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1 Introduction

A synopsis of this research program is provided below. General motivation for

the use of learning in control is provided as background material in Section 1.1.
An overview of this report follows in Section 1.2. A list of technical publications

produced during the course of this work is provided in Section 1.3.

This report describes results obtained during a multiphase research program

having the broad aim of investigating the application of learning systems to au-
tomatic control in general, and to flight control in particular. The first phase an-

alyzed the original drive-reinforcement learning paradigm [Klopf *1988)] and ex-

amined its application to automatic control, with mixed results. The second

phase compared a number of alternative control strategies including conventional
linear control [Friedland (1986)], adaptive control [Astr6m & Wittenmark (1989)],

and other reinforcement learning control methods [Barto, Sutton, & Anderson
(1983)], and resulted in the conception of a new hybrid adaptive/learning control

scheme [Baker & Farrell (1990)]. Subsequently, in the third phase, this hybrid
control approach was more ft lly developed and applied to several nonlinear
dynamical systems, including a cart-pole system, aeroelastic oscillator, and a

three-degree-of-freedom high performance aircraft. The fourth phase revisited
drive-reinforcement learning from the point of view of optimal control and suc-

cessfully applied a version embedded in the associative control process architec-

ture [Klopf, Morgan, Weaver (1992)] to regulate an aeroelastic oscillator. The fifth

phase examined the problem of learning augmented estimation, and resulted in
the development (' a preliminary estimation scheme consistent with the hybrid

adaptive/learning control approach. In the sixth and final phase, the hybrid con-

trol methodology was applied to a nonlinear, six-degree-of-freedom flight control
problem, and then successfully demonstrated via a challenging multiaxis ma-

* neuver.

Initial work with the basic drive-reinforcement (D-R) learning algorithm showed

considerable promise for its application to automatic control. However, it was

soon demonstrated that without added functionality the basic algorithm could not

serve alone as a learning controller, at least not in the usual sense of what is
meant by learning control. Moreover, an examination of a number of alternative

1



strategies (including other reinforcement learning strategies) revealed many

candidates with both advantages and disadvantages, but none with a clear domi-

nance over the others (particularly in the context of flight control). During this

period, a novel hybrid adaptive/learning control scheme (Bai d & Baker (1990);

Baker & Farrell (1990)] was conceived that provided many of the advantages seen

among the candidates considered, yet that avoided many of. their disadvantages.

In light of this, a decision was made to pursue this new approach in lieu of

others. At the same time, emphasis was placed on the use of learning to address

problems in control related to uncertainty and nonlinearity, rather than to

problems related to optimization and implicit behavioral objectives.

Accordingly, development and refinement of the hybrid adaptive/learning control
methodology continued during a substantial portion of the program. This ap-

proach was successfully applied to a number of nonlinear dynamical systems,

culminating in its application to a multiaxis flight control problem. The learning

augmented flight control system was constructed by augmenting a simple linear

compensator design with both an adaptive and a learning capability. The model-

based linear compensator was designed following a procedure similar to that de-

scribed in [Anderson & Schmidt (1991)A. The adaptive compensator was developed

by incorporating and extending ideas presented in [Youcef-Toumi & Ito (1990)].

Finally, a hybrid adaptiveJlearning control system was developed by combining

the same adaptive compensator with a spatially localized learning system based

on a linear-Gaussian network [Baker & Farrell (1990); Millington (1991)1. The hy-

brid adaptive/learning flight control system was successfully demonstrated on the

6-DOF nonlinear aircraft model via a challenging multiaxis maneuver. To illus-

trate the benefit of learning augmentation, the basic linear and adaptively aug-

mented compensator designs were used as baseline controllers.

In the latter part of the program, a decision was made to revisit, from the point of
view of optimal control, the D-R learning paradigm and, more generally, the new

associative control process (ACP) architecture [Klopf, Morgan, Weaver (1992)] in

which it was embedded. It was found that the ACP architecture provided the ad-

ditional functionality needed by the original D-R algorithm to allow it to be used

for optimal control, Although it was too late in the p,-ogram timeline to consider

its application to flight control, 'an ACP-based controller was developed and suc-

2



cessfully applied to the problem of regulating the output of a nonlinear aeroelastic

oscillator model, in an optimal fashion.

Throughout this research program, software development was substantially fa-

cilitated through the use of a custom simulation environment known as NetSim

[Alexander, et al. (1991)] that was designed especially for the investigation of con-

nectionist network based learning systems, and also by the existence of a repre-

sentative high performance nonlinear aircraft model in FORTRAN [Brumbaugh

(1990)]. New software development was essentially limited to the creation of Net-

Sim modules for various example applications and to the conversion of the FOR-

TRAN aircraft model into a C-based NetSim module. In addition, further devel-

opment and refinement of these modules and of the NetSim application was per-

formed.

The aircraft code used in this work was derived from a six-degree-of-freedom (6-

DOF) high performance aircraft model, incorporating nonlinear aerodynamic ef-

fects (based on empirically derived tabular data), nonlinear engine dynamics, and

nonlinear actuator dynamics (including rate and position limits). This code is a

slightly modified version of an F-15 simulation developed by NASA/Dryden. A

more detailed description of the basic aircraft model and its FORTRAN imple-

mentation can be found in [Briumbaugh (1990)].

Results obtained during this research program clearly demonstrate many of the

potential benefits of learning augmented control and especially the advantages

that may be gained in terms design facilitation, automatic accommodation of un-

certainty, on-line performance optimization, and operational efficiency. The bot-

tom line is that learning augmentation is beneficial to automatic control in gen-

eral and to flight control, in particular. 1 Although significant progress was made

during this research program, these results also serve to indicate that further
work is needed. Topics for future research and development include:

further development of the hybrid control and estimation methodology

* 1 This claim is further supported by a second research program funded by the Navy (under USN

Contract No. N62269-91-C-0033) which involved the application of the hybrid adaptive]
learning control technique conceived and developed in this program to a full subsonic
envelope, handling qualities improvement system for a high performance aircraft
[Millington & Baker (1992)].
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* development and refinement of variable structure learning Pyatems
* further investigation of reinforcement learning in the context of optimal

control and multiplayer game problems
,research and development of continuous input/output reinforcement
learning sy3tems

1.1 Backgrmm& Modivation for Learing Contil

Advanced control systems for autonomous or highly automated systems are ex-
pected to maintain closed-loop system stobility and performance over a wide range

of operating conditions and events. This objective can ' .iffilult to achieve due to
the complexity of both the plant (i.e., the system to be controlled) and the pebrfr-
mance Abjectives, and due to the presence of uncertainty. Such complications

may result from nonlinear or time-varying behavior, poorly modeled plant
dynamics, high dimensionality, multiple inputs and outputs, complex objective
functions, operational constraints, imperfect measurements, and the possibility
of actuator, sensor, or other component failures. Each of these effects, if present,
must be addressed if the system is to operate reliably in an automatic fashion. A
view strongly advocated here is that learning control systems may be used advan-
tageously to address several of these difficulties. In particular, in this research

program we have focused on the control of complex dynamical systems that are
poorly modeled and nonlinear.

Unfortunately, it is difficult to provide a precise and completely satisfactory defini-

tion for the term "learning control system." One interpretation that is, however,

consistent with the prevailing literature (e.g., [Klopf & Morgan (1990)]) is that:

A learning control system is one that has the ability to improve its

performance in the fu.ure, based on experiential information it has

gained in the past, through closed-loop interactions with the plant

and its environment.1

To help fwcus the discussion that follows and avoid any unnecessary controversy,, we will

fuirther limit our subjiect to include, primarily, the type of learning that one might associate
with sensorimotor control, and exclude more sophisticated learning behaviors (e.g., planning
and exploration).

4



There are several implications of this statement. One implication is that a learn-

ing control system has some autonomous capability, since it has the ability to im-

prove its own performance. Another is thai it is dynamic, since it may vary over

time. Y7et another implication is that it has memory, since it can exploit past ex-

perience to improve future performance. Finally, to improve its performance, the

learning system must operate in the context of an objective function and, more-

over, it must receive performance feedback that characteri,-es the appropriateness

of its current behavior in that context.

In a fundamental sense, the control design problem is to find an appropriate

mapping, from measured plant outputs y, and desired plant outputs Yd, to a

control action u that will produce satisfactory beilavior in the closed-loop system.

In other words, the problem is to choose a function (a control law) u = k(Ym,Ydt)

that achieves certain performance objectives when applied to the open-loop sys-

tem. In turn, the solution to this problem may naturally involve other mappings;

e.g., a mapping from the current plant operating condition to the parameters of a

controller or local plant model, or a mapping from measured plant outputs to es-

timated plant state. Accordingly, a learning system that could be used to synthe-

size such mappings on-line would be an advantageous component of an advanced

control system. To successfully employ learning systems in this manper, one

must have an effective means for their implementation and incorporation into the

overall control system architecture. The belief that connectionist systems offer a

suitable means with which to implement learning control systems has been the

impetus for a large body of recent research1 (e.g., [Albus (1975); Anderson (1989);

Atkins (1993); Baird & Baker (1990); Baird (1991); Baker & Farrell (1990, 1991,

1992); Baker & Millington (1992, 1993); Barto, Sutton, & Anderson (1983); Berger

(1992); CerraLo (, 993); Farreil & Baker (1991, 1992, forthcoming); Klopf & Morgan

(1990); Klopf, Morgan, & Weaver (1992); Millington & Baker (1992); Millington

(1991); Millington, Baker, & Koenig (1993); Morgan, Patterson, & Klopf (1990);

Nistler (1992); Steinberg (1992); Vos, Baker, & Millington (1991)]). Perhaps a more

cogent statement of affairs is that, in the context of control, learning can be viewed

as the automatic incremental synthesis of multivariable functional mappings

and, moreover, that connectionist systems provide a useful framework for realiz-

ing such mappings.

l This is not intended to be a comprehensive list.
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The necessity for applying learning arises in situations where a system must op-
erate in conditions of uncertainty, and when the available a priori information is
so limited that it is impossible or impractical to design in advance a system that

has fixed properties and also performs sufficiently well [Tsypkin (1973)]. In the
context of intelligent control, learning can be viewed as a means of solving those
problems that lack sufficient a priori information to allow a complete and fixed
(i.e., nonadaptable) control system design to be derived in advance. Thus, a cen-
tral role of learning in intelligent contrcl is to enable a wider class of problems to
be solved, by reducing the prior uncertainty to the point where satisfactory solu-
tions can be obtained on-line. This result is achieved empirically, by means of
performance feedback, association, and memory (or knowledge base) adjustment.

One of the principal benefits of learning control, given the present state of its
technological development, derives from the ability of learning systems to auto-
matically synthesize mappings that can be used advantageously within a control

system architecture. Examples of such mappings include a controller mapping
that relates measured and desired plant outputs to an appropriate set of control
actions (Fig. 1.1a), a related control parameter mapping that generates parame-
ters (e.g., gains) for a separate controller (Fig. 1.1b), a model state (or estimator)

mapping that produces state estimates (Fig. 1.1c), and a model parameter map-
ping that relates the plant operating condition to an accurate set of model param-
eters (Fig. 1.1d). In general, these mappings may represent dynamic functions
(i.e., functions that involve temporal differentiation or integration).

Learning is required when these mappings cannot be determined completely in
advance because of a priori uncertainty (e.g., modeling error). In a typical learn-
ing control application, the desired mapping is stationary (i.e., does not depend

explicitly on time), and is expressed (implicitly) in terms of an objective function
involving the outputs of both the plant and the learning system. The objective
function is used to provide performance feedback to the learning system, which

must then associate this feedback with specific adjustable elements of the map-
ping that is currently stored in its memory. The underlying idea is that experi-
ence can be used to improve the mapping furnished by the learning system.
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(c) model state (estimator) mapping (d) model parameter mapping

Figure 1.1. Four Control Syctem Architectures, Employing Different Mappings.

1.2 Report Overview

The remainder of this report is organized into a number of chapters (described be-

low) whose subjects reflect the principal tasks pursued under this research pro-
gram. In addition, three graduate student theses (also described below) are in-

cluded in their entirety as attachments. A total cf i4 technical publications were

generated based on w, rk that was performed during the course of this program

(see Section 1.3). To minimize redundancy as well as the cost of producing this

final report, extensive reference will be made to the relevant parts of these docu-

ments and to certain articles contained in the bibliography.
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121 Main Document

The maih) document presents an overview of this research program, including a

summary of all activities and accomplishments. The principal themes of the re-

maining chapters are outlined below.

Chapter 2: Drive-Reinforcement Learning addresses those aspects of the program

that were primarily concerned with an investigation of reinforcement learning

methods and their application to problems in automatic control. The focus of this

part of the investigation was on drive-reinforcement learning (Klopf (1988)] and on

associative control process networks [Klopf, Morgan, & Weaver (1992); Baird &

Klopf (1992)]. Conventional alternatives to learning control are also reviewed. In

addition, a reinforcement learning system based on the use of the associative

search element / adaptive critic element [Barto, Sutton, & Anderson (1983)] was

examined. Experimental results were obtained by applying some of these ap-

proaches to a cart-pole stabilization and tracking problem. The use of reintorce-

ment learning in the context of optimal control is also examined.

Chapter 3: Learning for Flight Control provides a high-level discussion of the mo-

tivation for, as well as the issues underlying, the use of learning in flight control

applications. Based on this investigation, new hybrid adaptive/learning control

architectures are conceived.

Chapter 4: Hybrid Adaptive ILearning Control provides a detailed mathematical

development of a novel hybrid adaptive/learning control methodology. In addi-

tion, a preliminary technique for learning augmented estimation which is consis-

tent with the hybrid control architecture is also presented.

Chapter 5: Multiaxis Flight Control addresses those aspects of the program re-

lated to the development and demonstration of a learning augmented flight con-

trol system for a nonlinear vehicle model representative of a modern high per-

formance aircraft. A challenging, multiaxis "S trajectory" maneuver is used to

:.ighlight the benefits of learning augmentation.

Chapter 6: Conclusion provides a summary of this program and recommenda-

tions for future research.



A bibliography of the references used in the course of this research is included at

the end of this document. Additional bibliographies are included at the end of

each attachment.

.2- tt n

Attachment 1 is a Master's Thesis, entitled Learning and Adaptive Hybrid Sys-

teins for Nonlinear Control [Baird (1991)], that was completed under this research

program. The object of this thesis was to find methods for combining learning
systems with adaptive systems so as to achieve good control in the presence of both

spatial and temporal functional dependencies. Several methods were developed
for augmenting the estimation carried out by an indirect adaptive system with the

additional information available from a learning system. In addition to develop-
ing a simple form of learning augmented estimation, various issues in the con-
struction and use of connectionist learning systems were explored in this context.

Chapter 2: Background outlines some of the important concepts and historical de-

velopment of connectionist learning systems, control systems, and approaches for
using connectionist learning systems for control.

Chapter 3: Hybrid Control Architecture covers the adaptive controller and connec-

tionist networks that were integrated into a single hybrid controller. Both the in-

dividual components and the final, integrated system, are described in detail.

Chapter 4: Connectionist Learning for Control covers some of the difficulties as-

sociated with learning systems used for control, and describes various methods
that might be used to address those difficulties,

Chapter 5: Experiments describes the various simulations performed. These re-

sults are presented graphically and are interpreted in relatioi, to the original
research goals.

Chapter 6: Conclusions and Recommendations summarizes what has been ac-

complished, draws conclusions, and points out areas in which future research

should be focused.
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1.2.3 Attachment 2

Attachment 2 is a Master's Thesis, entitled A Learning Enhanced Flight Control

System for High Performance Aircraft [Nistler (1992)], that was completed under
this research program. This thesis explored the use of a learning system to
augment an adaptive flight controller. The extent to which learning can be used
to improve an adaptive flight control system architecture, as well as the difficul-
ties introduced by learning augmentation, were examined. The primary objective
of this thesis was to illustrate the advantages of a hybrid adaptive/learning control
system in terms of its ability to accommodate unmodeled dynamics and to reduce
state-dependent uncertainties in the system model. This hybrid approach offers
advantages over conventional techniques in terms of performance, robustness,

and design refinement costs.

Chapter 2: Background discusses some of the challenges associated with flight
control law design. Moreover, background information on traditional control
techniques is provided to serve as a foundation for the hybrid control law devel-
opment, and also as a basis for comparison of alternative designs. The theoretical
concepts underlying connectionist learning systems, as well as some approaches
to using learning systems for control, are also presented.

Chapter 3: Technical Approach considers technical aspects of the hybrid control
law. This is accomplished by first presenting the underlying theory of the adap-
tive system and the spatially localized learning system before moving on to a
derivaticn of the hybrid system. General characteristics of the hybrid controller
are also presented.

Chapter 4: Experiments presents two eKamples to illustrate the implementation
and performance of the hybrid control law. The first experiment used the hybrid
system to control a relatively simple nonlinear aeroelastic oscillator. Due to the
low dimensionality of the plant, and the availability of a truth model, the analysis

and e,, aluation of the hybrid control system for the aeroelastic oscillator was
greatly simplified. In the second experiment, the hybrid system was applied to a

realistic high performance aircraft model. Descriptions of the major components
of the aircraft model as well as its significant control characteristics are also pro-
vided. An evaluation of aircraft performance when controlled by the hybrid sys-
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tern is presented and compared with other designs for various simulations.

Learning system characteristics are also described.

Chapter 5: Conclusions and Recommendations summarizes the major contribu-

tions of this thesis. In addition, recommendations for future research are pre-

sented.

1,2,4 Attachment 3

Attachment 3 is a Master's Thesis, entitled Incremental Synthesis of Optimal

Control Laws Using Learning Algorithms [Atkins (1993)), that was completed

under this research program. The primary objective of this thesis was to incre-
mentally synthesize a nonlinear optimal control law, through real-time, closed-

loop interactions between the dynamic system, its environment, and a learning
system, when substantial initial model uncertainty exists. The dynamic system
is assumed to be nonlinear, time-invariant, and of known state dimension, but
otherwise only inaccurately described by an a priori model. The problem, there-
fore, requires either explicit or implicit system identification. No disturbances,
noise, or other time-varying dynamics were assumed to exist. The optimal con-
trol law is assumed to extremize an evaluation of the state trajectory and the con-
trol sequence, for any initial condition.

One goal of this thesis was to present an investigation of several approaches for
incrementa'ly synthesizing (on-line) an optimal control law. A second goal was to
propose a direct/indirect framework, with which to distinguish such architec-

tures. This thesis unifies a variety of concepts from control theory and behavioral
science (where the learning process has been considered extensively) by present-
ing two different learning algorithms applied to the same control problem: the
Associative Control Process (ACP) algorithm [Klopf, Morgan, & Weaver (1992)),
which was initially developed to predict animal learning behavior, and Q learning

[Watkins (1989)], which derives from the mathematical theory of value iteration.

Chapter 2: The Aeroelastic Oscillator describes a two-state physical system that
exhibits interesting nonlinear dynamics, and was used throughout the thesis to

evaluate different control algorithms that incorporate learning. The algorithms
that are explored in Chapters 3-5 do not explicitly employ dynamic models of the
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system and, therefore, may be categorized as direct methods of learning an opti-
mal control law. In contrast, Chapter 6 develops an indirect, model-based, ap-
proach to learning an optimal control law.

Chapter 3: The Associative Control Procefs reviews the ACP learning paradigm
(including drive-reinforcement learning) and discusses an application of an ACP
network to an optimal control problem involving the regulation of a nonlinear
aeroelastic oscillator. Simulation results are presented. This chapter also intro-
duces the concept of direct learning methods in conjunction with the on-line syn-
thesis of an optimal control law.

Chapter 4: Policy and Value Iteration reviews a number of basic concepts includ-
ing those of policy iteration, value iteration, and Q learning. In addition, simula-
tion results of the application of Q learning to the aeroelastic oscillator problem
are presented.

Chapter 5: Temporal Difference Methods reviews a general theory of temporal dif-
ference methods as developed in [Sutton (1988)A. Following this review, a compar-
ison of the preceding direct methods for the synthesis of optimal control laws is
presented.

Chapter 6: Indirect Learning Optimal Control introduces the notion of indirect
methods in khe on-line synthesis of optimal control laws and derives several that
are optimal with respect to various finite horizon cost functionals. The structure
of the control laws with and without learning augmentation is presented for sev-
eral cost functionals, to illustrate the manner in which learning may be used.

Chaper 7: Summary reviews the major contributions of this thesis; in addition,
recommendations for future research are presented.

Appendix A: Differential Dynamic Programming briefly reviews both dynamic

programming (DP) and differential dynamic programming (DDP), which are
classical, alternative methods for synthesizing optimal controls. DDP is not re-
stricted to operations over a discrete input space and discrete output space. The
DP and DDP algorithms are model-based and, therefore, learning may be intro-
duced by explicitly improving the a priori model, resulting in an indirect learning
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optimal controller. However, neither DP nor DDP is easily implemented on-line.
Additionally, DDP does not address the problem of synthesizing a control law over
the full state-space.

1.3 Program Related Technical Publications

The work underlying the following list of technical publici.tions was performed,
in whole or in part, under this research program. The publications are grouped

according to type (i.e., graduate student thesis, conference paper, or book chapter)
and are listed in chronological order within each group. The research performed
in conjunction with the three graduate student theses was fully funded by this
program, while only partial support was provided in the case of each of the
remaining publications. Note that each thesis is included in its entirety as an
attachment to this document.

Graduate Student Theses

Baird, L. (1991). Learning and Adaptive Hybrid Systemi for Nonlinear Control,
CSDL Report T-1099, M.S. Thesis, Department of Computer Science,
Northeastern University. [Attachment 1]

Nistler, N. (1992). A Learning Enhanced Flight Control System for High
Performance Aircraft, CSDL Report T-1127, M.S. Thesis, Department of
Aeronautics and Astronautics, M.I.T. [Attachment 21

Atkins, S. (1993). Incremental Synthesis of Optimal Control Laws Using
Learning Algorithms, CSDL Report T-1181, M.S. Thesis, Department of
Aeronautics and Astronautics, M.I.T. [Attachment 31

Confe-renuQ__ae •_

Baird, L. & Baker, W. (1990) "A Connectionist Learning System for Nonlinear
Control," proceedings, 1990 AIAA Conference on Guidance, Navigation, and
Control.

Baker, W. & Farrell, J. (1990) "Connectionist Learning Systems for Control,"
proceedings, SPIE OE/Boston '90.

Farrell, J. & Baker, W. (1991). "Learning Augmented Control for Advanced
Autonomous Underwater Vehicles," proceedings, 18th Annual AUVS
Technical Symposium and Exhibit.

Alexander, J., Baird, L., Baker, W., & J. Farrell t.991). "A Design & Simulation
Tool for Connectionist Learning Control Systems: Application to Autonomous
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Underwater Vehicles," proceedings, 1991 SCS Summer Computer Simulation
Conference.

Baker, W. & Farrell, J. (1991). "Learning Augmented Flight Control for High
Performance Aircraft," proceedings, 1991 AIAA Conference on Guidance,
Navigation, and Control.

Vos, D., Baker, W., & Millington, P. (1991). "Learning Augmented Gain
Scheduling Control," proceedings, 1991 AMIA Conference on Guidance,
Navigation, and Control.

Baker, W. & Millington, P. (1992). "Adaptation & Learning in Control Systems,
Application to Flight Control," proceedings, 1992 Government Neural Network
Applications Workshop.

Millington, P., Baker, W., & Koenig, M. (1993). "Control Augmentation System
(CAS) Synthesis via Adaptation & Learning," proceedings, 1993 AIAA
Conference on Guidance, Navigation, and Control.

Book Chapters

Baker, W. & Farrell, J. (1992). "An Introduction to Connectionist Learning
Control Systems," in White, D. & Soige, D., eds., Handbook of Intelligent
Control: Neural, Fuzzy, and Adaptive Approaches, Van Nostrand Reinhold.

Farrell, J. & Baker, W. (3993). "Learning Control Systems," in Antsaklis, P. &
Passino, K., eds., Intelligent and Auton.'mous Control Systems, Kluwer
Academic.

Farrell, J. & Baker, W. "Learning Control Systems: Motivation and
Implementation," to appear in Intelligent Control Systems: Theory and
Practice, Gupta, M. & Sinha, N., eds., IEEE Press.
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2 Drive-Reinforcement Leamning

This chapter addresses those aspects of the program that were primarily con-
cerned with an investigation of reinforcement learning methods and their appli-

cation to problei ts in automatic control. The initial focus of this part of the inves-
tigation was on the drive-reinforcement (D-R) learning paradigm [Klopf (1988)];

later on, the scope was expanded to include associative control process (ACP) net-
works [Klopf, Morgan, & Weaver (1992); Baird & Klopf (1992)]. Conventional al-

ternatives to learning control were also reviewed. In addition, a reinforcement
learning based on the use of the associative search element / adaptive critic ele-

ment [Barto, Sutton, & Anderson (1983)] was examined. Experimental results

were obtained by applying some of these approaches to a cart-pole stabilization
and tracking problem. The use of reinforcement learning and related methods

(e.g., ACP networks [Klopf, Morgan, & Weaver (1992)], temporal difference meth-
ods [Sutton (1988)], and Q learning [Watkins (1989)]) in the context of optimal con-
trol was also examined.

2.1 Initial Work

The first part of our investigation of the drive-reinforcement learning paradigm

amounted to a review of the relevant technical hteratu-e on the subject, prelimi-

nary theoretical analysis of the algorithm, and an experimental study of the be-
havior of the algorithm via a computer simulation we developed. As a check of
the validity of this software simulation, we successfully duplicated every experi-
mental result described in [Klopf (1988)1. The motivation and development of the

D-R learning paradigm as presented in [Klopf (1988)1 is quite lucid and has ,lo

wo-thy substitute-the interested reader is strongly encouraged to examinn this
reference, as wel', as [Klopf, Morgan, & Weaver (1992)], before considering the rest

of this chapter. Thus, we will not provide a summary of these wo'Ik.S per se, al-

though some background information may be found in Attachmrent 3.

Early on in our investigation, it seemed likely that a netiwork of drive-

reinforcement learning neurons would be a useful and perhaps even necessary
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development for general applications of this paradigm to problems in automatic
control. To this end, we set out to develop a suitably genera' dynamic network
model, with the following objectives in mind:

"* develop a general model of a D-R learning network
"* emphasize adaptive/learning control application
"* maintain fidelity to KIopf s (single) neuronal model

The drive-reinforcement learning algorithm defined in [Klopf (1988)A really only
pertains to the behavior of a single neuron-it is not immediately clear how one
should generalize such a model to describe the behavio:, of a network of interact-
ing drive-reinforcemnvnt neurons.

A number of interesting design issues arise when one contempkst,•s the extension
of a single D-R neuron to a network of many such units. Soire of these network

design issues are listed below:

"* number of neurons (size of network)

"* primary drive selection

"* "potential" (acquired) drive selection

"* network inputs

binary

real-valued
"* arameters

- learning rate coefficients

- learning interval

The proposed network model outlined below appears satisfactory for two impor-

tant reasons: (i) in the special case where the network is comprised of exactly one

neuron, the network model corresponds exactly with [Klopf (1988)A and (ii) the
structure of the network model strongly resembles the structure of an adaptive
controller implemented as a system of nonlinear difference equations.

Network Drive Equations

'The network drive equations provide a mathematical description of the input-out-
put behavior of a drive-reinforcement learning network. These two equations are

modeled after the usual state-space representation of a dynamic system. The first
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equation introduces the concept of state [the vector x(k)] to drive-reinforcement
learning. This equation describes the causal relationship between the current
state of the network x(k) and its previous state x(k - 1) and current input stimuli
UCS(k) and us,(k). The second equation simply describes the (linear) mapping be-
tween the current state of the network x(k) and its outputs y(k).

x(k) = fN[(A+(k) + A-(k) + A .x(k - 1) + {B+(k) + B-(k)}.uc,(k) + B.u,,(k)]

y(k) = C.x(k)

Note the role that each matrix plays in determining the input-output behavior of
the drive-reinforcement learning network. The matrices A+(k), A-(k), and A'
characterize those interactions that are wholly internal; that is, those interactions
that occur among the neurons of the network. The matrices B÷(k), B-(k), and B0

map the inputs to the network state, while the matrix C' n,-ns the network state
to the outputs.

The elements of the matrices A÷(k), A-(k), B+(k), and B-(k) represent plastic
synaptic efficacies that are constrained to be strictly and exclusively excitatory,
inhibitory, or nonactive; i.e.,

I {aq(k) w,,,i,, and aiJ~k) <• -wJ,,} or {ai{k) = •(k) = 0) for all k

{b-(k) w and b7k) < -wj or {b+(k) = b(k) = 0) for all k

where Wmi, is the minimum allowable absolute value for all active plastic excita-
tory and inhibitory synaptic efficacies. The matrices A0 , B', and C' are all con-
stant; the elements of these matrices may be negative, positive, or zero.

The vector-valued function fNW(x) is defined below:

fI(X) = [JN(xj), jf(x:).

where fN(') is the neuronal output function shown in Fig. 2.1 and the symbol "T"

denotes the matrix (or vector) transpose operation.

