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Abstract

SynRGen, a synthetic file reference generator operating at the system call level, is capable of modeling
a wide variety of usage environments. It achieves realism through trace-inspired micromodels and
flexibility by combining these micromodels stochastically. A micromodel is a parameterized piece of
code that captures the distinctive signature of an application. We have used SynRGen extensively for
stress testing the Coda File System. We have also performed a controlled experiment that demonstrates
SynRGen's ability to closely emulate real users - within 20% of many key system variables. In this paper
we present the rationale, detailed design, and evaluation of SynRGen, and mention its applicability to

broader uses such as performance evaluation.
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1 Introduction

Transforming a file system from an initial prototype into a fully deployed system is a process fraught with hazard. Many
insidious bugs will only be triggered under heavy loads and extended usage. But fear of serious failures, involving
loss of data and lengthy downtime, deters many potential users. How, then, can implementors hope to increase the
robustness of their system?

SynRGen is our solution to this problem. Configuration files, describing the behavior of real users and the
characteristics of their data, are used by SynRGen to construct programs called synthetic users. When executed, a
synthetic user generates references emulating the modeled users. By stress testing with a wide variety of synthetic
users, an experimental system can be brought to an acceptable level of robustness.

SynRGen's usefulness extends well beyond stress testing. Since synthetic users can be parameterized and since
the.generated workload is reproducible, they can be used as the basis of a family of benchmarks for performance
evaluation. Further, the logistical and privacy problems inherent in exporting reference traces can be avoided by
exporting a synthetic user representative of those traces. Most importantly, SynRGen allows a system to be subjected
to hypothetical or anticipated usage scenarios. For example, one may wish to study the behavior of a file system when
the extent of write-sharing, the degree of locality or the distribution of file sizes differs substantially from that of any

currently available environment.

We have used SynRGen extensively in the development of the Coda File System[ 16]. Our experience confirms
that it is an invaluable tool for file system development. We have also shown that the synthetic users produced by
SynRGen can closely emulate the impact of real users on system resources. Specifically, our experiments indicate that

SynRGen can emulate a group of users in an edit/debug cycle within 20% of key system variables such as network
load and server Cpu usage.

Our description of SynRGen begins with a discussion of the primary factors that influenced its design. We then
describe its architecture and implementation. The results of a controlled experiment exploring SynRGen's ability to
emulate real users are presented in Section 4. We conclude the paper with a discussion of potential refinements and a

survey of related work.

2 Design Rationale

2.1 Combining Realism with Flexibility

The dominant design consideration for SynRGen was our need to characterize a wide variety of usage environments,
including aspects such as the physical characteristics of files, the behavior of users and programs, and the scale of
the system. In building SynRGen, we had to carefully balance the degree of realism achieved with the amount of
flexibility possible.

Realism can be viewed as the measure of correspondence along a number of dimensions[6].. The dimensions
of interest may vary considerably. For example, in one experiment the only variable of interest may be server CPU
utilization. In contrast, a more detailed experiment might include many system variables such as cache hit ratio at
clients, volume of client-server traffic, and disk traffic at the server. The ultimate degree of realism is to replay an
actual file reference trace. Unfortunately, traces can be extrapolated only in limited ways. Parameters such as file

Sources for SynRGen are available via AFS (/afs/cs.cmu.edu/project/coda-syntgen)or via anonymous FTP from ftp.cs.cmu.edu (projectsynrgen). For questons or
comments related to SynRGen. please send e-mail to synrgen@cs.cmu.edu.



sizes and interarrival times can be scaled with relative ease. But there is no mechanical way to modify more complex

aspects such as the degree of write-sharing between users.

SynRGen achieves realism through trace-inspired micromodels. File reference traces of applications reveal
distinctive patterns or signatures in their file access behavior. A micromodel captures the signature of a particular
application in a parameterized function. As an example, consider a hypothetical C compiler that opens and reads a
".c" file, opens and reads a number of ".h" files, creates an empty ".o" file, writes to that file, and finally closes it.
The specific ".c" file referenced, the number and identity of ".h" files, the sizes of each file, and many other details
vary from execution to execution. Yet an examination of traces from many such executions will reveal the general
pattern described above. A micromodel for this hypothetical C compiler would capture this distinctive signature,
parameterizing the details of interest that vary between executions.

