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SUMMARY

The response of a thin rectangular panel to supersonic flow over its upper surface is
investigated. The panel is fabricated of an isotropic material and has a constant thickness. The
panel is fixed along one side such that the flow passes over its freely supported leading and
trailing edges parallel to the fixed edge. A Rayleigh-Ritz method is applied to determine the in-
plane and transverse response of the panel. The panel deflections either decay to a zero
equilibrium or grow to a limited amplitude oscillation once the transients have decayed depending
on the panel and flow parameters. At some combination of panel and flow parameters, the panel
will begin to oscillate harmonically about a buckled state. Further increasing the flow conditions
will cause the panel to either oscillate periodically about a buckled state or nonperiodically. The
steady state response is dependent on the flow conditions and the initial deflection and velocity
profiles of the panel. The flow Mach number and panel length-to-width ratios were varied. The
cantilevered panel response is compared to previous research. A simply supported panel is briefly
discussed and its response is also compared to previous work.




SECTION I

Introduction

This effort extends the research of Weiliang and Dowell, Reference 1, in which the
response of a cantilevered panel was studied subject to supersonic flow over its upper surface.
Weiliang and Dowell used Rayleigh-Ritz assumed modes to approximate the in-plane and
transverse displacements. They performed a modal convergence study on the transverse
displacements for several length-to-width ratio panels ranging from 0.25 to 10. A modal
convergence study is included here on the in-plane and transverse displacements for two length-
to-width ratio panels, 1 and 2.

Cantilevered panels are studied because their response can be used to estimate the response
of the side of an aircraft inlet duct or the side of a flexible radome. With little modification, this
analysis could estimate the response of low aspect ratio wings immersed in a supersonic flow.

Section II of this document discusses the analytical procedure used in determining the
response of this thin, isotropic panel. The equations of motion stated in this Section were derived
in Reference 2 for a panel with unspecified boundary conditions subject to multiple loading
conditions. The modal functions used in the approximation of the displacements are stated as
well. The procedure used to solve the resulting initial condition problem is discussed at the end
of the Section.

The results of the analytical analyses performed in this effort are presented in Section III.
The results include the modal convergence study and the response of the panel to various flow
conditions. The response of the panel is shown using time histories, power spectral density,
modified Poincaré, phase plane, and average time history plots. The flutter mode shape and
modal contribution plots are shown also.

Finally, Section IV compares the current results to those in previous research studies. This
comparison includes a panel with all edges simply supported subject to the above flow
conditions. This panel is investigated to show that the technique is applicable to panels with
other boundary conditions.




SECTION I

Analytical Procedure

The equations describing the motion of a thin panel subject to supersonic flow over the
upper surface were derived in Reference 2. These equations were derived assuming the
following: (1) the panel material is isotropic, (2) the panel deflections do not exceed the stress-
strain proportional limits, (3) the stresses through the thickness are neglected because the panel
thickness is much smaller than its length or width, (4) the panel is symmetric about its midplane,
(5) the panel slope never exceeds about 10", and (6) the in-plane inertial terms are neglected
because the in-plane displacements are small compared to the transverse displacements.

Nonlinear strain-displacement and linear stress-strain relations were used to determine the
total strain energy in the panel. Rayleigh-Ritz approximate modes were introduced to define the
nature of the panel deflection in each coordinate direction. The modal functions were not
initially further specified so that the equations would apply to any rectangular panel that satisfied
the previous assumptions. The energy expressions were nondimensionalized and substituted into
a nondimensional form of Lagrange’s equation from which the equations of motion were defined.

The nonconservative forces acting on the panel are due to the supersonic flow over the
upper surface of the panel. A first order expansion in reduced frequency of the exact two
dimensional, unsteady, linearized, potential flow equation predicts the unsteady aerodynamic
forces on the panel. This theory is applicable over the Mach number range 1.2<M_<5.0 and
for low reduced frequencies. At high Mach number, this expression coincides with piston theory.

Considering these assumptions, the applicable equations of motion from Reference 2 are
restated here.

u_Equation
The nondimensional modal equation describing the deflections in the x direction is
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The nondimensional modal equation describing the deflections in the y direction is
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w_Equation
The nondimensional modal equation describing the transverse deflections is
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where the indices on a range between one and the total number of in-plane modes in the x
direction, on  between one and the total number of in-plane modes in the y direction, on ¢

between one and the total number of transverse modes in the x direction, and on § between one
and the total number of transverse modes in the y direction.

Equations (1)-(3) are applicable to any panel that meets the assumptions stated at the
beginning of this section. Each deflection is approximated using the product of a time varying
weighting function and two modal functions.

u(x,y,7) = a,(7) &,(x) B,() where 1<i<NXU and 1<jsNYU  (43)
v(x,y,1) = by (1) a,(x) B,(y) where 1 <k<NXV and 1<IsNYV  (4b)
w(x,y,t) = ¢, (v) (%) ¥,(¥) where 1 <m<NXW and 1<a<NYW (40)

The modal functions satisfy the panel boundary conditions only and are called Rayleigh-Ritz
modal functions. The convention of summing over repeated indices is used.

