Darpa/Navy Contract No. N00014-92-J-1809
ControlShell: A Real-Time Software Framework

Quarterly Progress Report — July - September, 1993

P.I.’s: Prof. J.C. Latombe, Prof. R.H. Cannon, Jr, Dr. S.A. Schneider
T DIBTRIBUTION BTATEMENT &
Approved for publie relecse)

. Distribution UnlieaRed
Executive Summary ——

We are creating a new paradigm for building and maintaining complex real-time software systems for
the control of moving mechanical systems. This objective is being met through the simultaneous
development of both a powerful software environment and cogent motion planning and control
capabilities. Our research concentrates on three key areas:

¢ Building an innovative, powerful real-time software framework,
¢ Implementing new distributed control architectures for intelligent mechanical systems, and

e Developing distribution architectures and new algorithms for the computationally “hard”
motion planning and direction problem.

Perhaps more importantly, we are working on the vertical integration of these technologies into a
powerful, working system. It is only through this coordinated, cooperative approach that a truly
revolutionary, usable architecture can resuit.

Summary of Progress
This section highlights some of our achievements for this quarter. During this period, we have:

o Added query capability and reliable updates to the Network Data Delivery Service.

o Released the first version of the graphical Finite-State Machine (FSM) Editor to our appli-
cation users.

o Completed an initial implementation of the graphical Data-Flow Editor (DFE) tool for build-
ing complex control systems using a block-diagram paradigm.

e Completed an initial class design for the C++ implementation of the real-time ControlShell
code.

&\:@6 503

4 2 28 063

|

e Built a 3-D simulator for our two-arm robot system.

e Developed an adaptive sensor fusion algorithm for matching our visual and kinematic sensor
sets.

Designed our major proof-of-concept demonstration.
Investigated fast planning algorithms by distribution over problem approximation.

Developed an efficient on-line algorithm for constructing the C-space for a dual-arm SCARA-
type robotic system.

Extended the path planner to consider the case of multiple tasks with multiple objects simul-
taneously.

Implemented landmark-based navigation with an experimental mobile robot.

Our research is progressing according to schedule.

. Aceession Yor '
WTIS GRARIL
pTIC TAS
Upaoneunced a

{ Justifieation ————

By
Dis mbutiqes |

Chapter 1

Introduction

The goal of this research project is to build a new paradigm for building and maintaining complex
real-time software systems for the control of moving mechanical systems. This objective is being
met through the simultaneous development of both a powerful software environment and cogent
motion planning and control capabilities. Our research concentrates on three areas:

e Building an innovative, powerful real-time software development environment,

¢ Implementing a new distributed control architecture, and using it to deftly control and coor-
dinate real mechanical systems, and

e Developing a computation distribution architecture, and using it to build on-line motion
planning and direction capabilities.

We believe that no technology can be successful unless proven experimentally. We are thus vali-
dating our research by direct application in several disparate, real-world settings.

This concurrent development of system framework, sophisticated motion planning and control
software, and real applications insures a high-quality architectural design. It will also embed, in
reusable components, fundamental new contributions to the science of intelligent motion planning
and control systems. Researchers from our three organizations, the Stanford Aerospace Robotics
Laboratory (ARL), the Stanford Computer Science Robotics Laboratory (CSRL), and Real-Time
Innovations, Inc. (RTI) have teamed to cooperate intimately and directly to achieve this goal. The
potential for advanced technology transfer represented by this cooperative, vertically-integrated
approach is unprecedented.

Framework Development This research builds on an object-oriented tool set for real-time soft-
ware system programming known as ControlShell. It provides a series of execution and data inter-
change mechanisms that form a framework for building real-time applications. These mechanisms

4 CHAPTER 1. INTRODUCTION

are specifically designed to allow a component-based approach to real-time software generation and
management. By defining a set of interface specifications for inter-module interaction, ControlShell
provides a common platform that is the basis for real-time code exchange and reuse.

Our research is adding fundamental new capabilities, including network-extensible data flow control
and a graphical CASE environment.

Distributed Control Architecture This research combines the high-level motion planning
component developed by the previous effort with a deft control system for a complex multi-armed
robot. The emphasis of this effort is on building interfaces between modules that permit a complex
real-time system to run as an interconnected set of distributed modules. To drive this work, we
are building a dual-arm cooperative robot system that will be able to respond to high-level user
input, create sophisticated motion and task-level plans, and execute them in real time. The system
will be able to effect simple assemblies while reacting to changing environmental conditions. It
combines a world modelling system, real-time vision, task and path planners, an intuitive graphical
user interface, an on-line simulator, and sophisticated control algorithms.

Computation Distribution Architecture This research thrust addresses the issues arising
when computationally complex algorithms are embedded in a real-time framework. To illustrate
these issues we are considering two particular problem domains: object manipulation by autonomous
multi-arm robots and navigation of multiple autonomous mobile robots in an incompletely known
environment. These two problems raise a number of generic issues directly related to the general
theme of our research: motion planning is provably a computationally hard problem and its out-
comes, motion plans, are executed in a dynamic world where various sorts of contingencies may
exist.

The ultimate goals of our investigation are to both provide real-time controllers with on-line mo-
tion reactive planning capabilities and to build experimental robotic systems demonstrating such
capabilities. Moreover, in accomplishing this goal, we expect to identify general guidelines for
embedding a capability requiring provably complex computations into a real-time framework.

Chapter 2

ControlShell Framework
Development

This section describes our progress in developing the ControlShell framework and underlying ar-
chitecture. Two fundamental extensions to ControlShell are being pursued:

e Distributed information sharing paradigms, by Gerardo Pardo-Castellote and Stan Schneider.

e Graphical Computer Aided Software Engineering (CASE) environments, by Stan Schneider
and Vince Chen.

2.1 Distributed Information Sharing Paradigms: NDDS

A considerable effort has been made to prepare NDDS for our target release date in the second
quarter of 1994. The code has been cleaned and documented thoroughly, detailed manual pages have
been written for all the interface functions and two demonstration programs have been developed
to be distributed with NDDS as implementation examples.

During the previous quarterly report we have motivated the need for providing support for reliable
updates. In essence there is certain kind of data for which reliable, in-order distribution is a must.

During this quarter we designed and incorporated into NDDS a mechanism to support reliable
updates. It is not obvious at all how to provide clear semantics to the idea of “reliable message
delivery” in a situation where there may be multiple anonymous producers and consumers of
the same data instances. More so because the NDDS model has purposely isolated producers
from consumers and neither one has any means of knowing how many (if any) other producers or
consumers there are at any one time for any particular data instance.

In particular a good model should address the following issues:

5

6 CHAPTER 2. CONTROLSHELL FRAMEWORK DEVELOPMENT

e Who specifies reliability: the producer, the consumer or both?

e What is specified as reliable? All the productions of a producer? The consumptions of a
consumer? A particular data instance? A particular update?

e What is the meaning of reliability? What is considered to be a failure? For example, lets
say the user specifies a particular update to be delivered reliably and issues such an update,
however, there are no consumers that have subscribed to that particular data. 1ls this a
failure? Beyond this, what if there are some subscribers and some of them receive the update
and others don’t. Is this second scenario a failure?

e How and when does the application get notified of failures?

e Are reliable productions of the same data delivered in order? Should they be?

In accordance with the philosophy of NDDS we have attempted to provide a consistent, well-defined
model that incorporates the essential functionality for a distributed-control type application. The
end user may well choose to write a custom interface layer over NDDS to customize its behavior to
its own specific needs.

We have provided an API in which, under normal operation (i.e. when no failures occur), reliable
productions look just like any other production to the user. Only when failures do occur, is the
user notified so that appropriate action can be taken.

We have chosen the producer to be the one to specify which data instances should be delivered
reliably. Reliable productions can be specified on an instance-by-instance basis. We have also
provided a mechanism for the user to install custom methods that will be invoked if an error arises.
In this manner, the user can tailor the error handling to each individual situation.

The fact that some of NDDS’s applications might be mission-critical suggests that NDDS should
enforce, or at least provide, mechanisms for higher levels of reliability than just communication fail-
ures. Some of the errors listed below would not be considered as errors in some specific applications
and the user may wish to mask them out. NDDS considers the following error conditions:

e No subscribers to a reliable update. This error arises when the user specifies an update to
be delivered reliably and there are no subscribers to the update. Under some circumstances,
this may be a serious failure. The update could be sending a shutdown signal to some
remote equipment; the fact that there are no subscribers indicates that the equipment is not
listening for commands. This could be due to either a failure in the remote software, in the
communications link, or in the equipment itself. In any case the sender should be notified of
this fact immediately.

e Deadline expired. A reliable update was sent and none of the subscribers acknowledged it
within a specified deadline.

2.2. CONTROLSHELL CASE ENVIRONMENT

-~

e Pending update. A second reliable update is attempted while a previous update to the same
host is still pending. The pending update may be for the same or some other data instance
from any producer in the sending host. This would indicate either a communication failure,
or attempts to send at a faster rate than can be accommodated by the acknowledgement
latency of the system. Acknowledgement latency could be reduced by using a windowing
scheme, allowing several updates to be simultaneously pending.

e Stronger producer. A reliable production is attempted while the persistence of a previous
update of a (reliable or unreliable) producer hasn’t expired. This is an indication that a local
stronger producer is in operation and the weaker reliable production will not be delivered.

