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ABSTRACT

In the last several years, software innovations and the increasing speed

and availability of microcomputers and workstations have made the dynamic simu-

lation of complex systems more practical. One such system, a short-range

Unmanned Aerial Vehicle called Bluebird, was previously modeled on Simulink, a

commercial software package. The high fidelity model includes six degree of free-

dom nonlinear equations of motion with onboard sensors and a Global Positioning

System and inertial navigation system.

Because of interest expressed by the Unmanned Aerial Vehicle Joint Pro-

gram Office in how accurately a UAV could identify a target's geographical coordi-

nates, the Bluebird model, with an added guidance and control system, was eval-

uated as to its navigational and attitudinal accuracy in a dynamic simulation using

Monte Carlo techniques. Because of the modular nature of the simulation, future

evaluations of manned or unmanned aircraft and avionics will involve relatively

uncomplicated changes to the existing model.
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I. INTRODUCTION

In the last several years, the increasing speed and availability of microcomput-

ers and workstations has allowed complex simulation of dynamic systems which

previously could only be practically evaluated at static points in time. In order to

rigorously evaluate the performance of a nonlinear multiple input, multiple output

(MIMO) modeled air vehicle, such as an unmanned aerial vehicle (UAV), it is nec-

essary to dynamically simulate it. This is due to the complex way in which errors

are propagated throughout a nonlinear closed loop system. The most common way

to dynamically evaluate errors of a system subject to noise is using the Monte Carlo

simulation method, which is essentially the repetition of the same experiment over

many times.

To support the ongoing Naval Postgraduate School UAV effort, a high fidelity

UAV computer model, incorporating aircraft equations of motion and sensors,

guidance, navigation, and control models, was constructed utilizing the thesis work

of two former Naval Postgraduate School students. The primary goal was an anal-

ysis of how well a UAV could designate a fixed ground target considering the reli-

ability of its onboard sensors. To achieve this, the model, with a simulated FLIR

(Forward Looking Infrared Receiver) or low light television payload attached, was

run over a fixed track on a reconnaissance mission. For the Monte Carlo simula-

tion and analysis, sensor error data was taken from a Naval Air Development Cen-

ter (NADC) report, "Unmanned Aerial Vehicle Flight Management System Error

Analysis" [Ref. 1] and added to the UAV model. The Monte Carlo analysis per-

1



formed on this model was intended to complement [Ref. I], which analyzed and

compared targeting errors for several distinct UAV architectures, including close-

range, short-range, and medium-range vehicles performing a similar mission. This

thesis is an extension of the UAV Error Analysis Report in that it considers how

sensor and measurement errors propagate through a UAV guidance, navigation, and

control system as it directs the vehicle along a given trajectory. This repor shows

the importance of considering the feedback nature of a controlled system in the

error analysis of its performance.

Consider the system shown in Figure 1. Here the aircraft block contains actua-

tors and sensors which are subject to measurement and position errors. Errors from

one sensor used by the control system for feedback propagate into all feedback

channels in a complex nonlinear manner. For example, a change in roll rate may

cause a false measurement in the pitch rate gyro. If this gyro is being used to help

determine aircraft attitude, this false measurement will cause an inaccuracy in mea-

sured attitude. To restore proper attitude, an actual pitch rate will be created, which

may cause a false measurement of roll and yaw rates and correspondingly of roll

and yaw angles. It is due to the nonlinear, feedback nature of these phenomena that

simple statistical methods applied to a static model of a vehicle cannot be used to

accurately evaluate how well a sensor suite measures aircraft flight parameters. In

the analysis presented here, consideration was also given to sensor dynamics (how

sensitive sensors are to a rapidly changing input). Angular sensors on the aircraft

and lookdown and azimuth errors for the FLIR/ Low Light Television sensor were

those specified for the MIAG architecture in [Ref. 1]. To complete the analysis,

Monte Carlo simulation was implemented with the NPS UAV model by repeatedly

2

S . . . . .. . . i i I I I I I



running the model over a fixed track and collecting and analyzing the onboard sen-

sor data. The targeting errors obtained given the advertised sensor accuracies were

then compared with the targeting errors determined with Monte Carlo simulation.

To accomplish the error analysis, the UAV model developed by two prior thesis

students had to be completed. Figure 1 shows how their work fits into the complete

model. The model consisted of aircraft nonlinear equations of motion and sensor

models developed by Kuechenmeister [Ref. 21 and a high fidelity Differential Glo-

bal Positioning System and inertial navigation system model created by Marquis

[Ref. 3]. A linear quadratic regulator, whose design and implementation is dis-

cussed in Chapter III, was constructed to stabilize the model and provide a means

to control it in heading, airspeed, and attitude in steady state. To steer the model

along a fixed course, a waypoint guidance feature was also developed. While the

entire model is not representative of a particular UAV, the way that its guidance,

navigation, and control are interrelated in their operation is indicative of how a

UAV equipped with an integrated sensor package, like the new MIAG (modular

integrated avionics group) concept, can be sensitive to sensor errors.

The next chapter outlines the components of the computer model. Chapter III

covers in greater depth the coontributions to the model made by the author, includ-

ing controller and waypoint guidance design and payload modeling. Chapter IV

explains the Monte Carlo analysis used in analyzing the model's targeting errors.

Chapter V discusses how the simulation was performed and Chapters VI and VII

include results of the analysis and conclusions.

3
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II. THE UAV MODEL

The complete model used in this thesis is shown in Figure 2. It is composed of

several distinct subsystems, some of which were constructed as parts of previous

theses by Naval Postgraduate School Students. Kuechenmeister was responsible in

a large part for the aircraft equations of motion and the sensor models [NCt. 21.

Marquis constructed the six satellite differential Global Positioning System (GPS)

model used in the simulation as well as a Kalman Filter integrating the GPS model

with an inertial navigation system [Ref. 31. The model, which was constructed

using Simulink, a program commercially available from Mathworks, Inc., is

designed to run on either a Sun workstation or a personal computer running Matlab

for Windows with Simulink. Because of the complexity of the simulation, it should

be run on the fastest platform available. As a benchmark, the entire simulation run-

ning on a Sun Sparcl0 workstation with 64 megabytes of RAM runs at a rate of

about one second of real time for every five minutes of simulation time.

A. EQUATIONS OF MOTION AND SENSOR MODELS

The UAV used in the simulation is called Bluebird. The actual aircraft is a high-

wing monoplane with a wingspan of 12.4 feet and a weight of 55 pounds. The air-

craft is controlled using servos which actuate conventional elevator, aileron, and

5
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rudder surfaces and a throttle controlling a half-horsepower piston engine. Motive

force is provided by a single nose-mounted tractor propeller. The Aircraft Equa-

tions of Motion Block, constructed by Kuechenmeister [Ref. 21, incorporates a

nonlinear six degree of freedom equations of motion model. The stability deriva-
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tives used in the model are constants either calculated or estimated for a nominal

cruise flight condition of 73 feet per second airspeed at sea level altitude.

The sensor models developed in [Ref. 21 were obtained from manufacturing

data used in conjunction with the outfitting of an actual NPS UAV, Archytas, with

accelerometers, rate gyros, and inclinometers. Errors introduced into the sensors

were obtained from the manufacturer's data for the rate gyros and accelerometers

and from [Ref. 1] for the inclinometers and payload sensors. These errors were

specified for the modular integrated avionics group (MIAG) architecture in the

report and represent the most sensitive avionics and navigation system currently

available for an unmanned aerial vehicle.

The Equations of Motion Block solves the nonlinear equations for nine states:

three body-fixed translational velocities, three body-fixed rotational velocities, and

three Euler angles used for rotation between a body-fixed and an inertial (earth-

fixed) coordinate system. The development of these equations of motion is well

covered in [Ref. 2]. The UAV's true path over the ground is determined by resolv-

ing body acceleration into inertial (earth-fixed) coordinates via a coordinate trans-

formation and integrating the acceleration twice to obtain displacement in

Cartesian coordinates. The Equations of Motion Block, since it calculates both the

aircraft states and inertial position at each point in time, is the source of uncor-

rupted navigational and attitudinal data used as the "Truth Model" in the Monte

Carlo simulation and analysis, which is discussed in Chapter IV.

