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ABSTRACT

This research involves the development of an adaptive control law for a space based
two-lin. robotic manipulator. Non-adaptive controllers are first obtained utilizing feedback
linearization techniques. A direct adaptive controller is then developed through the linear
parameterization of the system dynamics, and the implementation of a Kalman Filter
based adaption law. The controllers are then simulated and compared for various levels
of system parameter uncertainty. The adaptive controller is found to be superior to the
non-adaptive controllers for high levels of system parameter uncertainty. The non-adaptive
controller is found to compare favorably to the adaptive controller in some areas for low
values of system parameter uncertainty. The non-adaptive controller is implemented
experimentally, consistent with hardware constraints. Experimental results verify the need

for adaptive control when system dynamics are present which have not been modelled.
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I. INTRODUCTION

A. BACKGROUND

Robotic systems have been utilized to perform a wide
variety of functions for many years. Their speed, precision
and reliability make them well suited for applications ranging
from routine manufacturing processes to interplanetary space
exploration. As mankind seeks to reach out to other worlds,
the robot will play a crucial role.

Space based robotic systems are required to deal with some
unique conditions which are not encountered by their
terrestrial counterparts. The absence of a fixed base upon
which to mount a robotic manipulator and the lack of
significant external friction to dampen the system require
special consideration by a control systems engineer. An
effective control system must not only reposition the
manipulator, but counteract the forces imparted on the main
body by such a maneuver. This problem is further complicated
when the space based manipulator is called upon to handle an
object with unknown mass and inertia properties.

Robotic systems equations of motion can be developed
through Lagrange’s equations and are highly non-linear.
Standard linear control techniques are not well suited to this

kind of model. One approach to the control problem is to use




feedback linearization. This technique involves the
development of a linearizing controller to cancel system non-
linearities. Linear control technigues are then applied to the
linearized system.

When system parameter uncertainty is present, controller
performance can be improved through the use of adaptive
control in which the uncertain system parameters are estimated
on-line. Research in adaptive control started in the early
1950’s in connection with the design of autopilots fci: high-
performance aircraft. Practical applications 1in robotic
control emerged in the 1980’s. Initial research relied on
restrictive assumptions or approximations including
linearization of robot dynamics, decoupling assumption for
joint motors and slow variation of the inertia matrix [Ref. 1]
[Ref. 2)][Ref. 3][(Ref. 4]. Later research resulted in the
linear parameterization of robot dynamics allowing the
adaptive controller to fully account for the non-linear, time-
varying and coupled nature of robot dynamics [Ref. 5] [Ref. 6]
[Ref. 7].

Controllers for the NPS Spacecraft Robotic Simulator (SRS)
were first developed by Sorenson [Ref. 8] and later modified
by Yale [Ref. 9]. Both developments assumed perfect knowledge

of robotic system parameters.
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B. OVERVIEW AND OBJECTIVES
The focus of this research is to develop an adaptive
controller for the NPS SRS and to experimentally verify non-

adaptive controller characteristics. The equations of motion

and control laws are developed in Chapter II. Chapter III
contains a comparison of controller performances for varying
levels of parameter uncertainty. Non-adaptive controller
experimental implementation is discussed in Chapter 1IV.
Chapter V includes a summary of the conclusions as well as

topics for future research.




II. ANALYTICAL MODEL

The analytical model used in this research represents a
spacecraft with a two-link manipulator attached. The
manipulator is maneuvered by motors at its shoulder and wrist
while a momentum wheel holds the spacecraft centerbody steady
in a desired orientation. Motion of the system is confined to
two dimensions and the spacecraft centerbody is allowed to
rotate but not translate. These restrictions facilitate

comparison between analytical and experimental results.

A. COORDINATE SYSTEMS

An overall system schematic is shown in Figure 1. This
diagram presents the system coordinate frames used to develop
the equations of motion. The coordinate frames utilized are
the same as those utilized by Yale ([Ref. 9:pp 7-9] and are
illustrated in Figure 1. The centerbody and manipulator links
are assumed to Dbe rigid Dbodies. Therefore, member
lengths(L,,L;), distances to centers of mass(L.,L,L.), and
the location where the manipulator attaches to the
centerbody (L,, 0,) remain constant. An inertial axis system is
located on the centerbody at the point of rotation. A body
fixed coordinate frame uses the same origin as the inertial

frame but rotates with the spacecraft centerbody. The x-axis




of this frame points to the centerbody center of mass. The
centerbody attitude, 0,, is the angle between the inertial x-
axis and the spacecraft centerbody x-axis. Each manipulator
has its own set of body axes. A coordinate frame attached to
the manipulator shoulder aligns its x-axis along the
lon¢gitudinal axis of manipulator Link 1. The attitude of this
link, ©,, is zero when the link lies on a ray extending from
the inertial origin through the shoulder. The attitude of Link
2 is defined by a coordinate frame attached to the elbow. The
attitude of this 1link, 6,, is zero when the link is parallel
with Link 1. A set of generalized coordinates, g, 1is chosen
which describe the system include the centerbody attitude and

joint angles for both manipulator links.

g=16,0,6,17 (1)




Wrist

Centerbody

> N,

Figure 1: System Schematic




B. ERQUATIONS OF MOTION
The equations of motion for this system are a special case

of those developed by Yale [Yale93:pp. 9-24] and are derived
using Lagrange’s equations for a dynamic system.
dOoL\_dL
——n - = 2
at{2g) 35 2 2)
where:

s L=T-V;

« T is kinetic energy.
is potential energy.

is the generalized coordinates vector.

is the generalized velocities vector.

0 e lka <

is the vector of applied non-conservative forces.

Using Lagrange’s equations, the equations of motion can be

expressed in an alternate form.

M(Q) §+G (g, Q) +%§= (3)

where:
e M is a 3x3 inertia matrix.

* G is a 3x1 vector which accounts for centripetal and
Coriolis torques.

«+ V is the potential energy of the system.




Eq. (4) can be further simplified because the potential energy

of the system is constant, and it becomes

M(Q) 3+G(g, Q) =Q (4)

The following sections develop expressions for the inertia
matrix, M,Coriolis vector, G, and generalized force vector Q.
1. 1Inertia Matrix, M
The inertia matrix is found by calculating the system

kinetic energy and expressing it in the form
T=%.¢T[M(Q) 14 (5)

The total system kinetic energy, T, is the sum of the kinetic

energy of all system components.
T=Ty+T,+T, (6)

Where T,,T, and T, are the kinetic energies of the centerbody,
Link 1 and Link 2 respectively. Kinetic energy of individual

components can be found from

Ti=%'Iiwiz"'%mi (L) (7)

where:

+ I, is the member moment of inertia about its center of
mass.

*+ @ 1is the member angular velocity.

m; is the member mass.

L is the inertial velocity of the member center of mass.