The Rayleigh-Ritz modal functions must be defined for the specific panel under
investigation. In the present case, the panel is fixed along the y = 0 axis and free on all other
sides (Figure 1). One of the modal functions used to represent each deflection approximates the
deflection of a beam that is fixed at one end and free at the other. The other modal function
approximates the deflection of a beam that is free at both ends. The modal functions that define
the in-plane deflections are

&,(x) = cos(inx) (3
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Figure |  Side and top views of panel under investigation.
B,(y) = sin[(j-0.50)ny] (6)
and the modal functions that define the transverse deflection are
2 fori=1
b,(x) = 2(1-2x) fori=2 (7

V2sin[(i-1.50)nx + 0.75 x| + € (LI ()i 2o (-LORUD)  fori>2

IVI(;) = ﬁsin[(j -0.50)xy - 0.25.“] + e (-050)my _ (-1)/ e U-030x(l-y) (~1)/e~ti-030)= (8)

The first two ¢ modes represent the rigid translation and rotation modes of a free-free beam,
respectively. Expressions (5)-(8) are the same modal functions that were employed in the
nonlinear panel flutter investigation in Reference 1 and are derived in References 3 and 4.

The solutions to Equations (1)-(3) are three time dependent functions that describe the
motion of a cantilevered panel as prescribed by Equations (5)-(8). The closed-form analytical
solutions of these equations, if they exist, are not determined here. However, these equations are
solved numerically. Equations (5)-(8) are substituted into Equations (1)-(3) and the spatial
integrations are performed using an extended Simpson’s rule (Reference 5):

XN

ff(x)dx = h[%fl"'%fz*'%‘f;i-—;-f‘-b...+_§.fN_2+_§_fN_l+_§fN +O[ 1 ) (9)

N*

1

Equation (3) is rewritten in state-space form once the spatial integrations are performed and the
following procedure is used to solve the remaining initial condition problem.

1) ¢(x=0) and é(‘t-‘-O) are assumed.




2) a and b are determined by solving Equations (1) and (2) simultaneously.
3) c(r+Art) is determined by integrating the state-space form of Equation (3).
4) Return to step 2 until a steady state response is reached.

The initial conditions used throughout all the analyses are

_ c,, = 0.001/4
c(t=0) =¢ _
Cpa = 0000 forallmandnexceptm=n=1 (10)

c(1=0) = 0

unless otherwise specified and the integration in step 3 is performed using a Kutta-Simpson one-
third rule as outlined in Reference 6.




SECTION Il

Numerical Results

As mentioned in the last section, Equations (1)-(3) were solved numerically. A computer
program was written and run on a CONVEX mainframe and SUN Iris workstation. The program
was vector optimized on both machines for fast operation. It was written such that the spatial
integrations were performed once for the specified number of in-plane and transverse modal
functions, or more specifically structural modes, and written to a file. This operation was
performed so that the spatial integrations could be read instead of recomputed each time the flow
conditions were changed. Therefore, the code ran faster for each new flow case. An interactive
plotting routine was incorporated to provide viewing and documenting results.

This section documents the resuits of a numerical study of a cantilevered panel. Before
examining the flutter response of the panel, the number of structural modes required to predict
accurate results within the given assumptions needs to be determined. A detailed investigation
of the panel response versus number of modes and flow conditions follows. Two panel length-to-
width ratios (a/b) and three freestream Mach numbers are examined. The initial conditions are
varied to determine their effect on the steady state response of the panel.

The following parameters are used in all cases unless otherwise stated: a =1m, h =0.01 m,
v =0.33, p=0.10, E = 7.10x10'° N/m?, and « = 2.33x10?/°C. The data on the right side of each
figure define the specific panel parameters and flow conditions for which the curves were
generated. Throughout this effort, the number of modal functions used in the x direction to
approximate u is the same number used in approximating v (NXU=NXYV). Similarly, the number
of modal functions used in the y direction to approximate both in-plane displacements is the same
(NYU=NYV). The responses shown in the figures reflect the panel response at location
x=0.75a and y = b.

Modal Convergence

The convergence study was iterative in nature. The number of transverse modes was varied
using one in-plane mode in each direction. Then the number of in-plane modes was varied using
the converged transverse results. Finally, the number of transverse modes was varied again to
confirm the previous transverse results but with the converged in-plane results. The results of
this study follow.

alb=1

Figure 2 compares the response of a panel when different numbers of transverse modes in
the x direction and NYW=2 are used. Note that the difference between the NXW=6 and the
NXW=8 curves is smaller than the difference between the NXW=4 and NXW=6 curves. If one
wanted the least number of modes that gives the closest results to that of an analysis using a
large number of modes, one would choose NXW=6 to analyze a/b = 1 panels. (The computation
time is minimized when the fewest number of modes is incorporated.)
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Figure 2 Transverse mode number variation in x direction (a/b = 1).

Figure 3 is a plot comparing the panel response to different NYW for the same in-plane
modal combination as in Figure 2 and NXW=6. Note that the NYW=2 curve has the same basic
character and is closest to the NYW=3 curve. Therefore, NYW=2 was chosen for the subsequent
analyses of a/b = 1 panels.