Network Reinfocenent Equiatiolls

The network reinforcemen, ,quttaions, describe the adaptive behavir of a drive re-
inforcement learning nettwork. 'rhe first pair of equatiolns account for adaptation
dutie to external rweiniorcement, while the second pair account for internal (inter-
neuron or intranetwork) reinforcein ent.
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bjk+ 1) = fvr + W. j (k -)-. +c, 
.j (kx. -1I - I)]]

b,-k + 1) = fov b1/k)+ {x-(k)-xi(k I)} )X tb,-(k-.Of[ucf,.j(k-)- uc,.j(k-l-- 1)

r 1
qj1k + 1) = f,- a<(k) + (xik) - x5(k - I)) ap: a-(k --1fx.k -1)-- x,.k - I - -)

a; k !- ) f r[ai,(,k) -- (xa~k) - x# - 'i) g,-,k - lfjxdk -1)- x~k- I- 1

The functions fs('), fw.('), and fw-(4) are shown in Figs. 2.2, 2.3, and 2.4, respec-

tively. Note that fr(x) =-fw(-x).

Single D-R Neuron

In the special case where the network consists of eractly one neuron, the network

modal is mathematically equivalent to the refined drive-reinforcement learning

model for a single neuron, as dascribed in [Klopf (19&jJ:

ýy(k) = f4[(b+(k) + b-(k) T.uc(k) + bou,(k)]

b7(k + 1) =fw- b+(k) + {yQ' - y(k - 1)) T1]

b7(k + 1) =fw-[b[(k) - (y(k) -Ayk - 1)) a, b-(k- r~',,i( 1 c,( I)-]]
I I M I

where it is assumed that the output of the neuron is simply its state [co = 11, that

there a.re no self-loops [a÷(k) = a-k) = 01, and that the neuron has only one uncon-

ditionable stimulus [ru = 11. With the following change of variables, these equa-

tions may be transformed into the equations governing the behavior of a single

drive-reinforcement neuron (see [Klopf (1988)]):

bi k) w2, - l(k)

b[(k) = w2 A(k) for 1 5 i• rc,

u4CS i (k) ': Axj(k) )
b° =ý W2i + w (k)f

S1 (k) , x,(k)J for i= r + 1

a, := c, for I1.l_<
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f'-) XMW fs(.)

Fig. 2.1. Neuronal Output Function. Fig. 2.2. Reinforcement Stimuli Function.

f.(') fw-(.)

WMM• .. -- Wmif

Fig. 2.3. Excitatory Adaptation Function. Fig. 2.4. Inhibitory Adaptation Function.

The network model of drive-reinforcement learning outlined above is quite gen-o

erril. Few restrictions have been made regarding the topology of the network; for

example, self-loops have not been disallowed, nor has the influence of multiple

unconditionable stimuli on the same auuron been ruled out. Such constraints

might prove helpful in the refinement of the network model. If, for instance,

drive-reinforcement neurons are not allowed to have self-loops, then each element

on the main diagonal of the three matrices A÷(k), A-(k), and A', would necessar-

ily have to be zero. Similarly, if a neuron is allowed to have at Most a single un-

cunditionable sLimuli, then each row of the matrix B', would have at most a single

nonzero element.
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2 Classical Conditioning Experiments

As mentioned above, a software simulation of these network equations was devel-
oped and implemented on a personal computer. The goal was to develop a tool
with which we could easily explore the nuances of the algorithm. The special
case of a network with only a single neuron was used to duplicate all of the classi-
cal conditioning experiments described in [Klopf (1988)). The results we obtained
were identical to those reported in this reference and, hence, will not be repeated

below.

2.1.3 Analysis

In an attempt to better understand the D-R learning algorithm, we examined a

number of its attributes, particularly in the special case of a single neuron. As a
reminder, we provide the weight update equations for a single neuron below:

wt(k + 1) = fw w+(k) + Ay(k) jtlwt(k - [•fJAuj(k-JA
j=I

w -(k + 1) = fw- wT(k) + Ay(k) 2 ajcw -(k-l)fjAui(k-fi
j=1

The equilibrium conditions of the input-output behavior of a single D-R neuron, as
well as the equilibrium conditions associated with its adjustable weights, were
examined under classical conditioning (open-loop) experiments. The conditions
for zero weight change are shown below:

1. wt(k) = wmia a-ad Ay(k) < 0

w7 (k) = -wm,,n w Aytk) > 0

2. Ay(k) = 0

3, Aui(k) •_ 0 for 1 •j< ý T

2.2 Ftrther Work

After having gained a basic understanding of the drive-reinforcement Výarning

paradigm under mostly open-loop conditions, ,ve began to investigate its behavicr
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under closed-loop conditions. We were particularly interested in its convergence
and stability properties under feedback.

Simple System Dynamics

Prior to the application of the D-R learning algorithm to the problem of controlling

the cart-pole system, we elected to examine its performance relative to a simpler

(two-dimensional) control problem with related dynamics. In particular, the
"simple system" dynamics were:

"* linear
"* open-loop unstable

"• nonminimum phase
"* 2 state variables

"* open-loop transfer function:
Y(s) = (s - 3.8)
U(s) s(s-4.0)

A variety of different controller configurations were explored, as were mcdifica-

tions to the basic D-R neuronal model to accommodate bipolar outputs. Initial

work with this system showed promise, so we moved on to the full cart-pole con-

trol problem.

Cart-Pole System Dynamics

Nominal cart-pole system dynamics:

* nonlinear
* open-l1cp unstable

* nonminimum phase
* 4 state variables: {x, 0, v., 0C)

* open-loop transfer function for linearized model:
X(s) _ (s - 3.8360)(s + 3.8360)
F(s) s 2 (s - 3.9739)(s + 3.9739)

* open-loop poles and zeros in complex plane:
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-4.0 -3.0 -2.0 -1.0 1.0 2.0 3.0 4.0

Under certain ideal conditions, a steady motion of the cart-pole system can be

achieved:

* no noise or disturbances

* pole angle is constant and nonzero

* applied force is constant and nonzero
* pole angle, applied force, cart velocity, and cart acceleration all have same

sign

Steady motion ensues if{a- f i L(;P -1 for 0,x>O and f>ký
0 L (MC + md j

0=

tan-I[g f +X,] for 0,x<O and f<-,-

The steady motion properties are important because they relate to pole-balancing

experiments performed at Wright Laboratory.

WL Pole-Balancing Experiments

We weie also fortunate enough to have access to a set of pole-balaiicing experi-

ments (i.e., without restrictions on cart position) that wer,• generated by re-

searchers in the Avionics Directorate at the USAF Wright Laboratory. The basic

scenario for this problem is outlined below:

"* pole-balancing only

"* infinite track

"* failure if absolute value of pole angle exceeds 12 deg

"* pole angle and angular rate information only

"* sampling rate of 50 Hz

"* response to initial 10 N disturbance from state-space origin
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The WL pole-balancing results were successfully duplicated by our software sim-

ulation. However, in the course of this work, we obtained a ,uraber of interesting

results that were not expected. These results were found, in part, as we sought to

answer the following questions:
* what has the controller actually "learned"?

* is the acquired steady condition stable?
* what if the state-space quantization is refined?

Some of these issues are discussed in Section 2.3.

Chaotic Behavior

In the course of evaluating the WL pole-balancing results, we detected a discrep-

ancy between software simulations run on different computers. One machine

produced a very small round-off error (on the order of 10-18) relative to the same

(single) calculation performed on a second machine. Ordinarily, such a small

numerical error is of no corl ;equence; however, if the simulation is numerically

unstable (as is the WL pole-balancing experiment, since cart position and velocity

go to infinity), then even very small errors tend to grow to significant levels. This

numerical instability combined with possible bifurcations due to different trajec-

tories through the quantized state-space, results in extreme sensitivity to initial

conditions and/or round-off errors (i.e., chaotic behavior). The upshot of this is

that simulat.ions of the WL pole.balancing experiment run on different machines

can produce very different results.

.Pole-Balancing Experiments Summary

Experiments performed:

"* nominal

* perturbed+

"* perturbed-

"* rand& 'i initial disturbances

"* refined state-space quantization

"• perturbed after steady motion achieved

Results:
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"* steady motion possible

"* unstable dynamics

"* small errors grow to significant levels

"* trajectory bifurcations due to quantized state-space

"* simulation is extremely sensitive to initial conditions and/or round-off errors

Elements of the solution:

"* stable limit cycle about vertical must be attained

"* control level in outer bins must provide sufficient restoring force

"* cart position control may be subsequently achieved by biasing sensed pole

angle

2.3 Refinement of D-R Network Equations

One way for a learning system to solve a control problem is by learning the appro-

priate feedback gains for the state variable and command inputs. Taken one step

further, the network could also multiply these inputs by the gains it has learned,

and then output the answer as the appropriate control-action. Under these condi-

tions, the input-output behavior of the network is essentially equivalent to that of a

gain vector. The main difficulty eiucountered in applying a D-R learning network

to this problem rests firmly with the fact that such a network is incapable of

maintaining the feedback gains it has learned as the control system is exercised.'

Alternatively, if the network attempts to learn the appropriate control actions di-

rectly (as a function of the state and input commands), the same difficulty re-

mains.

Another way to state the basic underlying problem is as follows: in general, a D-R

network that is used for feedback control will always be exposed to time-varying

inputs (e.g., state variables, input commands, and performance measurements),

and will always be expected to provide time-varying outputs (e.g., actuator com-

mands), in accordance with the normal operation of the control system. In turn,

The word "exercised" is used to describe the normal active use of a control system in which

time-varying input commands are specified. For example, a control system might be used to
position a cart-pole object on a flat horizontal track; if a time-varying command signal is used
(e.g., the controller is told to move the cart-pole object back and forth between two fixed points
on the track), then the control system is being exercised.
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this implies that the neurons within such a network will also receive time-vary-

ing inputs and outputs. Under such conditions, the synaptic weights associated

with these neurons will also vary as a direct consequence of the D-R learning al-

gorithm. Thus, if one assumes that some D-R network has "learned" to behave as

the desired controller at time t (which implies that it has acquired a suitable, but

perhaps not unique, set of weights w(t) = {wl, ... , Wn)), then simply because any

of the network inputs and outputs varies in the course of normal operation (i.e.,

under conditions in which no learning is required), some network weights will

change as well. As a result, the new network weights will no longer correspond

to the set of weights associated with the controller that previously had "learned"

the desired control law (i.e., w(t) * w(t+l), in general). Our conclusion is that a

network of D-R learning neurons (as narrowly defined in [Klopf (1988)]) suffers

from Em instability problem when used under closed-loop conditions, in the sense

that the weights do not appear to have any stable equilibrium configurations when

the closed-loop system is exercised. No "reasonable" network structures have

been identified which overcome this problem.

2.3.1 Multiplication Learning Problem

A very simple closed-loop control problem that can be used to illustrate some of the

foregoing concepts is based on a network that takes one input and learns to

provide a single output that is the input times a constant gain k. This highly

simplified control problem will be called the multiplication learning problem.

To help the network learn the desired gain k, it will have access to feedback sig-

nals that give it clues concerning its current behavior. In this problem, we as.

sume that the network has access to a single feedback signal that tells it whether

its output is too high or too low, and by how much. This signal will be called the

error signal.

Clearly, for some learning algorithms this problem can be solved by a network

comprised of a single plastic weight: the input is multiplied by the weight to give

the output, and the weight is adjusted proportional to the error signal. In fact, a
weight update algorithm can be easily derived that allows "deadbeat" control

(learning occurs in a single time step). Performance at this level will not be re-

quired, however; it will be acceptable if the plastic weight approaches k asymptot-
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ically, as it would if a gradient learning algorithm were used. It would even be

acceptable if the weight fluctuated around the correct value, as long as it stayed

"in its neighborhood." Thus, the problem constraints have been relaxed some-

what by requiring that the network eventually learn to maintain its output within

some prescribed range of the desired output.

Some potential approaches for solving the multiplication learning problem involve

feedback loops within the network in such cases, it may take a significant

amount of time for an output to be generated by a given input. To make the prob-

lem easier for the learning network., it will also be assumed that the input only

changes at periodic intervals, and that the output associated with each input

must be calculated before the end of an input interval. The network designer in

this problem is free to create a network of any finite size, with any finite number of

plastic weights, and may also assume that the input changes at any desired finite

periodic rate. These rules give the designer a great deal of freedom, and should

make the problem as easy as is possible without radically changing its nature.

This problem is a simplified version of what a realistic control system should be

able to accommodate and is, therefore, probably something that any learning con-

trol system should be able to accommodate. D-R networks appear to be unable to

solve this problem, even if large hierarchical networks are used. In general, this

is because the solution k must be stored in a plastic weight somewhere in the

network, and mrust periodically have the input signal applied to it. Since the input

signal may change several times within one T period, input-output correlations

will occur that cause the weight to change, even when it is already at the correct

value of k. Stable equilibrium weight configurations are essentially unobtainable

in a D-R learning network subject to closed-loop conditions.

2.LZ_ Facilitatory Learning

Facilitatory learning (and/or other ancillary learning mechanisms) may com-

plement the basic D-R learning algorithm in such a way as to allow D-R learning

to be successfully applied to feedback control problems. We have some (untested)

ideas on this subject.

Weight update equations for a single mddfi d neuron:
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wt(k + 1) = f wwt(k) + Aura(k) Y ajw (k-t~fsAuak-J)
j=1 A -

w (k + 1) = fr w-T(k) + ,4u(k) j a•j w(k- lfjAuk-j)
j=l

0 weight change mediated by an otherwise inert stimulus

* self-loop (without delay ...) corresponds to unmodified D-R neuron

These proposed modifications are similar in effect to subsequent refinements of

the drive-reinforcement paradigm made by its developers, particularly in the

special case where it is embedded in an associative control process network (e g.,

see [Klopf, Morgan, Weaver (1992)1). As we later discovered, this refinement a

allow the combined D-R/ACP approach to be successfully applied to optimal

control problems-this work is fully described in Attachment 3.

2.4 Alternatives Strategies for Learning Control

In preparation for the comparative evaluation phase of the program, we consid-

ered alternative approaches, including conventional adaptive control and Bart9-

Sutton learning control. In addition, we explored key issues related to control sys-

tem configuration and control system performance. These issues have not been

fully resolved.

2.4.1 Performance Measures ._•lh)oii

The key performance measures and design issues that we considered in our

evaluation are summarized below.

Performance measures:

"* stability

* transient response
- settling time
- overshoot

"* steady-state behavior

tracking error

limit cycles
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"* robustness to modeling uncertainty
"* sensitivity to noise and disturbances
"* control action (energy, power)
"* adaptation time
"* optimality (local vs. global)

Other issues:
"* controller design difficulty

- structure

- parameters

- training process

"* information requirements
- a priori (design and training)

- real-time (measurements)

"* implementation

- processing requirements
- storage requirements

- sequential vs. parallel

- cycle time

"* scale-up to more difficult problems

2.4.2 Alternative Approaches

A number of alternative approaches to drive-reinforcement learning were consid.
ered as candidates for subsequent application to the flight control problem. Sev-
eral conventional approaches were included in this comparison to provide a
stronger basis for comparison. The results of this comparison are summarized

below.

Linear State Feedbac& Control

Basis:

"* linear combination of the state variables

"- [Kailath (1980); Maybeck (1979)1
Advantages:

* well-developed theory
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* "turnkey" design process

* wide-ranging applicability

Disadvantages:

• linear and quasi-linear systems only

• sensitive to modeling uncertainty

* not adaptive
Y

Gain Scheduling

Basis:

• multiple linear controllers

* switching or interpolation

o [Astrom & Wittenmark (1989)]
Advantages:

: nonlinear control-law

Disadvantages:
* extensive manual tuning rt A,.,ired

i ad hoc design = "black art"

0 not adaptive

Indirect Adaptive Control

Basis:

* parameter estimation (e.g., recursive least squares)

• linear design (e.k., poie-placement, LQR)

• [Gupta (1986); Narendra, Ortega, & Dorato (1991)]

Advantages:
"* adaptive

"* flexible design
Disadvantages:

* age-weighting or resetting required

0 persistent excitation required

* identification problems
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Model Reference (Direct) Adaptive Control

Basis:

"* explicit description of desired system behavior (reference)

"* gradient algorithm

"• [kstrorm & Wittenmark (1989); Narendra & Annaswamy (1989)]

Advantages:

* identification not required

Disadvantages:

"* stability problems for nonminimum phase systems

"• local optimization only

Direct Adaptive Control: TDC

Basis:

" "'time-delay" control: adaptive nonlinear transformation

"* [Youcef-Toumi & Ito (1990)1

Advantages:

"• simple algorithm

"* exceptional flexibility

Disadvantages:

"* sensitive to "B" matrix uncertainty (e.g., unknown actuator dynamics)

"* high sampling rate required

"* state derivative required

ASE!ACE Learning Control

Basis:

"• associative reinforcement learning

"* [Barto, Sutton, & Anderson (1983)]

Au vantages:

"* simple learning algorithm

"o optimizing
Disadvantages:

". bang-bang control laws only

"* state-space quantization required
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* high storage requirements

* performance does not improve with refinement of quantization scheme

* difficult to specify control objective

None of the various approaches considered above was completely satisfactory for

the objectives we had in mind. In addition to carrying out software simulations of

the basic algorithms, we also conceived and implemented a number of modifica-

tions to these algorithms (e.g., a type of "annealing" algorithm for the ASE/ACE

paradigm). Even so, nonc appeared to be suitable for our application to flight con-

trol. However, as a result of the experience and insight gained during our exam-

ination of these various approaches as well as the D-R learning paradigm, we

were able to first conceive and then develop a novel hybrid adaptive/learning con-

trol approach that was ultimately successful. This approach is the subject c:F most

of the remaining chapters.

2.5 DR Revisited: ACP Networks & Learning for Optimal Control

As mentioned at the outset, a decision was made to revisit the drive-reinforcement

learning paradigm in the special case where it is embedded in an associative

control process network. The results of this phase of the program are fully

described in Attachment 3.
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3 Le~rm-ng for Flight Control

This chapter provides a high-level discussion of the motivation for, as well as the

issues underlying, the use of learning in flight control applications.

After a brief introduction in Section 3.1, some background material on the topic of

flight control system design is presented in Section 3.2. Key differences between

adaptation and learning (in this context) are outlined in Section 3.3. Section 3.4

motivates and presents a high-level description of the hybrid adaptive/learning

control methodology, which will be developeCd in more detail in the next chapter.

Section 3.5 elaborates on the idea that learning (in the context of control) can be

considered as automatic (c-.-line) function synthesis. Section 3.6 discusses a

number of important appiication issues associated with the use of adaptation and

learning in flight control. The potential benefits of learning augmentation are

then summarized in Section 3.7.

3.1 Introduction

The design of automatic control systems for high performance aircraft represents

a difficult and challenging problem because of the coupled, multivariabL, nonlin..

ear, and time-varying nature of flight dynamics, in conjunction with the uncer-

tainties associated with existir.g aerodynamic vehicle models. The added specifi-

cation of "high perfia-mance" gene,-ally implies an expanded flight envelope and

faster dynaxics---attributes that only exacerbate the problem. P-nventional con-

trol system design methods for such systems have a number of important limita-

tions. Fixed parameter. off-line control system design approaches (e.g., based on

gain scheduling, dynamic inversion, or extended linearization) .,'e suitable for

nonlinear problems where there i3 little or no model uncertainty; in practice, they

often reouire extensive manual tuning (which can lead to excessive development

costs) because the physical models used during the desigf process do not always

accurately reflect the actual system dynamics. Robust design methods deal with

the problem of model uncertainty, but may sacrifice closed-loop system perfor-

mance as a result, and may be impractical for problems involving significant

Ponlinearity or time-varying dynamics. Adaptive c,'ntrol appreaches can ac-

commodate somn parametric model uncertainty and slowly time-varying dynam-
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ics, but may be unsuitable or inefficient for pr" ,eAem& involving significant struc-

tural mod uncert-ainty (e.g., signiirant nonlinearity).

An alternative approach relies on the use of learningv to aug--nent the flight control

system. This approach can directly acco~nmodFve paiametric uncertainty And

some structural uncertainty (including mnemovyless nonlinearities). Learning

systems offer unique capabilitie- that may be exploited to provide superior flight

control systems. The approach we have pursued relies on special-purpose

connectionist systems that can be used for on-line learning. Thf key concept un-

derlying our methodology is the v .w that.

learning may be interpreted as tb 3 automa',c synthesis of multivari-

able functional mappings, basel 6, experi. ,ntial inforriation that is

gained incrementally over time, and a crite) ion for optimality.

When combined with adaptation, the resulting hybrid control strategy provides a

powerful control. system design and implementation tec1hnique. For flight control

applications, we argue that advanced control systems incorporating learning may

be used advantageously to:

* facilitate the contro! system design and tuning process

* accommodate mode,'ing error through on-line interaction with the actual

vehicle

* improve performance through on-line self-optimization

a improve efficiency Ly reducing undesirabie transient effects that would

ordinarily be induced by parameter adjustment in a purely adaptive

controllier

In a fundamental sense, the flight control system design problem is to find an ap-

propriate "functional mapping, ftom measured and desired vehicle outputs, to a

set of control actions that will produce satisfactory behavior in the closed-loop sys-

tem. In other words, the problem is to chcose a function (a control law) that

achieves certain closed-ioop performance objectives when applied to the open-loop

system. In turn, the solution to this problem may naturally involve other map-

pings (recall Section 1.1). In general, these mappings may represent static or

dynamic functians.



If there is adequate design information (i.e., if all pertinent vehicle dynamic and

aerodynamic models are available) and if there is little or no significar . uncer-

tainty in this data, then (in principal) the mappings required to produce a satis-

factory flight control system can be designed and developed through a co1mpletly

off-line process, which results in an a pi iori controller. Unfortunately, this situa-

tion rarely exists in practice, particularly when the design is for a system

as complex as a modern high performance aircraft. At the very least, manual

tuning of the nominal control law will be required, following initial flight testing.

The need for learning, in the context of flight control, arises in situations where a

system must orerate in conditions of uncertainty, and where the available a priori

information is so limited that it is impossible or impractical to design in advance

a system that has fixed properties and also performs sufficiently well [Tsypkin

(1973)]. Current design trends for high performance aircraft (e.g., flight envelope

expansion into more complex and less understood flight regimes) suggest that the

traditional off-line design approach, followed by flight test and manual tuning,

will become increasingly difficult, perhaps even to the pnint where this approach

is no longer adequate, nor cost-effective [Baker & Farrell (1991); Steinberg (1992)].

Accordingly, a central role of learning in flight control is to enable a wider class of

problems to be solved, by reducing the prior uncertainty to the point where sat-

isfactory solutions can be obtained, in part, on-line.

3.2 Background: Flight Control System Design

Subsection 3.2.1 briefly reviews some of the difficulties that may be encountered in

the design of flight control systems, while Subsection 3.2.2 describes ýimitations of

the traditional approaches that are used to address these problems. Issues that

are not related to learning augmentation per se have been purposely excluded

from the discussion.

2.21 esg DDfiziCAtige

An effective flight control system design must address several difficulties related

to the complex dynamical behavior of aircraft, as well as a further difficulty

arising from modeling errors.
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Multizvariable Control & Dynamic Coupling

Because aircraft rely on multiple effectors (e.g., ailerons, canards, elevators,

rudders, and thrust-vectoring) to simultaneously control a number of outputs

(e.g., attitude and attitude rates), the control system design problem is formally P
multivariable one. Due to a combination of rigid-body and aerodynamic effects,

the principal state variables associated with aircraft flight dynamics (altitude, ve-

locity vector, orientation angles, and angular velocity vector) are coupled via the

equations-of.motion. Thus, for example, nonzero roll rates can cause yaw rate

changes (i.e., roll-yaw coupling). In some cases, it may be possible to decouple

such input/output modes and design multiple independent single-input/single-

output (SISO) controllers. However, this approach has the disadvantage that sys-

tern performance will often be sacrificed, since, in general, a multivariable con-

trol system may be necessary to fully exploit the dynamical potential of the vehicle
and obtain maximal system performance (e.g., maximal maneuvering capabil-

ity). The design of a full multivariable control system is often considerably more
difficult ihan the design of multiple independent SISO controllers, due to the

higher dimensionality and dynamic coupling associated with the system.

Nonlinearity

The dynamical behavior of all aircraft is inherently nonlinear. This is due to: (i)

aerodynamic forces and moments that are complex nonlinear functions of air-

craft state, (ii) dynamic coupling terms that have a nonlinear form, (iii) actuators
and effectors that have physical limitations (e.g., saturation and rate limits), and
(iv) nonlinear engine dynamics. For example, control surface effectiveness de-

pends on the speed, altitude, and attitude of the aircraft-under some conditions a

control surface may become ineffective (e.g., in a stall) or even reverse its effec-

tiveness (eg., as in aileron reversal). Standard aircraft equations-of-motion are

structurally nonlinear, moreover, the "parameters" used are often themselves
nonlinear functions of the aircraft state. Under such conditions, a single fixed

gain linear control design will generally be inadequate.
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Time-Varying Dynamics

Additional control system design difficulties arise because the dynamical behav-

ior of an aircraft can change over time. The effect of these variations may be ei-

ther predictable or unpredictable. Sources of time-varying dynamics whose effect

cannot be predicted include disturbances (e.g., wind gusts), component degrada-

tion, and component failures. In contrast to these sources of time-varying dy-

namics, there are others whose effect can be predicted. For instance, aircraft dy-

namical behavior varies (in a predictable manner) as a function of configuration

changes (e.g., wing sweep), fuel use, or payload deployment. These particalar

time-varying behaviors can actually be construed as spatial dependencies, where

the state of the vehicle is augmented to include variables (which may be analog or

discrete-valued) such as WINGSWEEPANGLE, REMAININGFUEL, or PAYLOAD_

DEPLOYED. To accommodate such predictable temporal variations, a control sys-

tem must be explicitly designed to do so (e.g., via gain scheduling), be adaptive, or

be robust to such effects.

Model Uncertainty

Aerodynamic vehicle models are susceptile to two types of urcertainty: struc-

tural and parametric. Structural uncertainty arises when the assumed mathe-

matical form of the equations-of-motion (e.g., the standard six-degree-of-freedom

aircraft model) is unable to adequately describe the behavior of the vehicle

throughout the operating envelope. This means that no fixed (constant) set of

globally correct model parameters exists. To account for this, the parameters in

most aircraft models are scheduled as a function of other variLbles. In turn, this

generally implies that the functional relationship between these scheduling vari-

ables and the model parameters is not known in closed-form (a second possibility

is that the relationship is too complex to be represeated conveniently in closed-

form). Even if the presumed equations-of-motion were capable of accounting for

all aerodynamic forces and moments (i.e., even if there were no structural uncer-

tainty), empirical errors incurred during the estimation of the model parameters

(e.g., due to measurement noise) would still result in some parametric uncer-

tainty and, hence, discrepancies between the actual and simulated vehicle behav-

ior. In general, moddl-based control system design can only be as good as the un-



derlying model, and if there is significant uncertainty in this model, the results

may be catastrophic.

Design Trends

As high performance aircraft continue to evolve, the desired flight envelope is
likely to expand; indeed, the general trend is towards new flight regimes that are,
at the same time, more complex and less understood (e.g., post-stall maneuver-
ing). Trends that are likely to exacerbate the design problem include:

a flight envelope expansion =* increasingly nonlinear and unknown regimes

9 additional control effectors (e.g., vectored thrust) =* higher dimensionality
* relaxed-static-stability and agility * faster control response needed

In the future, flight control system design may become increasingly difficult,
perhaps even to the point where traditional methods are no longer adequate, nor
cost-effective.

3.2.2 Traditional Design Approaches

Three different approaches to flight control system design are discussed below, in
the context of the design difficulties outlined in the previous subsection. In a gen-
eral sense, the use of learning does not preclude the use of these other techniques;
in fact, the main advantages of learning are realized by using it (in an appropri-
ate manner) to augment existing control methodologies.

Robust Control

Robust control design methods attempt to explicitly incorporate robustness to
parametric and structural model uncertainty into the control systema design

[Maciejowski (1989)]. In the ideal case where the design model is perfect and
there is no uncertainty, maximal closed-loop system performance can be obtained
through an appropriate optimal feedback control law. Acknowledging that some
level of model uncertainty exists, robust control techniques (e.g., H., p-synthesis,

or even classical gain and phase margin based approaches) can be used to design
a fixed parameter control system that will provide a guaranteed level of (sub-
maximal) performance for any plant in a prescribed set of likely planks. This set
might, for instance, be described by a simplified model (typically linear) and a
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bounded set of nominal model parameters (usually, a physically realistic range is

specified for each model parameter). The parameter ranges must be large

enough to ensure that the resulting set of models contains the behavior of the ac-

tual plant. The robust control system design problem is essentially a minimax

optimization problem; its solution tends to be conservative in the sense that the

best that can be achieved is often dictated by the worst case scenario. Thus, a

tradeoff exists between performance and robustness, and robust control designs

are achieved at the expense of resulting closed-loop system performance--relative

to a control design based on a perfect model.