Kinetic energies for individual members were determined by

Yale [Yale93: pp 12-14] and are contained in Appendix A.
After substituting the expressions for kinetic energy

obtained from Egs. (6) and (7) into Eqg.(4), the inertia matrix,

M, 1s determined and is of the form

M, M, M,
MM,y My, My, (8)
My, My, My,

Expressions for the individual elements in the inertia matrix

are given by

M, =T,+m12, (9)
M, =M,,=M,;;+m,1, 1 ,cosb, (10)
My =My =My +my 11,08 (8, +6,) (11)
M,,=M,,+T, +m,1,1_,cos0,+m 12 +m,1} (12)
M, ,=M, =My,+1,(m1_,+m,1,) cosB,+m,1,1 _,cos (6,+0,) (13)

M, =M, + I, +my12+ (m+m,) 12+21,(m 1 ,+m,1,) cosO,+2m,1,1 _,cos (6,+0,
(14)
2. Centripetal and Coriolis Vector, G
The Coriolis vector, G, contains all of the

centripetal and Coriolis terms and may be found using




g!‘c(l)
G(g, &) 7gTc? (1%
g!‘c(tﬁ)g

where the elements C''’ are defined by the Christoffel symbol

[Yale93: p 17]

oM,; OM; oM,
C(i)__ Dtie? ik (16)
Ik (aq} '5_' 'El'
The G vector for the system is of the form

G[G,G,G;)" (17)

Expressions for individual elements of the G vector are given

by

G,=-1,(0%+20,0,) (m1_,+m,1,)sin®,-m,1,1_.,0, (20,+26,+0,) sind,
-my1,1.,(26,(0,+0,) +(0,+6,)?) sin (6,+6,)
G,=1003 (my1_,+m,1,) sinb,-m,1,1_,0, (26,+20,+0,) sinb, (19)
+my1,1_.02sin (0,+0,)
Gy=my1,1.,(6,+6,)2sin6,+m,1,1_,03sin (0, +0,) (20)
3. Generalized Forces, Q
It is beneficial to express the vector of generalized
forces, Q, in terms of torgue vector U, representing torques
applied by individual actuators. This is accomplished using

the principle of virtual work. The total virtual work is the

10




sum of the torques applied to each system component multiplied

by each component’s virtual angular displacement.
3
W?: 3w, (21)
=1

The local torque vector is simply a 3 by 1 vector consisting
of torques applied by the centerbody, shoulder, and elbow

actuators respectively.

U-{U,0,U,)" (22)

Because the angles describing the system are expressed in
local coordinates each actuator creates a virtual displacement

only for its associated component.
dw,=U,86, (24)
This yields the relation,
Q=U (25)

4. Equations of Motion: Expressed in Local Coordinates
Substituting Egs.(9)-(14),(18)-(20) and (25) 1into
Eqg. (4) produces the system equations of motion expressed as a

function of local coordinates

M(0)0+6(8,0) =U (26)

Where,

11




8={68,8,]" (27)
Eg.{(26) is the equation of motion upon which system control

laws are developed.

C. REFERENCE MANEUVER

Controller torques will be designed to cause the system to
follow a desired reference trajectory. Given a three degree of
freedom system, one needs only to specify the trajectory to be
followed by three of the system’s generalized coordinates. The
remaining set of generalized coordinate trajectories can be
found via geometric reasoning.

1. Selection of Reference Trajectory

The three coordinates chosen to be specified by the
reference trajectory are the actuator tip x and y coordinates,
R, and R,, and the centerbody angle 6,. The generalized
coordinates used in the system equations of motion, Eq. ‘26),
are 6,, 8, and 6,. R, and R, can be expressed in terms of 0,, 9,
and 0,.

The choices between reference trajectories which move
the system from a given initial condition to a desired final
condition are infinite. To help ensure that the spacecraft
structure does not experience any unnecessary jerks or
excitation of flexible structures, Sorenson utilized a fifth
order polynomial with zero velocity and acceleration at

initial and final conditions [Sore: pp 25-29].

12




f(t)=6t5-15¢t*+10¢? (28)
Where the normalized time, T, is defined as

t-t,
te by

(29)

Given the desire to hold the centerbody attitude constant
during a given manipulator maneuver, the centerbody angle,
angular velocity and angular acceleration reference maneuvers
are simply

0,-0
0, (30)
)

]
o o

0

The manipulator tip position velocity and acceleration (R, R,

) are found via

E(t)=R(¢ty) +£(z) [R(Cty) -R(&,) ]

R(ty) -R(¢t,)
LGy

Rm:f(ﬂ[ (31)

R(t) =f(t)[R(tf) "E(to)]

(te-ty)?
Where R(T) 1is the position vector originating at the
centerbody point of rotation and ending at the tip of Link 2.
2. Coordinate Transformation
The system control laws to be developed will require

angular position, velocity and acceleration of all elements of

13




the system generalized coordinate vector g. These can be found
geometrically.

Generalized coordinates 6,,R, and R, along with their
respective velocities and accelerations have been derived in

the previous section.

(e}

B3

Figure 2: Manipulator Joint Angle Derivation Schematic




The position of the shoulder (S,, S,) and the magnitude of the
vector between the shoulder and the tip of Link 2 (SR) can

then be expressed as

S,=1,c0s(6,+0,)
S,=1,5in(6,+6,) (32)

SR=/(R,~5,) %+ (R,-5,)7

Angles formed by the triangle formed by SR and the two

manipulator links are found using the law of cosines.

R, -8
= b At 4 33
pl atan( - ) ( )

X

_ lf"’SRz-l; (34)
"z‘a‘”%—z—ll.s—x—

i 17+17-SR? (35)
B, -aco%—?i-l—i;——
The local angles are then found to be

6,=B,-B,-(6,+6;) (36)

6,=180"-B, (37)

Manipulator joint velocities and accelerations are found by
expressing the manipulator end point coordinates in terms of

system generalized coordinates.

15




R,=1,cos (0,+6,) +1,cos (6,+6,+0,) +1,cos (6,+0,+0,+6,)  (38)

R,=1,8in(0,+0,) +1,8in(0,+0,+0,) +1,81in (6,+6,+6, +6,) (39)

Upon differentiation these equations can be expressed in the

®) [0
bl

Where H is the Hamiltonian matrix expressed in the form

form

H=

Hll le] (41)
H,, H,,

Individual elements of H are found to be

H,,=-1,8in(0,+0,+6,+6,) -1,8in (6,+6,+0,)
H,=-1,5in(0,+6,+0,+6,)

H,,=1,cos (0,+6,+0,+0,) +1,cos (6,+0,+0,)
Hy,=1,cos (0,+0,+6,+0,)

(42)

On the basis of Eq.(40)joint velocities are then found as

e

Y.

together with the joint accelerations

16




2] .[6.] [0
4 le e

Rearranging Eq. (44) we obtain

e l)
2 ¥ 2
3. Reference Torques

Given the reference values for the system generalized
coordinates and their velocities and accelerations, a
reference torque, U,, can be derived which would produce
perfect tracking in the case of no external disturbances or
modelling errors. The derived reference torgue alone would
represent an open loop type controller.

The system reference torque is derived by evaluating
the system equations of motion at the reference values of the
system generalized coordinates and their higher order

derivatives as presented in Eg. (26).

D. NON-ADAPTIVE CONTROL LAW DESIGN

In this section two non-adaptive control laws are
developed for the space based robotic manipulator. The first
uses feedback linearization to cancel system non-linearities
in conjunction with a PD type controller. The second is a

modification to the first in which the non-linear portion of

17




the controller utilizes generalized coordinate reference
values instead of state feedback.
1. Linearizing Controller
a. Controller Design

The control law presented wutilizes feedback
linearization to cancel out non-linearities which occur in the
system inertia matrix, M, and Coriolis vector, G. A PD
controller is then applied to the linearized system. The

control law can be expressed in the following form

U=u,-8U (46)

The linearizing term, U, serves to cancel system non-
linearities by predicting the current values of the system

inertia matrix and Coriolis vector.

u,=M(0)8 +6(8,8) (47)

The PD control term, 08U, corrects for tracking errors

encountered by providing state feedback to the system.

du=M(8) [-K,(8-8)) -K,(8-8)] (48)

A controller block diagram is presented in Figure 3.

