
.! ". AD-A277 662 ..

Machine Assisted Implementation of Complex Algorithms and Labor

Intensive Software - Closing Report

Principal Investigator Name: Robert A. Paige
PI Institution: New York University/Courant Institute
PI Phone Number: 212-998-3512
PI E-mail Address: paige@cs.nyu.edu
Grant Tide: Machine Assisted Implementation of Complex Algorithms and Labor Intensive Software
Grant Number: N00014-90-J-1890
ONR Scientific Officer: Ralph Wachter
Grant Period: Mar. 1, 1990 - Sept. 10, 1993

1. DESCRIPTION AND OBJECTIVES OF RESEARCH AND SIGNIFICANT RESULTS
DURING THE GRANT PERIOD

Our project stated the following broad goals:

a to design a practical tool capable of automating major aspects of programming - essentially,
a generalization of YACC [261 and MACSYMA [281 to facilitate implementation of a wide
class of complex nonnumerical algorithms (in addition to parsing);

b to design and implement complexity based specification languages;

c to integrate problem specification, program design, verification, and analysis within a single
unified framework;

d to design and efficiently implement pattern directed rule systems for semantic analysis;

e to make it easier to teach and understand algorithms and software engineering.

All of the goals stated in the original proposal were fulfilled. The specific achievements
during the grant period may be divided into four categories described below.

i.I. Transformational Methodology

Underlying our transformational methodology is the hypothesis that much of the difficulty
involved in implementing complex nonnumerical algorithms is due to human factors that are
unrelated to any inherent problem complexity and can be solved by specific transformations
implemented in APTS. These factors stem largely from the extensive level of precise detail
needed (1) to craft efficient program loops (2) to write the essential imperative bookkeeping
operations that serve to maintain program invariants, and (3) to implement tedious but necessary
physical data structures that implement conceptually simpler set and map operations. Although
this crafting is error prone if done by hand. our transformations allow us to avoid having to

CIN 4 94-09475

P11 j .7.

DISCLAIMER NOTICE

\,

THIS REPORT IS INCOMPLETE BUT IS

THE BEST AVAILABLE COPY
FURNISHED TO THE CENTER. THERE

ARE MULTIPLE MISSING PAGES. ALL

ATTEMPTS TO DATE TO OBTAIN THE

MISSING PAGES HAVE BEEN

UNSUCCESSFUL.

either pointer or cursor access. These methods show the surprising fact that most of the algo-
rithms that seem to rely on arrays and array access in the main algorithm texts can be realized
with the same theoretical performance using just pointers and pointer access. These techniques
also have substantial applications to software design and high level language implementation that
could, for example, facilitate an efficient implementation of Willard's RCS database language
[45,46,471.

Although the linear time language mentioned earlier is a broad based automatic method for
producing software, it has sharp ramifications to algorithm design as well. For example, we
showed that the very basic problem of Propositional Horn Clause Satisfiability can be expressed
in our linear time language, thereby ensuring a new linear time pointer machine solution.

Our two articles with Tarjan on applications and improvements to partition refinement
strategies [34,35] and our more recent article with Bloom [4] exhibit the power of the dominated
convergence argument for computing fixed points. One of these applications remains the best
solution to the basic problem of lexicographic sorting. Two of the other applications to ready
simulation and strong bisimulation have had an impact on the field of distributed computing.

Our recent work with Chang on processing regular expressions [14] exhibits our differential
transformations applied in a new functional language context. In CPM '92 we gave theoretically
and computationally superior solutions for the classical problems of (1) transforming regular
expressions into nondeterministic finite state automata, (2) turning nondeterministic finite state
automata into deterministic finite state automata, (3) acceptance testing in nondeterministic finite
state automata, and (4) regular expression search. These problems are important, because of the
many practical applications, including compilation of communicating processes, string pattern
matching, model checking, lexical scanning, and VLSI layout design.

1.3. Transformational System

In order to mechanize the transformational methodology, we decided to design a transfor-
mational programming system with bottom-up tree pattern matching as a fundamental operation.
Since Hoffmann and O'Donnell's seminal work in 1982 [251, bottom-up tree matching has been
regarded as important but very difficult, with no obvious way to make either theoretically or
computationally tractable.

In CAAP '90 Cai, myself, and Tarjan presented the first theoretical improvement to Hoff-
mann and O'Donnell, and our paper was selected for publication in a special issue of Theoretical
Computer Science on best papers from the conference [11]. This paper included an algorithm for
pattern matching, where a newly proposed on-line algorithm outperforms a batch algorithm that
was its direct predecessor.

In 1991 we completed the APTS transformational system at the University of Wisconsin.
We used APTS to build two compilers for conducting experiments to test the feasibility of these
techniques. One of these compilers translates a major fragment of SETL2 into C. The other
translates SQ2+ (a strongly typed functional subset of SETL2 augmented with fixed point
expressions) into C.