To some extent, robustness to nonlinear and time-varying dynamical behavior

may also be obtained through robust design methods, since these effects can be

considered to be a component of the model uncertainty, and can tberefore be ac-

commodated by increasing the level of the prescribed model uncertainty. The dis-

advantage of this approach is that it caa result in very conservative assumptions

about the level of uncertainty and, thus, may lead to even lower levels of overall

system performance. There is probably sufficient uncertainty in the standard

aircraft equations-of-motion so that high closed-loop system performance can only

be obtained in one of two ways: (i) through extensive manual (off-line) tuning of

the nominal control law design, based on flight test data or (ii) via an automatic

on-line adjustment technique--a fixed a priori robust control design will "ot nec-

essarily suffice.

Gain Scheduling / Manual Tuning

A traditional control system design methodology for high performance aircraft is

based on gain scheduling [Astr6m & Wittenmark (1989); Kreisselmeier (1986);

Stein (1986)A. In this scheme, multiple linear controllers are used to approximate

the required nonlinear control law. A separate linear controller must be designed

for each member of an ad hoc set of distinct regions that together cover the

complete flight envelope. In each region the dynamical behavior of the aircraft is

assumed to be linear (multiple regions are required since the aircraft dynamics

cannot be accurately represented by a sinigle linear model). Nonlinear dynamical

effects are addressed by transitioning between locally applicable linear con-

trollers. The complete nonlinear control law is realized by interpolating betweei.

these separate linear controllers in a preprogrammed manner, as a function of
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the current state of the vehicle. The number of distinct locally linear operating
points that might be considered can range into the hundreds.

The ad hoc and localized nature of the gain scheduling design approach can re-
sult in numerous design iterations, each involving manual redesign of the nomi-
nal control law (for certain flight conditions), followed by extensive computer
simulation to evaluate the modified control law. After the initial control system
has been designed and validated in simulation, further difficulties may arise be-
cause the models used during the design process will not always accurately re-
flect the actual vehicle dynamics. Extensive on-line tuning of the nominal control
system may be required to achieve satisfactory performance. Moreover, since the'
feedback gains are scheduled in an open-loop fashion, no automatic corrective ac-
tion is taken to mitigate the effects of a control law that is no longer appropriate.
Hence, time-varying dynamics and other unanticipated events (e.g., performance
degradation and changes in the vehicle configuration or environment) are only
indirectly addressed through the limited robustness of the final control system de-
sign. In the future, conventional gain scheduled (and manually tuned) control
system design methods may become increasingly difficult as a direct result of the
growing complexity and sophistication of new high performance aircraft.

Adaptive Contrr'

Many different adaptive control methods for nonlinear and time-varying systems
have been investigated [Astrom & Wittenmark (1989); Gupta (1986); Narendra &
Annaswamy (1989); Narendra & Monopoli (1980); Narendra, Ortega, & Dorato
(1991); Slotine & Li (1991)]. Two generic strategies are briefly described here. In-
direct adaptive control approaches utilize an explicit dynamical model of the vehi-
cle, which is updated periodically, to synthesize new control laws. This approach
has the advantage that powerful design methods (including optimal control de-
sign techniques) can be employed on-line; however, it has the disadvantage that
on-line model identification is required. Alternatively, direct adaptive control ap-
proaches do not rely upon a vehicle model and, thus, avoid the need to perform ex-
plicit on-line model identification. Instead, the control law is adjusted directly,

based on the obsered dynamical behavior of the vehicle. In either case, the con-
trol system will attempt to adapt if the behavior of the vehicle changes by a signifi-

cant degree.
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Adaptive control systems are dynamic systems and require finite time intervals to

properly detect and account for variations in the vehicle or its environment. If the

dynamical characteristics of the vehicle vary considerably over its operating enve-

lope (e.g., due to nonlinearity), then the control system may be adapting most of

the time (i.e., it may always be in a "partially" adapted state), resulting in de-

graded performance. Note that this can occur even in the absence of time-varying

dynamics and disturbances, since the control system must readapt every time a

different dynamical regime is encountered (i.e., one that is outside the scope of the

current control law). These issues are particularly relevant to flight control

applications, where vehicle behavior is strongly dependent upon flight condition.

For these and other reasons, most control system designs for high performance

aircraft have been based on gain scheduling, rather than on adaptive methods

[Kreisselmeier (1986); Stein (1986)]. As will be discussed in the next section,

learning systems may be used to simultaneously overcome some of the shortcom-

ings and complement many of tvhe advantages of adaptive control systems.

3.3 Adaptation vs. Learning

In addition to modeled (i.e., known) nonlinearities or time-varying dynamics, an

effective automatic control system must overcome difficulties arising from two

sources: (i) noise, disturbances, and unmodeled time-varying dynamics and (ii)

unmodeled nonlinearities, dynamic coupling, and other spatial dependencies.

The first has a temporal emphasis and represents dynamical features that are

essentially unpredictable; in contrast, the second source of difficulty has a spatial

emphasis and represents dynamical features that are predictable. For example,

an advanced flight control system for a high performance aircraft could eventu-

ally "learn" tu anticipate the nonlinear aspects of the vehicle behavior, but could

never anticipate noise, disturbances, or unmodeled time-varying dynamics.

In much the same way that adaptive approaches can be considered as an exten-

sion of fixed parameter (nonadaptive) control methods, ,A iere on-line adjustment

of control system parameters is used to compensate for simple model uncertainty,

learning approaches can be considered as an extension of adaptive control meth-

ods, where on-line synthesis of functional relationships is used to accommodate

more complex model uncertainty. Adaptive methods can be used for applications

involving unknown (but constant or slowly time-varying) model parameters like
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vehicle inertial properties, while learning methods can be used for unknown (but

quasi-static) spatial dependencies like control surface effectiveness as a function

of angle-of-attack. Both methods utilize experiential information gained through

closed-loop interactions with the vehicle and environment to improve their per-

formance during subsequent interactions.

The key differences between adaptation and learning are essentially a matter of

degree and emphasis. Adaptive control has a temporal emphasis: its objective is

to maintain desired closed-loop behavior in the face of disturbances and dynamics

that appear to be time-varying. In actuality, the changing dynamics may be

caused by unmodeled nonlinear effects, so that they are really a function of state

rather than of time. Because the functional form of most adaptive control laws is

generally incapable of representing, over a wide range of operating conditions, the

required control action as a function of the current vehicle state, it can be said that

adapti're controllers lack "memory" in the sense that they must readapt to

compensate for all changing dynamics, even those which are nonlinear (but time-

invariani) and have been experienced previously. This inefficiency can result in

degraded performance, since transient behavior due to parameter adjustmelrt

may occur every time the presumed dynamical behavior of the vehicle changes by

a sufficient degree.

In general, adaptive controllers lack the ability to distinguish between temporally

and spatially dependent variations in the dynamics of a vehicle. They operate, in

effect, by optimizing a small set of adjustable parameters to account for vehicle

behavior that is local in both space and time. To be effective, adaptive controllers

must have relatively fast dynamics so that they can quickly react to changing ve-

hicle behavior.

Learning augmented control strategies differ from those of conventional adaptive

control primarily w-ith respect to "memory" (in the same sense as used above), use

of past information, and emphasis. The contrast between adaptation and

learning is particularly relevant to the control of high performance aircraft.
.earning augmented controllers exploit an automatic mechanism that associ-

ates, throughout some operating envelope, a suitable control action or set of con-

trol Esystem parameters with the current flight condition. In this way, the pres-

ence and effect of previously unknown nonlinearities can be anticipated and ac-
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counted for, based on past experience. Once such a control system has "learned,"
transient behavior that would otherwise be induced by parameter adaptation no
longer occurs, resulting in greater efficiency and improved performance over
adaptive control strategies. To accomplish this, learning control systems rely on
general function approximation schemes that may be used, for example, to map
the current flight condition to an appropriate set of control system parameters (in
this regard, the net effect of learning is similar to that of gain scheduling, with

the proviso that learning has occurred on-line with the actual vehicle, while gain
scheduling is developed off-line via a model).

Learning control has a spatial emphasis. For example, its objective might be to
synthesize a feedback control law (as a function of ve~hicle state) that provides the
desired closed-loop behavior in the presence of unmodeled nonlinear dynamics.
Alternatively, learning can be used to synthesize a mapping from flight condition
to a set of linear model parameters, which can then be used for on-line control law
design.1 Learning systems operate by optimizing over a large set of adjustable
parameters (and potentially variable structural elements [Cerrato (1993)]) to
construct a mapping representing the quasi-static spatial dependencies, aga.i ,
throughout the operating envelope. In effect, this optimization is global in state-
space. To successfully execute this optimization process, learning systems make
extensive use of past information and employ relatively slow learning dynamics.

As defined, the processes of adaptation and learning are complementary: each
has unique desirable characteristics from the point of view of flight control. For
example, adaptive approaches address the problem of slowly time-varying dy-
namics and novel situations (e.g., those which have never before been experi-
enced), but are inefficient for problems involving significant unknown spatial de-
pendencies. Learning approaches, in contrast, have the opposite characteristic:
they are well-equipped to accommodate nonlinear vehicle dynamics, but are not
well-suited to applications involving time-varying dynamics.

1 This second approach is the learning analog to indirect adaptive control, whereas the first
approach iL. analogous to direct adaptive control; cf. [Atkins (1993)]
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3.4 Motivation fwr Hybaid Adaptiveleaniing Control

This section briefly describes hybrid control system architectures that exhibit bkth

adaptive and learning behaviors. These hybrid structures incorporate adaptation

and learning in a synergistic manner. In such schemes, an adaptive system is

coupled with a learning system to provide real-time adaptation to novel situations

and slowly time-varying dynamics, in conjunction with learning to accommodate

stationary or quasi-stationary state-space dependencies (e.g., memoryless nonlin-

earities). The adaptive control system reacts to discrepancies between the desired

and observed behaviors of the plant, to maintain the requisite closed-loop system

performance. These discrepancies may arise from time-varying dynamics, dis-

turbances, or unmodeled dynamics. In practice, little can be done to anticipate

time-varying dynamics and disturbances; thus, these phenomena are usually

handled through feedback in the adaptive system. In contrast, the effects of some

unmodeled dynamics (in particular, static nonlinearities) g~n be predicted from

previous experience. This is the task given to the learning system. Initially, all

unmodeled behavior is handled by the adaptive system; even eually, however, the

learning system is able to anticipate previously experienced, yet initially unmod-

eled behavior. Thus, the adaptive system can concentrate on novel situations

(where little or no learning has occurred) and slowly time-varying behavior.

Two general hybrid architectures are outlined in this section. The discussion of

these architectures parallels the usual presentation of direct, and indireLt adap-

tive control strategies. In each approach, the learning system is used to alleviate

the burden on the adaptive controller of continually reacting to predictable state-

space dependencies in the dynamical behavior of the plant (e.g., stationary, mem-

oryless nonlinearities). Note that various technical issues must be addressed to

guarantee the successful implementation of these approaches. For example, to

ensure both the stability and robustness of the closed-loop system (which includes

both the adaptive and learning systems, as well as the plant), one must address

issues related to: controllability and observability, the effects of noise, distur-

bances, model-order errors, and other uncertainties; parameter convergence,

sufficiency of excitation, and nonstationarity; computational requirements, time-

delays, and the effects of finite precision arithmetic. Maiiy (if lot all) of these is-

sues ar'se in the implementation of traditional adaptive control systems; as such,

there are some existing sources one may refer t~o in the hope of addressing these
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issues (e.g., see [Astrom & Wittenmark (1989); Gupta (1986); Narendra & Anna-
swamy (198S); Narendra & Monopoli (1980); Narendra, Ortega, & Dorato (1991);
Slotine & Li (1991)A). Although these topics are well beyond the scope of this re-
port, in some instances the leazning augmented approach appears to offer opera-
tional advantages over the corresponding adaptive approach (with respect to such
implementation issues).

3.4.1 Direct Implementation

In the typical direct adaptive control approach (see Fig. 3.1), each control action u
is generated based on the measured ym and desired yd plant outputs, internal
state of the controller, and estimates of the pertinent control law parameters k.
The estimates of the control law parameters are adjusted, at each time-step, based
on the error e between the measured plant outputs and the outputs of a reference
system Yr. Of course, care must be taken to ensure that the pla it is actually
capable of attaining the performance specified by the selected reference system.
Direct adaptive control approaches do not rely upon an explicit plant model and,
thus, avoid the need to perform on-line system identification.

The controller in Fig. 3.1 is structured so that normal adaptive operation would
result if the learning system were not implemented. The reference represents the
desired behavior for the augmented plant (controller plus plant), while the adap-
tive mechanism is used to transform the reference error directly into a correction
Ak for the current control system parameters. The adaptation algorithm can be
developed and implemented in several different ways (e.g., via gradient or Lya-
punov based techniques--see lAstrom & Wittenmark (1989); Narendra & An-
naswamy (1989); Slotine & Li (1991)]). Learning augmentation can be accom-
plished by using the learning system to store the required control system parame-
ters as a function of the operating condition of the plant [Farrell & Baker (1992);
Vos, Baker, & Millington (1991)]. Alternatively, learning can be used to store the
appropriate control action as a function of the actual and desired plant outputs
[Farrell & Baker (1991)]. The architecture in Fig. 3.1 shows the first case.
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Figure 3.1. Direct Adaptive/Learning Approach.

When the learning system is used to store the control system parameters as a

- function of the plant operating condition, the adaptive system would provide any

required perturbation to the control parameters k generated by the learning sys-

tem. The signal from the control block to the learning system in Fig. 3.1 is the

perturbation in the control parameters 5k to be associated with the p yj- oper-

ating condition. This association (incremental learning) process is used to com-

bine the estimate from the adaptive system with the control parameters that have

already been learned for that operating condition. At each sampling instant, the

learning system generates an estimate of the control system parameters k asso-

ciated with that operating condition, ard then passes this estimate to the con-

troller where it is combined with the perturbation parameter estimates main-

tained by the adaptive system, and used to generate the control action u. In the

ideal limit where perfect learning has occurred, and there is an absence of noise,

disturbances, and time-varying dynamics, the correct parameter values would

always be supplied by the learning system, so that both the perturbations 3k and
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corrections Ak generated by the adaptive system would become zero. 1 Under

more realistic assumptions, there would be some small degradation in perfor-

mance due to adaptation (e.g., 3k and Ak might not be zero due to noise).

In the casc where the learning system is trained to store control action directly as

a function of the actual and desired operating conditions of the plant, the adaptive

system would provide any required perturbation to the control action generated by

the learning system. Note that a dynamic mapping would have to be synthesized

by Lhe learning system if a dynamic feedback law were desired (which was not

necessary in the first case). The advantage of this approach over the previous one

is that a more general control law can be learned. The disadvantage is that addi-

tional memory is required and that a more difficult learning problem must be ad-

dressed.

3.4.2 Indirect Implementation

In the typical indirect adaptive control approach (see Fig. 3.2), each control action

n is generated based on the measured y,,, and Yd desired plant outputs, internal

state of the controller, and estimated parameters p. of a local plant model. The

parameters k for a local control law are explicitly designed on-line, based on the

observed plant behavior. If the behavior of the plant changes (e.g., due to nonlin-

earity), an estimator automatically updates its model of the plant as quickly as

possible, based on the information available from the (generally noisy) output

measurements. The indirect approach has the important advantage that power-

ful design methods (including optimal control techniques) may potentially be used

on-line. Note, however, that computational requirements are usually greater for

indirect approaches since both model identification and control law design are

performed on-line

If the learning system in Fig. 3.2 were not implemented, then this structure

wGuld represent the operation of a traditional indirect adaptive control system.

The signal p. is the adaptive estimate of the plant model parameters. This signal

! In this case, ti - system architecture is similar to that used in gain 3cheduLing, with the proviso

that learning has occurred on-line with the actual plant, while a gain schedule is developed
ofl-line via a moo~el.
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is used to calculate the control law parameters k. Incorporation of the learning

system would allow the plant model parameters to be iearned as a function of the

plant operating condition. The model parameters generated by the learning sys-

tern allow previously experienced plant behavior to be anticipated, leading to im-

proved control law design [Baird & Baker (1990)]. In this case, the output of the

learning system p, to both the control design block and the estimator is an a priori

obtiw.-te of the model parameters associated with the current operating condition.

An a pt.steriori parameter estimate pp from the estimator (involving both

filtering and posterior smoothing) is used to update the mapping stored by the

learning system. The system uses model parameter estimates from both the

adaptive and learning systems to execute the control law design and determine

the appr npriate control law parameters. In situations where the design proce-

dure is complex and time-consuming, the control law parameters might also be

stored (via a separate mapping in the learning system) as a function of the plant

operating condition. Thus, contro1 law design could be performed at a lower rate,

assuming; that the cor.trol parameter mapping maintained by the learning sys-
ten wvas sufficiently accurate to provide reasonable control in iieu of design at a

higkf . " rate.

- controller pla

kV

learning

system

Figure 3.2. Indirect AdaptivefLearning Approach.
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•4•__•mmamof" Hybrid CoQgn, qit•c&u_

In both of the hybrid implementations described in this section, the learning sys-
tem (prior to any on-line interaction) would only contain knowledge derived from
the design model. During initial closed-loop operation, the adaptive system would
be used to accommodate any inadequacies in the a priori design knowledge. Sub-
sequently, as experience with the actual plant was accumulated, the learning
system would be used to anticipate the appropriate control or model parameters
as a function of the current plant operating condition. The adaptive system would
remain active to handle novel situations and limitations of the learning system
(e.g., finite accuracy). With perfect learning, but no noise, disturbances, or time-
varying behavior in the plant, the contribution from the adaptive system would

eventually become zero. In the presence of noise and disturbances, the contribu-
tion from the adaptive system would become small, but nonzero (depending on the
hybrid scheme used, however, the effect of this contribution might be negligible).
In the general case involving all of these effects, the hybrid control system should
perform better than either subsystem individually. It can be seen that adaptation
ai~d lea;.ning are complg_•l•m _ behaviors, and that they ean be used simultane-
ously (for purposes of automatic control) in a svnergistic fashion, T"hese points
will be further brought out in Chapters 4 and 5.

3.5 Le-mming as Funetdon Symthesis

For a wide and important class of learning control problems, the desired mapping
is known (or assumed) to be continuo is in advance. In such situations, memory
implementations with efficient storage mechanisms i,,an be prcposed. By
assuming that the desired mapping M' x -- y" is continuous, an approximate

mapping M: x -ý y can be implemented by any scheme capable of approximating

arbitrary continuous functions. In such cases, the mapping M is represented as
a continuous function, parameterized by a vector p; i.e., M = M(x;p). The learn-
ing update step wouild be achieved by appropriately adjusting the parameter vector
p by an amount Ap (yet to be detcrinined). By "appropriate," we mean that the
adjusted parameter vector p5 = p + Ap is such that the resulting y = M(x; P) would

be "better" thLn the original y, relative to the desired :esponse y'. As n,,, !-'ro-

ing experiences became available, the mapping M voald be incrementally im-
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proved. Recall would be achieved by evaluating the functional mapping at a

particular point in its input domain,

In this parameterized approach to fanction synthesis, the knowledge that is

gained over time is stored in a distributed fashion in the parameter space of the

mapping. This feature, which arises naturally in any practical implementation

of a continuous mapping, can be most desirable from a learning control point of

view (depending on the way it is achieved, as discussed below). Distributed learn-

ing is advantageous when previous learning under &Milg circumstances can be

combined to provide a suitable response for the current situation. This fusion

process effectively broadens the scope and influence of each learning experience

and is referred to as generalization.

There are several important ramifications of generalization. First, it has the ef-

fect of eliminating "blank spots" in the memory (i.e., specific points at which no

learning has occurred), since some response (albeit not necessarily the desired

one) will always be generated. Second, it has the effect of constraining the set of

possible inpnt/output mappings that can be achieved by the mapping, since in

most cases neighLoring input situations will result in similar outputs. Finally,

generalization complicates the learning process, since the adjustment of the

mapping following a learning experience cannot be considered as an indepen-

dent, point-by-point process (e.g., as in BOXES [Michie & Chambers (1968)1). !n
spite of this, the advantages accorded by generalization usually far outweigh the

difficulties it evokes.

Generalization is an intnnsic feature of function synthesis. approaches that rely

on parameterized continuous mappings. In any practical implementation hav-

ing a finite number of adjustable parameters, each adjustable pararreter will af-

fect the realized function ov :r a region of nonzero measure. When a single pa-

rameter p, (from the set p - {p,p2,. , p,}) is adjusted to improve the approxima-

tion at a specific point x, the continuous mapping M (i.e., at least one of the out-

puts of M = {M 1 ,M2 , ,M1,}) will be affected throughout the region of "influence"

of that parameter. This region of influence -is determined by the partial deriva-

tives )M,/dp, (one for each output of' M), which are functions of the input x.

Under these conditions, the effect of a learning experience will be generalized au-

tomaltically, and ex.e nded to all parts of the mapping in which the ".ensitivity"
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functions dMI/dpj are nonzero. The greatest effect will occur where IMIidpjI is

largest; little or no change will occur wherever this quantity is small or zero. The

nature of this generalization may or maay not be beneficial to the learning process

depending on whether the extent of the generalization is local or global. These is-

sues are further discussed in Subsection 3.5.3.

For function synthesis approaches based on parameterized representations, the

learning process requires an algorithm that will specify an appropriate Ap so as

to achieve some desired objective. When the mathematical structure used to im-

plement the mapping is continuously differentiable and the objective function J

can be treated as a "cost" to be minimized, then the construction of Ap can be

straightforward. In the special case where the adjustable parameters p appear

linearly in the gradient vector dJ1,9p of the cost function J with respect to the ad-

justable parameters p, the optimization could be treated as a linear algebra prob-

lem; in general (i.e., for most applications), nonlinear optimization methods must

l e used. One nonlinear techniqtie that is suitable for on-line learning is the gradi..

ent learning algorithm: Ap = -W -(dJ/ldp)T , where W is a symmetric positive

definite matrix that determines the "learning rate," and the gradient dJidp is

defined to be a row vector. If a second-order Taylor eypansion is used to provide a

local approximatlon of the objective function J (about the current parameter

vector p), then the "optimum" W which minimizes this local quadratic cost func-

tion in a single stop can be shown to be equal to the inverse of the Hessian matrix

H (of J), so that

Wd J T 9 (3.1)

This equation is only valid when the local Hessian matrix is positive deilinite. Be-

cause it is difficult to compute and invert the Hessian on-line, the weight matrix

W is usually only an approximation of tLe full Hessian, as in the Levenberg-Mar-

quardt method [Press, et al. (1988)i' Often, in fact, a single learning rate coeffi-

cient a is us~ed tc set W= AI.

More insight can be gain-l into the gradient learning algorithm through an ap-

plication of the chain rult, which yields: Ap =.---W (dy/dp)ý .(dJ/dy) (where the

Jacobian ()y/dp is defined as a matrix of gradient row vectors dy,/dp, so that

dJ/lp ((d'J!y).(dy,/p)). This form of the gradient learning rule involves two
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types of information: the Jacobian o" the outputs of the mapping with respect to

the adjustable parameters, and the gradient of the objective function with respect

to the mapping outputs. The gradient dJ/dy is determined both by the specifica-

tion of the objective function J and the manner in which the mapping outputs af-

fect this function (which, in turn, is determined by the way in which the learning

system is used within the control system architecture). The Jacobian dy/dp is

completely detenrined by the approximation structure M and, hence, is known a

priori as a function of the input x. Note that the performance feedback informa-

tion provided to the learning system is the output gradient dJ/dy. This gradient

vector provides the learning system with considerably more information than the

scalar J; in particular, dJ/dy indicates both a direction and magnitude for Ap

(since dy/dp is known), whereas performance feedback based solely on the

scalarJ does neither.

To give an illustrative example, a simple quadratic objective function might be de-

fined as

J = eie (3.2)
E

where J is the cost to be minimized (over a finite set of evaluation points

x EE={xi,x,. IxR}) and the output errors ei = y* - yi = M*(xi)- M(x,) are as-

sumed to be known. In the special case where the objective function is given by

(3.2) and W = A, the learning rule is

Ap = a_--.Tei

If the objective function is a strictly convex function of p, then the gradient algo-

rithm will find the optimum value p" that minimizes J. For most practical

learning control problems, however, the situation is much more complicated.

The objective function J to be minimized may involve terms that are only known

implicitly (e.g., the .esired output y" may not be explicitly known or, equivalently,

the output error e of the mapping may not be measurable); moreover, J may be

significantly more complex than that shown in (3.2) (e.g., J may be a dynamic

rather than a static function). Finally, for reasons that will be discussed in Sub-

section 3.5.2. objecti,.e functions defined over a finite set of evaluation points (as in

(3.2)) cannot usually be used directly for on-line learning control.
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As with all gradient based optimization techniques, there exists a possibility of

converging to a local minimum if the objective function is not convex. This point

together with the preceding discussion suggests two desiderata for learning con-
trol systems employing gradient learning methods: first, the architecture should

allow for the determination (or accurate estimation) of the gradient dJ/ldy and,

second, the cost function J should be a convex function of the adjustable parame-
ters p. Note that it may be possible to determine or estimate dJ/dy without ever

knowing y'.

3.5.1 Connectionist Learning Systems

Connectionist systems, including what are often called "artificial neural net-
works," have been suggested by many authors to be ideal structures for the im-

plementation of learning control systems. A typical connectionist system is orga-
nized in a network architecture that is comprised of nodes and connections be-

tween nodes. Each node can be thought of as a simple processing unit, with a

number of adjustable parameters (which do not have to appear linearly in the
nodal input/output relationship). Typically, the number of different node types in

a network is small compared to the total number of nodes. Common examples

include multilayer sigmoidal [Rumelhart, Hinton, & Williams (1990)1 and radial

basis function [Poggio & Girosi (1990)] networks.1 The popularity of such systems
arises, in part, because they are relatively simple in form, are amenable to gradi-

ent learning methods, and can be implemented in parallel computational hard-

ware.

Perhaps more importantly, however, it is well known that several classes of con-

nectionist systems have the universal approximation prc perty. This property im-
plies that any continuous function can be approximated to a given degree of accu-

racy by a sufficiently large network [Funahashi (1989); Horni., Stinchcombe, &

1 We do not consider any recurrent networks (i.e., networks having internal feedback and,
hence, internal state) in this discussion for the simple reason that any recurrent network
representing a continuous or discrete-time dynamic mapping can be expressed as an
equivalent dynamical system comprised of two static mappings separated by either an
integration or unit delay operator. In other words, the problem can always be decomposed into
two component problems: that of estimating the parameters of the static mappings and that of
estimating the state of the dynamical system (e g., via an extended Kalman filter [Livstone,
Farreli, & Baker (1992)]).
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White (1989)]. Although the universal approximation property is important, it is

held by so many different approximation structures that it does not form a suit-

able basis upon which to distinguish them. Thus, we must ask what other at-

tributez sre important in the context of learning control. In particular, we must

look beyona the initial biological motivations for connectionist systems and deter-

mine whether they indeed hold any advantage over more traditional approxima-

tion schemes. An important factor to consider is the environment in which

learning will occur. Thus, for example, the quantity, quality, and content of the

information that is likely to be available to the learning system during its opera-

tion critically impact its performance, and should be accounted for in the selection

of a suitable learning approach.

The particular scenarios that we will consider involve the use of passive learning

strategies; that is, learning schemes that are opportunistic and exphlit whatever

information happens to be available during the normal course of operation of the

closed-loop system. In contrast, one might also consider active learning strate-

gies, in which the learning control system not only attempts to drive the outputs of
the plant along a desired trajectory, but also explicitly seeks to improve the accu-

racy of the mapping maintained by the learning system. This is achieved by in-

troducing "probing" signals that direct the plant into regions of its state-space

where insufficient learning has occurred. Active learning control is analogous to

dual (adaptive) control [IAstr6m & Wittenmark (1989)]. Because we wish to focus

on passive learning strategies, the learning systems we consider must be capable

of accommodating on-line measurements and performance feedback that arise

during the normal operation cf the closed-loop system. This situation presents

special challenges, as discussed in the next subsection.

3.5.2 Incremental Learning Issues

If the goal is to have learning occur on-line, in conjunction with a plant that can

be nominally modeled as the discrete-time dynamical system

f(x*,uk) (3.3)

Yk = h(x,,u,)

where f(-,-) and h(-,-) are continuous, then an objective function of the form given

by (3.2) cannot be used directly. The main problem is that the set of possible inputs
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to the mapping maintained by the learning system will n consist of a finite set of

discrete points. Consequently, it will not be easy way to select a finite set of

representative evaluation points z, E E, nor will it be possible to guarantee that

any or all of them are ever visited. In general, the inputs z to the learning system

will be comprised from measured or estimated values of {x, u, y}-which repre-

sent a continuum. Fortunately, various alternative objective functions that ap-

proximate (3.2) are feasible and are often used in practice. For example, one ap-

proach would be to allow the set E to grow on-line to include all z, as they are en-

countered; i.e.,

E, = {Z1 PZ 2 , ... ,zk} (3.4)

In the special case where the adjustable parameters p appear linearly in the

gradient dJ/dp of (3.2) and E is given by (3.4), recursive linear estimation tech-

niques (e.g., RLS) could be used to obtain the "optimum" parameter vector p"

(corresponding to the particular set E). In most connectionist networks, how-

ever, some or all of the adjustable parameters appear nonlinearly in dJ/dp;

hence, linear optimization methods 2a.nnot be used. Moreover, evaluation sets of

the form given by (3.4) are difficult to employ in a nonlinear setting.

