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I. INTRODUCT[ONI
This study is a sequel to earlier studies [1-2] performed at Aerojet Electronic Systems

I Plant under a previous contract with the Office of Naval Research to account for the contribution

of multiple scattering to microwave brightness temperature of sea ice and its snow cover. The

application of the distorted Born approximation in conjunction with the strong fluctuation theory

has led to calculated values for brightness temperatures in agreement with measurements from

sea ice and its snow cover at frequencies below 37 GHz [3-4]. However, at frequencies above 37

5 GHz, the distorted Born approximation overestimates the brightness temperature. This is due to

the fact that the distorted Born approximation accounts only for the singly scattered field.

Physical and mathematical arguments given in [1-2] showed that inclusion of higher order

multiple scattering would lead to more reasonable values for the brightness temperature at higher

frequencies where the multiple scattering is expected to be dominant.I
An extension of the distorted Born approximation was carried out [1] to include higher

order multiple scattering. Strong fluctuation theory was employed to derive a set of integral

p equations describing the second moment of the multiply scattered field for a multi-layered

anisotropic medium with planer interfaces. Various numerical considerations and the

£ programming of these equations on a digital computer to obtain numerical results were left to a

further study.I
The present study addresses those numerical problems and describes results obtained

from a computer program written to calculate brightness temperature of snow over ground. To

5 calculate emissivities based on the equations in [1], a number of five-fold integrals (three to

calculate second moments of the electric field and two to calculate the bi-static cross sections

3 from these second moments) needed to be evaluated in addition to solving a coupled set of

integral equations. This is clearly a large numerical problem requiring extensive computer
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resources. Fortunately, it was found possible to perform two of these integrals analytically, thus

reducing the problem to three-fold integrations and reducing the computational burden

considerably. In addition, maximum use was made of symmetries in the kernels in order to

simplify the integral equations to be solved.

To meet the objective of this study, Peake's formula is used in Sec.II to relate the

brightness temperatures to the bi-static cross sections associated with the multiply scattered field.

Then the symmetry characteristics of the medium are employed to simplify the relation between

the bi-static cross sections and the field second moment. The integral equations describing the

field second moment are stated in Sec.IH. The equations contain kernels with triple integrals.

One integral is over the medium depth. The second integral is over the spectrum of the

azimuthal wave number, and the third is over the difference between the heights of the Green's

function source points. Analytic evaluation for the integral over the higher part of the azimuth

wave number spectrum is performed. Also, the integral over the difference between the heights

of Green's function source point is carried out analytically. The integrals over the lower part of

the wave number spectrum and over the medium depth are carried out numerically.

1 In Sec.IV, the procedures applied to solve the integral equations are described and some

3 limitations of those procedures are pointed out. Finally in Sec.V, numerical results for snow

over a soil surface, illustrating the behavior of the brightness temperature as function of medium3 depth for different radiometer frequencies and polarizations, are given. Those results are

compared with corresponding calculations obtained via the distorted Born approximation.

5 In addition to the work explicitly contained in this report, the contract called for a critical

review of chapters in a planned monograph on sea ice (subsequently published in 1992 by the

I American Geophysical Union as" Microwave Remote Sensing of Sea Ice", edited by F. Carsey).

Two separate reviews, one for the preliminary draft of Chapter 10 (dealing with theory) and one
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reviewing the preliminary draft of the monograph as a whole, were written and provided to the

5 editor during the course of preparation of the monograph. A discussion of this work is not

included here.

I
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n. THE BRIGHTNESS TEMPERATURE ASSOCIATED WITH MULTIPLE

SSCATTERING

£ The geometry of the problem under consideration is shown in Fig. 1, where the snowpack

I is treated as an isotropic multi-layered medium with plane interfaces over a homogeneous half

space. The homogeneous half space stands for the ground. Since there is no adequate

5 information about the physical temperature profile within the snowpack, the latter is assumed to

be isothermal. Under this restriction the medium emissivity can be related to the random field bi-

5 static cross sections through Peake's formula [3];

I ~e.(UO) 1Iar) I a-jJsine do 411fah (ko, i) + Yah (ioJ)

I (1)

I where o (Oo, *o ) is the observation direction, a (a = v, h) is the sensor polarization, Ro(•o)

is the reflection coefficient, and I.,(I.,E), (q = v, h) is the bi-static cross section of the random

£ field in the T. direction with polarization a due to a plane wave propagating in k (0, ý) direction

5 exciting the medium. To examine the contribution of the multiple scattering to the brightness

temperature we write the random field asS
+ (2)

where , is the random field due to single scattering (distorted Born approximation), and ,

3 is the random field due to multiple scattering. Since the bi-static cross sections are proportional

to the intensity of the scattered random field from (2) we obtain,

I
I
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I

< IF,•r > = < I +.af > + < [-.al' >

3 (3)

Accordingly the bi-static cross section can be written as

3 y~(EoA )=T,(EoF )+"Y,( u,)

(4)I
The first term in (4) stands for the bi-static cross section obtained via distorted Born

approximation (single scattering). The second term is the bi-static cross section associated with

I the higher orders of multiple scattering. By substituting (4) into (1) the emissivity is reduced to

I ~e.(Fo)=eS(iFo)--*JJ SinWdd{Y(oWc+Y(o

I where,5

e e2S(o) 1 I-IR.(.s2- q ,T) + $(j.oE)

3 (6)

B is the emissivity obtained via the distorted Born approximation (single scattering).