The APTS system comprises about 15.000 lines of SETL2, a nice manageable size encour-
aging further development. SETL2 is written in C, which makes APTS portable to more

that this is greatly improvable.

These experimental results are highly encouraging. The latest experiments compared
benchmarks for implementations of 10 different algorithms. For nine of these algorithms bench-
marks were made comparing executable low level SETL2 specifications with C codes automati-
cally generated from them (see Fig. 1). The sizes of the SETL2 specifications ranged from 25
lines for a maximal independent set algorithm to 103 lines for Floyd's implementation [21] of
Dijkstra's single source shortest path algorithm [181 with 2-heaps (see Fig. 2). The Generated C
programs ranged from 133 lines for graph reachability to 766 lines for Floyd's algorithm. All
operations were explicitly written into the source code (e.g. heap operations were written explic-
itly into the SETL2 specification of Floyd); there were no hidden library routines. Source lines
were measured from prettyprinted text (free from comments) using the UNIX wc function.

SETL2-to-C SQ2+-to-C
C lines SETL2 time C lines SETL2 time

SETL2 lines C time SQ2+ lines C rime
reach 5.1 13-457 66 23-438

maxind 7.6 3700 --+ 24914

dijkstral 9.9 43 -4 32

cycle 6.6 926 -*6550 80 124 - 2183

center 5.6 17 -- 27

aclose 7.6 15-438 87 15-+38

topsort 6.4 600-+4533

dijkstra2 7.4 36 - 95

orbit 9.2

Figure 1. Ratio Summary
Acce�ton For

SETL2 C SQ2+ C NTIS CRA&I
reach 26 133 4 265 DTIC TAB

maxind 25 189 Unannou:nced El

dijkstra i 42 418 1s4.ý

cycle 36 237 5 402 By

center 42 234 DijtV ibjtion I

aclose 54 409 5 435 Availability Cod;,Stopsort 46 295 ------Avail a-d or

dijkstra2 103 766 Dist Special

orbit 26 238I |

Figure 2. lines of Source

Based on assumptions described in 1131, we measure the increase in productivity by the
number of source lines of the compiled C program divided by the number of source lines of

faster than the SETL2 program generated from it, and has 75 times more source lines than the
specification. It is interesting to note from Fig. 1 that the attribute closure C program generated
"by our SETL-to-C translator from a much more detailed low level SETL specification runs no
faster than the C program generated from the SQ2+ specification. It is also interesting to note
that if Kirk Snyder's and our estimates that his SETL2 is about 30 times slower than hand coded
C is accurate, then the performance of our generated C program would be comparable to good
hand code.

Finally, an experiment was performed to test the potential for scaled up applications.
Raytheon, an industrial affiliate of the DOD-sponsored prototech projects, provided the investi-
gators with a moderate sized prototype software package to generate tracks from input radar plot
data using an alpha-beta filter with constant scalar coefficients. "The program processes a file of
radar plot data and produces a Postscript output file which shows the original plots and program
generated radar tracks superimposed on a plan of the radar site." The Raytheon code, which
comprises 9 packages and classes and over 1000 lines of source, makes use of every aspect of
SETL2. The experiment involved translating the whole main SETL2 mudule into C, which
would interoperate with the remaining SETL2 modules. The productivity improvement (i.e., 477
lines of generated C plus SETL2 interoperability code divided by 64 lines in the SETL2 main
module) was 7.7. The overall speedup was 2.6, which was surprisingly good, considering the
tremendous overhead in the way that SETL2 currently implements interoperability with C.
Overhead is due to added levels of procedure calls, and massive datatype conversion, because
only strings are currently allowed to pass between C and SETL2. Recall also, that only one out
of the 9 modules was translated into C.

1.5. Related Work

The SETL research program directed by Jack Schwartz from about 1971 until 198'9 has had
the most positive influence on our work. Schwartz effectively demonstrated the conceptual sim-
plicity of the SETL language with its rich repertoire of universal set theoretic dictions [381, and
introduced many important concepts in an attempt to solve the formidable task of implementa-
tion and optimization. SETL's mathematical value semantics made costly hidden copy opera-
tions a problem. Dynamically allocated aggregate datatypes with arbitrary levels of nesting
made memory management difficult. Dynamic weak typing, massive overloading, and the
prevalence of operations that relied on associative access compounded the run-time costs and the

complexity of an efficient implementation.