By far, the most common objective function used for on-line learning in control

applications is the point-wise function given by

J =ee (3.5)

(3.5) can be considered as a special case of (3.2) when the evaluation set E con-

tains a single point at each sampling instant. Learning algorithms that seek to

minimize point-wise objective functions in lieu of objective functions defined over

a continuum are referred to as incremental learning algorithms; they are related

to a broad class of stochastic approximation methods [Gelb (1974)]. Incremental

gradient learning algorithms operate by approximating the actual gradient

dJ/dp of (3.2) with an instantaneous estimate of the gradient, based on (3.5). In-

cremental gradient learning :lgorithms of this 7orm are related to stochastic gra-

dient methods [Haykin (1991)]. The (i, of point-wise obVj,,'tive functions to approx-

imate batch (or ensemble) objective func'Ions (i.e., those in which E contains

more than one point) will generally not be succr,,.•sfl~ unless special attention is

given ,o the distribution of the ei2luation points, the form of the learning algo-

rithrn, and the structure of the network. We will have more to say concerning

this point in the next subsection.



One well-known and widely used stochastic gradient algorithm is the least-mean-

square (LMS) algorithm (Widrow & Hoff (1.960)]. The LMS parameter adjustment

law is Ap = -a(dJ/dp) , where the gradient dJ/dp is based on (3.5). Given cer-

tain assumptions (e.g., linearity, stationarity, Gaussian-distributed random

variables, etc.), LMS can be shown to be convergent, relative to the objective func-

tion of (3.2), with E given by (3.'i). In this case, the LMS algorithm is guaranteed

to be convergent in the mean and mean-square, i.e.,

lim E(pk) = p,, and lim E(J,) = J,,bop:, > J,,,,_

where E(.) denotes expected value, if the learning rate coefficient a (a constant)

satisfies conditions related to the eigexivalues of the input rorrelation matrix of

(e.g., a cannot be too large) [Haykin (1991)]. In the first limit, as the number of

learning experiences goes to infinity, the expected value of the parameter vector

approaches that of the optimum parameter vector po,, corresponding to the

Wiener solution for this problem (which achieves J ). In the second limit, the

expected value of the cost (which is the mean-square error), also approaches a

limit, but not the minimum value achieved by the optimum (Wiener) solution.

Under these same conditions, convergence of the parameter vector (not its ex-

pected value) to the optimum value, i.e.,

lim Pk = P"',k-)-•

can be obtained if the learning rate coefficient decreases at a special rate over time

(e.g., ak - I/k) [Gelb (1974)]. Although the theory supporting the stability and

convergence of the LvMS algorithm only applies to the special case of a li.ner net-

work (among other assumptions), the basic strategy underlying LMS has been

used to formulate a simple learning algorithm for nonlinear networks. In this

case, the parameter adjustment law becomes

Ap = a--y-, e (3.6)

where drJ/dp is based on (3.5) (with e = y -- y). (3.6) represents the standard in-.

cremental gradient algorithm used by many practitioners for on-line learning

control.



3.5.3 Spatially Localized Learnn

Special constraints are placed on a learning system whenever learning is to occur

on-line, during closed-loop operation; these constraints can impact the network
architecture, learning algorithm, and training process. Assuming a passive

learning system is being employed, the learning experiences (training examples)

cannot be selected freely, since the plant state (and outputs) are constrained by the

system dynamics, and the desired plant outputs are constrained by the specifica-

tions of the control problem (without regard to learning). Under these conditions,

the system state may remain in small regions of its state-space for extended peri-

ods of time (e.g., near setpoints). In turn, this implies that the data z used for in-

cremental learning will remain in small regions of the input domain of the map-

ping being synthesized. Such stasis can cause undesirable side-effects in situa-

tions where parameter adjustments (based on incremental learning algorithms)

have a nonlocal effect on the mapping maintained by the learning system.

For example, if a parameter that has a nonlocal effect on the mapping is repeat-

edly adjusted to correct the mapping in a particular region of the input domain,

this may cause the mapping in other regions to deteriorate and, thus, can effec-

tively "erase" learning that has previously taken place. Such undesirable behav-

ior arises because the parameter adjustments dictated by an incremental learn-

ing algorithm are made on the basis of a single evaluation point, without regard

to the remainder of the mapping. Another unfortunate phenomenon is irherenit

in all incremental learning algorithms: conflicting demands on the adjustable

parameters are created because, foi, instance, the vector p, that minimizes J in

(3.5) at some point z,, will generally diffhr from the vector p* that minimizes this

function at some other point z). The idiosyncrasies associated with passiv ý in-

cremental learning in closed-Ioop control (i.e., stasis coupled with nonlocal leari>-

ing, and conflicting parameter updates), have precipitated the development and

analysis of spatially localized learning systems.

The basic idea underlying spatially localized learning arises from the observation

that learning is facilitated in situations where a cleai association can be made be-

tween a subset of the adjustable elements of the leprning system and a localized

region of the input-space. Further consideration of this point in the contexL of the

difficulties described above, singgests several desired trailts for learning systems



that rely on incremental gradient learning algorithms. These objectives can be

expressed in terms of the previously mentioned "sensitivity" functions dM,/dp j ,
which are the partial derivatives of the mapping outputs Mi with respect to the

adjustable parameters p,. At each point x in the input domain of the mapping, it

is desired that the following properties hold:

"* for each Mi, there exists at least one pj such that the function IdM 1/dpi is

relatively large in the vicinity of x (coverage)

"* for all M, and pj, if the function I3MJlpjl is relatively large in the vicinity of

x, then it should be relatively small elsewhere (localization)

Under these conditions, incremental gradient learning is supported throughout

the input domain of the mapping, but its effects are limited to the local region in

the vicinity of each learning point. Thus, experience and consequent learning in

one part of the input domain have only a marginal effect on the knowledge that

has already been accrued in other parts of the mapping. For similar reasons,

problems due to conflicting demands on the adjustable parameters are also re-

duced.

Several existing learning system designs, including BOXES [Michie & Chambers

(1968)], CMAC [Albus (1975)], radial basis function networks [Poggio & Girosi

(1990)], and local basis/influence function networks [Baker & Farrell (1990);

Millington (1991)), generally do exhibit the spatially localized learning property.

In contrast, the ubiquitous sigmoidal (or perceptron) network often does not ex-

hibit this property. To combat the problems associated with nonlocalized learning

and conflicting parameter updates, a number of simple corrective procedures

have been used with sigmoidal networks, including local batch learning, very

slow learning rates, distributed (uncorrelated) input sequences, and randomizing

input buffers (e.g., see [Baird & Baker (1990)M).

To give a simple example of spatially localized learning, we will briefly describe

local basis/influence function networks and, in particular, the linear-Gaussian

network. This approach relies o5n a combination of local basis and influeence fhnc-

tion nodal units Lo r .Thieve a compromise between the spatially localized iearning

properties of quantized learning systems (e~g., those basi,;d on "bins") and the effi

cient representat'on and generalization capabilities of other connectionist net-

works. The complete network mapping is construct, frora a set of local basis

functions f,(x) that !ave apphcability only over spatially localized regions of the



input-space. The influence functions y (x) are coupled in a one-to-one fashion
with the basis functions fi(x), and are used to describe the domain over the input-
space (the "sphere of influence") of each locai basis function. In other words, rel-
_-ative to some point x° in the input domain, each influence function 7(x) is de-

fined as a nonnegative function, with a maximum at x°, that tends to zero for all
points x that. are "far away" from x°. The overall input/output relationship is
given by

y(x) = X )f(x (3.7a)

where n is the number of nodes in tVe network and rF(x) are the normalized in-

fluence frinctions, defined to be

r,(x) with 0<1ri(x)_<1 and YFx*=1 (3.7b)

j=1

By design, each adjustable paramter in this network affects the overall mapping
only cver the limited region of its inp' t-space describcd by the associated (normal-
ize 1) influeoe ful. -.ion. Thus, the .forementioned .-,tasis problem is minimized.

Ne' also that (local) generalizF tion is an inherent property of the network, and
t ilardard incremental g adient earning methods can still be used.

To further illustrate the b:. dic .:on •.pt, we will conider a specific realila.ic a em-
ploy. -g linear functions (v zh n offset, so that they are really affine) as th ! local
basis irnits, and Gaussian functions as the influence function units. I. t0 is lin-

r-Gaussian network , th,, functions f,(x) and y, (x) are defined to 'e:

f,(x) = M,(x-° + ) (3.8),) Q, (X- XO)} l8
where, for each node p iir i in the network, the matrices M, and Q,, the vectors

x' and b,, a;A the sea ar c, are all potentially adjustable (Q, must be symmetric

positive definite). The . ector x' represents the local origin shared by the Lnear-
Gaussian pair, the idea being that the overall mapping is approximated by f, x) in
the "vicinity" of x' (aw characterized by [,(x), relative to all other F,(x)).
cause of its unique structure, physical meaning is more Casily attributed to eacl

parameter and to the overall structure of the netwo'k. As a result, a priori knowl-

edge and partial solutions are easily incorporaed -,e.g., linear control point



designs corresponding to the fi(x)). In fact, linear functions were chosen as the
local basis units due to their simplicity and compatibility with conventional gain

scheduled mappings (alternative local basis units may be more desirable if cer-

tain a priori knowledge is available aoout the regional functional structure of the

desired mapping). Due to its special structure, this network also allows on-line

variable structure learning schemes to be used, where nodal unit pairs can be

added or removed from the network to achieve more accurate or more efficient

mappings. An example of a simple linear-Gaussian network comprised of 5

pairs of local basis/influence function units is shown in Fig. 3.3; the influence

functions (lower part of the figure) have been separated from each other some-

what so that each of the local linear functions is clearly visible in the overall in-

put/output mapping (upper part of the figure).

Figure 1.3. An Example of a Linear-Gaussian Network Mapping (2 ),
Together with Its Underlying Influence Functions.

,earul ag algorithms fr �spatially localized networks can capitalize on localiza-

tion in two ways. First, spatial localization :rplies that at each instant Of time

OfIiy a small suhkýet of the nodal units (ond hence a sýmall lubset of the adjustable

parameter;) have a sigvnificant eflect on the network nmapping. Thus, the effi-

c(,icy V ;f both calccdating the netw ,ek outputs; and of ipdating the network pa--

raimetors can be inproved by ignoring all "Insignificanit" nodal units. For exam -

ple, t bis can be realized in a hi nen r Gaausý ian i net,'vork by ut(iii 11ng ,ni those



nodal unit pairs with the largest normalized influences; that is, those whose

combined (normalized) influence equals or exceeds some predefined threshold

(e.g., 0.95). This approach can greatly increase the throughput of a network when

implemented in sequential computational hardware. Furthermore, since the

system state may remain in particular regions of its state-space for extended

periods of time, it is ,xjected that the approximation error will not tend uniformly

to zero. Instead, the eTor will be lowest in those areas where the greatest amount

of learning has occurred. This leads to conflicting constraints on th learning

rate: it should be smatnl, to filter the effects of noise, in those regions where the ap-

proximation error i- .ýmall; at the same time, it should be larger, for fast learn-

ing, in those regions where the approximation error is large (relative to the

ambient noise level). Resolution of this conflict is possible through the use of

spatially localized learning rates, where individual learning rate coefficients are

maintained for each (spatially localized) adjustable parameter and updated in re-

sponse to the local learning conditions. In this case, the elements of the weight-

ing matrix W would vary individually over time.

The computational memory requirements for spatially localized networks fall

somewhere between those for Donlocal cornectionist networks (on the low side)

and those for discrete-input, analog-output mapping architectures (on the high

side). By requiring each parameter to have only a localized effect on the overall

mapping, we should expect an increase in the number of parameters required to

obtain a mapping comparable in accuracy to a (potentially more efficient) non-lo-

cal technique. Nevertheless, for automatic control applications, training speed

and approximation accuracy should have priority over memory requirements,

since memory is generally inexpensive relative to the cost of inaccurate or inap-

prpriate control actions.

3.6 Application Issues

One stiategy for using learning in flight control involves the development of an

,.)ff-line fli'ght control system design that is optimized (via adaptive and learning

augmentation) relative to a design model, followed by in-flight evaluation and

subsequent on-line tuning relative to the actual vehicle. This requires that a

number of key design issues be resolved. Such issues are identified and briefly
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discussed below, under the assumption that a hybrid adaptive/learning control
approach will be used.

Performance Requirements

As pa&t of any control design, the desired transient and steady-state dynamical

characteristics of the vehicle must be specified. For a complex system with signif-
icant nonlinearity and modeling uncertainty, the specification of performance re-
quirements that are achievable throughout the flight envelope may be a non-triv-
ial matter. It will almost certainly be the case that the vehicle is fundamentally
capable of "delivering more" in some flight conditions than in others. Unfortu-
nately, determining what these innate advantages are and how they can be ex-
ploited may not be completely evident until after in-flight testing with the actual

vehicle has begun. On-line learning could be used to optimize the closed-loop per-
formance of the vehicle over the entire envelope.

A Priori Control Law Design

A basic control law for the flight control system must be selected that is expected
to be able to achieve the desired performance requirements. This involves the se-
lection of the measurements to be used for feedback, the type of control law struc-
ture to be used (e.g., a simple linear combination of the feedback variables or dy-
namic compensation), and a nominal set of control law parameters (e.g., feedback
gains). If a nominal gain scheduled controller already exists, then this design

could be incorporated as a priori knowledge in a suitable learning system [Baker
& Farrell (1992)1. Importantly, the a prinri control law structure should be flexible
enough so that both adaptive and learning augmentation car be used Finally, an

estimator/observer may be needed to synthesize and/or filter the state estimates.

Adaptive System

An adaptive control system must be selected that is an extension of the a priori

control law design; that is, the adaptive design should be such that, if the1 e were

no modeling error, the adaptive system would contribute nothing. Either a direct

or indirect adaptive control system might be used. The ability of the hybrid system

-Zi



to be robust to transients caused by uncertainty is determined primarily by the a
priori and adaptive components of the control system.

Posterior Estimator

Depending on whether a direct or indirect adaptive control system has been se-
lected, a current estimator will exist for the adjustable control or model parame-
ters, respectively. Since the learning process itself need not be performed in
phase with, oi even at the same pace as, the control update cycle, and since sig-
nificantly improved estimates can be achieved by using delayed estimation meth-

ods (e.g., combinations of both filtering and smoothing), a posterior estimator
must be developed and used to provide relatively high quality information to the

learning system.

Learning System

The detailed structure and parameter update algorithm(s) of the learning system
must be selected. These choices are mediated by the anticipated characteristics
(e.g., number of inputs, number of outputs, and complexity) of the functional
mapping(s) to be learned. If, for instance, a conventional indirect adaptive con-
troller is usecd that explicitly estimates model parameters on-line, and if it can be

safely assumed that the significant spatial dependencies in the dynamiral behav-
ior of the vehicle are functions of a subset of the vehicle state (e.g., altitude, speed,

and angle-of-attack,,, then a mapping from these scheduling variables to the

modfel param 3ters is required. Any a priori knowledge of the functional relation-
ships between the inputs and outputs of the desired mapping could be exploited by
selecting an appropriate initial structure and parameter set.

Training Procedure

The development of an appropriate (off-line) training procedure is an important
subtask. The trajectories and initial conditions used for training purposes must

provide sufficient excitatioa of the vehicle dy-iamical characteristics and must
adequately explore the specified vehicle operating envelope. Anl additional issue

cincerns the use of a stochastic vehicle model (to appr-ximate a range of dynami-
cal behaviors) during training. It is possible that such stochastic behavior will



cause the off-line learning process to be loss sensitive to slight modeling -ýrrors, at

the expense, however, of total t~raining time and initial closed-loop system per-
form ance.

Evaluation Procedure

In normal practice, a design. model is esdt upr h lgtcnrlsse
design, development, and preflight evaluation, while the actual uehicle is used to

evaluate the in-flight performance of the closed-loop System. Thus, an off-line

eveluation of the robust capability of any approach can only be mnade relative to a

simulation that accounts for the expected differences (due tou uncerteinty) between
the "design" model and the "actual." vehicle. To fully demonstrate the potential

benefits of a hybrid approach, in particular the on-line tuning and perfor. mance
enhancement capabilities, an off-line avaluation procedure would have to allow

sufflicient time for "in-flight" inter'action with the actuaii vehicle.

3.7 Expw.-ted Benefits

Potential benefits that may be, accoi ded by learning augmentation are described
below,

Control ýy stern Design.i and Tuning

Learning augmentation may facilit3te the design and tunting of flight control sys-
tems for high performance aircraft in several ways. Learn~ing systems can prc--
vide design automation; they can allow known nonlinearities and spatial depen-

dencies to) be comipensated for directly and, irn a~idition, they can provide a means

for off-line flight control system desig'a optimization. These benefits may result in
less mianual involvement during the initi.:.i design phase (to achieve a specified

level ofl peiformance); in addition, a smaller number of tes3t flights (and associated

tunaing) may be reqniired for similar re~asons. The net effect is a reduct~on in effort

and, coin.sequently, a reduction in cost. Lteariting could also play a corresponding

role in the re~trofittirig of advanced flight controlA syste~ms into existin~g high per-

for iance aircraft.
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On-Line Accommodation of U~certairny

Learning augmentatiqn can provide an on-line approach for accomnmodating both

parametric and structural naodel uncrta.inty. This is in contrast to the standard

offline design approach using fixed-para meter, robust control designs. With on-

line learning, the level of i'nceitainty may be reduced t'hrough direct, closed-loop

interactions with the vehicle and its environment tV achieve a posteriori levels of

uncerta9inty that are substantially lower than a priori ones. With the off-line ap-

proach, closed-loep system performance is generally sacrificed to ensure that the

vehicle satisfies some minimuim level of performrance requirements for all likely

variations of the model parameters. The tradeoff between performance and ro-

bustness may be especially severe for vehicles that are required to operate with a

variety of payloads or configurations. The ability to learn on-line can reduce the a

priori robustness reqired, allowing -he designer to obtain a higher level of overall

closed-loop system performance. Depending on A,ýý type of learning system used,

it may be possible to initialize th, system with an a priori robust control design,

and ailow on-ir- : learning to improve this nominal design as the level of

uncertainty is reduced through direct interaction with the vehicle.

Closed-Loop System. Performance

Learning augmnentation can provide an automatic mechanism for improving the

level of closed-loop system performance that is ultimrately achieved, through on-

line self-optimization. This, together Nvith the fact that learning systems are ca-

pable of realizing general multivariable functional mappings, means that ini-

tially untapped vehicle superiorities (e.g., agility) might be e:c.ploited to provide en-

hanced maneuwerability.

Operational Efficiency

Since on-line learning can be v.sed to accommcdate initially unknown spatial de-

pendencies, some transient effects that would otherwise be associated with pa-

rameter adjustment in an entirely adaptive system can be minimized to improve

the opei'ational efficiency and performance of a hybrid control system. On-line

learning can re!duce the burden on the adaptive system of continuously reacting to

predictable nonlinearities.
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4 Hybrid Adaptiv&de ring Control

A specific indirect hybrid adaptive/learning control methodology is derived math-
ematically in this chapter. The motivation for this derivation comes from our ear-
lier analysis of different learning control system architectures and from a consid-
eration of the benefits of exploiting a priori design knowledge and of utilizing on-
line adaptation. The discussion wiil cover three different controllers that are each
based on model-reference compensators of increasing sophistication: a simple
linear compensator, an adaptive version of the linear compensator, and a hybrid

adaptive/learning veision of the linear compensator. Thus, the overall learning
augmented control system will be derived by enhancing a simple linear com-
pensator with both adaptive and learning capabilities.

The model-based linear compensator was designed following a procedure similar
to that in (Anderson & Schmidt (1991)). We further developed this basic approach
so that it might be applied to nonlinear problems. Subsequently, an adaptive

compensator was developed by incorporating and extending ideas presented in
[Youcef-Toumi & Ito (1990)]. Finally, a hybrid adaptive/learning control system
was developed by combining the same adaptive compensator with a learning sys-
tem, and treating the entire problem in a nonlinear framework. The detailed
mathematical derivation is presented in Section 4.1, while several applications of
this control methodology are summarized in Section 4.2.

4.1 Controller Development

In the following derivation, we will assume that the plant dynamics are given in

discrete-time by

x,÷: f(x,,u, U) (4.1)
y= h(xk)

where x,u,y represent the states, inputs, and outputs, respectively, of the plant,
and dim(x) = n, dim(u) in, and dim(y) = m. For the purpose of deriving the

baseline linear compensator, we w ill assume that these equations have been lin-
earized about an equilibrium point Lo yield a local approximation of the form
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Xh1= hbxk + ruk (4.2)

Y= CXk

In fact, we will limit the amount of a priori knowledge of the actual plant dynam-

ics (4.1) that is available for the design of all three controllers (linear, adaptive,

and hybrid) to a single, constant parameter, linear model of the form given in

(4.2). Note that this is not a requirement of our approach-a nonlinear a priori

model of the form given by (4.1) could be used without difficulty. In the derivations

that follow, we chose to use linear systems to describe the reference model and de-

sired output tracking error dynamics, although once again there is no real re-

quirement to do so.

The development of the three compensators begins with the specification of two

more dynamical systems: (i) a model of the desired closed-loop dynamics of the

plant (the reference model) and (ii) a model of the desired dynamics of the differ-

ence between the outputs of the reference model and those of the actual plant (the

tracking error dynamics). The output tracking error e is defined as e = y-y,

where Yr are the outputs of the reference model, y are the outputs of the plant,

and dim(e) = m and dim(yr) = m. The desired tracking error dynamics are de-

fined as
ekj1 =4 ek (4.3)

where 4, is a matrix with all eigenvalues inside the unit circle (i.e., so that (4.3) is

a stable system). Other forms of the error dynamics (4.3) can also be pursued

(e.g., by the addition of integral action). Finally, we will assume that the desired

reference model is also linear and stable:
X •.k 1 = r k- r r,k +( 4r4

Yr.k = C'Xr~k(4)

where Y, and r represent the states and inputs, respectively, of the reference

model, and dim(xr) = p and dim(r) = m.

4._1.1 Baseline Linear Compensator

The lineaa-ized plant model can be expressed in an input-output form by collaps-

ing the state-space description of (4.2):

YA+1 = C4 xk -+ CFuA (4.5)
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A similar operation can be performed to produce an input-output description of

the reference model:

* Yr,.1l = Cr,4?Xrk + C,.rI* (4.6)

"Now, given (4.3), (4.5), and (4.6), it is possible to summarize the control objective:

assuming (4.2) is minimum phase (the possibility that it is not is discussed be-

low), we want to pick uk so that (if possible) the following equation holds

=,.ek = Yrk+l - Yk.1 (4.7)

where the quantity Yd,,.k+1  Y,.k-I- Oek becomes the overall desired response of

the aircraft at time k + 1 to the applied controls uk. Thus, at each time k we seek

a uk that satisfies

0,e,, -Cr 4  ,.r + Crrrrk - Coxk - Cruk (4.8)

Without much difficulty, a control law can be derived in a manner similar to that

outlined in [Anderson & Schmidt (1991)1 to achieve the objective specified by (4.7).

If the matrix (Cr) is invertible, then a potential compensator that would result in

perfect output tracking is given by (4.4) and

U1 = (Cr_'[Yk1 - Cx,-e] (4.9)

Note that (4.4) and (4.9) together represent a linear, multivariable, model-based

compensator, requiring full-state measurements (or the use of a state observer).

It must be stressed, however, that even if (CF) is nonsingular, this compensator

cannot be used if the zero dynamics of the open-loop system are unstable, as this

would be tantamount to attempting to cancel a nonminimum phase zero [Slotine

& Li (1991)A. In many applications, it is known from the basic physics of the prob-

lem that the plant does not have any unstable transmission zeros, and so this is

not an issue. In general, though, this problem can be addressed by choosing al-

ternative tracking outputs or by utilizing a more sophisticated on-line control de-

sign technique (see below).

Noninput / Output Square Systems

If (CF) is singular (e.g., because the system (4.5) is not input-output square), then

the previous compensator (4.9) can be modified by using the following relation

Uk = (Cr)f[yr ,,-CI x,- C 4 e,] (4.10)
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where (.)' denotes the pseudo-inverse of the argument and M*-= (MTM) 1'lir. In

this case, perfect tracking is not generally possible; nevertheless, it can be shown

that (4.10) is the "best" choice for Uk in the sense that it minimizes the Euclidean

norm

S- Yk,1H (4.11)

Similar developments exist 'or cases where there are more controls than outputs,

or where tracking error is tc, balanc •d against control usage (see below).

Infinite-Horizon LQ For, . tion

As ark alternative to t c. (irect ,sigi appro;j.Jh outlined bt -, one could instead

s,,tup adO solvw the follc ing linear-quadrati *reg-rla 'ir L ') design problem

(whero J repreRents thb -.o, to be minim. -J) kiaade t Schmidt (1991)]:

=il(e, .- ,kek 'Q(t -",) .

0
subject to the eo• straim '•quations

Lr,+j •l•1 ,, rJ LOJ

Iek C C + V
4Xr (

where 0, r-prese a fictitous i Li,- -n e mmand shapi i filter that loes not

appear in tie fin_ý tonero1 IaN u: Q an , re assumr I t, le symmetric posi-

tiv( de:ni.te rna r-. s. I1 e cos r1 -,, or• itý motiva ed frol-t Lthe desire to simul..

tan !oulv ach w- ne traAk ng eri r da ics (4.3) and at hi same time penalize

W.I~e upp td x,-t - ,s. Ti 9 iu, it) i_ s optirnizati•,n probleui yields the neces-

- .s -: )- ponciing to the stat,! feedbick f -ore t Ye pL as well as the feed-

"n ard tert i,) y. the 1 3, I rnce syster, a cog( m•ý,s inpat. Although

t ii approvcx. I !ves g- eC,,c,.,..ru, 4tation, the 1,'u on is guaranteed to be stable

1P I liie.ia _. c mcl.r very mild assumptions B on & Ho (1975); Maciejowski

(1989); ,t. z, 3 tVe% (19.2 , qince i n-i-imrnum phase characteristics were



not generally an issue for us, we chose to use the substantially simpler on-line
design method given by (4.9).

One-Step LQ Formulation

Note also that a one-step optimization-i involving both output and control weightir -
is possible. For example, if the cost to be minimized over the next time-step is

JA+l = - (e,,- Oe,,e)TQ(e,+, -Z*ek)+ u'Ru

then the optimal solution is given by (note the similarity to (4.9) and (4.1,3))

uk = [R (cr)Q(Cr)J 1(crQ[yrk+,-C0xA-',bek

Related developments are presented on pp. 91-101, of Attachment 3.

4,,1.2 Baeline Adaptive Compensator

To address the fact that there may be modeling error (i.e., that the a priori design
model given by (4.2) may be quite different from the actual plant dynar-;s given
by (4.1)), adaptation can be incorporated into the operation of the linear compen-
sator. A simple technique for achieving such adaptation is describea in [Youcef-
Toumi & Lho (1990)]. The baseline linear compensator described above can bc mod-

ified to include this capability as follows. First, we assume the design model for
the plant is

yk.) =ý- COICA + CT-uk + Tk (4.12)

where T, represents the unmodeled behavior at time k. Following [Youcef-
Toumi & Ito (1990)], a simple adaptive estimate for the unmodeled nonlinearities
IF can be generated by solving (4.12) at the previous time index for 'Ia, and then
by -issurning thaV IF, 'I_; this yie:ds

'k = Yk - C'oxk-- Cruk-1 (4.13)

Given this estimate for the unmodeled behavior, an adaptive compensator can be
constructed in exactly the same way as (4.9) was d,•rivw 1. Simple algebraic ma-
nipulation yield&

Uk :(cryF [yr•k+ -Cqx,-' -+k-oe,] (4.14)
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Note that the reference model update equations (4.4) do not change in this deriva-

tion, and hence are not repeated. The adaptive analog of (4.10) that minimizes the

norm 4. 1) can be similarly derived.

Clearly, the adaptive mechanism described by (4.13) is very crude and cannot be

used to address changes in control effectiveness (dg!du) in the actual plant, as a

function of either x or u (here, the function g(.,) is defined as the composition of

the functions h(.) and f(.,.) from (1); i.e. g-= h of). Moreover, the time-delay es-

timate (4.13) is susceptible to the presence of noise (or similar rapidly varying in-

fluences). Despi -e these drawbacks, which can be somewhat ameliorated by uti-

lizing a small time step (faster sampling) and a low-pass filter of the estimate

(4.13), simple adaptive compensators of this form have performed :emarkably

well in complex nonlinear simulations (e.g., [Millington & B.'ker (1992)1) involv-

ing process disturbances, sensor noise, and unnmodeled aero., cnZ§ne, and actua-

tor dynamics.