SynRGen achieves flexibility because experimenters can stochastically combine micromodels to capture workloads
representative of a particular class of users. They can also specify parameter values at runtime and during configuration.
Rather than wiring in the degree of realism, our approach defers this decision to the experimenter.

We expect most experimenters will begin by using existing micromodels, simply setting parameter values appro-
priately. If they find that no micromodel exists for an important application or if they find that the existing micromodel
is not sufficiently accurate, they will either create a new micromodel or improve the existing one. An important aspect
of our approach is that it is possible to substantially separate the efforts of the modeler and experimenter - micromodels
encapsulate the work of the former.

2.2 File System Independence

A goal in developing SynRGen was to compare the performance of alternative implementations of a particular file
system API (application program interface) for identical user communities. For example, one might want to compare
AFS[141, NFS[ 12], Sprite[1 1] and Coda[ 161. This requires that the reference stream generated by SynRGen had to be
at the level of abstraction common to these file systems, in this case the Unix file system API.

References generated at the file system API means that semantic constraints at that level must be respected. For
example, in the Unix API, one cannot delete a directory unless it is empty; nor can one read from a file until it has been
opened. Rather than trying to capture these API-specific constraints in some declarative form (such as a table), we chose
to embed them in micromodels written in arbitrary C code. It is then the responsibility of the micromodel's author
to ensure that API-specific constraints are met. Further, the mechanism for stochastically combining micromodels is
API-independent because the micromodels encapsulate all knowledge of the API.

A consequence of this decision is that SynRGen is not restricted to generating file system references. By writing
appropriate micromodels, SynRGen could equally well generate, for example, synthetic SQL database queries or disk
I/O references. Although our experience with SynRGen has been limited to file reference generation, we do not foresee
any obstacles to its broader use.

2.3 Parameterizing File Locality

The performance of virtually every file system is critically dependent upon design assumptions regarding the degree
and nature of locality of file reference. If these assumptions do not hold in a particular environment, the performance of
the file system could be significantly different from expectations. We wanted the ability to study the effect of changing
the locality of reference substantially.

2



In order to conduct such a study without recoding every micromodel, one needs the ability to convey interfile
locality information between independently-authored micromodels. For example, if a user examines the attributes
of a given file, he or she is likely to look at the contents of that file next. Somehow, we must capture this temporal
locality of reference. We use pathname iterators to meet this requirement. A pathname iterator is simply a procedure
that encapsulates locality information. Each call to a pathname iterator yields the name of a file or directory; the
stream of names generated by successive calls exhibits the interfile locality modeled by that iterator. To use SynRGen
micromodels with different locality patterns, one merely invokes them with lifferent pathname iterators.

In principle, a similar mechanism could provide a choice of intrafile locality models. However, intrafile locality
tends to be specific to an application rather than being a function of the usage environment. Hence we expect SynRGen's
micromodels to capture intrafile locality internally. For instance, a micromodel for the more program would open a
file and read all or the initial part of the file sequentially, while a micromodel for a database or a linker/loader would
open a file and access portions of the file randomly.

3 Architecture and Implementation

The design rationale presented in the previous section leads directly to the architecture of SynRGen. The core oi
SynRGen consists of a set of preprocessors that transform configuration files into executable code, linking in the
specified micromodels from a library. Synthetic user executables are generated for each type of user specified by the
configuration files. Running a synthetic user results in references corresponding to that type of user.

An experiment consists of subjecting a candidate system to a collection of synthetic users. To emulate a timesharing
environment, multiple synthetic users are run on the same machine. When emulating a distributed workstation
environment, each synthetic user is run on a different client machine. The system-specific instrumentation necessary
for monitoring the impact of synthetic users on clients, servers, and the network must be provided externally.

In the following sections, we describe SynRGen at the next level of detail. We first present the abstractions
supported by SynRGen, and then discuss how each abstraction is specified. We complete the section by. giving the
status of our implementation.

3.1 SynRGen Abstractions

Our design is based upon two key abstractions: volumes and user classes. The volume abstraction provides the basis
for modeling the layout and storage characteristics of the file system, while the user class abstraction provides the basis
for modeling user activity.