18
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b. Control Law Stability
Control law stability is determined by considering
the behavior of the system trajectory error, . The trajectory

error and its first and second derivatives are defined as

e=0-9_ (49)
e=0-9 (50)
£=0-9_ (51)

Substituting EQs, (49)-(51) into EqQ. (46) yields

u=6(9,9) +M(0) (8 -k e&-Ke] (52)

which in turn can be combined with Egs (50) and (25) to obtain

M(8) (8+K,8+K,e) =0

Because the system inertia matrix is positive definite and

thus invertible, for any positive definite K, and K,
limt—n Q( t) =Q

2. Reference Controller
The reference controller presented is merely a slight
modification to the linearizing controller presented
previously. Rather than picking an inertia matrix and Coriolis
vector to cancel out system non-linearities, M and G are

calculated based on where the system should be as determined

20




by a desired reference trajectory. The form of the controller

is similar to that of the linearizing controller

= -8l (55)

The PD control term, 8U, is identical to that presented in Eq.
(48). The linearizing term, U,, serves to cancel system non-
linearities by predicting the reference torques required to
produce the desired reference trajectory when perfect tracking

is assumed.

u,=M©.)8 +6(8_.90)) (56)
A controller block diagram is presented in Figure 4.

E. ADAPTIVE CONTROL LAW DESIGN

Robotic manipulators are designed in order to grasp or
manipulate an object. Often the mass and inertia properties of
the object are not known beforehand. This in addition to
modelling errors leads to uncertainty in system parameters and
degraded control law performance. Adaptive control utilizes
system input and output data to update the system parameters
and thereby adjust to changes in system parameters.

1. Control Law Design

The adaptive controller developed is merely a

modification to the non-adaptive reference controller
presented 1in Eqg.(55). The only difference between this

controller and the non-adaptive version is a dependance on an

21
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estimate of the system parameter vector A. In the non-adaptive
case the system inertia matrix, M, and G vector are functions
only of the generalized coordinates. In the adaptive case, M
and G are functions of both generalized coordinates and the

system parameter vector estimate A.

M(8,4)
¢(9,9.38)

(57)

The meaning of A is developed in the following section. A
controller block diagram is presented in Figure 4.
2. System Parameterization
The system parameter vector A is determined by

expressing Eg. (25) in an alternate form

®7(8,0,8)Aa=u (58)

where ® is a function of the system generalized coordinates
and A is a function of the system parameters. Equating

Egs.(26) and (58), A is found to be

A1) =I,+m 1%
A(2)=m, 1,1,
A(3)=mlyl,,
(59)
A(4)=1,+m 12+m,1}
A(5)=1,(m21,,+m,1,)

A(6) =T +my1lo*+ (my+my) 15

The matrix of generalized coordinate ® is of the form
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’011 o1.2 o1.3
o21 o22 o23
- °31 O32 c33 (60)
0‘1 042
o51 o.‘32
.061 0 J

Expressions for the individual elements of @ are given by

®,,=0,+0,+6, (61)
0,-0,, (62)
®,,=0,, (63)
®,,=(206,+26,+6,) cos6,-0,(26,+20,+0,) sinb, (64)
®,,-0,, (65)
®,,=(0,+6,) cos,+(0,+6,) 2sind, (66)

®,,=(20,+0,+0,) cos (6,+0,) - (20,(6,+0,) +(0,+6,)2)sin(6,+6,) (67)
®,,=0,cos (6,+0,) +03sin (6,+6,) (68)

®,,=9;, (69)
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©,,=0,+0, - (70)
0,,=0,, (71)
®,,=(20,+6,) cosO,- (62+20,0,) sinb, (72)
®.,=6,cos0,+02sin0, (73)
o,,=0, (74)

3. Adaption Law
The system parameter vector, A, 1is updated via a
recursive Kalman Filter. The standard Kalman Filter state

space equations can be expressed in the form

X(t+l)=ox(t) +Aw(t) (75)
y(t) =Cx(t) +¥(t)

Assuming a constant system parameter vector A for a given

maneuver, the system can be expressed in state space form as

A(t+1)=3(t) +w(t)
u(e)=07(t)A(t) +y(t)

(76)

Equating Egs. (75) and (76) yields the following relations.
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100

c=4=010 (77)
001

x:

¥7=c

Applying standard Kalman Filter equations to Eq.(76) yields

the following set of recursive egqguations

A(t+1)=a(¢t)+k(t) [u(et)-®7(et)ale)]
K(E)=P(t)®(t) [A+®T(t)P(L) D (£)]?
P(t+1)=P(t) -K(t)®T (L, P(t) +0

(78)

where
+ K(t) is the Kalman Filter gain.
+ A is the noise covariance matrix, E[e(t) eT(t)].

« P is the parameter error covariance matrix, E[(A(t)-
_A.actual) (A(t) -_A.actual)'r] .

Q is the plant noise covariance matrix, E[v(t)vT(t)].

Because the noise covariance matrices, A and Q, are not known,
the parameter error covariance matrix, P, and the plant noise
covariance matrix, Q, are redefined

_P(t)

P
A (79)

> &

Q:

Combining Egs. (23) and (24) yields the recursive equations
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alt+l)=a(t)+k(t) [ul(t)-®T(t)a(t)]
K(t)=P(£)®(t) [I+OT(t)P(L)D (t) ]2 (80)
P(t+1)=P(t) -K(t)®T(t) P(t) +Q

Eq. (80) provides the recursive eqguations necessary to update
the system parameter vector, A.

In the next chapter the three controllers are
implemented for various levels of parameter uncertainty and

their performances compared.
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III. SIMULATION RESULTS

The computer simulations presented in this chapter were
obtained using the MATLAB subroutines listed in Appendix B.
Simulations are presented for various levels of system
parameter uncertainty ranging from 0% to 500%. System
parameter values presented in Table 1 correspond to actual
values of the Spacecraft Robotics Simulator and are utilized
to simulate system dynamics. Parameter values used by the
controller contain a random error up to a specified percentage
of the actual parameter value.

Equations of motion and computer code are verified by
examining the change in angular momentum of the system for
each simulation. For a given maneuver the rate of change in
angular momentum will equal the sum of external torgues on the
system. The only external torque experienced by the Spacecraft
Robotic Simulator is produced by the centerbody momentum

wheel. Thus, for each simulation the relation

H-Uwheelzo (77)

should be satisfied. Where H is the rate of change in angular
momentum and U,.; 1is the torque produced by the centerbody
momentum wheel. The right hand side of Eq(77) was found to be

< 10" Nm/s* for all simulations.

29




A. SIMULATION TEST CASES
Simulation results are presented for five cases. The first
case trains the adaptive control to recognize centerbody
characteristics. Cases 2-6 examine the effects of parameter
uncertainty on a desired manipulator maneuver. During the
maneuver, the manipulator tip is repositioned from an initial
to a final point along a straight line between the two points
as shown in Figure 6. The angular position of the centerbody
is held constant.
1. Case 1: Adaptive Controller Training Maneuver
Adaptive parameter A(6) depends only on centerbody
characteristics. In order to wupdate this parameter, a
centerbody maneuver is required. Cases 2-6 attempt to hold the
centerbody fixed and produces a small centerbody angular
position, velocity and acceleration. A separate case, in which
the centerbody is maneuvered, is required to adaptively update
centerbody characteristics. During this maneuver, the
manipulators are maneuvered in accordance with the reference
maneuver pictured in Figure 6 while the centerbody 1is
maneuvered as shown in Figure 7. Once the centerbody
parameter,A(6), 1s updated, it is assumed fixed and no error

is induced into this parameter in Cases 2-6.
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TABLE 1: SYSTEM PARAMETER VALUES
Parameter Name Parameter Variable Parameter Value
Centerbody Radius L, 0.427 m
Arm 1 Length L, 0.530 m
Arm 2 Length L, 0.533 m
Centerbody CM Lo 0.104 m
Arm 1 CM L., 0.403 m
Arm 2 CM L, 0.314 m
Centerbody Mass M, 65.96 kg
Arm 1 Mass m, 2.34 kg
[Arm 2 Mass m, 2.86 kg
Centerbody Inertia I, 5.74 kg-m?
Arm 1 Inertia I, 0.081 kg-m?
Lamm 2 trercis 0182 kgom®

Y(m)

b

O.4 0.8 0.8

Figure 6: Reference Maneuver Time
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2. Cases 2-6: 0-500% Parameter Uncertainty
Controller performance is presented for various levels
of parameter uncertainty ranging from 0-500%. Controller
errors and adaptive parameter updates are presented in Figures
8-23. Centerbody control torque characteristics are presented

in Table 2.