If any of the above error conditions occurs the user-provided error routine gets called with the
appropriate error code. Notice that it is still possible that the consumer will never receive the data
and the reliable producer won’t be notified. This situation arises when the remote receiver gets the
update and acknowledges it, but the consumer doesn’t get an update for a specific instance because
there has been a previous update by a remote stronger producer which hasn’t expired. There are
other transient conditions that result in similar behavior. We feel this isn’t a mayor problem. After
all, if the producer has to be sure that its update accomplishes the desired action, then there is no
other choice than to get confirmation from the consumer himself. This must be the responsibility
of the application software. NDDS can only ensure that the message is delivered reliably and that
there is somebody waiting for it. Whether the receiver decides to ignore it or not is beyond the
mission of NDDS.

2.2 ControlShell CASE Environment

Excellent progress was made in this quarter in the area of developing ControlShell’s graphical CASE
environment.

The graphical Finite-State Machine (FSM) Editor was released for testing this quarter. The func-
tionality of this tool was described in the last report.

Our work this quarter focused on the development of the graphical Data-Flow Editor (DFE). The
DFE tool allows a user to build ControlShell systems by connecting functional blocks.

Component-Based Design ControlShell is designed to encourage component-based design. As
such, ControlShell provides interface definitions and mechanisms for building real-time code mod-
ules called components. ControlShell systems are built from combinations of these components.

The component is the fundamental unit of reusable data-flow code in ControiShell. Components
consist of one or more CSSampleModules derived from CSModules. Sample modules have several
pre-defined entry routines, including:

8 CHAPTER 2. CONTROLSHELL FRAMEWORK DEVELOPMENT

Routine When executed

execute Once each sample period

stateUpdate After all executes are done

enable When this module is made active

disable When it is removed from the active
list

startup When sampling begins

shutdown When sampling ends

timingChanged When the sample rate changes

reset When the user types “reset”, or
calls CSSzmpleReset

terminate When the module is unloaded

Thus, a motor driver component might define a startup routine to initialize the hardware, an
execute routine to control the motor, and a shutdown routine to disable the motors if sampling is
interrupted for any reason. In addition, if any of its parameters depend on the sampling rate, it
may request notification via a timingChanged method. By allowing components to attach easily
to these critical times in the system, ControlShell defines an interface sufficient for installing (and
therefore sharing) generic sampled-data programs.

An extensive library of pre-defined components is provided with the system, ranging from simple
filters and controllers to complex trajectory generators and motion planning modules.

The Component Editor A graphical tool called the component editor (CE) assists the user in
generating new components and specifying their data-flow interactions. The Component Editor
defines all the input and output data requirements for the component, and creates a data type for
the system to use when interacting with the component. The tool contains a code generator; it
automatically generates a description of the component that the Data-Flow Editor can display (see
below), and the code required to install instances of the component into ControlShell’s run-time
environment. The component editor was a part of the original non-graphical ControlShell system.
However, it is currently out of date; it currently does not support the DFE editor fully, nor the full
component structure. It will undergo a major design revision in the next quarter.

The Data-Flow Editor This quarter, we have completed our initial implementation of the
Data-Flow Editor (DFE). The DFE is used to connect components into a complex system.

The DFE reads description files produced by the component editor, and then allows the user to
connect components in a friendly graphical environment. It allows specification of all the data
connections in the system, as well as reference inputs—gains, configuration constants and other
parameters to the individual components. An example session is depicted in Figure 2.1.

The DFE Editor allows the user to describe the controls system using block diagrams and signals.
Each component, defined by the ControlShell Component Editor and user code, is represented by

2.2. CONTROLSHELL CASE ENVIRONMENT 9

Figure 2.1: Data-Flow Editor

The data-flow editor builds collections of components into an executing system.

a block with clearly marked input, output, and reference “pins”. The user connects the pins of the
components using named signal lines, thereby defining the data flow in the system.

The DFE Editor generates files that are parsed by the run-time system to determine the exer:ion
order of each component. It will also allow the user to specify groups of components to be enabled
and disabled at run-time, replacing the original ControlShell’s configuration manager with a much
friendlier and more powerful graphical interface. This will be a prime focus of our work in the next
quarter.

The DFE Editor is written in C++ for the MOTIF/X environment. A detailed description is not
provided here; the preliminary User’s Manual is attached.

2.2.1 Object-Oriented Design

This quarter, we also began the redesign of ControlShell to take advantage of the object-oriented
features of C++. ControlShell’s already modular and object-oriented design makes this transition
relatively easy. This section summarizes our design.

10 CHAPTER 2. CONTROLSHELL FRAMEWORK DEVELOPMENT

2.2.1.1 Module Classes

CSModules The ControiShell run-time architecture is based on a simple concept: the CSModule.
A CSModule is a named routine with pointers to data already bound to it. The system can find
and execute any CSModule at any time without needing to supply the CSModule with its data.

The CSModuleClass is the abstract base class of all ControlShell execution modules. It binds a
name to an execution routine (pure virtual function). Instance classes are expected to define the
actual execution code as well as any data needed for execution.

CSSampleModules A CSSampleModule extends upon the CSModule by binding multiple rou-
tines, each of which is executed at well-defined times. Additionally, each CSSampleModule contains
lists of input and output signal dependencies allowing CSSampleModules to be sorted to determine
the order of execution.

CSSampleModuleClass is also an abstract base class derived from CSModuleClass. It binds other
execution routines that can be expected of a module that executes on a sample list. These additional
methods include stateUpdate, enable, disable, startup, shutdown, timingChanged, terminate,
and reset, etc. as detailed above. Instance classes only need to define and implement the needed
methods. If not defined, they default to null routines.

Component Classes CSComponents are further derived from CSSampleModules, providing
methods to print the data structure bound to the component—in formats for human or machine
consumption. The CSComponentClass, derived from CSSampleModuleClass, serves as the base
class for all ControlShell components.

Each component will be implemented as a separate derived class. The derived class definition
will be automatically generated from the Component Editor’s description of the component’s data
flow requirements. Thus, the data structure and skeleton code for the required methods for the
component is automatically built for the user. The generated code also includes methods to parse
data-flow description files (generated by the DFE editor) and to instance new objects that imple-
ment components.

2.2.1.2 Execution List Classes

CSSampleLists ControlShell uses CSSampleLists to manage the execution of CSSampleModules.
A CSSampleList contains a list of registered CSSampleModules that are to be sequentially executed.
Based on the trigger that starts the execution sequence, the CSSampleList determines which of the
CSSampleModule’s routines to run. For example, at “Sample” time, every (enabled) module’s
execute routine is executed, then every module’s stateUpdate routine is executed.

2.2. CONTROLSHELL CASE ENVIRONMENT 11

CSSampleListClass is the base class that provides facilities for registering CSSampleModules and
methods that can be called at these “well-defined” times to execute the proper module routines.
The CSSampleListClass and its subclasses are internal to ControlShell and are not meant to be
directly manipulated by the user.

CSSampleHabitats Finally, a CSSampleHabitat is derived from CSSampleList to provide a
named sampled-data environment. A CSSampleHabitat encapsulates all the information and de-
fines all the interfaces required for sampled-data programs to co-exist. It also contains routines to
control the sampling process and timing source. For example, a module installed into a sample
habitat can query its clock source and sample rate, start and stop the sampling process, etc.

Each sample habitat contains an independent task that executes the sample code. The task is
clocked by the periodic source (such as a timer interrupt). Additionally, the execution order in a
CSSampleHabitatClass is automatically determined by sorting the CSSampleModules (and their
derived Component classes) according *o their input and output dependencies.

The ControlSheil structure described here is quite amenable for implementation using C++. The
ControlShell class structure consists of a fairly shallow tree to allow users to develop ControlShell
components quickly and painlessly, without having to dig through the inheritance tree. Moreover,
the automatic code generation of the ControlShell Component Editor further shortens development
time.

2.2.2 Configuration Management

During this quarter, we also made good progress in designing the configuration management capa-
bilities of ControlShell.

Complex real-time systems often have to operate under many different conditions. The changing
sets of conditions may require drastic changes in execution patterns. For example, a robotic system
coming into contact with a hard surface may have to switch in a force control algorithm, along with
its attendant sensor set, estimators, trajectory control routines, etc.

ControlShell’s configuration manager directly supports this type of radical behavior change; it
allows entire groups of modules to be quickly exchanged. Thus, different system personalities
can be easily interchanged during execution. This is a great boon during development, when an
application programmer may wish, for example, to quickly compare controllers. It is also of great
utility in producing a multi-mode system design. By activating these changes from the state-
machine facility (see previous reports), the system is able to handle easily external events that
cause major changes in system behavior.

Configuration Hierarchy The configuration manager essentially creates a four-level hierarchy
of module groupings. Individual sample modules form the lowest level. These usually implement a

12 CHAPTER 2. CONTROLSHELL FRAMEWORK DEVELOPMENT

single well-defined function. Sets of modules, called module groups, combine the simple functions
implemented by single modules into complete executable subsystems.

Each module group is assigned to a category. One group in each installed category is said :0 be
active, meaning its modules will be executed. Finally, a configuration is simply a specification of
which group is active in each category.

Example As a simple example, consider a system with two controllers: a proportional-plus-
derivative controller named “PD”, and an optimal controller known as “LQG”. Suppose the PD
controller requires filtered inputs, and thus consists of two sample modules: an instance of the
PDControl component and a filter component. These two components would comprise the “PD”
module group. The “LQG” controller module group may also be made up of several components.
Both of these groups would be assigned to the category “controllers”.

The user (or application code) can then easily switch controllers by changing the active module
group in the “controller” category.