1 Then by adding the effect of the earth atmosphere to (5), the brightness temperature of the

radiation leaving the earth surface at z = 0 in direction E. with polarization "a" isI
T.(Jo) = Ts (I.) - T' (fo)3 a

(7)
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II

where Ta(io) is the brightness temperature obtained via distorted Bom approximation (single

U scattering),

I ~Ts(E,)= e( 0  ,I~E~~Q 0I+j4 {YS (Ej ) +y(, YS (8).yE~i~d

and T'. ) is the multiple scattering contribution to the brightness temperature,£
TI (F 4 *J 17hko ) + 1(F.,T fTs - T,,y()) sinOdWd+

(9)

I
In (8) and (9) T. is the ground physical temperature and Ty(io) is the brightness

I temperature of sky radiation. In this study the ground physical temperatures is taken to be

I independent on 0 and +. The sky temperature is assumed to be a function of 0 only.

As we can see from (9), the contribution of multiple scattering to the brightness

temperature depends mainly on the difference between the ground and sky temperatures. At

microwave frequencies, the ground physical temperature is higher than the sky brightness

temperature. Accordingly, the higher order multiply scattered field tends to reduce the brightness

temperature. The reduction is proportional to the bi-static cross sections associated with the

multiply scattered field.

Eq. (7) gives the brightness temperature at the earth surface. When this radiation is

propagated through the atmosphere, it undergoes some modifications due to the atmospheric

attenuation and emission. These effects can be accounted for following the same procedures

reported in [2].
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S In (10), the bi-static cross sections are related the field second moment through the relation [1];

,([o0 k')= [k 2 cosO / (ncosOo)] bb I& dz" Aa(z',k,,k,)

iAt(z,k k) Fw(k,kY,z',)

3 (10)

3 where symbol * denotes complex conjugate, the Fb.(k,,kz' ,z") is the kt element of the two

I dimensional Fourier transform

3 F(k,kY,r,')= jdxdyC(I'-r"I)exp(ik.x+iky)< A.(r)g *..(r")>

I
C (JJ' -r~l) = < 4(e' ) 4, (" >

I (r')= AL / [1 + S AL]

U AL k( K - K')

I s = - 1 / (3 ko K.)

S~(11)

3 Here Ko is the quasi-static dielectric constant, K" [5] is random dielectric constant of the

medium, S is the coefficient of the delta function part of the Green's function and C (IF' -r'l) is

5 the correlation function.

In (10), Ak(Z' ,k,k,) is the ik element of the two dimensional Fourier transform of the

dyadic Green's function IF(F,r) with
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I(r,r (2x)72- dk. 7dk, A(z4kk,) exPfzIk(x - ) + k(Y - Y)+kz]})(12

2(12

S~~ks +-ky2 +÷k,2=fiko2

i •~~(i',k,,kV) =" App(Y',) PA + Ap.(Y',0) Ai + A4(Z' ,0)44 + Ap,(z',0) Z^A + A,,(i,O) zz

I (13)

IIn (13), p, +, andr i are unit vectors along the cylindrical coordinates, and

5 k 2 + k2 = p2', p = k. sin0

(14)

5 Due to the medium symmetry around z axis, (xy), (yx), and (z,y) components of the

field second moment dyad vanish. Thus as shown in [1],

Y' (T.,E) = (kocosO) 2 / (ncosOo) I dz' de" AO(z,O)A*" (z",O).

[sin2 Fn°(z' ,z") + cos 2+ F,(Z',z") ]

3 (15)

3� Y'(. 'k) -- ko/ Cos.) 0dz' Jdz" {Ar,(z',O)A*pp,(zi).(cos 2  O

+ sin2* F,,.(z,z" ) ] +cos* [ Ap(z',O) A*p,(z',O) F13.(Z'.

+ Ap(z' ,0) A*p(z" ,0) F31.(Z' ,z" ) ] + Ap(z' ,0) A* (zV' ,0) F33o(Z' ,z' )X

5 (16)

U
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Then by substituting (15) and (16) into (9) and performing the integration over d*, the

contribution of the multiply scattered field to the brightness temperature can be written as

x /2 0 0

T' .() k./(8n cOSOo) J sinOdA I dz' fd" I [F, .(i',,Y' ) + F.,Y' A
0 -- m --

5cos2 A,(z' ,O)A**(z' ,O) + App(z' ,O) A*p(z' ,) I +

+ 2 A.(z' ,O) Ap(z" ,O) F 334 (z' ,z" ) }{Ts - T.y(k))

5 (17)

I In (17), the F. 's (i = 1, 2, 3) are the diagonal elements of the T.(kx,kz' ,z" ) tensor

S (Eq. 11) when the exciting field is polarized in "a" direction (a = v, h). More simplification for

(17) can be ,Aieved if the correlation function C (-' -r'j) is assumed to be sharply peaked. In

this case the diagonal elements of the ý.(k%,ky,,z' ,z") tensor reduce to

S Fi.(z' .z" ) = < ei.(z' ) > W' (z' ,z"k..ky)

< e;,, (Y) > = < Ei°(V )E*i,(Y') >

W W (z',z",,k,) = jdxdyC (I r -r' 1) exp(ik.x +ikyy)

(18)

3 For an exponential correlation function with

C (Ir-r'l)= < fr > exp(-I r-r I/e )
(19)

the Fourier transform W' ( z',z" , k.,ky) can be written as [1]

9
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I

W I'(z',z"'k.,ky)=<Kr2 > P-3[lI+PIZ'-Z"l]exp(-PI z' -z"Y )

3 where 

(20)

1 p=[1+1l(k"2,+kY2)]u/2

* (21)

I Substituting (20) into (18) then substituting the resultant in (17) with and letting z' = z, and

Y = z, + u ( see Appendix 2 in [3] for a discussion of this transformation), the multiple

I scattering contribution to the brightness temperature can be written as

3 z12 0 2

T'(f.) = k-. / (2cosO0 ) j sinOdO fdzi Re( [E11o(zi) + E22o(zi)] [cos2 0 IA.(z)I2 IOU(zI,O)0 --

+jApp..(z,e) f 4,,p(z ,9)j + 2 E33.(ZI)JApz(zz,9)f 1,v(z, ,o))ro- )y(Ti)-

3 (22)

3 where Re is the real part operator, and

IOU,.(zO) I J du W'(I,4k,ky) exp(- f cL(z",O)d" )
X,+M

4.2(z7,c)-- J du W' (ký k.,ky) exp(- f0-(z" ,) dz")
-zI+J 

(23)

I
Here the functions a-,_ and A- are related to the Green's function and were discussed in

3 Appendix A of [1]. For convenient reference, they are reviewed in Appendix A of this study.

I
* 10



I
Explicit expressions for a_ and D- are derived in Appendix B. The analytic evaluation for the

I integrals in (23) is performed in Appendix C.