A volume is a subtree of files and directories exhibiting a unique combination of physical characteristics. Each
characteristic, such as file size and directory fan-out, is described by a distinct volume-specific stochastic distribution.
For simplicity, we assume volumes are mounted only at the root of the file system hierarchy. Table I summarizes the
characteristics observed in different types of volumes from a representative file system.

A user class corresponds to a stochastic finite state machine. States in the FSM represent distinct user behaviors.
while transitions represent a user changing from one behavior to another. For example, a behavior might be "program-
ming" or "document processing". Each behavior consists of some set of possibly repetitive actions, corresponding
to subtasks performed within this behavior. The actions associated with a "programming" behavior might include
"searching header files", "editing" and "compiling", while the actions associated with a "document processing" behav-
ior might include "editing" and "formatting". Actions exhibit distinctive file access characteristics, and correspond to
micromodels.
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_____ _____ Volume T~ype_ _ _

Physical Characteristic User Project I System [_BBoard__ All ]
Total Number of Volumes 786 121 72 71 1050

Total Number of Directories 13955 33642 9150 2286 59033
Total Number of Files 152111 313890 113029 144525 723555

Total Size of File Data (MB) 1700 7000 1500 560 11000

Absolute Depth 4.3 (1.3) 6.3 (2. 1) 6.0 (1.3) 5.3 (1.0) 5.7 (2.0)

Relative Depth 3.3 (1.3) 5.2 (2.0) 4.0 (0.2) 2.7 (0.8) 4.5 (I ý9)

File Size (KB) 10.3 (65.0) 24.0 (045.7) 16.4 (72.6) 2.6 (7.0) 19.1 (118.0)

Directories/Directory 3.6 (13.4) 3.0 (4.5) 3.6 (10.4) 6.8 (19.4) 3.2 (8.3)

Files/Directory 14.6 (30.6) 16.2 (35.6) 15.9 (36.9) 66.9 (142.4) 15.7 (34.5)

Hard Links/Directory 3.7 (12.4) 2.0 (1.5) 4.0 (3.9) 0.0 (0.0) 3.4 (5-7)

Symbolic Links/Directory 4.1 (10.1 3.4 (7.5) 13.6 (45.3) 6.0 (25.9) 6.3 (24.9)

This table summurarize various physical characteristics of system, user. project, and bulletin board ("bboard") volumes in APS at Carnegie Mellon University in early

1990. These data were obtained via static analysis. We present only the mean and standard deviation (in parenthesis) here. The full data are represented in cumulative

distribution functions. Absolute depth is measured from "/afs/cs.cmu.edu/user" for user volunmes. -/afs/cs.cmu.edu/project"* for project volumes, and %o on. Relative

depth is measured from the volume root.

Table 1: Sample Physical Characteristics by Volume Type

Ac.on3.0

006

~a.otwavihavio

(a) Complete Finite State Machine (b) Detail of demo Behavior

Figure (a) shows the finite state machine for a hypothetical user class. Eachof the states initial ize..me. demo. clean-.up, and another-behavior represent user

behaviors. Figure (b) shows the detailed contents of one of these behaviors, demo. Each small rectangle in this figure. such as edit-debug and read..eit ire.,file.

corresponds to an action; these actions are implemented in micromodels. In both figures. arc represent transitions between user behaviors, and the numbers on the arcs

indicate transition probabilities.

Figure 1: User Class Finite State Machine
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Figure l(a) shows an example of a user class. This class of users exhibits four behaviors: initialize-me,
demo, another.behavior and clean-up. The arcs in this figure represent transitions between behaviors; the

numbers represent the probability of taking a particular transition. Figure 1(b) details a single behavior (demo) of
that user class. The actions associated with the demo behavior include syscall-stat, readentire-file and

edit.debug.

Our representation of a user class closely resembles a user behavior graph, as defined by Ferrari[61. Each behavior
in a SynRGen user class corresponds to a node in the behavior graph, and each transition to an arc.

3.2 Configuration Files

SynRGen's volume and user class abstractions are described in configuration files which are transformed by prepro-

cessors. The mkclass preprocessor transforms a user class into a C program representing a synthetic user. The

mkvol preprocessor transforms a volume description into a C data structure accessed by micromodels through library
routines. To simplify the compilation and linking of synthetic users, we provide a third preprocessor, mksynrgen,
that takes a system configuration file and generates snell scripts.