Now suppose further that the controllers require a more sophisticated sensor set. A category named
“sensors” may also be defined, perhaps with module groups named “endpoint” and “joint”. The
highest level of the hierarchy allows the user to select an active group from each category, and name
these selections as a configuration. Thus, the “JointPD” configuration might consist of the “joint”
sensors and the “PD” controller. The “endptLQG” configuration could be the “endpoint” sensors
and the “LQG” controller.

Category and Group Specification This subdivision may seem complex in these simple cases.
However, it is quite powerful in more realistic systems. It has been shown to be quite natural in
our experimental applications. Our work this quarter has focused on implementing this structure
within the new graphical editing tools.

Assigning modules to groups and groups to categories is made quite simple with the ControlShell
graphical DFE editor’s “configuration definition” window, shown in Figure 2.2. New categories are
added with the click of a button. To create a module group, the user simply names a group, and
then clicks on the modules in the data-flow diagram that should belong to that group. The blocks
are color-coded to relate the selections back to the user.

During the next quarter, we will design and implement the classes required on the real-time system
to manage these configurations.

2.2. CONTROLSHELL CASE ENVIRONMENT

ool biafirbos ol

awtrixefi2
VoiSormerald
»
 ——rl
ary}
Conmat
eotray il

Figure 2.2: Configuration Definition

Configurations are easily defined within the DFE graphical interface.

13

14 CHAPTER 2. CONTROLSHELL FRAMEWORK DEVELOPMENT

Chapter 3

Distributed Control Architectures
and Interfaces

This section covers our research in software architectures, communication protocols and inter-
faces that will advance the state-of-the-art in the prototyping-development-testing cycle of high-
performance distributed control systems. These interfaces will be implemented within the frame-
work described in Chapter 2. The results of this research will be applied to the vertical integration
of planning and control and demonstrated by executing a set of challenging tasks on our two-armed
robot system.

There are three main thrusts to this research:

o Development of inter-module interfaces for distributed control systems, by Gerardo Pardo-
Castellote.

e Development of a control methodology capable of executing high-level commands, by Gerardo
Pardo-Castellote, Tsai-Yen Li, and Yotto Koga.

e Hardware development and experimental verification, by Gerardo Pardo-Castellote and Gad
Shelef.

This quarter, we focused on the control methodology as well as the development of a three-
dimensional robot simulator suitable for testing with the planner modules.

3.1 Inter-Module Interfaces

This quarter we have developed a full 3-D graphical simulator for the pair of cooperating robots.
The goal of the simulator is to allow rapid testing and debugging of all the system modules without

15

16 CHAPTER 3. DISTRIBUTED CONTROL ARCHITECTURES AND INTERFACES

the use of the actual robots (the use of the robots is much more time consuming and risks damaging
them). Since all the interfaces are built on NDDS, none of the remaining modules is aware that
they are sending commands and receiving updates from the simulator instead of the actual robot.
In the past, a 2-D simulator was used. This simulator was effective in testing the collision-free
characteristics of the paths in the plane, but it neglected the third dimension (which would have to
be tested directly in the real system). The 2-D simulator didn’t have any knowledge of the robot
dynamics (i.e. it was limited to following the via points with constant time-steps between them).
The new 3-D version uses 3-D graphics built using the PHIGS libraries to represent full motions in
3-D space and incorporates the Via-Point Trajectory generation algorithm with the actual robot
dynamics to simulate trajectory following with the same time profiles as the physical robot.

The task interface described in the previous report allows the user-interface module to send task
commands to the planner. One of these tasks consists of placing multiple objects at specified
locations. We have modified the 3-D graphical user interface to allow the user to specify these
tasks interactively. The user selects multiple objects and drags their ghost images around the
screen to indicate the desired goal locations for these objects. Once the task is selected, it can be
sent to the planner with a simple mouse click.

3.2 Control Methodology Development

Two problems were identified last quarter: initial power-up calibration without hard stops and
fusing the kinematic and vision information to produce an estimate of the tool’s position that is
adequate both for high bandwidth control and to acquire vision-sensed objects.

We have addressed both issues simultaneously with an adaptive scheme: once the kinematic pa-
rameters of the arms have been identified as described in the previous quarterly report, the only
parameters that need to be identified in power-up are the initial angular offsets of the first two joints
(shoulder and elbow). In addition, the small differences between kinematic values and vision values
for the tool coordinates (which where of the order of 3 mm) can be mapped, using the inverse
Jacobian to “equivalent” errors in the angular offsets. These facts are combined to develop the
estimator of the “angular offsets” that would produce perfect correspondence between kinematic
and vision coordinates shown in figure 3.1.

Figure 3.2 shows the performance of the adaptation system. The two fundamental problems are
solved: The resulting signal isn’t affected by the delay of the vision system (about 50 ms) and the
signal converges to the vision value in steady state (in about 1 sec.)

Figure 3.3 illustrates the identification of initial offsets after the encoders have been powered-up
with the arms places at a location far from the typical power-up configuration.

3.2. CONTROL METHODOLOGY DEVELOPMENT 17
Joint 8 taw_f;:\) l Fxin (9) ' x
Encoders \~r/ Forward 1
Kinematics

YR

Vision

Figure 3.1: On-Line estimator of initial angular offsets

The (shoulder and elbow) joint angles produced by incremental joint encoders need to be com-
bined with the initial angular offsets that correspond to the arm power-up location. In addition,
these offsets are used to compensate for the (configuration-dependent) small differences between
kinematics and vision coordinates. The offset estimator maps the Cartesian error between kine-
matic and vision coordinates through the inverse Jacobian to obtain a corresponding joint-space
error. This error is run through a filter (essentially an integrator followed by a low pass filter) to
produce an estimate of the angular offsets. This process is illustrated in the leftmost figure. The
figure on the right shows the ControlShell implementation using generic software components.

18

Am Endpoint X coordinate (m)

(rad)

Joint Angle Offsets

CHAPTER 3. DISTRIBUTED CONTROL ARCHITECTURES AND INTERFACES

Tracking performance

= >
| BN A SRS Tt R Sma ammer

Time (secs)

Arm Endpoint X coordinate (m)

Arm Endpoint Y coordinate (m)

Delay and noise of vision signal

03

045

0.4

0.33]

T T T T

S
|79
T

Time (secs)
Straight line path
o 4
/ 4
referesce
[l od -
1 ro o o5

Figure 3.2: Performance of On-Line angular-offset estimator

The top-left figure shows both kinematic and vision coordinates during a straight-line slew
(bottom-left figure). The vision signal isn’t suitable for high-performance control: it is quite
noisy and has a delay of about 50 ms due to the processing overhead (detail in top-right figure).
The on-line estimator adapts the values of the shoulder and elbow angular offsets (bottom-left
figure) so that at the end of the trajectory the kinematic and vision coordinates match again.

\

3.2. CONTROL METHODOLOGY DEVELOPMENT

Power-on convergence of kinematics to vision

| T T L LI L ¥
‘E 0.2) -
b4 vision e Y coordinae
04 - '-‘,f_:""" ''''''''''''''
. Py ' x r
0.6 =
i 0.8 .
1 .
3 kinematics
E 121 =
-14f 1 L 1 Il I 1
2 3 4 S [7 8
Time (secs)

Joint Angle Offsets (rad)

Time (secs)

Figure 3.3: Adaptation to power-up configuration

When the incremental encoders are powered-up, it becomes necessary to identify the angular
offsets that correspond to the location of the arms. In this figure the arms are held at an unusual
location when the encoders are powered-up. As a result the initial kinematic location is very
different from the (true) vision location. As the angular offsets are identified (right figure) the
kinematic coordinates converge to the vision coordinates (left figure).

19

20 CHAPTER 3. DISTRIBUTED CONTROL ARCHITECTURES AND INTERFACES

3.3 Hardware Development and Experiments

We plan to perform a demonstration which will both serve as proof-of-concept and focus for our
research.

The user will select an assembly from the GUI, the required objects for this assembly will come
down a conveyor at any time, and in any order, orientation, speed, etc. These objects may come
around several times as required (the conveyor can be viewed as a part-supplier). The planner will
direct the arms to acquire the objects from the conveyor. Some of the objects will be designed to
require both arms to be manipulated, others will be graspable with a single arm. Next, the system
will deliver the objects to their final assembly positions, clearing any workspace obstacles during
the motion.

This project touches several important issues. Not only would it demonstrate the feasibility of
assembly without fixturing, scheduling or sequencing, but also it will show the ability to interweave
on-line planning of the sequencing operation, collision-free path computation and re-grasping oper-
ations with the real-time issues of trajectory tracking, capturing an object off a moving conveyor,
etc.

To achieve this, at least three operating layers or regimes must be carefully combined: certain
operations (e.g. planning) are more appropriately done with the aid of the powerful computers
that are not likely to be part of the robot controller. Other operatiuns, such as the final acquire
from the moving conveyor, require high-bandwidth sequencing and event reactions and are therefore
better done by the real-time system. Finally, others such as the underlying control algorithms run
periodically at fixed high-rate loops and require the structure of a classical control-loop. The ability
to integrate all these software modules to achieve the goal will be an excellent demonstration of
the power of our approach.

Chapter 4

On-Line Computation Distribution
Architectures

This research addresses technical issues arising when computationally complex algorithms are em-
bedded in a real-time framework. To illustrate these issues we consider two particular problem do-
mains: object manipulation by autonomous multi-arm robots and navigation of multiple autonomous
mobile robots in an incompletely known environment. These two problems raise a number of generic
issues directly related to the general theme of our research: motion planning is provably a compu-
tationally hard problem and its outcomes, motion plans, are executed in a dynamic world where
various sorts of contingencies may happen.

