAP version 4.3.3, so that if the SMS and the

SAF are used in the same exercise four machines will be required: one for each of the two
user interface programs and one for each of the two host (or back-end) programs.

The smsgui must know the Simulation Address of the smshost. The sms.lisp file

gives this information, as explained in Section B.2.

2. All mines use previously defined burst descriptors.

0 Burst descriptors are used to define how a fire or burst is displayed, and how a

target assesses damage. The burst parameters used in the SMS are defined in the param.cc

file, and the current version uses the same descriptor types for all mines (see Appendix C).

In any exercise the appropriate burst descriptors to use for mines must be considered, and
* in general descriptors that are used elsewhere in the exercise should not be used for mines.

3. SAP lethality tables can be modified for burst descriptors used by mines.

The SAP maps burst descriptors into munition categories as specified in the file

* damage.map.lisp, and the tables of Pkill/hit for the munition categories against SAP
vehicles are in the file df damg.lisp. The PUMi/hit tables are indexed by impact part (hull

or turret), impact location (front, side, back, or top), angle of incidence (300, 600, or 900),

and type of kill (catastrophic, mobility, or firepower), so that there are 72 Pkill/hit

* probabilities for each munition category against the following vehicle types: tank, IFV,

29

infantry, helicopter, and airplane. The SMS specifies the same impact geometry for each

hit, currently defined in the param.cc file to be in the hull area, at the back, at a 90* angle of

incidence. Therefore there are nine relevant Puaft values for each munition category that

is used: the conditional probabilities of catastrophic, mobility, and firepower kill against

tanks, IFVs, and helicopters hit in the back of the hull at a 900 angle of incidence. For use

within IDA, SAF vehicle vulnerability tables have been modified to reflect desired lethality

characteristics.

4. New PDUs have been defined and are not understood by other simulators or

SAF.

The five new PDUs are summarized below and are discussed in Appendix B.

These PDUs are defined in the file p.sms.h.

Emplacement For each minefield emplaced by the operator, one or
more of these PDUs describes the minefield
perimeter and the location, type, and state of each
mine in the field. The maximum number of mines in
one emplacement PDU is 14, and in the current SMS
only one PDU is sent for each minefield (future
versions will allow more mines to be placed in each
minefield by sending additional PDUs).

Radio Message Defines a new state (ON or OFF in this version) for
one mine or for all mines in a field.

Minefield Status Describes the number of mines in the field that are:
alive, engaged (a subset of alive), exploded, or dead
for reasons other than having exploded. Issued
every 5 minutes.

Mine Appeance Describes the type, emplacement time, and
appearance (deployed, exploded or activated) for
each mine. Sent every 30 seconds.

Mine Status Provides information on vehicles tracked and launch
decisions. Issued every 5 minutes.

In this version of the SMS, emplacement and radio message PDUs are sent from

the user interface program to the host program. The remaining three PDUs are created by

the host program at 30-second or 5-minute intervals as described above and are sent to all

simulators on the network. The intent is to make these PDUs available to a Logger

program so the information can be used in the data analysis phase after an exercise.

Since neither manned simulators nor the SAF understands these PDUs, the mines

emplaced with the SMS are invisible to all other simulators and to the SAF, with a possible

30

exception noted below. In addition, the SAF has no behavior for responding to the

presence of mines.

The SMS host program does issue an existing PDU describing the minefield

density. This is the minefield variant of the simulation PDU. The SIMNET protocol

specification' states that "a simulator receiving a Mine Field PDU may use the information

to depict the mine field." However, at this time there are no simulators that display

minefields.

• 8 The SIMMET Network and Protocols, BBN Systems and Technologies Report 7627, June 1991, p 95.

31

IV. MINE MODELS AND ALGORITHMS

The mine models used in the SMS are intended to capture the general characteristics

of the developmental landmine systems, but not the engineering details. The SMS is not

intended to model mines in sufficient detail to be a tool for engineering development or

assessing single engagement performance. Instead, the philosophy has been to develop

mine models consistent with the nature of SIMNET and the intended use of the SMS:

assessing the battlefield effects of mines.

A. BASIC OPERATION

1. Stand-Alone Objects

All mines comprise three components: a sensor, a control unit, and a munition. For

indirect-fire mines, the munition component launches a sublet that itself contains these same

three components. The mines and flying sublets are called Stand-Alone Objects or
SAObjects, and are the basic objects simulated in the SMS. This section describes general

SAObject characteristics, with detailed variations for each SAObject type described later.

During each time cycle of host operation (every 1/10 second) each SAObject is

asked to perform an update. Since not every SAObject needs to operate at this rate, the first

thing each object does during an update is to check whether it needs to perform one at this

time. If not, it does nothing. If so, the update consists of:

* updating the sensor component, which produces a list of potential targets

* updating the control component, which processes the potential target list and
determines whether any action is taken

• updating the munition component, which acts on any decision made by the
control component.

All mines (but not sublets) have a fixed life span, intended to represent battery life.

This power/life is used up at a constant rate whenever the mine is on.

Some of the logic controlling SAObjects and their components is based upon the

state that the object is in, and the state is also output to help the analyst understand what is

happening within an SAObject. The possible SAObject states are:

33

dead battery - the power life of the mine has been used up. This state is

used only for mines, not sublets.

* expended - the SAObject has exploded or fired its munition.

* off - the mine has been turned off. This state is used only for mines, not

sublets.