/- Include volume type descriptions /
#include <system>
#include <hacker-project>

/* Volume Instantiations -- name: volume-type /
sys: system
codasrc: hacker-project
synrgensrc: hacker-project

/* Include user class descriptions /

*include <hacker>

/* User Declarations -- group: user-class(parameters) /
codahackers: hacker()
synrgenhackers: hacker(projectl = syrnrgensrc, meanlinterarrival = 0.141

Figure 2: Sample System Configuration File

This figure shows a sample system configuration file. Notice that the synrgenhackers user declation redefines the default value of the Sprojecti1 variable to
"'synrgensrc" and the value of the meanminterarrival vafnabl to O.14.

We describe SynRGen further with a set of examples. Figure 2 shows a typical system configuration file. The
first section of this file defines volume descriptions by including volume configuration files, system.vol and
hacker.project. vol. In the next section, we instantiate three volumes: sys, codasrc, synrgensrc. The
first volume is of type system, and the other two are of type hacker-project. The syntax resembles the way in
which C programs include header files to obtain typedef definitions and then instantiate variables of those types.

In a similar manner, the rest of the file obtains definitions of the user class hacker and instantiates two different
instances of this type of user. The instances differ in that codahackers uses the default set of parameters, while

synrgenhackers redefines certain parameters.

Figure 3 depicts a portion of a volume configuration file. This file can contain up to six sections, each describing
a physical characteristic of the file system hierarchy. The physical characteristics are: the file size; the number of
files, symbolic links, hard links and directories per directory; and the relative depth. The characteristics are described
using the inverse transformation of the corresponding CDF (cumulative distribution function). This information

is transformed into a data structure used by the volume information routines (e.g. getFileSize) accessible to

micromodels.
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FILESIZE: DIRS per DIRECTORY
007 0 0.67 0 SYMLINKS per DIRECTORY
0.10 100 0.81 I 0.91 0
0.13 200 0.89 2 0.95 I

0.92 3 0.98 3
0.95 4 0.99 9

0.9 400000 .. ... 1.00 90
1.00 10000000 1 .00 100

This figum. containing exCerpts of the project volume configuni•on file, shows thrm physical characteristics of this type of volume. This file commts the inverse

transformaton of the CDF for each chwacuistic. For example. 13% of all file in project volumes contain no moe than 200 bytes ofdats. The das details the summary

presented in Table i.

Figure 3: A Portion of a Volume Configuration File

Figure 4 depicts the user class configuration file corresponding to Figure 1. The heart of the user class definition
consists of the description of individual behaviors such as initialize-me, demo, another.behavior and
clean-up. Descriptions of behaviors can use either arbitrary C code or our syntactic constructs for commonly
encountered control flows. The demo behavior, for example, uses our syntactic constructs. After entering the
demo behavior, the program will stochastically choose a volume in which to operate (either the $proj ectl or the
sys volume). If the project volume is chosen, the program will loop, stochastically choosing one of three actions
(syscall-stat, read.entire-file or edit.debug) on each iteration. These actions are micromodels. If
the sys volume is chosen instead, the program will stochastically choose to perform either a syscall.stat, a
read-entire-f ile or a transition to the clean.up behavior. Notice that each of the micromodels take a pathname
iterator, FractileFallOf f ( ), as a parameter.

Parameters to the user class can be accessed within the configuration file by prepending a $ to their name, e.g.
$projectl. These variables are bound to a default value when they are declared, but can be rebound either at
configuration time or at run time. Run time binding takes precedence over configuration time binding, which in turn
takes precedence over the default binding. As shown in Figure 4, the default bindingfor the Sproj ectl volume is
"'codasrc". However, as shown in Figure 2, the system configuration file redefines this parameter to "synrgensrc" for
synrgenhackers.

Arbitrary C code (surrounded by '{' and '}') also appears in many places within the body of Figure 4. By allowing

experimenters to combine specialized syntactic constructs together with arbitrary C code, SynRGen provides a good
balance between brevity and open-endedness.

3.3 Implementation Status

SynRGen has been operational since May 1992. The implementation is highly portable and has run under Mach on
DEC MIPS workstations, Intel 386/486 machines, and IBM RTs. It has also been ported to run under AIX on IBM
RS/6000 machines. The three preprocessors are implemented in C, using lex and yacc.