I Eqs. (22) and (23) give the multiply scattered field contribution to the brightness

Itemperature for an isothermal snowpack. As we can see from (23) the brightness temperature

over the snowpack surface is r,-lated to the field second moments within the snowpack. In the

E following section the integral equations describing second moments of the multiple scattered

field will be considered and its reduction to a form suitable for digital computer programming

I will be investigated.

I
I
I

I
I
I
I
I
I
U
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! HM. INTEGRAL EQUATIONS FOR THE MULTIPLY SCA'ITERED FIELD SECOND

5 MOMENT

3 In [1] two uncoupled sets of integral equations have been derived for the multiply

scattered field second moments. One set describes the diagonal components of the field second

moment tensor, and the other set describes the off diagonal terms. Since the brightness

I temperature for a linearly polarized signal depends only on the diagonal components (see Eq.

17), they are the only components that will be considered here. From [1], we can write the

I integral equation describing those components as

0U E,.(z) m Jdzi (D,(z,ziXe,,.(zi)) + D,2(zzi)Xe2(z,)) + bP(z,zXe33.(z1))

I o
E2 2.(z) = f dzi (D12(z,z)Xe11.(zO) + Du(z,ziXe=(z,)) + bp.(z,zi)(e3,.(z1))

E33.(z) = Jdzi (b4p(z,ziXeii.(z0)) + bp(z,ziXe2.(z0)) + 2b=(z,z1Xe33.(zs))U - -J

(ea.(zi)) = Ea.(zi) + E5.(zi), i = 1,2,3

3 (24)

where Ec-i. are the second moments of the coherent field when the exciting field is polarized in

"a" direction, andI
I Dii(z,zi) = 3 / 4{b•(z,z0) + bo(z,zi) + I / 3bp#(z,z1 ))

3 D12 (z,zI) = 1 / 4{bPP(Z,z0) + bo(z,zi) - bp#(z,z1))

(25)

1
* 

12
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Here

so 0
bo(z,zi) = * Re( Jpdp idu W' (uI;zO) ap(z,zi) a*4 (z,z, + u))3 0 -*.

(26)U
where the subscripts (c4) are one of the pairs (pp), (0), (pz), or (zp). In (25),

U0
bp#(z~z) IL. Re( jpdp Jdu W' (1,4zi) [app,(z,zi) a*##(z,zi + u) + a+#(z,zi) a*pp,(z,zi + u1)]I 0 --.

(27)U
In (26) and (27) ap's are the components of the Green's function tensor with the

I snowpack which are given in Appendix A. Their relation to the Green's function elements in the

U upper half space (Eq. 13) is also given in Appendix A.

3 The problem of integrating over large values for the spectrum of azimuth wave number p

can be overcome by writing the integral over p asU
I Jdp= Jdp+jdp

i 0 A

(28)

where P, is a very large wave number. Then, by making use of the Green's function behavior for

very large p, the second part of integration over p can be carried out analytically as shown in

3 Appendix C of [1] reducing (24) to

0
EIi.(Z) + mI(zXell.(z)) + m2(Z)(en.(z)) = Jdz2 I Mu(z,zi) (eiio(zi)) + M 12(z,zi) (e2.(zi))

-9@

+ f, (z,zi) (e33.(zl)) }

* 13



I
M(z)el.(Z))+ E2,,(z) + mI(zXe2-i(z)) = Jdzi I M12(z,zI) (ell.(zl)) + Mii(z,zI) (ez-.(zl))

+ f, (z, zi) (e3.(zl))}

I0
E 3 ,(z) + m3(z) (e33.(-)) Jdzi ( f,(z,zi) (en.(zi)) + f (z,zi) (e22(zi))

+ M33(z,zO) (e33.(Zl)) I

1 (29)

IExplicit expressions for mi(z), m2 (z), and m3(z) are given in [I]. In additionI
M11(z,zi) = 3 /4(fPP(z,zi) + f#*(z,zi) - I/ 3f,,(z,zJ) II
M2(z,zl) = 1 / 4(f ,,(z, zj) + f# (z, zj) - fp p(z, zi)

3 M 33(z,zi) = 2 f,,(z, zi)

(30)I
Here the subscripted functions f are identical to the subscripted functions b defined in

(26) and (27) except for the fact that the upper limit of the integration over p is bounded by p,

I and the singularity is extracted from a.