The Sensor Block models accelerometers, rate gyros, and inclinometers. These

"measure" body-fixed accelerations, body angular rates, and Euler Angles respec-

tively. The models, covered in [Ref. 21, incorporate both biases and sensor noise

7



floor errors. Each sensor is modeled as a first-order filter with a manufacturer-sup-

plied cutoff frequency. The accelerometer and rate gyro anti-aliasing filters were

modeled as first order low-pass filters.

The Sensor Block outputs "measured" body-fixed accelerations, body angular

rates, and Euler Angles. These measured parameters are passed to the Navigation

Block.

B. NAVIGATION SYSTEM

The Navigation Block incorporated two different but complementary naviga-

tion systems: an inertial navigation and Global Positioning System (GPS). While

GPS is setting new standards for navigational position accuracy, its slow update

rate (once per second at best) makes it less than perfectly suited for rapid position

updates for a fast-moving aircraft. On the other hand, an inertial navigation sys-

tem, which measures body-fixed accelerations, converts them via coordinate trans-

formation to inertial accelerations and integrates them to determine velocity and

position, is good in the short term but tends to introduce position errors over time.

These errors are a result of small biases in acceleration sensors. One answer to the

problem is to re-initialize inertial position as often as possible. A dynamic vehicle

like a UAV requires position updates many times a second, a capability inherent in

inertial navigation systems. The solution to providing quick position updates and

small steady state errors is to design a complementary filter which incorporates the

best features of both GPS and INS.

8



The navigation system designed in [Ref. 3] incorporates a strapdown inertial

navigation system consisting of accelerometers measuring acceleration along the

aircraft x (positive forward), y (positive toward the right wing-tip), and z (positive

down) axes and gyros measuring angular rates p (about the aircraft x axis), q (about

y), and r (about z). Inclinometers in the sensor module are used to measure aircraft

roll (phi), pitch (theta), and yaw (psi) angles. The Euler angles phi, theta, and psi

are used to transform the accelerations sensed in the body coordinate system to an

earth-fixed inertial coordinate system. The complete navigation system [Ref. 31

incorporated a Kalman filter to fuse the low-frequency GPS updates with the higher

frequency accelerometer/rate gyro acceleration data. To improve accuracy, the sys-

tem included a differential GPS model. This incorporates a ground-based system

placed on a surveyed site which broadcasts its measured GPS error to the local area

[Ref. 3] and is used to improve the accuracy of the onboard GPS system.

C. GUIDANCE

The guidance block in Figure 2 was developed as a part of this work and took

the filtered X and Y inertial position data trom the navigation block and compared

it with the desired inertial position. More details are included in the next chapter.

D. CONTROLLER

The controller, developed by the author, was implemented to control four vari-

ables in steady state-airspeed, attitude, ground track heading, and rudder position.

It is discussed in full in the following chapter.

9



E. PAYLOAD MODULE

The payload module in Figure 2 simulated a low-light television camera or

FLIR used to target an enemy position. Because there was no feedback from the

payload module to the rest of the model and consequently no propagation of pay-

load sensor errors, the payload was modeled as a sensor with simple lookdown and

heading errors as given for the MIAG payload in the UAV Error Analysis Report

[Ref. 11. There is currently no servo model included in the payload module.

10



M. CONTROLLER DESIGN, GUIDANCE, AND

PAYLOAD MODEL

The controller was designed using Linear Quadratic Regulator techniques. The

goal was to construct a closed-loop model which yielded satisfactory performance

while quickly damping out transient responses so that steady-state errors could be

easily evaluated by Monte Carlo analysis of a simulated flight. The notation

adopted here means to be suggestive. Upper case letters are used to denote the full-

scale values of aircraft variables or matrices, while lower case letters indicate per-

turbations around the trim values of the full-scale variables. A subscripted "B"

indicates a variable expressed in body coordinates while a subscripted "U" indi-

cates one expressed in inertial coordinates. A coordinate transformation from iner-

tial to body is indicated by
BT

and a body to inertial transformation is shown by exchanging the superscript and

subscript.

A. PLANT DESCRIPTION

Since the controller design required a linear plant, the equations of motion

model [Ref. 21 was linearized at a cruise condition of 73.3 feet per second true air-

speed at a sea level standard day. The linearized model has the following form:

11



k = Ax+Bu (EQI)

y =Cx+Du

where A and B are given in Appendix B, C is a 9x9 identity matrix, and D is a 4x9

zero matrix. The state vector x consisted of the following states:

x = [aearaaatuvwpqr q ir0J'. (EQ2)

where the first four states were the elevator, rudder, aileron, and throttle actuator

positions. The states u, v, and w were linear velocities about the aircraft x (positive

forward), y (positive out the right wing) and z (positive down) axes respectively.

The three states p, q, and r were rotational velocities about the aircraft x, y, and z

axes which used the right-hand rule to determine their orientation. The final three

states, ý, 0, and W/, were Euler angles used to determine the aircraft's orientation

with respect to an earth-fixed coordinate system [Ref. 2]. The control input vector

u is given by:

U=[8e 8 r8a8't] (EQ3)

where the first three elements in u represented deflections in elevator, rudder, and

aileron control surfaces. The fourth element, St, was measured throttle input as a

percentage of total thrust available. The output vector y was the set of the mea-

sured outputs obtained from the sensor suite. The onboard sensors could not

12



directly measure all of the states as formed in the original model; therefore, the

original set of nine states was replaced by nine measurable outputs y:

Y- a ear aa a tvt n ynZ p q rO g • 0 ] (Q 4)

The vector y was obtained by premultiplying the original set of states x by a matrix

T:

y = Tx (EQ5)

Since the transformation matrix T is composed of constant elements taken about

the cruise trim condition, we can also write

Substituting into Eq. 1, we obtain

T-ly = AT- y+Bu. (EQ6)

In state space form, Eq. 6 becomes

Y = TAT- Iy+TBu. (EQ7)

The matrix T is called a similarity transformation. Eigenvalues for the trans-

formed plant matrix T-'AT (which are the same as the eigenvalues of the original

plant A) are presented in Table 1. The linearized model was stable in all modes

with the exception of a slightly unstable spiral mode.

13



The outputs differed from the original states in the following manner:

1. Forward velocity u was replaced by true airspeed vt.

2. Lateral and vertical velocities v and w were replaced by lateral and vertical

accelerations ny and n2.

3. Heading W was replaced by ground track heading Wgt-

TABLE 1: BLUEBIRD OPEN LOOP EIGENVALUES

Mode Eigenvalue Damping

Short Period -3.9173+/-3.4918i 74.6%

Phugoid -.0057+/-.5016i 1.14%

Spiral .0792 0

Dutch Roll -.5322+/-3.5719i 14.7%

Roll -5.5165 100%

By including the actuator states in the linear model, it became possible to use

measurable outputs which were independent of actuator inputs. The transformation

matrix is defined later in this chapter. Since there were the same number of mea-

sured outputs and original states, it was possible to design a state-feedback control-

ler for this set of outputs.

The first transformation was effected because the pitot-static system aboard

Bluebird did not measure velocity along the aircraft x-axis but rather measured the

velocity in wind coordinates. This is resolved in the cruise condition that the con-

troller was designed around by:

14



[V tl = [coseo sine0 l [wuj,( a

where g0 is the trim aircraft pitch attitude of .0912 radians (approximately five

degrees). Sideslip (v) and body vertical velocity (w) can be obtained practically

only by integrating body y and z accelerations n y and nZ, which are available

directly from the accelerometers of the strapdown inertial navigation system.

