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Mesh Optimization

Hugues Hoppe®  Tony DeRose®  Tom Duchamp!
John McDonald?  Werner Stuetzle?

University of Washington
Seattle. WA 98195

Abstract

\We present a method for solving the following problem: Given a set of data points scattered in
three dimensions and an initial triangular mesh Wy, produce a mesh M. of the same topological
tvpe as M. that fits the data well and has a small number of vertices. Our approach is to minimize
an energy function that explicitly models the competing desires of conciseness of representation
and fidelity to the data. e show that mesh optimization can be etfectively used in at least
two applications: surface reconstruction from unorgaunized points. and mesh simplification (the
reduction of the number of vertices in an initially dense mesh of triangles).

CR Categories and Subject Descriptors: [.3.5 [Computer Graphicsl: Computational
Geometry and OQbject Modeling,.

Additional Keywords: Geometrie Modeling, Surface Fitting, Three-Dimensional Shape Re-
covery. Range Data \nalvsis. Model Stinplification.

1 Introduction

The mcsh optimization problem considered in this paper can be roughly stated as follows: Given a
collection of data points X in R? and an initial trianguiar mesh My near the data. find a mesh 1/
of the same topological tyvpe as M that fits the data well and has o small number of vertices.
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Figure 1: Examples of mesh optimization. The meshes in the top row are the initial meshes My;
the meshes in the bottom row are the corresponding optimized meshes. The first 3 columns are
reconstructions; the last 2 columns are simplifications.

As an example, Figure 11b shows a set of 4102 data points sampled from the object shown in
Figure 11a. The input to the mesh optimization algorithm consists of the points together with the
initial mesh shown in Figure 11c. The optimized mesh is shown in Figure 12c. Notice that the
sharp edges and corners indicated by the data have been faithfully recovered and that the number
of vertices has been significantly reduced (from 1572 to 163).

To solve the mesh optimisation problem we minimize an energy function that captures the com-
peting desires of tight geometric fit and compact representation. The tradeoff between geometric
fit and compact representation is controlled via a user-selectable parameter ¢,.,. A large value of
crep indicates that a sparse representation is to be strongly preferred over a dense one. usually at
the expense of degrading the fit.

We use the input mesh Mg as a starting point for a non-linear optimization process. During
the optimization we vary the number of vertices, their positions. and their connectivity. Although
we can give no guarantee of finding a global minimum, we have run the method on a wide variety
of data sets; the method has produced good results in all cases (see Figure 1).

We see at least two applications of mesh optimization: surface reconstruction and mesh simpli-
fication.

The problem of surface reconstruction from sampled data occurs in many scientific and engi-
neering applications. In [2], we outlined a two phase procedure for reconstructing a surface from a
set of unorganized data points. The goal of phase one is to determine the topological type of the
unknown surface and to obtain a crude estimate of its geometry. An algorithm for phase one was
described in [5). The goal of phase two is to improve the fit and reduce the number of faces. Mesh
optimization can be used for this purposec.

Although we were originally led to consider the mesh optimization problem by our research
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on surface reconstruction. the algorithm we have developed can also be applied to the problem of
mesh simplification. Mesh simplification. as considered by Turk [16] and Schroeder et al. [11], refers
to the problem of reducing the number of faces in a dense mesh while minimally perturbing the
shape. Mesh optimization can be used to solve this problem as follows: sample data points X from
the initial mesh and use the initial mesh as the starting point Mo of the optimization procedure.
For instance. Figure 14a shows a triangular approximation of a minimal surface with 2032 vertices.
Application of our mesh optimization algorithm to a sample of 6732 points (Figure 14b) from this
mesh produces the meshes shown in Figures ldc (487 vertices) and 14d (239 vertices). The mesh
of Figure 14c corresponds to a relatively small value of ¢, and therefore has more vertices than
the mesh of Figure 14d which corresponds to a somewhat larger value of c,..

The principal contributions of this paper are:

o [t presents an algorithm for fitting a mesh ol arbitrary topological tvpe to a sct of data points
{as opposed to volume data. ete.). During the fitting process. the number and connectivity
of the vertices. as well as their positions. are allowed to vary.

o [t casts mesh simplification as an optimization problem with an energy function that directly
measures deviation of the final mesh from the original. s a consequence. the final mesh
naturally adapts to curvature variations in the original mesh.

¢ [t demonstrates how the algorithm’s ability to recover sharp edges and corners can be ex-
ploited to automatically segmeut the linal mesh into smooth connected components (see
Figure 12e).

2 Mesh Representation

Intuitively, a mesh is a piecewise lincar surface. consisting of triangu'ar faces pasted together along
their edges. For our purposes it is important to maintain the distinction between the connectivity
of the vertices and their geometric positions. Formallv. a mesh M is a pair (K. V). where: L' is a
simplicial complex representing the connectivity of the vertices, edges. and faces. thus determining
the topological tvpe of the mesh: V= {v;..... v} vi € R? is a set of vertex positions defining
the shape of the mesh in R? (its geometric realization).

A simplicial complex A consists of a set of vertices {1..... mn}. together with a set of non-empty
subsets of the vertices. called the simplices of K. such that any set consisting of exactly one vertex
is a simplex in . and every non-empty subset of a simplex in A is again a simplex in K™ (cf.
spanier [15]). The O-simplices {7} € A are called vertices. the L-simplices {i.j} € I are called
edges. and the 2-simplices {i.j.k} € N ave called faces.

A geometric realization of a mesh as a surface in R? can be obtained as follows. For a given sim-
plicial complex K. torw its topelogical rcalization [K| in R by identifving the vertices {1..... m}
with the standard basis veetors {ey.. ... e } of R”. For each simplex « 2 A let il denote the
convex hull of its vertices in R and let [N = Uyep |+]. Let 0 : R” — R? he the {incar map that

sends the i-th standard basis vector e, ¢ R™ to v, € R? (sece Figure 2).




Simplicial complex K
vertices:{ 1}, {2}, {3}
edges: {1,2},{2,3}, {1,3}
faces: {1,2,3}

Topological realization IKl  Geometric realization (V)

"3 60K
Vl B .
¢ v,
X

Figure 2: Example of mesh representation: a mesh consisting of a single tace.

The geometric realization ol M is the image oy-(|A']). where we write the map as oy to emphasize
that it is fully specified by the set of vertex positions V" = {vy..... Ve }. The map oy is called
an embedding if it is 1-1. that is if o (|/A']) is not self-intersecting. Only a restricted set of vertex
positions V" result in oy being an embedding.

If oy is an embedding. any point p € ov{|K’]) can be parameterized by finding its unique
pre-image on |A'|. The vector b € || with p = oy(b) is called the barycentric coordinate vector of
p (with respect to the simplicial complex A"). Note that baryveentric coordinate vectors are convex
combinations of standard basis vectors e, € R™ correspouding to the vertices of a face of A'. Any
barvcentric coordinate vector has at most three non-zero entries: it has ouly two non-zero entries
if it lies on an edge of |N]. and only one if it is a vertex.

3 Definition of the Energy Function

Recall that the goal of mesh optimization is to obtain a mesh that provides a good fit to the point
set X" and has a small number of vertices. We find a simplicial complex A" and a set of vertex
positions 17 defining a mesh W = (A1) that minimizes the energy function

l:( I\'~ ‘) = [':r/zst( [\.- ‘) + Errp( [\) + Espruny( i, v )

The first two terms correspond to the two stated goals: the third term is motivated below.