* active - the SAObject is on and operating normally.

"• detecting - the sensor is detecting a vehicle. As discussed in the following
section, this does not necessarily mean that a real sensor would be detecting a

vehicle. Sensors that instantaneously trigger an attack, such as proximity
sensors used by conventional mines, are modeled as tracking nearby vehicles.

" engaged - the exact meaning of this state varies by SAObject, but in general it
means that the control unit of the object has selected a primary target, or that a

potential target is close enough to satisfying the attack criteria that frequent
updates are called for.

In addition to these SAObject states, each component of an SAObject has a state. In

general the state of the SAObject is determined by the states of its components, except that

the dead battery and off states are controlled by the SAObject itself.

When the -fSAOData flag is set, each SAObject writes its state whenever a change

occurs.

2. Sensor Components

The primary function of the sensor component is to produce a list of potential

targets for the control component. Each entry in the list identifies a vehicle and certain

properties associated with it such as its position, velocity, and type.

The list does not necessarily correspond to what an actual mine or sublet sensor

would produce. For example, a conventional buried mine does not keep track of targets,

but merely explodes when it detects one. Nonetheless the SMS conventional mine model

ki •.ps a list of vehicles close to it. (The control component causes the mine object to use a

higher update rate when a vehicle is close, so that one does not pass over the mine between

updates.)

The criteria used to test for inclusion in the target list vary, but typically there is a

range test (for close vehicles) and a type test (for certain vehicle types, e.g., helicopters for

AHMs). The list is ordered, again with the ordering determined by the SAObject type, but

generally closer vehicles are listed first.

34

The way a sensor classifies vehicle types varies, with sensor classifications defined

according to the SAObject requirements or the characteristics of actual sensors. For

• example, conventional mines do not detect air vehicles, and different types of ground
vehicles are typically of different size so that the effective "range" of the mine varies. The
categories of vehicle types used for the conventional mine are tank, APC, other ground
vehicle, and other (not sensed).

In general, errors associated with SAObject operation are modeled in the sensor
component. Not all sensors use all types of errors, but there is a consistent way to apply a
type of error for those sensors that use it. All errors are defined once at the time a vehicle is
added to the sensor list (rather than being independently determined during each update
cycle). The error types include:

" Classification errors:

Some sensors have a probability of thinking that one type of vehicle (e.g., a
tank) is something else (e.g., an APC). In no case is the confusion too great -

0 a tank is never mistaken for a helicopter. If the sensor estimates target range,
the range error is larger if there is a classification error.

" Range and velocity errors:

Sensors that estimate range all have a range error. This is applied as a
multiplicative factor (e.g., the estimated range is 1.1 times the true range).
The initial value of the multiplier Er is randomly drawn from a uniform [1.0,
1.0 + e] distribution, where e is the maximum error size. Then with 50%
probability it is inverted (Er = 1.0/Fr). If there is an error in classification, it
is multiplied by another error factor.

Velocity errors are determined similarly. The value of the velocity is not
correlated with the range error, but if the range error is inverted so is the
velocity error.

* Azimuth errors:

Sensors that produce target location estimates based on acoustic sensors have
azimuth errors. These are drawn from a uniform [-e, e] distribution and added
to the actual target azimuth. They are not correlated with other errors.

The possible states of the sensor are:

"* on - the sensor is on and operating normally, but not detecting vehicles

"* tracking - the sensor is detecting one or more vehicles.

When the -fSensorData input flag is set, each sensor component writes
information whenever significant changes occur. These data consist of sensor state

35

changes, vehicles added to the fist, vehicles deleted from the list, and changes in the first

vehicle on the list.

3. Control Components

The control component examines the sensor's vehicle list and determines whether to
take any action. The nature of the decision process varies widely for the different
SAObjects. If it makes a decision to fire, it produces the necessary information (such as
fire direction for the indirect fire mines) for the munition componenL

The possible states of the control unit are:

a on - the controller is on and operating normally, but has not selected a target
"* inhibited - the controller is inhibited because of one or more friendly vehicles

in the area

"* engaged - the controller has selected a target.

When the -fControlData input flag is set, each control component writes
information about its processing.

4. Munition Components

The munition component performs the appropriate attack on the target, e.g.,

launching a sublet using the launch parameters received from the control component.

The possible states of the munition are:

a on - the munition is on and operating normally, but not attacking a target

* hit target - the munition has hit a target (direct fire weapons only)

* expended - the munition has attacked a target.

When the -fMunitionData input flag is set, each munition component writes
information whenever its state changes.

B. CONVENTIONAL MINE MODEL

The SMS currently has only a single, generic conventional mine model representing
a landmine with a proximity sensor. Basically, when a vehicle encounters the mine, it
explodes. The tracking behavior of the sensor is required by the software design rather
than for conceptual reasons, primarily to allow the state of the mine to be updated less
frequently when no vehicles are near.

36

1. Sensor

The sensor classifies vehicles as tanks, APCs, other ground vehicles, or other (not

ground). It lists all ground vehicles within a specified detection range, and sorts them in

increasing (horizontal) range order. There are no sensor errors.

2. Control

The control component determines if the first (closest) vehicle is within the kill
range for that vehicle type. Since both mine and vehicle locations are represented as points,
the kill range represents half the width of the vehicle. Thus, a 2-meter kill range for tanks

represents a 4-meter effective tank width. The "engaged" state means that a target is in kill
range, so that it will always occur in conjunction with the munition and SAObject states
changing to expended.