4.1.3 Hybrid Adaptive/Legaring C inp .s&0

Assuming no additional urmodeled states, the a prio-i modeling error W, will

generally be a function uf both the current states Xk and applied controls u,. III

the simple time-delar estimate (4.13) used by the adaptive compensator, the un-

modeled effect of the current control vector v! on the subsequent output vector

Yk+1 is not addr ,ssed in the determination of u,. This implies that the adaptive

compensator is not well equipped to handle significant modeling error invoiving

the effectiveness (dg!/u) of the control variables. In flight appiications, control

effectiveness can change dramatically as a function (prima ily) of dynamic pres-

sure and vehiclp attitude relative to the incident wind.

To accommodate such nonlinear effects, as well as other errors due to the time-

delay approximatiz.n, a learning system can be used to synthesize (on-line) the

functional mapping desc'ibd by the unmodeled nonlinearities, in terms of the

key plant states, envi limnen tal, variables, and applied controls. The use of learn-

ing systems in this se+ting is further inotivated and tescribed in [Baker &- Farrell

(1991); Baker & Farrell (1992); M~llington & Baker (1992)].
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The hybrid compensator can be derived from the 5as3lne adaptive compensator by
assuming that the design model for the plant has the form

Yk+1 = Cbx, + crUk + n(xk, uIk) + WI (4.15)

where n(xk,uk) represents initially unmodeled nonlinear behavior that will be
"learned" by a network approximation, as a function of xk and 1 k. The vector 'k

represents any residual nonlinear behavior not captured by the a priori model
(4.2) or through learning augmentation. The network mapping is implicitly de-

pendent on time for the simple reason that it is evolving as a result of learning ac-
tion. As before, a simple adaptive estimate for the unmodeled nonlinearities T,

can be generated by solving (4.15) at the previous time index for 'Pk-, and assum-

ing that 1'k =-W- 1; this yields

%p = y- - C- u•_- - n(x_, uk_1) (4.16)

Unlike the previous cases, the control objective (4.7) cannot be solved directly be-
cause it is nonlinear in u., due to the presence of the term n(xk, Uk). One solution
to this nonlinear programming problem is to use an iterative Newton-Raphson
technique [Press, et al. (1988)] to find Uk. Linearizing (4.15) about the point Uk.i
yields

?nYk, 2Cox, + CrUk + n(xk,) (u,- + (4.17)

where (dn/du) is the Jacobian matrix of n(.,-) with respect to the argument u,

evaluated at {XkUki}. Using this approximation (in which Uk appears linearly),
it is possible to compute the first Newton-Raphson estimate ul

u C uu [.u (4.18)u (:Cr-+d _jYr_ -nkxU -1)k- ck

assuming that the indicated matrix inversion is possible; if the matrix is singu-

lar, then a pseudo-inverse can 1e used instead. Subsequent estimates u, are ob-

tained by relinearizing (4.15) about the points u'-' In our work, we have found

that the estimate obtained after the first iteration is sufficiently accurate, given

that: u._• is used as the initial guess, the discrete ti.,,.. step is small, and that the

admissible change in the controls Au. = uk -- Uk is fundamentally limilted by ac-

tuator rate limits. For these reasons, we do not, -xp,?ct jlAukJ to be very large and,
thus, believe that (4.18) offers a reasonably good estimate for uk. As with the
adaptive compensator, the reference model update equations do not change in this
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derivation, and are not repeated. The hybrid analog of (4.10), which minimizes
the norm (4.11), can also be easily derived.

Additional Remarks 
4

It is interesting to compare the controllers that have been obtained from the base-
line linear cozmpensator, through successive augmentation by of adaptation and
learning. All t~xee perform the operations issociated wi.h updating the refer-
ence model snd coaputing the tracking error and desire- tracking output-see
Table 4.1. Moreover, they all have access to the same a priori design model;
namely, that given by (4.5). They differ, however, in the couiplexity of 'he process
model considered during the on-line design procedure; in turn, this impacts the

selection of the control vector to be applied. Only the hybrid. scheme is capable of
accommodating changes in the control effecti',eness, as a function of the state and
applied controls. The Jacobian matrix (dn/du) that is added to the constant ma-

trix (CF) accounts for such changes.

Note that in the case of the hybrid compensator, a solution that perfectly satisfies

the control objective (4.7) is not guaranteed to exist even if the modified control ef-
fectiveness matrix in (4.18) is invertible. Thu-, the nonlinear programming prcb-

lem associated with the control selection may not have a solution; whereas in the
cases of the linear or adaptive compensators, the control selection problems are
linear and, hence, are guaranteed to have unique solutions under the assumed
invertibility. In practice, this might occur due to physical constraints such as ac-
tuator position or rate limits that prevent the desired tracking output Yda,.k+l from

being achieved by any admissible control. In such cases, the desired output is
said to be unreachable given the admissible control values.
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Table 4.1. Summary of Three Related Model-Reference Compensators.

reference model Xrk.,I = 0rX,,k + r.r•
update. Y,,•÷ = CrXrk,1

tracking error ek h -- YA
V dynamics y&..,4+1 Yr.,k+ - Oek

linear Yk+1 = C 42Xk + Cru,processmodel adaptive Yk+I = COXk + CrUk + Tkhybrid Yk+I = Cfxh +Cru, + n(xk,u,)+ +I'

adaptive aaaptive T,, =y -CO- k- - CTuk-I
estimate hybrid ' = Yk - C>xk-1 " CFuk-, - n(xk-P ,uk-1)

learning n(xk,uk)= n(xk,,u,_±1)+ d- (uk- U -1)approximation d

linear Uk = (CF)-'[I Y, k+I - C4Dxk]

control adaptive uk = (CF)-[y4Y,.k+l - COxk +,kslctontdajduh+ol0X
selectionhybrid u.= " [ ]n.-Y••I -J~•-n~ku.1

T . dU

4,1.4 learning System Update

The network approximation model n(x,u) that appears in the input-output real-

ization (4.15) of the plant dynamics, represents a mapping 9" x 91' -- 91'", where

dini(x) = n, dim(u) =n, and dim(y) =in. Alternative model mappings can be

synthesized that are compatible with the state-space realization (4.2), although in

such cases the dimension of the mappings (two are required, in general) is

larger: the system state update equation would he aug-mented with a mapping of

the form 'N' x i' ---4ý '•, while the output equation would be aiugmnented with a

inapping V_' .* 9J", One advantage of the input-output realization is "' ecoummi-

cal use of network resources.



In much of our work, we have used a simple incremental gradient learning algc-

rithm [Baker & Farrell (1.992)] to update the adjustable parameters p in the net-

work model n(x, u;p). To employ this particular algoritbm, it must be possible to

compute (or estimate) the gradient (dJ/dp) of a cost function J, with respect to

the parameters p. The cost function we have chosen to minimize is based on the

norm of the output error of the network mapping (e.g., J = jfijfi); thus, an ex-

prossion for this error is needed. From (4.15) it is easily seen that the output error

fi associated with n(xk.l, uk-1; p) is given by

fi = Yk -Cxk-1 -CFuk-l -n(xk-l,Uk-,;P) (4.19)

Once this error has been determined, the rost J associated with it can be as-

sessed. Consequently, all the information needed to update the adjustable pa-

rameters (at any time t > k) by means of the incremental learning algorithm is

contained in the vector-tuple {Ii, x , U•... 1}. In this setting, training need not be
"synchronized," in the sense that the update of the network parameters need not

occur immediately, and can in fact occur at a much later point in time, provided

that the appropriate vector-tuple of information can be recalled.

A more elaborate discussion of the learning system used hi our work is presented

in Section 5.6.

4.2 Applications of Hybrid Control to Nonlinear Syste'ms

Tije indirect hybrid adaptive/learning control methodology outlined in the prev,'-

ous section has been successfully applied to a number of nonlinear dynamical

systems. The results associated with three different applications of hybrid control

are summarizeu below. Specific details of each application example and experi-

mental setup are fully documented in the attachments and will not be repeated

here.

Each example conforms to the following basic scenario:

"" the dynamical system tc, be controlled is nonlinear

"* the inly a priori design information available about the plant is a single,

constant parametor linear inodel; thus, there is always model uncertainty

"* the (d(eSired reference rnodcl is represented by a stable linear systemn
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the desired tracking error dynamics are represented by a stable linear

system.

4.2.1 Cart-Pole System 'Split-Level Track Polem

This work is fully documented in §5, pp. 65-100, of Attachment 1 [Baird (1991)); for

related work, see also [Baird & Baker (1990); Baker & Farrell (1990)].1

The "split-level track problem" is based on the infamous cart-pole system (an in-
verted pendulum on a translating cart-see figure, p. 65, Attachment 1). The

cart-pole problem is a staple of control theory textbooks and learning control pa-
pers (e.g., [Kailath (1980); Barto, Sutton, & Anderson (1983); Friedland (1986); An-
derson (1989); Morgan, Patterson, & Klopf (1990); Baird & Baker (1990); Baker &
Farrell (1990)]). The problem is to move the cart to some desired track position by
applying force directly to the cart center of mass, while at the same time balanc-

ing a rigid pole that is attached to the cart via a hinge. A key feature of the split-
level track problem is that the track is not flat, and instead contains an incline
that is not included in the design model.

The hybrid adaptive/learning control methodology, as outlined in Section 4.1, was
used as a position controller for the cart-pole system on the split-level track. In a
manner consistent with (4.1)-(4.4), the only a priori knowledge of the plant that
was available was a single linear model. The desired reference model was linear,

as was the desired tracking error dynamics.

The nonlinear equations-of-motion for the cart-pole system, open-loop dynamics,
model parameter values, definition of the split-level track problem, linearized a
priori design model, and linear reference model are all discussed in §5.1 of At-
tachmint 1. Experimental results with and without sensor noise are provided in

§5.2-§5.6.

' Mhe symbol '§' will be used exclusively to refer to section.• that appear in the attachmeats; the

word "section" will be u-3ed when refer-ing to material that appears in the main document.
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Overall, the hybrid controller outperformed both a linear compensator of the form
given by (4.9) and an adaptive compensator of the form given by (4.14).1 In related

work, unmodeled actuator dynamics, sensor noise, and a pure time-delay were

also incorporated into the split-level track problem-again, the hybrid controller

outperformed both the linear and adaptive compensators [Baker & Farrell (1990)].

4.2.2 Aeroelastic Oscillator

This work is fully documented in §4.1, pp. 48-65, of Attachment 2 [Nistler (1992)];

for related work, see also [Atkin~s (1993); Cerrato (1993)1.

The aeroelastic oscillator [Parkinson & Smith (1963)] ii a complex nonlinear sys-

tem that exhibits limit cycle behavior. This system can be represented ar & sim-
ple, two-state, mass-spring-dashpo+ model of an aerodynamically driven oscilla-

tor, and can also be considered as a simple model of wing flutter or other similar

aeroelastic behavior.

The nonlinear equations-of-motion for the aeroelastic oscillator, its open-loop dy-

namics, linearized a priori design mduiel, linear reference model, and the appli-
cation of the hybrid controller are all discussed on pp. 48-54 of Attachment 2. Two

sin~ulation experiments using the hybrid controller were performed. In the first

example, the objective was simply to regulate the oscillator to 7ero position and

zero velocity (i.e., to null out limit cycles induced by the nonlinear aerodynamics

via an applied force). In the second example, the goal was to command and hold

an arbitrary position (deflection), while maintaining zeiro v•,ocity.

In both experiments, the hybrid adaptive/learning control system outperformed a

similar control system having adaptive augmentation only. These results, to-

The hybrid control law (418) was successful in this application even though the cart-pole
system has unstable zero dynamics. The explanation for this apparent inconsistency is that
the reference model used in this work was derived by linearizing the cart-pole system
dynamics (about its unstable equilibrium position) and ther, combining this open-loop model
with a stabilizing linear feedback cortrol law. Slilce the zeros of a transfer fLnction are unaf-.
fected by state feedback, the desired reference model included the original nonmnimmum
phase . eros of tho plant. As a result, no attempt was made to auLomatlcally "cai'icel" tht, dyý,
namics associ-ated with these nonmimmunm phase zeros, arid hence the control law was iot
susceptible to this form of instability.
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getiL 4r with a three-dimensional plot of the nonlinear dynamics that were synthe-

siVz the learning system, are presented on pp. 55-65 of Attachment 2.

4.A .•.._ Z reeADgree-of-Freedom Flight Control

This work is fully documented in §4.2, pp. 66-96, of Attachment 2 [Nistler (1992)];

for related work, see also [Baker & Millington (1992); Millington & Baker (1992);

Baker & Millington (1993); Millington, Baker, & Koenig (1993)].

As discussed in Chapter 3, there are a number of difficulties associated with the

design of flight control systems. A three-degree-of-freedom (3-DOF) nonlinear

model of the longitudinal dynamics of a representative high performance aircraft

was obtained from a full 6-DOF nonlinear aircraft model [Brumbaugh (1991)].'

This nonlinear 3-DOF model was then used as the basis ot a more challenging

problem for the hybrid control methodology, relative to the two applications con-

sidered above.

A description of the nonlinear aircraft model, linearized a priori design model,

linear reference model, and a discussion of relevant application issues are all pre-

sented on pp. 66-77 of Attachment 2. Once again, two simulation experiments

with the hybrid controller were performed. In the first example, the objective of

the hybrid controller was to serve as a simple autopilot (i.e., to maintain com-

manded altitude and airspeed via the use of a horizontal stabilator and throttle).

In the second example, the operational envelope for the autopilot was expanded, to

make the problem even more challenging.

Once again, the hybrid adaptive/learning control system outperformed a similar

control system having adaptive augmentation only. These results are presented

on pp. 78-96 of Attachment 2.

4.3 Learning Augmented Estimation

The estimation or reconstructiom of system stuate variables from observed output

""measc-'ements typically requires an accurate model ouf the systeui On the other

SThis 6-1)O model is identical to that used in the AJAA C(TntruLs D)estign)hleng.
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hand, the hybrid control and learning schemes outlined in Section 4.1 assumed

the absence of an accurate model, but the availability of accurate state estimates.

Thus, a more general problem exists, involving simultaneous system identifica-

tion, state estimation, and control. Obviouzly, learning could be used to address

some aspects of this more general problem if the estimation and control processes

were allowed to utilize the modeling information provided by a learning system.

,.is is the basic idea underlying learning augmented estimation, The material

presented in this section only represents a first step in this direction--there is

much room for further analysis and development.

Beginning with a standard linear state estimator, the discussion below proceeds

by successively incorporating adaptation and learning in manner completely

parallel to the development of the hybrid adaptive/learning control methodology.

Linear Estimation

The standard, steady-state, Kalman filter propagation and update equations for a

linear dynamical system of the form (4.2) are given by ([Kalman (1960)1; see also

[Friedland (1986); Gelb (1974); Jazwinski (1970); Maybeck (1979); Sorenson (1985)1):

ik = ck_-I+rUk (4.20)ik --:R- + K(y- - Ci-) (.0

where ik indicates the estimate of the state after propagation, but prior to incor-

poration of the measurement y', while :i, represents the final state estimate af-

ter the measurement update. The matrices 0, F, and C are given by the as-

sumed model of the system, and K is the steady-state Kalman gain matrix (which

is the optimal gain matrix under certain mild assumptions).

If the actual system dynamics differ from those described by (4.2) (e.g., if the sys-

tem is nonlinear), then the estimates generated by (4.20) will be suboptimal, and

in fact may be quite inaccurate.

Adapti:e Auigmerntation

In an at.•e:pt to accommodate such modeling error in the estimation process, ",e

can add an acdaptl'e component to the estim'Aor. This component seeks to im-
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prove the accuracy of the propagation equation by addressing the modeling error

of the process, using the difference between the final state estimate at the previous

step and the previous linear propagation as a kind of time-delay estimate (in a

fashion completely analogous to what was done previously in Section 4.1). In this

case the design model for the process becomes:

X" =- xk_1 + l'u_+k- (4.21)

Yk = Cx(.

where the vector t represents the modeling error in the state equation (for the

presenL, we assume that there is no modeling error in the output equation). A

time-delay estimate for 4,-1 can be obtained from previous state estimates as fol-

lows:

th-1 = i'- 1 - O'k_.2 - rUk_2

Based on this estimate of the unmodeled dynamics, a new propagation equation

can be written that incorporates such adaptation

- = k-i + ru_+ Li

A complete set of adaptive filter equations can be defined using this propagation

equation and the update equation from (4.20):

4k- I=: irk- I - Oik-2 - Fuk -2

i•k = -24k-1 + + L- (4.22)
i = K + K(y" -ci )

These equations can also be rewritten in a form that is similar to that of (4.201;

when this is done, one can see that this scheme introduces an intermediate

adaptive step. resulting in the following three-step process:
- = OiL_• + Fuk_•

k A
:ih i +- K(y• - cit)

where in this case :i represents the state perturbation estimate after propagation

but vrior to the adaptive correction and measurement update, i' represents the

state estimate after the adaptive correction is made, and i[ is the final state .st.

mate. Somc empirical results [Millingon & Baker (1§92)J have verified the ability

of this adaptive augrnentation to address estimation difficulties introduced by

'inmodeled n)ilinearities.
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Note that this approach does not: account fior t:l.e possibiiity of modeling error in

the output equation. 'if a. new design model fir hr e w.ve used

X11= +" u + T (4.,, )

then one could obtain time-de'lay estimates fbr the moddeling errors •ki and w.,
and ultimately arrive at tke fotlowing edAaptive fitter equations:

= -,.. b i h,., ru , 2.:

&k = 'Ini¾ I r 1+ (4.24)

ik i + K- - i- 64~)

Learning Augmentation

Like adaptation, learning can al•o be incorporated into the esid ation pIocess.
Following the same development procedure as before, we begin with a c¢esign

model for the process:

Xk=x- + ru,,., +±l( n"
yk --- C~t:k + n' (X*).+. O

where n' and ny represent two distinct ,appins that will be syxnthesid by the

learning syste.ma, and Z; and a represent any residUal dynamics. kAs

before, both n' and n- are implicitly ftmnct:iwns of time si.r,,co th:y will be ,v olirlg

due to learning.

Given the design model (4.25),. the s:.,,e set of hVyori, adaptiv,,Jenintng aig-

mented filter equations becomes

A-~1 (4,26)n

ZA t -ý (k C'i~ A, i

An incremental gradient .,,arniug algorthin can e used to ,pdate . .aw 6 4

rvqeiure(.i mappings. In this case, t.Li,: network oui out erY!-nr, fi$ and 6, a, 20Ci9!t .

xtlth rr(i,..oU, u..)ja n"( respective:y, ax ' g-'r b Ly:
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-zx = k_ " -. ] k- nx(A1 k-- fay = y- - Cr, - ny(.k

Additional Remarks

In general and for best results, the gain matrix K should be chosen to reflect the

local (linearized) system dynamics and, hence, should be adjusted on-line. One

means for determining a suitable gain matrix is to compute the optimal steady-

state Kalman gain matrix associated with the local (linearized) system.

Note also that this approach requires that two mappings (one for the state equa-

tion and one for the output equation) be synthesized via learning. Because our

other work with the hybrid adaptivelearning control methodology was based on

the collapsed input/output system description given by (4.5) (which involved a sin-

gle mapping), we did not have the opportunity to evaluate the performance of

(4.22), although we fully expect it to perform better than either (4.20) or (4.21) when

there unmodeled nonlinearities are present,
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5 Muldiaxis Flight Control

A main object, v ol - p.p -%am was to demonstrate the feasibility and advan-

tages of learninL iugwet ,d A light control in the context of six-degree-of-freedom

(6-DOF), mu~tiam light. -e bpecific feature to be demonstrated was the ability

of a le,:.rning ..mgniented ':ut control system to provide high performance con-

trol despite d•gnii aut n•wo.ding, uncertainty and nonlinearities in the aircraft

dynaL ,ics. Accordi lgiy. • hybi d adaptive/learning control system was developed

and applied to a cl.ailenging multiaxis flight control problem. The performance

of the resu• ing leaniiag augmented flight controller was contrasted with three

simn:lar control system,: z unaugmented compensator (a priori linear design

o0 i ), an adaptively augm nted compensator, and a compensator having essen-

tied 7 "ideal 1, `;Ming" autrimentation.

Of the maý .y sp, irc, :kft control problems that could be selected for this study,

it was desir Ad i. I o ý that would minimize unnecessary engineering com-

plexity whilh st, it tso - ring the advantages of learning augmented flight

cc itrol. To t is 'a , dinal and lateral/directional control augmentation

sy.;teni (CAS) vitl o'n w ,-o in was used as the target control application.

The rationale .4r th, ;el, a an wt l~e details of the problew are di.;cussed in

Section 5.1. The hyb Ad, d,, ffler was evaluated via a closed-loo;- simulation of a

6-DOF, nonl. r, eay ail "a, iowA !Brumbaagh (1991)]. A brief overv ew of this

model is givet in c , •.. Thc - .alicnt charactedstics of the open-i oop dyi anm

ics of he veh. ,e art• i en,-d in -,1tmn " .3. The "i ivertibility" of the assu ied
plant tynamaI � w; [ par culm , rtt. given he nonlinear contI.ol tec)-

nique! used ii' us 6.u

Th -e are rnun.., roIS s .!S which learnic i i ght be applied to the selected

Juigtv .nontrol proxt•em) . a-e7 lu,'r :et1hods r, p -•cntei) ni Section 5.A. A quali-

t-Ati-,. ,,udahition c"' th• \ar( dAt• method:.; i aýid tý, -De selectwii of a variant of

i vbrni d nle ,r Ja( ix:* u ,,.,=cb whic: .*,. *1ii ured 'iu lapter 4 The

ippli~ n ol ti 61W. 1 ,"'A { . s;i v floi th, ro'mli near aiccrakt

:p t m s Presoin t i , ,, t ... Ii , d in oh It t I1 hbe 1earti'g ,yS-
.em.... ',,. • . d Iv , .n 5.6 pi , s v1 p• mont,.l rest.lts of* i• I by

1.rid ontarol .;vs,, ii n dl iC ' .i ,- a chali, :, S ", lctor'v naneiver'.



5.1 Control Problem Definition

There are a wide range of 6-DOF flight control problems that can be studied.
These run the gamut from altering th,- naturpi modes of the aircraft; i.e., stability
augmentation systems, to the higher leve, functions of control augmentation sys-
tems and autopilot design. Under some design procedures the higher level func-
tions encompass lower level designs. The desire to minimize engineering com-
plexity and av3id man-i-a-the-loop issues, while still achievi g the task objective,
has led to the selection of a control augmentatioa system as the design problem.
Specifically, the demonstration problem is the design of a longitudinal and lat-
eral/directional CAS with turn coordination.

The denion-tration platform is a nonlinear model of a modified F-15, as discussed
in [Brumbaugh (1991)]. The dynamics of this vehicle are inhere:itly nonlinear in
angle-of-attack a, sideslip /3, airspeed V, and altitude 11. This aircraft has four
control inputs available: rudder 8,, aileron 8., symmetric stabilatur 3 h, and dif-
ferential stabilator 6d. The throttle setting is assumed to be indcpendently con-
trolled (we held it at a constant value). Thus, the control problem is to use the foEzr
control inz-:ts to track reference values of the stability axis pifch rate q, and roll

rate p,, while regulating P3 to zero, as shown in Fig. v.1.

8acorn8a
PC
q,. Learning -._ Actuator

-WAugmented 8, 8 AcfDa s -
P'=4 Controller ciAircr Dynamics

x.- Ip q rV ap6o hIT

Figure 5.1. The Basic Control Problem.

For the purposes of this study, it is not necessary to design a full-envelope con-

troller. The intent is to design and demonstrate a controller that will operate over

a sufficiently large region of the etivelope so as to exercise the noilinear dyiamics

of th, <ýystem. To that end, the demonstration will focus on a single dem inding



"S-trajectory" maneuver involving rapid airspeed v riation, high angles-of-at-

tack, and significant coupling between the different degrees of freedom.

5.2 Flight Simulation

The nonlinear aircraft model, including its actuators, sensors, and atmospheric

envirornment, are briefly outlined in this section. For more information regarding

this pa:ticular vehicle model, please refer to pp. 66-74 of Attachment 2, or to

[Brumbaugh (1991)1.1

Aircraft Model

The simulation code used in this work is based on a six-degree-of-freedom, rigid-

bocy, i~hgh performance aircraft model, includiL. nonlinear aerod-Ta.amic effects

(based on empirically derived tabular data), nonlinear engine dynaL. ics, and non-

linear actuator dynamics (including rate and position limits). The control fea-

tures of this kircraft include: (i) a rudder surface mounted on a single vertical

tail, (ii) an all n, )ving horizontal tail (stabilatcr) c.,pable of symmetric and differ-

ential movement,, nd (iii) wing ailerons. A more detailed description of the basic

aircraft model can be found in [Brumbaugh (1991)].

Actuator Models

All control surfaces employ identical actuator dynamics, with 0,033 s time-con-

stants and 35°/s rate limiting. Additionally, the stabilator is constrained by

asy-nmmetric position limits of +15' / --25-, while the aileron and rudder saturate

symmetrically at ±200 and +300, respectively.

Sensor Models

We assume the curiti•oler lihs access to a full-state sensor suite, including: wind

relativef angles (angle-ot attack and sideslip angles), altimeter, airspeed arid

Mach indicators, as well ,is roll, pitch, and heading attitudes. In this work, the

sensors were assumed to be deal (i.e., to contribute no noise or delay).

1 This 6-DOF model is ideiitical to that used in the AIAA Controls Design Chillenge.
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Gust Model

To demonstrate the robustness properties of c..r system while it was learning, we

incorporated moderate atmospheric turbulence into our simulation. Specifically,

we used a Dryden gust model [MIiL-STD-1797A (1990)].

5.3 Open-Loop Dynamics

Before proceeding with any type of control system design-whether conventional,

adaptive, learning, or whatever-it is important to examine any a priori informa-

tion about the plant dynamics which may be available. At the very least, this in-

formation guides the design of the overall control system architecture and, in our

approach, provides the required information to develop the fixed, conventional

component of the hybrid controller.

The aircraft model consists of s set of first-order, nonlinear differential equations

[Brunbaugh (1991)]. Many of the "coefficients" of these nonlinear equations are

nonlinear functions of angle-of-attack, airspeed, sideslip angle, altitude, and the

applied controls. To characterize the dynamics of this aircraft, the nonlinear dy-

namics were numerically linearized at several equilibrium points throughout the

operating envelope, ranging in speed from 600 to 1,000 ft/s and in altitude from

5,000 to 40,000 ft. The aircraft eigenvalues and eigenvectors were found to be quite

typical of an aircraft of this type. The aircraft is open-loop stable with the excep-

tion of an unstable phugoid mode at a low altitude, high speed operating point

(5,000 ft, 987 ft/sec). The operating regime near H = 5,000 ft and V = 600 ft/s is of

particular inte-est since the evaluation maneuvers are initiated from this pO.Iri"..

The modal frequencies are shown in Table 5.1 below.
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Table 5.1. Medal Frequencies for H 5, 000 ft and V 600 ft/s.

Frequency (radls) Mode

-1.79 ± 2.51i short period

--0.48 ± 3.01i dutch roll

-2.78 roll convergence

-1.60 engine core

-0.015 ± 0.076i phugoid

-0.026 spiral

-0.002 altitude

0.0 heading

Since many of the candidate control methodologies perform some form of nonlin-

ear inversion of the plant dynamics, the zero dynamics (minimum/nonminimum
phase) characteristics of the plant are of particular interest. If the tracking out-

puts are chosen to be y = [p,q,fl], ther. the system has a multivariable nonmini

Mum phase zero at 0.003 rad/s. There is also a nonminimum phase zero in the

single-input/single-output (SISO) transfer function 13(s)/Sr(s) at 0.043 rad/s. The

consequence of these nonminimum phase properties is that any attempt to control

sideslip P3 directly via the rudder input 3,, using linear or ronlinear inversion
techniques will likely result in an unstable closed-loop system.

5.4 Control Methodology

Conventionally, the control system "architecture" refers to the specification of the

measurements and controls, and the feedback paths between these variables. The

control objectives, the open-loop dynamics of the aircraft, and the availability and

complexity of the design methodologies are the three mnost important factors in de-

termining the appropriate control architecture in conventional control schemes.

For learning augmented controllers, the augmentation mechanism is an addi-

tional design degree-of-freedom that tnust be addres;sed.



5.4.1 Candidate Methodologies

In this subsection, three differei. learning augmentation schemes are presented

and evaluated in the context of the CA.S problem.

Feedforward Augmentation

The feedforward learning augmentation concept (see Fig. 5.2) is based on the so-

called "two-parameter" compensator [Vidyasagar (1985)]. As the name implies

the two-parameter compensator consists of two components-a feedback

ompensator Kg(s) which provides robust stability and disturbance rejection, and

a feedforward compensator (or prefilter) K,.(s) which is tuned for tracking perfor-

mance. In the feedforward learning augmentation scheme, the feedback com-

pensator is determined by standard robust linear design techniques. However,

the feedforward compensator is designed on-line, by using the learned local lin-

earized dynamics of the inner-loop (plant plus feedback compensator) throughout

the flight envelope. During the early stages of learning (prior to parameter con-

vergence), the linear model of the inner-loop might be identified via a conventional

recursive identification scheme.