The distance energy FE.q is cqual to the sum of squared distances from the points X' =
{%7..... X,} to the mesh.

"

Epsel K1) = 37 d¥xi o (1K),

=1




The representation cnergy I, penalizes meshes with a large number of vertices. It is set to
be proportional to the number of vertices m of K':

Erepl W) = ¢,

The optimization allows vertices to be hoth added to and removed from the mesh. When a vertex
is added. the distance encrgy Eys is likely to be reduced: the term E.., makes this operation incur
a penalty so that vertices are not added indefinitelv. Similarly. one wants to remove vertices from
a dense mesh even if Ly, increases slightly: in this case .., acts to encourage the vertex removal.
The user-specified parameter c,., provides a controllable trade-off between fidelity of geometric fit
and parsimony of representation.

We discovered. as others have before us [7]. that minimizing Egs + Ere, does not produce the
desired results. As an illustration of what can go wrong. Figure 1 1d shows the result of minimizing
E.ise alone. The estimated surface has several spikes in regions where there is no data. These spikes
are a manifestation of the fundamental problem that a minimum of L5 + £, may not exist.

To guarantee the existence of a minimum (see Appendix A.1). we add the third term. the spring
energy Eg,ring. It places on each edge of the mesh a spring of rest length zero and spring constant
Ko

Eoprimg( V) = Z Kllv; = vill?
{sktenN

It is worthwhile emphasizing that the spring energy is not a smoothness penalty. Our intent
is not to penalize sharp diliedral angles in the mesh. since such features may be present in the
underlyving surface and should be recovered. We view F,,,,, as a regularizing term that helps guide
the optimization to a desirable local minimum. \s the optimization converges to the solution, the
magnitude of Ep,r.,; can be gradually reduced. We return to this issue in Section 1.1

For some applications we want the procedure to he scale-invariant. which is equivalent 10 defining
a unitless energy function £'. To achieve invariance under Fuclidean motion and uniform scaling. the
points X and the initial mesh My, are pre-scaled nniformly to fit in a unit cube. After optimization.
a post-processing step can undo this initial transformation.

4 Minimization of the Energy Function

Our goal is to minimize the energy function
FIN V) = Epgd KoV) 4+ B (W) + Fprmg (V)

over the set A of sitplicial complexes A" homeomorphic to the initial simplicial complex A’y. and
the vertex positions V defining the embedding. \We now present an outline of our optimization
algorithm. a pseudo-code version of which appears in Figure 3. The details are deferred to the next
1wo subsections.

To minimize E( K. V) over both K and V. we partition the problem into two nested subproblems:
an inner minimization over 17 for fixed simplicial complex A7, and a outer minimization over K.




In Section 4.1 we describe an algorithim that solves the inner minimization problem. It finds
EF{K) = miny E(L.V"). the energy of the best possible embedding of the fixed simplicial complex
K. and the corresponding vertex positions 17, given an initial guess for ¥'. This corresprnds to the
procedure OptimizeVertexPositions in Figure 3.

Whereas the inner minimization is a continuous optimization prot em. the outer minimization
of E(L') over the simplicial complexes ' € XK' (procedure OptimizeMesh) is a discrete optimization
problem. An algorithin for its solution is presented in Section -.2.

The energy function £(A.17) depends on two parameters c.., and «. The parameter c,ep
controls the tradeoff between conciseness and fidelity to the data and should be set by the user.
The parameter ~. on the other hand. is a regularizing parameter that. ideally. would be chosen
automatically. Our method of setting « is described in Section 1.4.

4.1 Optimization for Fixed Simplicial Complex
(Procedure OptimizeVertexPositions)

In this section. we consider the problem of finding a set of vertex positions 17 that minimizes the
energy function E(A.17) for a given simplicial complex K. As E,.,( A') does not depend on V', this
amounts to minimizing Ly (N V) + Lgprin (N V).

To evaluate the distance energy Fyi (. V7). it is necessary to compute the distance of each
data point x; to If = oy (|A’[). Each of these distances is itself the solution to the minimization
problem

rl"’(x,-.or(llx'l)) = min ||x; - r.>‘r(b;)]}2.
b, eln|
in which the unknown is the barveentric coordinate vector b, € || C R™ of the projection of x,
onto M (Figure 1). Thus. minimizing (K. 17) for fixed A is equivalent to minimizing the new
objective function

ECKAV.BY = > ki = ov(b)* + Egpring(K 1)
=1
= Y lxi—orballf+ > slv, = vill?
=1 LAYER
over the vertex positions V' = {v,..... V., bovi € R*and the barveentric coordinates 18 = {by..... b.}.b; €

|| c R™,

To solve this optimization problem (procedure OptimizeVertexPositions). our method alternates
between two subproblems:

l. For fixed vertex positions V7. find optimal barveentric coordinate vectors 13 hy projection

(procedure ProjectPoints).

2. For fixed barycentric coordinate vectors 13, find optimal vertex positions V7" by solving a linear
least squares problem {procedure ImproveVertexPositions).




OptimizeMesh{ h'p.1) {

K .= Ky

V" := OptimizeVertexPositions( g,V |))

- Solve the outer minimization problcm,

repeat {
(K'V") := GenerateLegalMove( A'.1")
1" = OptimizeVertexPositions{ A”.1"')
f E(RN'. VY < E(K.V) then

(KY)y=(h'\")

endif

} until convergence

return (A1)

}

- Solve the inner optimization problcmn
- E{K)=miny E(K.17)
- for fized simplicial complcr K.
OptimizeVertexPositions( A'.17) {
repeat {
- Compute barycentric coordinales by projoction.
B := ProjectPoints{ h'.\")
Mindmize FIRK VOB over Y using conjugate gradicnis,
17 := ImproveVertexPositions{ \'./})
} until convergence
return |’

}

GeneratelLegalMove( 1'.17) {
Select a legal move k' = L.
Locally modifv 1" to obtain V7’ appropriate for K.
return (A1)

Figure 3: An idealized pseudo-code version of the minimization algorithm.




Figure : Distance of a point x, from the mesh.

Because we find optimal solutions to both of these subproblems. E{ . 1. 3} can never increase.
and since it is bounded from below. it must converge. In principle. one could iterate until some
formal convergence criterion is met. Instead. as is commou. we perform a fixed number of iterations.
As an example. Figure [1e shows the result of optimizing the mesh of Figure 11¢ over the vertex
positions while holding the simplicial complex fixed.

It is conceivable that procedure OptimizeVertexPositions returns a set 17 of vertices for which the
mesh is sell-intersecting. i.c. oy is not an embedding. \While it is possible to check «a posteri-
ort whether oy is an embedding. constraining the optimization to always produce an embedding
appears to be difficult. This has not presented a problem in the examples we luve run.

4.1.1 Projection Subproblem
{Procedure ProjectPoints)

The problem of optimizing E(N. V. 1) over ihe barveentric coordinate vectors 13 = {bhy..... b,}.
while holding the vertex positions 17 = {v,..... v, } and the simplic'al complex A" constant. de-
composes into n separate optimization problems:

b, = argmin||x, - o (b)||
he|i|

In other words. b; is the barveentric coordinate vector corresponding to the point p € op([h])
closest to x;.