The ultimate goal of our investigation, concerning the two problem domains mentioned above, is
to both provide real-time controllers with on-line motion reactive planning capabilities and build
experimental robotic systeins demonstrating such capabilities. Moreover, in accomplishing this goal,
we expect to elaborate general guidelines for embedding a capability requiring provably complex
computations into a real-time framework.

This quarterly report covers work done towards this goal during the period of July, August, and
September 1993. During this period, our work addressed on the following areas:

Distribution of Path Planning, by Tsai-Yen Li.
Parallelization of Path Planning, by Lydia Kavraki.

New Methods for Fast Path Planning, by Tsai-Yen Li.
Multi-Arm Manipulation Planning in 3D, by Yotto Koga.

Experiments in Manipulation Planning, by Tsai-Yen Li and Yotto Koga.

A S o A o

Landmark-Based Mobile Robot Navigation, by Anthony Lazanas, Byung-Ju Kang and Ken
Tokusei.

21

22 CHAPTER 4. ON-LINE COMPUTATION DISTRIBUTION ARCHITECTURES

7. Mobile Robot Navigation Toolkits, by Craig Becker, Mark Yim and David Zhu.
8. Multi-Mobile Robot Simulator, by Craig Becker and David Zhu.

Areas 1 through 5 are mainly related to the first problem domain, i.e.. object manipulation by
autonomous multi-arm robots.

Areas 6 through 8 are mainly related to the second problem domain, i.e., navigation of multiple
autonomous mobile robots in an incompletely known environment.

Participating Ph.D. Students: Craig Becker, Lydia Kavraki, Yotto Koga, Anthony Lazanas, Tsai-
Yen Li, Mark Yim.

Participating Master Students: Ken Tokusei, Byung-Ju Kang.
Participating Staff: David Zhu.

4.1 Distribution of Path Planning

We continue our research in applying the distribution methodology to the scenario of our final
demonstration. In the last quarter report, we showed that we can distribute planning over time,
and over several processors. In this quarter, we investigate the possibility of distributing the
problem along the axes of problem approximation.

The distribution of planning over problem approximation can be used in searching for a delivery
path (the path to deliver an object being grasped). Each object has three degrees of freedom
in our settings and needs to avoid collisions with obstacles in the work space. A valid path is a
collision-free path in the 3D configuration space (C-space) of the object. We compute the minimal
enclosing circle and the maximal enclosed circle for the objects from the grasp point and then grow
the obstacles according to the radiuses of these circles. The radiuses of these circles are called the
mazimal ring and the minimal ring respectively while the corresponding space after growing the
obstacles are called the impossible space and the safe space !. Notice that the space with grown
obstacles is still a 2D space which is much smaller than the size of the original space. If there
exists a path in the safe space, then there must exists a path in the 3D object C-space. On the
other hand, if there does not exist a path in the impossible space, then one can conclude that
there is no path in the object 3D space. Therefore, we can distribute the planning for the delivery
path over three different approximations, namely, searching in the original 3D C-space and the two
reduced/projected spaces. If any useful information is returned from the search processes in the
reduced spaces, one can either generate a valid path or conclude that there is no path without
waiting for the search result of the original 3D C-space. Although in the worst case, we still need
to search the whole 3D C-space, distribution over approximation increases our chance of finding a
good solution much faster and therefore is more desirable for on-line application.

!Philippe Pignon, Optimal obstacle growing in motion planning for mobile robots, /ROS 91, Osaka, Japan

4.2. PARALLELIZATION OF PATH PLANNING 23

4.2 Parallelization of Path Planning

During this quarter we started implementing the preprocessing phase of the path planning approach
we have proposed in our previous report. Our intention is to gradually build a system which after
a rather co: ily preprocessing of the configuration space (C-space) of the robot, will be able to solve
path planning problems frora any initial to any final configuration in this space very fast. We focus
from the beginning on articulated robots with many degrees of freedom and our target is to solve
problems that can not be solved, or take long to solve, with current techniques.

The preprocessing phase of our approach consists of two parts: (a) the generation of a large number
of collision-free random configurations in the C-space of the robot and (b) their interconnection to
a network, where the configurations are the nodes and an edge between two nodes denotes that a
path connecting these nodes has been established. Depending on the connectivity of the robot’s
free space this network might contain one or several connected components. During path planning
we hope to easily connect the beginning and the final configuration of the robot to two nodes A
and B in the same connected component of our network and then search the network for a sequence
of edges that connects A and B.

Part (a) of the preprocessing has been implemented. To achieve the generation of a large number
(in the order of thousands) of collision-free random configurations in a short time, fast collision
and self-collision procedures are required. This is because a very small percentage of the C-space
of the robot is free (typically less than 1% in our examples). Also, care is taken to produce a rather
uniform distribution (for example, for an articulated robot with 10 degrees of freedom, dof, we
choose each dof uniformly from its allowed range).

We have also implemented an initial version of part (b) of the preprocessing stage of cur algorithm.
This part is computationally expensive, since a large number of connections need to be performed.
We choose to use very simple and fast path planners for these connections. However, these planners
are weak, and may fail to connect configurations that seem easily connectable. This is the reason
why we are selective in which configurations we attempt to connect with our simple planner. We
define a metric in the C-space and for each node x we sort all nodes according to increasing distance
from z. The simple planner attempts to connect z to the M closest nodes, where M is a parameter.
We store the information of whether two nodes can be connected with the simple planner used,
but not the actual path, since the latter can be easily recovered. Examples of simple planners tried
at this stage include the straight line in the multi-dimensional C-space of the robot and a planner
that connects two nodes by advancing each joint along a straight line in the workspace connecting
its initial and its final configuration.

After all configurations have been examined, the connected components of the resulting network
are computed by a straightforward breadth-first search algorithm. In difficult cases (for example
when the robot needs to go though a narrow passage and the configurations it can assume there are
constrained), the simple planner of part (b) above may fail to produce a single connected component
covering the free C-space of the robot. We believe that at this stage we can use a more involved
path planner to connect the components. This planner will be expensive computationally but it

24 CHAPTER 4. ON-LINE COMPUTATION DISTRIBUTION ARCHITECTURES

will be used only a few times.

During next quarter we plan to investigate the combination (and tradeoffs) of using very simple
path planning techniques for producing a large number of easy connections and a more sophisticated
planner for the connections that turn out difficult to achieve. We are interested in producing, in a
reasonable time, a single connected component that contains most of the random configurations of
part (a) and captures the connectivity of the free space as well as possible.

4.3 New Methods for Fast Path Planning

As mentioned in the last quarter report, efficiency is a crucial factor in bringing motion planners
on-line. The geometric collision check between the robot and obstacles usually is the most time-
consuming component of most motion plannsrs. By building an explicit representation of the so
called configuration space (C-space) one can greatly reduce the time for detecting collisions. In the
previous reports, we presented an efficient method for constructing a 3D C-space using an FFT
method for a free-flying object with obstacles in a 2D workspace. In this quarter, we focus on
developing an efficient on-line algorithm for constructing the C-space for the dual-arm SCARA-
type robotic system developed in the ARL. The result can be generalized for many other articulate
manipulators.

For the dual-arm manipulator in the ARL, we assume that the obstacles for each arm are the links
of the other arm. Although each arm has 4 DOF, we assume that the arms always move their
grippers all the way up before moving so that we only need to consider the collisions between the
two horizontal links of each arm. Building the C-space for the two arms essentially is to find the
configurations that any of these links collide. This C-space is a 4D C-space (2D for each arm)
consists of slices of 2D C-spaces corresponding to the configurations that one arm is fixed.

One way to compute the C-space obstacles is by discretizing the joint angle of each link and
enumerating all possible discrete configurations to check for collision. By pre-computing the relative
C-space between two links of the arms, one can speed up the detection of collision by some factors.
However, with further observation, we can compute the arm C-space even more efficiently. We
notice that the C-obstacle for one arm with the other arm fixed is a slanted cylindrical surface
in the relative link-to-link C-space. Instead of enumerating every configuration and checking for
collisions, one can extract a 2D C-space obstacles for two links directly from the surface in the link-
to-link C-space. The final 2D arm C-space is formed by superimposing the C-space obstacles of the
individual links. Since only memory copying and binary rotations are involved in this procedure,
the computation of a 2D slice of C-space is extremely efficient.

Compared to the brute-force way of computing the C-space by enumerating every possible config-
uration and checking for collision, the new proposed method has a speedup of 70 and takes only
1 ms to compute for a 2D slice of arm C-space on a 28-mips workstation. The efficiency of this
C-space construction enable us to compute each 2D slice of arm C-space on-line when it is needed.
The overall performance of the planner is also greatly improved due to the efficiency of collision

4.4. MANIPULATION PLANNING 25

checks.

4.4 Manipulation Planning

Figure 1. An example of a manipulation path. The object is T-shaped and requires only one arm
to manipulate it.

An implementation of a new randomized manipulation planner was reported in the first and second
quarter report of '93. This planner deals with a robot system consisting of three arms working in
a three dimensional workspace. The object is manipulated with two arms (the object is assumed
to be heavy, thus requiring two arms to manipulate it) and regrasping of the object is executed
when necessary to ensure the completion of the task. In this quarter we have added some new
features to the planner. The first improvement is the capability of planning manipulation paths
for constrained object motions, for example the arm motions to turn a giant wheel. The other
improvement is the possibility of using only one arm to manipulate an object but still allowing the
arms to cooperate - in this case they pass the object from one arm to another thereby increasing
the size of the workspace reachable by the object.