Figure 4 is a plot comparing the panel response to different numbers of in-plane modes
used to define the deflection in the x direction. In this figure NYU=NYV=1 was used. The
transverse displacement amplitude increases as the in-plane modal number increases for a given
nondimensional dynamic pressure. The NXU=NXV=13 through 16 curves are much closer to
each other than any of the other curves. NXU=NXV=14 was chosen for the subsequent analyses.

The inverse number of in-plane modes in the x direction is plotted against the maximum
nondimensional steady state transverse displacement normalized using the NXU=NXV=16 value
for A=300 in Figure 5. The normalized displacement when an infinite number of in-plane modal
functions in the x direction are included in the analysis can be extrapolated from this figure,
approximately 1.05. It further shows that the normalized NXU=NXV=14 result is within 5% of
using NXU=NXV=oo,

Finally, a plot comparing the a/b = 1 panel response to different numbers of in-plane modes
used in the y direction is shown in Figure 6. The transverse modal combination used here was
NXW/NYW=6/2. Note that the two and three mode curves are almost identical and that the one
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mode curve is slightly different from the other two curves at higher nondimensional dynamic
pressures. One could conclude from this figure that any one of these modal number options
could be used. Two in-plane modes in the y direction were selected because it was determined
that the increase in computation time over the one in-plane mode was minimal compared to the
possible increase in displacement detail.

Figure 7 shows the maximum nondimensional steady state transverse response versus the
nondimensional dynamic pressure divided by the compressibility factor, B, for three Mach
numbers. Note that all three curves are coincident. Therefore, this figure shows that the steady
state scaled response of an a/b = 1 cantilevered panel with supersonic flow over its upper surface
is essentially Mach number independent.

alb=2

Figure 8 compares the response of an a/b = 2 panel to different NXW when NYW=2. The
NXW=4 case was not included because it failed to produce a response curve like the ones in
Figure 8 and its oscillation frequency was much higher than that associated with the other curves.
The number of transverse modes in the x direction was selected to be 8 because the difference
between the NXW=8 and NXW=10 curves was approximately one third of the difference between
the NXW=6 and NXW=8 curves for large nondimensional dynamic pressures.

Figure 9 shows a comparison between different NXU=NXV curves. There is a small
increase in nondimensional transverse displacement as the number of modes increases for a
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specific nondimensional dynamic pressure. The number of in-plane modes in the x direction *o
be used in subsequent analyses was chosen to be 16.

The maximum nondimensional transverse displacement plotted against nondimensional
dynamic pressure divided by the compressibility factor is shown in Figure 10 for three Mach
numbers. Note that the scaled a/b = 2 panel response is essentially independent of Mach number
as well since the curves are coincident.

Figure 11 compares the converged maximum nondimensional transverse response of the
a/b=1 and 2 panels. The nondimensional dynamic pressure at which the steady state response
is no longer zero is the nondimensional flutter dynamic pressure, A, or the condition at which
the panel begins to flutter. Note that the a/b = 2 panel has a higher A; than the a/b = | panel.
Also note that the rate at which the response increases with increasing A for the a/b = 2 panel
is much slower than the a/b = 1 panel.

The nondimensional time step used throughout this study was 0.005. Figure 12 is a plot
comparing the maximum nondimensional transverse displacement for three different time steps
at three different nondimensional dynamic pressures for the a/b = 1 panel. The curves shown in
this figure are nearly horizontal. The variation in displacement from one end of each curve to
the other is less than 1 percent of the average displacement along each curve.
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Figure 11

Figure 12 Maximum nondimensional transverse displacement variation with time step (a/b = 1).
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The transverse oscillation frequency varies as the nondimensional dynamic pressure and
transverse displacement increase. Figure 13 shows the variation in frequency with nondimen-
sional dynamic pressure along the converged a/b = 1 panel curve shown in Figure 11. Note that
the slope of this curve decreases as the dynamic pressure increases.

Structural Response
The structural response of the panel was monitored by examining the time history, power

spectral density (PSD), Poincaré, phase plane, the oscillation center, and modal contribution plots
at location x = 0.75a and y = b and the flutter mode shape of the entire panel. When the flow
conditions over the panel are lower than that required for flutter onset, the initial applied
transverse deformations decay to zero as shown in Figure 14. The panel reaches a constant
amplitude steady state oscillation when the flutter onset conditions have been exceeded and once
the transients have decayed. Figures 15-2]1 show an examplie of the panel oscillating at
approximately 1.27 times the flutter onset conditions. They include the in-plane and transverse
time histories, the three dimensional flutter mode shape, the PSD, the modified Poincaré, the
phase plane, the average transverse time history peak, and the transverse chordwise and spanwise
modal contribution plots respectively.

