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CHARACTERISTICS OF ION FLOW IN THE QUIET STATE OF THE INNER PLASMA SHEET

V. Angelopoulosl' 2 , C. F. Kennell. 2, F. V. Coronitil, R. Pellat',
H. E. Spence 3 , M. G. Kivelson 2, R. J. Walker2 ,

W. Baumjohann4 , W. C. Feldman 5 . J. T. Gosling5 , C. T. Russell 2

Abstract We use AMPTE/IRM and ISEE 2 data to study the Ensemble-Average Properties of the Quiet IPS
properties of the high beta (/3i > 0.5) plasma sheet, the inner
plasma sheet (IPS). Bursty bulk flows (BBFs) are excised We used plasma moments from the 3D plasma instrument
from the two databases, and the average flow pattern in the and magnetic field data from the fluxgate magnetometer on
non-BBF (quiet) IPS is constructed. At local midnight this AMPTE/IRM from the 1985 magnetotail crossings (QI/23/85
ensemble-average flow is predominantly duskward; closer to - 06/31/85) at 5 s resolution. We also used plasma moments
the flanks it is mostly earthward. The flow pattern agrees from the Los Alamos/MPI Fast Plasma Experiment (FPE) and
qualitatively with calculations based on the Tsyganenko [1987] magnetic field data from the UCLA fluxgate magnetometer
model (T87), where the earthward flow is due to the ensemble- on ISEE 2 from the 1978 and 1979 magnetotail crossings
average cross tail electric field and the duskward flow is (12/26/77 - 06/30/78 and 12/31/78 - 06/06/79). The FPE
the diamagnetic drift due to an inward pressure gradient. plasma data were calculated at 3 s or 12 s resolution depend-
The IPS is on the average in pressure equilibrium with the ing on the orbit. They were block averaged with a 12 s win-
lobes. Because of its large variance the average flow does dow and were merged with magnetic field data of the same
not represent the instantaneous flow field. Case studies also resolution. The ISEE 2 orbit extended our analysis beyond
show that the non-BBF flow is highly irregular and inherently the apogee of IRM (19 RE), out to 22 RE and complemented
unsteady, a reason why earthward convection can avoid a IRM's limited coverage in the post-midnight sector.
pressure balance inconsistency with the lobes. The ensemble We transformed the satellite position in an Aberrated Geo-
distribution of velocities is a fundamental observable of the centric Solar Magnetospheric (AGSM) system using a 4.5'
quiet plasma sheet flow field. aberration angle. We limited our databases to XAGSM < -7

RE, since earthward of that the particle detectors may miss a
Introduction considerable part of the ion distribution, and within IYAGSMI

< 15 RE to avoid magnetopause crossings. Lobe intervals
The average flow velocity in the central plasma sheet is were removed by requiring that the ion energy density E, be

small (-50 kins) due to the predominance of low velocity above noise level (E, > 0.01 ergs/cm'3). In addition, we iden-
flows [Huang and Frank, 1986; Baumjohann et al., 1989]. tified potential remaining magnetopause boundary crossings
However, although the central plasma sheet ion flow is most by searching for times when the ion temperature Ti dropped
often nearly stagnant and with no preferred direction, it is in- below 500 eV, the ion density Ni increased beyond I cm-3
terrupted by high speed (> 400 kin/s) earthward flow bursts and the flow was persistently (>5 min) tailward (>200 kin/s)
[Baumjohann et al., 1989]. The flow bursts are more frequent at distances of IYI > 10 RE. These were removed based on
during geomagnetically distrurbed times (resulting in a pos- the times of the rotation of the field from the magnetospheric
itive correlation ot the average flow velocity with AE) but to the magnetosheath direction. Mantle crossings were also
may take place even during low AE conditions. removed from the region V!Y• 0 SM - S >10 RE and

