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Consider the incompressible Euler equations with vortex sheet initial data. For
this initial value problem, there are a number of outstanding conjectures: (1) This
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vanishing viscosity (in the Navier Stokes equations) provides the correct selection
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Summary of Results

Consider the incompressible Euler equations with vortex sheet initial data. For
this initial value problem, there are a number of outstanding conjectures:

(1) This initial value problem does not have a unique weak or measure-valued
solution.

(2) A selection principle is required to pick out a unique solution.
(3) The limit of vanishing viscosity (in the Navier Stokes equations) provides

the correct selection principle.

(4) Different regularizations, such as adding viscosity or smoothing the initial
vortex sheet, may converge to different limits as the regularization tends
to zero.

These issues are central to understanding the strengths and limitations of using
vortex sheets to model fluids in aerodynamics, for example. Unfortunately, while
there are some heuristic arguments which justify some of these claims, there are no
explicit examples or rigorous proofs which substantiate them.

Given the incomplete status of the theory for the Euler equations with vortex
sheet initial data, one can proceed in two reasonable ways. One can continue to
work directly with the Euler equations, or one can first study a simpler model
problem which is closely related, easier to analyze, and suggests answers to the
fundamental open questions about the Euler equation-.

In research funded by this grant, and done in collaboration with Andrew Majda,
Princeton University, and Yuxi Zheng, Courant Institute and Indiana University,
we considered a closely related model problem from plasma physics, namely, the
one component 1-D Vlasov-Poisson equations (1CVPE) for a collisionless plasma
of electrons in a uniform background of ions. We considered initial data for this
system of equations which consisted of a measure supported over a curve in phase
space, the analogue of vortex sheet initial data, which we call electron sheet initial
data. We show that the 1CVPE with electron sheet initial data has many properties
which are direct analogues of the 2-D vorticity equation with vortex sheet initial
data. Furthermore, since this problem is simpler analytically and easier to solve
numerically, we can make a number of definitive statements about this model prob-
lem pertaining to the unresolved issues (1)-(4) proposed about the Euler equations.
Among these statements are the following ones:

(1#) The initial value problem for the 1CVPE, with electron sheet initial data,
does not have unique solutions. We demonstrate this by explicitly constructing an
uncountable number of weak solutions to the 1CVPE with the same initial electron
sheet.

(2#) Different regularizations of the 1CVPE, with electron sheet initial data,
can converge to different solutions. This result is demonstrated numerically by
using a carefully designed particle code. In particular, we show that different reg-
ularizations of the initial data can lead to different solutions, and the "viscous"



limit (from the Fokker-Planc equation) can be different from the limit obtained by
regularizing the initial data.

We consider our research on the 1CVPE, as a model for vortex sheets, essen-
tially complete. This work will produce at least 2 major publications and one
invited article for a conference proceedings which I will either be the author or
share authorship.

In (1] I detail many of the strong analogies between the Euler equations with vor-
tex sheet initial data and the 1CVPE with electron sheet initial data, and demon-
strate the performax."e of the particle method. This paper is included with this
research summary.

In [2] I discuss the details of the particle method for the one component 1-
D Vlasov-Poisson and Fokker-Planc equations. I present the rapid solver which
I developed to make the particle method efficient, explain the particular way to
discretize electron sheet initial data, demonstrate the performance of the method
on a number of very interesting exact solutions of the 1CVPE, and make a number
of conjectures about the properties of solutions to the 1CVPE.

In [3] we present a detailed justification of statements (1#) and (2#) among other
results, and show how our study of the 1CVPE suggests a strategy for resolving
issues (1)-(4) for the Euler equations with vortex sheet initial data.

In work also funded by this grant, my graduate student, John Hamilton, and I
have already taken the first steps for carrying out the numerical part of a follow-up
project with the Euler equations. I believe that vortex methods are the best way to
carry out this study; these methods are also the ones most like the particle method
used to solve the 1CVPE. Anticipating the need for extremely high resolution cal-
culations with a large number of vortex blobs, we will need a method for rapidly
evaluating the vortex interactions. We have been working on a modification of the
Rokhlin-Greengard fast vortex algorithm to compute solutions of the Euler equa-
tions which are periodic in x and singular like vortex sheets. Our preliminary results
on a Sun workstation show that this is possible. We have also discovered a way
to do vortex sheet calculations using a vortex method with initial blobs which are
not initially uniformly spaced in the circulation variable. This procedure gives the
ability to locate lots of initial vortex blobs in places where we expect a complicated
solution, and fewer vortex blobs where the vortex sheet is not very complicated.
We are currently preparing these details for publicati( X.gccesion For
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preparation.
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On Singular Solutions of the Vlasov-Poisson Equations*