3 A further simplification for the integral equations can be achieved if the integration of the

subscripted functions over u is evaluated. This can be achieved by using the translational

property of the Green's function tensor elements ( Appendix A) leading to;

f+O(z,zi) = Re( j'pdp !du W' (IuI,zi) I a*#(z,zi) 5'3*.(zi,U)
0

14



f,,(z~i) Re?pdp Idii W' (g z,) I a,,(z,zi) I2S*p,(z1,i))

f.p.(Zzlz) =Re( rdp d W' (IuI,zi) Ia,,~(z,zi) I!3*,,(z.,,u))

p1 0

5 ~ ~f,(z,zi) = Ref Jpdp Jdu W' (IuIzi) Ia,,(z,zi) 2 *(zu)
0 --

P , 0 
2 1 , ( ý U3 f~(z, zi) = Re(Re Jdp IJdu W (jukz) a~zj ) a,, w(z,zl)

0 -ft

3 + a**(z, zi) a*pp,(z, zi) S*,,,,(z, zi)

where

so(zimu)= exp- imx...(z)dz"]I if zz~

=exp[ f a+(z')dz"J if z<zi+u

(32)

U and

SWA $~z )elxpf- I P.(z")W, I if z>z1+u

=exp[ J(z)z]if z<z,+u

I Then by carrying out the integral over u in (3 1) we obtain

* 15



f*(z'zI)= JpdpI a.z,z1 ) j2 Re (I*(zi,p))

fPP(z,zi) - I pdpI a,,(z,z1 ) jRe( jp,(zi,p))
0

f, zzj)= pdpi a'(z'zi)I e(4~zi'P))
0

f,(~zi =J pdpi a,,(z,zi) I " Re( 4p,(z,,p) I

3f.(z,2i) I JPdpj a.(Z,zi) 12 Red PZ,)
0

f~(z,zi)f JpdPRe {appw(z,zi)a*. 4(z,zil) *,.(zi,p) +a4#(z, zi)a*pp(z,zi) f*pw,(zi ,P)

3 (34)
I where

0

I*(zi,p) =-fL.5 du W'(Iu~zj) %(zi,p)

Ipp(zj ,p) =-fL 5 du WI(Iu~zi) Zp(zi ,p)

5 (35)

E An implicit dependence of I* and Ipp on z has been suppressed in (35).

For the exponential correlation function given in (19), an explicit expression for I* can

U be obtainied. fromn Appendix C as,

5 16



U

I U(Ip)-- z, (p, a) + -(zi) z,(p,a) z > zI

_ ~ ~ ~ ~ 7(zi) c(z)-1 <,

3 etc a) /a.(ZI) z, (p,a)+[C(1az) zf(p,a) zZ

(36)

where

z,(p,a) =[p2+a )2

3 2+ a(z )

3, z(p, a) = -a z P3 (p2 + a(z1)]

z+(pa) Vra(zi) exp(-p(zi - Z)] 3p2 +a(z,) .p~ - z)]

P [ p2+a'~zi) ] 2 ~

3 (37)

I The functions a(zj) are related to Green's function tensor and are defined in Appendix A.

S Similar expressions can be written for 1r,.

I Eqs. (29) are the reduced form of the integral equations describing the second moment of

the multiply scattered field. In the next section they will be put in a form suitable for solution by

digital computer.

I
I
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1 IV. SOLUTION OF THE INTEGRAL EQUATIONSU
To put Eqs. (29) into a form suitable for digital computer programming, we transfer them

3 to a set of linear algebraic equations which can be arranged into a linear matrix equation. Then

matrix inversion techniques can be applied to solve the resultant matrix equation.

3 To transfer Eqs. (29) into a set of linear algebraic equations, the integration over p and

over z, must be evaluated. Gaussian quadratures [6] will be employed here to evaluate the

I integrals over p.

As for integrals over z, we let
0 0 -z,

dzl= J dzx+ - dzi

(38)

3 where z, is the snow depth. Since the ground beneath the snow is homogeneous, the integration

kernels vanish for any source point located below ;. Accordingly, the second part of integration

I in (38) reduces to zero, and the lower limits of integration over z, in Eqs. (29) can be replaced by

Z= =Z,3
The snow depth z. is divided into (N-1) equal increments of dz each. Then by applying

the trapezoidal rule, the integration over dz in (29) turns into a summation. The trapezoidal rule

is applied here because through this rule the source point of the Green's function can be located

(z = z1) and the discontinuity in ap. and a., at this point can be handled.U
U By introducing the vectors

II 18



U
I

[En..(z.)1

.E2 2.(z.)/

U rEf'-- •(Zn)]
Eh.(z,)

U (39)

Eqs. (29) can be written as

I j=1

(40)

where I is the unit matrix and

U
[MAzn) M2(Zn) 01

m..= m2(Z.) m(z) 0
0 0 m3(Z.)J

3 Af~~M 1 2(z.,,Z) Afii(Zu,Zj) f,~(Z.,Zj)'
"Mai 1(Z.,Zj) MI,(znzj) fpr(zn,zj)1

f ,(z.,zi) f,•,(Z.,,Zi) f,,(z.,zj)j

5 (41)

SI Eq. (40) represents a set of 3N algebraic equations. To solve these 3N equations we

introduce new column matrices K, and ' having 3N components. The elements of these two

new vectors are related to the elements of the field vectors given in Eq. (39) through the relations

I

1 19



I

I E.(i)i E.(3[n-l]+i),

E .(i) =f E ',( 3 [n - 11 + i ) ,i = 1, 2, 3 (421 (42)

Accordingly, the 3N algebraic equations resulting from (40) can be arranged as follows:

I
1 (43)

where A is a square matrix of order 3N. Its elements are related to the elements of the matrix

U given in (42) through the following relation:

S m(i,j) . + M.(,j) = A({3[n - 1+i},13[m -l]+j)), i, j = 1, 2, 3

U (44)

Eq. (43) is the matrix equation governing the second moment of the multiply scattered

field. It may be solved by using either eigen value methods or a matrix inversion technique.

3 Since the eigen values technique requires more computer resources (memory and computing

U time), only the matrix inversion techniques was considered in this study.