A naive approach to computing b, is to project x; onto all of the faces of M. and then find the
projection with minimal distance. To speed up the projection. we first enter the faces of the mesh
into a spatial partitioning data structure (similar to the one used in [17]). Then for cach point x,
only a nearby subset of the faces needs to be considered. and the projection step takes expected
time O(n). For additional speedup we exploit coherence between iterations. Iustead of projecting
cach point globally onto the mesh. we assume that a point’s projection lies in a neighborhood of
its projection in the previous iteration. Specificallv. we project the point onto all faces that share




a vertex with the previous face. Althongh this is a hearistic that can fail. it has performed well in
practice.

4.1.2 Linear Least Squares Subproblem
(Procedure ImproveVertexPositions)

Minimizing E(K.V". B) over the vertex positions V" while holding B and A fixed is a linear least
squares problem. It decomposes into three independent subproblems. one for cach of the three
coordinates of the vertex positions. \We will write down the problem for the first coordinate.

Let e be the number of edges (I-simplices) in A wote that ¢ is O(m). Let v! be the m-
vector whose /-th element is the first coordinate of v;. Let d' be the (n + ¢)-vector whose first n
clements are the first coordinates of the data points x;. and whose last ¢ elements are zero. With
these definitions we can express the least squares problem for the tirst coordinate as minimizing
I|-Avl — d}? over v!. The design matrix .4 is an (n+¢): m matrix of scalars. The first n rows of
A are the baryvcentric coordinate vectors b, Fach of the trailing ¢ rows contains 2 non-zero entries
with values /f and —\/x in the columns corresponding to the indices of the edge’s endpoints.
The first # rows ol the least squares problem correspoud to £y (V). while the last ¢ rows
correspond to E,r,p,( NoV). Animportant feature of the matrix 1 is that it contains at most 2
non-zero entries in each row. for a total of QO(n + m) non-zero entries.

To solve the least squares problem. we nse the conjugate gradient method (ct. {3]). This is an
iterative method guaranteed to find the exact solution in as many iterations as there are distinct
singular values of 1. i.e. in at most .u iterations. Usually far fower iterations are required to get
a result with acceptable precision. For example. we find that for moas large as 10% as few as 200
iterations are sufficient.

The two time-consuming operations in cach iteration of the conjugate eradient aleorithim are
the multiplication of 1 by an (7 4+ c1-vector and the multiplication of 17 by an w-vector. Because
s sparse. these two operations can he executed in Q¢ + n0) time, We store 1 in a sparse form
that requires only O(n 4+ m) space. Thus. an acceptable solution to the least squares problem
is obtained in O(n 4 m) time. In contrast, a tvpical noniterative method for solving dense least
squares problems. such as QR decomposition. would require O((n + =1 time to find an exact
solution.

4.2 Optimization over Simplicial Complexes
(Procedure OptimizeMesh)

To solve the outer minimization problen, minimizing F'(RK) over . we define a ~et of three eole-
mentary transformations. cdge collapse. cdge split. and cdge swap. 1aking a simplicial complex i
to another simplicial complex N’ (see Figure 5).

We define a logal morec 1o he the  pplication of one of these elementary transformations to an

adge of A that leaves the topological tvpe of K anchianged. The set of elementary transformations
is complete in the sense that any simplicial complex in A can be obtained from A through a




..... . ,

edge ééllapse

edge split
Figure 5: Local siuiplicial complex transformations

sequence of legal moves!.

Our goal then is to lind such a sequence taking ns from Ky to a minimum of Evi'y. We do this
using a variant of random descent: we randomly select a legal move. K = K. If ECN)Y < E(R). we
accept the move. otherwise we try again. Il a large number of triaw fails to produce an acceptable
move. we terminate the search,

More elaborate selection strategies. such as steepest descent or simulated annealing. are possible.
As we have obtained good results with the simple strategy of random descent. we have not vet
implemented the other strategies.

Identifying Legal Moves \u cdee split transformation is always a legal move, as it can never
change the topological tvpe of A, The othier two trausformations. on the othier hand. can cause a
change of topological tyvpe. so tests must he performed to determine if they are legal moves.

We define an edge {i. j} € N to be a boundar, cdgc ifitis a subset ol only one tace {i.j .k} € K.
and a vertex {/} to he a boundary verter if there exists a bovndary edge {7.j} € K.

An edge collapse transformation &' = L' that collapses the cdge {/.j} € L' is a legal move if
and only if the following conditious are satisfied (proof in Appendix A2
o For all vertices {&} adjacent 1o hoth {i} and {7} ({ick} = K and {50 = Ko {ij h}isa
face of K.
o If {i} and {j} are both boundary vertices, {7, 7} is a boundary edge.

e A" has more than | vertices if neither {i} nor {j} are boundary vertices. or A Las more than
3 vertices if either {i} or {y} are boundary vertices.

; ) . . - .
In fact. we prove in Appendix \.3 that cdge collapse and edge split ave sulticient: we include edge swap to allow
the optimization procednre to “tnwnnel” through <inall hills in the energy function.
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An edge swap transformation A = A7 that replaces the edge {i.j} € N with {k./} € K is a
legal move if and onlv if {k.1} & K.

4.3 Exploiting Locality

The idealized algorithm described so far is too inefficient to be of practical use. In this section, we
describe some heuristics which dramatically reduce the running time. These heuristics capitalize
on the fact that a local change in the structure of the mesh leaves the optimal positions of distant
vertices essentially unchanged.

4.3.1 Heuristics for Evaluating the Effect of Legal Moves

Our strategy for selecting legal moves requires evaluation of E( ') = miny- E (A7 V) for a simplicial
complex K’ obtained from K through a legal move. Ideallv, we would use procedure OptimizeVer-
texPositions of Section 1.1 for this purpose. as indicated in Figure 3. In practice. however, this is
too slow. Instead. we use fast local heuristies to estimate the effect of a legal move on the energy
function.

Each of the heuristics is based on extracting a submesh in the neighborhood of the transforma-
tion. along with the subset of the data points projecting onto the submesh. The change in overall
energy is estimated by only considering the coutribution of the submesh and the corresponding
point set. This estimate is alwavs pessimistic. as full optimization would ouly further reduce the
energy. Therefore. the hearistics never suggest changes that will increase the true energy of the
mesh.

Definition of neighborhoods in a simplicial complex To refer to neighborhoods in a simpli-
cial complex. we need to introduce some lurther notation. We write »" < 5 to denote that simplex
ST is a non-empty subset ol shimplex s For simplex ~ € K (Figure 6):

star(st W)= {s" € N 1« < &'}
Star(s: K)={s' € N @ Ftestar(sih) - & < '}

link(s: K') = star(s: N)\ star(s: K.

Evaluation of Edge Collapse 1o evaluate a transformation A" = K collapsing an edge {i.j}
into a single vertex {i} (Figure 51 we take the submesh to be star({/}: N U star({j}: N). and
optimize over the single vertex position vy, while holding all other vertex positions constant.,

Because we perform only i sinall number of iterations (for reasons of efficiency ). the initial choice
of vi, greatly influences the accuracy of the result, Therelore, we attempt three optimizations. with
vy starting at v,. voand Yv, + v,) and accept the hest one.