B. COMPARISON OF CONTROLLERS
1. Adaptive Controller vs Non-adaptive Controller
The adaptive controller is clearly superior to the
non-adaptive controllers for large values of parameter
uncertainty (>50% parameter uncertainty). For small values of
parameter uncertainty, the linearizing controller is superior
to the adaptive controller in all but centerbody control.
2. Linearizing Controller vs Reference Controller
The linearizing controller 1is superior to the
reference controller for low to moderate values of parameter
uncertainty (<150% uncertainty). The reference controller
exhibits superior performance over the linearizing controller

for the case of 150% parameter uncertainty.
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TABLE 2: CENTERBODY CONTROL TORQUE CHARACTERISTICS

Controller
Type/
parameter
uncertainty

Uwheel Max

Usheer Min

Jabs (Ujpeer)

%é:farizing 0.3735 ~-0.3987 0.2468

R?(f)gence 0.3735% ~-0.3987 0.2468

Linearizing 0.3723 ~-0.3987 0.2464

(508%)

Reference (50%) | 0.3738 ~-0.3980 0.2472
| adaptive (s08) [ 0.3735 ~0.3987 0.2468

Linearizing 0.3741 -0.3963 0.2489

(100%)

Reference 0.3742 -0.4000 0.2490

(100%)

Adaptive (100%) | 0.3735 -0.3987 0.2468

Linearizing 0.3736 -0.3958 0.2496

(150%)

Reference 0.3744 -0.3930 0.2491

(150%)

Adaptive (150%) } 0,3734 -0.3987 0.2470

Adaptive (500%) | 1.6784 -2.1698 0.2659
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IV. EXPERIMENTAL WORK

The spacecraft Robotics Simulator (SRS) was utilized for
the experimental portion of the thesis. The SRS is a
derivative of the Flexible Spacecraft Simulator (FSS)
initially developed by Watkins [Ref. 10] and later modified by
Hailey [Ref. 11]. Sorenson [Ref. 8] began the work to convert
the FSS into the SRS. The robotic manipulator utilized was

developed by Yale [Ref. 9]}.

A. SETUP

The SRS permits experimental investigation of two-
dimensional robotics motion and rotational spacecraft dynamics
and 1s 1illustrated in Figures 24 and 25. The simulation
hardware is floated on an eight foot by six foot granite table
by means of a thin layer of air supplied by an external
source. The table is polished to within 0.001 inch peak to
valley and leveled to prevent gravitational accelerations from
impacting the motion across 1its surface. The following
sections describe the simulated spacecraft with its associated
sensors and actuators and the controller which together form
the SRS. The spacecraft components are the centerbody and two-

link robotic manipulator.
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Figure 24: Spacecraft Robotic Simulator
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Centerbody

Figure 25: SRS Top View

1. Centerbody

The centerbody is a 30 inch diameter, 7/8 inch thick
aluminum disk. It carries a position sensor, rate sensor,
momentum wheel, thrusters, and an air tank to power the
thrusters. The centerbody also serves as the mounting platform
for the manipulators and is floated by a control air bearing
and three air pads located at 120 degree intervals near the
outer edge. The air pads are each capable of floating 60
pounds when the air pressure supplied to the pads is 80 psi.
The centerbody is allowed to float freely on the granite

table.
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The centerbody angular rate is measured by a rate
transducer manufactured by Humphrey, Inc., having a range of
+100 deg/sec and a minimum threshold of 0.01 deg/sec. The
centerbody’s translation is not measured and is neglected for
the experiment.

The centerbody‘’s angular position is controlled by a
momentum wheel and is powered by a model JR16M4CH/F9T servo
motor manufactured by PMI Industries whose characteristics are
summarized in Table 3. Although the centerkody also carries

two thrusters, they are not used in this research.

TABLE 3: MOMENTUM WHEEL MOTOR CHARACTERISTICS

Manufacturer PMI Industries

Model JR16M4CH/FIT

! Rated Output Speed (rpm) 3000

| Rated current (amps) 7.79

i Rated Voltage {(volts) 168

| Rated Torgue (in-1b) 31.85

| height (in) 4.5
| Weight (1b)

| Outside Diameter (in)

2. Manipulators
The two-link manipulator has three 3joints. The
shoulder joint is supported by the centerbody while the elbow

and wrist joints are supported by two air pads apiece. The
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links between the joints are stiff laterally but permit some
flexibility vertically. This feature increases the tolerances
on the air pad height adjustment. Joint angles for the
shoulder and elbow are sensed by encoders purchased with the
joint actuators. The encoder resolution is 0.005 degrees.
Manipulator actuators are harmonic drive dc servo actuators
manufactured by HD Systems, Inc. The shoulder actuator is
model RFS-25-6018-E036AL while the elbow and wrist actuators
are model RFS-20-6012-E036AL. Specifications for joint
actuators are contained in Table 4. The wrist joint actuator
and sensor is not utilized in this experiment. Manipulator
schematics are contained in Figure 26.

The joint actuators are all driven by Kepco power
supplies. These bipolar, programmable, linear amplifiers can
be controlled manually from the front panel or controlled
remotely with a 210 volt signal. In this application, The
power supplies are operated in the current control mode with
the voltage and current limits manually set consistent with
the values in Table 4. The specific power supply models and

their characteristics are summarized in Table 5.
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TABLE 4: MANIPULATOR ACTUATOR CHARACTERISTICS

Manufacturer HD Systems HD Systems
Model RFS-25-6012 RFS-25-6018
Reduction Ratio 1:50 1:50
Rated Output Speed (rpm) 60 60
Rated Current (amps) 2.9 3.9
Rated Voltage (volts) 75 75
Rated Torque (in-1b} 174 260
Height (in) 8.8 9.6
Weight (1b) 9.3 14.1
Footprint (in) 4.3 x 4;3, 5.1 x 5.1

/\ctuéf/jgg od \\\\
or/r2nc Cr Link
Air Pad—"

Figure 26: Manipulator Top and Side Views
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3. Controller

The AC-100 programmable controller manufactured by
Integrated Systems, Inc. controls the SRS. The AC-100 includes
an Intel 80386 Application Processor, an Intel 80386 Multibus
II Input/Output Processor, an Intel 80386 Communication
Processor, an Intel 80387 Coprocessor, a Weitek 3167
Coprocessor, an Analog-To-Digital and Digital-To-Analog Data
Translation DT2402 Input/Output Board, two INX-04 Encoder and

Digital-To-Analog Servo Boards, and an Ethernet Interface

TABLE 5: POWER SUPPLY CHARACTERISTICS

BOP 72-6M BOP 72-3M

§ Actuator Controlled Right Shoulder Right Elbow

§ DC output Range +72 volts +6 amps +72 volts +3 amps

i Closed Loop Gain 0.6 (amp/volt) 0.3 (amp/volt)

Module. The AC-100 also includes software installed on a VAX-
3100 Series Model 30 workstation. The software permits design
of a controller in block diagram graphical form and conversion
of the diagram to C language programming code. The user is
also able to design an interactive animation window to operate
the controller. The AC-100 receives input signals from the
sensors and the graphical user interface. AC-100 output
signals go to the power supplies driving the actuators or to

the graphical user interface for display.
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4. System Integration

Several problems were encountered while attempting to
implement the non-adaptive reference controller
experimentally. As a result several modifications to the
experiment were made.

a. Actuator Dead Zones

The first problem was caused by the large dead

zones present in the harmonic drive motors. Both the shoulder
and wrist motors were designed to be operated in a high torque
environment . The SRS components are relatively small and offer
little resistance to motion. This resulted in reference
torques for a reasonable maneuver which were entirely within
the dead zone of system actuators. This caused system tracking
errors to build up until the PD control term produced torques
larger than the actuator dead zones.

b. Centerbody Registance

A second problem involved a noticeable resistance

to rotation by the centerbody. This is due in part to the
inability of the central air bearing to function except under
very low lateral loading. This lateral loading was eliminated
by allowing the centerbody to float freely and ignoring
translation of the centerbody. This decreased some centerbody
resistance to rotation but some resistance was still detected
due to the effects of external wiring necessary for centerbody

components.
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c. Momentum Wheel Control

A third problem involved the ability to safely
control the centerbody reaction wheel. The AC-100 control
software was found to be subject to periodic freeze ups in
which controller outputs could not be reliably predicted. The
momentum wheel could therefore not be safely utilized. The
experimental modification was to perform runs in which the
centerbody was held fixed to simulate perfect reaction wheel

performance.