5 According to matrix inversion technique we premultiply Eq. (43) from both sides by the

inverse of the matrix [I - A ] to write the multiply scattered field as

I AS(45)

I 20



The solution given in Eq. (45) is valid only when the determinant of the matrix (I - A]

i has values other than zero. Numerical calculations using the developed FORTRAN program

showed that the determinant of the matrix [I - A ] is controlled by two factors:

3 (i) the operating frequency ( operating wavenumber k.), and

(ii) the snow depth.U
The determinant has a maximum value equal to unity. This value occurs when either the

operating frequency or the snow depth is equal to zero. In both cases, there is no scattering

U occurring within the medium, and the elements of the matrix A reduce to zero. Increasing either

the operating frequency or the snow depth leads to an increase of the multiple scattering

U (increasing elements of A). The latter reduces the determinant until it reaches zero. In this case

the operating frequency reaches a value equal to one of the medium resonance frequencies (eigen

I values). For frequencies higher than that frequency, Eq. (45) gives nonphysical values for the

I multiply scattered field. It may lead to a scattered intensity higher than the incident intensity or

may give an intensity having negative values.I
Based on the above discussion, the solution in (45) for the multiply scattered field is valid

only when the determinant of the matrix [I - A] has values greater than zero. This can be

I achieved by lowering either the operating frequency or decreasing the snow depth. The

following table shows the maximum snow depth to which solution in Eq.(45) can be applied

I
Frequency (GHz) 37.0 50.0 85.0 91.6

3 snow depth (cm) 12.0 7.50 3.45 2.50

I Table I

2
* 21
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U

Table I is calculated for uniform snow, with snow density equal to 0.25 g/cm 3 and grain

diameter equal to 0.7mm. Numerical calculations show that the values of the snow depth given

I in Table I can be increased by increasing the snow density or reducing the upper limit of

integration over p (p, in Eq. (29)). For values of P, greater than kC , total reflection occurs

within the snow layer leading to a surface wave propagating along the layer interfaces.I
The numerical limitations in solving the equation for the field second moments in the

form discussed above were discovered rather late in the course of this work. Overcoming these

restrictions will require significant modification in the FORTRAN program. Thus the examples

I to be discussed in Sec. V of the report will not cover the full range of conditions of interest in

3 studying naturally occurring snowpacks.

The following paragraph will indicate some measures that can potentially be useful in

extending the range of validity of the numerical calculations in future studies.I
One method to increase the range of conditions for which a numerical solution is possible

I is to rearrange Eq. (40) as

* N
(I + X ) F + =MRE.=IviE.+ EC-I j=1 (46)

By premultiplying (46) by the inverse of the matrix (I + •.m), the equation

E. + (- M f . j i

(47)
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U is found. Then using Eq. (47) we obtain a matrix equation similar to Eq. (43). The determinant

of the resultant matrix is greater than the determinant of the matrix [I - A ] of Eq. (43).

3 A further improvement for the solution can be achieved if in Eq. (40) we isolate the

Green's function at the source point (n =j) in one side of the equation;

I N

(48)

I Eq. (48) may be rewritten as

I 3 +.- -+
jotn

1 (49)

i Eq. (49) is expected to lead to more stable matrix equation than Eq. (43). This is because

3 Ithe matrix on the right hand side of (49) reduces to the unit matrix for lower or higher values of

the operating frequency or snow depth. The limit at lower values arises from the zero value of

all ;. and , elements. The limit at higher values of the operating frequency or the snow

depth arises because, the contribution of the source point • in (49) increases rapidly with

3 increasing the operating frequency. On the other hand all other terms ý decrease.

U Accordingly the second part of the matrix in the right hand side vanishes leading to a unit matrix

to be inverted. Since programming Eq. (49) requires considerably more effort, it is

3 recommended for another study.

I
I
I
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I V. NUMERICAL RESULTS AND DISCUSSION

The equations discussed in the previous sections were used to calculate the brightness

3 temperature of snow at various frequencies and angles for particular snow conditions. These

may be compared with the results obtained using the distorted Born approximation and reported

Uin [3]. Reference [3] also shows ranges of measured brightness temperatures at various

E frequencies at a 500 angle of incidence obtained from satellite borne radiometers. From the

discussion in [3], a reasonable snow model describing the conditions at the satellite ground truth

U sites is snow at a temperature of -50 C(268.15K), density p = 0.25g/ cm 3 , and a grain diameter d

= 0.7 mm. These values are adopted for most of the computations to be reported here together

I with the same atmospheric model and underlying soil conditions described in [3].

Figs. 2-4 show comparisons of the new calculations with the distorted Born

3 approximation as a function of the angle of incidence, all for a radiometer at satellite altitude.

The curve identifiers are the same in all of the figures. The initial letter (h or v) identifies the

I polarization (horizontal or vertical) while the second letter (m or s) identifies the theory:

i m-=present theory with multiple scattering, s = distorted Born approximation (single scattering).

3 Figs.2-4 show the substantial effect of including the multiple scattering terms in the

brightness temperature computations at high frequencies. These effects increases as the

I frequency increases from 37 GHz (Fig.2) to 50 GHz (Fig.3) to 91.6 GHz (Fig.4) as one would

expect. Thus, for example, at an angle of incidence of 500 and horizontal polarization, the

inclusion of multiple scattering reduces the computed brightness temperature compared to the

I distorted Born approximation theory by 5.4K at 37 GHz to 12.1K at 50 GHz to 87.7K at 91.6

GHz. The corresponding decreases for vertical polarization are 4.2K at 37 GHz, 9.5K at 50 GHz,

E and 63.4K at 91.6 GHz.