Adaptive & Learning L

Systems

r 4 -M Yd ý K 
f

Figure 5.2. Feedforward Learring Augmentation.

T'1e on-line design procedure involves the stable inversion of the learned, lin-

earized model. Given knowledge of the local linearized inner-loop dynamics

the prefilter K, that minimizes the 112 norm [Maciejowski (1989)1 of the

tracking error
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e =_ y-y - (Y- P,.,Kff )y.!

is the stable inverse of P4

where P., = P1Po is the inner/outer factorization [Maciejowski (1989)] of P ,, and
(P11), denotes the stable part of Pj-i. This technique is tolerant of nonminimum
phase dynamics since inversion of only the minimum phase portion of the plant
ensures that K] is a stable transfer function.

The advantage of this architecture is that the features of learning augmentation
will enhance the performance of the system in the presence of modeling uncer-
tainties, unexpected changes in the plant dynamics, and nonlinearities, and yet
the stability of the inner-loop will be insensitive to learning failures if the learning
dynamics are slow relative to the inner-loop dynamics (which is normally the
case). This "learning-fail-safe" architecture might be appropriate for flight test
applications, where reliability is critical.

One disadvantage of this scheme is the requirement to identify the local linear
representation of the augmented plant. The identifilation of such a highly struc-
tured model poses problems for both learning based and conventional system
identification algorithms. While the current learning algorithm (see Section 5.6)
provides a good input/output map of the desired nonlinear function, extracting lo-
cal linear models from the map can be difficult and can exacerbate small errors
due to the fact that one must differentiate this map to find the local Jacobian ma-
trices with respect to ihe inputs. Additionally, the development of a system identi-
fication algorithm (e.g., via an extended Kalman filter or recursive maximum
likelihood technique) fGr 6-DOF aircraft dynamics is an enormous problem in its
own right. Substantial supervisory logic could be required to guarantee parame-
ter convergence in the presence of disturbances and sensor noise.

The computational burden associated with this on-line inversion algorithm is an-
other concern. Let n be the number of states of the system. The stable inversion
algorithm involves the solution of the algebraic matrix Ricatti equation [Kailath
(1980)], which requires on the order of 73n1 nultiplicationa/divisions, 82n3 addi-
tions/subtractions, arid 3n12 square root operations when using the Schur method

[Ramesh, Senol, & Garba (1989)].
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Plant Augmentation

This scheme is an extension of the model reference adaptive control (MRAC) con-

cept [Astrom & Wittenmark (1989); Narendra & Annaswamy (1989)]. in this case,

the controller would consist of a linear reference model P..(s), the adap-

tive/learning system, and one of two linear compensators, Ko(s) and Khp(s). The

purpose of the adaptive and learning systems is to augment the dynamics of the

nonlinear plant so that it has the same input/output behavior as the reference

model. The usual division of responsibilities between the adaptive and learning

components applies here, with the adaptive component accommodating time-

varying dynamics and the learning component addressing state-dependent non-

linearities. The reference model Pm(s) is a linearized model of the nominal plant

dynamics (see Fig. 5.3).

logic

Adaptive and
S*Learning Systems

IK R (S) -- Y'
r

(S). + Plant-

Figure 5.3. Plant Augmentation.

At any instant, linear control is provided by either a "robust" compensator K,(s),

or a "high performance" compensator KhP(s). The robust controller would be

used during the early stages of learning when the augmented plant (shaded area

of Fig. 5.3) may deviate significantly from P,(s). During this period, the large

plant residual ,pk., will cause the switching logic to close the loop through the ro-

bust controller. When learning has converged, the switching logic closes the
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outer-loop through the high performance controller. Both linear controllers
would be synthesized using the H., y synthesis robust design methodology; how-
ever, the modeling uncertainty A(s) assumed in the "robust" design would be
much greater than that assumed for the "high performance" design (see Fig. 5.4).
Thus, Kb(s) should be more robust to errors in the augmentation process, while
KhP(s) should be more finely tuned to the reference moudel M(s), and should

provide superior performance when the augmented dynamics are close to P,,(s).

Figure 5.4. Model for Linear Compensator Design.

The residual monitoring and subsequent transition to the robust compensator
provides for a limited fail-safe quality if the learning and/or adaptation algo-
rithms fail to provide the desired augmentation. Performance would be excellent
when the learning/adaptation systems have converged.

Augmentation Via Dynamic Inversion

Dyn.nmic inversion has been used in the robotics 'I'Jd and in many other applica-
tions for a number of years [Slotine & Li (1991) it is a highly effective scheme
when the plant model is well known. A major weakness of this scheme is the

high degree of performance sensitivity to modeling error. This is an area where

adaptation and learning augmentation could provide a significant performance
boost. Adaptive and learning systems (see Fig. 5.5) could jointly computb an

estimate i(x,u) of the actual plant dynamics f(x,u). A control would be selected

that directly cancels the nonlinear dynamics (as characterized by the estimate)

and then injects the desired error dynamics. This is essentially the same hybrid

control scheme that was detailed in Section 4.1. A brief summary of this scheme

as it might apply to the attitude rate control problem is presented below.
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Figure" 5.5. Augmentaitcn via Dynamic Inversion.

Assume that the plant dynamics and outputs are given in continuous time by

k = f(x,u)
y=Cx

and the desired tracking error dynamics are specified as
y+Ek" = 0

where Yd = -y, and 1 is a diagonal matrix with positive elements (so the sys-

tem is stable). If the error dynamics are enforced, the output errors ýY will expo-

nertially decay to zero with time constants T, = l/E.. The error dynamics may be

expressed in terms of the plant dynamics by differentiating the output equation

y=Cx
= Cf(x,u)

and substituting this into an expression for the derivative of the error

y =YdY

= Yd - Cf(X, u)

The hybrid adaptive/learning system can be used to generate an estimate of the

plant dynamics f(x, u). By selecting u such that

yd + E' - Cf(x, u) = 0

the desired error dynamics are obtained if the plant is identified exactly.

The key to this approach is the accurate estimation of the plant dynamics. Also,

caution must be used in selecting the plant inputs and outputs to ensure that the



plant dynamics are minimum phase, since any attempt to invert nonminimum
phase dyn ,mics may lead to instability.

This scheme is attractive because only an input/output representation of the dy-

namics is required-a structured model is not necessary. In addition, this ap-
proach does not require the development of a structured adaptive control or sys-

tem identification algorithm. The simple time-delay adaptive augmentation de-
scribed in Section 4.1 is a much simpler adaptive algorýithm, 'and may be used to

facilitate learning during its convergence phase and to handle novel and time-

varying dynamics.

5.4.2 Control Methodology Selection

Both the feedforward augmentation and plant augmentation schemes offer some
interesting features. For example, both have some degree of robustness to learn-

ing and adaptation imperfections. Unfortunately, these schemes require signifi-
cant development of enabling technologies before they can be applied to the prob-
lem at hand. The dynamic inversion algorithm is a simpler, proven algorithm

that has been demonstrated on aircraft control problems of a smaller scale (e.g.,

see Section 4.2),. Given the limited scope of the current effort and the past experi-
ence gained with this approach, the learning augmented dynamic inversion

scheme was selected as the control methodology to be used in conjunction with the

6-DOF CAS design demonstration.

5.5 Controller Design

This section describes the design of the control augmentation system using the
hybrid control scheme detailed in Chapter 4. In review, the objective of the control

system is to track pitch rate q, and roll rate p, commands (in stability axes),
while maintaining turn coordinated flight (Pi, -0). This section begins with a de-

scription of the top-level qrbhitf-et•fir, fnllowed by a detailed description of the a
priori, adaptive, and learning components.
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5.5,1 c lArXchitctark

The control system consists of an outer-loop fP regulator and an inner-loop angu-

lar rate tracker (see Fig. 5.6). The inputs are commanded stability-axis roll rate

p. pitch rate q% and sideslip angle Pc = 0. This type of structure with the attitude

rates controlled via dynamic inversion in an I ner-loop, and the wind-axis atti-

tudes controlled via dynamic inversion in an outer-loop, has been used success-

fully in other studies (e.g., [Bugajski, Enns, & Elgersma (1990)A). The outer f8 loop

is necessary because it makes neither physical nor mathematical sense to regu-

late the sideslip angle under direct rudder control. The predominant forcing

term of the P dynamics is the stability-axis yaw rate. In addition, the dynamics

from the rudder command to sideslip angle are nonminimum phase. The conse-

quence of performing d'ynamic inversion on a nonminimum phase plant is anal-

ogous to attempting to cancel a right half-plane zero with a controller pole. Thus,

stability-axis yaw rate is used as a pseudo control for the P controller, and this

rate command along with the stability-axis roll and pitch rate commands com-

prise the inputs to the angular rate controller. The following subsections present

the details of the fixed, adaptive, and learning components of the angular rate and

f controllers.

qc .__ - _ _ 4 .]

- pqr -Veil

Control Dynamics

Control

Figure 5.6. Top-level Architecture of the Angular Rate CAS.

The angular rate control system (see Fig. 5.7) is composed of reference model

dyn am ics, error dynamics, and plant inversion functions. The reference model
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and error dynamics are performed in stability-axes, while the plant inversion

function is performed relative to the body-axis dynamics. The reference model is

a prefilter that specifies the desired dynamics of the aircraft under "perfect" con-

trol (i.e., if initial tracking errors are zero, there are no disturbances present, and

plant inversion is performed exactly). The inputs to the reference model are the

commanded stability-axis body rates [p,q,r]r and the outputs are the reference

stability-axis body rates [p, q, r]>. Since disturbances are always present, and the

plant inversion process will not be perfect, some error may accumulate. The er-

ror dynamics specify how the system is to respond to rate errots. If, for example,

the initial tracking error is significant, it is unreasunable to ask the plant to con-

verge to the reference input in one control cycle (deadbeat response), since the re-

quired control effort will be excessive. Thus, the error dynamics smooth the

tracking convergence phase over several control cycles. The error dynamics may

also be augmented with integral action to boost the low frequency gain of the sys-

tem. The objective of plant inversion is to determine the control vector that drives

the system outputs to their desired values [p,q,r]` over the next control cycle.

Plant inversion is performed by using a priori information as well as adaptively

gained and learned knowledge of the plant dynamics.

stability body
Reference Model axes axes

Reference

O Model - ---

[pqrjrV & p]

[pqrVafls#]

Figure 5.7. The Angular Rate Control System.
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Reference Model

The reference model embodies the desired dynamics for the closed-loop system. It

also acts as a lowpass filter for any "non-trackable" high frequency signals pre-

sent in the command inputs, so that the reference signals sent to the controller

are physically realizable by the aircraft. Separate lateral/directional and longitu-

dinal reference models simplify the design while ensuring consistency between

yaw rate and roll rate reference signals. The reference models were generated by

a four-step procedure involving: (i) linearization of the nonlinear equations-of-mo-

tion about a nominal operating point at H = 5, 000 ft and V = 600 ft/s; (ii) design of

a linear-quadratic (LQ) servo controller, which yielded the desired dynamics; (iii)

determination of the closed-loop dynamics of the system under LQ servo control;

and (iv) model reduction and conversion to discrete-time of the closed-loop

dynamics. The resulting reference models represent compact, linear set of dif-

ference equations of the form

Yrkl -= Cr(OrXr,k + FrUh)

where yr = [pr,rrIT, u = [p,r ,JT, and x E 91' for the lateral/directional model, and

y = q, u = q, and x E 91' for the longitudinal reference model. This procedure

guarantees that the reference signals are consistent and achievable (at least in a

linear sense).

Error Dynamics

The error dynamics models determine how the system will react to initial track-

ing errors, imperfect plant inversion, and disturbances. Fast error dynamics

provide rapid convergence to the reference values at the expense of a higher level

of control effector activity. Slow error dynamics provide sluggish response, but
with lower levels of control activity. The p,q,r error dynamics consist of three

decoupled difference equations that provide both proportional and integral (PI)
compensation of the output errors. The error dynamics (see Fig. 5.8) generate the

desired output Yd that is sent to the plant inversion function. The desired output

is given by

Yd A+1 YrA,. - k~ek - kak

where e, = Yr, - Yk and c(k is the integral of the error. If plant inversion is perfect
(i.e., if Yk+= Yd,.,), then the error dynamics are given by

95



e., - kek - k~a, =o

If plant inversion is imperfect, then the error dynamics become

e4.,-kek -kioa= 5

where 8k is an inversion error term; i.e., Y,+i "-Yd.,+ - 8 k. The main feature of the
integral term is its ability to drive the output error to zero even in the presence of

plant model bias errors.

Y r ,.._ : . e l .. _ 1 y r + A e , 2

Figure 5.8. Proportional Plus Integral Error Dynamics.

Plant Inversion

The plant inversion process computes the current control u,, as a fanction of the

current state x, such that the output at the r'ext time step is equal to the desired

output Yk+i = Yd.,+l" For the inner rate loop, the control consists of the four control

surface commands

Uk = 16 8 h Od 6, 11

and the state vector consists of the three body rates, airspeed, angle-of-attack,

sideslip angle, and the pitch and roll angles

x = [p q r V a J 06]1

and the outputs are the body rates

y- = [p q k

The control system is composed of an a priori linear component, an adaptive
component, and a learning component. By design, the a priori model of the plant

is a poor representation of the dynamics over the maneuver envelope. This was

done to facilitate evaluation of the hybrid learning/adaptive augmentation.
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A Priori Rate Control

The linear a priori control is determined via dynamic inversion of a linear model
of the aircraft. Th3 linear model was obtained by numerically linearizing the
nonlinear plant at a trim condition corresponding to an airspeed of 600 ft/s, an al-
titude of 5,000 ft, and an angle-of-attack of 3 deg. This is a poor model over the
spectrum of conditions that will be experienced during the demonstration ma-
neuver, where airspeed, altitude, and angle-of-attack range from 400-1,100 ft/s,
500-23,000 ft, and 0-20 deg, respectively.

Given the nonlinear system UA.1 = f(xk,uh) with trim condition x°= f(x°,u°), the

linear model may be expressed as

-- I1÷X = 4(x4 - X)+ r~u, - u°) (5.1)

Yk -y° = C(Xz -Kx) (5.2)

The output dynamics are given by substituting (5.1) into (5.2)

Yk+I = C'•?xk - x) + CrIuk - u°) + y. (5.3)

The linear control is determined by setting Ydh.1 = Y ÷1 and solving for uk

"Iu = u + (Cr)[ydh.ý. -- y° - C"xk - xo)] (5.4)

where (.)÷ denotes the pseudo inverse of the operand. Since (Cr) is of full rank, a
solution always exists and the solution minimizes the Euclidean norm of the

control vector.

Adaptive Augmentation

Adaptive control is required to compensate for the nonlinear dynamics while the
relatively slow process of learning builds the requr-ed input-output map. The type

of adaptation selected is related to time-delay control tTDC) [Youkef-Toumi & Ito

(1990)]. This is a simple scheme that is easy to implement and is compatible with
the formulation of the a priori and learning control components. Time-delay tpn-
trol estimates an unstructured forcing term in the dynamics by comparing the

predicted output provided by the linear model with the actual output at the current

time step.
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The output dynamics are written as the sum of the linear expression of (5.3) plus

an unknown nonlinear correction term P(Xk ,Uk)

Yh+1 = C(X-- •xo)+ Cr(Uk -uO)+ yo + '(x,, U)

The current measurement or estimate of the output can be used to estimate the

past value of the correction term

i(xk_.1, uk_) = yk - C0XI - X°) - ClUku-, - u°) y

Assuming that the variation in the nonlinear correction term is small between

control cycles implies that

'I(xk, u) ' =(Xkl,uk-1)

so that the current estimate is given by

t(Xk,Uk) = y, -- C0(X_ -oX)- C(uk,. -uO)- y

Thus the a priori plus adaptive control becomes

= uo + (Cr)÷[yd,,Al- yO - CO(Z, - XO)- *k

Because this estimate of + is unstructured (the dependencies of T' on xk and u,

are not directly observable), this form of adaptive augmentation does not accom-

modate errors in the r matrix or nonlinearities ij the control.

The estimation process is illustrated in Fig. 5.9. Note that the raw estimates are

filtered since noise on the state measurements will propagate directly into P,
which is a weakness of this adaptive scheme.
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Learning Augmentation

While adaptation is used to compensate for modeling error while the learning

system converges, the ultimate goal is to supplant the responsibilities of the adap-

tive scheme with the learned map as the map becomes accurate. Unlike the
adaptive control component, the learning component is less susceptible to noise

and is able to compensate for errors in the of matrix. This section describes how

the learned map is used to generat e learning augmented control signal. The

details on how the learned map is generated are discussed in Section 5.6.

The network builds a forward map n(x,,,u,) tor the nonlinear compensation term

n(x, l,u, &= yk -- C-1Ix, - )-- CI(uk , u")-y

so that the design model for the control is given by

YA.16(-01{x, '_X) in u") fY n(Xk, u) +



The adaptive term now accounts for output errors in the new design model (a pri-

ori plus learned)

TIk = Yk - x)C- cr(U,_ - u)- y° - n(xk1,uk-•)

Since the control objective is Yk. 1 = Ydk+,1 Uk must be solved from

Ydk.1 -- CO(X, zO) Cr(U- u-)-y- -n(xk u,,) - 0 (5.5)

To achieve a closed-form solution for uk it is necessary to linearize the network

term about the current state and previous control

n(X' I Uk) = n(Xk. Uk-1)+a (uh -u 1) (5.6)

substitute (5.6) into (5.5) and solve for th i-rent control Uk

Uk = (Cr +!t1+[Y - CO!Xk -X) - +Cru0 -(XkUk-l)-' 2%k

5.5.3 Sideslip Control

The objective of the sideslip controller is to maintain coordinated flight by regulat-
ing P3 to zero. The P3 controller is the outer loop that feeds values of commanded

stability-axis yaw rate r, to the inner rate loop. Thus, r, is the "control" signal of
the outer loop. Since the outer-loop dynamics are naturally slower than those of

the angular rate dynamics, it is reasonable to neglect the inner-loop dynamics
when designing the outer loop; i.e., the dynamics from r, to r are considered to be

high frequency "actuator" dynamics for the purposes of the P3 controller design.
This approach is feasible as long as the bandwidth of the P3 loop (as dictated by the

P3 error dynamics) is sufficiently lower than that of the inner loop.

The structure of the (P controller is very similar to the rate control structure, with

the exception that there is no need for a reference model since the control objective

is regulation. The P3 controller does have error dynamics and plant inversion

components that perform the same functions as those in the inner-loop (see Fig.

5.10). The error dynamics are essentially identical to those of the rate controllers,
and include both Proportional and integral feedback of the error signal. The plant

inversion process is also very similar.
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Figure 5.10. The /3 Regulator.

The expression for tho /3 dynamics is given in body coordinates as [Brumbaugh

(1991)]:

= [Dsin3 + Ycosp - XT cosasin P+ Y. cos/3- Zrsincasinf]/Vm

+g[sin cosasin/f+ cosOsinocosp -- cos cososinasin/3VV (5.7)
+psin a - r cosa

The first term on the right-hand side represents the effect of aerodynamic and

thrust forces on P3. It is a poorly known, complex, nonlinear function of the

states. As such, it is very difficult to precompute, and is best accommodated via

the adaptive and learning components of the controller. The second and third

terms, on the other hand, are relatively simple, well-defined, and easy to comput.e

(assuming that measurements or estimates of the relevant states are available).

The last two terms dominate the expression and are equal to the stability-axis yaw

rate; i.e., the "pseudo" control of the outer-loop:

r, = rcosac-psina

T|•b details of the a priori, adaptive, and learning components of the plant inver-

sion are provided b],low.

A Priori Component of #3 Plant Inversion

The 1P equation may be discretized using a simple Euler approximation

fl+ =/k + ATg[sin Ok cos a, sin Phk + cos 0. sin 0. cos flA1A
I - cos 0. cos 0, sin ak sin Pk J/vk (5.8)

+'k ,- ATr,
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where the effect of the aerodynamic and thrust forces are treated as unknown dy-

namics and are lumped into the T term. The objective of plant inversion is to find
the control r, that achieves the desired value of sideslip at the next control cycle.
The a priori component of the control is determined by solving this equation for
the commanded value of stability-axis yaw rate (and neglecting T),

.
21(Pld k+1- fik)_+ -g [sin 0k cos a, sin flk + cos 0 sin 0. cos Pks i (5.9)-c AT -, L - cos 6ý cos Ok sin ah sin P.k

Adaptive and Learning Components of f# Inversion

Equation (5.8) may be written as

Yk+1 = f(Xk)+buk

where y = P, u = r, and f(xk) + bu, represents the a priori component of the P

dynamics (the right-hand side of (5.8)). The network will build a forward map

n(xk, nk) for the aerodynamic and thrust forces that are absent from (5.8)

nl(xl, n,-,) = y,- f(xk,) - bu._1

so that the new design model with learning is

yk+. = f (xk)+bu, +n(xk,nk) (5.10)

The adaptive system will account for output errors in (5.10)

Tk = Yk - f(xk_ )-buA, - n(Xk_,, n.- J

and the complete design model is given by

y+ I = f(xk) + bu, + n(x,,n) + 'P' (5.11)

The control objective is Yk+, = Yd.h+1' so that the control must be solved from (5.11).

Recall from the inner-loop problem, that the network dynamics had to be

linearized to obtain a closed-form solution. A similar procedure must be carried

out here, re3ulting in
S- f(x)- n(x, )+ -d

Uk b dn

du
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5.5.4 Learning Systew

A linear-Gaussian network with an incremental gradient learning algorithm

was used to form the basis of the learning system in this example. The in-

put/output equations for this network are repeated below (see Section 3.5 for more

detail):

y(x) = XIr(x)f,(x)
i-l

where x and y are the input and output vectors, respectively, n is the number of

nodes in the network, fi(x) are the local basis functions, and rI(x) are the nor-

malized influence functions, which are defined to be
Fi (x) = (x) with 0 < r(x)_< 1 and

j=1

In the case of a linear-Gaussian network, the functiou' fi(x) and y,(x) become

fi Cx) = Mx- * bi
y1 (x) = ci exp{-(x- x) Q i(x-x?)}

For the work presented here, the matrices M, and the vectors bi were adjustable,

but the matrices Q, (each Qi must be symmetric positive definite), the vectors x',

and the scalars ci were all held constant. As shown in Fig. 5.11, a total of n = 27

linear-Gaussian node pairs were used in this network. 1 The network had eight

inputs covering Mach number, angle-of-attack, sideslip, dynamic pressure, as
well as aileron, horizontal stabilator, differential stabilator, and rudder inputs.

The four outputs of the network represent learned (but initially unmodeled) dy-

namics in roll rate, pitch rate, yaw rate, and sideslip as a function of the eight in-,

puts.

I

1 Although Fig. 511 seems to indicate otherwise, the linear-Gaussian nodes in the network are
really arranged in a single layer (which has been folded to make the figure more compact).
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Net

dr

Figure 5.11. Linear-Gaussian Network Used in the Hybrid Controller.'

I

This network has eight inputs (Mach number, angle-of-attack, sideslip, dynamic presFure,

aileron, horizontal stabilatur, differential stabilator, and rudder), 27 nodes arranged in a
single layer (but drawn in a more compact form), and four outputs (contained in the vector-
valued signal "Net"). The network outputs represent the learned contributions to the prediction
of the expected next values of aircraft roll rate, pitch rate, yaw rate, and sideslip, in terms of the
current network inputs.
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5.6 Simulation Results

Experimental results obtained from a software simulation of the hybrid adap-
tive/learning control methodology, applied to the attitude rate control problem on a

nonlinear aircraft model and demonstrated relative to the S-trajectory maneuver,
are summarized in this section. The basic experimental setup is shown below in

