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Instantaneous Variance Estimation by Spectral Collapse

Jeffery C. Allen Stephen L. Hobbs
Cede 575, NRaD Code 733, NRaD

San Diego, CA 92152-5000 San Diego, CA 92152-5000

Abstract Here 6(t) denotes the Dirac delta function and the
overline denotes the complex conjugate. The func-

Mean-square consistent estimators for both the two- tion or2(t) will be called the instantaneous variance.
dimensional spectrum and the instantaneous variance Thus, iN is a generalized function supported on the
of non-siationary white noise are obtainedfram a sin- main diagonal of the ti x t2 plane. Since {z(t))
g1e time series. Applications to real sonar data indi- is non-stationary, it is of interest to determine its
cate that these estimators can be adapted to both detect two-dimensional spectrum S,(f1 , f2) defined as the
and recover transients. Fourier transform of the covariance function 1131:

1 Introduction S..(fl, 12)
To motivate this paper, a brief outline of the back- 00 0i t

ground leading to our results on transient recovery is = e-i2v(Jxt1-lt2)Rz(t, t 2)dtidt 2
given. In 1991, Herd and Gerr (121 presented a collec- fo
tion of graphical methods to display the presence of = 0 2(f, - f2). (2)
periodic correlation in non-stationary time series. If a
time series is periodically correlated, then the method
of diagonal smoothingis a consistent estimator of the Here ur(f) denotes the one-dimensional Fourier trans-
two-dimensional spectrum under suitable mixing con- form of the instantaneous variance. Thus, the spec-
ditions (9]. Once an estimate of the spectrum is ob- trum of {z(t)) is constant along lines of constant dif-
tained, the associated spectral coherence, the coherent ference frequency in the f, x f2 plane. We note this
and incoherent collapse can graphically display the pe- observation was previously obtained by Ogura [141 for
riodic correlation. time series (discrete time). This diagonal structure

The authors of this paper applied these graphical implies that S(ff, f2) should be amenable to esti-

methods to the STRAP dataset of the DFDT project mation via the diagonal smoothing technique used in

[1]. This dataset contains 16,384 array snapshots from periodically correlated processes [12] and forms the

a nine-sensor random array recording in a real under- basis for the estimators used in this paper. However,
water acoustic environment. An area of spectral co- there are technical issues with continuous-time white
herence was observed to exceed a false-alarm thresh- noise processes which can be overcome via a form of
old of Po = 0.001. Both the coherent and incoher- Brownian motion.
ent collapse of the spectral coherence display obvious 3 Technical Issues
periodic patterns. An FFT was then applied to the
coherent collapse and a collection (typically three) of Discrete-time NSWN {z, }, their associated Fourier
very clear pulses were obtained. On examination of representation, and the accompanying development of

this pulse train and the original time series, R. Madan the harmonizable theory has been undergoing a rigor-

made the conjecture that this method had recovered ous exploration by Houdri [61, 171. In particular, his

transients from the time series. This paper uses the non-stationary white noise mode provides an excellent

model of non-stationary white noise (NSWN) [8) to example to distinguish between L and R harmonizable

provide a theoretical explanation for Madan's obser- random processes [8).
vation. However, continuous-time NSWN {x(t)) requires

additional technical considerations. For example, the
yWhite Noise middle term of equation (1) is merely a formalism

2 Non-Stationary W[3, page 273]. Two approaches to a NSWN random
Non-stationary white noise processes have been in process can be made. First, there is the Gel'fand-

the electrical engineering literature for a number of Vilenkin [3] theory of generalized random processes.
years. Standard manipulations typically operate us- This theory provides the justification for the formal
ing a generalized function formalism. For example, but non-trivial manipulations found in engineering
Papoulis [15] delineates non-stationary white noise as texts. Second, there is the integration theory for
those random process {r(t)} with zero mean and co- non-homogeneous Brownian motion as discussed in
variance function of the form Doob [2]. This theory permits non-stationary white

noise to be approached as the infinitesimal of a non-
R..(t 1 ,t 2 )= E[x(ti)x(t 2)1= 1(ti)6(t -- t2). (1) homogeneous Brownian motion. Both approaches
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have their merits and both can be made consistent Then for each (11,12) in the frequency plane, there
by introducing the following ordinary random process holds:
{B(t)}.