3. Munition

The munition always hits the target, sending appropriate messages.

C. WIDE AREA MINE MODEL

The WAM model fires a sublet at a target, as does the actual the WAM now under
development. It has a smart sensor that estimates vehicle range and type, and basically
tracks a target and fires to intercept at the closest point of approach (CPA). (The actual
WAM is planned to use a more complex firing algorithm designed to optimize the

sublet/target geometry.)

1. Sensor

The WAM sensor model is intended to represent a sensor that can follow the
loudest vehicle sounds that it hears, and that further can distinguish between the sounds of
tracked and untracked vehicles.

The sensor classifies vehicles as tanks, other tracked vehicles, heavy wheeled
vehicles, light wheeled vehicles, and other (not ground vehicles). The SIMNET vehicle
identification codes are somewhat different and in some cases the WAM sensor examines
the vehicle function in making its classification (e.g., an unarmored wheeled vehicle that

functions as a rocket launcher is classed as heavy). The classification is subject to errors,
but only within the tracked or wheeled vehicle types and not between them. For example, a
heavy wheeled vehicle might be classed as a light wheeled vehicle but not as a tank.

37

Only ground vehicles within the detection range for their class are included in the
vehicle list, which is sorted according to decreasing "loudness." Scaling factors are used to
adjust for loudness differences between the different vehicle classifications (e.g., a light
wheeled vehicle is assumed to be as loud as a tank 2.5 times as far away). Range and
azimuth errors are applied to the vehicle position, with a larger range error used when an
error occurs in the vehicle classification. These range adjustment factors are purely
arbitrary (and subject to change), but are included for the purpose of ranking targets.
Thus, a fight wheeled vehicle will not be ranked higher than a tank unless the tank is more

than 2.5 times as far away.

2. Control

The WAM controller looks at the first two listed vehicles (the two loudest), and, if

one has an estimated CPA within the maximum weapon range, selects a primary target.
The first one is the preferred target, unless it is a light wheeled vehicle that is not within the

close-in fire range of the mine, and the second is a heavier vehicle (and has a CPA within

the maximum weapon range).

If a primary target is found, the controller computes a time to fire based on the time
it will take the target to get to the CPA and the time of flight of the sublet. When the
estimated delay to fire is less than the normal update cycle time (1 second), the control state
is set to "engaged" and the update interval set to the engagement interval (1/10 second).

When the delay to fire is less than the engagement update interval, the controller tells the
munition to fire the sublet at the CPA. The normal firing logic is overridden when a vehicle
reaches a close-in range representing the minimum effective range of the WAM. In this

case, the sublet is fired directly at the vehicle.

3. Munition

The munition fires the sublet in the direction of the CPA.

D. INDIRECT FIRE AHM MODEL

Like the WAM, the indirect fire AHM (Ahmlnd) has a smart sensor that follows

and classifies targets, and fires a sublet at the target.

38

1. Sensor

The AHM systems under development require very precise vehicle classification,
with specific helicopter types (e.g., HIND, COBRA) identified according to their acoustic
signatures. The SMS sensor model, however, merely classifies vehicles as friendly
helicopters, enemy helicopters, and other (not a helicopter).

* There are three types of classification errors: identifying a friendly as an enemy,
identifying an enemy as a friendly, and identifying the type of enemy helicopter incorrectly.
The reason for including an error for identifying an enemy as the wrong type is that range
error estimates are likely to be larger in this case. A similar error for misidentifying

* friendlies is not needed since they are never fired at. There are also range and azimuth
errors, but no independent elevation error. (Note that a range error will result in an
incorrect altitude estimate, however.)

The sensor fists all helicopters within the detection range for their class, sorted
* according to range.

2. Control

The control component looks at the entire sensor list, and if there is a friendly on
• the list inhibits further processing. If there are no friendlies, it selects as its target the first

on the list (i.e., the closest) that has a CPA within its lethal envelope. The lethal envelope
is based on the Textron AHM design in which the sublet can be fired at a normal elevation
angle (450) to achieve maximum range, or at a higher elevation angle (800) for shorter

* range, higher altitude targets. The result is a cylinder with a conic "hat" over the center.

If a target is selected, launch parameters are found from lookup tables. These tables
are based on early Textron data analyzing intercept geometries. Without going into great
detail, simply firing the sublet at the CPA will not work since the sublet sensor does not

0 look straight ahead but instead scans a circular pattern around its central look angle. The
tables are entered with CPA horizontal range and target velocity, and produce a firing range
and lead angle.

An estimate of delay before firing is made, and when this delay becomes less than
the normal update interval the control state is set to "engaged" and the update interval is set
to the engagement update interval. When the delay becomes less than the engagement
update interval, the controller tells the munition to fire. The high launch elevation angle is
chosen for close, high altitude CPAs.

39

0

3. Munition

The munition fires the sublet in the indicated direction.

E. DIRECT FIRE AHM MODEL

The direct fir AHM shoots directly at a target, rather than launching a sublet that in

turn fires at the target.

1. Sensor

The sensor is the same as the indirect fire AHM sensor. The actual direct fire AHM

under development by Ferranti includes a second sensor (IR) to control firing, but in the

SMS the effect of this sensor is included in the control model.