Close examination of the in-plane and transverse displacements in Figures 15a-c reveals
that as the panel deflects in both the positive and negative z directions, the in-plane displacement
amplitudes increase in the negative x and y directions. Thus, the maximum transverse
displacements, both positive and negative, correspond to the maximum negative in-plane
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displacements and the in-plane displacements oscillate at twice the transverse oscillation
frequency. Note that the in-plane displacement in the x direction oscillates such that the
displacement is never positive once the steady state is reached. The point at which the in-plane
x displacement is at its smallest amplitude coincides with the point at which the transverse
displacement is at its smallest amplitude. Note in Figure 15b that the in-plane displacement in
the y direction has both positive and negative values. The in-plane y displacement is positive
when the transverse displacement is at its smallest amplitude. Therefore, the panel is stretching
in the y direction as it oscillates. Further note that the transverse displacement in Figure 15¢
oscillates about z = 0 (Figure 20 confirms this visual inspection). The plot in Figure 15d displays
the transverse displacement for the same analysis parameters in Figure 15c except the panel is
restricted from moving in the x and y directions. Here, the transverse displacement is smaller
and the transverse oscillation frequency is slightly lower: 15.4 Hz for the restricted case as
compared to 15.7 Hz for the unrestricted case (see Figure 17).

Figure 16 shows the deflected panel at one of the later maximum transverse peaks in Figure
I5c. The entire outboard edge is deflected with the trailing edge deflected more than any other
point. The slope of the outboard edge is nearly constant.

The power spectral density plot derived from the response of the outboard three-quarter
chord point is shown in Figure 17. This figure shows that the panel is oscillating at essentially
one frequency for the given flow conditions. The first ten nondimensional transverse oscillation
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Figure 16 Panel flutter mode shipe when A=120 (a/b = 1).
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frequencies whose normalized amplitude is greater than 0.05 are printed next to their peaks in
the PSD plot. The dimensional frequency of the largest peak is printed in the plot enclosed in
parentheses and is calculated using the nominal dimensions and parameters given previously for
this cxample. Note in Figure 17 the nondimensional frequency is 1.013 and the dimensional
frequency is 15.731 Hz.

A modified Poincaré plot of the transverse response at (0.75,1.00) is given in Figure 18.
Each point in this figure represents a moment in the oscillation of the panel when the transverse
velocity at (0.75,1.00) is zero and the transverse displacement amplitude at the same location is
at its local maximum positive value. This figure indicates that the panel is oscillating at a single
frequency and constant amplitude since the points in the modified Poincaré plot lie on a single,
straight, horizontal line once the transients have decayed.

The phase plane plot, Figure 19, shows the transverse displacement versus the transverse
velocity as time increases. This figure displays the panel settling into a sinusoidal oscillation
about z =0 because the curve formed by the displacement/velocity pairs is an ellipse that is
centered on the origin.

Figure 20 shows the time history of the average of consecutive transverse peaks. The curve
in this figure describes the point about which the panel is oscillating. This figure reaffirms that
the panel is oscillating about z = 0.
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Figure 18 Modified Poincaré plot based on location (0.75,1.00) where A=120 (a/b = 1).
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Figures 21a and b show the contributions of the ¢, and 'EU transverse modes, respectively,
to the flutter mode shown in Figure 16. Figure 21a indicates that the first two transverse modes
in the x direction contribute much more to the flutter mode shape than the latter four modes, but
recall from Figure 2 that all six modes are required to form an accurate solution. The plot in
Figure 21b indicates that the first transverse mode in the y direction contributes more than ten
times that of the second mode to form the flutter mode.

The converged a/b = 1 curve in Figure 11 stopped at A=400 because the response for higher
nondimensional dynamic pressures becomes more nonlinear. As the dynamic pressure increases
above A=400, the response transitions from oscillating about some point other than zero to
beating and then to nonperiodic. Figures 22-28, 29-34, and 35-40 show examples of the panel
response when A=500, 640 (beating), and 700 (nonperiodic) respectively.

Figures 22-28 display the panel response when it oscillates about some point other than
zero. Figures 22a-c show the u, v, and W displacements as time increases. Note that the in-
plane displacements are beating and the transverse displacement is oscillating sinusoidally. The
smaller negative peaks in Figure 22a correspond to the maximum positive transverse
displacements and the larger negative peaks correspond to the maximum negative transverse
displacements. This figure indicates that the in-plane displacement of the outboard three-quarter
chord point does not move in the positive x direction under these flow conditions. Figure 22b
shows the panel is oscillating such that its outboard edge has positive and negative displacement

1.20

NXU/NYU = 14/2

NXV/NYV = 14/2

NXW/NYW = 6/2

a=1.00

1.00 4 b=1.00

h=0.0100

CL-F-F-F

T q=120.0

dt = 0.005000

0.80 A Nx=0.

Ny =0.

4 DELTA T =0.00

DELTAP =0.00

E=0.710E+11

nu=033

mu=0.10

b alpha = 0.233E-04

M=2.00

0.40 Nonlinear Analysis
i u and v included

) Asrodynamics included

No Temp Diff

felitl

020 -

0.00 S ———— T Lo —

T T v T M.
0.00 1.00 2.00 3.00 4.00 5.00 6.00 7.00 8.00 900 1000 11.00 1200
Transverse x Mode Number, |

Figure 21a Chordwise transverse modal contribution plot where A=120 (a/b = 1).