lim S,,(b, F; fl,f 2 ) = o'-(f - f2)
Definition 3.1 A random process {B(t)) will be F-00

called an Ll Brownian motion provided it has zero
mean and there is a positive function a EI
which represents the covariance function as Theorem 4.2 shows the spectral collapse used by

Hurd and Gerr [12] can be adapted to estimate the
_ mi__ instantaneous variance. What makes this result of in-

RBB(t1,t2) = E[B(ti)B(t 2)] = o•(t) dt. terest is the appearance of the Wigner time-frequency
00 distribution and suggests a connection between diag-onal smoothing and time-frequency estimators.

Standard statistical arguments show that {B(t)) ad-

mits a version which is real-valued, Gaussian, sepa- Theorem 4.2 Suppose {z(t)) is a non-stationary
rable, jointly measurable, and has continuous sample white noise random process with instantaneous vari-
paths. These properties permit the interpretation of ance o4(t) obtained as the generalized derivative of an
{B(i)} as a generalized random process with deriva- L' Brownian motion. Assume (NWN-1), (NWN-2),
tive z(t) = B'(t) satisfying the formalism and (NWN-3) hold and make the additional assump-

tion:
b (NWN-4) There is an a > 1/2 such that a,(t)

=g(t)(t)dt g(t)dB(t). O[Itl-I] as t -. oo.
Define the Wigner time-frequency distribution by tak-

tis straight-forward to obtain ing the inverse Fourier transform of the spectral esti-
From this, it tmate along lines of constant sum frequency:

02R6n _, W.. (b, F, U; t, f)
RBI ,(t,,t2) = 9 (t 1 , 2 ) =

= [ ei 2 =uSsv(b, F; f + u/2, f - u/2) du.
Thus, a meaning can be attached to equation (1), the
associated covariance function R,,, and the spectral Coherent collapse over frequency gives:
estimators.

4 Spectral Estimators a2(b,F,U,V; )= W..-f(,F,U;t,f)df
Theorem 4.1 shows diagonaL, smoothing estimates

the 2D spectrum of NSWN provided the usual trade- Then for each t E II, there holds:
offs regarding the growths of the time and frequency
windows are made to force consistency of the estima- lim or•(b,F,U,V;t) = oa(t)
tor.

U -
V -

Theorem 4.1 Suppose {z(t)} is a non-stationary
white noise random process with instantaneous vari- in quadratic mean, provided U/b 2 -1  -. 0 and
ance a'(t) obtained as the generalized derivative of an U2b/F -- 0.
L' Brownian motion. Assume

5 Applications
(NWN-1) {x(t)) is real-valued While Theorem 4.1 estimates the Fourier transform

(NWN-2) {(t)) is Gaussian ;2 -f2) of the instantaneous variance of a NSWN
process {x(t)), some comments are required to make
the connection to the estimators associated with spec-

(NWN-3) o,2 E L1 (R) and ;: E LV(IR). tral coherence as used by Hurd and Gerr [12).
First, Hurd and Gerr [12] work with time series

Let the finite Fourier transform of the sample be de- {f,} rather than with continuous-time random pro-
noted &cesses {z(t)). Therefore, the spectral estimator of

i(b;-f) e -i2"/t (t)dt. Theorem 4.1 will be implemented using a discretiza-

_ tion of S ,(b, F; fl, f 2). The notation will change ac-
cordingly. Specifically, the finite Fourier transform