Therefore, v and w were replaced with ny and nz. This was accomplished by

using the second and third rows of the original plant (A) matrix, since in the linear

form, state derivatives can be formed by multiplying the second and third rows of

the original plant matrix by the state vector,

Y 2X (EQ 9)n[: LA (3)3

where A(2) and A(3) represent the second and third rows of the original plant

matrix. The fourth and final transformation was from heading (W) to ground track

heading (Wt). The change to ground track heading, one of four variables con-

trolled in steady state, was necessary to keep the UAV ground track always pointed

in the direction of the desired waypoint. Without this transformation, the guidance

routine would have continually commanded aircraft heading toward the targeted

waypoint. Any crosswind would cause a cross-track error, with the aircraft follow-

ing a banana-shaped route to the targeted waypoint. With the transformation to

ground track heading and the controlling of rudder position to zero in steady state,

15



the aircraft naturally turns into the wind and flies a direct path to the next waypoint.

Fortunately, ground track heading is a combination of states [Ref. 41:

13-4)sinotC
V = W + cosy (EQ 10)

Equation 10 is derived in Appendix A. The newly introduced variables P3, y, and a

can be computed using their steady state values at the design cruise condition.

Assuming a small sideslip angle in cruise, 53 (sideslip) can be approximated by

v 13 = -- = V (EQ 11)V TO 73.3

Since the vehicle is trimmed in a straight and level cruise condition, y (the dif-

ference between angle of attack, ax, and inertial flight path angle, 0) is negligible.

For the design cruise condition, with the aircraft in lg, non-climbing flight, the lift

L generated by the aircraft must be equal to the weight of the vehicle. Using vehi-

cle parameters [Ref. 21 and a relation for steady-state lift from Lan and Roskam

[Ref. 5],

2

L = 0.SpvVTSCL o = Weight, (EQ 12)
T a

where p is air density, s is wing area, CLO is the aircraft lift-curve slope, and a is

angle of attack. Using the Bluebird parameters from Table 1 for the design cruise

condition at standard temperature and pressure,

16



a = 0.0912. (EQ 13)

Thus, Eq. 7 simplifies to

1
M'GT = V+ -v - sin (0.0912). (EQ 14)

73.3

Now, the measured outputs can be derived from the original state vector using the

9x9 transformation matrix T:

cos (Co) 0 sin (e0) 0 0 0 0 00
ny AA(2) v

A (3)nz w]
0 0 0 100 0 00

P 0 0 0 010 0 00 p
q 0 0 0 001 0 00 (EQ15)
r 0 0 0 000 1 00.
0 0 0 0 000 0 1 00 0

0 0 7 0 0 0 -sin (0.09) 0 1
LVJ 73.3

B. DESIGN REQUIREMENTS

The controller was required to make all closed loop eigenvalues of the Bluebird

model stable and meet a minimum requirement of 70% damping and a maximum

eigenvalue frequency of 12 radians per second. The damping requirement was

mandated to prevent overshoot in system response to steady-state commands while

the maximum eigenvalue requirement was present in consideration of actuator

bandwidth limits. Because actuators were limited in frequency response to

17



12 rad/s, any system eigenvalues faster than this would have resulted in modes too

fast for the control surfaces and/or throttle to deal with [Ref. 6].

C. CONTROL STRATEGY

Since only four controls (elevator, aileron, rudder, and throttle) were available,

only four variables could be controlled in steady state. These controlled states were

airspeed, pitch angle, ground track heading, and rudder position. Two of these

states were in the aircraft x-y, or lateral, plane (ground track heading and rudder

position), and two are in the x-z, or longitudinal, plane (airspeed and theta). This

selection of two states in each plane was made because two of the controls, aileron

and rudder, are largely lateral surfaces, and the other two, elevator and throttle, are

largely longitudinal. In the design cruise condition, there is nearly zero coupling

between the two planes. This will be demonstrated by the controller feedback gain

matrix.

In order to keep the nose of the aircraft turned into the wind when flying its

command ground track heading, rudder position was selected as one of the con-

trolled states. Because its augmented plant is laterally stable, Bluebird is guaran-

teed to have a finite steady-state sideslip angle. The fact that Bluebird (and for that

matter the vast majority of aircraft) is symmetrical in the body x-z plane guarantees

that this sideslip angle will be zero. In order to maintain this symmetrical condi-

tion, the rudder must be commanded to zero in steady state [Ref. 4]. The other con-
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trolled lateral state, ground track heading (Eq. 10), ensures that the aircraft flies a

heading in the inertial X-Y plane toward the next selected waypoint.

D. SYNTHESIS MODEL

The controller synthesis model, shown in Figure 3, was formed by appending

the derivative and error outputs for the variables controlled in steady state to the

transformed Bluebird linear model. It served as an interface between the designer

and control algorithm formed using the linearized Bluebird plant with the trans-

formed state vector previously described. To the synthesis model were added the

command inputs (rudder position, airspeed, ground track heading, and attitude).

Command errors were formed by subtracting aircraft states from commanded states

and integrators were placed on these errors to drive them to zero in steady state

[Ref. 4]. The creation of the linear synthesis model makes possible the iterative

approach used in forming the aircraft controller.

E. LINEAR QUADRATIC REGULATOR DESCRIPTION

Consider the following linear system:

=All + Blr+ B2u
(EQ 16)

z = Cli + Diu

where il is composed of the measured outputs, rudder position, airspeed, attitude,

and ground track heading command error states:

19



Thetaea~tusp

Figure 3.Bueld otrlerSntei

Modifded

Oksob20



S= [yer 8ea 8e88e 0e' (EQ 17)

Equation 16 is a state space representation of Figure 3. We assume that (AB 2) is

stabilizable, (C ,A) is detectable, and D is full column rank. The matrix BI is the

command input matrix, B2 is the control surface input matrix, and r is the set of ref-

erence commands that are desired to be tracked. Now, we define a cost function,:

J = j{C QC + D'RD} dt. (EQ 18)
0

where diagonal matrices Q and R, used to weight the outputs and inputs, are posi-

tive semidefinite and positive definite respectively. The Linear Quadratic Regula-

tor (LQR) problem is to find the state feedback controller K, wherf,

K = [KP K1], (EQ 19)

such that the feedback system shown in Figure 4 is stable and J is minimized. It

can be shown that

K = R- 1 B2'P, (EQ2o)

where P is a stabilizing solution of the Algebraic Ricatti Equation [Ref. 10]:

AP+PA'-PB2R- 1B'P +C'QC = 0 (EQ21)
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F. CONTROLLER DESIGN

As seen in Figure 3, the controller synthesis model placed an integrator on

errors between measured and desired airspeed, theta, ground track heading, and

rudder position. If a steady-state error exists in any of these states, then the integral

of that error creates an actuating signal to drive that error to zero. Since four new

error states are created by the addition of the integrators, the construction of the

LQR controller creates the proper feedback gains for the error states as well as

those of the transformed Bluebird model with actuators [Ref. 41. To create a

smoother transient response, the derivatives of velocity, theta, and ground track

heading were also made outputs, adding them to the cost function to be described

shortly. The derivative terms add a useful tool to the controller design process.
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Adding weight to the state derivative outputs (via the Q matrix) increases system

damping, reducing or eliminating, when damping exceeds .707, overshoot in sys-

tem response [Ref. 7]. In the design of the controller, it is important to ensure that

all eigenvalues of the closed loop plant, A-B2K, are slower (of lower frequency)

than the bandwidth of the control loops (the frequency responses between the ele-

vator, rudder, aileron, and throttle inputs and the outputs of the feedback gain

matrix of the closed loop system) [Ref. 61. Also, since anticipated system com-

mands in velocity, theta, and ground track heading are under 1 rad/s, command

loop bandwidths ( the frequency responses between command inputs and the like

state outputs of the closed loop plant) in the area of I radian per second were con-

sidered acceptable.