22




120

W
o0
3
g " ; : ; ; g 8
1 \ H ' 1 bra
_M : m _" w j
= [ [ [ S N I 0
s | A A m g 2
; ! _ R
> yoy | BT m Big 5
g 3 8 & mn.w ...... m“ ..... wmm ..... m 2 .M.M;“.. ........ tg S
i JEHR Mwm N |EBEssfigil.xis Higl "
mmmmm*m.aammmmmmmmV § g 35512 g 3558 i3 S
reolUw9 Yy cTvaVNERE~- | Q@ .m ........... ; S —— | =
giiiigrizsudiieBifiis 5 | | M g
= g m m m z &
e m m m BB
fwm e T ..“ ----------- s." .......... ._" ........... - o
ER: L g q
- R | |
g | dreeeenenes $eeemmomoeeed grommmeenee - B
m 38 | m w %
- m w m M £
& g8 e e I foreeoeans g g
2 g
2 I = [ -
g T M 2
" ; ' 3
: ." ' [
T T LA T ! ' m .m w _» .ﬂ s m
s ¢ 8 3 § § 4 § g § £
e .SD Wn 'Jueweoeidsi] X SUBld-Uj RUOISUSUAPUON h




b=1.00
m}
ot = 0.005000

Uy S
h

[ Y

E =0.710E+11

DELTA T = 0.00
DELTA P = 0.00

Ny = 0.

0.008

B e T Y S

 (0.750,1.000)

No Temp Dift

Plot (x,y) =

—
60.

i
*
»
'
'
.
’
1]
]
»
.
T

20.

WA ‘WeweoRidsi) A 6UB| -l [BUOISUSUHDUON

B R etttk o T i g g gy QS S

Figure 22b In-plane time history in the y direction of point (0.75,1.00) where A=500 (a/b = 1).

L S g gy Sy S Y SRR S

b=100--;
h=0.0100
CLFF-F !
q=5000 !
dt = 0.005000

‘Nx=0."""

[ Lt LD Sy

]
‘
il
]

=0
DELTA T=0.00
E=0.710E+11

P et~ A RO SR

DELTA P =0.00

Al

|

P

=023

mu=0.10!

alpm-oz:aaem

P

i

'1

]
.
q

i

|

At

%I

——

3.0

L

e
-

‘WfW}T

ey peev—

iy

u and v inciuded

No Temp Oift

N
60.

T
40.

20.

L - e g gy

0

WM JUBWe0BIdSI) GSIGASURIL [BUOISUGLHPUON

|
0

-3.0

Figure 22c Transverse time history of location (0.75,1.00) where A=500 (a/b = 1).

24




values in the y direction. The positive displacement in the y direction of this location indicates
that the panel is expanding at these conditions also. Figure 22c shows the nondimensional
transverse displacement in time. A visual inspection of this figure shows that the point on the
panel being investigated is oscillating about some point other than zero. This phenomenon was
mentioned in Reference 7, Figure 19, where the author states there is a response that has
"different peak amplitudes.” (Reference 7 documents the postflutter response of a panel that is
simply supported on all four sides.)

A three-dimensional plot of the panel at one of the steady state peaks in Figure 22c is given
in Figure 23. Note in this figure that the outboard edge of the panel is deflected more than any
other constant span slice through the panel and the aftermost point on the outboard edge is
deflected more than any other point on the panel. The slope along the outboard edge increases
between approximately a/3 and 2a/3 such that the slope over the leading third is one constant and
that over the trailing third is a greater constant,

Figure 24 contains the power spectral density plot that was created using the nondimen-
sional transverse response at location (0.75,1.00). Note that the response is predominantly single
mode driven with three higher harmonic modes beginning to appear. The predominant oscillation
frequency, 18.6 Hz, is lower than the oscillation frequency when A=400.

The modified Poincaré and phase plane plots, Figures 25 and 26, show that the panel initial
deformations decay to a periodic oscillation in time when subject to these flow conditions. Note

Figure 23 Panel flutter mode shape when A=500 (a/b = 1).

25




120

8
$98 2§ hil 8 |
L3 55,8 830 3
2iseiygd,  cifn23syile ¢

S . 8 ¢ >
mmmﬂﬂmwmmmmmmwm.Wamw 5 2
ZoocOQo88Z20 Emm 22> 2 -M
3
i
. g
o m -M
g o
S 3 .
s
g8 3 I
Q
T Ll - Ll LB (-]
g ¢ 8
o o (-]
epriduy pezfeuLIoON

Figure 24 Power spectral density plot based on location (0.75,1.00) where A=500 (a/b = 1).

1.50

WM ‘UBWedRIdsi() 95J6ASURS | [BUOISUBUNPUON

. _ . . W " g
$9y | i ssd § Mm ;|
S : 1 & M ;
228 _.8 m 'odiped w88a . i
spEselygioaratasisliie
W Wﬂi.w&. .w.-TTM_.-M..u m o
W a.“uhﬂnwd.wwmm.:mmm 2> 2 '
........... N TR N S S
......
8 m ; m
........... T E e e e I
........... AR SO S S -
........ AN NS N SO S |
r i W m w
L " : ; "
x* i " m m _"
+ ! + —t 5 c
8 8 8
- o o

Time

Figure 25 Modified Poincaré plot based on location (0.75,1.00) where A=500 (a/b = 1).