26 CHAPTER 4. ON-LINE COMPUTATION DISTRIBUTION ARCHITECTURES

The strategy for finding the manipulation path is twofold. We first find an object motion that
moves the object to the goal while satisfying constraints such as being a collision free path and
that the arms are able to grasp the object. The second phase is to patch in the arm motions to
actually grasp the object, to regrasp the object whenever a change of grasp occurs, and finally an
arm motion to ungrasp the object once the goal is reached. To plan the manipulation paths for
constrained object motions we then simply add these new conditions into the first phase of the
planner. For example, in turning a giant wheel, the wheel must move such that it only rotates
around its axis.

For finding the motions to manipulate an object using one arm, the change to the planner is simply
in the description of the grasps for the object. We now specify that one arm is grasping the object
rather than two. In our current version of the planner, this is achieved by editing an input file. An
example path of one arm manipulation is shown in Fig. 1. The task is to manipulate the T-shaped
object to the other side of the workspace. Notice that the first arm hands the object off to the
second arm in order to complete the task. This particular path took approximately one and a half
minutes to compute on a DEC alpha workstation.

4.5 Experiments in Manipulation Planning

In the last a few quarters, we have accomplished several preliminary experiments of our off-line
manipulation planner with the dual-arm robot in the ARL under the distributed environment of
Control Shell. The software modules in the system includes a hierarchical robot controller, a user
interface, a simulator, a task planner and several path planners. The interface between these mod-
ules are also well defined and made easy through the NDDS (Network Data Delivery Service). The
task planner in the first implementation only considers a single static object that requires two-arm
cooperative manipulation. In this quarter, we started to extend our task planner to consider a more
general case where multiple tasks can be specified by the user and multiple objects may appear in
the work space at any time.

In the final demonstrative scenario, multiple objects that require either one arm or two arms can
be mixed in the same work space. The task planning becomes more complicated since the mo-
tion of the two arms can be either synchronous when both arms are grasping the same object or
asynchronous when they are manipulating different objects. We aire extending the task planner
to consider all these possible types of motion combinations in a more object-oriented fashion, i.e.,
different path planners are called depending on the type of the object and the status of the other
arm.

We are also improving the failure handling function of the task planner. As mentioned in the pre-
vious reports, the motion plan generated by the path planner is a sequence of subpaths. They are
converted into robot primitive commands (e.g. move arm A to configuration Q, close the gripper

4.6. LANDMARK-BASED MOBILE ROBOT NAVIGATION 27

of arm A, etc.) and sent to the robot controller one at a time. If the robot fails to executing a
command (e.g. it fails to grasp an object), then the following commands would certainly fail. The
task planner, however, should be able to detect the failure from the sensory data (e.g. the object
doesn’t move accordingly as the robot does) and update the commands according to the new status
of the robot and the reason for the failure. This may requires partially or completely replanning
depending on the reasons causing the failure. We are implementing this monitoring and failure
handling function of the task planner in a state-machine-like scheme so that it can easily extended
to the case where more objects and more arm motion types are involved.

More results on handling multiple objects and multiple tasks will be reported later.

4.6 Landmark-Based Mobile Robot Navigation

During the previous quarters we have developed and implemented several efficient algorithms for
landmark-based mobile robot navigation. Mobile robot navigation is perhaps the most crucial
problem in mobile robotics. Despite a lot of research effort over the past two decades, the problem
still has no satisfactory solution. Prior theoretical studies and experiments with implemented
systems tell us that:

e One cannot build a truly reliable system without both making clear assumptions bounding
uncertainty and enforcing these assumptions by appropriately engineering the robot and/or
its workspace.

e If assumptions are too mild, the planning subproblem is computationally intractable. If

assumptions are too strong, engineering is too costly and/or navigation not flexible enough.

Our research investigates the tradeoff between “computational complexity” and “physical complex-
ity” in reliable mobile robot navigation. Our approach consists of:

1. Defining a formal navigation problem with just enough assumptions to make it possible to
construct a sound and complete planner that is also computationally efficient.

2. Designing and implementing such a planner, in order to verify that the planner is actually
efficient.

3. Engineering a robot and its workspace to enforce the assumptions in the defined problem, in
order to verify that the “cost” of such engineering is reasonable.

4. Implementing a navigation algorithm that makes a real robot execute plans generated by the
planner, in order to verify that navigation is actually reliable.

28 CHAPTER 4. ON-LINE COMPUTATION DISTRIBUTION ARCHITECTURES

This approach also induces a new role for experimentation in robotics: When robot algorithms are
proven correct under formal assumptions, the purpose of experimentation shifts from demonstrating
that they behave as intuitively expected on a sample of tasks, to verifying that the amount of
engineering induced by the assumptions is acceptable.

Our previous quarterly reports describe work on steps 1 and 2 above. In the Spring’93 quarter we
started dealing with steps 3 and 4. Our work centered on experimentations necessary to implement
the landmark-based motion planner developed during the previous quarter. We decided to use
visual landmarks that are to be located on the ceiling in an indoor environment to designate
the landmark regions, where the mobile robot is assumed to have no uncertainty in sensing. A
CCD camera module is installed on the top of the robot, pointing upward to detect and identify
landmarks.

During this quarter we implemented a prototype of the landmark-based planning and navigation
of a mobile robot in an indoor environment using visual landmarks located on the ceiling. We
also improved the design of the landmark to allow larger number of landmarks (up to 512) and
implemented a faster recognition algorithm (approximately 600 milliseconds on an 80386-based
robot).

4.6.1 Implementation of Landmark-based Navigation

The robot, equipped with a CCD camera pointing vertically upward, executes the motion plan using
the visual landmarks located on the ceiling. We used five landmarks in our Robotics Laboratory
with four stationary, known obstacles such as a trash can and chairs.

Performance Evaluation and Limitations The robot successfully executed motion plans gen-
erated by the landmark-based planner. In order to ensure a reliable navigation, we needed to satisfy
at least two conditions as follows.

1. A landmark cannot be located too close to illuminations on the ceiling. A direct illumi-
nation is likely to saturate the CCD camera and incapacitate the vision function. In our
current experimental setting, we needed to locate landmark at least 10 inches away from an
illumination.

2. The floor must be almost completely flat in the landmark region. A small hump could disorient
the robot, hence tilting the camera with respect to the ground. As a result, the robot would
not be able to localize with sufficient accuracy to navigate.

4.6.2 Improved Landmark Recognition

For the implementation discussed above, we used the landmark design developed in the previous
quarter. The design presented two limitations.

4.6. LANDMARK-BASED MOBILE ROBOT NAVIGATION 29

1. Only six distinct landmarks can be used in an environment.

2. Detection alone takes more than 1 second and slows the travel speed of the robot.

We improved the landmark design and recognition algorithm to attenuate these limitations.

New Landmark Design A new landmark design is a black-on-white symbol. It consists of
an outer envelope which resembles the letter C, 10-inches in diameter. The opening of C gives
the symbol an orientation. Inside the letter C is a three-by-three square grid, aligned with the
orientation of the landmark. Each grid cell is one inch by one inch and painted either white or
black. Identification of the landmark is encoded in this binary grid, allowing up to 2% = 512
landmarks.

New Recognition Algorithm We implemented a faster recognition algorithm specifically de-
signed for the landmark design described above. The resulting algorithm runs in the order of
O{m + n), where m, n are the numbers of the pixels in the model and a given image, respectively.
For comparison, the algorithm implemented in the previous quarter ran in O(mn).

Recognition proceeds as follows. Using a statistical measure based on histogramming, the recognizer
first finds the intensity threshold to binarize the gray-scale image into white and black pixels. The
recognizer proceeds to find connected components (blobs) consisting of black pixels, discarding the
ones whose size (measured in terms of the bounding rectangle) deviates too far from the expected
size of a landmark. The surviving blobs are recorded as potential landmarks.

Observe that the pixel size of the landmark is known a priori since we are assuming the ceiling
height to be constant at this point. Even if that assumption did not hold, we could change the
physical size of the landmarks to accommodate lower or higher ceilings within a reasonable limit.

To detect a landmark from the blobs recorded as above, the recognizer overlays the black-and-white
model of the outer envelope of the landmark on each blob region and counts the pixels whose binary
values do not agree. A blob whose mismatch is below 40landmark. The 40account the grid code
in the center which introduces extra black pixels. The geometric center of the bounding rectangle
of the blob is recorded as the landmark location.

Once a landmark is found, the recognizer determines the (relative) orientation of the landmark by
scanning the perimeter of the landmark in circular fashion to detect a break, or a concentration of
white pixels.

The identity of the landmark is determined by decoding the binary grid. The recognizer examines
two distinct pixel locations well inside each grid cell to decode the ID. If the two pixel values do
not agree in any of the cells, the recognizer reports an error and dismisses the blob as a noise. We
observed that any landmark that passes the overlay matching test is located very precisely (+1
pixels). Thus, two distinct pixels in each cell must have the same values; otherwise, the blob is
unlikely to be a landmark.

30 CHAPTER 4. ON-LINE COMPUTATION DISTRIBUTION ARCHITECTURES

Performance The recognition process described above takes approximately 600 milliseconds on
the robot, which runs on an Intel 80386 processor. Measurement revealed that the localization
error was within +1 pixels, which translates to £0.22 inches in our experimental setup with an
8-foot ceiling. The orientation detection showed errors of +3 degrees. No landmarks have been
misidentified.