2. Control

The control looks through the entire sensor list, and inhibits fire if there is a

friendly. Otherwise, it goes into "engaged" mode if there is a target within engagement

range, and tells the munition to fire if there is a target within its kill range and in the line of

fire (a 450 elevation angle). The condition of a target being in the line of fire is determined

by consecutive target elevation angles crossing the firing angle (e.g., one slightly less than

450 and the next slightly greater).

3. Munition

The munition fires at the target, and either hits or misses based on a hit probability

parameter.

F. WAM SUBLET MODEL

The WAM sublet under development is designed to spin rapidly around its vertical

axis, and has a seeker that looks down at a fixed (350) angle from the vertical. When

combined with the motion of the sublet, the resulting sensed path on the ground

approximates a moving circle with increasing radius as the sublet goes up and decreasing

radius as it descends. The total ground area covered approximates a long oval. When the

IR seeker sees a target, the sublet fires an explosively formed penetrator.

The SMS WAM sublet model follows a ballistic flight path, neglecting drag.

40

The update interval for a WAM sublet is always short (1/10 second), and the sublet

always receives priority processing to ensure that it will be updated every processing cycle.

1. Sensor

The sublet sensor lists all ground vehicles within a detection range great enough to

include all nearby potential targets, in increasing horizontal range order. There are no

sensor errors.

2. Control

The control looks through the entire sensor list, determining if any vehicle is in the

line of fire. It determines this by examining target elevation angles in consecutive updates,

and seeing if they cross the firing angle (350 off straight down). The "engaged" state is

entered only when a target is attacked.

3. Munition

The munition fires at the target, and either hits or misses based on a hit probability

parameter.

G. AHM SUBLET MODEL

The AHM sublet follows a ballistic flight path, neglecting drag, and fires a

fragmentation charge when it sees a helicopter. The actual sublet under development has a

sensor that looks at a spot 450 away from its central look direction, which is always

horizontal for a normal launch angle and 350 above horizontal for a high altitude launch

angle. The sublet spins rapidly, yielding a spiral search pattern that moves along the flight

path.

The update interval for an AHM sublet is always short (1/10 second), and the sublet

always receives priority processing to ensure that it will be updated every processing cycle.

1. Sensor

The sensor lists all helicopters whose range component along its look direction is

greater than zero and within a detection range that is somewhat greater than its effective kill

range. There are no sensor errors.

41

2. Control

The control looks through the entire sensor list, attacking the first vehicle within

firing range and in the line of fire. It determines the line of fire by examining the angle

between the look direction and the target in consecutive updates, and seeing if they cross

the firing angle (450). The "engaged" state is entered only when a target is attacked.

3. Munition

The munition fires at the target, and either hits or misses based on a hit probability

parmater.

42

0

0

0

APPENDIX A

0
INSTALLATION AND COMPUTER REQUIREMENTS

0

0

0

0

0

0

0

APPENDIX A

INSTALLATION AND COMPUTER REQUIREMENTS

A. HARDWARE AND SOFTWARE REQUIREMENTS

The SMS runs at IDA on two SGI workstations, either Indigos or Indigo Us. Both

the smshost and smsgui are distributed as executable files that can be run without

modification (or recompiling) on these computers.

Since the graphical user interface program is based on the SGI version of the SAF

4.3.3 user interface, it has similar hardware requirements: an SGI workstation with 16

MB of memory and an 8 bit color display. It is written in C using Motif (X IIR5). The

host program's minimum memory requirements are unknown; it will easily run on an SGI

capable of running the SAF 4.3.3 front end or back end. It does not require a color

display. The host program is written in C++ (R 3.01) and C. Both the host and user

interface programs use SIMNET 6.6.1 protocols.

Compiling and linking either the smsgui or the smshost requires the SAF 4.3.3

developer's libraries of include files and object files. The specific libraries are found in the

make files, make.smshost and make.smsgui, and are discussed in more detail in

Section B, Installation Procedure.

It should be possible to compile, link, and execute the SMS on other UNIX

workstations that have a SAF 4.3.3 developer's library, but this has not been tested.

B. INSTALLATION PROCEDURE

The SMS is delivered on tape in a tar file. To install the SMS, you will read the tar

file from the tape and untar the file. This will create several subdirectories, shown in

Figure A-1. The top level subdirectory, sms, contains only two directories, gui and host.

In gui, you will find the source code, include files, make file, and executable for smsgui.

In host, you will find the corresponding files for smshost. In addition, host contains four

subdirectories of test files. There is one subdirectory for each mine type, with four files in

each subdirectory. The test files are explained below in Section C, Testing New

Installations. Table A-1 lists the files in each directory.

A-1

urns

gui host

cony diahm alaum siahrn

Figure A-1. SUS Directory Structure

Table A-1. SMS Directory Contents

directory

g control.c mainxc simnnet.c sms minsfield.h
*xec.c make.contig sMS.Iisp sms~points.lisp
framnes.c make.smsgui sms-aroaxc SMagul
graphic.c overlay.c SMS-emplac..c typo~const.h
graphuc.h P-SMS.h sins-mmnefield.c xinit.c

host
assoc.hjnod cSAObject.h input p..sms.h
cControl.cc cSonsor.cc Ilbctdb.h-mod paramn.cc
cContral.h cSonsor.h Iist.cc simman.cc
cMineocc cSublet.cc Iist.h simman.h
cMine.h cSublet.h main.cc smahost
cMunition.cc cTest.cc mako~smshost type..const.h
cMunkiton.h cTest.h minetwied.cc vehman.cc
cPorformer.h cTrackfileocc minsfi.Id.h vehman.h
cPowerSupply.cc cTrackfile.h netman.cc
cPowerSupply.h global.cc netman.h
cSAObjoct.cc global.h network~h..mod

host/cony
Convkf Array TestConv TestConv~out Ida VohST5

host/dfahm
DfAhmArray TestDfahm Testl~fahm.out-ida VehSH2O

hoost/loa m
SlaarnikArray TastSlaamn TestSlaam.out-ida VehSTS

host/slab m
SlahmArray TestSlahmn TestSlahm.out-lda VehSH2O

Ile remainder of this section describes the installation procedure in miore detail.