26




B SO (S SUNUUUUN 4 SUNNSUUR O . ST bereoooeoo EZOQTI0ELY
i j . : : nu=033
mu=010 |
aipha = 0.233E-04
M=200 !
Nonlinear Analysis ______
uand v included
Asrodynamics included
No Temp Dift
Plot (x.y) = (0.750,1.000)

.................................................................................................

3.0 -1.0 1.0 3.0 5.0

Figure 26 Phase plane plot based on location (0.75,1.00) where A=500 (a/b = 1).

that the points in the Poincaré plot lie on one straight line and phase plane steady state curve is
no longer an ellipse.

The time history of the average of consecutive transverse peaks at location (0.75,1.00) is
shown in Figure 27. It indicates that the panel is oscillating about z = -0.2689.

Figures 28a and b show the contribution of the transverse x and y modes to the flutter mode
shown in Figure 23 based on the transverse response at (0.75,1.00). Figure 28a indicates that the
first three modes contribute more than the last three. Comparing this figure to Figure 21a shows
the second mode contributes less and the third mode contributes more at this nondimensional
dynamic pressure than when A=120. Comparing Figure 21b to Figure 28b shows that the second
mode in the y direction contributes more when A=500 than it did when A=120.

Figures 29a-c exhibit the nondimensional in-plane x and y and transverse displacement time
histories, respectively, of location (0.75,1.00) where A=640. All three time histories display
trends indicative of beating. The evaluation point moves in the negative x direction only and in
both the positive and negative y directions as in the previous cases. A visual inspection of Figure
29c¢ indicates that the panel is not oscillating about z = 0.

The panel is in the shape shown in Figure 30 when it reaches one of the maximum steady
state transverse peaks. In this case, the outboard edge is deflected upwards such that the first
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Figure 30 Panel flutter mode shape when A=640 (a/b = 1).

30% of the outboard chord is at a constant slope and the last 40% is at a greater siope with a
smooth variation between.

Figure 31 displays the PSD plot derived from the transverse response. Note that the panel
oscillation is composed primarily of two frequencies, the higher of which is the third harmonic
of the first.

The modified Poincaré plot of the transverse response of location (0.75,1.00) where A=640
is provided in Figure 32. The loci of points make three straight horizontal lines which means
that there are three points within one oscillation cycle at which the transverse velocity is zero and
the displacement is a maximum with respect to the local time history. Close examination of
Figure 29a shows three local peaks within one cycle.

The plot in Figure 33 is the phase plane plot of the transverse response. The phase plane
curve contains two steady state loops that are due to the secondary peaks within the oscillation
cycle. The average consecutive time history peak plot is not shown for this A case because it
shows an oscillating curve due to the secondary peaks. It is omitted because it does not provide
additional information.

The transverse modal contribution plots are included as Figures 34a and b. As in the
A=500 case, the first three transverse modes in the x direction contribute more to the flutter mode
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shape than do the last three modes, but in this case the second and third modes contribute less
than they did in the A=500 case. Comparing Figures 28b and 34b shows no change in the
transverse y modal contribution.

Figures 35-40 show a nonperiodic panel response where A=700. Figures 35a, b, and ¢
present the u, Vv, and W time histories at location (0.75,1.00). Note that the response in each
figure is nonperiodic. The in-plane displacement in the x direction is still never positive and the
in-plane displacement in the y direction is both positive and negative. Figure 36 shows the shape
of the panel at one of the later transverse time history peaks. The panel shape is similar to that
when A=640 except the deflection is greater. Figure 37 shows the power spectral density plot
based on the transverse response at location (0.75,1.00). It demonstrates that there are many
modes interacting to form the response at A=700. The Poincaré and phase plane plots are
provided in Figures 38 and 39. These figures support the conclusions made based on the last five
figures in that the panel response is nonperiodic. Finally, Figures 40a and b show the transverse
modal contribution for the same transverse peak used to form Figure 36. The second and third
modes in the x direction contribute less and the second mode in the y direction contributes more
than those when A=640.

Initial Condition Variation
The steady state response of nonlinear systems is dependent upon the initial conditions
(ICs) used to initiate the oscillations within the structure. All the previous figures were created
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Figure 39

Phase plane plot based on location (0.75,1.00) where A=700 (a/b = 1).
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using the results of analyses started with the ICs given at the end of Section II, (10). The
following two ICs were investigated to determine their effect on the steady state response. In
all cases, the initial transverse velocity was zero.

¢,; = ~0.001/h 03))
c,, =0002/h (12)

The negative IC, (11), was employed to determine if the buckled transverse response would
oscillate about the same buckled position, about the opposite sign, same magnitude buckied
position, or about some new equilibrium. The A=500 flow condition was investigated with these
ICs. The in-plane responses are not different, but the transverse response indicates that the panel
oscillates about the opposite sign, same magnitude buckled position as shown in Figure 41. In
fact, the transverse response is a mirror image of the response shown in Figure 22c about the
w =0 axis. Since the transverse response only changed its sign, the in-plane responses should
not show any change because the in-plane equations of motion are dependent upon the square
of the transverse generalized coordinate only.