I



I

U Another perspective on these results is obtained by examining emissivities. Again

choosing an observation angle of 500 , the emissivities corresponding to Figs. 2 - 4 are shown in

Table II. It is clear that the distorted Born approximation emissivities reach a minimum between

U 37 and 91GHz and then increase with increasing frequency. This characteristic behavior of the

distorted Born approximation calculation is not observed in measured data and, in fact was the

principal reason for looking at more complete theories such as the subject of this report. On the

B other hand, with multiple scattering included, the emissivities decreases with increasing

frequency.I
TABLE II

ICalculated emissivities of model snow pack at 0 50 0 (p = 0.25g/cm 3 , d=0.7 mm)

I
Frequency Horizontal Polarization Vertical Polarization

(GHz) Distorted Multiple Distoted Multiple
(0oHz Scatter Bor Scatter

37.0 0.8509 0.8439 0.9126 0.9054

50.0 0.8271 0.7725 0.8941 0.8399

3 91.6 0.8715 0.5352 0.9342 0.7315

I
I
I

Fig.5 shows computed brightness temperature as a function of snow depth at an angle of

U incidence of 500 for a frequency of 37 GHz. As discussed in Sec. IV, the present calculation

3 method for multiple scattering is restricted to depths that are not too large. For the example in

3 25



I Fig.5, the maximum snow depth at which the multiple scattering results should be considered

i trustworthy is about 12 cm. With this restriction in mind, it is interesting to compare the

calculations in Fig.5 with satellite measurements. As discussed in [3], the reported range of

I brightness temperature values over the ground truth sites was 202 to 224K for horizontal

I polarization and 228 to 250K for vertical polarization for snow depths between 5 and 20 cm. The

distorted Born approximation for horizontal polarization yields brightness temperature ranging

i from 234.4K to 225.4K in the snow depth range of 6 to 15 cm. This is on the high side. On the

other hand, with multiple scattering included, computed brightness temperatures range from

I 229.1 to 208.4K in the 6 - 12 cm depth range (recall the earlier warning about depths larger than

approximately 12 cm) and reach 224K at a depth of 7.5 cm. These values are seen to fall very

nicely within the measured range. For vertical polarization, the distorted Born approximation

I calculations yield brightness temperature values ranging from 248.2K to 240.5K in the 5 to 15

cm snow depth range. While tending to be high, the calculations fall within the measured range.

However, the new multiple scattering theory yields brightness temperatures in the 244.1K to

227.3K range for vertical polarization in 5 to 12 cm snow depth interval. This is comfortably

within the measured range.

In [3], some discussion was devoted to the effects of non-uniformities such as a surface

crust in the snowpack. At 37 GHz, non-uniformities in the snow structure were necessary in

order for calculations with distorted Born approximation to match some of the low brightness

i temperatures that were measured for horizontal polarization. In particular, a model snowpack

with a 1.5 mm surface crust with a density of 0.5 g/ cm 3 and a grain diameter d = 1 mm was

assumed to cover an otherwise uniform snowpack with the parameters used above. When the

3 multiple scattering theory is applied to these conditions, the brightness temperature for a snow

depth of 10 cm was found to be 195K for horizontal polarization. Extrapolating possible effects

I to larger snow depths (recall the present limit to about 12 cm so that a direct computation is not

possible) indicates that the calculated brightness temperature in the range 170K to 180K may be
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I found at horizontal polarization at 37 GHz. This is near the lower bound of measurements made

I over Siberia for large snow depths and is much better than the lowest value of 202K found with

distorted Born approximation under the same conditions. If lower bulk snow densities were to

I be used together with a very cold and dry atmosphere, the distorted Born approximation does

lead to brightness temperature with horizontal polarization that are closer to the lower limit of the

measurements over Siberia as was shown in [3]. However, the calculated vertically polarizedrn brightness temperatures are still too high (lowest value achieved is 214K with the reduced snow

density and 238K with p = 0.5 g/cm 3 and the standard atmospheric conditions) compared to the

i measured low of 196K. With the multiple scatter model, even using a snow density of 0.25 g/cm3

yields a vertically polarized brightness temperature of 208K for a snow depth of 10 cm.

Extrapolating to larger snow depths and lower snow densities indicates that values near 196K can

i be reached when multiple scattering is included.

New information at even higher frequencies has become available since the publication

of [3]. This is the data obtained by SSMAI instrument at 85.5 GHz at an angle of 53.10.

i Brightness temperature measurements over snow by the SSM/I at this frequency are often in the

i 150 - 180K range for horizontal polarization although, depending on snow conditions, values in

the 200 to 240K range are also found. For vertical polarization, brightness temperatures as low as

i 160 K are sometimes found, but more typically are in the 230 to 255K range. According to Fig.4

(at the slightly displaced frequency of 91.6 GHz), the calculated horizontally polarized brightness

I temperature at an angle of 530 is 162K when multiple scattering is included versus 244K for the

distorted Born approximation if the snow density is 0.25 g/cm 3 . Thus, the multiple scattering

model result fits comfortably within the measured range while the distorted Born approximation

3 value is much too high. Computations were also performed for snow densities of 0.3, 0.4 and 0.5

g/cm3 at 91.6 GHz. For horizontal polarization, calculated brightness temperatures at an angle of

I 530 and using the multiple scattering theory increased to 177K at 0.3g/ cm 3 to 209K at 0.4 g/cm 3

to 224K at 0.5 g/ cm3 showing that a reasonable range of snow densities can account for the
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range of brightness temperatures measured by SSM/I. In contrast, the distorted Born

I approximation yields horizontally polarized brightness temperatures in the small range 236 -

243K for the same snow density range and actually decrease with the increasing snow density.

I These are too high. For vertical polarization, multiple scattering theory yields brightness

temperatures of 196, 206, 231, and 246K for snow densities of 0.25, 0.3, 0.4 and 0.5 g/cm 3

respectively. This is nicely within the range of values measured by the SSM/I. On the other

E hand, the calculated distorted Born approximation brightness temperatures are in the very small

range 255 - 257K for vertical polarization as the snow density range from 0.25 g/cm3 to 0.5

3 g/cm3 . Clearly, the distorted Born approximation calculations can not explain the

measurements.