[ ]
s star{s.K} star(s,K)
t star(t.K ) star{t,K)

Figure 6: Neighborhood subsets of K.

Figure 70 Twao local optimizations ta evaluate edge swap

The edge collapse should he allowed only if the new mesh does not intersect itself. C'lecking for
this would be costly: instead we settle for a less expensive heuristic check. If. after the local opti-
mization. the maximum dihedral angle of the edges in star({/}: K') is greater than some threshold.
the edge collapse is rejected.

Evaluation of Edge Split The procedure is the same as for edge collapse. except that the
submesh is defined to he star({;. j}: A'). and the initial value of the new vertex vy, is chosen to be
1

E(vz + VJ)-

Evaluation of Edge Swap To cvaluate an edge swap transformation &' = A’ that replaces
an edge {i.j} € N with {kl} € K'. we consider two local optimizations. one with submesh
star({k}: K'). varving vertex v, and oue with submesh star({/}: 7). varving vertex v; (Figure 7).
The change in energy is taken to best of these. \s is the case in evaluating an edge collapse. we
reject the transformation il the maximum dihedral angle after the local optimization exceeds a

12




threshold.

4.3.2 Legal Move Selection Strategy
(Procedure GeneratelLegalMove)

The simple strategy for selecting legal moves described in Section 4.2 can be improved by exploiting
locality. Instead of selecting edges completely at random. edges are selected from a candidate set.
This candidate set consists of all edges that may lead to beneficial moves. and initially contains all
edges.

To generate a legal move. we randomly remove an edge from the candidate set. We first
consider collapsing the edge. accepting the move if it is legal and reduces the total energy. If the
edge collapse is not accepted. we then consider edge swap and edge split in that order. If one of
the transformations is accepted. we update the candidate set by adding all neighboring edges. The
candidate set hecomes very useful toward the end of optimization. when the fraction of beneficial
moves diminishes.

4.4 Setting of the Spring Constant

We view the spring cnergy Egpring as a regularizing term that helps guide the optimization process
to a good minimum. The spring constant x determines the contribution of this term to the total
energy. We have obtained good results by making successive calls to procedure OptimizeMesh. each
with a different value of w. according to a schedule that gradually decreases .

As an example. to obtain the final mesh in Figure 12¢ starting from the mesh in Figure 1lc.
we successively set # to 10721072 10~ and 107 (see Figures 11f-12¢). This same schedule was
used in all the examples.

5 Results

5.1 Surface Reconstruction

From the set of points shown in Figure 11b. phase one of our reconstruction algorihm [3] produces
the mesh shown in Figure tle: this inesh has the correct topological tyvpe. but it is rather dense. is
far away from the data. and lacks the sharp features of the original model (Figure 11a). Using this
mesh as a starting point. mesh optimization produces the mesh in Figure 12c.

Figures 13a-13f show two examples of surface reconstruction from actual laser range data (cour-
tesy of Technical Arts. Redmond. WA). Figures 13a and 13h show sets of points obtained by sam-
pling two physical objects (a distributor cap and a golf club head) with a laser range finder. The
outputs of phase one are shown in Figures 13¢ and 13d. The holes present in the surface of Fig-
ure 13c are artifacts of the data. as self-shadowing prevented some regions of the surface from being
scanned. Adaptive selection of scanning paths preventing such shadowing is an interesting area of

13




future research. In this case. we manually filled the holes. leaving a single boundary at the bottom.
Figures 13e and 13f show the optimized meshes obtained with our algorithm.

5.2 Mesh Simplification

For mesh simplification. we first sample a set of points randomly from the original mesh using
uniform random sampling over area. Next. we add the vertices of the mesh to this point set.
Finally, to more faithfully preserve the boundaries of the mesh. we sample additional points from
boundary edges.

As an example of mesh simplification. we start with the mesh containing 2032 vertices shown in
Figure 14a. From it. we obtain a sample of 6752 points shown in Figure 1-1b (1000 random points.
2032 vertex points. anud 720 boundary points). Mesh optimization. with ¢, = 107, reduces the
mesh down to 487 vertices (Figure llc). By setting ¢, , = 1071 we obtain a coarser mesh of 239
vertices (Figure 1.1d).

As these examples illustrate. basing mesh simplification on a measure of distance bhetween the
simplified mesh and the original has a number of benelits:

e Vertices are dense in regions of high Gaussian curvature. whereas a few large faces span the
flat regions.

o Long edges are aligned in directions of low curvature. and the aspect ratios of the triangles
adjust to local curvature,

e Edges and verrices of the simplified mesh are placed near sharp features of the original mesh.

5.3 Segmentation

Mesh optimization enables us to deteet sharp features in the underlyving surface. Using a simple
thresholding method. the optimized mesh can be segmented into smooth components. To this end.
we build a graph in which the nodes are the faces of mesh. T'wo nodes of this graph are connected if
the two corresponding faces are adjacent and their dihedral angle is smaller than a given threshold.
The connected components of this graph identify the desired smooth segments. \s an example.
Figure 12e shows the segmentation of the optimized mesh into [l components. \fter segmentation.
vertex normals can be estimated from neighboring faces within each component. and a smoothly
shaded surface can be created (Figure 12f).

5.4 Parameter Settings and Performance Statistics

Table 1 lists the specific parameter values of ¢,,, and & used to generate the meshes in the examples.
along with other performance statistics. In all these examples. the table entry “raricd™ refers to
a spring constant schedule of {1074, 1072 1071 107"}, In fact. all meshes in Figure | are also
created using the same parameters (except that ¢, , was changed in two cases). xecution times
were obtained on a DEC uniprocessor Alpha workstation.
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Fig. | #vertices | #faces | #data Parameters Resulting energies time
m n Crep | K Eaise | E (min.)
1lc 1572 31521 1102 . - [ R57Tx1074 - -
lle 1572 3152 | 4102 | 1077 1072 | R.04x1074 | 4.84x1072 1.5
11f 508 1024 | 4102 | 1077 1072 | 6.84%x10~* | 3.62x1072 | (+3.0)
12a 270 548 | 4102 { 10 1073 | 6.08x107% | 6.94x1073 | (+2.2)
12¢ 163 334 | 1102 | 1077 ] tol=2mn==sh R0t | 2,12 %1078 17.0
13c 9220 | 18272 | 12745 - - 16.41x10"2 - -
13e 690 1348 | 12745 | 1077 | 10{=2=3=4=8b | 1 23103 | 1.18x10~2 17.0
13d 4059 S073 | 1686 - - 1 2.20x1074 - -
13f 262 315 | 16864 | 1073 | 1o{=2=3=1=8t | 9 19%10-3 | 4.95%x10~3 4.5
l4a 2032 3832 - - - - - -
l4dc ART 916 G752 | 107 [ 10t=a=5=t=8b b R x 1070 | 8.05 %107 9.9
14d 239 4321 6752 1 107 | tod=2m =St g 191073 | 1,39 %1072 10.2

Table 1: Performance statistics for meshes shown in Figure 11.
6 Related Work

Surface Fitting Thereisalarge body of literature on litting embeddings of a rectangular domain:
see Bolle and Vemuri {1] for a review. Schudy and Ballard [12. 13] fit embeddings of a sphere to
point data. Goshtashy [1] works with embeddings of exlinders and tori. Sclaroff and Pentland [14]
consider embeddings of a deformed superquadric.  Miller et al. [S] approximate an isosurface of
volume data by fitting a mesh homeomorphic to a sphere. While it appears that their method
could be extended to finding isosurfaces of arbitrary topological type. it it less obvious how it could
be modified to handle point instead of volume data. Mallet [6] discusses interpolation of functions
over simplicial complexes of arbitrary topological tvpe,

Our method allows fitting of a parametric surface of arbitrary topological tyvpe to a set of three-
dimensional points. In [2]. we sketched an algorithm lor fitting a mesh of fircd vertex connectivity
to the data. The algorithm presented liere is an extension of this idea in which we also allow the
number of vertices and their connectivity to varv. To the best of our knowledge. this has not been
done bhefore.