4.7 Mobile Robot Navigation Toolkits

The main effort of this quarter has been focused on testing the toolkit modules that we have
developed on a real robot, a Nomad 200 robot. In particular, we have developed and experimented
a navigation system that consists of the following toolkit modules:

1. Approximate cell decomposition based motion planning module.
2. Artificial potential field based motion control module.
3. Sensor-based localization module.

We have performed extensive experimentation of this navigation system on a real robot. In addition,
we have successfully integrated this navigation system with a cognitive level task planning system
based on BB1 to produce a office surveillance robot system (cooperation with Dr. Barbara Hayes-
Roth, Knowledge Systems Lab., Stanford). We have performed many experimentation of this office
surveillance system, both in the robot simulator and with a real robot.

4.8 Simulator for Multiple Robots

In this quarter we have focused our effort in transferring the multiple robot simulation technologies
to Nomadic Technologies. Nomadic Technologies is currently working on further developing these
techniques and on integrating this multiple robot simulation capability into Nomadic Software
Development Environment.

4.9 Summary of Main Results Obtained So Far

1. Identification of several axes for distributing path planning software in an on-line architecture.

2. A documented Randomized Path Planner package has been made available to other research
institution on the computer network. Several organizations are using it.

3. Implementation of parallel versions of RPP on a Silicon Graphics 4D/240 multiprocessor
machine and on a local-area network of UNIX-based workstations.

4. Definition of a new, FFT-based method to compute obstacles in configuration space.

4.10. STATUS 31
5. Definition and implementation of a new path planning method (the vector-based planner) to
generate paths for robots with many degrees of freedom.
6. Integration of several path planners (RPP, vector-based planner with/without potential fields)
in a package distributed over a network of UNIX-based workstations.
7. Design and implementation of an optimal-time motion planner for closed-loop kinematic
chains.
8. Design and implementation of a randomized three-arm manipulation planner for manipulating
an elongated object in a 3D cluttered environment.
9. Design and implementation of a new landmark-based mobile robot planning method. Exten-
sion of this planner to deal with controllable uncertainty.
10. Definition of the layout of a software toolkit to efficiently develop new navigation systems.
Implementation of several toolkits.
11. Partial development of a powerful multi-mobile-robot simulator to facilitate the development
and debugging of programs for multiple interacting mobile robots.
Others:

- J.C. Latombe was elected AAAI Fellow for his contributions to the “Theory and Practice of Robot
Motion Planning.”

- C.Becker was a member (with 3 other students) of the Stanford team that won the first event at
the AAAI-93 Mobile Robot competition, using our NOMAD 200 robot.

4.10 Status

Our research pr-gr«-ses according to schedule.

32

CHAPTER 4. ON-LINE COMPUTATION DISTRIBUTION ARCHITECTURES

Chapter 5

Applications and Technology
Transfer

It is not possible to develop generic technology without multiple, specific applications to test and
refine the ideas and implementations. As such, we are actively seeking sites, both internally and
externally to provide the compelling test beds that will make this project succeed. These driving
applications span a variety of the most important target users: high-performance control, intelligent
machine systems, underwater vehicle command and control, and remote teleoperation. Several of
these projects will reach for new limits in advanced technology and system integration; others will
address real-world problems in operational systems.

With the reduced funding levels, we will not have the resources to support all of the originally
proposed technology evaluation sites. However, we believe these sites are crucial to the development
of ControlShell into a viable technology for “real-world” use. Thus, we have actively pursued
alternative means of supporting external sites. We have been successful in securing several new
test applications. These sites will either function with minimal support, or fund their own support.

This chapter highlights some of the activities of these projects.

The currently-active ControlShell applications are:

e Precision Machining, by The Stanford Quiet Hydraulics Laboratory.

e Underwater Vehicle Control, a joint project between the ARL and the Monterey Bay Aquar-
ium Research Institute.

o Intelligent Machine Architectures, by Lockheed Missiles and Space Corporation.
e Remote Teleoperation, by Space Systems Loral Corporation.

e Space-based Mobile Robot Systems, by several ARL students (NASA-sponsored).

33

34 CHAPTER 5. APPLICATIONS AND TECHNOLOGY TRANSFER

o High-Performance Control of Flexible Structures, by several ARL students (AFOSR-sponsored).
e Space-structure assembly, by NASA Langley Research Center.

e Mobile-robot control by NASA Ames Research Center.

5.1 NASA sites

Partially as a result of the architectures seminar series, two NASA sites have committed to using
ControlShell in their projects. The first site is a robotics laboratory at NASA’s Langley Research
Center. This laboratory will be studying robotic construction of space structures, using a single
industrial rebot. The work focuses on end-effector development, system integration, and tools to
ease construction planning.

Another NASA lab, the intelligent mechanisms group at NASA Ames, is also using ControlShell for
a mobile robotics project. This project’s goals include studying intelligent exploration algorithms
and robotic control architectures.

5.2 MBARI Underwater Vehicle

The Monterey Bay Aquarium Research Institute (MBARI), in a joint program with ARL, is us-
ing ControlShell to develop the control system of the OTTER (Ocean Technology Testbed for
Engineering Research) vehicle. The vehicle is a unmanned submersible about 2 meters long and
weighing 150 kilograms. It is powered by 8 thrusters and has an active vision sensing system. The
vehicle will be used in research focusing on semi-autonomous control. On the vehicle, ControlShell
is the the backbone of the control software that runs the thrusters and processes the sensor inputs.
Control laws and data processing filters implemented in ControlShell allows us to feedback sensor
input for automatic positioning and station-keeping.

The Finite-State Machine facility of ControlShell is used at the supervisory level to coordinate
vehicle actions in a programmed response to stimuli. Stimuli can be produced by automatic sensing
and error detection processes or through direct user interaction. FSM’s are used to program complex
vehicle actions to complete tasks autonomously.

The project uses NDDS for all interprocess/interprocessor communications. The two independent
real-time computing systems on-board the vehicle are connected to a off-board real-time computer
through a SLIP (Serial-Level Internet Protocol) line during operations. That provides network
connectivity—albeit at a slower rate—even with the slow underwater acoustic modem communi-
cations. In addition, the graphical user interface running on an HP workstation is connected via
Ethernet to the off-board real-time system. NDDS provides the basic communications and message
passing between all four independent systems. Since NDDS is network transparent, any of the

5.3. TRANSFER OF PLANNING TECHNOLOGY 35

computing systems can be replaced with a simulation during development to test software and
other components of the entire OTTER system.

5.3

Transfer of Planning Technology

Part of our mobile robot software (simple planner, simulation) has been ported by Nomadic
Technologies, and is part of the software distributed by this company with their mobile robot
NOMAD 200.

J.C. Latombe and L. Kavraki assisted Nova Management, Inc., in building an automated
route planner for tanks in support of US Government Contract No. DAAEQ7-C-93-0026. A
prototype version of this planner was successfully demonstrated to Army representatives.

B.Romney (a PhD student) spent the summer at GM Research Labs in Warren, MI, and
implemented a version of assembly planner there. He connected this planner to the UNI-
GRAPHICS CAD system.

R.H. Wilson (a Ph.D. student, then a Research Associate) was hired as a Research Scientist
by SANDIA Labs, Albuquerque, NM.

36

CHAPTER 5. APPLICATIONS AND TECHNOLOGY TRANSFER

Publications So Far:

R.I. Brafman, J.C. Latombe, and Y. Shoham, “Towards Knowledge-Level Analysis of Motion Plan-
ning,” Proc. of the 11th Nat. Conf. on Artificial Intelligence, AAAI-93, Washington D.C., July 1993,
pp. 670-675.

L. Kavraki, Computation of Configuration-Space Obstacles Using the Fast Fourier Transform, Tech-
nical Report, STAN-CS-92-1425, 1992.

L. Kavraki, Computation of Configuration-Space Obstacles Using the Fast Fourier Transform,
Proc. of the IEEE Int. Conf. on Robotics and Automation, Atlanta, GA, 1993.

L. Kavraki, J.C. Latombe, and R.H. Wilson, “On the Complexity of Assembly Partitioning,”
accepted for publication in Information Processing Letters.

L. Kavraki and J.C. Latombe, Randomized Preprocessing of Configuration Space for Fast Path
Planning, Rep. No. STAN-CS-93-1490, Dept. of Computer Science, Stanford University, September
1993.

Y. Koga and J.C. Latombe, “Experiments in Dual-Arm Manipulation Planning,” Proc. of the IEEE
Int. Conf. on Robotics and Automation, Nice, May 1992, pp. 2238-2245.

Y. Koga, T. Lastennet, J.C. Latombe, and T.Y. Li, “Multi-Arm Manipulation Planning,” Proc. of
the 9th Int. Symp. on Automation and Robotics in Construction, Tokyo, June 1992.

J.C. Latombe, “Geometry and Search in Motion Planning,” Annals of Mathematics and Artificial
Intelligence, 8(2-4), 1993.

J.C. Latombe, “Robot Algorithms,” Proc. of the LAAS/CNRS 25th Anniversary Conf., Cepadues,
Toulouse, France, May 1993, pp. 81-94 (invited conference).

A. Lazanas and J.C. Latombe, Landmark-Based Robot Navigation, Rep. No. STAN-CS-92-1428,
Dept. of Computer Science, Stanford U., May 1992. Accepted for publication in Algorithmica.