The plasma and magnetic field variations concurrent with A o

the bursts of flow in the inner central plasma sheet (ICPS) (i.e., ZAGSM > 6 RE based on the same criteria as the potential
where BXy=(BX2+By 2 )flr< 15 nT, or Bz/Bxy > 0.5) were magnetopause crossings.
studied by Angelopoulos et al. [ 1992]. They argued that flow We identified two plasma sheet regimes that display rather
bursts have a time-scale of the order of I min, they correlate consistent field elevations (i.e., the angle between B and the
with dipolarization and heating of the plasma sheet, and are X-Y plane). These are: a high beta region (3i > 0.5) that
embedded in flow enhancement intervals of the order of 10 incorporates the high elevation ICPS and is closest to the
min. termed bursty bulk flow events (BBFs). BBFs reside, at neutral sheet, and a low beta region of lobe-like elevation,
least partially, close to the neutral sheet; thus they represent that includes the PSBL, as defined by Baumjohann et al.,
local plasma acceleration. Since the plasma sheet can be [1989]. We termed the two regions inner and outer plasma
active even during low AE, categorization of the plasma sheet sheet respectively (IPS, OPS) to distinguish them from regions
states based on BBFs and irrespective of geomagnetic activit previously identified by other criteria.
may be a fruitful way of organizing plasma sheet studies. We We defined BBFs to be plasma sheet segments of contin-
adopt this approach in our paper. uous ion flow magnitude Vi > 100 km/s, during which Vi

exceeds 400 km/s at least once in the IPS. Flows above 400
km/s that were separated by less than 10 min were consid-
ered parts of the same BBF event. The IRM (ISEE 2) dataset
contained 100 (200) events. The median BBF duration was

IDept. of Physics, UCLA, Los Angeles, CA -550 s in both datasets. We excised the BBFs and further re-
2IGPP, UCLA, Los Angeles, CA stricted our database to the IPS by eliminating samples with 3i
3The Aerospace Corporation, Los Angeles, CA < 0.5. The final non-BBF, IPS dataset represents 92% (94%)
4
MpI fur extraterrestrische Physik, Garching. Germany of the total IPS dataset of IRM (ISEE 2) and is composed of
MLos Alamos National Laboratory. Los Alamos, NM 167,619 (173,417) samples.

Figure 1 shows average velocities derived from one or
more hours of data in each 3x3 WE- bin projected on the
X-Y plane. Velocities are in GSM coordinates for IRM and
in spacecraft coordinates (very close to GSE) for ISEE 2.
The flow averages are small compared to the lowest energy
measurable by the 3D and FPE instruments (equivalent to

2
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Fig. 2. Averages of Ey=VxBz in 3 RE bins across the tall,
53 km/s and 120 km/s respectively), but still within the for all data tailward of XAGSM < -10 RE. Error bars are a
velocity resolution of the instruments. The consistency of fifth of the standard deviation about the mean. The dashed
the statistically independent flow averages in each dataset, line is a second order polynomial fit to the averages. * is the
as well as the rough correspondence between results from average potential drop across the sampled region.
the two different instruments indicate that ,he averages are
meaningful. The ion flow near the midnight and pre-midnight
sectors has a significant duskward component. At around
local midnight the duskward flow component is comparable at local midnight). Error bars represent a fifth of the standard
to, or larger than the earthward component. The earthward deviation about the mean suggesting that the fluctuations
component becomes dominant closer to the flanks. of Ey are much larger than the average. However, the

In the two-fluid approximation. two components contribute consistency of the average cross-tail Ey pattern between the
to the ion velocity V: a drift due to an electric field E, and two datasets implies that the averages are probably significant.
a diamagnetic drift VD consistent with the plasma pressure The total potential drop * across the 30 RE section of the
profile, i.e., V=VEXB+VD [Chen, 1974]. In the plasma sheet, magnetotail studied here is 16 kV and 12 kV for the two
ions and electrons drift diamagnetically in opposite directions datasets respectively, consistent with the "resting" 7-38 kV
with speeds proportional to their respective pressure gradients, potential drop across the polar cap (Reiff and Luhmann, 19861.
and create a diamagnetic current consistent with the overall The magnitude and the shape of the electric field give us
current profile in the plasma sheet. The electron temperature confidence that we have properly removed from our datasets
is small relative to the ion temperature by a fairly constant convection that is directly related to reconnection. We use
factor of 7-8 (e.g., Baumjohann et al. [19891). Assuming a second order polynomial fit to model the Y-dependence of
the same relationship for the ratio of the pressure gradients, Ey. We get the expressions: Ey = 0.39 + 0.41 (Y/15)2 and Ey
we neglect the electron contribution to the diamagnetic cur- = 0.17 - 0.18 (Y/15) + 0.70 (Y/15) 2 , for the IRM and ISEE 2
rent. We thus estimate the magnitude of the diamagnetic datasets respectively, where Ey is in kV/RE and Y is in RE.
drift from the cross-tail current J = V x B/po according to: We can use an empirical magnetic field model of the mag-
V0 = V x B/(i 0Niq.). where Ni is the ion density, q, is the netotail to calculate the expected velocity vectors in the quiet
electron charge and go is the magnetic permeability of free IPS, assuming that the above polynomial fit of Ey can be ap-
space. For a current sheet thickness equal to a plasma sheet plied also earthward of IXI=10 RE, including corotation, and
half thickness at local midnight of 3 RE, a tail-lobe field of using the average ion density in each 3x3 RE X-Y bin as
30 nT, and an ion density of 0.3 cm-3 we get VD ;- 25 km/s. input to the calculation of VD. We used the short version
This is comparable to the magnitude of the duskward compo- of the Tsyganenko [ 1987] (T87) model for Kp=0 to compute
nents of the average flow vectors at local midnight in Figure I. the magnetic field and its spatial derivatives. Since the cur-