Fig. 5.12, which is a snapshot of the NetSirn project window. The key software
modules are listled in Table 5.2.

~~~ ~STraj Proj w/Net-Hyjb -i1

10

9 ~R/Ct(6) 3:.1

Cuna'llr Fctuator 6 2.1 1P14

12

!(k)

F -s-Trj Ne t 2

587

Figure 5.12. A Snapshot of the NetSim Project Window Used in the 6-DOF Flight
Control Demonstration.



Table 5.2. Main NetSim Component Modules for S-Trajectory Demonstration.

R/C(6) 6-DOF, nonlinear aircraft model

Actuators(6) actuator suite for 6-DOF aircraft

"S" Trajectory open-loop guidance command generator

RateRef performance (reference) model w/ error dynamics

RateCtrl attitude rate controller

Beta Controller sideslip controller

S-Traj Net linear-Gaussian network used for learning

Gust Model Dryden model wind gust generator

5.6.1 S-Trajectory Maneuver

The S-trajectory maneuver used to demonstrate the hybrid adaptive/learning con-

trol system in a coupled, multi-axis flight control scenario is outlined below, in

Table 5.3. This mraneuver is similar to one described in [Stevens & Lewis (1992)].

Starting from a wings-level, trimmed flight condition at an altitude of 5,000 ft and

an airspeed of 987 ftls (Mach 0.9), guidance commands are issued in an open-loop
fashion. As outlined in Section 5.5, the overall control augmentation system con-

sists of an outer-loop sideslip regulator and an inner-loop angular rate tracker.

Thus, there are two explicit exogenous inputs to the control augmentation system,

Po.om and qr,,, which are specified by the guidance command generator;

additionally, f 0 is assumed to be an implicit command.

Table 5.3. S-Trajectory (Open-Loop) Guidarce Commands.

time (s) guidance command

0 accelerate forward; hold throttle at full afterburner

5 initiate pitch pull-up (10 deg/s)

21 initiate roll right about stability-axis (60 deg/s)

24 terminate roll right

38 terminate pull-up

41 initiate roll left about stability-axis (60 deg/s)

44 terminate roll left

(i0 terminate maneuver
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The S-trajectory is a difficult and challenging maneuver for several reasons
(particularly given the capabilities of the specific aircraft model and actuator suite
used). The overall maneuver takes the aircraft through a variety of different
flight regimes during the course of its execution. A "side view" (altitude vs.
ground track) of the maneuver is shown in Fig. 5.13; this perspective clearly illus-
trates why the maneuver is referred to as the "S-trajectory." Note that in Fig.
5.13, as well as in all subsequent figures relating to the S-trajectory, the results
shown are for the h~bxy_ attitude rate control system, with adaptive and learning
augmentation, after learning has occurred.

Figs. 5.14-5.18 provide additional perspectives that are useful for characterizing
the S-trajectory maneuver: Fig. 5.14 shows the Euler angles associated with the
maneuver; Fig. 5.15 is a plot of altitude vs. airspeed; Fig. 5.16 shows angle-of-at-
tack and sideslip as a function of time; Fig. 5.17 shows load factor vs. time; and
finally, Fig. 5.18 shows dynamic pressure vs. time.

It should be clear from these plots that the S-trajectory is a complex maneuver.
For instance, altitude ranges from 5,000 to 22,000 ft, while airspeed ranges from
370 ft/s to 1070 ft/s. Over this spectrum, the dynamic pressure (which is a strong
determinant of the effectiveness of the aerodynamic control surfaces) that the air-
craft experiences varies from 80 lbs/ft2 to 1160 lbs/ft2 , with the low point coming

near the most difficult point in the maneuver (around t = 40 s, when the pitch
pull-up is terminated, and the second roll is initiated). During this part of the
maneuver, the angle-of-attack plummets from around 20 deg to -6 deg and load
factor goes negative. In fact, both the angle-of-attack and load factor are negative
during the second roll 180 deg roll.
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.6.2 Hybrid Control Tracking Results

The hybrid adaptive/learning control system was trained by exposing it to approx-

imately 4,300 instances of the S-trajectory maneuver. During roughly half of

these trials, Dryiden model wind gusts [MIL-STD-1797A (1990)1 were used to gen-

erate disturbances to the otherwise deterministic vehicle dynamics. Although the

performance of the learning system in this case (i.e., its ability to accurately syn-

thesize the desired unmodeled dynamics in an efficient manner, given the avail-

able resources and experiential data) was adequate for the purposes of this inves-

tigation, we believe that much more efficient methods are possible. 1

Initially, before any learning has occurred, the performance of the hybrid control

system is identical to that of the control system with adaptive augmentation only.

In this case, the adaptive control system acting on its own is able to complete the

maneuver, but tracking performance is not very good and, moreover, repeated

trials do not make the adaptive controller perform better. With additional experi-

ence, the hybrid controller ji able to perform better than the adaptive system, due

to the incorporation of learning. Note that the a priori control system alone (with-

out adaptive nor learning augmentation) is unable to control the vehicle well

enough for the maneuver to be completed. In each case, the only a priori model

information used to design the controllers was a single, low-order linearization of

the actual nonlinear aircraft dynamics at a trimmed flight condition correspond-

ing to an altitude of 5,000 ft and an airspeed of 600 ft/s, together with the rigid-body

dynamics that appears in (5.8).

Fig. 5.19 shows the tracking performance of the hybrid controller (after learning

has occurred) for the stability-axis pitch rate command. In this figure (as well as

the next two), three curvws are plotted: a command signal, the corresponding sig-

nal output from the reference model dynamics, and the actual response of the

nonlinear vehicle under hybrid control. Perfect tracking would result if the ac-

tual signal matched that output from the reference model. Fig. 5.20 shows the

stability-axis roll rate tracking peiformance, and Fig. 5.21 shows the stability-axis

yaw rate tracking perfornmn.ce.

For example, variable structure learing methods could have been employed. Some potential
improvements that might be made to the learning system are. discussed in Section 6.2.
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In Fig. 5.21, the "command" signal is not one of the two exogenous inputs

provided by the open-loop command generator, and instead is generated by the

outer-loop sideslip controller. Note that the sideslip controller was designed

under the assumption that the inner-loop attitude rate tracker was perfect in the

sense that it had no error and no lag. Of course, the actual inner-L~op controller

is not perfect, and so this "design separation" assumption is violated. As a result,

the performance of the hybrid controller with respect to yaw rate tracking is not as

good as it is for roll and pitch rate tracking.

In point of fact, yaw rate tracking (about the stability-axis) was nL an explicit goal

of the control' augmentation system; instead, it was a means for achieving the ex-

plicit goal of sideslip regulation. Thus, the actual tracking performance of the

hybrid control system should be judged in terms of Figs. 5.16, 5.19, and 5.20. In

Fig. 5.16, the sideslip command should be taken to be identically zero, throughout

the course of the maneuver.

It should be clear from Figs. 5.16, 5.19, and 5.20 that the tracking performance of

the hybrid adaptive/learning is excellent, especially given the limited a priori

model inform*ation available to it and the difficulty of the S-trajectory maneuver.

A direct comparison of the performance of the adaptive and hybrid control sys-

tems relative to a near-ideal controller will be presented later in this section.
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5.6_.3-_ ybrid Control Effector -VAgM

To execute the S-trajectory maneuver, four different aerodynamic control surface
A

effectors were used by the hybrid control system: differential aileron, symmetric

horizontal stabilator, differential stabilator, and rudder. Figs. 5.22 through 5.25

show the control effector usage for these surfaces, respectively, during this ma-

neuver.

In each case, the control signals were subject to the position and rate saturation

limits of the actuators (as discussed in Section 5.2). As can be readily seen, only

the ailerons saturated (around t = 42 s, during the second roll). As mentioned

previously, the effectiveness of the aarodynamic control surfaces changes radi-

cally over the course of the S-trajectory maneuver. In terms of the signals shown

in these figures, one can observe this effect by noticing that the magnitude of the

control signals required to perform the maneuver is greatest when the dynamic

pressure is lowest (roughly from t = 35 to 45 s).
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5.6A4 Summary of Prediction Error Results

The three controllers developed and applied to this problem (linear, adaptive, and

hybrid) were all derived using the same a priori model information (i.e., a single,

constant parameter, low-order linearization of the actual nonlinear aircraft dy-

namics without actuator or engine dynamics, together with some knowledge of

the rigid-body dynamics-not aerodynamics-relating sideslip and yaw rate). A

linear compensator was designed using only this a priori information. This lin-

ear compensator performed so poorly that it could not be used to perform the S-

trajectory maneuver (the vehicle would depart from controlled flight).

The adaptive controller was developed as an extension of the linear compensator,

by using adaptive augmentation to provide an improved on-line model of the non-
linear aircraft dynamics. A simple adaptive method was incorporated that al-
lowed the vehicle to complete the S-trajectory maneuver, albeit with substantial
tracking errors. Similarly, the hybrid controller was developed as an extension to

the adaptive controller by using learning augmentation to provide an even better
on-line model of the actual nonlinear aircraft dynamics. Prior to learning, the

hybrid controller performed identically to the adaptive controller; after a small

period of training, the hybrid system was able to perform exceptionally well.

'rhe only real difference between these three controllers was in their ability to
identify and predict the unmodeled dynamics of the aircraft. In particular, All

three employed the same overall control systam architecture, and the same on-

line control selection scheme. The linear compensator was of a fixed design, and
could not improve its model on-line. Both the adaptive and learning augmented

controllers were able to update their models on-line. Thus, the most direct way to

compare the performance of the controllers is to examine their ability to predict

the behavior of the actual nonlinear aircraft in terms of the four outputs of inter-
est: roll rate, pitch rate. yaw rate, and sideslip. Since the linear compensator was

unable to execute the maneuver, it was excluded from the comparison. In addi-

tion, so as to gauge the relative performance that might be obtained under condi-
tions of near perfect learning, an "ideal" hybrid controller was constructed by re-

placing the learning system netwo~rk with modules derived from the actual non-
linear aircraft dynamics. Subsequently the root-mean-square (RMS) value of the

prediction errors for the four outputs were computed over S-trajectory. These re-
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sults are summarized in the bar chart shown in Fig. 5.26. Note that the predic-

tion errors in the case of "ideal" augmentation are not quite zero due to the pres-

ence of some effects (e.g., actuator position and rate saturation) which could not

easily be accounted for and were hence ignored.

RMS Value of Prediction Errors

* roll

. .................................................................................................. ....... p itc h ..........o "[ yaw

o beta

0

ADAPTIVE HYBRID "IDEAL'

Controller

Figure 5.26. Summary uf Prediction Errors Using Adaptive, Hybrid

Adaptive/Learning, and "Ideal" Augmentation.

Fig. 5.26 clearly show, the improvement that is possible through the use of learn-

ing augmentation. The hybrid controller easily outperforms the adaptive system,

and is even able to outperfurm the "ideal" case relative to the sideslip dynamics.
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6 Conclusion

Results obtained during this research program clearly demonstrate many of the

potential benefits of learning augmented control. At the same time, however, is-

sues uncovered by this investigation also suggest that further work is needed. A

summary of the program is provided below in Section 6.1, while topics for future

research and development are discussed in Section 6.2. Note that each attach-

ment also includes its own separate set of conclusions and recommendations for

future research.

( 1 Summary

This multiphase research program had the broad aim of investigating the appli-

cation of learning systems to automatic control in general, and to flight co ntrol in

particular. The first phase analyzed the original drive-reinforcement learning
paradigm and examined its application to automatic control, with mixed results.

It was shown that while the original algorithm showed promise, it nevertheless

lacked the ability to function (alone) as a learning controller. The second phase

compared a number of alternative control strategies including conventional lin-

ear control, adaptive control, as well as other reinforcement learning control

methods (e.g., those developed by Barto, Sutton, et al.). No candidate was found to

dominate the field, and none was perceived to be suitable for application to flight
control. During this some period, a new hybrid adaptivellearning control scheme

was conceived. Subsequently, in the third phase, the hybrid control approach was

more fully developed and applied to several nonlinear dynamical systems, includ-

ing a cart-pole system, aeroelastic oscillator, and a three-degree-of-freedom high

performance aircraft. Each application was successful. The fourth pha3e revis-

ited drive-reinforcement learning from the point of view of optimal control and

successfully applied a version embedded in the associative control process archi-
tecture to regulate an aeroelastic oscillator. Analysis ot this and other similar re-
inforcement learning approaches indicated that they are best suited to problerms

in optimal control. The fifth phase examined the problem of learning augmented

estimation, and resulted in the development of a preliminary estimation scheme

that is consistent with the hybrid adaptive/learning control approach. In the

sixth and final phase, the hybrid control methodology was applied to a nonlinear,
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six-degree-of-freedom flight control problem, and then successfully demonstrated

via a challenging, multiaxis "S-trajectory," maneuver.

Throughout this work, a key concept underlying our approach is the view that

"learning" can be interpreted as the automatic synthesis of multivariable func-
tional mappings, based on experiential information that is gained incrementally

over time. When combined with adaptation, the resulting hybrid control strategy
provides a sophisticated control system design and implementation technique.

Moreover, our work emphasizes real-time (on-line) adaptation and learning, and
considers the overall problem to have four fundamental elements: adaptation,

learning, control, and estimation. For flight control applications, advanced con-
trol systems incorporating learning might be used advantageously to:

* facilitate the control system design and tuning process

* accommodate initially unmodeled dynamics
* improve performance thrnugh on-line self-optimization

* improve control usage and efficiency relative to purely adaptive approaches

The bottom line is that learning augmentation is beneficial to automatic control in
general and to flight control, in particular.

In conclusion, the main accomplishments of this program include:
"* analysis of the D-R learning paradigm and ACP network architecture in the

context of control and optimal control, respectively
"* motivation for and identification of issues underlying the application of

learning to flight control
"* conception and development of the hybrid adaptive/learning control and

estimation methodology
"* application of a variety of learning sys' ýms to the control of a many different

nonlinear dynamical systems (e.g., cart-pole system on split-level track,

aeroelastic oscillator, and 3-DOF high performance aircraft)

"* development of a 6-DOF learning augmented flight control system and
demonstration via a multi-axis maneuver

* guidance, supervision, and support of 3 graduate student theses

* production of 11 technical tublicatiOnls
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6.2 Recommendations for Future Work

Although significant progress was made during this research program, it is
clear that further work is needed, Key topics for future research and development

are summarized below.

6.2.1.. Jeinfo rce e 16 1~ig

The current state of scientific and engineering advancement is such that most
reinforcement learning methodologies cannot readily be applied (in a practical
sense) to those complex control problems which might warrant such approaches.

Even su, the potential benefits associated with a practical reinforcement learning
system implementation are significant and not easily overlooked. Moreover,
many rasearchers believe firmly in the existence of such implementations. Thlis,
we suggest two topics for future research and development in this area.

Reinforcement Learning Application.

A closer examination of the many connections between reinforcement learning
and "classical" approaches to soh-ing optimal control and multiplayer game prob-
lems is needed. The formulation of many such problems fif 3 the basic scenario of
reinforcement learning, with the proviso that reinforcement learning methods
are only appropriate for probiems iD. which there is a significant level of uncer-
tainty regarding the plant (or player) dynamics. 1 It is perhaps also true that
those who have been approaching such problems from a classical engineering
point of view can benefit from the perspective of more biologically motivated re-

searchers, and vice versa.

Continuous Input/Output Reinforcement Learning Systems

One severe limitation of many current reinforcement learning methods is the
need to discretize both the problem state space and the control action space. Often,

For vxampl2, onL might attempt to design robust control systems (off-line) using a two-player
game scenario, in which one player (the protagonist) attempts to minimize some cost function
by selecting an appropriate control law, while tbc other player (the antagonist) attempts to
maximize the same cost function by modifying plant and/or environmentaI parameters.
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only a binary (i.e., bang-bang) contr-' action set is used. Moreover, it appears that

there may be great difficulty in scaling such implementations up to the point

where a quantized system could be effectively used. An important first step to-

wards making reinforcement learning method- more useful to control theorists

and engineers would be to deelop ,-stem. capable of continuous input/output

spaces (i.e., continuous state _nd action spaces). In addition, variable structure
"learning (see below) is a feature that almost certainly should be incorporated into

reinforcement learning systems.

6.22 Learning.Syt ms ia-ay.ylbd AdaptiveLe&rming ConQ1

There are several opportunities for enhancing both the learning system and
training process in a hybrid .daptive/learning control system. Generally, these

upgrades are aimed at: (i) making the learning process more efficient, as well as

(ii) automating the learning system design parametor selection process-which

is currently done manually.

Variable Learning Rates

When on-line learning is used in control applications, the system state may re-

main in particular regions of its state-space for extended periods of time during

training. Under these conditions, the approximation error Should ngt be expected

to tend unifol-mly to zero over the input-space. Instead, the error will be lowest in
those areas where the greatest amount of experience has been obtained. This

condition leads to conflicting constraints on the learning rate: it should be small

(to filter the effects of noise) in those regions where the approximation error is

small, but at the same time, it should be large (for fast learning) in those regions

where the approximation error is large (relative to the ambient noise level). Reso-

lution of this ctunflict is possible through the use of spatially localized learning

rates, where individual learning rate coefficients are maintained for each

(spatially localized) region and updated in response to the local learning condi-

tions. Some preliminary work has been performed in this area, e.g., [Jacobs

(1988); Berger (1992)].
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Variable Structure Algorithms

One potential criticism of the use of learning systems in control applicatLions is

that learning may proceed too slowly, so that too much training time is rcquired

before the benefits can be realized. To a large extent, slow learning rates are an

inherent attribute of large distributed networks, since much experiential infor-

mation is needed to determine the appropriate values for the large number of ad- ¶

justable parametcqrs. One fundamental approach for achieving more rapid learn-

ing is to begin with a small network, having a few adjustable parameters, and in-

creimentally "grow" the network by enlarging its structure. Although such a net-

work initially lacks high representational power, it will be able to quickly capture

the main feitures of the desired mapping. Additional parameters (structure)

may then be added to gradually improve the precision of the mapping. Given ap-

propriate logic fox adding nodes, this approach should display a high overall

learning rate, as the learning process will proceed in a more efficient manner

than when using standard gradient-based training algorithms witL fixed net-

work structures. Until recently, such "variable structure" algorithms were gen-

erally incompatible with the incremental training requirement, of on-line control

system applications. These issues have recently been addressed to some extent in

[Cerrato (1993)A.

§12.3 Learning for Flighpt Contro

Four potential applications of learning to flight control are briefly outlined in this

section. It is perceived that the use of learaing in these instances might prove to

be advantageous, particularly if a learning system were also employed to fulfill

the main learning augmented control function discussed in previous chapters.

Learning Augmented Estimation

Successful state estimation typically requires an accurate model of the system.

Obviously, learning can be used to facilitate the estimation process if this process

is allowed to utilize the modeling information provided by a learning system The

use of learning to provide additional model information should prove to be more

robust to measurement noise than if adaptation alone was used. Once learning

has eccurTed, network evaluations provide stored, time-averaged (and mcre noise
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robust) modeling information, whereas adaptation (dealing only with recent tem-

poral sequences) can only gain robustness to noise by filtering these signals

(which inherently introduces lag into the estimation process). The material pre-

sented in Section 4.3 only represents a first step in this direction-there is much

room for further analysis and development.

Learning an Inverse Model

Recall that accurate output tracking in the basic hybrid control approach requires

solving a system of algebraic equations for the control variables to obtain the de-
sired output at the subsequent time-step. When the plant model is linear, this so-

lution involves inverting a constant matrix that represents input/output control

effectiveness. However, in the general nonlinear case, the tracking problem re-

quires solving a nonlinear system of algebraic equations (as the controls no longer

enter linearly). In fact, this nonlinear problem may have many solutions, or no

solution at all, depending on the nonlinearities involved. Once a nonlinear track-

ing equation had been solved at a given flight condition, it might be desirable to re-

tain this solution. Generation of the solution could then be expedited in the future

if a flight condition in the same vicinity were encountered. In fact, it would be in-

efficient to numerically solve the same nonlinear problem twice-especially if
multiple iterations were required. The generalization implied by these ideas be-

comes tantamount to learning an inverse mapping. Such an approach is gener-

ally possible if and only if the solution to the nonlinear tracking problem is

unique.

Learning the Trim Manifold

Inaccurate knowledge of the trim manifold can be interpreted as a form of model

error. Adding integrators increases controller robustness to uinch modeling er-
ror, but inherently results in slower rates of convergence (since a finite time )s re-

quired for the integral states to have an impact on the control signal). By using

learning to provide the autopilot with a more accurate trim description (in a feed-

forward sense), less integral compensation may be required, thereby improving

the convergence rate and ultimately resulting in a better autopilot design. Simi-

larly, the state estimation process can benefit from a more accui-ate characteriza-

tion of the trim manifold.
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Optimizing the Reference System

In model reference control architectures, the controller secks optimal tracking

performance. Note that even if the control law perfectly achieves this tracking ob-

jective, one can atbgst only expect to match the performance of the chosen refer-

ence system-thus, the reference model effectively represents an "upper-bound"

on the closed-loop system performance. In such a cuntrol paradigm, global sys-

tem performance must be addressed through the design of the reference system.

Generally, one would like to construct the best possible reference system that is

consistent with the actual control capabilities of the system. Furnishing an over-

ambitious reference model might introduce instability, whereas selecting a con-

servative reference system will result in suboptimal closed-loop performance. For

general nonlinear systems, performance will be regime dependent-the system

may be capable of better performance in some regions of the operating envelope

than in others. Typically, such variations are not accurately known a priori, so

that a conservative design may result. Through on-line experience with the ac-

tual system, the controller can learn to identify troublesome operating regimes

and relax the reference model expectations accordingly. Likewise, the reference

response can be made more ambitious in those regimes where it is appropriate to

do so.
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ABSTRACT

Connectionist learning systems may be considered to be automatic function

approximation systems which learn from examples, and have received an increase in

interest in recent years. They have been found useful for a number of tasks, including

control of multi-dimensional, nonlinear, or poorly modeled systems. A number of

approaches have been applied to control problems, such as modeling inverse dynamics,

backpropagating error through time, reinforcement learning, and dynamic programming

based algorithms. The question of integrating partial a priori knowledge into these

systems has often been a peripheral issue.

Control systems for nonlinear plants have been explored extensively, estecially
approaches based on gain scheduling or adaptive control. Gain scheduling is the most

commonly used in practice, but often requires extensive modeling or manual tuning, and is

susceptible to modeling uncertainty and time. varying dynamics. Adaptive control

addresses these problems, but usually cannot react to known spatial dependencies

(nonlinearities) quickly enough to compete with a well-designed gain scheduled system.

This thesis explores a hybrid control approach that uses a connectionist learning

system to store spatial dependencies discovered by an indirect adaptive controller. The

connectionist system learns to anticipate the parameters estimated by the indirect adaptive

controller, effectively becoming a gain scheduled controller. The combined system is then

able to exhibit some of the advantages of gain scheduled and adaptive control, without the

extensive manual tuning required by traditional method's. Subsequently, a technique is
presented for making ase of input/output partial derivative infornation from the network

Finally, the applicability of second-order learning methods to control is considered, and

areas of future research are suggested.

Thesis Supervisor: Dr. Ronald 1. Williams
Title: Professor of Computer Science
Thesis Supierisor: Mi. Walter L. Baker
Title: Technical Staff, CSDL

139



ATTACHMENT 1

ACKNOWLEDGMENT

This report was prepared at The Charles Stark Draper Laboratory, Inc. with support

provided by the U.S. Air Force under Contract F33615-88-C-1740. Publication of this

report does not constitute approval by the sponsoring agency of the findings or conclusions

contained herein. It is published solely for the exchange and stimulation of ideas.

140



ATTACHMENT 1

TABLE OF CONTENTS

1 INTRODUCTION 143

1.1 Motivation 143
1.2 Problem Description 144
1.3 Thesis Objectives and Overview 146

2 BACKGRCUND 147

2.1 Connectionist Leanling Systems 147

2.1.1 Single-Layer Networks 149
2.1.2 Multilayer Networks 154

2.2 Traditional Control 158

2.2.1 Bang-Bang Control 160
2.2.2 Proportiona' Control 160
2.2.3 PID Control 161
2.2.4 Adaptive Control 162
2.2.5 Gain Scheduled Controi 163

2.3 Connectionist Learning Control Approaches 164
2.3.1 Producing Specified Control Signals 165

2.3.2 Following Specified Trajectories 166
2.3.3 Optimizing Specified Reinforcement Signals 172

3 HYBRID CONTROL ARCHITECTURE 179

3.1 The Learning Component 182
3.2 The Adaptive Component 183
3.3 The Hybrid System 184
3.4 Derivation of the Hybrid With Known Control Effect 185

3.5 Derivation of the Hybrid With Urnknown Control Effect 188

141



ATTACHMENT 1

4 LEARNING SYSTEMS USED 192

4.1 Backpropagation Networks 192

4.2 Delta-Bar-Delta 200

5 EXPERIMENTS 203

5.1 The Cart-Pole System 705

5.2 Organization of the Experiments 212

5.3 Mid-Trajectory Spatiad Nonlineafities 213

5.4 Trajectory-End Spatial Nonlinearities 218

5.5 Trajectory-Start and Trajectory-End Nonlinearities 222

5.6 Noise and Nonlinear Functions of Control 230

5.7 Comparison of Connectioaist Netw rks Used 235
5.7.1 Sigmoid 235

5.7.2 Sigmoid With a Second-Order Method (Delta-Bar-Delta) 238

6 CONCLUSIGNS AND RECOMMEbNDATIONS 241

6.1 Summary and Conclusions 241

6.2 Recommendations for Future Work 242

BIBLIOGRAPHY 243

142



ATTACHMENT 1

1 INTRODUCTION

1.1 MOTIVATION

The design of effective automatic control systems for nonlinear plants presents a

difficult problem. Because direct analytic solutions to such problems are generally

unobtainable, various appro)dmate solution methods must be used (e.g., gain scheduling).

The design problem is further complicated by modeling errors. If there are significznt plant

dynamics thai are nol included in the design model, or if the plant dynamics change

unpredictably in time, then the closed-loop system can perform worse than expected and

may even be unstable. Furthermore, if the sensors are noisy, then filters will be required,

which tend to make the control system slow to recognize changes in the plant (from either

nmmodeled or time-varying dynamics).

Traditional gain scheduled controllers often require extensive manual tuning to

design and develop, and do not deal well with unmodeled spatial dependencies,

disturbances, or time-varying plants. Adaptive controllers can handle these difficulties in

principle, but in prac:tice may adapt to spatial dependencies so slowly that the controller is

not as good as a gain scheduled controller would be.

In contrast, an "intelligent" controller operating in a complex environment should be

able to accommodate a certain degree of uncertainty (e.g., from time-varying dynamics,

noise, and disturbances). More importantly, it should be able to learn from experience to

anticipate previously unknown, yet predictable, effects (e.g., quasi.-static nonlinearities).

A possible solution to this problem might be a hybrid ad1aptive / leamning control system

which could both adapt to disturbances and learn tc anticipate spatial nonlincarities.
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1.2 PROBLEM DESCRIPTION

Traditional adaptive control tends to be inefficient and perfOrm roorly with respect

to significant, unmodeled spatial dependencies, while traditional gain scheduled control has

difficulty with poorly modeled dynamics. The problem is to find a system that can control

a plant in the presence of both simultaneously, while incorporating incomplete and possibly

erroneous (but not debilitating) a priori knowledge of the system.

Sometimes a controller is required which can force a plant to follow some desired

reference trajectory. This model reference control problem is approached here using both

traditional control techniques and learning systems. The approaches explored do not

require that the reference trajectory satisfy any special constraints, swich as being generated

by a linear system. The only requirement is a well-defined method for calculating at each

poinw in time the desired rate of change of the plant state.

Few assumptions are made about the plant itself; it can be nonlinear, poorly

modeled, and supjcct to unpredictable disturbances. The simnsor readings from the plant

must contain sufficient information to observe its state and control it, but may be noisy and

otherwise incomplete. For example the plant may have actuator dynamics involving

internal state within the actuators that is not meawured by any sensor. Specifically, it can

have unkiiown dynamics that aie functions of both state and time. The plant can have

spatial dependencies, that is nonlinearities that are functions of state and are either static

or quasi-static in time. In addition, ii can also have temporal dependencies which are

functions of time, caused by disturbances and -9ther short-term, unpredictable events.

Another important property of the control system is that it be possible to incorporate

any a priori knowledge. This should include knowledge about both the behavior of the

plant in the absence of any control signals, and the effect of the control signals on the plant.

Moreove,, it is especially important that errors in the a priori informM)tion not cripple the
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controller in the long run. The controller should be able to eventually learn these errors and

compensate fot them.

Various algorithms for connectionist learning systems are often proposed and

compared on very small "toy" problems. The error to be minimized is usually defined as

the total squared output error, summed over the output for each training example. The

problems arising in learning control often do not resemble these test problems, and so it is

difficult to predict how various proposed modifications will affect learning controllers. The

problems in control typically involve learning functions that map continuous inputs to

continuous outputs, and these functions are generally smooth with possibly a few

discontinuities. For a control problem, the error is defined as the total squared error,

integrated over the entire domain. Learning systems that can quickly learn to fit a function

to a small number of point- may not be able to quickly learn the continuous functions

arising in typical control problems.

Another important aspect of learning control is the order in which training exampies

become aveilable. Most proposed learning systcms are tested on learning problems

involving a fixed set of training examples, which are all available at the same time, and

which can be accessed in any order. In control problems, the plant being controlled may

change its state slowly, or tend to spend large amounts of time in a small regions of the

state..space (e.g., near an operating point). This may cause the learning system to receive a

large number of similar training examples before seeing diffetent training example-. For

some learning systems this uneven ordering of training data may not matter. For others, it

may caust the sy..zem to learn more slowly or to forget important information. In any case,

this is an aspect of learning control that must be taken into account when comparing various

learning systems For use in a controller.
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1.3 THESIS OBJECTIVES AND ONVRVIEW

The object of this thesis is to find methods for combining learning systems with

adaptive systems in order to achieve good control in the presence of both spatial and

temporal functional dependencies. Several methods are developed for augmenting the
4

estimation carried out by an indirect adaptive system with the additional information

available from a learning system. In addition to developing this learning augmented

estimation, various issues in the construction and use of connectionist iearning systems

are explored in this context.

Chapter 2, Background, gives some of the important concepts and historical

development of' connectionist systems, control systems, and approaches to using

connectionist systems for control.

Chapter 3, Hybrid Control Architecture, covers the adaptive controller and

connectionist networks that are integrated into a single hybrid controller. Both the

indiviaual components and the final, integrated system, are motivated from current

problems, and are described in detail.

Chapter 4, Connectionist Learning for Control, co,,ers some of the difficulties

associated with learning systems for control, and describes the methods used here to deal

with those difficulties.

Chapter 5, Experiments, describes the various simulations performed and their

results. These results are. presented graphically and air interpreted in relation to the original

goals.

Chapter 6, Conclusions and Recommndations, summarizes what has been

accomplished, draws conclusions, and points out areas in which future research should be

focused.

The bibliography lists those works which were used in the preparation of this

!hesis, together with other, f"elated works.
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2 BACKGROUND

The hybrid learning / adaptive controller combines connectionist learning systems

with traditional control systems, and modifies each of these components to improve the

ability of the hybrid to combine the strengths of each. Before describing the hybrid system

itself, it is first necessary to cover some of the important developments and concepts

relating to these components. Section 2.1 covers the development of some of the important

ideas in connectionist learning systems, and Section 2.2 deals with some of the common

approaches in traditional control theory. Finally, Section 2.3 describes some of the

approaches that have been taken in building learning controllers or incorporating

connectionist learning systems into control systems.

2.1 CONNECTIONIST LEARNING SYSTEMS

The application of connectionist learning systems to problems in control has

received considerable attention recently. Such systems, usually in the form of feeJorv ard

multilayer networks, are appealing because they are relatively simple in form, ca i be used

to realize general nonlinear mappings, and can be implemented in parallel computationvl

hardware. An example of a simple network is shown in in figure 2.1. The network

consists of nodes and connections between nodes. A node may have several real-valued

inputs, each of which has an associated connection weight (also real-valued). Each node

computes a nonlinear function of the weighted sum of its inputs, and then sends the result

out along all the connections leaving the node. Nodes are arranged in layers, with nodes in

each layer sending outputs only to nodes in subsequent layers. In such feedforward

networks, it is easy to calculate network outputs, given a set of inputs.
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y = __ _

x3- 1-D %-

Figure 2.1 A connectionist network

A key feature of feedforward multilayer networks is that any piecewise smooth