B. RESULTS
Results are presented in Figures 27-40 for four control
cases.
1. Case 1: High Gain, Free Centerbody
This case utilizes a high gain controller to control
a system in which centerbody motion is not constrained. The
controller gains utilized are presented in Table 6.
2. Case 2: Low Gain Controller, Free Centerbody
In this case, a low gain controller is utilized to a
control a system in which the centerbody motion is not
constrained. The controller gains utilized for this case are

presented in Table 6.
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3. Case 3: High Gain Controller, Fixed Centerbody
The controller utilized in this case is identical to
that of Case 1 but the centerbody is now held in a fixed
position.
4. Case 4: Low Gain Controller, Fixed Centerbody
This controller is identical to Case 2 but is used to
control a system in which the centerbody position is held

fixed as in Case 3,

C. COMPARISON OF CONTROLLERS
1. High vs Low Gain
The high gain controllers yielded lower steady state
errors than the low gain controllers at the cost of larger
oscillations during the maneuver.
2. Free vs Fixed Centerbody
When the centerbody 1is allowed to float freely,
significant errors in centerbody attitude and manipulator tip

position are seen.
TABLE 6: CONTROLLER GAINS

E Shoulder Gain Elbow Gain I
i K, (low gain 500 1000 7“

controller)

K, (high gain 1000 2000

controller)

K, (low gain 10 25

controller)

K, (high gain 20 50

controller)
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V. SUMMARY AND CONCLUSIONS

A. SUMMARY

Three controllers were successfully developed for a spaced
based two-link robotic manipulator. Two non-adaptive
controllers (a linearizing controller and a reference
controller) were first developed using feedback linearization
techniques. An adaptive contrcller was then developed through
the linear parameterization of system dynamics and the use of
a recursive Kalman Filter based adaption law. Controllers were
then compared for system parameter errors up to +500%.

Centerbody pointing accuracy was improved by utilizing
adaptive control while centerbody control torque was effected
very little. For high values of parameter uncertainty,
manipulator tracking errors were smaller when wusing the
adaptive controller. For low values of parameter uncertainty,
the linearizing non-adaptive controller outperformed the
adaptive controller in some areas.

Implementation of the non-adaptive reference controller
experimentally demonstrated the effects of un-modelled system
dynamics. The oscillations and steady state errors encountered
only reinforced the value of adaptive control in real world
applications. High PD <control gains produced larger

oscillations but smaller steady state errors than low gains.
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Manipulator maneuvers produced significant disturbances on
centerbody attitude when no control was applied to hold the

centerbody steady.

B. RECOMMENDATiIONS FOR FURTHER STUDY

Feedback linearization represents only one way to attack
a non-linear control problem. Other approaches include neural
networks and sliding mode controllers.

The adaptive controller developed may be too cumbersome to
implement in real time. In order to decrease computation time
the system can be re-parameterized in terms of only payload
characteristics and a more efficient adaption law developed.

Experimental implementation inaccuracies resulted from un-
modelled actuator dead zones. System egquations of motion and
reference torgues can be reformulated to include this effect.

The use of fuzzy logic is also worth investigatirng.
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APPENDIX A: MEMBER KINETIC ENERGIES

Kinetic energy of individual components is found using

Eqg. (7)

T=2 L0} Sm (L) (1)

The centerbody angular rate and center of mass position vector

are given by
w°=6° {(79)

i°=Lc02° (80)
Differentiating Eg.(80) results in the velocity of the
centerbody center of mass
Z,=Lo0e90 (81)

Substituting Eq. (79) and (81) back into Eq.(7) and collecting

on the angular rate term leads to
_1 2102
To=5 (Io*myLco) Oy (82)

Similar developments are used for each of the remaining
pieces in the system. For the manipulator link between the
shoulder and elbow (Link 1), the angular velocity 1is a
combination of centerbody rotation and rotation of the link

with respect to the centerbody.
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w,=0,+0, (83)

The position vector to the center of mass is

I =L,cos8,R,+LysinB P +L R, (84)

The first two terms in the position vector represent the
location of the shculder. Differentiating the position vector
gives the express.on for the velocity vector. Because none of
the coordinate axes used in the position vector expression are

inertial, their rotation must be included as well.
Z,=L,c080,9,-Low8in6 R +L 0,9, (85)
After Egs.(83) and (84) are substituded into Eqg.(7) and terms

are grouped by angular rates, the kinetic energy is

T,=02(0.5(I,+m L3 +m L) +mL,L,, (sinB,sin (8,+6,) +cos (6,+6,) ) )
+0.502(1,+m L))
+8,0, (I, +m L% +mLyL_, (sinB,sin (6,+6,) +cosb,cos (6,+6,)))
(86)

The angular rates for the link between the shoulder and wrist
(Link 2) includes the centerbody angular rates as well as the

angular rates of the body axes on Links 1 and 2.
©,=0,+6,+0, (87)
This link’s center of mass position vector is
I,=L,c0s0,R;+Lsin6 P+L R, +L .9, (88)

Differentiating the position vector gives the velocity vector
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.tz=L°wocosBoy° -Lyw,Sinb R +L, 0,9, +L 0,9, (89)

The kinetic energy for 1link 2 is found after substituting
Egs.(87) and (89) into Eq. (6) and collecting terms with common

angular rates.

T,=02 (0.5 (I,+mLo+m,LE+m,LE)
+m,LyL, (sin@;sin (6,+6,) +cosB,cos (0,+0,) +m,L,L_,cosb,
+m,LoL.,(sinB,sin (8,+0,+0,) +cosB,cos (6,+0,+6,) ))
+02(0.5(I,+*myL{+m,L2%) +m,L,L_,c0s6,) +0.502 (I, +m,L%,)
+00, (I, +m,L{ +m,Le;+2m, L, L, ,C0S6,
+m,L,L, (sinB;sin (0,+6,) +cosB,cos (6,+06,) )
+m,L,L.,(sin6,sin (8,+6,+6,) +cos6,cos (6,+6,+6,) ) )
+000, (I,+m,L2+m,L, L ,Cc0S0, |
+m,LyL.,(sinf,sin (6,+6,+6,) +cosB,cos (0,+6,+6,) ) )
+0,6, (I,+m,L%+m,L, 1 ,c0s6,)
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APPENDIX B: MATLAB CODE

A. PCONT

TEIBLELLTLLLLLLTLTLTLBLLLALLLVLLE LB LLLLLLIL23289%%
% Main Program to Track a Polynomial Reference Maneuver %
% pcont.m %
% calls: ode2.m %
FEIELIEITEITLLTILILLLLLLITTI2LTLLLLLLLLLLLL222838338%%4%
clg

clear

EILILETLTLBELLLLS
$ Define States %
FELBEILHETLEBEELLS

x(1)=thdl
x(2)=thd2
x(3)=thd3
x(4)=thl
x(5)=th2
x(6})=th3

00 00 0P 0P 0P 0P

TEEEEILLLLLLBLLELLLLTLBL%%%
% Actual System Constants %
TEEEEITLTLLLLLLBLTLLHEILLS