Consider smoothing the "raw" 2D spectrum along a will be implemented by applying an FFT to the avail-
diagonal line segment through (f1,f2): able stretch of data:

S ,F;f1 ,f 2 ) i(b;f, + f)i(b;f 2 + f) df. -E
2 IF F n=o
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We are tacitly using the number of time samples N to correspond to a sample rate of 300 Hertz to match
replace the continuous time interval [-b, b]. the STRAP dataset. The forcing term {u(t)) is lID

Second, diagonal smoothing is performed by aver- uniform (0, 11 noise. The noise term {z,,) is lID, Gaus-
aging over a diagonal of frequency bins instead of an sian with zero mean, a variance o,, and is independent
interval. Henceforth, we will use L frequency bins to from the signal. Thus, {x,,) is NSWN with instanta-
correspond to the diagonal smoothing interval (-F, F] neous variance
and estimate the 2D spectrum as

L3
1 Var[iz, = Il(O..2,(t - t,) +

Sý,(N, L;MI,m17 2 ) E= (;M + 1)i(N; M2 + 1). P5
1=0

Figure 1 displays both the pulse train and its noise-
Third, the false-alarm threshold of Goodman (4] is corrupted version where the sample variance of {z(f))

used as follows: Define the spectral coherence function is 0.2101. Figure 2 displays a contour plot of the esti-
mated spectral coherence obtained by 16-bin smooth-

C==(N, L; mi, M2 ) ing and thresholding with the probability of false
SZZ(N, L;mI, M 2 ) alarm P0 = 0.05. Note the emergence of a square

-- ,(NL;mimi)S..(NL;m21 m 2 )' patch of coherence in the region 1Z = (0, 5] x [0, 51. A
coherent collapse was performed over "R, and a zero-

provided the denominator does not vanish. Assume padded inverse FFT was applied. The results are dis-
the components of the FFT d (N; m) are complex played in figure 3 which plots the original signal and
Gaussian with zero mean and locally constant vari- an estimate of the instantaneous variance (scaled by
ance. That is, for each frequency bin there holds fr=(0)J-) recovered from the noise-corrupted signal.
E[II(N;m)I 2 ] = E[li(N, m + 1)12] for 1 = 0, ... , L.
Then Example 5.2 STRAP DATASET: This dataset

contains 16,384 array snapshots obtained from a 9-
1)2 > _2) = (1 -- 2)L-1. sensor random array recording in a real underwaterProb(IC..(N, L;ril, M2 )I 0) 0 . acoustic environment. For this paper, only the time

Thus, a false-alarm threshold Yo for probability P0 is series obtained from sensor #1 will be discussed as
given by (1- ,7 0 )L-1 = P0 . In the plots of spectral co- similar results are obtained from the remaining sen-
herence, only those features exceeding the false-alarm sors. While space does not permit the display of the
threshold determined by L will be displayed. time series in this paper, it will be presented in the

Fourth, Hurd and Gerr [12] also calculate the col- talk. There are hints of transients of similar shape
lapsed spectral coherence which they define as the near 2, 28, and 53 seconds. The spectral coherence was
mean value of the estimated spectral coherence along estimated over the region (4, 13] x [4, 131 Hertz in the
a diagonal of constant difference frequency: ( 1, f2) frequency plane using L = 32 bin frequency

smoothing. Figure 4 displays the resulting spectral co-
N -N-rn herence using PO = 0.001 to set the threshold. When

N Lm m C..(N, L; m + m', in'). the coherent collapse of the spectral coherence was

m'=O computed over the square, periodic patterns were ob-
served in the magnitude of the collapse. An FFT was