Doubling the ICs, employing IC (12), does not affect the steady state transverse response

other than slightly increasing the transient decay time. The transverse response to the IC outlined
in (12) is shown in Figure 42.
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SECTION IV

Comparison to Previous Research

Several reports were chosen from the vast number of documented panel flutter analyses to
be used to substantiate the analytical and numerical results presented in this effort. Only one
other paper investigates the response of cantilevered panels, Reference 1. The other reports
referenced here investigated panels that are simply supported or clamped on all four sides. The
simply supported panel results using this analytical procedure are included.

Weiliang and Dowell’s paper (Reference 1) was the basis from which this research was
generated. Their analytical procedure is followed here, but the computer program for the present
effort was written so that many different panel boundary conditions could be investigated if the
modal functions were known. The difference between their research and this effort is the modal
convergence study performed here included the in-plane modes whereas their pape: used one
mode in their approximation of both in-plane displacements. The premise of this effort is that
more than one in-plane mode should be incorporated to predict the postflutter response of a
cantilevered panel. Recall that Figures 4, 5, and 6 present the results of the in-plane modal
convergence study of an a/b=1 panel. These figures show that the maximum transverse
displacement of a cantilevered panel is dependent upon the number of in-plane modes
incorporated in the analysis.

A comparison between Weiliang and Dowell’s work and this investigation includes the
following similarities and differences:

1. The NXU=NXV=l curve in Figure 4 appears to be identical to the m=6, n=2 curve
in Figure 6 (Reference 1) showing this work reproduced some of the Weiliang and Dowell
results.

2.  Figure 7a (Reference 1) and Figure 2 both show that including six transverse modes
in the x direction produces a better representation of the a/b = 1 panel displacement than does
four.

3.  Figure 3, like Figures 5 and 6 of Reference 1, shows that one transverse mode in the
spanwise direction is not adequate for predicting the postflutter response and that two modes
should be retained as a minimum.

4. This effort concludes that eight transverse modes in the x direction should be used
for a/b = 2 panels rather than the six stated in Reference 1. Figure 8 shows that the transverse
resuits when incorporating eight modes in the flow direction is closer to the ten modes results
than they are to the six modes resuits.

5. In Figure 8, A; decreases as the number of transverse modes in the x direction
increases is different from Figure 8a of Reference 1, where A; increases with the increasing
number of transverse x modes. (Recall that only one spanwise transverse mode was used in
creating Figure 8a where two were used here.)

6. The general nature of the length-to-width flutter response comparison plot in Figure
11 compares well with the comparison in Figure 9 (Reference 1) although the number of
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incorporated in-plane modes differs.

In-plane modal and time step convergence studies were performed on a simply supported
panel so that comparisons could be made between this effort and previous work. The number
of transverse modes used in each analysis was identical to the number of transverse modes used
in each respective paper. The panel and flow parameters also match those in the compared paper
if that information was provided.

Dowell investigated the nonlinear response of simply supported panels subject to supersonic
flow over the upper surface in Reference 7. He determined the Airy stress function for the
particular panel and flow parameters and then applied Galerkin’s method to obtain the differential
equation of motion that was then solved using a numerical time integration scheme. A first order
expansion in reduced frequency of the exact two dimensional, unsteady, linearized, potential flow
equation was incorporated to predict the quasi-steady aerodynamic loading. The maximum
nondimensional transverse response versus nondimensional dynamic pressure at location
(0.75a,0.50b) for the simply supported panel created using the Rayleigh-Ritz method presented
here is shown in Figure 43. The nondimensional dynamic pressure in this figure is defined as
in Reference 7. The modal functions used to approximate the displacements are

a,(x) = ¢,(x) = sin(inx)

B,(3) = ¥,(3) = sin(jny)

o
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Figure 43 Plot comparing the steady state response of WM = 0.01 and WM = 0.10 panels.
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The number of required in-plane modes determined in the convergence study is stated on the top
right of the figure and the nondimensional time step used in creating the simnly supported panel
response plots was 0.001, one fifth of the time step used in determining the response of the
cantilevered panels. The W/M = 0.01 curve in Figure 43 appears to be identical to the same curve
in Figure 16 of Reference 7. The flutter dynamic pressure predicted for the WM = 0.10 panel is
lower than that predicted in Reference 7 and yet the response for A = 600 appears to be identical
to that shown in Figure 16. Finally, the nondimensional flutter dynamic pressure for the
WM = 0.01 panel in Figure 43 is 510.

The nondimensional dynamic pressure at which the simply supported panel in Reference
8 became unstable was A = 512 (the definition of A in Reference 8 is the same as in Reference
7). Schaeffer and Heard used Galerkin’s method to analyze a square panel whose boundaries
were restricted such that the panel was simply supported in the transverse direction and
unrestrained in-plane. Six modes were used to approximate the transverse displacement in the
flow direction and two modes were used in the span direction. They used Ackeret’s theory to
determine the acrodynamic loads. This theory differs from first order piston theory in that the
time dependence is neglected. The mass ratio used in determining the flutter dynamic pressure
was not stated in this report. However, the predicted flutter dynamic pressure is within
approximately 1 percent of the critical dynamic pressure predicted in Reference 7 and with this
analysis when WM = 0.01. A linear strain-displacement relation was used in this effort, so the
postflutter onset response was not investigated.