We have built up a small library of parameterized micromodels representing a variety of typical applications used

in our environment. These include use of an emacs-style editor, C compilation, and building programs via make.
Using micromodels and user classes representative of our environment, we have used SynRGen extensively for stress
testing new releases of the Coda File System. Also, we have conducted controlled experiments to evaluate how
realistically SynRGen models a true Coda file server workload. The results of our experiments are reported in the next
section.
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* Synu8Gen USXR Configuration File

*iriclude *beavior.h*

#include *fract-falloff.hl

#include *volumaeinto .h

?ractile-FallOfL-Into sysatminfo. project..izfo.;

Voluma.Info System.Volua.. ProjecL-VOlme;

/* Parameter Declaration and Initialization

double mean..interarrivasl - 0.10227;

double c)k.interval - 30.0;

int pause - 10;
int loop~tizaea - 5;

char proJectl[101 - 'codasrc';

initialize-me.:

printf I SynRGen initialized. Beginning SynRiGen demo in %dl seconds\n", pause);

sleep (pause);

BEGIN (demo)

demo:

fprint f("\n \rSTAR'T: demo behavior\n*i;

< 0.60 $projectl

loop (Sloop-times)

<0.25 syscalLstat(Pract2.le..FallOffo. &ProjecL-voluae, &projoct-info, DIL-OBJ)>

<0.25 read..entire. file (Fracti le- Pal lOff 0), &ProjecL-Voluae. &project-info)>

<0.50 edit-debug lPractile- Falloff() I. Project-Volume , project-info. ckp-interval)>

eridloop

{BEGIN(another-behavior);}

< 0.40 sys

<0.45 syacalLstat(Fractile..FallOffi), &System.Volizme, &system-.inf a, DZFLoBJ)>
<0.45 read.entire..file(Fractile..FallOffoI &Systan..Volume. &syste...info)>

<0.10 f BEGIN (clean- up);}

4sleep (Exponential (mean.. interarrival));

another-behavior:

/* This section of the configuration file would model another behavior.

BEGIN(demo);

c lean-.up:

print f(o\n\nSynRGen run complete!\n*);

exit (0)

This figure shows the user class configuration file corresponding to dhe user class finite state machine shown in Figures i(a) and (b). The demo behavior exemplifies

SynR~en's syntactc constructs which simplify modefingcommon control flows. In this behavior, we see three distinct actions syacal "atat, read~entire.. file.

and edi t-debuq. These actions correspond to niacromodels. Arbitrary C code appears in numerous places in the file: at the top of the file, in well-defined points within

the demo behavior, and as the entirety of three behaviors (initial ize-me. another-behavior, and clearsup). The BEGIN statements that appear throughouzt

this filemrpreen transitions between behaviors. Although the Fractile..Falloff I) parameteir looks like a function call. the preprocessor translates this into a

pointer to a function so that the micromodes can use it as a pathnsme iterator.

Figure 4: Sample User Class Configuration File



4 Case Study: Users in an Edit/Debug Cycle

An important question is "Hnwa weli does a SynRGen workload emuilate a real workload?" To answer this question. we
conducted aperformance oriented study [6] comparing real users to a synthetic user. We chose to study the edit/debug

cycle because it is a common activity in our environment as well as many others. We wrote micromodels for the most
frequent activities in an edit/debug cycle, generated a synthetic user, and then performed a controlled experiment to
compare the load generated on Coda servers by the synthetic user to that generated by real users.

4.1 The Synthetic User

Our fi,.t task was to build micromodels of the tools most frequently used during edit/debug cycles. To build these
micromodels we examined many traces generated by a number of users working in an edit/debug cycle on a variety of

machine architectures.

After completing the micromodels, we constructed a synthetic user. The main activity of this synthetic user is an
edit/debug cycle that consists of editing some number of files associated with a particular 'program". recompiling the
modified files, and executing the program after it is built. In addition, the synthetic user occasionally performs a few
other related activities such as consulting a manual page, examining a system header file or looking through a source
file. Broadly, the user resembles the example shown in Figure 4. The important user class parameters are the mean
interarrival time of file system requests, and the mean checkpoint interval time for the emacs-style editor.