The Matlab file used to create the LQR Controller, EVAL.M, is given in Appen-

dix A. To achieve the specified design requirements, two tools available to the con-

trol designer are the Q and R matrices. By using the diagonal elements in these

matrices to weight the synthesis model inputs and outputs, the designer can tune the

weights iteratively to obtain desired control and command loop bandwidths, eigen-

values, and system damping. To begin design of the controller, Q and R are set as

identity matrices of size 7x7 and 4x4, corresponding to the number of system out-

puts and control inputs respectively. Next, the maximum (highest frequency)

eigenvalue of the closed loop linearized system and the minimum damping associ-

ated with the closed loop eigenvalues are recorded. After this, the frequency

response of the command and control loops are observed and the associated band-

widths are observed. Finally, the time constants (the time in seconds for a state out-
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put to reach 63% of a commanded step input value) for velocity, theta, and ground

track headings are recorded as a measure of system performance.

Analysis of the controller begins with the control loop bandwidths: the closed-

loop frequency responses between the control (elevator, rudder, aileron, and throt-

de) inputs and the feedback gain matrix output. These bandwidths are obtained by

"cutting" the closed-loop system at the input and treating the output of the feedback

gain matrix as the system output (Figure 4). This makes our system, for analysis

purposes:

S= (A - B 2K ) x + B 2u

u = -Kx (EQ 22)

If any closed loop eigenvalue exceeds the maximum actuator bandwidth (in the

case of Bluebird, 12 radians per second), then the control loop with the maximum

bandwidth, which is generally responsible for the maximum eigenvalue, is penal-

ized by increasing its respective diagonal element in the R matrix. For example, if

rudder, the second input, had the widest bandwidth, the the (2,2) element in the R

matrix is increased. Unfortunately, there is no formula for determining how much

to penalize a control input. It is an iterative process which is repeated until no

eigenvalues exceed the maximum allowable bandwidth.

The command loop bandwidths are made larger by increasing the respective

diagonal elements in the Q matrix. Again, this is an iterative process in which

adjustments are made, the new command bandwidths are observed, and then new

adjustments are made in Q. The command loop bandwidths are observed by look-
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r ,1

ing at the response from the command inputs (rudder, velocity, pitch angle, and

ground track heading) to the outputs of the commanded states (Figure 4)

3x= (A-B2K) x+B r

y 2 = Cx (EQ 23)

where C1 is the output matrix for the four commanded states only.

The final step is the analysis of the response of the linear model to step inputs.

Any overshoot can be reduced by increasing weight on the respective state deriva-

tive output, which controls damping [Ref. 6]. Obviously, the addition of too large a

weight on the derivatives will slow the system response to command and control

inputs.

G. BLUEBIRD CONTROLLER LINEAR RESULTS

The design iterations for the LQR controller are given in Table 2. The table

presents the diagonal elements of the Q and R matrices, maximum closed loop

eigenvalues, and control and command loop bandwidths.
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TABLE 2: BLUEBIRD CONTROLLER SYNTHESIS

max Control Loop Bandwidths Command Loop
Q R E- Bandwidths

val Eev Rud Ail Thr Vel or

[11i1] DiIl] -86 30 2 10 10 1 .2 .8
InI

[1II1] _102111_ -44 .10 1.2 10 10 1 .2 .8

[11,11] [1001,100] -11 10 1.2 10 1 .8 .2 .8

[111001] [10011 10] -11 10 1.2 10 1.5 .8 .8 .8

The feedback gain matrix is as in Eq. 19, where for the last iteration,

[0.99 0 0 -0.000.08 0 0 0 -0.53 0 0 -3.3 0
KP 0 0.130.40 0 0 0.06 0 -0.07 0 3.5 -2.4 0 -1.8

0 0.13 0.24 0 0 -0.02 0 0.1 0 -1.2 0.92 0 0.45

L-0.01 0 0 0.49 0.13 0 0 0 -0.18 0 0 -3.801

and

-. 92 0 0 -0.12731
K, 0 -0.9923 0.1236 0 (EQ 25)

0 0.1236 0.9923 -0.0001

0.0127 0 0 0.99191

The columns of each element of K are the feedback gains for the control actua-

tor positions (columns 14), the measured outputs (columns 5-13) and the com-

mand error integrators (columns 14-17). The rows of K correspond to the elevator,

rudder, aileron, and throttle commands respectively. As expected for the design
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cruise condition, the longitudinal (elevator and throttle) and lateral (rudder and

aileron) planes are largely uncoupled. The resulting controller has the following

state space representation:

j = r - Y2
(EQ 26)

u=Klxc +Kpy

where xc is the set of four states formed from the command errors.

The airspeed-pitch angle longitudinal combination provides a great degree of

flexibility. Since

0 = -Iy (EQ27)

and in the design condition,

'Y = 0, (EQ 28)

we arrive at:

0 = a, (EQ 29)

Although angle of attack sensors are widely used and one is available on Blue-

bird, they are typically noisy and not well suited for feedback [Ref. 6]. In the zero

flight path angle cruise condition, 0 serves as a good approximation for angle of

attack. From Eq. 7, which is good for lg climbing as well as straight and level

flight, for a constant airspeed, angle of attack will be constant. Any increase in 0

will be reflected in a like increase in y. If we assume a wings-level condition, then
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VTsiny = z (EQ 30)

- where z is inertial altitude. From this relation, a simple climb rate controller

could be developed. To preserve simplicity and reduce computation time, this was

not implemented.

The control loop response plots are shown in Figures 5-8. All control loop

bandwidths were kept below the 12 rad/s limit. The line which runs horizontally

near 0 dB to the respective bandwidth is the main control loop response while the

other three lines in each plot are the responses of each of the three other controls to

the input control.

The command loop response plots are shown in Figures 9-11. The three com-

mand loop bandwidths were placed near the target of I rad/s. Linear model

responses to step inputs in velocity, ground track heading, and theta commands are

shown in Figures 12-14. Time constants (times to reach 63% of steady state value)

for these responses are 9, 4, and 8 seconds and minimal overshoot is present for

each command response.

H. IMPLEMENTATION ON THE NONLINEAR MODEL

The complexity of the complete Bluebird model with sensor and GPS/INS nav-

igation models precluded linearization with the LQR controller in the loop to deter-

mine system eigenvalues and prove stability. While the extensive system
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dynamics, including sensor models and the navigation Kalman filter, may be de-

stabilizing, the best available indication of plant stability is that the model always

returned to a stable cruise condition even when simulation was begun substantially

off of the design cruise condition.

The states used in feedback were "measured" using the sensor models [Ref. 2 1

and the navigation filter [Ref. 3]. The airspeed sensor used the aircraft forward

velocity, resolved in wind coordinates, with zero-mean white noise added to give

an RMS error of .5 ft/s. The accelerometer models used to measure acceleration

incorporated both gaussian zero-mean errors reflecting the modeled sensor noise

floors as well as cross-axis errors equal to 0.5% of the off-axis acceleration. The

rate gyro models also incorporated a noise floor with a 0.5% cross-axis error. The

inclinometers incorporate a 0.1 degree RMS error with a 0.5% cross-axis error. All

sensors were modeled as first-order filters with pass bands as specified by the man-

ufacturer [Ref. 2]. The navigation filter was used to calculate inertial velocity as

well as inertial position, which was fed to the guidance module for calculation of

ground track heading command. Velocity and theta commands were open inputs

which could be changed as the simulation was running.

The controller was implemented on the nonlinear model using Delta implemen-

tation [Ref. 8]. This involved taking the feedback integrator that was placed on the

command errors (to drive them to zero in steady state) and moving it to the input of

the nonlinear plant. To maintain consistency, state derivatives, rather than the

states themselves, were used in feedback; the state derivatives, multiplied by the

constant feedback gains were now integrated at the plant input. Recall that the con-

troller previously obtained had the form:
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c= r - Y2
(EQ 30)

u = Kixc + Kpy.

By moving the integrator on the command error to the plant input, the linear

controller becomes:

=c = K, (r - Y2 ) + KpY
(EQ 31)

U=x
C

Figure 15 shows the plant with the Delta-implemented controller.

Kps [

Figure 15. Controller With Delta Implementauon

Further ramifications of Delta implementation are discussed in [Ref. 8]. For the

purposes of this controller design, the placement of an integrator at the plant input

provided an easy way to set the control surface initial conditions to their trimmed

cruise values. This was important in reducing startup transients when the simula-
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tion was run; limits on memory and time required that as much of each run as pos-

sible accurately reflected a model in stable flight.