Mesh Simplification
et al. [11] and Turk [16].

Two notable papers discussing the mesh simplification problem are Schroeder

The motivation of Schroeder et al. is to simplifv meshes generated by ~marching cubes™ that
may consist of more than a million triangles. In their iterative approach. the basic operation is
removal of a vertex and re-triangulation of the hole thus created. The eriterion for vertex removal in
the simplest case (interior vertex not on edge or corner) is the distance from the vertex to the plane
approximating its surrounding vertices. [t is worthwhile noting that this criterion only considers
deviation of the new mesh from the mesh created in the previous iteration: deviation from the
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original mesh does not figure in the strategy.

Turk’s goal is to reduce the amount of detail in a mesh while remaining faithful to the original
topology and geometry. Ifis basic idea is to distribute points on the existing tesh that are to
become the new vertices. lle then creates a triangulation containing both old and new vertices.
and finally removes the old vertices. The density of the new vertices is chosen to be higher in areas
of high curvature.

The principal advantage of our mesh simplification method compared to the techniques men-
tioned above is that we cast mesh simplification as an optimization problem: we find a new mesh of
lower complexity that is as close as possible to the original mesh. This is recognized as a desirable
property by Turk (Section 8. p. 63): ~Another topic is finding measures of how closely matched a
given re-tiling is to the original model. Can such a quality measure be used to guide the re-tiling
process?”. Optimization automatically retains more vertices in areas of high curvature. and leads to
faces that are elongated along directions of low curvature. another property recognized as desirable
by Turk.

7 Summary and Future Work

We have described an energy minimization approach to solving the mesh optimization problem.
The energy function we use consists of three terms: a distance cuergy that measures the closeness of
fit. a representation energy that penalizes meshes with a large number of vertices, and a regularizing
term that conceptually places springs of rest lergth zero on the edges of the mesh. Qur minimization
algorithm partitions the problem into two nested subproblems: an inner continuous minimization
and an outer discrete wminimization, The search space consists of all meshes homeomorplic to the
starting mesh.

Mesh optimization has proven effective as the second phase of our method for surface recon-
struction from unorganized points. as discussed in [5). (Phase two is responsible for improving the
geometric fit and reducing the number of vertices ol the mesh produced in phase oue,)

Our method has also performed well for mesh simplification. that is. the reduction of the number
of vertices in a dense triangular mesh. 1t produces meshes whose edges align themselves along

directions of low curvature, and whose vertices concentrate in arveas of high Gaussian curvature.
Because the energyv does not penalize surfaces with sharp dihedral angles. the method can recover
sharp edges and corners.

A number of areas ol future research still remain. including:

¢ Investigate the use of more sophisticated optimization methods. such as simulated annealing
for discrete optimization and quadratic methods for noun-linecar least squares optimization. in
order to avoid undesirable local minima in the energy and to accelerate convergence.

o Gain more insight into the use of the spring energy as a regularizing term, especially in the
presence of appreciable noise.

e linprove the speed of the algorithm and investigate implementations on parvallel architectures.

16
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¢ Develop methods for fitting ligher order splines to more accurately and concisely model
curved surfaces.

e Experiment with sparse. non-uniform. and noisy data.

o Extend the current algorithin to other distance measures such as maximum error (L™ norm)
or average error ( L' norm). instead of the current L2 norm.

A Mathematical Appendix

In this appendix. we address some mathematical issues alluded to in the body of the paper. Sec-
tion A.l contains a proof that there is a mesh (K,,,,.1,,,,) at which the absolute minimum of the
energy function is attained. In Section A.2. it is shown that the simplicial operations introduced
in Section 4.2 are complete in the sense that they may be used to generate all triangulations of
topological surfaces. In Section A.3. we prove the necessity and sufficiency of the criteria for legality
of an edge collapse given in Scction 1.2

A.1 Absolute Minima for the Energy Functional Can be Attained

Recall that one of the reasons for adding the spring energy term £5,,,5, to the energy functions
was to insure the existence of a mesh realizing a minimum. In this appendix. we prove that this is
the case,

To see what is involved. let ¢ > 0 be the absolute minimum of £ and let Ay 17%) be a sequence
of meshes with limg—~.« (N Vi) = . Withont the spring energy tern. it is possible to construct
examples in which the vertex configuration Vi becomes unbonnded as & approaches infinity.

This cannot happen if the spring energy term is included. We will show that for sufficiently
large V7 the energy functional L (A1) is bounded from below by a multiple of the square of the
Euclidean normn of 17, Cousequentiy. the minimizing sequence (A 1) is contained in a finite ball
and must. therefore. contain a subsequence converging to a mesh (N, 15,,,). By construction

IL‘( 1\-mm~ ‘-mln ) =rf.

Theorem 1 There is a mesh (K, 000) with the property that
PANAY > E(N 0 Vi)
for every mesh (h'.17).
Remark 1 [t is important to note hove that the map ov,,, . [Nl — R* may not be an embed-

ding. In general. the mmimum of L may be attained by o degenerate mapping whosc image may
not be an embeddad manifold.

nirn

We proceed now with the techuicalities ol the formal proof.
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Recall that for & mesh (A.17) and a data set X', is the number of data points and m is the
number of vertices of A, Assume that X is contained in a ball of radius r > 0 centered at the
origin. If V' = (vi.va..... v ) is viewed as a vector in R?™ then its Fuelidean norm on R*™ is
given by the formula

=

where ||v;| is the standard Euclidean norm of R*.

Lemma 1 Suppose that {|V|| > 4/m r. Then

S (s VIV
E(NV) > min (;-)72— 1) T + Cpp il

Proof. Recall that
AN VY = Fppagd KA+ B (N + Bl ).
Let b = max; [|v;]] and @ = min, ||v,|[. Notice that b satisfies the inequality

1

b> —.
W
There are two cases to consider: « < 0/2 or a > b/2.

Suppose that a« < b/2. Choose v, and v, in {vy..... v} osuch that @ = v, and
b = [[Vinarll- There is a sequence of & < m edges of K connecting v, 10 V..,,,. The spring energy
of these connecting edges is easily shown 10 be greater than w k(b — a)? /2. Since

A_(I)ftl)' N (h—aj- S h_— 5 i H'.

ko) T n b T e

the inequality
. . . I L
,.‘\'[’I‘I!lf[( l\ \ ) 2 > [[‘ “-
fm-

holds when « < b/2.
Now suppose that a > b/2. Then for all x, € X.