Assuming that tailward of X=-10 RE the diamagnetic drift rent density and, thus, the diamagnetic drift depend on the
is the dominant contribution to the average cross-tail flow and distance away from the equatorial plane we computed the av-
corrotation is negligible, we decomposed the IPS velocity into erage drift over Z-distances for which J/J.q remained above
an earthward ExB flow, and a duskward diamagnetic drift. Jrmn/Jeq, where Je is the maximum, equatorial current density
To estimate the electric field associated with the earthward in the T87 model. The choice of Jmin/Jeq is somewhat arbi-
flow component in that region we computed the average trary; we set Jmin1Jeq=0. 9 because the model drifts were small
of Ey=VxBz in 3 RE Y-bins. The result is presented in when integrated over a wider current sheet region. Since the
Figure 2. IRM (ISEE 2) data are shown in GSM (spacecraft) T87 model tends to overestimate the current sheet thickness
coordinates. [Fairfield, 1991], and thus underestimate the equatorial cur-

The average cross-tail electric field is small (0.4-0.5 kV/RE) rent sheet density, our choice of a fairly narrow integration
and non-uniform across the tail: it is depressed at local region may be reasonable. Our results are projected on the
midnight and maximizes closer to the tail boundary. An equatorial plane in Figure 3. There is qualitative agreement
enhancement of the average Ey at -3 < YAGSM < 6 RE in between the model calculations and the average velocities of
both datasets may be due to incomplete removal of BBF- Figure I; in particular, the model reproduces the predomi-
induced flow in that region, possibly indirectly related to nantly duskward flows near local midnight and the predomi-
nearby BBFs (the BBF occurrence rate, not shown here. peaks nantly earthward flows closer to the magnetotail boundaries.
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T87: Vj , ÷C_.V,•,v, (AMPTrEJIRM 1985) that equatorial VB drifts are sufficient to accomplish this task
S, . . , "at the midnight meridian, given a finite tail-width. However,

10 .10 - " the VB drift changes sign away from the equatorial plane and
the equatorial magnetization drift can be much larger in sign

" "\ .\ N , and opposite from the VB drift in a tail configuration (Bird
× Il - " and Beard (19721. see their Figure 7). Although the bounce

_... . .,_ _ •averaged sum of the particle gradient, curvature and magneti-
12 6 .6 -: zation drifts has not yet been considered, the sum of the above

Y,-cIRI) drifts integrated over an isotropic maxwellian distribution is
÷ (ISEE 1971, 1979) equivalent to the diamagnetic drift that appears in the fluid

, -. , ( '. equations of motion (e.g., see Bird and Beard [1972], Eq. 4)
-ILI and was used in the previous section. In accordance with

-- , - - \ -the suggestion of Tsyganenko (19821, the cross tail drifts in
" . the midnight sector are equal to or larger than the earthward,

convective velocity and therefore the proposed pressure bal-
ance inconsistency argument may not apply. It may, however,

\\ apply away from midnight, where the flow is predominantly
--- _ \ 2 earthward. We thus first investigated how the IPS ion pres-

1 6 Y0 (R, -6 -2 sure Pi changes across ti"c magnetotail as well as with distance
from Earth. Figure 4 presents the results of this investigation.

Fig. 3. Ion flows calculated from the T87 model with the The bottom panel shows averages of Pi between 16 and
electric field from Figure 2 and the average density in each 19 RE downtail, calculated by using a 7 RE sliding win-
3x3 RE X-Y bin as input. dow in the YAGSM direction on 3 RE centers. To reduce

the large scatter due to the variability of the solar wind dy-
On the Properties of Convection in the Quiet IPS namic pressure we only accepted averages constructed from

more than 7 hours of data. Pi is fairly constant across the
Erickson and Wolf [19801 argued that a "pressure balance tail. The near-quantitative agreement between the average

inconsistency" arises for laminar, steady, sunward convection pressure values from the two instruments is additional con-
in a realistic tail configuration. The pressure of an adiabati- firmation that the trends are meaningful. The top two panels
cally convected flux tube from the distant tail to the near earth show the variation of the average ion pressure with down-
regions increases too rapidly to be consistent with lobe pres- 00E Iai99 .I9< -t5ar •-tZ

sure observations. Tsvganenko [1982] suggested that cross
tail drifts could remove part of the pressure of an earthward .0o

convecting flux tube. Kivelson and Spence [19881 showed

AMPTrAERM 1IM5
iSEE 1978.19"79

06 t 0 (a)
S. . . W,•0,,1< . .