George Majda

Department of Mathematics
Ohio State University
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A vortex sheet is, loosely speaking, a surface in a fluid such that the normal
velocity of the fluid is continuous along the surface but the tangential velocity
of the fluid is discontinuous across the surface. Many theoretical, numerical and
analytical investigations have been done to try to understand the properties of
solutions to the incompressible Euler Equations with non-smooth (vortex sheet)
initial data, see [11, [31, [41, [5], [6]. [S1, [91, [10], [131, [141, [15], [161, [17] and [18] for
example. Despite this research, many fundamental open mathematical problems
about the nature of these solutions still exist. In order to get a handle on some
of these open problems, Andrew Majda proposed that one should study a simpler
problem, namely, the one-component Vlasov Poisson Equations (VPE) from plasma
physics. Hopefully, insight gained by studying this model problem will provide new
insights into the original problems about incompressible fluids. In this paper I will
present this system of equations and some connections between the VPE and the
vorticity equation for a 2-D incompressible fluid with vortex sheet initial data.

The work which I will present constitutes one small part of an on-going collabo-
ration with Andrew Majda and Yuxi Zheng. See [11], [12] and [19] for a complete
description of the results.

In this paper we consider the single component 1-D Vlasov Poisson Equations
(VPE) for a collisionless plasma of electrons in a uniform background of ions. As-
sume that the problem is periodic in x and that the initial electron density is a Dirac
delta function supported over a curve in x - v space (phase space). Let f(x, v, t) de-
note the density of electrons, E(z, t) the electric field, p(x, t) the charge, x = (x, v)
and c a curve in x - v space. In dimensionless variables, the problem is defined by
the system of equations

(1) 2L +t'v -E(x,t)L =-Ofort > 0 andx E [0,1],

(2)-¢.= px~t= l f_,f(x,v,t)dv, E=-O_,,

with the initial condition

(3) f(x,v,0) = g(x,v) 6.,
the periodic boundary conditions

(4) E(0,t) = E(1,t), f(0,v,t) = f(1,v,t),
and the zero-mean electric field condition

(5) f 0
1E(z,t)dx = 0.

*ThiL, paper was presented in an invited lecture at the NATO Advanced Research Workshop
on Vortex Flows and Related Numerical Methods, Grenoblk-St.Pierre de Chartreuse, June 15-19,
1992. It will appear in the conference precedings edited by G.II. Cottet.
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Initial data with the form (3) is called electron sheet initial data, and the
solution of problem (1)-(5) is called an electron sheet, to emphasize the close
connection with vortex sheets which we now explain.

I briefly highlight some of the features which problem (1)-(5) has in common
with the two dimensional vorticity form of the Euler equations with vortex sheet
initial data. The reader should consult [4] or [5] for a precise definition of the latter
problem.

Let V- (v, -E(xt))' denote a "velocity" field, div- - (', " and introduce
the particle trajectory equationsd (X (X V)Tt= vv) =-E(X,t))

Now just make a correspondence between the electron density f and the vorticity for
the 2-D Euler equations. Equation (1) can be interpreted as a transport equation for
f by a divergence free velocity field v since div. (v, -E(x, t))t = 0. Furthermore, f
is constant along the particle trajectory equations. The 2-D vorticity equation has
a similar interpretation with the electron density replaced by the vorticity. Using
this correspondence, it easily follows that the electron density f is the analogue
of the vorticity, and the initial condition (3) is the direct analogue of vortex sheet
initial data.

To demonstrate another analogy, we recall that for an incompressible fluid the
velocity field is recovered from the vorticity field through the Biot-Savart Law.
This law establishes a global relationship between the velocity field and vorticity.
The elliptic equation (2) implies that there is a global relationship between the
electric field and the electron density. This, in turn, establishes a global relationship
between the velocity field for the VPE and the electron density. Other similarities
than the ones presented here are mentioned later in this paper and in the papers
[11], [121 and [19].

We believe that given the close relationship between problem (1)-(5) and the
vorticity form of the Euler Equations with vortex sheet initial data, one will gain
important insights about the open problems for the latter problem by thoroughly
understanding the properties of the solutions of problem (1)-(5). Furthermore,
the electron sheet problem for the VPE has several important advantages over the
corresponding vortex sheet problem, and we list two of them.

(1) One can construct explicit solutions for problem (1)-(5) for a perturbed
uniform electron sheet, the analogue of a perturbed vortex sheet. (We
describe one solution below.) These solutions can form an algebraic singu-
larity at a finite time, just like the predicted behavior of perturbed vortex
sheets. The perturbed vortex sheet problem has no similar txplicit solu-
tions.

(2) For the VPE, the global relationship between the electric field and the
electron density involves an integral with a discontinuous kernel. The Biot-
Savart Law for an incompressible fluid contains a kernel with a stronger
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singularity. Consequently, one believes that a mathematical analysis of
problem (l)-(5) should be easier than the corresponding vortex sheet prob-
lem.