2 . 2 b : 1l : LN A >-, e
2(x.. or S (g — )2 Z - - = .
dist* (xi.ov({N]) 2 (a = 1) > (-) '> 2 (2\/111 I) 2 <2\/E L/m 16m

Hence.

"

Ep( N V) =3 dist? (x o)) 2 Tu“‘ I

=1

Consequently. if [[V]] > /mir then
: - . - : ; V-
Eopring(N V) + FgigNVT) > min (-ll- ,—> u—

I8
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from which the inequality in the statement of the lemma follows, Q.E.D.

The next lemma is an immediate consequence of Lemma | and the definition of the energy
functional.

Lemma 2 Let b = F( Ny Vg) where ( Ky Vo) is a mesh, Suppose that (K.Y is another mesh such
that E(K. V) < b and let m be the number of vcrtices of K. Then

o m < b/Crep.

. b ) b
o V|| < dmax | mr. | ————] < Imax —_ ] —
i< min{ds/me. 1)) ~ l \/(',.,,, ' min(4rcs,,/ b4 1)

Proof. (of Theorem 1) Choose a sequence of meshes (K Vi) with Jim BN V) =«

Let my be the number of vertices of K. First note that since £ (A Vi) > cupmy. the number
of vertices in A’y is bounded by an integer M. But there are only a finite number of simplicial
complexes with at most M vertices. Consequently. we miay choose a subsequence A, with KL.J, =

Ky,  forall j/ and with imy_. (N, V5 ,)=r¢. Let IV, denote such a complex.
)+ J 4 ) I t

By Lemma 2 the vectors Vi, all lie within a ball of finite radius. By compactness. there is a
, \
subsequence of 1 b which converges to a vector V. The mesh (N0 Vg ) satisfies the condition
of the theorem. Q.E.D.

A.2 Completeness of Operations

We want to show that the operations of edge split. edge swap and edge collapse form a complete
set in the sense that if A and L are simplicial surfaces with homeomorphic topological realizations
then L can be obtained from A by a finite sequence of edece splits, edge swaps and edge collapses.

Although edge swaps have proved useful in our optimization procedure. the next proposition
shows that they are not needed 1o prove completeness,

Proposition 1 A\n cdgc swap is cquicalent to an cdge split followed by an cdge collapsc.

Proof. Let Ty = {ri.roceq} and Ty = {ry o ey} be two triangles of a simplicial surface A with
common edge ¢ = {ri. 2} An edee swap along . modifies A7 to give a new complex A’ obtained
by replacing ¢ with the edge «f = {rocey ) and T and T with the new triangles 77 = {ry. e300y}
and T; = {vy.v3. 09} This is equivalent to performing an edee split along ¢ followed by an edge
collapse (see Figure x). Q.1.1).

Theorem 2 (Completeness) .t N and I be two simplicial surfaces such that (K| and |L] are
homeomorphic. Then 1 is isomorphic 1o a simplicial complce obtained from K by a finite scquence
of edge collapses and cdge splils.
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Figure 8: An Edge swap is equivalent to an edge sphit followed by an edge collapse.

To facilitate the proof of the theorem. we review ol sone basic facts about simplicial complexes
(see [10]). Recall that a simplicial surfoce K is a finite simplicial complex whose topological
realization (| is homeowmorphic to a compact 2-dimensional manifold. possibly with boundary. If
M is a compact topological surface. a triangulation of M is a simplicial surface ', together with
a homeomorphism from |[A'| to M.

A subdivision of K. written K’ a . is a simplicial complex A7, together with a homeomorphism.
oK'} — |K]. which is affine linear on |a] for each simplex o € K. Thus. the vertices of A can
be identified with points of | '] and A induces a triangulation of each each 2-simplex of |A.

If K and L are two simplicial surfaces. a simplicial map. o : K — L is a map from the set of
vertices of A’ to the set of vertices of K. such that if @ = {rg. oo . ook} is a h-simplex of A then
olo) = {olry).olry).. ... o(rg)} is contained in a simplex of L. A simplicial map o : &' — L is

called a simplicial isomorphism if it is a bijection and o™ is a simplicial map.

A simplicial map o extends to a piecewise lincar map o] < {R) — {L] by the formula
lof(z biv;) = Z bo(r, ).
1 i

where v; are the vertices? of K aud b, are the barveentric coordinates of a point in JAf. If o is a
simplicial isomorphism then (o is a piccewise linear homeomorphism.

We need the following well kuown theorem from piccewise linear topology [9. Theorem 5. page
G4

Theorem 3 If N and L arc two simplicial surfaces with homcomorphic topological rcalizations
then there are subdivisions N' o KN and L' a L and a simplicial isomorphism o @ K — L.

Our proof of Theorem 2 relies on the observation that the operation of performing an edge
collapse can be undone by a sequence of edge splits and edge collapses.

‘As s standard. we abuse notation slightlv and identite vertices, gsimplices, and their images in the topological
realization of the complex. That i~. ¢ = {r} = |¢].
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Figure 9: An edge collapse ((«) = (#)) can be reversed by a sequence of edge splits ((b) = (¢))
followed by a sequence of edge collapses ((¢) = (d)).

Lemma 3 Supposc that the simplicial surface L is obtained from the simplicial surface K by an
cdge collapse. Then K is isomorphic lo a simplicial surface obtained from L by a scquenee of edge
splits followed by a scquonee of cdge collapses.

Proof. Suppose that L is obtained from & by collapsing the edge ¢ = {s. &'} which is common
to the two triangles T = {¢.s. 5"} and 17 = {s. 5.1}, Suppose the link of vertex s’ consists of the set
of vertices {q = qo.q1. q2.q3.. . .. oot = fuprosh Let T, = {q,-1oq;or}oj =100 (n+1). Thus. L
is obtained from A" by identifving &' with s and removing the triangles T and T (see Figure 9 (a)

and (b)).

To recover L' from L. begin by sequentially performing edge splits along the edges {s.q}.
{s.q2}.. ... {s.qn}. Label the new vertices thus obtained s, sa....~,. and let L' denote the final
simplicial surface (sce Figure 9 (¢)).

Let L” denote the simplicial surface obtained by sequentially collapsing the edges {s,.s3}.
{s2.83} o {snor-50 ) and denoting by
difficult to see that. with this labeling.

<" the single vertex 1o which sy .05, collapse. It is not
"= K. (see Figure 9(d)).

A similar argunient appiies in the case where ¢ is a boundary edge and. thus. common to only
one triangle. We leave a formal proof of this case to the reader. Q.E.D.

Lemma 4 If K' is a subdivision of a simplicial surface K. then K can be obtained from K' via a
sequence of cdge collupses.

Proof. Because A is a subdivision of A there is a piecewise linear homeomorphism o 1 [A7] —
[I[. We will obtain A from K7 in three steps:

Step 1. For cach triangle T of K. let Uy denote the set of vertices of A which map under o
to the interior of |T|. (For some triangles. V. may be empty.) Suppose that Ay is the simplicial
surface obtained by identifving the vertices of each non-empty Vyowith a single verrex ey, This
can be done via a sequence of edge collapses along edges joining vertices formed by identifving
vertices of 1. To see that Ny is a subdivision of A, we need only construct a piecewise linear
homeomorphism o' : |} — [K]. Set o1(r) = o(e) il ¢ is not of the form r7 and let o(r7) be the

2]




barvcenter of |T| for each rp. for U # 0. It is not diflicult to verify that oy extends uniquely to a
piecewise linear homeomorphism oy : |hy] — |

Step 2. Let 17 denote the set of vertices of Iy mapping under oy to the interior of an edge of
|K]. Let Iy be the simplicial surface obtained by identifving the vertices of cach non-empty Vg to
a single vertex vg. Notice that I can be obtained from A by a sequence of edge collapses along
edges joining only pairs of vertices contained in a single set of the form Vg. It is not difficult to
show that A’ is a subdivision of A" and that the homeomorphism oy : |3} — || can be chosen
so that 0”(vg) is the barycenter of the edge £ for each non-empty VE.