4.2 The Experiment

For our experiment, we observed five C or C++ programmers as they performed edit/debug activity for one hour. We
made no attempt to rigidly constrain these users - our only request was that they confine their activities to a single
workstation. Inevitably, some activities not modeled by SynRGen were performed. but we believe that the amount of

such activity was minimal.

These users were working on DEC DS-5000/200 machines running Mach 2.6. The data they were accessing
resided primarily in triply replicated volumes located on three Coda servers. Each server was also a DS-5000/200

machine running Mach 2.6. The client and server machines communicated via an Ethernet.

The system parameters we measured on the Coda servers include distribution of incoming RPC operations,

transactional activity, CPU utilization, disk activity, and Ethernet load. In addition to these server and network
statistics, we obtained file reference traces of these users on the client machines.

The mean interarrival time parameter of our synthetic user was set to the mean interarrival time of file system
requests observed in the traces of these users (about 0.1 seconds). The mean checkpoint interval parameter to our
synthetic user was set using an estimate of the frequency of checkpoints in actual use of our editors (30 seconds). In
addition, the pathname iterator to our micromodels was the fractile falloff distribution described by Satyanarayanan

[151. Specifically, 75% of the time, 4% of the files were referenced; 20% of the time. 16% of the files were referenced:
and the remaining 5% of the time, the other 80% of the files were referenced.

Using these parameters, we then ran the synthetic user on one of the client workstations in a subtree of the Coda
file system. The physical characteristics of files in this subtree were consistent with the data presented in Table I for
project volumes.
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_Real Usersif Syni eic 1 Relative

Cbaractertic User I User 2 User3I User4 Users 5 Mean(SIDev Icoy User Errr Error I
Total Tine (sec) 3642 3379 3603 3602 3597 3565(105) 0.0 3602 1% 0.4
Toal Operatons 3431 2177 2898 2085 2601 2638(551) 0.2 2590 -2% 0 1
SERVEROPS:

FetlhData 32 30 63 4 28 31(21) 0.7 II -65% t0
FelchStatus 1219 1061 1462 1161 1278 12360149) 0A 1078 -13% 1.1

StoreData 269 29 70 72 35 95 (99) 3.0 167 76% 07
Store•tatus 263 48 49 59 21 88(99) 1.1 115 31% 03

Create 117 26 21 22 7 39(44) 1.2 33 -15% 01
RVM:

Transactions 2158 437 422 403 394 763(780) 1.0 686 -10% 0.3
CPU TIME:

User (see) 81 90 81 63 68 77(11) 0.3 63 -16% L.3
System (sec) 163 169 244 132 133 168(46) 0.3 134 -20% 0.7

DISK:
Transfers 7804 2434 11735 2535 3518 5605(4070) 0.7 3968 -29% 04

KBs Transferred 57112 15891 86862 15046 22359 39454(31633) 0.8 22420 -43% 0.5
Busy Tnie (sec) 137 45 196 46 65 98(67) 0.7 69 -30% 04
ETHERNET:

Packets In 123800 129365 163207 117353 107830 128311(21088) 0.2 114245 -I3% 0.7
Packets Ost 27485 34737 38847 25867 24888 30365(6115) 0.2 25205 -17% 08

This table presents the results of a controlled experiment comparng the workload generated on Coda servers by five real users to that generated by a synthetic user For

each "user'. we present the mean value observed at the three servers. In addition to the load generated by each real user. we present the mean. standard deviation and

coefficient of variation for these users. The relative error is defined as the ratio of the difference between the synthetic user and the mean of the real users to the mean

of the real users. A relative error greater than zero implies that the synthetic load overestimated die actual load, while an error less than zero implies the syndtetic load

underestimated. The standardized error is detined as the ratio of the absolute value of the difference between the synthetic user and the mean of the real users to the

stindard deviation of die real users.

Table 2: Comparison of Real and Synthetic Users

4.3 Results

Table 2 compares the values of the system variables obtained from our real users to those obtained from our synthetic
user. The last column of this table calculates the difference between the synthetic user and the mean of the real users
in units of the standard deviation of the real users. This column shows that all but two system variables (the number
of status fetches and the CPU usage in user mode) fall within one standard deviation of the average for the real users.