1. GUIDANCE

The guidance mechanism stored three waypoints which were selected to navi-

gate the model around a fixed target. The waypoint guidance used the error

between position estimated in the navigation filter and the current waypoint to

command a ground-track heading Vg, to the waypoint. This heading command was

found by first taking the differences AX and AY between the estimated and the

desired inertial position at each time step:

AX = XWp - XEST
(.Q 32)

AY = YWP- YEST

with Xwp and Ywp denoting the waypoint coordinates and XET and YEST being

the position estimates from the navigation block. Next, the ground track heading

was computed by solving the arctangent of the error components:

AY
= atan A . (EQ 33)

AX

When Bluebird came within two seconds of a selected waypoint, logic within the

guidance block commanded the next waypoint. Because of simulation time con-

straints, only three waypoints were stored. Appendix A contains the Matlab code
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for the guidance routine, PSICOM2.M. The Simulink guidance block is shown in

Figure 16.

T iw
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Figure 16. Guidance Block

J. PAYLOAD

The simulated payload was modeled as an open-loop sensor with azimuth and

lookdown errors of 0..285 degrees at one standard deviation (1d). Because there

was no feedback from the payload sensors to the aircraft, the payload could be con-

structed as a simple model without loss of fidelity for the entire simulation.

The camera azimuth and lookdown angles were found in three steps. First, the

differences between target position and estimated aircraft position in the inertial

coordinate position (AX, AY, and AZ) were found. Next, the inertial differences

were converted to body differences via a coordinate transformation [Ref. 21:
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AY AYuT (EQ 34)
AYB A

AZB[ AzN

Finally, the body x, y, and z differences were converted to azimuth ()AZ) and look-

down (OWD) angles by:

OAZ = atan-AY
AxB

x 2 2 (EQ 35)
xB +yB

OLD = atan A+B
AzB

The Payload Block is shown in Figure 17.
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Aziouh and Ektion
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Figure 17. Payload Diagram
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IV. MONTE CARLO ANALYSIS

A. MONTE CARLO OVERVIEW

The term Monte Carlo was first used to describe probabilistic mathematical

methods by scientists working on the Manhattan Project in the New Mexico desert

in the early 1940's. The method is essentially a series of games of chance (or ran-

dom events) whose behavior and outcome can be used to study and classify mathe-

matical properties of a random variable or a random process. By repeatedly

simulating a system subject to noise, the statistical properties of the outputs of the

system can be derived. Since these properties are derived from a finite number of

trials, they are only an approximation of the real statistical properties of the system.

As might be expected, these approximations improve with an increasing number of

trials.

B. A BRIEF REVIEW OF STATISTICS

The purpose of this section is not to give an exhaustive coverage of probability

and statistics, a very large topic. Rather, a brief overview of mathematical proper-

ties used in the simulation of Bluebird is presented. For a more rigorous coverage

of the topic, see [Ref. 9]-[Ref. 12].
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1. Probtorty

Given some random event A with a countable set of random outcomes

A1,A2,...An, there is associated with each outcome Ak a probability Pk between 0

and 1:

05 <pk < 1. (EQ 36)

If the kth outcome almost never occurs, p.O; if it nearly always occurs, MI. [Ref.

91. Note the use of the word "almost". In a stochastic process, which nearly every-

thing is, there are no absolutes. A common notation for the probability of a random

event Ak is

p(Ak) = Pk (EQ37)

For every outcome Ak there is an associated numerical value Xk. The func-

tion assignment Xk to Ak is termed a random variable. A random process is a set of

random variables indexed by time. The random, or stochastic, process analyzed in

the simulation is the identification by geographical coordinates of a fixed target by

the UAV. The expected value E(x) of a random variable x is defined as

E(x) = i .= (EQ 38)

The expected value may also be thought of as the statistical mean of the random

variable.
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The nth central moment of x is defined as the expected value of the nth

power of x:

SE ( (x-t) n) = Ipi (xi - E (x) ) n (EQ 39)

j

The second central moment of x is called the variance of x and is derived

from Eq. 40,

E((x-pg)2) = E((x-E(x)) 2). (EQ4)

Substituting Eq. 40 into Eq. 42, we obtain

22 22

Xpix2 _E (x) 2= E(x)- E(x)2 (EQ 41)

The square root of the variance, a, is called the standard deviation of x and

is a measure of the dispersion of the random variable from the expected value.

A continuous, normally distributed random variable x, represented graph-

ically by the familiar "bell curve", has the following probability density function

(pdf):

f(x) 1 (x-4 (EQ42)
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Because errors propagate through the Bluebird simulation in a complex, nonlinear

way, there are no guarantees as to the distributions of the sensor errors in the model.

However, mean and standard deviation are values which are independent of distri-

bution and so may be used to describe errors in the Bluebird simulation regardless

of their distribution. Another term used in this thesis is the probability distribution

function (PDF). The PDF gives the probability that a random selection of x will be

less than a specified value. If the PDF is differentiable, then the pdf is defined as:

f(x) = dF(x) >0 (EQ43)
dx

2. Monte Carlo Fundamentals

Monte Carlo analysis is centered around the idea that integrals with infinite

limits may be approximated by finite sums with a sufficiently large sample size.

For a finite sum of length N and distribution G, a sampled estimate of the mean

value of the random variable x, is given by

f (G) exp (G 2

2 2a
(EQ 44)

As N--*m, this distribution approaches that of E(x). The observed G is within one

standard error of E(x) 68.3% of the time, two standard errors 95.4% of the time,

and three standard errors 99.7% of the time. This property is known as the Central

Limit Theorem of probability and is substantially satisfied when

42



I
.II( 3 ,N. (EQ 45)

In other words, for a sufficiently large random sample N, the probability density

function of the set of random samples will closely approximate the probability den-

sity function of the continuous random process. [Ref. 81
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V. SYSTEM SIMULATION

A. THE SCENARIO

The simulation involved a reconnaissance, surveillance, and target acquisition

scenario. The model was first flown toward a fixed ground target; acquisition was

at one nautical mile. Next, a left turn was performed in order to break closure with

the target followed by a right turn to keep the UAV in close proximity to the target.

For this scenario, the range to the target varied between 3000 and 6000 feet. In the

data analysis, all targeting errors dependent on angular errors have been normalized

by distance to the target to make them a function of angle only. The Bluebird

model was "flown" over a set of three waypoints that corresponded to the desired

track with respect to the target (Figure 18). Superimposed upon the trajectory in

Figure 18 are the inertial X-Y position estimates from the INS/Differential GPS

navigation filter. As the majority of the position error is in the inertial vertical (Z)

direction, the X-Y estimates follow the aircraft track very closely. Although the

simulations were started near the design cruise condition, the first three seconds of

each run was not included in the evaluation in order to remove any transient system

response from the analysis.

Each sensor was driven by zero mean band-limited white noise with a standard

deviation obtained either from [Ref. 1 or, if it was not provided there, from

[Ref. 21.
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B. NUMERICAL INTEGRATION PARTICULARS

The Runge-Kutta 5 numerical integration method was used for the simulation.

Although Simulink also provides a more accurate Adams-Gear integration method,

use of Runge-Kutta increased the simulation speed by at least 300%. An integra-

tion step of .01 seconds was selected in order to balance system performance with

fidelity. At this time interval, all noise sources in the system had to be band-limited

to 50 Hertz in order to satisfy the Nyquist sampling rate:
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1I

2T 5 fI (EQ46)

max

where Ts is the sample time in seconds and fmax is the maximum frequency in

Hertz. Selection of a smaller time step size would have led to longer simulation

time and a shorter length of data; with the .01 second step, the computer ran out of

memory after approximately 150 seconds of real time, or 12.5 hours of simulation

time.