A. Lazanas and J.C. Latombe, “Landmark-Based Robot Navigation,” Proc. of the 10th Nat. Conf. on
Artificial Intelligence, AAAI-92, San Jose, July 1992, pp. 816-822.

A. Lazanas and J.C. Latombe, “Landmark-Based Robot Motion Planning,” Proc. of the AAAI Fall
Symp., Boston, MA. October 1992, pp. 98-103.

37

A. Lazanas and J.C. Latombe, “Landmark-Based Robot Motion Planning,” Geometric Reasoning
for Perception and Action, C. Laugier (Ed.), Lecture Notes in Computer Science, 708, Springer-
Verlag, 1993.

Gerardo Pardo-Castellote and Robert H. Cannon Jr. “Proximate time-optimal parameterization of
robot paths,” STAN-ARL-92- 88, Stanford University Aerospace Robotics Laboratory, April 1993.

Gerardo Pardo-Castellote, Tsai-Yen Li, Yoshihito Koga, Robert H. Cannon Jr., Jean-Claude Latombe,
and Stan Schneider,” “Experimental integration of planning in a distributed control system. In
Preprints of the Third International Symposium on Ezperimantal Robotics, Kyoto Japan, October
1993.

Gerardo Pardo-Castellote and Stanley A. Schneider. “The network data delivery service: real-
time data connectivity for distributed control applications,” (to appear in) In Proceedings of the
International Conference on Robotics and Automation, San Diego, CA, May 1994. IEEE, IEEE
Computer Society.

Gerardo Pardo-Castellote and Stanley A. Schneider. “The network data delivery service: A real-
time data connectivity system,” (to appear) In Proceedings of the AIAA/NASA Conference on
Intelligent Robots in Field, Factory, Service and Space, Houston, TX, March 1994. AIAA, AIAA.

S. Schneider and R. H. Cannon. “Object impedance control for cooperative manipulation: Theory
and experimental results,” IEEE Journal of Robotics and Automation, 8(3), June 1992. Paper
number B90145.

S. A. Schneider and R. H. Cannon. “Experimental object-level strategic control with cooperating
manipulators,” The International Journal of Robotics Research, 12(4):338-350, August 1993.

Howard H. Wang, Richard L. Marks, Stephen M. Rock, and Michael J. Lee. “Task-based con-
trol architecture for an untethered, unmanned submersible,” In Proceedings of the 8th Annual
Symposium of Unmanned Untethered Submersible Technology, pages 137-147. Marine Systems
Engineering Laboratory, Northeastern University, September 1993.

DFE Editor

Revision 0.1
The ControlShell Data-Flow Graphical Editor

1. Introduction

The DFE Editor is a graphical tool for creating and viewing block dlagrams
of your real-time ControlShell system. You specify the ControlShell compo-
nents (execution modules) and the signals that flow between the compo-
nents. The DFE Editor generates data files that can be directly used in Con-
trolShell applications'; ControlShell utilizes the data-flow input-output rela-
tionships to sort and arrange the execution order for each component. You
can also use the simple point-and-click interface of this graphical editor to
define named Categories and Module Groups to which a component belongs.

The basic graphical objects in a DFE diagram are components, signals, and
labels. The components are represented by rectangles with input, output,
and reference “pins”; the signals are represented by lines; and the labels are
represented by text. An example of a data-flow diagram is show in Figure 1.

Figure 1 Data-Flow Diagram Example

Labels can be used to add notes, but are generally bound to components to
provide an instance name for each component, and bound to signals to pro-
vide signal names.

This document assumes a working knowledge of ControlShell components
and just describes the steps involved in creating and maintaining data-flow
diagrams.

'Use the cSpfeParserile() C-function to have ControlShell read and process DFE
files.

REAL-TIME INNOVATIONS, INC. 1

2 DFE Editor

1.1. Before You Begin

DFE Editor requires a resource flle called Dfe in the app-defaults direc-
tory. This file specifies all the menu text, quick-keys and the translations
from mouse events to drawing actions. It also specifies resources such as
colors and grid size. The default pDfe file may be found in the
/local/applications/rti/app-defaults directory. You should copy it to
your personal ~/app-defaults directory or a global app-defaults directory
set up by your system administrator.

Set the XUSERFILESEARCHPATH environment variable to make sure the DFE
Editor can find the resource flle. For example, type at the UNIX prompt:

setenv XUSERFILESEARCHPATH ~/app-defaults/%N%S
Also make sure the LD_LIBRARY_PATH includes the X11R5 directory. Run:
setenv | grep LD_LIBRARY_PATH

If the result does not inci'.de the X11RS directory. and your X11RS libraries
are located in /local/X11R5/1ib/sund, type:

setenv LD_LIBRARY_PATH /local/X11RS5/1ib/sund:$LD_LIBRARY_PATH

You also need to define an environment variable to indicate the directories
where the DFE Editor can find the component definition files (.ce flles).
Separate each directory with a colon:

setenv CS_CELOADPATH /local/applications/rti/cs/lib/celib:
$(HOME)}/1ib/components

If you have many component directories, it might be better to set up a single
directory and use symbolic links to point to the actual component definition

files. There is a limit to length of an environment variable’. The DFE Editor
will always search the current directory before the CS_CELOADPATH.

1.2. Starting the DFE Editor

To start the DFE Editor, create and change to a directory that is to hold
DFE data files. Type dfe& at the UNIX prompt. You will be presented with
the initial drawing screen.

2. Creating and Editing a Data-Flow Diagram

The DFE Editor allows a Data-Flow block diagram to be created with simple
mouse actions, and relatively famfliar drawing motions. Only the left and
middle mouse buttons are used at this time, in conjunction with the
<sShift> and <ctrl> keys.

The menu bar contains several main menus: File, Bdit, Arrange, Insert,
view, and Preferences. The File menu provides access to files. The Edit
menu provides additional editing commands, such as Undo, Delete, and Du-
plicate. The Arrange menu contains commands to rotate components in
90° increments. The Insert menu provides a way of inserting components
and labels. The view menu provides zoom capability. The preference

’In a future release, the paths can be defined in a .dfe-init file.

REAL-TIME INNOVATIONS, INC.

2. Creating and Editing a Data-Flow Diagram 3

menu provides commands for toggling snap-to-grid mode and auto-save
mode.

The tables in the following subsections further describe mouse actions and
the menu options.

2.1. Using the Mouse

This section describes how the mouse is used.

2.1.1. Drawing using the Mouse—Middle Button
The drawing actions associated with the middle mouse button are defined in

Table 1.
Table 1 Using the Middle Mouse Button
Middle Mouse Action
Button
Create a signal. The “root” of a signal carries a label
defining the signal name.
Click-Drag

If the starting point is near an output end of an exist-
ing signal, a new segment is added to the sig-
nal.

If the starting point is near an existing signal line seg-
ment, a new branch is added to the signal.

<Ctrl>-Click- Create a label.
Drag

When a signal is created, a default signal name is added of the form:

Signaln
where n is an integer that increments as more signals are created.

You must double-click the left mouse button on a signal name to change it.

When a component is created, it is assigned a name of Componentn where n
is an integer that increments as more components are created.

Similarly, when a label is created., it is assigned the text, Labeln.

2.1.1.1. Signal-Name Label

For each signal there is a blue label representing the signal name. It s lo-
cated at the “root”, or start, of each signal tree. It must be a single word.

2.1.1.2. Component-Name Label

The name of a component can contain any alphanumeric character and un-
derscore (_). but it must be a single word. No white space is allowed.

2.1.1.3. Label Text

A label text may contain any text and may be any number lines. It is always
center aligned.

REAL-TIME INNOVATIONS, INC.

4 DFE Editor

2.1.2. Editing using the Mouse—Left Button
The actions associated with the left mouse button are defined in Table 2.

Table 2 Uslng the Left Mouse Button
Left Mouse Button Action

Click Deselect all objects, then select the object within
range {pick radius) of the mouse pointer.

<shift>-Click Toggle the selection of the object within range of the
mouse pointer.

If the mouse pointer is within range of a selected
object, all selected objects are moved.

Otherwise, start a selection rectangle. When the
button is released. all objects completely
within the selection rectangle will be se-
lected.

Click-Drag

If the mouse pointer is within range of a Label ob-
ject, an edit dialog box is popped up for
changing the label text.

Double-Click Otherwise, no action.

A signal is composed of “nodes”. Generally, each node is where a signal
bends or branches. The user can move individual nodes of a signal or line
segments. To select only a node, first deselect the signal, then click near one
of the nodes; active nodes are represented by small black squares. To select
a line segment, click on the segment or <shift>-Click on the two nodes that
make up the segment.

If a component {s selected, all signal segments attached to it will also be se-
lected. Be careful when deleting after selecting a Component! A signal is
“attached™ to a component if one of the ends coincides with the end of a
component pin. Signal nodes and component pins snap to a grid (default 20
pixels). easing the task of attaching signals to pins. Label objects do not
snap; it makes them easier to place in the drawing window.

When editing a signal or component name, the dialog box will prevent any
white space to be inserted, forcing a single word.

2.2.Using the Menus

Using the menus, the user can open and save DFE files, duplicate and delete
objects, and insert DFE objects. The menus are separated into six (6) cate-
gories, File, Edit, Arrange, Insert, View and Preference. The following
sections describe the functions of each menu command.

If the menu command has a QuickKey combination, it is noted in parenthe-
ses after the command name.

2.2.1. File Menu (Meta+F)

The File menu performs file operations to save and retrieve DFE files.

REAL-TIME INNOVATIONS, INC.