For most system variables including the two above, the synthetic user comes within 20% of the mean value for the
real users. With the exception of the number of data fetch and store requests, all the other system variables of interest
lie within about 40% of their observed values for the real users. In all cases where the results from the synthetic user
diverge substantially from the mean value for the real users, the result from the synthetic user still falls within the
range observed for real users.

A final observation is that SynRGen consistently underestimates the observed values from real users (i.e.. relative
error is negative for most system variables). This suggests that we might be able to get the synthetic user to better
match real users by applying a correction factor to the run time parameters. Experiments not reported here confirm
that this is indeed the case.

It is important to note that the bulk of our effort in this experiment was in building the micromodels. The actual
construction of our synthetic user was relatively simple. This confirms the underlying hypothesis of our approach:
that it is possible to substantially separate the efforts of the modeler and experimenter, and to encapsulate the work of

the former in micromodels.

Our results confirm that SynRGen is able to realistically model users in at least one domain. Further validation
of our approach would require similar controlled experiments spanning a broader class of activities, applications, and
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environments.

4.4 Extending the Case Study

In the above sections we used SynRGen to model a single user in an edit-debug cycle. Suppose, however, that we
need to model an entire user community. What would the necessary changes be? The first step is creating validated
SynRGen models for each class of user in the community under study. Once available, these synthetic users can be
run simultaneously to generate a workload representative of the entire community.

Almost certainly, we will want to model data sharing between users. Sharing can be read-read, read-write or write-
write. For simplicity, we refer to read-read sharing simply as "read-sharing" and to both read-write and write-write
sharing as "write-sharing".

We model read- and write-sharing of files and read-sharing of directories by having synthetic users perform
activities in shared volumes. For example, to model read-sharing of manual pages or header files, all members of a
community might occasionally examine the contents of files and directories in shared system volumes. Similarly, when
modeling members of a project, one would concentrate their activities in one or more project volumes. Increasing the
time spent performing activities in the shared volume will increase the probability of sharing.

Modeling write-sharing of directories is more challenging. Synthetic users create, remove and rename objects
as dictated by their micromodels. When" synthetic users write-share directories, they may experience interference
caused by these directory updates. For instance, one synthetic user might remove an object that another synthetic user
later attempts to edit. The micromodels in Section 4.1 do not update internal data structures upon discovering new,
missing or renamed objects. In order to support write-sharing of directories, we must modify those micromodels to
use failed system calls as hints to trigger updates to internal data structures. One of SynRGen's strengths is that these
improvements require modifications only to the micromodels and not to SynRGen itself.

5 Open Issues and Future Work

5.1 Automatic Micromodeling

Because writing micromodels is a labor intensive task, automating this process in some fashion would make modeling
new activities easier. One approach would be to "invert" a file reference trace, producing a command script. This
command script, when executed, would produce a trace isomorphic to the original trace. We have experience with an
untrace facility that does just that [17]. A difficulty with such an approach is determining how to parameterize the
generated micromodels, and how to specify locality.

Another approach would be to use the strategy proposed by Thekkath et al. [20]. This approach recognizes
that random samples selected from a representative trace of the workload being modeled will result in workloads
that exhibit the same statistical characteristics as the original. These random samples could be used as micromodels.
Parameterizing these micromodels must still be done manually.

Both of these techniques require an accurate trace of the environment being modeled. This requirement limits
their applicability to environments that already exist - one cannot use either of these techniques for constructing a
micromodel for a hypothetical or anticipated application.
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5.2 Incorporating Locality Phases

SynRGen provides a means of modeling locality of reference in a synthetic workload. In Bunt et al.'s terminology
[2, 31, SynRGen offers flexibility in modeling any degree of concentration of locality; that is, SynRGen allows any
number of files to be in the active set. However, Majumdar and Bunt have shown that file reference locality exhibits
phases, or bounded locality intervals [8]. Although we do not foresee any difficulty in incorporating locality phases,
SynRGen currently has no notion of these phases. The consequence of not supporting bounded locality intervals is that
SynRGen can be expected to display a high,.-r degree of locality than actual workloads. Adding the notion of locality
phases to SynRGen would improve the accuracy of modeling.

As seen in Figure 2, the synthetic user greatly underestimated the number of fetches seen by the servers. One
possible explanation of this behavior is that the client cache was able to service fetch requests for the synthetic user
more successfully than for the real users. In other words, the synthetic user may be displaying a higher degree of
locality than real users.