The SETL optimizer f37,231 dealt with the hidden copy problem by making a conservative
estimate of when a set could be updated destructively or not, and by using a run-time bit (that
could be turned on but not off) to indicate this fact. Snyder's SETL2 implementation uses refer-
ence counts for the same purpose. The SETL system relied on compacting garbage collection for
dynamic allocation, whereas SETL2 uses collections of stacks. SETL used an elaborate hashing
mechanism as a default implemention of associative access for arbitrary datatypes. Its optimized

data structures combined hashing with bit vectors and plex structures to reduce the amount of
replicated data and the expense of hashing [39,17,371. SETL2 uses tries, and attempts no com-
pile-time optimization. SETL attempted to generate more efficient code using type analysis with
an accuracy up to three levels of nesting [441. for sets, maps, and tuples (in order to guarantee

Finally, there were conceptual as well as engineering problems with the SETL data struc-
ture optimization. The fundamental data structure that formed the spine of a data structure
aggregate was the hash table. Hashing was used heavily in inputting data, in forming the initial
optimized data structures, and was used to implement any set that was iterated over. The heuris-
tic nature of the SETL optimizations and the unpredictability of expensive hidden operations was
observed by both Shields and Straub.

Our real-time simulation provides new theoretically sound conceptual underpinnings to data
structure selection with precise guarantees of speedup. Our transformation is grounded in basic
algorithm theory by forming data structure aggregates from arrays and linked lists instead of
hash tables. Iteration over a SETL2 set does not force us to resort to hashing. Our routine to
input data and to form initial data structures is highly efficient without making use of hashing.

References
1. Bancilhon, F., "Naive Evaluation of Recursively defined Relations," in On Knowledge-Base Management Systems, ed.

Brodie. M and Mylopoulos, J. pp. 165-178, 1986.

2. Bayer, R., Query evaluation and recursion in deductive database system, 1985. unpublished manuscript

3. Beeri, C. and Bernstein, P., "Computational Problems Related to the Design of Normal Form Relation Schemes," ACM
TODS, vol. 4. no. 1, pp. 30-59, 1979.

4. Bloom, B. and Paige, R., "Computing Ready Simulations Efficiently," in Proc. First North American Process Algebra
Workshop, ed. A. Zwarico and S. Purushothaman eds., Workshops in Computer Science Series, pp. 119 - 134, Springer-
Verlag. 1992.

5. Bouma, Cai, J.. Fudos, Hoffmann. C., and 1-aige. R.. "2D Sketcher and Constraint Solver," accepted for CAD, 1993.

6. Cai. J. and Paige, R.. "Program Derivation by Fixed Point Computation," Science of Computer Programming, vol. 11, pp.
197-261. 1988/89.

7. Cai. J.. Facon, P., Henglein, F., Paige. R., and Schonberg, E., "Type Transformation and Data Structure Choice," in Con-
structing Programs From Specificaiions. ed. B. Moeller. pp. 126 - 124. North-Holland, 1991.

8. Cai. J. and Paige, R.. "Binding Performance at Language Design Time," in ACM POPL, pp. 85 - 97, Jan, 1987.

9. Cai, J. and Paige, R., '"Languages Polynomial in the Input Plus Output," in Algebraic Methodology and Software Technol-
ogy. ed. M. Nivat. C. Rattray, T. Rus. and G. Scollo, Workshops in Computing Series, pp. 287 - 302, Springer-Verlag,
1992.

10. Cai. J. and Paige, R., ""Look Ma, No Hashing. And No Arrays Neither"," in ACM POPL, pp. 143 - 154, Jan, 1991.

11. Cai. J., Paige. R., and Tarjan, R., "More Efficient Bottom-Up Multi-Pattern Matching In Trees," Theoretical Computer
Science, vol. 106. no. 1. pp. 21 - 60. Nov. 1992.

12. Cai. J.. A Language for Semantic Analysis, New York University, 1993. Technical Report

13. Cai, J. and Paige. R., "Towards Increased Productivity of Algorithm Implementation," in Proc. ACM SIGSOFT, pp. 71 -
78, Dec. 1993.

14. Chang. C.-H. and Paige, R.. "From Regular Expressions to DFA's Using Compressed NFA's," in Proc. CPM '92, ed. A.
Apostobco. M. Crochemore. Z. Gald. and U. Manher. Lecture Notes in Computer Science. vol. 644, pp. 88 - 108,
Springer-Verlag, 1992.

15. Cocke. J. and Kennedy. K.. "An Algorithm for Reduction of Operator Strength," CACM. vol. 20, no. 11, pp. 850-856,
Nov.. 1977.

16. Cousot. P. and Cousot. R., "Constructive versions of Tarski's fixed point theorems," Pacific J. Math., vol. 82, no. 1, pp.
43-57. 1979.

17. Dewar, R., Grand, A.. Liu S. C.. Schwartz. J. T.. and Schonberg. E.. "Program by Refinement as Exemplified by the SETL
Representation Sublanguage." TOPLAS. vol. 1. no. 1, pp. 27-49. July. 1979.

18. Dijkstra. E. W.. "A note on two problems in cannexion with graphs," Numer. Math., vol. 1, no. 5, pp. 269-271. 1959.