From the preceding remarks, it is reasonable to con- then performed and the results are shown in figure 5.
jecture that the collapsed coherence will also be a rea- There are three clear spikes which seem to be associ-S~ated with the previously mentioned transients.
sonable estimator for ;.2. In light of Theorem 4.2, we
also conjecture that the inverse FFT of c,=,(N, L; m) is
also a reasona'.e estimator for I'(0)I2 a2(t') While 6 Concluding Remarks
Hurd and Gerr [12] collapse over the entire frequency Theorems 4.1 and 4.2 demonstrate that non-
plane, we will restrict the collapse to those regions of stationary white noise provides one model in which
the frequency plane which display a high level of co- transient recovery via the Fourier transform of the col-
herence. lapsed spectrum makes sense. However, there remain

a number of topics regarding the random process, the
Example 5.1 Amplitude-Modulated Noise: In estimators, and applications which are open for explo-
this example, a total of N = 4,096 time samples sim- ration.
ulating a NSWN signal {s,} in additive noise were Regarding the random process, both the Gaussian
collected. The time series {z.} has the form assumption and the L' bound on the instantaneous

variance were made to obtain tractable covariance
3 bounds for Theorems 4.1 and 4.2. Since these kinds of

n = sn + z,n = 0,.2 1(tn - rp)un + zn. bounds are also obtained using various mixing condi-
tions [111], it seems reasonable to conjecture that both
the Gaussian assumption and the L' bound may be

The rp's are pulse arrival times uniformly selected relaxed and Theorem 4.1 will still be valid. Moreover,
from the observation interval. The time samples t, it also seems reasonable to conjecture Theorem 4.1 will
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still be valid if the white-noise process {x(t)) were re- [8) Houdre, Christian (1990) Harmonizability, V-
placed by process (y(')) which had a covariance R, boundedness, (2,p)-boundedness of Stochastic
with the same general "shape" as the white-noise co- Processes, Probability Theory and Related Fields,
variance Rz:- One example {y(t)) could be obtained Volume 84, pages 39-54
by passing (x(t)) through a linear filter y = h * z.

Regarding the estimators, it seems worthwhile to [9] Hurd, H. L. (1989a) Representation of Strongly
explore other means to smooth the raw spectrum, es- Harmonizable Periodically Correlated Processes
pecially when working with limited time series. In and Their Covariances, Journal of Multivariate
this regard, the work of Thomson [16] seems espe- Analysis, Volume 29, Number 1, pages 53-67
cially promising as a means to include the length of [101 Hurd, H. L. (1989b) Nonparametric Time Series
the time series in the estimation scheme. The ap- Nr
pearance of the Wigner distribution in Theorem 4.2 Analysis for Period ically Correlated Processes,
is of interest in that the work on cross-term suppres- IEEE Transactions on Information Theory, Vol-

sion in the time-frequency distributions should carry ume 35, Number 2, pages 350-359
over to give better smoothing windows for the two- [11] Hurd, H. L. and J. Leskow (1991) Estimation
dimensional spectrum. In this regard, we point outth wrko Wlbran M~nad 1] s ain md of the Fourier Coefficient Functions and Their
the work of Wilbur and M~cDonal [18] as having made Seta es~e o iMxn lotProiId f. ri ,Spectral Densities for O•-Mixing Almost Periodi-
the connection between the Wigner distribution and cally Correlated Processes, Technical Repord 330,
cyclostationary processes. Center for Stochastic Processes, Department of

Regarding the applications, it is worthwhile to Statistics, University of North Carolina, Chapel
point out that the use of the false-alarm threshold is Hill, NC 27599-3260
promising as a means of transient detection. How-
ever, comparisons need to be made with this method [121 Hurd, H. L. and N. L. Gerr (1991) Graphical
against other methods of transient detection and es- Methods for Determining the Presence of Peri-
timation, such as a short-time variance estimator or odic Correlation, Journal of Time Series Analy-
time-frequency distributions to also detect transients. sis, Volume 12, Number 4, pages 337-350
In this regard, the work of Hearon and Amin [5] should
be pointed out as establishing a statistical criteria for [131 Loive, M. (1965) Probability Theory, Van Nos-
kernel selection for a time-frequency distribution. trand, New York
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