A-2

1. Read the contents of the distribution tape. If the tape drive is on another

networked computer, use the appropriate form of the command sequence in brackets.

tar xv[f guest@system :/dev/tape] sms.tar

2. Untar the sms.tar file. Since this command will create several subdirectories,

make sure you are in the directory from which the new subdirectories should be created.

tar xv sns.tar

3. Optionally, compile both programs. This is not required since the user

interface and host programs, smsgui and smshost, are included in the tar file and should at

this point already be in your directory.

Before compiling the SMS programs, you should ensure that the path names

specified in /sms/gui/make.smsgui and /sms/gui/make.smshost for include and

object files are appropriate for your machine.

If you want to compile the user interface or host programs, you should first copy

the existing versions to different files. To save the old and compile a new smsgui, from

/sms/gui type:

cp smsgui smsgui.old

make -f make.smsgui

To save the old and compile a new smshost, from /sms/host type:

cp smshost smshost.old

make -f make.smshost

4. Copy one or both programs to another workstation, using an appropriate utility
such as FTP. The smsgui requires two input files, sms.lisp and sms points.lisp, in
the same directory it is in. If you move smsgui to another machine, move these files also.

In addition the snisgui will read several lisp files from /usr/saf/config.

5. Create the link between the user interface and the host program.

During execution, the smsgui will read the sms.lisp file and it expects to find the

following two lines of text:

(sinshost site sitenumber)

(sinshost host hostnumber)

A-3

The site and host numbers refer to the Simulation Address of the computer where

the host program will run. These are typically found in a file named assoc.def on the

host program's computer.

You should now test the programs to ensure that they are working correctly. The

smsgui should be tested by creating practice minefields according to the directions given

earlier. The next section describes a special testing procedure for the smshost that can be

used in addition to practicing with the smsgui.

C. TESTING NEW INSTALLATIONS

As described in Section lI.C above, the snishost has a test mode that has been used

for developing and testing. Several test files are included in the software distribution, that

new installations can use to test the smshost in a stand-alone mode.

There is one test case for each mine type. The files for each test case can be found

in the four subdirectories of sms/host: conv for conventional mines, dfahm for direct fire

AHMs, slaam for sublet-launching antiarmor mines (WAMs), and slahm for sublet-

launching AHMs.

Each test subdirectory contains four files, three input files and one output file for

the test case when run at IDA. The specific file names are shown in Table A-2. The three

input files contain contain the minefield and mine descriptions, the vehicle descriptions, and

commands for executing the test case. Note that the terrain database specified in the

command file is for Ft. Hunter-Liggett, which you will need to change if you do not have

this database.

Table A-2. Test Case File Names

Mine Type Minefield File Vehicle File Command File Output File

Conventional ConvMtArray VehST5 TestConv TestConv.outida
Direct Fire AHM DfAhmArray VehSH20 TestDfahm TestDfahm.outida

Sublet-launching AAM SlaamMfArray VehST5 TestSlaam TestSlaam.outida
Sublet-launching AHM SlahmArray VehSH20 TestSlahm TestSlahm.out ida

To execute a test case you should be in the appropriate test subdirectory. Then,
type:

../smshost -input Tesmxxxx

where Testx.x is the the name of the command file. During program execution, the

smshost will write progress information to default (screen) output and, in addition, will

A-4

create a new output file. The new output file name will be similar to the test output file

name shown in Table A-2, without the "ida" terminatiun. You can now compare the new

output file with the one created at IDA. In general there should be some differences

attributable primarily to timing variations. Timing differences of 1/10 second are not

significant.

0

0

A-5

I0

APEDIe

I M PU

0°

0

0.

APEDI

0 M PU

0 .. .•

APPENDIX B

SMS PDUS

The SMS PDUs are defined in the C language and C++ language compatible header

file psnms.h. The PDUs use the same structure and many of the same data elements as

SIMNET PDUs as defined in the SIMNET protocol specification.9 The purpose of this

appendix is to give a verbal description of the fields used in the SMS PDUs. The specific

values for some constants used in the PDUs (e.g., SAObject state) are defined in the file

typeconsth. Excepts from these files are shown in this type face: Courier.