I
I
U
I
I
I
I
I
I
U
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3 VI. CONCLUSIONS AND RECOMMENDATIONS

I The computations discussed in Sec. V show that a very great improvement in agreement

I between the calculated and measured snow brightness temperatures is achieved when using the

extension of the distorted Born approximation (multiple scattering) theory as compared to the

I distorted Born approximation itself at frequencies above 30 GHz. This agreement is obtained

without the arbitrary, ad-hoc parameter adjustments (often euphemistically called effective

parameters) that are made in radiative transfer models and relies strictly on random media

parameters that can be measured.

It is particularly gratifying that calculations at 91.6 GHz (near the SSM/I 85.5 GHz

frequency and coinciding with the SSM/T-2 and SSMIS 91.6 GHz channels) using reasonable

i snow parameters yielded brightness temperatures within ranges measured by the SSM/I for both

horizontal and vertical polarizations. These values were much lower than those obtained by use

U of the distorted Bom approximation. The latter were unreasonably high at 91.6 GHz.I
Certain numerical difficulties (discussed in Sec.MV) were discovered which prevented the

3 computation of brightness temperatures with multiple scattering theory over the full range of

snow depths, densities and radiometer frequencies of practical interest. Contract funds for

exploring possible corrective actions were depleted when the problem came to light. However,

possible strategies for overcoming this computational problem were discussed, and it is

recommended that a follow on study be undertaken to resolve the problems. If these problems are

3 resolved, the theory may then be applied to the study of multi - year sea ice with and without

snow cover. On the basis of the results obtained to date, one may expect to obtain the first

I quantitative explanations of the high frequency measurements obtained by the SSMAI over
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I multi - year ice as well as measurements to be obtained by future instruments such as the SSMIS

U at even higher frequencies (e.g., 150 GHz).

I
U
I
U
I
I
I
I
I
I
I
I
I
I
I
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I APPENDIX AI
THE DYADIC GREEN'S FUNCTIONI

As seen in Sec.II and SecMII, the dyadic Green's function elements are required to

i determine the random field second moment. Since the medium horizontal dimensions extend to

infinity, it is convenient to express the dyadic Green's function tensor in terms of a two

d&m s•ional Fourier transform,

rvx,)-•n jdk, jdk, =(z,Y',k,,ky)exp~jjk,(X-Y) +ky(y-Y)]lI (A-)

3 where

3(zz',kx,,ky) -app- +apz! + a.4#41 + a,P.+a=zz

(A-2)

5 Explicit formulations for the Green's function tensor elements in terms of the medium

dielectric properties have been derived in [ 1 ]. In this Appendix only the formulations required

U for the present study will be summarized.

I The first element that will be considered is ao which has the following formulation [1];

a*=exp[ Ja+(z")dz"]f[cc(z')-rx(z')] if z>z'

=exp[ - Jc..(z")dz" I [a(z') - a.(z')] if z<z'

3 (A-3)
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I The a 's in (A-3) are governed by the differential equation

d ac / dz + od + a(z) = O
I (A-4)

w ithp 22 
2

a(z) = k K.(z)- , p = k 2 + k,

(A-5)

Eq. (A-4) is subjected to the boundary conditionsI
a+(O) =j V 2 P 2

5 (A-6)

At a point of dielectric constant discontinuity (z =-d ), a's satisfyI
ao(-d) _0 =0S(A-7)

I As for app in (A-2), it can be written as

I~~~~~~~~~~~~~Z ), a<'[k2 Ko<')]-' e +•,)•,/•_•)•p,) f•z

app aif z>z'-av') [k. Ko.z)]-exp[ P- ._(Y') d'l/[P_(Y )-•(Y') if z <

(A-8)

I The I 's in (A-8) are governed by the differential equation

I d z,/dz+P2,-b(z)P,+a(z)=O

3 (A-9)

with

3
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b(z) p P2 dKo(z) / [a(z)Ko(z)]
(zA-b)

I Eq. (A-9) is subjected to the boundary conditions

j a(O)

I p_(-=) -- j 4 -a(--)

3 (A-lI1)

At a point of dielectric constant discontinuity (z = - d) the 1 's satisfy the conditionI
(K.o/a)0, I__o =0

I (A-12)

The other elements of Green's function tensor (am,, ap, a.) can be related to app through

the relationI
ao = f o(z,zd ) app(z,z' ) - [1/ k2. K.] 8(z - z' ) 8

S~(A-13)

I The factor f1o(z,z' ) in (A-13) varies from one Green's function component to another.

5 Also for the same Green's function component, the value of this factor may vary depending on

the relative locations of the field z and source z' points to each other. Explicit expressions for

I ap.,aa,,and a. are given in [1].

U For a field point located in the upper half space (z > 0), the Green's function components

Sin (A-1) and (A-2) can be written as

I
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�(zz' ,k1,k,1) = A (z' � exp(jk�z)I (A-15)

I
I
I
I
I
I
I
I
I
I
U
I
I
I
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- APPENDIX B

THE AUXILIARY PROPAGATION FUNCTIONS

A complete description for the Green's tensor elements requires explicit expressions for

I auxiliary propagation functions a's and P's ( ± is dropped for convenience). Also it requires

I the evaluation of an exponential raised to a power equal to the integral of these auxiliary

functions.I
To obtain an explicit expression for a we write the differential equation (A-4) describing

I da(z) dz
a(z) + a12 (z)

I (B-1)

and assume that over the interval of interest, the dielectric properties do not vary so much that the

I dielectric constant may by replaced by its mean value. Then integrating both sides of (B-1) we

obtainU
a~ ) = f -t n[ J a( ) 

(B-2)

where a is the mean value of a(z) in the interval. In (B-2) c is a constant which can be

U determined by writing (B-2) as

I a(z)=/a tan[ - z aI(z1 -z)+Va(c- z)]

3 (B-3)
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I
5 Ifwelet a~oh at z=z1 ,wecanwritezfrom(B-3)as

I a(z)--4 tan [-Fa (z, - z)] + a,
1a-l tan [-Fa (z, - z)]

I I (B-4)

To evaluate the exponential in (A-3) we use (B-2) to writeI
2 .2•r cos [ýaz2-c)])I a dz j -J4tan[Nra(z -c)] dz=lIn(cs-kzcf3 cos [Va-(z1 - c)])

(B-5)I
I where In is the natural logarithm. From (B-5), the exponential in (A-4) can be written as

exp( jadz ') =COS [4 "a(z2 - zI) + 4V(c - zi)]I cos [-ý/-(c - zi)]

(B3-6)

I With some mathematical manipulations (B-6) can be reduced to

5 ~ ~exp( Jadz ) =f cosbd•(z2 - zi)] + -7aa b~~z
Za

5 (B-7)

3 To obtain explicit expression for the auxiliary function P first we reduce the differential

equation (A-9) governing 03 to a form similar to the differential equation (A -4) governing x.