Xue and Mei predicted the postflutter response of a simply supported panel using triangular
and rectangular finite elements (Reference 9). They used the two dimensional, quasi-steady,
aerodynamic theory employed in this effort and in References 1 and 7. The AT/AT,, = 0.0 curve
in Figure 2 of their paper shows a comparison between their two finite element response results
and Dowell’s time domain results (Reference 7) where W/M = 0.10. Recall that the results using
the analytical procedure outlined here for the same conditions are shown in Figure 43. The
WM = 0.10 curve in Figure 43 is closest to the DKT element curve in Figure 2 of Reference 9.
Note that the DKT element predicted the lower flutter dynamic pressure o« well.

Reference 10 also investigated simply supported panels using a nonlinear strain-
displacement model, except in their case, third order piston theory aerodynamics were
incorporated. Bein, et. al., solved the panel governing equation following the same procedure
as outlined in Reference 7. The maximum nondimensional transverse response versus nondim-
ensional dynamic pressure for the fully simply supported panel at location (0.75a,0.50b) is shown
in Figure 44. This figure was created using the parameters stated in Table 1 of Reference 10.
They are restated along the right side of the figure. The nondimensional dynamic pressure in this
figure is defined as in Reference 10. The curve in Figure 44 appears to be identical to the first
order piston theory curve in Figure 7 of Reference 10. Note that the second and third order
piston theory curves in Figure 7 (Reference 10) show that the maximum steady state transverse
response is dependent on the order of the aerodynamic theory under these conditions, M = 10.
This differs from what Dowell stated in Reference 7 where he said the aerodynamic nonlinearity
could be significant when Mh/a ~ O(1) because that ratio is about 0.1 when A=800.
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SECTION V

Conclusions

This effort investigated the postflutter response of a cantilevered panel subject to supersonic
flow over the upper surface. Two length-to-width panels were studied, but the major emphasis
was placed on the response of the square panel. It was shown that as the dynamic pressure was
increased beyond the critical (flutter) dynamic pressure, the panel response shifted from a decay
to z=0, to a simple harmonic oscillation about z = 0, and then to a harmonic oscillation about
some buckled position. Further increasing the dynamic pressure caused the panel to beat about
a buckled position and then to oscillate sporadically. This sporadic oscillation occurs at
approximately seven times the flutter onset conditions and has not been shown before for a panel
without in-plane loads. It was shown also that the panel stretches in the cross-flow direction as
it oscillates for all flow conditions greater than the critical conditions.

Convergence studies were performed on the nondimensional time step used in the time
integration of the equations of motion and the number of in-plane and transverse modes
employed in approximating the displacements. The modal convergence study indicates that the
number of modes required to conduct a converged analysis is dependent on the length-to-width
ratio of the panel. As the length-to-width ratio increases, the number of in-plane and transverse
modes required increases. The square panel analysis used 28 modes to approximate both the x
and y in-plane displacements and 12 modes to approximate the transverse displacement. As a
comparison, the analysis of the panel whose length was twice its width used 32 modes to
approximate the displacements in both the x and y directions and 16 modes to approximate the
transvesse displacement.

The response of the panel was studied by examining the displacement time histories, flutter
mode shape, power spectral density, modified Poincaré, and phase plane plots at several dynamic
pressures greater than the critical dynamic pressure. The primary modes influencing the
postflutter onset response are the rigid body translation and rotation modes with the translation
mode contributing five to ten times more than the rotation mode. The higher frequency structural
modes contribute more as the flow conditions increase beyond the flutter onset conditions as
shown in the figures. One sees the higher frequency contributions in the flutter mode shape
figures where, for example, the free edges of the panel have more siope variations along them
at A = 640 and 700 than when A = 120. Also, the oscillation frequency increases as the flow
conditions increase until the panel oscillates about some point other than z = O after which the
frequencies did not follow a smooth pattern.

The cantilevered panel results in this effort are compared with those in another paper that
investigated the postflutter response of a cantilevered panel, Reference 1. A comparison of the
postflutter response curves showed that the shape of the curves was essentially the same although
the amplitudes differed. The number of transverse modes required to analyze a square panel was
the same, but the number of transverse modes required to analyze a panel whose length is twice
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its width differed. Also, the number of in-plane modes required to approximate the in-plane
displacements were different for both panels only because an in-plane modal convergence study
was performed here and not in Reference 1.

A panel with simple supports on all four sides was examined and compared to previously
published results of the same panel boundary conditions. The analytical procedure followed
throughout this =ffort produced results in excellent agreement with those of several different
researchers that studied the panel using different analytical procedures (Galerkin method with
time accurate and eigenvalue solutions, and finite element with a time accurate solution) and
aerodynamic methods (piston and Ackeret’s theories).
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