5.3 Quantifying Accuracy of Micromodels

The overall realism of an experiment is limited by the accuracy of individual micromodels. This raises the question
of how to quantify the accuracy of a micromodel. One approach would be to define some metrics and use these
metrics to compare traces generated by the synthetic user to a set of reference traces generated in a real system. These
metrics might include the fraction of files referenced and the locality of files referenced. While such metrics give some
indication of the accuracy of the micromodel, they completely ignore the order in which events happen. In modeling
locality of reference, it is important to capture the order in which system calls occur as well as the order in which files
and directories are accessed.

One metric that respects ordering is the longest common subsequence (Lcs). The LCS is a well-known measure
of closeness between two strings and has been used in a variety of contexts such as DNA sequencing and speech
processing[ 13]. We explored the possibility of using this metric to quantify the accuracy of micromodels. Unfor-

tunately, we found this approach to be intractable due to the large storage requirements of the algorithm and the
voluminous size of realistic traces.

Quantifying accuracy thus remains an open problem. We now believe that such quantification must be based either
on metrics other than the LCS, or on a more efficient approximation to the LCS.

6 Related work

Synthetic file reference generation has received considerable attention in the recent past. Much of this attention has

been focused on measuring NFS performance. For example, NHFSstone [9] facilitates comparisons of competing NFS
implementations. A fundamental distinction between this work and ours is the dependence of this benchmark on the
NFS interface. Further, this benchmark is considerably less realistic and less flexible than SynRGen.

Bodnarchuk and Bunt [II significantly improve upon the above benchmark in both flexibility and realism. Their
algorithm involves sampling discrete distributions to choose an NFS operation, a file system in which to operate
(uniformly choosing a specific file from a "representative set" of this file system), a data transfer size, and an
interarrival time. SynRGen differs from this work in that it raises the generator up to the file system call level, models
interfile locality in addition to intrafile locality, and allows measurement of client effectiveness as well as server and
network effectiveness.
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In contrast to NFS benchmarks, SynRGen operates at the file system call level. This makes performance comparison
of file system implementations such as AFS and NFS possible. It also broadens the range of phenomena that can be
modeled.

Another widely used benchmark, the Andrew Benchmark[7], operates at the Unix system call level and attains a
respectable degree of realism. Because this benchmark is restricted to specific activities, it cannot be used to model a
variety of workloads. In contrast, SynRGen is considerably more flexible and allows a wide range of scenarios to be
modeled.

Viewing SynRGen in a broader context, it is clear that the idea of generating a synthetic workload is not new.

In fact, there are a wide variety of synthetic workload generators including the SPEC benchmark suite[ 191, the TPC
benchmarks[ 181, IOBENCH[211, tcplib[5], and many others. What differentiates SynRGen from other workload
generators is its flexibility in accommodating new workloads while preserving realism. It achieves this flexibility by
providing not a single workload generator, but a common framework on which workload generator- ... be built. The
separation of micromodels from their stochastic combination is, to the best of our knowledge, not duplicated in any
other synthetic workload generator.

7 Conclusion

SynRGen is a tool born of necessity. Early in the evolution of the Coda File System, it became clear to us that we
needed some way of stressing our system without burdening real users. In retrospect, SynRGen has indeed proven
to be an invaluable tool for this purpose. Coda is now used daily by over 30 users as their primary data repository.
New releases of Coda are exposed to synthetic users for an extended period of time before they are installed on our
production servers. Furthermore, SynRGen proved invaluable iii debugging our current backup system.

We are confident that SynRGen's unique ability to combine realism with flexibility will make it attractive to other

file system developers. As discussed earlier in the paper, we foresee it being useful in performance evaluation. We
also envision it allowing researchers to subject their systems to a broader range of workloads than has historically been
possible. This will enhance the credibility of research systems, whose generality has often been questioned because of
their bias toward academic workloads.

While already useful in its present form, SynRGen is not a finished piece of work. There is clearly work to be
done in building up a rich library of micromodels, representing a wide range of applications. A related piece of work
is to assemble a collection of configuration files capable of representing a variety of usage environments. Finally, as
Section 5 explained, SynRGen itself can be refined in a number of ways. We believe that these efforts will result in an
important asset to the file systems community.
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