2. Crealing and Editing a Data-Fiow Diagram 5

2.2.1.1. New (Ctrl+N)

Choosing rile, New will clear the DFE Window. prepared to start a new
data-flow diagram. If the current diagram has been edited, the user will be
prompted to save it first.

2.2.1.2. Open (Ctrl+0O)

Choosing rile, Open will retrieve an existing DFE definition from a flle. If
the current diagram has been edited, the user will be prompted to save it
first. The editor will then pop up the rile, Open selectir 1 box, as show in
Figure 2.

Figure 2 File-Open Selection Box

Use the pirectories list box to move between directories by double-clicking
on the desired directories. To quickly jump to another directory, you can
replace the filter string. For example, to jump to the

/local/applications/rti/dfe

directory to look for DFE files, replace the string in the Filter text box with:
/local/applications/rti/dfe/*

and hit <Enter> or click the Filter button. Do not forget the “*" wildcard.

To choose a file, double-click on the file name in the Files list box, or high-
light the filename and click OK.

Parsing Errors

The parser checks for errors in the DFE file when it is opened. If there is an
error, a dialog pops up to ask if the file should be re-read. This gives the
user a chance to edit the file before continuing. The UNIX command window
from which ate was invoked will contain the line number at which the error
occurred. Generally, you will want to check to make sure your
CS_CELOADPATH environment variable is set correctly so that the DFE Editor

REAL-TIME INNOVATIONS, INC.

DFE Editor

can find the components referenced in the DFE file. If not. you will need to
exit, set CS_CELOADPATH, and restart dfe.

Although re-reading will confirm that errors have been removed, there may
be extra objects left in the DFE window. It is best to call Pile. Open again.

2.2.1.3. Save (Ctrl+S)
Choosing File, Save saves the current drawing window.

If the current window has not been saved before {or was not read from a file),
the rile, Save As selection box pops up to ask for a new flle name. If the
selected file already exists, the user will be asked to confirm overwriting the
old file.

Backup File

File. Save saves a backup file with a file name that contains an additional
.bak extension.

2.2.1.4. Save As (Ctrl+A)

Choosing File, Save As saves the current DFE under a new name. It will
prompt for the name of the sample habitat to which the components belong.

2.2.1.5. Generate EPS... (Ctrl+E)

File, Generate EPS creates an Encasulated PostScript (EPS) file of your
DFE diagram. You can easily import this file into your documentation files.

You will be prompted for a file name, and if you leave out the file extension,
.eps will be appended.

Most document preparation applications will adjust the size of the EPS figure
to fit inside the document. If your DFE drawing is large, the figures may be
reduced too much to be legible. In these cases, you may want to invoke spe-
cial scaling and cropping features of your document-preparation application
to display portions of the EPS file.

To change the properties of the generated EPS file, such as printer resolution
and fonts, make the changes in the Dfe app-defaults file.

2.2.1.6. Quit (Meta+Q)

File, Quit quits the DFE Editor application. If the drawing window has not
been saved, the user will be prompted to confirm saving. If, in addition, the
drawing window has never been saved, the File, Save As selection box is
popped up to ask for a new flle name.

2.2.2. Edit Menu (Meta+E)

The edit menu provides some rudimentary editing commands.

REAL-TIME INNOVATIONS, INC.

2. Creating and Editing a Data-Flow Diagram 7

2.2.2.1. Undo (Meta+Bksp)

Choosing xdait, Undo can undo some commands. If there is an action that
can be undone, the Undo button will be enabled. Otherwise, the button is
“greyed out™. Some of the commands that may be undone are:

¢ Creation of objects (Component, Signal, Label)
¢ Deletion of objects (via Bdit, Delete)

You cannot undo moves or file operations.

2.2.2.2. Duplicate (Ctrl+D)

Duplicate is used to duplicate a component or label. Signals cannot be du-
plicated in this release.

2.2.2.3. Delete Node

Delete the active line nodes. If the node at the root of a signal is selected,
the entire signal tree (all branches) are delete. Use this command to clean
up unnecessary nodes in signal lines.

2.2.2.4. Delete (Bksp)
Choosing Edit, Delete will delete all selected objects.

Be careful when deleting components, since selecting a component also se-
lects signals attached to it. To delete a component without deleting the at-
tached signals, use <Shift><LeftClick> to toggle OFF the selection of the
signal nodes.

Additionally, if the signal-name label is deleted. the entire signal (all
branches) is deleted.

Similarly, if the component-name label is deleted, the component is also de-
leted.

2.2.2.5. Category (Ctrl+C)

Choosing Edit, Category calls up the Category Dialog Box, as shown in
Figure 3. From here, you can create and edit Categories and Module Group
names. To place components into a Module Group. simply highlight the
Module Group name and click on the components. Each click on a compo-
nent toggles its inclusion in the Module Group.

REAL-TIME INNOVATIONS, INC.

DFE Editor

v None
« BotnCars
 RTiOnly

4 WindOniy

Figure 3 Edit-Category Dialog Box

You can also define the color associated with each Category. A component of
that Category will be drawn in the chosen color, letting you tell at a glance
how the components are related in your diagram.

2.2.3. Arrange Menu (Meta+A)

The Arrange menu contains commands to rotate selected components in 90-
degree increments. Unfortunately. connected signals do not follow rotated
components.

2.2.4. Insert Menu (Meta+l)

The Insert menu provides a way of creating various DFE objects. It always
places the new object in the upper-left comer of the drawing window.

2.2.4.1. Component (Meta+C)

Choosing Insert, Component creates a new Component. You are presented
with a file-selection box from which you can select the appropriate {.ce) com-
ponent-description flle. Along with the list of current subdirectories, the pi-
rectories list box lists the directories in your CS_CELOADPATH .

2.2.4.2. Label (Meta+L)
Choosing Insert, Label creates a new label object. Using this may be
quicker than using the mouse, and is easier to remember than
<Ctrl><MiddleButtonDrag>.

REAL-TIME INNOVATIONS, INC.

3. Data-Flow Diagram Objects 9

2.2.5. View Menu (Meta+V)

The view menu contains zoom factors for displaying the drawing: 25%, 50%.
75%, 100%, 125%, 150%, 200%. In the current version, the text in the DFE
Editor is not scaled, so positioning will appear correctly only at 100% zoom.
Below 75% zoom, all text will be represented by a single period (.).

2.2.6. Preferences Menu (Meta+P)

The Preferences menu allows the setting of user preferences for the DFE
Editor.

2.2.6.1. Snap-to-Grid Mode (Ctrl+G)

Toggles the snap-to-grid behavior when drawing and placing components
and signals. The grid size cannot be set from within the editor. You must
set the associated resource in the app-defaults file or in .Xdefaults:

Dfe*Stage.grid: 20

2.2.6.2. Auto-Save Mode

Toggles auto-saving of the current DFE drawing. The auto-save interval is
specified in the app-defaults file in units of minutes:

Dfe*autosavelInterval: 2
Ine default interval is 5 minutes.

The autosave file has the same name as the current file, with an appended
‘#' character. Thus, the auto-save file for main.dfe is main.dfe#. After the
file is explicitly saved the auto-save file is deleted.

If the current file has never been saved, Auto-Save will pop up the rile.
Save As file-selection box to prompt for a flle name.

3. Data-Flow Diagram Objects

The Data-Flow diagram objects consist of components and signals. The sub-
sections that follow describe the objects in more detail.

The DFE Editor will allow you to save and retrieve partially completed DFE
files, letting you work at your own pace, but ControlShell will not be able to
successfully parse these incomplete DFE files at run-time. When you save
an DFE, the DFE Editor will warn you of the inconsistencies.

3.1. Component

A ControlShell component may have any number of input, output and refer-
ence signal “pins”. You write the actual execution code for each component.
but you define the relationship between components using the DFE Editor.

A component is represented by a rectangle on the drawing screen, with a
string giving the name of the component. The input pins are represented by
short line segments with arrows pointing into the rectangle; the output pins
are represented by line segments with arrows pointing out of the rectangle:
and reference pins do not have arrow heads. Each pin is also labeled with

\ REAL-TIME INNOVATIONS, INC.

o

10

DFE Editor

3.2. Signal

3.3. Label

the first three (3) letters of its pin name. Finally, an editable label represents
the instance name of the component.

Occasionally, the three letters are not enough to distinguish the pin names.
You'll need to consult the corresponding .ce file to resolve the differences.
The pins are drawn in the order they are listed in the .ce file, so it's not too
difficult to figure out.

When a component is selected by the left mouse button, all attached signals
are also selected. This allows you to move a component and still retain its
connections. If you do not want to move the nodes, <Shift><LeftClick>
each node to toggle OFF its selection.

A signal has a “root” to which the signal-name label is attached. This root is
an artificial definition and does not indicate anything about signal flow. The
component pins define flow direction, and the signal lines just serve to indi-
cate which pins are connected to each other.

In fact, unconnected signals of the same name will be treated as the same
signal.

The current implementation does not allow you to physically connect two
existing signals. To create branches in a signal to connect to multiple
places, you must draw a signal line (click and drag the middle mouse button)
starting near an existing line segment or node. You add segments to any
signal by drawing a line starting from any endpoint except the root node (the
one with the signal-name label attached.)

A label object is just a place where you can add text or comments. It can be
multi-lined, but is always center aligned.

4. Data-Flow Editor Data Files

The data file used by the DFE Editor is the same as that used by the Con-
trolShell run-time parser. The only additions are coordinates and color
specifications for the drawing objects.

REAL-TIME INNOVATIONS, INC.