C. DATA COLLECTION

Data collected for each run included the uncorrupted set of states at .01 second

intervals, the measured state errors (the difference between the actual aircraft states

and the measured states used in feedback), the actual inertial X, Y, and Z coordinate

position, the estimated position from the navigation filter, and the payload sensor

errors. The error mean values and standard deviations were calculated from the

measured error data. Next, the target tracking error was calculated at each point in

time for the target using the algorithm in Appendix A. The standard deviation and

mean value for the error magnitude were determined across the 75 seconds of each

run.

D. ANALYSIS

The sensor errors are divided between the input errors for each sensor, assumed

in this case to be the manufacturer's advertised reliability of the sensor in a steady-
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state, standalone sense, and the measurement errors obtained from the Monte Carlo

analysis of the entire system as flown around the set of waypoints. Measurement

errors were higher in the simulation data than in the static sensor values. Reasons

for this included sensor dynamics, cross-track measurement errors, and the feed-

back nature of the system. The Simulink block diagrams used to model the inch-

nometers are shown in Figure 19, with the top view being the entire inclinometer

block and the bottom being one of the inclinometer error blocks.

1. Sensor Dynamics

All the sensors used in the model (accelerometers, rate gyros, and inclinom-

eters) are essentially low pass filters; their ability to measure desired quantities

diminishes with the speed with which these quantities are changing. With error

data from [Ref. 1] and bandwidth data from [Ref. 2], the inclinometers were mod-

eled as first-order filters with a cutoff frequency of 2 Hertz. These inclinometers

had a time constant, or time for the output to reach 63% of the input value, of 0.5

seconds; therefore, any angular change was not instantaneously measured. One

way used to overcome this difficulty was to complement the low frequency incli-

nometers with a higher frequency device. On the Bluebird model, this was accom-

plished by integrating the higher frequency rate gyros and adding the integrated

output to the respective inclinometer output [Ref. 31. Both the unfiltered inclinom-

eter output and the filtered inclinometer-rate gyro measurement were compared

with the actual aircraft states to determine errors in roll, pitch, and yaw at each

point in time. The resulting errors are discussed in the following chapter.
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I. Cress Axis Measurement Errors

Cross axis error refers to the false measurement signal in one channel due to

an actual quantity in another channel. For example, a pure pitch rate will induce

some small indication in the roll and yaw rate gyros as well. For the Bluebird

model, the magnitude of cross-axis coupling was 0.5% for the accelerometers and

rate gyros [Ref. 2].

3. Feedback

In an open or closed loop linear system, statistical analysis of normally dis-

tributed errors either singly or in combination is a relatively straightforward pro-

cess. When one considers a closed-loop nonlinear system in which states and

errors are being fed back into the system, the well-known relationships which held

for the linear case are no longer valid. To analyze errors in the system, one must

either form a linearized version or look at the system outputs over many trials, the

so-called Monte Carlo method. The first approach, forming a linearized model for

analysis, was not considered because of the inherent error introduced in lineariza-

tion.
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VI. RESULTS

This chapter contains results for the simulation performed in Chapter 5. Monte

Carlo analysis was performed across the entire set of 7500 data points for each run

to obtain the probability distribution functions for navigation and angular errors.

At each time step of .01 seconds, the navigation error was obtained by taking the

difference between the inertial position calculated in the Equations of Motion

Block and the position estimate obtained from the Navigation Block. Sensor errors

were obtained by subtracting the outputs of the sensor models from the sensor val-

ues in the equations of motion. The standard deviations of the navigation and sen-

sor errors are shown in Table 3. The navigation errors in Table 3 are the differences

between the estimated position and the position calculated in the aircraft equations

of motion algorithm. The first row of the aircraft and payload sensor errors is the

lI value of the noise fed into the system. The second row is the standard deviation

calculated from the set of data points obtained using Monte Carlo Simulation.

To validate the randomness of the errors introduced into the model, the payload

sensor errors, which were not subject to any of the dynamic conditions that the used

vehicle sensors were, are also included in the statistical analysis of the collected

data. Assuming a sufficiently large random sample, the standard deviation of the

analyzed payload sensor errors should match the standard deviation of the errors

introduced into the payload model, as it does.
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TABLE 3: NAVIGATION AND SENSOR ERRORS

Navigation Aircraft Payload
(Feet) Sensors Sensors
(g (Degrees) (Degrees)

X Y Z Roll Pitch Yaw Roll Pitch Yaw

Nominal .10 .10 .10 .285 .285 .285
Value

Derived 4.2 6.2 16.4 .118 .126 .105 .287 .284 .286
Value

The nominal and derived sensor errors were placed in the UAV Error Analysis

Program provided by NADC Warminster [Ref. 131 and a comparison was made of

the error in targeting a fixed site assuming a one mile lateral standoff and 2000 feet

of vertical separation from the target The Error Analysis program assumed a flat

ground plane around the target and projected a spheroid of one standard deviation

of errors in inertial X, Y, and Z directions from the UAV onto the ground plane.

The resulting projection formed an elliptical curve on the ground plane. Data from

the error analysis program is presented in Table 4. The first column contains the

noise values used in the sensor and payload models. The next column contains the

values obtained from analysis of the simulation output data. In the third column are

the sensitivities for each parameter (how much an error in the given parameter con-

tributes to Circular Error Probability, or CEP). The CEP is the size of the radius

placed around the target which would enclose 50% of the estimates of target posi-

tion. The CEP for the nonlinear model was about 11% higher than when consider-

ing only the static sensor errors. In order to get the CEP of the static model, the

UAV would have to get approximately 10% closer to the target at its present 2000 ft
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altitude. From the sensor accuracies for various architectures in [Ref. 11, the model

with the incorporated MIAG errors is superior in accuracy to the other architec-

tures.

Table 4: ERROR ANALYSIS PROGRAM

ERRORS SENSITIVITIES CONTRIBUTION

NOM ACT NOM ACT

Azimuth .285 .285 32.7 m/deg 4% 3%

Elevation .285 .285 111.6 m/deg 43% 38%

Altitude 45' 45' .9 m/ft 6% 5%

Roll 1 1.18 79.2 m/deg 22 19%

Pitch 1 1.26 79.2 m/deg 22% 30%

Heading 1 1.05 32.7 m/deg 4% 4%

North 43.1 m 46.1 m
Error

East Error 36.8 m 42.2 m

CEP 56.7 m 62.5 m

Table 4 also shows how error sensitivities changed with the analysis of closed

loop sensor errors. The error sensitivities are potentially very important parameters

when considering various UAV architectures for target acquisition performance.

From the position estimate errors and the angular measurement errors in both the

aircraft and payload sensors, a Matlab routine, DATERR.M was used to calculate

position error at each point in time. To do this, data for one run was first loaded

into memory. At each time step, the instantaneous heading, lookdown, and roll
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angles to the target 'oe 0 , and 0( were calculated from target position (xt,yt,;) and

aircraft true position (x(yYo,Zo) using

xt - x0

Yt - Y0

o0 = atan t  0 (EQ48)

x t - x0.

zt -z0
o= atan -0

Yt Y0

Next, the inertial attitude errors xa, Ya, and za were calculated using the relationship

relating inertial distances x, y, and z to Euler angles and true distance to target R:

Xi COSFoOCOSO
[ = sin'F oCOS 0 R (EQ 49)

[sin~ocosEo

For small angular errors AV, AO, and AO, we make the approximation

[X& Fcos'POCOSOO - Cos (TO0 - AV/) Cos (00 - Aq)1
y, = sin TocoSvo- sin ('o- AW) cos (Do- AO) R (EQ 50)

Lzi V sin 0ocosOo- sin (00 - A) Cos (E0o- A)J

The navigation errors x., y., and zn are found by simply taking the difference

between the aircraft position (xo,yOzo) and its estimate:

53

• • , l i I • I I I I I I I I I I I



Xn X xl ]

Y nl Y0O Y (E•Q 51)

The components of the navigation and attitude errors were then added to obtain the

entire targeting error. Figure 20 is a plot of targeting error magnitude for one run

with components normalized by distance to target. The vertical axis represents tar-

get error while the horizontal axis is time in hundredths of seconds. The Probabil-

ity Density Functions for navigation error, normalized attitude error, and

normalized total error are shown in Figures 21 and 22. These two graphs are for

total error magnitude and do not consider error biases in any direction, which were

very nearly zero for both navigation and angular errors.