Step 3. Let I3 be the simplicial complex obtained from A’y by collapsing each cdge joining a
vertex of the form rp to a vertex of . Each vertex of Iy can be identified with either a vertex of
I or with the barveenter of a triangle of A and the piccewise linear map o3 : 1A — '] induces
by this identification is a homeomorphism. Thus. Kz is a subdivision of Iy,

Step 4. Finally. lor cach vertex ol iy of the form . collapse an edge of Ay joining rr fo a
vertex of A. The resulting complex is A Q.I2.D.

Proof.(of Theorem 2) . First note that by Theorem 3. there are subdivisions A< A" and
L' a L. such that i and L' are isomorphic.

By Lemma . i can be obtained from A" and L from [’ Wy finite oo " odee collapses.

But. by Lemma 3. cach edge collapse can be reversed oy a sequence . .9 splits and edge
collapses. Consequently I’ can be obtained from A" by a finite sequence ot edge collapses and edge
splits.

Since there is a finite sequence of edge collapses and edge splits transforming A into K. which
is isomorphic to L. aud there is a finite sequence of edge splits and edge collapses transforming L'
into L. it follows that there is a finite sequence of edge splits and edge collapses transforming A
into a simplicial complex which is isomorphic 1o L. Q.E.D.

A.3 Tests for Legality of an Edge Collapse

The purpose of this appendix is to prove Theorem | which shows that the conditions given in
Section 4.2.1 are necessary and sufficient for an edge collapse 10 be legal.

Let Iy be a simplicial complex whose 1opological realization [N} is a compact surface with
possibly non-empty boundary. Let A7 be the simplicial complex obtained by identifving the vertices
i and j. where {i.j} is a l-simplex of A7 We say that A is obtained from A by an «dge collapse.
Recall that we require that [A”’] be homeomorphic to [A']. When such is the case. we say that the
edge collapse {i.j} — I is legal. Not all edge collapses are legal.

Theorem 4 Lt k' be the simplicial compler obtained from the simplicial compler K by eollapsing
the edge {i.j}. Then [N'| is homcomorphic to [K| if and only if the following conditions are all
satisfied:




L. K has morc than § ccrtices if ncithcr i} nor {} arc boundary vertices, or N has more than
S vertices if cithar {i} or {j} arc boundary ccrtices.

2. If i and j are both boundary certices, {i.j} is a boundary cdge.

3. For all vertices k adjacent to both i and j (i.e. {i. k) € K and {j.k} € k). {i.j.k} is a face
of I\,

We consider first the case where A has fewer than 5 vertices. Observe that no edge collapses
are legal if I' has only 3 vertices. For each simplicial surface has at least 3 vertices {since it must
have at least one 2-simplex). Since this is trne of K’ the complex A" must have at least 4 vertices.

Now suppose that A has exactly | vertices. Then condition (3) is automatically satisfied. If i
admits an edge collapse. then A7 has 3 vertices and ~o |h'] is homeomorphic to 1 disk. But then
K} is also homeomorphic to a disk and so has non-empty houndaryv. Notice. that in this case. v
may have only two possible configurations (either 2 or 3 faces). and conditions (1) and (2) ensure
that only legal edge collapses ave allowed.

We have now shown that counditions (1) (3) are necessary and sufficient in the case where IV
has fewer than 5 vertices. Hencelorth, we shall assume that A has at least 5 vertices.

The proof of Theorem 4 relies on finding a useful characterization of simplicial surfaces. To give
it. we need a few definitions. If s is a simplex of A" then % denotes the interior of the topological
space |s}. Thus. if s is a 2-simplex then s homeomorphic 1o an openr disk. if s is a l-simplex then
S s homeomorphic to an open interval and if s is a O-simplex = |s|. If L is a subset of A" (not

necessarily a subcomplex) then the topological realization of L (also callea the undcrlying topological
space of L) is the topological subspace

L= U SN

el

The standard opcn disk is the set of points DD = {(r.y) | 2+ y? < 1} C R* and the standard
half-open disk is the subset set Dy = {(e.y) € D | y > 0}. The closures of 1) and Dy in R?
are written D and D. respectively. The standard cire'e. written S. is the boundary of D. The
half-circle S, is the intersection 5N D,

By definition. a simplicial surface A is a simplicial complex with the property that. for each
vertex . there is a homeomorphisin hetween |« o K| and cither 1 or Dy sending r to the origin.
If vis an interior vertex then | » o A is homeomorphic to D and if ¢ is a boundary vertex then
| * v: K| is homeomorphic to Dy, For our purposes. a different (but equivalent) characterization is
necded. It is not diflicult to show that [« e A7) is homeomorphic to D if and only if link(e: K} is
homeomorphic to 5 and that it is homeomorphic to D4 if and onlv if |link(r: A)] is homeomorphic
to the half-circle 54, This leads 1o the characterization of simplicial surfaces given in the next
lemma.
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Lemma 5 A simpliciol complcr K of ditnension 2 is a simplicial surfacc if and only if for each
certex v oof Ko the topological spacc [link v K| is homeomaorphic to cither the cirele S (in which
case, v is an interior verter) or a half-circlc S4 (in which case, v 1s a boundary vorter).

Proof of Necessity. We now show that conditions (2) and (3) are necessary counditions for
{i.J} — h 0 be legal.

Consider first condition (2) by showing that the if the edge collapse {i.j} — h is legal and ¢
and j are boundary vertices then {/.;} must be a boundary edge. Suppose that / and j are both
boundary vertices and suppose by way of contradiction that {i.J} is not a boundary edge. Tle
vertices ¢ and J are cach incident to two houndary edges and the boundary edges incident to ¢ and
to j are disjoint {since thev necessarily have distinet endpoints), But then a total of | boundary
edges of A will be incident to i, Since I can only be incident 1o 2 boundary edges we hiave reached
a contradiction.

To prove the necessity of condition (3). Suppose that & is a vertex of A" such that {k./} and
{k.j}arein K but {i.j. L} is uot a simplex of K. There are two cases to consider: (i) & an interior
vertex and (it} & a boundary vertex.

(1) Suppose that k is an interior vertex. Then [link(k: K')] is homeomorphic to a circle. Hence.
there are vertices p,. o = 1.2, . 0. n > 2 such that

link(h: Ny = {{m}-{p2}e. .. fon YU W dpaepsy. o {pami}).

Moreover. {p,.p,4i-F} s a simplex of N for e = 1.2, (where p,or = pr). We may arrange
that / = py and because {7 j b} ix not a simplex of K.y = p, for some | < « < u. The existence
of such a configuration. however, implies that the space K’ is nwot a surface. For the link of & in A7
is the simplicial complex obtained from linkt/d: Ky by identifving the points py and p,. [Uis casily
seen that the topological realization of this is a “figure-87, But this contradicts Lemma 5 with i
replaced by K.