A. TYPE CONSTANTS

/* start numbering of SAO types with zero and continue more or less
consecutively; these types are used to index an array in c~inefield*/

enum TSAObject I
SAObjectTypelrrelevant M 0,
kSAOTypeConv = 1,
kSAOTypeAhmlnd - 2,
kSAOTypeAhmDir - 3,
kSAOTypeWAM - 4,
kSAOTypeSASensor - 5,
kSAOTypeACU = 6,
kSAOTypeRelay = 7,
kSAOTypeWAMSublet W 8,
kSAOTypeAhmSublet - 9,

maxSAObjectTypes - kSAOTypeAhmSublet
I;

/* start numbering of SAO states with zero and continue more or less
consecutively; these states are used to index an array in cMinefield*/

enum ESAOState I
/* the ordering is important for tests of working/sensing */

esaosFailed - 1,
esaosDeadBat - 2,
esaosSelfDest - 3,
esaosExpended = 4,
esaosoff - 5,
esaosLow = 6, /*low duty cycle, not now used */
esaosActive = 7, /* regular duty cycle eg 1 sec for WAM*/

9 The SIMNETNetwork and Protocols, BBN Systems and Technologies Report 7627, June 1991.

B-1

esaosDetecting - 8,

esaosEngaged - 9, /*high duty cycle, eg 1/10 sec */

esaosLowestWorking - esaosLow,

maxSAObjectStates - esaosEngaged
1;

enum TiineAppearance (Deployed - 0, Exploded, Activated };
/* mine appearance activated used when AHMDirect is spinning
or Indirect is erect */

enum TRadioMsg [SmsConmandMsg - 1, SmsStatelsg, SmsSensorMsg);

enum TSmsComzand 3 saocmdOn - 1,
saocmdOff,
saocmdSelfDestruct,
saocmdFire);

enum TCommandMode I ConmnandModeIrrelevant - 0,
Remote - 1, Autonomous - 2, /* meaning?*/
HoldFire - 10, WeaponsFree - 11, /* mines */
Report - 20, Quiet - 21 1; /* sensors */

B. THE SMS PDU FAMILY

All SMS PDUs are variants of the basic PDU structure, defined consistently with

the SIMNEr simulation and data collection PDUs as:

typedef struct SmsPDU
I

SmsProtocolVersion version;
SmsPDUKind kind;
ExerciseID exercise;

/* padding */
unsigned char unused_1;
unsigned long unused_2;
union
4

MinefieldEmplaceVariant minefieldEmplace;
HinefieldSAObjectVariant minefieldSAObject;
MinefieldRadioMsgVariant minefieldRadioMsg;
MinefieldStatusVariant minefieldStatus;
SAObjectStatusVariant SAObjectStatus;

} variant;
} SmsPDU;

Table B-1. SMS PDU Fields

field definition

version SMS protocol version number. Version 1 (smsProtocolVersionCurrent -1) is
described in this document.

kind The PDU variant Each variant is descibed in a separate section below.
exercise The exercise number the SMS is participating in.

B-2

C. MINEFIELD EMPLACEMENT PDUS

The minefield emplacement PDU defines overall minefield characteristics such as its

location, and defines up to 14 SAObjects in the minefield.

enum I maxSAOs - 14 1;

typedef struct EmplaceSAObject
I

TSAObject SAOType;
ObjectID SAONumber;
WorldCoordinates SAOLocation;
ESAOState initialState; /* limited to ACTIVE only */

| EmplaceSAObject;

typedef struct MinefieldEmplaceVariant

char fieldName[8] ;
ObjectID fieldID;
short nVertices; /* number of vertices used */
XYCoordinates perimeterVertices [maxk4inefieldVerticesj;
TTime emplacementTime;
ForcelD force;
ObjectID controlMCU; /* concept not yet implemented

though field is present here
and

in cMinefield.
Future: minefield will report
status back to HCU. */

short nSAOs; /* number of SAOs present in PDU*/
EmplaceSAObject SAO [maxSAOs];

} HinefieldEmplaceVariant;

Table B-2 Emplacement PDU Fields

field definition

fieldName Name the user gives to the minefield (up to 8 characters).

fieldlD ID number assigned by the SMS.

nVertices The number of vertices describing the minefield perimeter, up to 13.

perimeterVertices Array of perimeter vertices.

emplacementTime Time the smshost will emplace and activate the minefield. [Not used currently.)

force Force the mineifield belongs to. [Always distinguished currently.)

controlMCU Radio channel associated with reporting minefield data. [Not used currently.)

nSAOs The number of SAObjects in the minefield, up to 14.

SAO [maxSAOsJ Array of EmplaceSAObject structures defining the SAObjects.

B-3

Table 0-3 SAObjIc Emplacement Structure Fields

field dfnto
SAYO Teypeodtye
SAONumbor ID number asigned by the SMS.
SAOLocationTh Aodlctn
nintialStato initial state. always set to Active currently.

D. SAOBJECT PDUS

The SAObject PDUs are counterparts of VAPs. They identify the SAObject and
give its location.

typedef 3truct SAMineData
{

TltiraeAppearance appearance;
ISAMineData;

typodef struct 14inefieldSAObjectVariant

/* identity *
ObjectID SAObjectID;
ForceID force;
TSobject objectType;

1* appearance */
XYCoordinates location; /* do we really need WorldCoords? *
TTimke emplacement Time;
long padding; /* placeholder .*

union
I

SA~ineData mineData;
ISAObjectData;

H inefieldSAObjectVariant;

Table B-4 SAObject PDU Fields

field definition
SAObjectiD ID number assigned by the SMS.
force Force the SA~bject belongs to. (Always distinguished currently.)
objectType The SAObject type.
location Location.
emplaoementTime Time the SAObject (and minefield) was created.
mine~aa Mine appearence [deployed, exploded, or activated.)