An important consideration when analyzing a UAV is how onboard sensors are

integrated to obtain data. In the simulation of Bluebird, angular information was

obtained from both the inclinometers alone and from relatively slow inclinometers

filtered with larger bandwidth rate gyro information [Ref. 31. Table 5 presents the

filtered and unfiltered standard deviations and the percent improvement for the ill-

tered model.
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thbe 5: COMPARISON OF FILTERED AND UNFILTERED ANGULAR DATA

Unfiltered Filtered PetAngle Value, , Value, 1(, Iproverent
Measured degrees degrees

Roll 1.24 1.04 19

Pitch 1.38 1.24 12

Heading 1.08 0.36 67

The large improvement in heading accuracy resulted because there was no

delay modeled in the heading sensor [Ref. 2]. The results from Table 5 are pre-

sented in graphical form in Figure 23. For each axis, the addition of a rate sensor

improved angular measurement performance. Figure 24 shows the effect on CEP

of the filtered and unfiltered sensors. Not only are the accuracies of individual sen-

sors important; the way that a sensor package is integrated has a bearing on how

accurately measurements may be made. The comparison was made using

[Ref. 12]. Standoff distance was one mile and vertical separation from the target

was 2000 feet. Other error inputs to the program were used from the analysis val-

ues in column 2 of Table 4.
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Total Measurement Error Normalized By Distance
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Figure 20. Targeting Error Normalized By Distance
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Navigation Error Distribution
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Figure 21. PDF of Navigolional Errors
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Total Error Normalized By Distance, Filtered Attitude Source Used
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COMPARISON OF ANGULAR ERRORS
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Figure 23. Angular Error Comparison
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VI. CONCLUSIONS AND RECOMMENDATIONS

When comparing different dynamic systems with regard to how well they per-

form a certain mission given onboard sensors and their accuracies, it is important to

look beyond how sensors perform independently in a static situation and to con-

sider how they perform in a dynamic environment together with the rest of a vehi-

cle's sensor package. The key to this analysis is the formulation of a high fidelity

model containing all sensor and vehicle motion dynamics. Because such a model

will necessarily incorporate many nonlinearities, the most general approach in

accurately analyzing system performance is Monte Carlo simulation.

In the UAV model and targeting simulation considered in this thesis, it was

shown that static sensor accuracies differed greatly from measured data obtained

from the sensors during simulation. Also, it was important to look at what sensors

were being used to provide data. For example, whether low frequency sensors

were complemented with higher frequency ones to provide the vehicle with better

state measurements during maneuvering flight.

The Naval Postgraduate School Avionics Laboratory has adequate facilities

now to create high fidelity models and run them in realistic simulations. As the

models created by successive graduate students with little programming experience

become more and more complex, time constraints require that models created in a

user-friendly graphical environment be able to be run in as optimal an environment

as possible. The Aeronautics Department recently acquired MATRIXx, a package

which allows construction of models in a graphical environment similar to that of
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Simulink but with an autocode feature which creates executable C code from the

graphical model to allow for faster simulation.

In the near term, the model used in this paper presents a good teaching aid for

both avionics system design and integration and LQR control design. For follow-

on thesis students, the modularity of the UAV model allows for the modification or

complete reconstruction of any or all of the subsystems. This provides an ideal

environment for future studies in advanced controller design and other avionics

topics. Suggested topics include:

1. The implementation of a fault detection system on the model.

2. The design of a controller based solely on inertial states.

3. The redesign of the sensor package.

The increasing cost of manned aircraft and the continuing miniaturization of

avionics components will make Unmanned Aerial Vehicles more and more attrac-

tive as an alternative to airplanes and helicopters for many missions. It is incum-

bent that the government maintain adequate facilities to realistically evaluate future

UAV designs. The Naval Postgraduate School Avionics Laboratory, with its mix of

industry-experienced professors and fleet aviators, provides an excellent environ-

ment for such work.
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APPENDIX A: MATLAB ROUTINES

A. GUIDANCE ROUTINE

"% Input vector is psi, time

"% outputs incremental px, py for this iteration

"% also outputs place holder for guidance mechanism

%define function

function out = psicom2(u,pxc,pyc,told,ss)

%define waypoints in inertial X,Y

pxcv=[1000 6000 10000 0]

pycv=[1000 3000 3000 0]

"% inputs to block are heading, time, X and Y position, velocity, and current

"% waypoint

u=u'

psi=u(1)

px=u(3)

py=u(4)

speed=u(5)

tnew=u(2)

% start using waypoint at 0.2 seconds of flight time

if tnew>.2
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ss=u(6)

else ss=l

end

% define commanded waypoint

pxc=pxcv(ss)

pyc=pyc(ss)

yy=ss;

% step to next waypoint if within 2 seconds of current

perror=sqrt((pxc-px)A2+(pyc-py)A2)

if perror <= 150

yy=yy+l

end

% calculate ground track heading to waypoint

psic=-atan2(pyc-py,pxc-px)

outfIlpsic yy]'

B. LQR DESIGN ROUTINE

% load ab matrices

[Ai,Bi,CiDi]=linmod('newsynt2');

% B2 is the input matrix across the actuators

B2=Bi(:,5:8);

%B1 is the command input matrix

B1=Bi(:,1:4)
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% CI is the output matrix for the three commanded states-airspeed, attitude,

% and ground track heading

CI=[ 0 0 0 1 zeros(l,12);zeros(1,11) 10 0 0 0 0;zeros(l,12) 10 0 0 0 ;

pause

% solve algebraic Ricatti equation to get state feedback gains

p=are(Ai,B2*inv(R)*B2',Ci'*Q*Ci);

"% kstate is state feedback gains

"% kerror is command error gain matrix

k=inv(R)*B2'*p;

kstate=k(:, 1: 13)

kerror=k(:,14:17)

% get closed loop eigenvalues

eig(Ai-B2*k);

% get damping of closed loop eigenvalues

damp(ans)

pause

% set bode frequency range from .01 to 100 rad/s

w--logspace(-2,2);

wl=w';

% solve frequency response for velocity/velocity commanded

[m1,pl1=bode(Ai-B2*k,B1 ,Cl,zeros(3,4),2,w);

% convert to dB

ml=20*loglO(ml);

mml=[wl ml];
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save datal mml /ascii

% size plot for convenient size when creating postscript file for thesis

subplot(1.3,1.3,1.2)

% full-scale bode magnitude plot for velocity/velocity commanded

semilogx(w,ml)

grid

xlabel('FREQUENCY (RAD/S)')

ylabel('dB MAGNITUDE')

title('Velocity to Velocity Commanded')

pause

% create bode magnitude plot for attitude/attitude commanded

[m2,p2]=bode(Ai-B2*k,B1,Cl,zeros(3,4),3,w);

m2=20*loglO(m2);

mm2=[wl m2];

save data2 mm2 /ascii

subplot(1.3,1.3,1.2)

semilogx(w~m2)

grid

xlabel('FREQUENCY (RAD/S)')

ylabel('dB MAGNITUDE')

title('Attitude To Attitude Commanded')

pause

% create bode plot for ground track/ground track commanded
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[13,p31=bode(Ai-B2*k,B 1,ClI,zeros(3,4),4,w);

m3=20*log lOm3);

mm3=[wl m3J;

save data3 mm3 /ascii

subplot(1 .3,1.3,1.2)

semilogx(w,m3)

grid

xlabel('FREQUENCY (RAD/S)')

ylabel('dB MAGNITUDE')

titleCGround Track to Ground Track Commanded')

pause

% create bode plot for elevator/elevator commanded

[m4,p4J=bode(Ai-B2*kB2,k,zeros(4,4), 1,w);

m4-=20*log 1O(m4);