LO = .427; % centerbody r::dius

L1 = .530; % length of arm 1

L2 = .533; % length of arm 2

LcO = .104; % length to CM of centerbody
Lcl = .403; $ length to CM arm 1
Lc2 = .314; % length to CM arm 2
m0 = 65.96; % centerbody mass
ml = 2.34; % arm 1 mass

m2 = 2.86; % arm 2 mass

I0 = 5.74; % centerbody inertia
I1 = .081; $ arm 1 inertia

I2 = .182; § arm to inertia

TELEEEILILBLLILILLLBLLELB2%%
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$ Actua
TELLEY

W

1l System Parameters %
TEETHELTLTLRLLTRBLLTEY

I2 + m2*Lc2"2;

m2*L1*Lc2;
m2*LO0*Lc2;

I1 + ml*Lcl”™2 + m2*L1"2;
LO*(ml*Lcl + m2*L1l);
10 + mO*Lc0"2 + LO"2*(ml+m2) ;

FTEETLELTLILTLTTLLLTILLLLLBLLLLILLLTBRY
% Initial Guess of System Constants %
FETETLLITILLLLITLLLILLLLILILLTLL%%%

error = 1; % maximum error for constants
LcO0g = LcO+2*error*Lc0* (rand-.5);

Lclg = Lel+2*error*Lel* (rand-.5);

Lc2g = Lec2+2*error*Le2* (rand-.5);

m0g = mO0+2*error*m0* (rand-.5) ;

mlg = ml+2*error*ml*{rand-.5);

m2g = m2+2*error*m2*{(rand-.5);

I0g = I0+2*error*I0*(rand-.5);

Ilg = Il+2*error*Il*(rand-.5);

I2g = I2+2*error*12*(rand-.5);

FEEETTLLRELLRLILLEELY
$ Initial Conditions %
TEETILTLETLEEIITRIRLLLS

a0 = zeros(6,1);

a0(l) = I2g + m2g*Lc2g™2;

a0(2) = m2g*Ll*Lc2g;

a0(3) = m2g*LO0*Lc2g;

a0(4) = Ilg + mlg*Lclg™2 + m2g*L1"2;

a0(5) = LO*{(mlg*Lclg + m2g*Ll);

% a0(6) = I0g + m0g*Lc0g”2 + LO"2* {mlg+m2g);

a0(6) = aal(6);

p0 = 100*eye(6);

t0 = 0; i

tfinal = 15 ;

dt = .01;

x0 = [0.0; 0.0; 0.0; O*pi/180; -55*pi/180; 15*pi/189];
73




tol = le-6;
trace = 0;

ELTLTLLLIBLLLLIRBTLLILRLS
% Numerical Integration %
TEEEELTLLLTLLTTLTEELERL%%

(t,x,thdd,u,a,h,hd,Ref, rxref, ryref]

eul ('peq’,tfinal,dt,x0,a0,p0);

EIITTLLLITTBULIITLLLTILLLLLLLLLBBL LTI LIRBLLE%%
% Calculate Momentum Wheel Speed & Tip Position %
EIELIETLTILLLLLLIILLILLLALTLLLLLIBL AL TBBLHRY

Iw = 0.0912; % kg-m”™2
AA = [aa’];

thddw = zeros(l,length(t));
thdw = zeros(l,length(t));

thdw(l) = 104.7; % rad/sec (= 1000rpm)

rx = zeros(l,length(t));

ry = zeros(l,length(t)});

r X ( 1 )
LO*cos({x(1,4))+L1l*cos{sum(x(1,4:5)))+L2*cos (sum(x (1
r y ( 1 )

LO*sin(x(1,4))+Ll*sin(sum(x(1,4:5)))+L2*sin(sum(x(1

for i=2:1length(t);
thddw(i) =-u(i,1)/Iw;
thdw(i) = thddw(i)*(t(i)-t(i-1))+thdw(i-1);
AA=[AA aa']l;

r X ( i )
LO*cos(x(1i,4))+Ll*cos(sum(x(1,4:5)))+L2*cos(sum(x(1i
r Y ( i )

LO*sin(x{i,4))+Ll*sin(sum(x(i,4:5)))+L2*sin(sum(x (i
end

TEETIIILHEER%%%
% Plot Output %
EETEILLEELL%%%

$ figplot
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B. PEQ
FTEITLLLLLLLELLLLLLTLTLLLETLTTLLRILLLLLLLELRLILLLLLLEBLLLLLY
% Equations of Motion for a Polynomial Reference Maneuver %
% peq.m %
$ called by: ode2.m

$ calls: ref.m, mgm.m, adap.m, angmo.m
EEETLTLLLHLELELLTTRLLBLLLLLEELTLTILLLYLLLLHITLLLLLREHTRELY

function [xdot,thdd,U,A,P,H,Hd,Ref,rx,ry] = peqlt,x,a,p)

TEEETLLLELLEEE5%%

% Define States %

EIETETHLLLLELR%Y

% x(1)=thd0

% x(2)=thdl

% x(3)=thd2

% x(4)=tho

% x(5)=thl

% x(6)=th2

T T I LT 2 21

% Constants %

2225 2%2%%%%%

LO = .427; % centerbody radius

L1 = .530; % length of arm 1

L2 = .533; % length of arm 2

L = [LO;L1;L2];

LcO = .104; % length to CM of centerbody
Lcl = .403; % length to CM arm 1
Lc2 = .314; % length to CM arm 2
Lc = [LcO;Lcl;Lc2];

m0 = 65.96; % centerbody mass
ml = 2.34; % arm 1 mass

m2 = 2.86; % arm 2 mass

m = [mO;ml;m2];

I0 = 5.74; % centerbody inertia
I1 = .081; % arm 1 inertia

12 = .182; % arm to inertia

I = (I0;I1;12];

FTIELELETLIIILTEITLLRL9829%3%%
% Actual System Parameters $%
FTEEEEEILETLE TR LILLEH%%

aa{l)= I2 + m2*Lc2"2;
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aa({2)= m2*L1*Lc2;

aa(3)= m2*LO0*Lc2;

aa(d4)= Il + ml*L¢cl™2 + m2*L1°2;
aa(S)= LO*(ml*Lcl + m2*Ll);

aa(6)= 10 + mO*Lc0"2 + LO"2* (ml+m2);

TILLTELLELERLS
$ Controller %
EIEEIBLBETELLS
thd(1,1) = x(1);
thd(2,1) = x(2);
thd(3,1) = x(3);
th(1,1) = x(4);
th(2,1) = x(5);
th(3,1) = x(6);

(MM, GM] = mgm{th,thd, a);

Kp=100*eye(3) ;
Kv=50*eye(3);

[Uref, thr,thdr,thddr,rx,ry] = ref(t,L,a);

Ref=[Uref;thr;thdr;thddr];
du=MM* (-Kv* (thd-thdr) -Kp* (th-thr) ) ;

Ul=MM*thddr+GM;

U=Uref+du;
$ U=Ul+du;
% U=Uref;
TEEEETELHBLLY
% Plant EOM %
TLEEELEHELLLE

[MMa,GMa] = mgm(th, thd, aa);

thdd
xdot

inv(MMa) * (U-GMa) ;
(thdd;x(1);x(2);x(3)]);

FTITTLELETLLLTLLLLILLLIHE22%9%%
% Adaptive Parameter Update %
FTIELILILLTILLLIILILLLILLEB9%%%

[A,P,Phi,K] = adap(th,thd,thdd,a,U,p);
% test=MMa*thdd+GMa-Phi’*aa’