This can be achieved through scaling 0 as

I
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I

(B-8)

I Then substituting (B-8) in (A-9) to get

I dfr'l•+V' X2+a(z)+p aXld-b(z)p X=0

(B-9)

In (B-9) lettingI
dA / dz = b(z) X

and dividing the resultant over A2 the differential equation governing jl' reduces

(B-11)

i Which is sniilar to Eq. (A-4) describing a. In (B-I1) we have,

u=Xz

v=a/,X2

I (B-12)

i By analogy to (B-4), and (B-7) we can write

- tan ,Fv X1(zi - z) + j'•I '1- tan [4v X(z, - z)]

3 (B-13)

I and;
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1emp[ ~dZJI= COSN )(Z2 - ZOI+ Sin[iI X(z 2 - ZMI
(B-14)

To obtain the explicit expression of X and v we substitute for b form (A-10) into (B-9) to

I get

I 2XX p
K k/XK- p2 dK

(B-15)

Integrating both sides of (B-15) leads to;

XkO= a(z)
I

Sk02 K k. 2 aKz

(B-16)

I Then by substituting (B-16) into (B-12) we get

k0
4 K 2  ko 4 K 2

I a(z) k.2 K-p 2

3(B-17)

I
I
I
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APPENDIX CI
ANALYTIC EVALUATION OF THE INTEGRALS IN EQS. (23) and (35)

In this Appendix, the integrals 140 and 1,p in Eqs. (23) and (35) will be evaluated

analytically. Since there is analogy between cc and P as has been discussed in Appendix B, only

I the evaluation of the integral I#* will be considered in detail. Then by analogy the integral I.,

will be evaluated.

3 To evaluate the integral I", from (B-7) we recall

exp(Ia dZ )= CoS[-'Ia(Z 2 - z)]+ a'- sin[a(Z2 - Zi)]

i (C-i)

3 Also we write the power spectrum for the exponential correlation function (Eq.20) as

W (luI,p)=< 141'>2 2n(lU1P)

5 (C-2)

whereI
f(I u Ip) = p 3 [1 + p ll exp(-p Iu)

p = [ I + 12 e 1 f/ 2 / I

3 (c-3)

Then we introduce the integrals
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z.(p a =fJ df (Jul p) sin (1au) = 2+a2 (3p 3+a)

(C-4)

For z > Z we can write I#* as

I e [zc(p,a) + c-zl)z(p,a)]

For z <z, we can write I" as(C5

I < ~ 2>a-(zi) cX+(zi) - 4..(zi)
z,1 e z(p, a) + z, (p, a)+ Ad smn(Vau)]

(C-6)

By evaluating the integral in (C-6) we can write I#* as

e zc(p,a) + 04Z)z,(p,a) + (+z -OUOzf(p.a)]

where(C-7)

If _______ -va xp(-pjz -zI){[3[p2 ] + p(zj _z)]
z( )p 3 [P2 +a] [P 2 +a

Psin(-vra-(z - z) + cos(-Va(z - z))] - Psin({4fa(z - z))}

(C-8)
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I ~By analogy to (C-5) and (C-7) we can write the integral lu, as

Ipp (ZAPV) + A-•z) Z. (p,V)]
W -V 

(C -9 )

For z > zjand

3p ~ = < I> ZAI + +ZI ,(p,v) + ku) 0(Z1 ) Zf ( P. )

(C-IO)

For z < zi where,

p3 2+v] [p 2 +V

I [-~=P sin(4-v(z - z))+ cos(-ý-v(z - z)I] -- sin{'N-(z - z)))

(C-li1)

I All parameters in (C-9), (C-10) and (C-Il1) are given in (B-6), (B-7), (B-16), and (B-17).

I4



I
I
I

REFRENCESI
1- Stogryn, A.," Investigation of extensions to the distorted Born approximation in strong

fluctuation theory," Contract No. N00014-87-0784, Report 9316 (October 1988), prepared for

I the Office of Naval Research by Aerojet ElectroSystems Company.

2- Stogryn, A.," Strong fluctuation theory equations for electric field second moments in

anisotropy media," IEEE Transaction on Antennas and Propagation, vol.38, no.7, pp. 1099-

1101, 1990.I
3- Stogryn, A., "A study of the microwave brightness temperature of snow from the point of

3 view of strong fluctuation theory," IEEE Transaction on. Geoscience and Remote Sensing, vol.

GE-24, pp. 220-231, 1986.U
4- Stogryn, A.," A study of the microwave brightness temperature of sea ice ," Contract No.

N00014-85-C-0765 (December 1986), prepared for the Office of Naval Research by Aerojet

I ElectroSystems Company.

I 5- Stogryn, A.," The bilocal approximation for the electric field in strong fluctuation theory,"

i IEEE Transaction on Antennas and Propagation, vol. AP-31, pp. 985-986, 1983.

I 6- Abramowitz, M, and IA. Stegun, Handbook of Mathematical Functions, Dover Publications,

Inc., New York, 1972.

I
I
I 47