I now present an explicit solution, derived by Dziurzynski [7], corresponding to
the case of a sinusoidally perturbed uniform electron sheet. A uniform electron
sheet is a time-independent, exact weak solution of problem (l)-(5) given by

Z(a) = (x(a), v(a)) = (a, 0) = -c(0) for 0_< a <1,

f(Z(a)) = 6.- (0),

E(x(a)) - 0.

Now consider problem (1)-(5) with initial data corresponding to a sinusoidally
perturbed uniform electron sheet. Let e > 0 denote a parameter and 0 < a < 1.
This initial data is given by

Z(a,0) = (x(a,0), v(a,0)) = (a,esin(2wja)) = c(O)(6) 2CSbf(Z(a,0)) = (1 + (62,j)2 cos 2(27rja)) 6-(0)

The exact weak solution of (1)-(5) with this initial data is

SZ(a, t) = (x(a, t), ,(a, t))

= (a + e sin(27rja) sin t, e sin(27rja) cos t) = c(t)
dcx ct(t)(7) f(Z(a, t))= dZ(c,t) 6b

E(x(a,t)) = esin(2rja) sin t.

Dziurzynski [71 shows that if I2,rjej < 1, then solution (7) is defined for all t > 0. If
127rjef > 1, then there exists a time tV < cc such that solution (7) is defined for the
finite time interval [0, t*] and the charge p(x(a, t*)) forms an algebraic singularity.

This exact solution illustrates another striking similarity between the vortex
sheet problem and the electron sheet problem. The algebraic singularity in the
charge for I27irij > 1 is the analogue of the singularity observed in the vortex sheet
case before rollup, see [9], [10], [13] and [17].

Just as in the vortex sheet problem, several questions are natural to ask including
the following:

(1) Does the analytic formula continue to describe the electron sheet after the
singularity time?

(2) What are the qualitative properties of the solution past the singularity
time?

(3) What are the mathematical properties of the solution past the singularity
time?
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In order to answer these questions and many others, I developed a particle
method to solve (l)-(5) based on the method analyzed by Cottet and Raviart in
[2]. I needed to modify this method to make it efficient and to be able to discretize
singular data like electron sheets. These details are described in [11].

To answer questions (1)-(3), I computed the solution of problem (l)-(5) with
initial data of the form (6) for e = 2.0 and j = 1. The singularity time for the
solution is t* = .079 to 3 decimal places. I computed the solution with a time step
At = .0158, and used enough particles to converge to a solution with 3 decimal
place accuracy both before and after the singularity time.

In Figures la and lb I plotted the electron sheet (Z(a, t)) and the electric field
E(x(ao, t)), respectively, for 0, 3 and 5 time steps. We note that the singularity
time occurs at the fifth time step, so Figures la and lb show graphs of the solution
before and at the time of singularity formation. In Figures 2a and 2b I plotted the
electron sheet and electric field for 6, S and 10 time steps, so these figures show
graphs of the solution past the singularity time. These numerical results indicate
the following:

(i) The analytic formula (7) does not describe the solution past the singularity
time.

(ii) The singularity time is precisely the time when the electron sheet ceases to
be the graph of a single-valued function.

(iii) The electron sheet and electric field become multivalued functions past the
singularity time.

(iv) The electric field loses smoothness past the singularity time.

Again, we point out the analogy between electron sheets governed by the VPE
and vortex sheets. For vortex sheets, the singularity occurs just before the sheet
begins to roll up. The folded, mull'valued electron sheet is the analogue of a rolled-
up vortex sheet. Furthermore, the electron sheet forms a singularity in the charge
just before it begins to fold.

In this short paper I have outlined a number of analogies between the Euler
equations with vortex sheet initial data and the VPE with electron sheet initial
data. These analogies indicate that problem (1)-(5) should be a very useful model
for trying to understand the open questions about vortex sheets. The discussion
presented here is just the starting point for a much more detailed study of problem
(1)-(5). Complete details can be found in the papers [11], [12] and [19].

Acknowledgment. I would like to thank Andrew Majda, Yuxi Zheng and Ed
Overman for many helpful discussions about this work.

My research was initially supported by the National Science Foundation under
grant DMS-$9034S4, and is currently supported by the Air Force Office of Scientific
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Figure Captions

Figure la Electron sheet at 0(solid), 3 (long dashes) and 5 (short dashes) time steps.

Figure lb Electric field at 0 (solid), 3 (long dashes) and 5 (short dashes) time steps.

Figure 2a Electroa sheet at 6 (solid), 8 (long dashes) and 10 (short dashes) time steps.

Figure 2b Electric field at 6 (solid), 8 (long dashes) and 10 (short dashes) time steps.
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