ETLLLTTLILLLIBLLLTLLE%%
% Nonadaptive Control %
FELELTBLALTRLBLRLILLR%%

T A
g P

aj
pi

fi

FEEETTTLLLLLLLLTELLIRTLLLLLELY
% Calculate Angular Momentum %
EEETLILLLELLLTTLTLLLLLLLLLRR%%

(H,Hd] = angmo(m,I,L,Lc,th,thd,thdd);
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C. REF
FTLTLLLLLTLLLTLLLLLLLLLLLLLLLLILLLLLTBII24S
% Function to produce reference parameters %

$ ref.m %
% called by: peqg.m %
% calls: mgm.m %

EELEYLLTLLLLITETILTLLLLBLLLZLTLLTILLLLLLLLLS
function {[Uref,thr,thdr,thddr,rx,ry] = ref(t,L,a);

TEEEELLTLLLULLTLLEL LTS LILLELL9%4%%
% Initial and Final Angles and Times %
TEETTLRLLLTLLLLIIRLLTLBLLILLLTILBLL3%%

LO0=L(1);
L1=L(2);
L2=L(3);

0;
-55*pi/180;
15*pi/180;

thl0ri
thlri
th2ri

% always=0

thorf
thlrf
tharf

0; % always=0
40*pi1/180;
15*pi/180;

ths = 0; % constant

t0
tf

o

Rt 2 R R e R LTI T T EI R IR I AR T T 1
% Initial And Final Vector Positons %
TSI E LR E LI ELLLILLLLLLEBLLLLE

r3x0 = LO*cos (ths)+Ll*cos(ths+thlri)+L2*cos(ths+thlri+th2ri);
r3y0 = LO*sin(ths)+Ll*sin(ths+thlri)+L2*sin{(ths+thlri+th2ri);
r3xf = LO0*cos(ths)+Ll*cos(ths+thlrf)+L2*cos(ths+thlrf+th2rf);
r3yf = LO0*sin(ths)+Ll*sin(ths+thlrf)+L2*sin(ths+thlrf+th2rf);

i}

R I R IR L R ARSI LA LA SRS T R A A 2
% Calculate Reference Maneuver %
TR BIELLLLEBEEE%%%

tan = (t - t0) / ( tf - t0 );

f = ( 10 * tau™3 - 15 * tau™d + 6 * tau™s );
fd = ( 30 * tau™2 - 60 * tau™3 + 30 * tau~4d);
f2d = (60*tau-180*tau~2+120*tau"3);
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rx
ry

rxd = fd*{ r3xf - r3x0 )/( tf - t0 );
ryd = fd*( r3yf - r3y0 )/( tf - t0 );

rxdd = f2d* (r3xf-r3x0)/((tf-t0)"2);
rydd = f2d* (r3yf-r3y0)/((tf-t0)"2);

r3x0 + ( r3xf - r3ix0 ) =
*

f;
r3y0 + ( r3yf - r3y0 ) f;

W

if (t>tf);

rx=r3xf;
ry=r3yf;
rxd=0;
ryd=0;
rxdd=0;
rydd=0;

end

EEIFTEIITETBLILLLLLLITTIRLRLLLELS
% Determine Inverse Kinematics %
P E LI LEE T LTI T TR LLEI LB
Sx LO*cos(ths) ;

Sy LO*sin(ths);

SR sqgrt { (rx-Sx) "2+ (ry-Sy)"2):;

Bl
B2
B3

atan2 (ry-Sy,rx-8x);
acos{{(L1"2+SR"2-L2"°2)/(2*L1*SR));
acos((L172+L272-8R"2)/(2*L1*L2));

thlr Bl1-B2-ths;
th2r pi-B3;
thr [0;thlr;th2r];

% thr = [thlr;thlr;th2r];

~L2*sin(ths+thlr+th2r)-Ll*sin(ths+thlr);
~-L2*sin(ths+thlr+th2r);
L2*cos(ths+thlr+th2r)+Ll*cos{ths+thlr);
L2*cos(ths+thlr+th2r);

H(1,1)
H(1,2)
H(2,1)
H(2,2)

o a u

[thdrl2] = inv{(H)*[rxd;ryd};
thdlr thdrl2 (1) ;

thd2r thdrl2(2);

thdr = [{0;thdlr;thd2r];

% thdr = [thdlr;thdlr;thd2r};

no

~-L2*{thdlr+thd2r) *cos(ths+thlr+th2r)-Ll1*thdlr*cos(ths+thlr);

79




Hd(1,2) = -L2*(thdlr+thd2r)*cos({ths+thlr+th2r);
H d ( 2 ' 1 ) =
-L2*(thdlr+thd2r) *sin(ths+thlr+th2r)-Ll*thdlr*sin(ths+thlr);
Hd(2,2) = -L2*(thdlr+thd2r)*sin(ths+thlr+th2r);

[thddrl2] = inv(H)*([rxdd;rydd] -Hd*{thdlr;chd2r]);
thddlr = thddrl2(l);

thdd2r = thddrl2(2);

thddr = [0;thddlr;thdd2r];

TEEEETELULLLLLTIL LR LLTLLLLLLTRITIRLLLY
% Calculate Reference Control Torques %
TEELLLLLLLLTLILLBRLLLLLLLLIIBIB2E%%%
{MMr,GMr] = mgm(thr,thdr,a);

Uref = MMr*thddr+GMr;
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D. RUL
FELLLLELLTLLILTRILLLLILLUELITLTLLLLLLLLLTLLLLLTLLBLBRBLRRLLY
XL 11
% Discrete Euler Integration

%
% eul.m

%
% called by:pcont.m

%
$ calls: peg.m

%
TEEEITITLELIBELETILLILLLLLLLTHTLILLLLLLLLLLTRLITLLLLLVETE%%S
FEEEELS
£ u n c t i ‘o) n
[tout, xout, thddout, uout, aout, Hout, Hdout , Refout, rxout, ryout]=

eul (FunFcn,tf,dt,x0,a0,p0)

TEEETLEEITLETEE%%%
% Initialization %
FEEEETELL255TLL%%%
t = 0;

x = x0(:);

u = zeros(3,1);

a = al(:);

thdd = zeros(3,1);
p = p0;

H = 0;

Hd = 0;

Ref=zeros(12,1);
Ref(4:6)=[0;~55;15]*pi1/180;
LO = .427;

L1 = .530;

L2 = .533;

aout ;
Hout ;
Hdout = (];
Refout = [];
rxout = [];
ryout = [];

FIBLEELLEBI339%%
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$ The main loop %
TELTELTETHLLLLLLS

for 1=1:(tf/dt)+1

feval (FunFcn,t,x,a,p);

(xd,thdd,u,A,P,H, H4, Ref, rx, ry]

tout =
xout =
thddout
uout
aout
Hout
Hdout
Refout
rxout
ryout

now oo
Lol -l Jiad

~e

Lo BN I e 4

end

(thddout; thdd.’};

[Refout;
[rxout;rx];
[ryout;ry]:;

+ 4+




B. MGM

EEEETETTLLLLLETRLLTLLELELLEHELILTLLLLLLLLBRELLLLR%%
% Function to Calculate ‘M’ matrix and ‘G’ vector %
$ mgm.m %
% called by: pegq.m, ref.m %
FEEETTLFETL I ELHELLLLLLTTLRBLBLLLLLILLLBBRLBLLBE%3%

function [MM,GM] = mgm{th,thd,a);
FTELELLLITEITTATLILHIILLITIIBH9%%Y

% Define Angles & Angular Rates %
EELTEIELLEREELLETEILLELBLEHH98383%

thO0 = th(l);
thl = th(2);
th2 = th(3);
thd0 = thd(l);
thdl = thd(2);
thd2 = thd(3);

FTEIEETIITIILLBLBLLITRRRRY
% Calculate 'M’' matrix $%
TETELTETILTILLETILTEEL%2S

a(l);

MM(3,3)+a(2)*cos(th2);