B-4

E. RADIO MESSAGE PDUS

The only radio message that is currently implemented is an on/off command.

typedef struct CommandRadioMsg
{

TTime effectiveTime; /* for the action to occur */
/* not used in first version */

TTime endTime; /* if command has a duration */
/* not used in first version */

TSmsComnand command;
TCornandMode mode;
unsigned long unused[2]; /* possible future data field? */

ConmandRadioMsg;

typedef struct MinefieldRadioMsgVariant

ObjectlD sender;
TRadioChannel destination;
TTime sendTime;
TRadioMsg messageType;
union

Com•andRadioMsg command;
StateRadioMsg state; /* not yet implemented */
SensorRadioMsg sense; /* not yet implemented */

} radioMsgData;
} MinefieldRadioMsgVariant;

Table 0-5 Radio Message PDU Fields

field definition

sender Sending object ID.

destination Destination object ID.

sendTime Time the command is sent.

messageType Radio message type. [Only command messages currently implemented.]

command Command data.

Table 8-6 Command Structure Fields

field definition

effectiveTime Effective time. [Always now in current version.)

enclTime Duration of command action. [Not used in current version.]

command Command type. [Only on/off in current version.]

mode Not used in current version.

B-5

F. MINEFIELD STATUS PDUS

The minefield status PDUs are designed to provide data for later analyses.

typedef struct SAObjectCount
(

TSAobject SAObJectType;
short numAlive;
short numExploded;
short numDead;
short numEngaged;

SAObjectCount;

typedef struct MinefieldStatusVariant
(

ForcelD force;
ObjectID minefieldID;
char fieldName[8];
SAObjectCount SAOsuwmaryr(maxSAObjectTypes];
long unused_ 4[7)];

1 MinefieldStatusVariant;

Table 0-7 Minefleld Status PDU Fields

field definition

force Force the minefield belongs to. JAlways distinguished in current version.]

minefieldlD Minefield ID number.

fldNarme Minefisld name.
SAOsummary Array giving the number of SAObject of each type. indexed by state.

Table B-8 SAObject Count Structure Fields

field definition

numAlive The number of objects of this type that are alive.
numExpioded The number of objects of this type that are exploded.

numDead The number of objects of this type that are dead.

numEngaged The number of objects of this type that are engaged.

G. SAOBJECT STATUS PDUS

The SAObject status PDUs are designed to provide data for later analyses.

typedef struct MineData
{

ESAOState currentState;

long errors; /*not used in this version */
short vehiclesCurrent; /*currently tracked or engaged */
short vehiclesTracked; /*total over time*/

/* not used in this version */
VehiclelD vehicleAttacked; /*whether current or previous */

B-6

TTime attackTime;
long attackRangeEst; /* estimated at time of attack *
long attackRangeError;

*long attackAzEst; I' estimated at time of attack *
long attackAzError;
long attackCPA; /* estimated at time of attack ~
FireResult attackResult; /* ground, vehicle, or nonimpact *

I ineData;

typedef struct SAObjectStatusVariant

ForcelD) force;
ObjectID SAObjectID;
TSAObject SAObjectType;

/* doublecheck amount of padding needed after other data types *
/* are added to the union of specificData *

*long unused_3;
union

M~ineData mineData;
1* SASensorData sensorData; *

SAControlData controlData; *
1* SARelayData relayData; *

* I specificData;
ISAObjectStatu3Variant;

Table B-9 SAObJect Status PDU Fields

field definition
*force Force the SAObject belongs to. (Always distinguished in current version.]

SAObjectiD SAObject ID number.
SAObjectType SAObject type.
mine~ata Sturcture describing mine status.

Table B-10 MineData Structure Fields

field definition
currentState The current state of the mine.
errors Placehoider, not used inl current version.
vehiclesCurrent The number of vehicles being tracked.
vehiclesTracked Total number of vehicles that have been tracked. [Not used in current version.)
vehicleAttacked The ID of the vehicle that was attacked. Nf any.
attackTime The time of attack.
attackRangeEst The estimated range of the attacked vehicle.

* atackRangeError The range error value for the aftacked vehicle.
attackAzEst The estimate azimuth of the attacked vehicle.
attackAzError The azimuth error value for the attacked vehicle.
attackCPA The estimate CPA range for the attacked vehicle.
attackResult The result of the attack.

B-7

0

0

0

APPENDIX C

0
PARAMETER SUMMARY

0

0

0

0

0

0

0

APPENDIX C
PARAMETER SUMMARY

0• These parameters are defined in the file paranmcc.

Conventional mine:

component parameter Index value
• mine regular update interval 1 second

frequent update interval 1/10 second

lifespan 24 hours
sensor detection range 30 meters

control kill range tank 2 meters

* APC 1.5 meters

other ground 1 meter
munition burst type projectile 105APDS

detonator M739 155mm

C-1

WAM:

component parameter Index value
mine regular update interval 1 second

frequent update interval 1/10 second

lilepan 24 hours

sensor detection range tank 200 meters

APC 140 meters

heavy wheal 100 meters

light wheel 50 meters

loudness adjustment factor tank 1.0

APC 0.7

heavy wheel 0.4

light wheel 0.2

classification error probability 0.05

range error multiplier 0.1

azimuth error factor 0.06

velocity error multiplier 0.1

control maximum range 100 meters

close-in range 15 meters
munition launch burst type projectile TOW

detonator M739 155mm

WAM Sublet:

component parameter Index value

sublet regular update interval 1/10 second

horizontal velocity 28.84 meters/second
initial vertical velocity 22.84 meters/second