mm4--[w1 m4];

save data,4 mm4 /ascii

subplot(1 .3,1.3,1.2)

semilogx(w,m4)

grid

xlabel('FREQUENCY (RADIS)')

ylabel('dB MAGNITUDE')

title(BEevator to Elevator Commanded')

pause

% create bode plot for rudder/rudder commanded
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[m5,p51=bode(Ai-B2*k,B2,k,zeros(4,4),2,w);

m5=20"'log 1O(m5);

mm5=[wl m5];

save data5 mm5 /ascii

subplot(1.3,l .3,1.2)

semflogx(w,m5)

grid

xiabel('FREQUENCY (RADIS)')

ylabel('dB MAGNITUDE')

title('Rudder to Rudder Commanded')

pause

% create bode plot for aileron/aileron commanded

[m6,p6I~bode(Ai-B2*k,B2,k,zeros(4,4),3,w);

m6=20*loglO(m6);

mm6=[wl m6];

save data6 mm6 /ascii

subplot(1.3,1 .3,1.2)

semilogx(wmz6)

grid

xlabel(ffrequency (RadISy)'

ylabel('dB MAGNITUDE')

title('Aileron to Aileron Commanded')

pause

% bode plot for throttle/throttle commanded
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[m7,p71=bode(Ai-B2*k,B2,k,zeros(4,4),4,w),

m7=20*1og 1OWm);

mm7=[wI m7J;

save data7 mm7 /ascii

subplot(1 .3,1.3,1.2)

semilogx(w,m7)

grid

xlabCIC'FREQUENCY (RAD/S)')

ylabel('dB MAGNITUDE')

title('Tbrottle to Throttle Commanded')

pause

% create time vector for time response plots

t=(0: .5:50];

tl=t';

% step response from velocity command to velocity

m8=-step(Ai-B2*k,B 1,C1 ,zeros(3,4),2,t);

mm8=I[tl m8];

save data8 mm8 /ascii

subplot( 1.3,1.3,1.2)

plot(t,m8)

grid

title('Response to a Step Velocity Command')

xlabel('TIMB (SECONDS)')

ylabel(CRESPONSE')
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PELUSe

% step response from attitude command to attitude

m9=-step(Ai-B2*k,B 1 ,ClI,zeros(3,4),3,t);

mm9=-[tl m9];

save data9 mm9 /ascii

subplot(1 .3,1.3,1.2)

plot(t,m9)

grid

title('Response to a Step Attitude Command')

xlabel('TIME (SECONDSY))

ylabel('RESPONSE')

pause

% ground track heading step response to ground track input

ml1~step(Ai-B2*k,B 1,Cl1,zeros(3,4),4,t);

mmlO=[tl mi0l;

save datalO mmlO /ascii

subplot(1 .3,1.3,1.2)

plot(t,m 10)

grid

title(CResponse to a Step Heading Command')

xlabel(TIME (SECONDSY)'

ylabel('RESPONSE')
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C. TARGETING ERROR CALCULATION

% error.m

% This Matlab routine takes saved bluebird navigational data and computes

%a targeting

% error at .01 second intervals

% Load data from run

load dl

% Target is at (6000,0,0) feet in (X,YZ) universal coordinate system

xt=6000

yt~o

zt=O

% Make error computation at each step

for i=1:7500

% Aircraft true position

xO=P(i,10);

yO=P(i,11);

zO=P(i,12);

% True heading to target

psi0=-atan2(-y0,xt-x0);

"% True lookdown angle to target

"% Assuming 2000 ft altitude

theta0=-atan2(z0,xt-x0);

"% True roll angle to target
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phiO=atan2(zO,-yO);

% True range to target

R(i)--sqrt((3OOO-xO)A2+yOA2+zOA2);

% Get instantaneous angular errors from file

dphi=states(i,7);

dtheta--states(i,8);

dpsi=states(i,9);

% Calculate inertial X,YZ errors from attitude sensors

xeffatt(i)=R(i)*(cos(psiO)*cos(thetaO)-cos(psiO+dpsi)*cos(thetaO+dtheta));

yeffatt(i)=R(i)*(sin(psiO)*cos(phiO)-sin(psiO+dpsi)*cos(phiO~edphi));

zeffatt(i)=R(i)*(sin(phiO)*cos(thetaO)-sin(phiO+dphi)*cos(thetaO+dtheta));

* Calculate inertial X,YZ errors from navigation

xefrnav(i)=P(i, I O)-Phat(i, 1);

yeffmav(i)=P(i,l11)-Phat(i,2);

zerrnav(i)=P(i,l 2)-Phat(i,3);

% Sumn errors inXYZ

xerr (i)--xerrnav(i)+xeff att(i);

yefr(i)=yerrnav(i)+yeffatt(i);

zerr(i)--zermav(i)+zerratt(i);

* Total error
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nefftot(i)=sqrt(xerrnav(i)A2+yefrnav(i)A2+zeffnav(iyA2);

effot(i)=sqrt(xerr(i)A2+yeff(i)A2+zerr(i)A2);

mnerr(i)=-errtot(i)IR(i);

end

% save errors into file

save d xeff yerr zerr xerratt xerrnav yerratt yerrnav zerratt zerrnav errtot nenltot
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APPENDIX B. MATHEMATICAL PROPERTIES

A. LINEARIZED BLUEBIRD PLANT MATRICES

-0.0614 0 0.354 0 -1.7069 0 0 -32.0416 0
0 -0.3839 0 1.8401 0 -71.157 32.0403 0 0

-0.756 0 -4.681 0 66.632 0 -0.0002 -2.8771 0
0 -0.1446 0 -5.3294 0 1.4902 0 0 0

A= 0.0159 0 -0.1893 0 -3.1037 0 0 0.0362 0

0 0.1404 0 -1.0612 0 -0.7884 0 0 0

0 0 0 1 0 0.0915 0 0 0

0 0 0 0 1 0 0 0 0

0 0 0 0 0 1.0042 0 0 0

"-4.2651 0 0 8.7445
0 5.5976 0 0

-37.3493 0 0 0

0 0.621 45.3232 0
B = -21.1695 0 0 0

0 -7.0235 -5.9720 0

0 0 0 0
0 0 0 0

0 0 0 0

B. GROUND TRACK HEADING DERIVATION

Consider an aircraft flying in straight and level flight with heading W. Now add

a sideslip angle 13. Because P3 is in body coordinates, it must be converted to inertial

coordinates to add its effect to heading. For a cruise condition, this is accomplished

by rotating 53 into the inertial X-Y plane by the climb angle T.

73



4cosy (EQ 47)

A positive sideslip angle f3 corresponds to a left crab angle, while heading angle is

positive to the right.

The roll angle 0 also contributes to ground track heading. Since 0 is measured

in body coordinates as well, it must also be rotated to inertial coordinates by the

climb angle. It contributes to W with angle of attack. A positive roll angle corre-

sponds to a right wing down condition.

Wcosy = osina (EQ 48)

Heading angle increases to the right when viewing the inertial X-Y plane from

above. Since sideslip and roll angle are used to counteract drift, they contribute to

ground track heading positively and negatively respectively. Therefore, the rela-

tionship used to obtain ground track heading becomes:

-= A+ -Osina (EQ 49)
Wgt =V+ cosy

C. SIMUJATION STARTUP PROCEDURES

1. Logon

2. In UNIX Command Window, type "xhost +"

3. Set environment for the machine in use:

"setenv DISPLAY 131.120.149.xx" where xx is a machine-specific code.

4. type "matlab"
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5. Change to the appropriate directory.

6. type "birdset". This is a .M file which loads startup variables into the work-

space and calls the Simulink program BIRD_NL5.M.

7. From the BIRD_NL5.M pulldown menu, select "Simulation", then "Start".

8. Variables saved to the workspace include P (actual positions and states), Phat

(estimated positions), and states(differences between estimated and actual states).

9. Simulation runs on Hornet (a SparclO workstation) at a rate of one second of

real time for every five minutes of real time.
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