MM(2,3);

MM(2,3)+a(3)*cos{thl+th2);

MM(1,3);

MM{2,3)+a(2)*cos(th2) + a(4);
MM(2,2)+a(3)*cos(thl+th2) + a(5)*cos(thl);
MM(1,2);

MM(2,2)+2*a(3) *cos(thl+th2)+2*a(5)*cos(thl)+al(6);

NN WRE W W
RPN W WW
oo i

[

TEEIETLTH TR ILLHEER%%3
% Calculate 'G’ vector %
TELE BT ELLLIEERLEELRLS

ca2 = thd2*(2*thd0+2*thdl+thd2) *sin(th2);

GM(1l,1) = -a(5)*(thdl"2+2*thd0*thdl)*sin(thl)-a{2)*ca2...
~a{3)*(2*thd0* (thdl+thd2)+ (thdl+thd2)"2) *sin(thl+th2);

G M ( 2 , 1 )
a(5)*thd0"2*sin(thl)-a(2)*ca2+a({3)*thd0"2*sin{thl+th2);

G M ( 3 . 1 )

a(2)*(thdl+thd2)"2*sin(th2)+a(3)*thd0”2*sin(thl+th2);
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F. ANGMO
FTLIELTLALLLLLTLLULLLLTLALLLATLBLLALLLBLLLLLIILIBRLY
$ Subroutine to calculate system angular nmomentum %
% angmo.m
% called by: peg.m %
FTEEEEEERELLLLILLLLULTBLLLLLIBLLULLLLLLLLLIEBLRLY

function [H,Hd]=angmo(m,I,L,Lc,th,thd,thdd);
EETTETLTLHLLLLILELILLLLES

% Local variable names %
EETEEEELILILLBETLBELLELY

m0 = m(l);
ml = m(2);
m2 = m(3);
I0 = I(1);
I1 = I(2);
I2 = I(3);
LO = L(1);
L1 = L(2);
L2 = L(3);
Lc0 = Lc(l);
Lcl = Lc(2);
Lc2 = Lc(3);
thO=th(1l);
thi=th(2);
th2=th(3);
thd0=thd (1) ;
thdl=thd(2);

thd2=thd(3);

thdd0=thdd(1) ;
thddl=thdd(2);
thdd2=thdd(3) ;

FEEELTELLTLLLL2LLTELTLLL28%%
% Angular Momentum Equations %
FTEEEILELIELLTLLIILLILLIBR%%%

HO = thd0*(I0+m0*Lc072);

Hl = thd0*(Il+ml*(L0"2+Lcl"2+2*L0*Lcl*cos{(thl)))...
+thdl* (I1l+ml*{(Lcl~2+L0*Lcl*cos{thl)));

H2 = thd0*(I2+m2* (L0"2+L1"2+Lc2"2+2*L0*L1*cos (thl) ..
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+2*L1*Lc2*cos(th2)+2*L0*Lc2*cos{thl+th2))) ...
+chdl*(I2+m2* (L1"2+Lc2"2+L0*Ll*cos(thl)...

+2*L1*Lc2*cos (th2)+L0*Lc2*cos (thl+th2))) ...
+thd2* (I2+m2* (Lc272+L1*L¢ec2*cos(th2) +L0*Lec2*cos (thl+th2)));

H=HO+H1+H2Z;

TEELLLTHLTILLILRLS
% Hdot Equations %
FTEIBLTRLTLTBLLLLS

HAO
Hd1l

thddo* (I0+m0*Lc0"2) ;
thdd0* (I1+ml*(L0"2+Lcl"2+2*L0*Lcl*cos(thl))) ...
+thddl*(I1+ml* (Lcl"2+L0*Lcl*cos(thl)))...
-thd0*thdl*2*ml*L0*Lcl*sin(thl) ...
-thdl"2*ml*L0*Lcl*sin(thl);
HA2 = thdd0* (I2+m2*(L0"2+L1"2+Lc272+2*L0*Ll*cos(thl)...
+2*L1*Lc2*cos(th2)+2*L0*Lc2*cos(thl+th2))}...
+thddl*(I2+m2* (L1"2+Lc272+L0*L1l*cos(thl)...
+2*L1*Lc2*cos(th2)+L0*Lc2*cos{thl+th2))) ...

+thdd2* (I2+m2* (Lc272+L1*Lc2*cos (th2)+L0*Lc2*cos (thl+th2))) ...
-thd0*thdl*2*m2* (LO*L1*sin(thl)+L0*Lc2*sin(thl+th2))...
-thd0*thd2*2*m2* (L1*Lc2*sin(th2) +L0*Lc2*sin(thl+th2))..
-thdl*thd2*2*m2* (L1*Lc2*sin(th2)+L0*Lc2*sin(thl+th2)) ...
-thdl~2*m2* (LO0*L1l*sin{thl)+L0*Lc2*sin(thl+th2))...
-thd272*m2* (L1*Lc2*sin(th2)+L0*Lc2*sin(thl+th2) ) ;

Hd=HA0+Hd1+HA2;
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G. ADAP

TTLLLLTLLILLLLLLLILLLLLRY
% Adaption Law

% A=adap(th, thd, thdd, a)
% called by:

peqg.m

%
%
%

TEEILLLBUTBLLELLBBUIILREY

function [A,P,Phi,K]=adap(th,thd,thdd,a,U,p);

ELELELHTLTTELLTLBLLLEI%%%
% Local Variable Names %
FETETLTLLTLLBLETLALTHEE%S

thO=th(1);
thl=th(2);
th2=th(3);

thd0=thd (1) ;
thdl=thd(2) ;
thd2=thd(3);

thdd0=thdd(1) ;
thddl=thdd(2) ;
thdd2=thdd(3) ;

EEETTETEETLLLY
% Phi Matrix %
TEEEETTLEEEE%%
Phi(l,1) = thdd0+thddl+thdd2;
Phi(1,2) = Phi(1l,1);
Phi(1,3) = Phi(1l,1);
Phi(2,1) = (2*thdd0+2*thddl+thdd2)*cos(th2)...
-thd2* (2*thd0+2*thdl+thd2) *sin(th2) ;
Phi(2,2) = Phi(2,1);
Phi(2,3) = (thdd0+thddl)*cos(th2) + (thdl+thd2)"2*sin(th2);
Phi{(3,1) = (2*thdd0+thddl+thdd2) *cos(thl+th2)...
-(2*thd0* (thdl+thd2) + (thdl+thd2)"2)*sin{(thl+th2);
Phi(3,2) = thdd0*cos(thl+th2) + thd0”2*sin(thl+th2};
Phi(3,3) = Phi(3,2);
Phi(4,1) = thdd0+thddl;
Phi(4,2) = Phi(4,1);
Phi(4,3) = 0;
Phi(5,1) = (2*thddo0+thddl)*cos(thl)
(thdl1”2+2*thd0*thdl) *sin(thl);
Phi(5,2) = thdd0*cos(thl) + thd0"2*sin(thl);
Phi(5,3) = 0;
Phi(6,1) = thddo0;
Phi(6,2) = 0;
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Phi(6,3) = 0;
EILLETLLLTLTLLLTLLRTLY

% adaption Equations %
FEETLEITLLELLLTLBLLHRLS

K = p*Phi*inv(eye(3)+Phi’*p*Phi) ;

A=a;
= a+K* (U-Phi’*a);

= eye(6);
p-K*Phi’ *p+eye(6) ;

o oe 3 oo

P
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APPENDIX C: EXPERIMENTAL CONTROL BLOCK DIAGRAMS

This appendix includes the diagrams of the system build

block diagrams made to control the SRS. Both is the parent

superblock. The others are lower level superblocks.
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Figure 41: Overall Control Block Diagram
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Figure 42: pParameters Block biagram
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Figure 44:




Figure 45: Controller Block Diagram
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