burst when hitting ground projectile TOW

detonator M739 155mm
sensor detection range 50 meters

control firing angle -55 degrees

munition fire burst type projectile TOW

detonator M739 155mm
impact burst type projectile 105APDS

detonator M739 155mm

hit probability 0.7

C-2

AHM Indirect Fire Mine:

component parameter Index value
mine regular update interval I second

frequent update interval 1/10 second

lifespan 24 hours
sensor detection range 2000 meters

classification error probability friend to enemy 0.01

enemy to friend 0.05

wrong enemy 0.03

range error multiplier for class 0.8
error

range error multiplier 0.1

azimuth error factor 0.06

velocity error multiplier 0.1

control maximum horizontal range 180 meters

cylinder altitude 120 meters

maximum altitude 180 meters

max range for high launch 120 meters

amin altitude for high launch 50 meters
munition burst type projectile TOW

detonator M739 155mm

launch angle regular 45 dog

high 80 deg

AHM Indirect Fire Sublet:

component parameter Index value

sublet regular update interval 1/10 second

0 horizontal velocity regular launch 26 meters/second

high angle 6.38 meters/second
launch

initial vertical velocity regular launch 26 meters/second

high angle 36.26 meters/second
launch

0 burst when hitting ground projectile TOW

detonator M739 155mm

sensor detection range 200 meters

control firing angle 45 degrees

maximum firing range 140 meters
0 munition fire burst type projectile TOW

detonator M739 155mm
impact burst type projectile 105APDS

detonator M739155mm

hit probability 0.8

C-

C2-3

AHM Direct Fire Mine:

component parameter Index value
mine regular update interval 1 second

frequent update interval 1/10 second

lifespan 24 hours

sensor detection range 2000 meters
classification error probabilty friend to enemy 0.01

enemy to friend 0.05
enemy to friend 0.03

range error multiplier for class 0.8
error
range error multiplier 0.1
azimuth error factor 0.06
velocity error multiplier 0.1

control fire angle 45 degrees

maximum firing range 100 meters
engagement range 300 meters

munition fire burst type projectile TOW
detonator M739 155mm

impact burst type projectile 105APDS
detonator M739 155mm

hit probability 0.8

C-4

APPENDIX D

APPROVED DISTRIBUTION LIST FOR IDA DOCUMENT
D-1452

APPENDIX D

APPROVED DISTRIBUTION LIST FOR

IDA DOCUMENT D-1452

Department of Defense Number of Copies

Departient of Defense
OUSD(AYIWP-LS
Room 3D139, the Pentagon
Washington, DC 20301-3071

A1TN: Mr. Andrus Viilu
Room 3B11060 1

Advanced Research Projects Agency
Correspondence Control, 8th Floor
3701 N. Fairfax Drive
Arlington, VA 22203-1714

A1TN: T. Hafer 1
J. Wargo 1
D. McBride 1
R. Murphy 1
A. Coonce 1

Defense Technical Information Center
Cameron Station
Alexandria, VA 22304-6145 2

Department of the Army

Department of the Army
Armament Research, Development, and Engineering Center
Central Mail Room, Bldg 1
Picatinny Arsenal, NJ 07806-5000

ATIN: SMCAR-ASH Ostuni B/i 1
Julie Chu 1

SMCAR-FSM-S Bldg 94
Wayne Ahlers 1
Kevin Wong 1

SMCAR-FSF-BD Bldg 95
Tom Peters 3
Israel Lorenzana 1
Mike Divincenzo 1

D-1

Commanding Officer
Department of the Army
USAADASCH
Fort Bliss, TX 79916

ATIN: ATSA-CDF, Maj Stephens

Commandant
USAES
Fort Leonard Wood, MO 65473-6620

ATIN: ATSE-QDA
David Lowenthal
Maj LeRoy Maurer

Department of the Army
Army Material Command
STRICOM
12350 Research Parkway
Orlando, FL 32826-3276

ATTN: AMCPM-TND-EC, Gene Wiehagen
AMCPM-CATr, Col Shiflett

Commanding Officer
Department of the Army
USA Belvoir RD&E Center
Fort Belvoir, VA 22060-5606

ATrN: SATBE-N Pam Jacobs
Hugh Carr

Commandant
Department of the Army
Field Artillery School
Fort Sill, OK 73503-5600

ATTN: ATSF-CBL

Commanding Officer
Department of the Army
USAIS
Fort Benning, GA 31905-5400

ATIN: ATSH-WC

Commander
Department of the Army
HQ TRADOC
Fort Monroe, VA 23651-5000

ATIN: ATCD-L
ATCG-S, Dr. Paul Berenson

Commandant
Department of the Army
USAARMC
Fort Knox, KY 40121-5000

ATIN: ATZK-MW

D-2

Director

Department of the Army
System Analysis Activity

0 Aberdeen Proving Ground, MD 21005
ATTN: Will Brooks

Commander
Department of the Army
MICOM
RFPI PRDJ Office
Redstone Arsenal, AL 35809

ATrN: AMSMI-RD-AS-IR BLDG 5400, Ms. Emily Vandiver

Other Organizations

* Lenl Training and Technical Services
2021 Blackhorse Regiment
Fort Knox, KY 40121

ATTN: Paul Monday

Mla Advanced Distributed Simulation
* 50 Moulton St.

Cambridge, MA 02138
ATTN: Dr. Andy Ceranowicz

Institute for Defense Analyses 30
1801 N. Beauregard Street
Alexandria, VA 22311-1772

D-3