(11) Consider next the case where b ois a boundary vertex. Then there arve vertices p,. a =
L2000 > 1 such tha

linkih: Ky = {{m ) Ap2). ... {pa YU e ool pa_iopad).

Morcover. {py. pagr. b} is a simplex of N fora = 1200000 = 1 and {k.py} and {k.p,} are both
boundary edges. In this case. [link(h: W) is homeomorphic to the half-circle.  Again link(A: A7)
is obtained from link(A: &) by identifving ¢ and j and again Lemma 5 applies. Thus jlink(A: A7)
must be homeomorphic to either the cirele or the half-cirele.

If either of ¢ or j i~ p, for | < o < n then the flink(h: K] is easily ween to hiomeomorphic to
neither the circle nor the hall-circle (it is the spaced obtained by identifving an interior point of
the closed unit interval with another point of the jnterval). Hence, we mayv assume that pp = 7 and
po = J. The union of the three edges {i. )} 4 k) and {A.7} then Torms o boundary component of
K. and the effect of the edge collapse {i.j} — h is 1o remove one of the boundary components of
K. llence. although it may happen that A7 is a simplicial surface. the twe topological spaces ||
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and [A”’| cannot be homeomorphic since (if they are both surfaces) their boundaries have different
numbers of boundary components,

Proof of Sufficiency. Now suppose that the number of vertices of I is at least 5 and that
conditions (2) and (:3) are satisfied. We want to show that the spaces |\'| and || are homeomor-
phic.

Observe that I and A7 agree outside of simplicial neighborhoods of {i. j} and /.. More precisely.
if we set
N =wi: NUxj: N oand N =« K’

and

('=LnN=Ln\N. (1)

then
L:=h-=N=~R/h"-\N".

The topological space [L] cau thus be viewed in two wavs:

¢ as the space obtaiued by removing the open set |« U «j| from [ 4]

e or as the space obtained by removing the open set | = A from [h7].

This construction can he reversed:
[N =1LlulN]and [Kn|N] = |

and
PN = LU N and [N 0[N =107

(i.e. || is obtained by attaching | N| 1o [L] along the set [} and [A7] is obtained attaching |.V|
1o |L| along |(]).

Thus. |K'| and |K'] are homeomorphic il and only if there is a homeomorphism between |.V|
and LN'] which is the identity on [l We show that this is in fact the case. It is best 1o consider

separately the three cases: (i) ¢ and j both interior vertices. (h) exactly one of 7 and j are interior
vertices and (¢) both ¢/ aud j are boundary vertices.

Case (a). Suppose that 7 and j are hoth interior vertices. I'hen there are exactly 1wo vertices
po and go such that the simplices {j. i po} and {i.joqa} arein Ko Because A is a simplicial surface.
the links of 7 and Jj are circles. ilence. there are vertices

Poe Ple eeee ot = qoand queoqre oo Lqn = g .

such that
{Jopaep s isin KNfora=0010..... m - |

and

{icqgneqpr b isin N forb=10.1..... n—1.




Pm = qo

q1

qo

Figure 10: The sets .V in the cases where: (a) @ and j are both interior vertices. (b / is a boundary
vertex and j is an interior vertex. and (¢) ¢ and j are both boundary vertices.

Thus.
=1
eji K= i jopall U U W s e JHU I S g0}
a={
and
n—=1
[« K] = Wi jogo U [ i anegnan U Hie e po}]
h=0
We claim that the vertices
PO« Pre.s P=1-90-Y1.+ ... Un—1
are distinct. To see this note first that p,. a = 0.1..... m are distinct because [link(j: A')| is a
circle, By the same reasoning. ¢,. 0 = 0.1..... n oare distinet. Now il p, = ¢ for some 0 <« < m

and 0 < b < n. then condition (3) implies that {i.j.p,} is in K. Heneeo cither (a.b) = (m.0) or
{a.b) = (0.n).

Observe also that m + # > 2. For suppose not theu {i.py.qu} and {j. po.qo} are in A" from
which it is not diflicolt to show that A" has oulv | vertices and is a tetrahedron.

Thus.
=1 n~—1
N = U lopd o Ul
n=u h=0

is homeomorphic to D and |('] (the houudary of [ V]) is homeomorphic to 5. It is now easy to
construct a homeomorphism hetween [ V] and | V'] whicliis the identity on {€'} from which it follows
that |K’| and |K”| are homeomorphic.

Case (b). Suppose that 7 is a boundary vertex and j is an interior vertex. Then there are
exactly two vertices ;oy and gy such that {j. 7. po} and {i. j.qu} are in K. Because K is a simplicial
surface. the link of 7/ is a half-cirele and the link of j is a circle. Henee, there are vertices

Foe Pie oeveotr =y and poopre oo p = que and qoogy. oo o

such that




{JopoPrsr} € N forb=0.1..... m— 1
and
{i.qccqegr1} € N fore=0.1..... n—1.
Consequently.
m=1
i il = |J Hipeeposr U i J g0} U {5, po}]
h=0
and
i=1 n—1
l*i’: 1\| = U |{1~ Py "u+l}| U |{i'j’1)0}| U |{'.]' (/0}| U U l{i'(lc’(IC-H}l
n=0 >=0
We claim th_at the vertices
oo oo PieiePo----- Po—=1+G0« ... Um~—-1

are distinct. The reasoning is the same as that used in case (a): we leave it to the reader to fill in
the details. This implies that

i—1 m=1 n—1
l‘\’l = U ,{‘ "n-"u+lHU U t{j-l”)~/”)+l}lu U '{j~’/cv(/c+l},
n=0 h=0 c=0

is homeomorphic to the closed half-disk D, and |C'| to the half-circle 54. The construction of a
homeomorphism between |.V| and |.¥'| which is the identity on |C'| and which sends  to & is then
routine. Thus. in this case. too. the spaces |A'| and |A”'| are homeomorphic.

Case (c) Reasoning similar to that of cases (a) and (b) shows that |.V| is homeomorphic to the
half-disk Dy and |C'| is homeomorphic 1o the half-circle S4. and that there is a liomeomorphism
from |.V| to |.V'| which is the identity on {('} and sends i to h. Hence. |} and | N'| are homeomorphic.
Details are left to the reader.
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(a) Object to be sampled (b) Sampled points X (n = 4102)
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(e) Optimization for fixed Ko (x = 1072) (f) Optimization with k = 10~

Figure 11: Surface reconstruction from simulated multi-view range data.
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(b) Optimization with & = 10~

(a) Optimization with x = 10~3

(¢) Final optimization with x = 10~8

(f) Smooth shading after segmentation

(e) Surface segmentation (11 components)

Figure 12: Surface reconstruction (continued).




(a) Points from laser range finder (n = 12, 745)
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(¢) Output of phase one
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(e) Output of phase two (optimized mesh)

(f) Output of phase two (optimized mesh)

Figure 13: Surface reconstruction from actual range data.
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(b) Sampled point set .\ (n = 6752).

(¢) Simplified mesh (crep = 1077)

(d) Simplified mesh (crep = 1074)

Figure 14: Mesh simplification example.