-2000
-- 200 100 0 .100 .200

S ,•2/ 2/79 16:20.18&20 UT; AE<r1  T
0  

NO.1Y
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04
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0.27 -T Fig. 5. (a) Scatterplot of the ensemble of flows observed byS- 1i ISEE'2ina3x3R bin. The average vector and the ellipse

6 .'representing the standard deviation of the velocity along the
20 .6 - principal axes directions (which are essentially earthward and

Y- (k•) duskward for this bin) are also shown. (b) Hodogram of the
Fig. 4. Variation of the measured ion pressure. Pi, with down- flow (running-averaged at I min) during a continuous two
tail distance at local midnight (top panel) and at other YAGSM hour. geomagnetically quiet interval that contributed to the
locations (middle panel). Bottom panel: Pi constancy across scatterplot. (c) The cross-tail electric field Ey=VxBz derived
the tail, 16-19 RE downtail. from the same time interval (the dashed line is the average).
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product of a more complicated system whose fundamental Physik, D-8046, Garching. Germany.
observable is the ensemble distribution of velocities. The W. C. Feldman and J. T. Gosling. Los Alamos National
flow variability may enable the IPS pressure to adjust to the Laboratory, SST-7, MS D-466, Los Alamos, NM 87545.
lobe pressure, and allow slow, earthward convection to pro-
ceed in an average sense. The properties of this variability
(amplitude, direction, spatial dependence) can be central in



TECHNOLOGY OPERATIONS

The Aerospace Corporation functions as an "architect-engineer" for national security
programs, specializing in advanced military space systems. The Corporation's Technology
Operations supports the effective and timely development and operation of national security
systems through scientific research and the application of advanced technology. Vital to the
success of the Corporation is the technical staffs wide-ranging expertise and its ability to stay
abreast of new technological developments and program support issues associated with rapidly
evolving space systems. Contributing capabilities are provided by these individual Technology
Centers:

Electronics Technology Center. Microelectronics, solid-state device physics, VLSI
reliability, compound semiconductors, radiation hardening, data storage
technologies, infrared detector devices and testing; electro-optics, quantum
electronics, solid-state lasers, optical propagation and communications; cw and
pulsed chemical laser development, optical resonators, beam control, atmospheric
propagation, and laser effects and countermeasures; atomic frequency standards,
applied laser spectroscopy, laser chemistry, laser optoelectronics, phase conjugation
and coherent imaging, solar cell physics, battery electrochemistry, battery testing and
evaluation.

Mechanics and Materials Technology Center: Evaluation and characterization of
new materials: metals, alloys, ceramics, polymers and their composites, and new
forms of carbon; development and analysis of thin films and deposition techniques;
nondestructive evaluation, component failure analysis and reliability; fracture
mechanics and stress corrosion; development and evaluation of hardened
components; analysis and evaluation of materials at cryogenic and elevated
temperatures; launch vehicle and reentry fluid mechanics, heat transfer and flight
dynamics; chemical and electric propulsion; spacecraft structural mechanics,
spacecraft survivability and vulnerability assessment; contamination, thermal and
structural control; high temperature thermomechanics, gas kinetics and radiation;
lubricato and surface phenomena.

Space and Environment Technology Center: Magnetospheric, auroral and cosmic
ray physics, wave-particle interactions, magnetospheric plasma waves; atmospheric
and ionospheric physics, density and composition of the upper atmosphere, remote
sensing using atmospheric radiation; solar physics, infrared astronomy, infrared
signature analysis; effects of solar activity, magnetic storms and nuclear explosions
on the earth's atmosphere, ionosphere and magnetosphere; effects of electromagnetic
and particulate radiations on space systems; space instrumentation; propellant
chemistry, chemical dynamics, environmental chemistry, trace detection;
atmospheric chemical reactions, atmospheric optics, light scattering, state-specific
chemical reactions and radiative signatures of missile plumes, and sensor out-of-
field-of-view rejection.