function can be approximated to any desired accuracy by some arbitrarily large network

having the appropriate weights [HW89]. Given the correct weights, a network can be used

to implement a nonlinear function that is useful for a control application. The difficulty is

in finding the appropriate weights. No known algorithm guarantees finding satisfactory

weights for all layers of a multilayer network, and Minsky and Papert pointed out in 1969

that the small networks networks that are guaranteed to converge do not scale well for some

large problems [MP69.. Many saw this as an indication that connectionist approaches were

not useful in general.

One event that helped change this perception was the development of the error

Backpropagation algorithm, independently developed by Werbos [Wer74], Parker [Par82],

LeCun [LeC87], and Rumelhart, Hinton, and Williams [RJTW86I. Error back-propagation

is a gradient descent algorithm that modifies network weights incrementally to minimize a

particular measure of error. The error is usually defined as the sum of the squared error in

the output over the set of inputs. The network functions are continuously differentiable, so

it is possible to calculate the gradient of the total error with respect to the weights, and to

adjust the weights in the direction of the negative gradient. As with all gradient descent
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optimization techniques, there exists a possibility of converging to a non-optimal local

minimum. Despite this, learning systems using back-propagation have been shown to find

good solutions to various real world problems including difficult, highly nonlinear control

problems. No difficulties due to the presence of local minima were observed in any of the

experiments that are describeAd in this thesis.

Backpropagation and many other connectionist learning algorithms tend to converge

slowly, and so are more useful for learning quasi-static nonlinear functions than for

adapting to rapidly changing functions.

2.1.1 Single-Layer Networks

The earliest connectionist systems were single-layer networks. Single-layer

networks are networks that implement functions with the property that the function is a

linear combination of other functions, and only the weighting factors in that linear

combination change during learning. These networks tend to be less powerful, but the

learning rules are simpler, and so these firchitectures received the earliest attention.

Perceptron_

One of the early connectionist network models was the simple perceptron,

developed by Rosenblatt [Ros62] in the late 50's (as discussed in [RZ86][Sim8'7]).

Rosenblatt coined the term perceptron to refer to connectionist systems in general,

including those with multiple layers and feedback. He is most widely known for the

development of the simple perceptron. A simple perceptron is a device which takes

several inputs, multiplies each one by an associated integer called its weight, and finds the

sum of these products. The simple perceptron has a single output, and the inputs and

output are each 1 or -1. Thet output is -1 if the weighted sum of the inputs is negative, and

1 if the sum is nonnegative.

If the input is thought of as a pattern and the output as a truth value, then the simple
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perceptron can be thought of as a classifier which detenrmines whether or not inputs belong

to a given class. Given a set of input patterns along with their correct classification, it is

sometimes possible to find weights that will cause a simple perceptron to classify those

patterns correctly. Specifically, if such a set of weights exists, then Rosenblatt proved that

a very simple algorithm will always succeed in finding those weights, learning only from

presentations of inputs and their correct classifications. The algorithm simply started, with

arbitrary wcighs, and repeatedly classified training examples. Whenever it got a

classification wrong, each weight that had an effect on the result was incremented or

decremented by one, so as to make the resulting sum closer to the correct answer.

Rosenblatt's "perceptron learning theorem" proving the validity of this algorithm is one of

the more influential results of his research.

It is helpful to think of the inputs to the network as a vector representing a point in

som'e high-dimensional space. The weighted sum of the inputs is a hyperplane in that

spac.e, anid the output fzom ihe simple perceptron will classify input,, based on which side

of -the hyperplane they lie on. This means that a single simple perceptron is only capable of

ciassifying inputs into one of two linearly separable sets, sets which cani be separated by a

hyperplane. Although this limits the power of a single simple perceptron, it is still useful to

know that. any such classification can be learned simply by training the simple perceptron

with examples of correct classifications.

This limitation on the power of perceptrons can be overcome if the outputs of

several ýsimple perceptrons feed in to another simpie perc-eptron, thus forming a multilayer

perceptron. Rosenblatt was able to show that for any arbitrary desired classification of the

input patterns, there. exists a two-layer perceptron which can act as a perfect classifier for

that mapping. Unfortunately, there is no known 'tearning algorithm that is guaranteed to

find &je correct weights for a multilayeir pt'rc, )Lron as there was% in the case of the single-

layer pe-rceptron. Min,-kv and Papert, in their 1969 book Perceptrons [MIP69], analyzed

single-layer percept-tons and pointed out a number of difficulties with them. Simple
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perceptrons are only able to recognize linearly separable classes, and so cannot calculate an

exclusive OR, or recognize whether the set of black bits in a picture is connected or not.

The problem remains even if the inputs to the perceptron are arbitrary functions of proper

subsets of the input pattern. Despite the interesting features of single-layer perceptrons,

their conclusion w& that "there. is no reason to suppose that any of these virtues can-y over

to the many-layered version. Nevertheless, we consider it to be an important research

problem to elucidate (or reject) our intuitive judgemeat that the extension is sterile" [MP69].

Minsky later considered Perceptrons to be overkill, an understandable reaction to excess

hyperbole which was diverting researchers into a false path [RZ86]. However at the time,

the book was one of the factors contributing to a decrease in interest in connectionist

models in general.

Samuel'sCl.ggkuEr laye

Another early system was Samuel's checker playing program [Sam59][Sam67].

This was the first program capzble of playing a nontrivial game well enough to compete

well with humans, and it was an important system because it introduced a number of new

ideas. It used both book (table) lookup and game-tree searches, and was the first program

in which the now common procedure of alpha-beta pruning was used. It also had a

le.rning component which was not referred to as a neural network or connectionist system

at the time, but which strongly resembles many such systems.

The program chose its move in checkers by scarchiix. a garne-t.'ee to some depth

and picking the best move. Alpha-beta pruaing and other subtleties were used to make the

search more cfficient, but the basic component needed to make it work was a function that

could compare the desirability of reaching each of several possible board positions. Given

an exhaustive search, this scoring function could be as simple as "choose a move that

ensures a win if possible; otherwise avoid a 'ossi" Since Samuel cc,.dd uly search a small

number of moves, the scoring function was very important, and so he built it to comb:ne
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the best a priori knowledge he could find with additionad knowledge found by the program

through learning.

The a priori knowledge which Samuel started with was a set of heuristic functions

derived from a knowledge of what good human players consider important. For example,

one such function was the number of pieces each player had on the board; another was how

many possible moves the computer had available to choose between. Each of these

functions were hand built to have a good chance of being significant, to be. quick and easy

to calculate, and to return a single number instead of a vector or a symbol. The scoring

function was simply a linear combination of each of the outputs of these furctions. Samuel

referred to this linear function as a polynomial. The learning systt.m was designed to pick

the functions that would be included in the linear combination, and to pick weights for

these functions.

All of the weights were initially set to arbitrary values. The program could then

play games against a copy of itself, where only one of the two copies would leam during a

given game. The score for a board position represented the expected outcome of the game.

If the score on the next turn was different, then the later score can be assumed to be, more

accurate than the earlier score, since it is based on looking farther ahead in the game.

Therefore the weights would all be modified slightly so that the earlier score would more

nearly match the later score. The polync.nial had some fixed terms that were never

changed by learning, which ensured that the score of a board at the end of the game would

"always be accurate, preferring wins to losses. The prcx'ess described here is very similar to

how the perceptror. learned, changing weights slightly on each time step so as to decrease

error. There were other important aspects of Samuel's algorithm beyond this, such as

occasionally ranidomly changing the function to escape local minima, but the core of the

learning process was this simple hill climbirg algorithm.

Although Samuel said he was avoiding the "Neural-Net Approach" in his program

by including a priori information and learning rules specific to ganes, the ideas which he
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developed are similar in many ways to much later systems for multilayer networks, optimal

control, and reinforcement learning described below. His ideas influenced the work of

Michie and Chambers' Boxes [MC68] and Sutton's Temporal Difference (TD) and Dyna

learning [Sut88][Sut90][BSW89][BS90]. Samuel's algorithm can actually be seen as a

type of incremental dynamic programming [WB90].

ADALINE andI MADALTN

A third system which was developed in the late 1950's was Widrow's ADALINE

and MADALINE [Wid89]. He developed a type of adaptive filter which is still in

widespread use woday in such items as high-speed modems. It worked by multiplying

several signals by weights, summing them, looking at the output, and then adjusting the

weights according to the errors in the output. His training data was analog and noisy and

came from changing signals, but for the most part his filters were. similar to the perceptrons

or polynomial scoring functions described above. When weights were changed in

proporion to their effect on the error, and when the changes became smaller over time,

Widrow proved that the weights were guaranteed to converge. He then went on to add a

squashing function to the output of one of his filters, forcing the output to +1 or -I on each

time step, and used it for pattern recognition. This "Adaptive Linear Neuron" (ADALINE)

[Wid89] was then built in actual hardware, where weights were represented by the

electrical resistance of copper coated graphite rods, and learning was accomplished by

causing more copper to come out of solution and plate the rods. When the the outputs of

multiple ADALINE's were fed into another ADALINE, this formed what Widrow called a

MADALINE (for multiple ADALINES). By doing this, he was able to get around the

problem of only learning linearly separable functions. However, he did not have a method

for training the weights that connected the first set of A.DALh.E's to the !ast one, s,, he

simply fixed all the weights at a value of one.
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2.1.2 Multilayer Networks

As can be seen in the above descriptions, a number of researchers were developing

very similar systems in the late 50's and early 60's, some of which generated a great deal

of excitement. The particular difficulties pointed out in Perceptrons could not be overcome

as long as the output of the device was simply a function of a linear combination of the

inputs. A second layer needed to be added that would take its inputs from the outputs of

the first layer. Widrow added a second layer in the MADALINE, but was unable to train

all of the weights. The pr )blem of multilayer learning was one of the reasons that interest

in connectionism tended o wane until its resurgence in the late 80's.

Hebbian LeU ing

In 1949, Hebh pr, posed a simple model of learning based on his studies of

bio' :o, ical neurons. A n uron in this model would generate an output that was some

function of the weighted sum of its inputs. Unlike the models described above, these.

weights would .eamn wi hout any external training signal at al. The learning occurred

according to tVy.: Hie .biý i Learning Rule, w rich stated that the efficacy of a plastic synapse"

increased wl-- iev4 • the synapse was active in conjunction with activity f the postsynaptic

neuron. Tý is meant tmiat the weight of a connection in( reased wht ne,. er both connected

neurons had 1figh outputs at approximately the same time, and decrea- ed when only one of

them did.

.e basic Hebbian model has beeri refined in various ways over the years to

improve both its ability to model animal behavior, and ils ability to perform useful

functi Wns in systems such as contiollers. One important development in this line of

research is Klopf's drive-re infoicement model [ K1o88]. Ir this inodel, three malor

,iciirlcations are made to t[le baic 0ltebbi n .ntel-
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First, instead of correlating the output of one neuron with the output of another, the

correlation is made between changes in outputs. If signal levels are thought of as drives,

such as hunger, then it does not make sense for the network to change weights merely on

the basis of the existence of these drives. However, when a signal level changes. such as

would happen when hunger is relieved by eating, or pain is increased due to damage being

done to an animal, then the network should change. The second modification is to correlate

past inputs (or changes 'i inputs) with current outputs (or changes in outputs). This

generally allows the network to learn to predict, which a purely Hebbian network is unable

to do. The third modification is to always modify weights in proportion to the current

weight value. This causes learning to follow an "S" shaped curve. At first, a given weight

increases slowly, then grows more rapidly, and finally slows down again and approaches

an asymptotic value. This result is more consistent with the result of experiments with

learning in animals.

This model has proven accurate in reproducing a wide range of actual animal

learning experiments. For example, it is possible to simulate Pavlov's results in classical

conditioning. A single neuron can be given one input representing the ringing of a bell,

and another input representing the taste of meat juice. If the output of the neuron is

interpreted as the salivation response of Pavlov's dogs, tnen the system can be. seen to

slowly become classically conditioned, learning to salivate in response to the bell with an

"S" shaped curved. When the meat juice stimulus is removed, it demonstrates extinction of

the response in a manner which is also realistic.

Drive-reinforcement learning has also been applied to control. Multiple drive-

reinforcement neurons have been connected with other components to form controllers for

traditional control problems, as well as for the problem of traversing a maze to the reward

at the end. This is espeiwally interesting in light of the fact that each individual neuron is

not trying to explicitly minimize an error, as in '.le other tentrollers discussed here.
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Backrorop a a'i

One oi the major contributing factors to the return of widespread interest in

connectionist systems is the development of the Error Backpropagation algorithm. The

basic id-ý',- is simple. A network consists of a set of inputs, a set of outputs, and a set of

nodes which calculate an output as a function of inputs. The nodes are arranged in layers,

with the inputs connecting to the first layer and the last layer connecting to the outputs. The

network i . feedforward, i.e., the complete directed graph of nodes and connections is

acyclic.

Each node functions by taking each of its inputs, multiplying it by an associated

weight, taking a smooth, monotonic function of the sum (such as the hyperbolic tangent),

and then sending the result to all of its outputs. If the network is presented with a set of

different inputs, it will generate an output for each one. The total squared error in the

outputs J can then be calculated, and the weights w changed according to:

n

J (ftxw) -
i=l

Aw, =-a

awi

where:

J = total error for network with weights w
n = number of training examples

cc = learning rate (controlling step size)
xi = input to network for Ah training example
di= desifed output from network for Ah training example

f(x,,w) = actual output from network for kh training example

The change in each weight is proportional to the associated partial derivative. In a

niulti!ayer network, the output of each layer is a simple function of the output of the layer

before it. This a-1iows all of the partial derivatives to be :alculated quickly by starting at the

output of the network and working backward according to the chain rule. Propagating
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errors backward requires as little computation as propagating the original signals forward.

Furthermore, the error calculations can al! be done locally, in the sense that information

need only flcw back through 'he network along the connections that already exist between

nodes. These properties combine to make Backpropagation powerful yet low in both

computation time and hardware required.

This gradient descent process is simple and works well for multilayer networks, but

is not guaranteed to find the best weights possible. As with all hill-climbing methods, it

can get stuck in a local minimum. Although this method cannot be guaranteed to fiud the

correct answer (as simple perceptrons were), it is still a useful method which has been

shown to work well on a variety of problems. Unfortunately, pure gradient descent

methods often converge slowly in the presence of "troughs" in tde error surface. If the

error as a function of network weights is thought of as a high-dimensional surface, then a

long, thin trough in this surface slows c(nvergence. If the current set of weights is a point

on the side of a trough, then the gradient will point mainly down the side of the trough, and

only slightly in the direction along the trough toward the local minimum. If the weight

changes in large steps, it will oscillate across the trough. If it changes in small steps, then

it converges to the local minmum very slowly.

There are a number of approaches to speeding up convergence in this case. One is

to look at the second derivativ.'e in addition to the gradient at each point. If a network has

one output and multiple weights, then the second derivative is a matrix giving the second

partial derivative of the output with respect to each possible pair of weights. This matrix,

called the Hessian, has a useful geometric interpretation. Multiplying a vector by this

matrix stretches the vector in some directions and compresses it in others. For the direction

in which the error suriace has least curvature, the Hessian will compress vectors. For the

direction in which the error surface has greatest curvature, the ilessian will stretch vectors.

Multiplying a vector by the inverse of the Hessian has the opposite effect. Multiplying the

gradient by the inverse of the Hessian will cause the weights to change more in the
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direction along a troogh (where the curvature is small), and less across the ,rough (where

the curvatdre is large). L' the network has N weights, this requires inverting an N by N

matrix on every iteration during training. This overwhelming flood of calculations may

defeat the purpose by requiring more computation than is saved by the shorter path to

convergence. This is why a number of approximate approaches have been proposed for

solvirng this problem, such as using only the diagonal of this matrix, or using heuristics that

approximate the effect of the invese Hessian.

2.2 TRADITIONAL CONTROL

Control theory deals with the problem of forcing some system, called the plant, to

behave in desired manner. The set of relevant properties of the plant which change through

time is called the state, and is represented by the real vector x. For example, in the cruise

control for a car, the state might include the current speed and slope of the ground. If the

st~'te cannot be measured directly, then the sensor readings are represented by another real

vector y. The control action is the set of signals applied to the plant by the controller. and

ib ;epresented by the real vector u. The plant state then is assumed to evolve in time

according to:

rt=f(x,,u,)

Y I = g (xI)

The majority of control theory is devoted to the special case where the plant is

linear, in which case the state evolves according to

iX = Ax 1+But
y, = Cx,

where A, B, and C are constant matrices. Even if a plant is not truly linear, it is often

close enough to linear within certain regions of the state-space that a controller can be

designed for that region based on a linear approximation of the plant. This is useful since

the theory for linear plants is hetter developed thaa for nonlinear plants [D'A88].
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Once the plant has been modeled, the controller must be designed to accomplish

some purpose. If the goal is to keep the state at a certain value, then the controller is calleC

a regulator. If the goal is to force the plant to follow a given trajectory with a specified

transient response, then the controller is a model reference tracking controllei. If the goal

is to minimize some cost function of the whole trajectory, then it is aa optimal control

problem.

Traditional control techniques are based on approaches such as bang-bang,

proportional, proportiondl-integral-derivative (PI)), gain scheduling, and adaptive control,

each des;cribed in a section below. These are important contrcl approaches with which

conrneztionist control techniques should be compared, In addition to this, most of them can

be included, directly or indirectly, in the hybrid system developed ir' this thesis.

Several of the systern, described here were first demonstrated on a standard cart-

pole system prcblem. This plant is illustrated in figure 2.2.

an.monIl i . ... . In n m m ucusJi

Figure 2.2 The cart-pole plant

In this problem, the cart is confined to a one dimensional track, and force can be

applied to it in either direction to cause it to move left or right. On top of the cart is a pole,

which is hinged at the bottom and can swing freely. No forces are applied to the pole

directly, ,o it is only influenced indirectly through forces applied to the cart. The problem

of balancing the pole i,, similar to the problem of balancing a broomstick or a person's

hand. This is a stan.,dard control pioblerr and is useful for demonstrating new control
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methods. A ve.'sion of ths problem is used here to test the new hybrid control systems

developed in this thesis,

2.2.1 Bang-Bang Cortrol

The simplest fo:m of control is a controller that only has two possible outputs.

This "bang-bang" control is commonly used in thermostats which alternate between

running the heating system full on and zurning it off completely. This type of control has

also ibeen used in a learning system to balance a pole on a cart while keeping the cart within

a certain region [BSA83]. Unfortunately, bang-bang control systems are generally

incapable of exercising very fine control, and so usually lead to limit cycles in the plant

being controlled, i.e. the state repeatedly follows a certain pericic path instead of settling

dowr, to a single state. A pole can actiu.' be balanced on a cart by always applying a

certain force in the same direction the pole is leaning. Naturally. this leads to a limit cycle

with the pole swinging back and forth between two extremes. For finer control, a more

general controller is required, such as a proportional controller.

2.2.2 Proportional Control

A proportional controller is perhaps the simplest controller imaginable that still has

continuously varying control actions. Each input to the controller is a real value,

represenzing one elIment of the output of theý plant being controlled. In a regulatc;r, that is

the only input, and the controller tries to control thz plant so that all of the elements of the

state vector are norinimdly zero. In a general controller, each element of the desired state

vetor is a!so an input. The controller then multiplies each input by a constant gain,

possibly adds a cons-ant, and uses the re .snlt as the con:rol signal. If the control action is a

vector involving several sigtals, then the same process is followed for each of them, using

a different set of gains e,.ch time.

To design a satisfactory proportional controller, it is first necessary to have a good
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model of the system being controlled. If the plant is linear and perfectly modeled, or even

if the plant is only close to linear, then it is often possible for a proportional controller to do

an acceptabie job of controlling it.

2.2.3 PID Control

"If the control signal to a plant is simply proportional to the error in its state, then as

the state approaches the desired state, the correcting force will decrease proportionally.

Often, there will be some point near the desired point at which the small correcting force is

balanced by other forces, and the plant will settle into a steady state which has a slight

error. In order to overcome this steady state error, the controller might integrate the error

over a long period of time, and add a component to the control signal proportional to this

integral. It may also be possible to improve the control signal by taking into account not

only the output error, but also how the output enor is changing in time. For this reason it

may be useful to add a term to the control signal proportional to the derivative of the output

error.

If both of these modifications are made to a proportional controller, it is then called

a proportional plus integral plus derivative (PID) controller. If the input to this controller

and the output from it are considered as functions of time and the Laplace transform of

them is taken, then the relationship between input and output is simple. It is some

quadratic function of s divided by s. In discrete-time control, this means that the output of

the controller is a linear combination of four things: the control actions on the previous time

step, the current output error, the output error on the previous time step, and the output

error on the time step before last. Since the control output is at least partially proportional

to the control applied on the previous time step, a small error in plant output causes the

controller output to keep increasing until the error is gone. This is the integral portion of

the controller. Since pl nt output errers from three different time-steps are used, it is

possible to subtract them and estimate how fast the output e-ror is changing. This is the
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derivative aspect of the controller. Also, since the current output error affect the controller

output directly, it has a proportional control component. Therefore all three types of

control are present, and the controller is referred to as a PiD controller.

PID control is widely used; in fact perhaps 90% of all of the controllers in existence

are PID controllers (or P1 or P, which are just PID with some gains set to zero) [Pa183]. If

a plant is linear, it is often possible to design PID controllers that give the desired

performance. If a plant is nonlinear, but will usually stay in some small region of its state-

space, then it is often practical to approximate the plant with a linear model in that region

and design a PID controller for that model. This model can be derived from the full,

nonlinear equations describing the plant, by taking the derivative of those equations, and

evaluating it at a given point in the middle of the region of interest.

2.2.4 Adaptive Control

Instead of creating a fixed controller based on a priori knowledge of a plant, it is

sometimes beneficial to build a controller that can change if the plant is different than the

model, or if the plant changes or experiences disturbances. Starting in the early 1950's,

researchers enthusiastically pursued adaptive control, especially for aircraft, but without

much underlying theory. Interest then diminished in tie early 1960's due to a lack of

theory and a disaster during a flight test [Ast83]. More recently, adaptive control is finally

beginning to reemerge as a more widely used approach.

Adaptive control techniques can be categorized as either indirect adaptive control or

direct adaptive control. Indirect adaptive control utilizes an explicit model of the p•ant,

which is updated periodically, to synthesize new control laws. This app-oacl has the

important advantage that powerful design methods (including optimal control techniques)

may be used on-line; however, it has the key disadvantage that on-lint model identification

is required. Alternatively, direct adaptive control does not rely upon an explicit plant

model, and thus avoids the need to perform model identification. Instead, the control law
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is adjusted directly, based on the observed behavior of the plant. In either case, the

controller will adapt if the plant dynamics change by a significant degree.

Adaptive controllers are usually designed with the assumption that there is some

modeling error, but that the plant behaves locally in a linear manner. The structure of the

controller itself is often limited to being linear at any pGint in time, but the "constants" in the

controller can change slowly over time as it adapts. Even with all of these assumptions of

linearity, the entire system consisting of both an adaptive controller and a plant is nonlinear

while the parameters are adapting. This has made it very difficult to prove that these

controllers are stable, although recent progress has been made in this area [Ast83].

Adaptive- control systems generally exhibit some delay while they ar- adjusting,

particularly when noisy sensors are used (since filterinig creates additional delay). If the

characteristics of the plant vary considerably over its operating envelope (e.g , due to

nonlinearity), an adaptive controller based on a linearized model of the plant can end up

spending a large percentage of its time in a "partially" adapted state, leading to degraded

performance. Moreover,the control system will have to readapt every tirme a new regime of

the operating envelope is entered.

2.2.5 Gain Scheduled Control

Although a system with significant nonlinearities could be controlled by an adaptive

controller which adjusts to the local linear dynamics in each region of the operating

envelope, most control systems handle nonlinearities wiLA gain scheduling. Such

controllers are collections of simple proportional controllers, one for each distinct region of

the operatiing envelope. For example, in a typical complex control system, the state vector

might include 10 elements, three of which are special. When these three art kept constant,

a simple, linear control law can work well. The commands sent to the actuators can be a

dot product of the state vector and a gain matrix. When any of the th:ree special elemncnts

change though, a new linear control law with new gains must be used. In a gain scheduled
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controller, the space of all possible values for those three state vector elcments is divided up

into distinct regions. Each region employs a different set of gains, and a scheduler is used

to smoothly transition whenever the state moves from one region to another. The

drawback to this approach is that it usually requires a good model of the plant, as well as

large amounts of heuristic manual tuning to decide where the boundaries between regions

should be, and )Iat the corresponding control law in each region is. Once the controller is

built, it cannot c ',g, actr)mmodate a slowly changing plant, such as a robot where

be~aii,,gs wuut .Jd parts aý,. This contrc• temhnique does respond instantly, though, when

it ewkef a riew re, ,n, Aihile ti.- adaptive cortro'er would have to wait for more

information ,•fbre it coukl !idapt to new re 'ion. f these and other reasons (e.g.,

ý:•ability) Pir, wcheduled coiti ýs •-'nera. tcd in..:ead of adaptive control in most

. systems today.

-. 3 CON!ECTIONISTILi-., -Nt CON rROI A, Ik CTLES

A number o0 ii• ea apI • ',es have been SL , I r using learning systems

m k ontrcd 1l[u86][b ir89]. 'i hc sy. n• gi -r try to solve one of three control

ibýAhkzns: prodU t sp crkcd ý,:)r I signals, follow s, .cifie, trai-c rtories, or optimize

SpeC C; re.nlorcC mrne,, als. Fr each of these problems there are one or more

diftr Ar approai es \' iic ia Lt , i trie-d, the io,! )mmon of which are described
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2.3.1 Producing Specified Control Signals

State
Commanded Control State

Controller . Plant
, ~ ~~StateC• ..

LIp Conne nist

1 1011 "1Nj ork

Figure 2.3 Learning specified control signals

The simplest use of a connectioaist network in a control application is to emulate an

existing controller. Th.s is showp in figure 2.3. The controller and, the! network are both

told the current state and the comnmanded state (the state to which the controller should drive

the plant). The controller then calculates an appropriate control signal by some means, and

the network also calculates a control signal. If they differ, the difference is the error in thL

network's output and is used to train the network (shown by the diagonal line through the

network). In the figure shown, the network has no effect en the behavior of the system, it

is simply a passive observer. Once the network has learned, the weights in the network

would be frozen, and the original controller would be completely removed from the

diagram and ieplaced by the network. One earl, network, Widrows ADALINE in the

1960's, was trained to balance a pole on a cart by watching a human do it, and learning

from that example [Wid89]. Almost any general supervLised !earning or automatic function

approximation system can be used to control a system in this manner, although the

165



ATTACH MENT 'I

technique is obviously limited to systemns where a control system already exists. This

approach might actually be useful in situations where it would be too expensive or too

dangerous to have a human controlling a system, but where a network could be used fairly

cheaply. It would also be useful if it could be trained by example to control under certain

conditions, and then could generalize to others. These are unlikely to be very comraon

uses of such a system.

A more widely applicabie use may be as a component of a larger control system that

lea. ns to reproduce the results of the other components. For example, a control algorithm

may require an extensive tree search on each time step that takes too long to implement in

real-time, even in hardware. If it is possible to train a network to implement the same

mapping from state to outputs, then the network could replace the slow controller.

2.3.2 Following Specified Trajectories

A much more common control problem is that of following specified trajectories. If

th - plant being controlled is fairly well understood, and if it is not very nonlinear, then it is

often possible to specify a trajectory for the plant which is known to be both useful and

achievable. For examnple, if a robot arm is told to move from itv current position to a new

pcition, the ideal behavior might be for it to instantaneously move to that position, and

completely stop moving as soon as it i-eaches it. This, unfortunately, requires the

application of infinite force to the arm. On the other 11and, it requiifes very little force to

move the arm to the new position quickly but with a large amount of overshoot and

oscillation once it gets there, or to move it to the position slowly but with little overshoot.

There is a trade--off between force applied, time to get to the correct 'osition, and time to

settle )nee it is thi.x-. The exact nature of the trade-off depends on the particular equations

governing the arm. Often, through partiai models of the plant, trial and error, and

expcirience with similar plants, it is possible for a contr)l engineer to choose a particular

trajectori, for the arm that is achievable and that gives acceptable behavier for the particular
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application.

Choosing the reference trajectory .,iay or may not be difficult in a given situation,

but it is extremely important. If the reference trajectory is not very demanding (causing the

state to approach the desired state very slowly or allowing a large amount of overshoot),

then the system will not perform as well as it could with a better controller. If the reference

"A trajectory is too demanding (causing the state to approach the desired state rapidly with little

overshoot), then the controller will attempt to use control actions outside the range of what

is possible, and the system may become unstable.

Once such a reference trajectory has been found, then the controller must simply act

at each point in time so as to move the plant along that reference trajectory. Three

approaches for using connectionist learning systems in "model reference" control problems

have been explored: learning a plant inverse, dynamic signs, and Backpropagation through

a learned model.

I~rnig a Plant Inverse

State
Cormanded- Exploring Control State

W Controller Plant -

State_ _ _

Current - - e
_____ .State NlIn~ys Li --j j Next

tState
Controlt+

Figure 2.4 l.earmr:g a plant inverse
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State
Commanded -

Trained Plant Control State

._______ Inverse Plant
Staxe [ Network

Desired Next State

Reference

Figure 2.5 Using the plant inverse

A conceptually simple approach to model ret erence control is to use a learning

network to learn a plant inverse. In a deterministic plant, the state of the plant on a given

time step is a function of both the state and control action on the previous time step.

Alternatively, in continuous time. the rate of change of state at a given point in time is a

function of the state and control action at that point in ti-ne. An inverse of this function

with respect to the control signal is a useful function to know. Given the current state and

the desired next state (or desired rate 6.. change of state), an inverse gives the control action

required. If a network can learn such an inverse, then it can calcut'.te the control actions on

each tine step that wilI cause the plant to follow a desired trajectory.

Figure 2.4 illustrates how a network is trained to learn the plant inverse. First,

some kind of exploring controller is used to drive the plant. This may not be a very good

controller; in fact it could even behave randomly. Its purpose is simply to exercise the plant

and show examples of various actions being performed in various states. The network

then takes two inputs: the plant's state at the current time aud the plant's state oh tie

previous time step. Th2 output of the network is then its estimate of the control actioi that

caused the plant to make the transition trom one state to the other. /'h.i's ctimn te is then

compared to the actulal k .lmand to generate the error signal used to train the netw-ok.

Figuie 2.5 shows how thL network is used after it has learned. Given the current
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state of the plant and the desired next state (as specified by the reference trajectory), the

network generates a control action to move the plant to that new state. If the next state of

the plant does not match the desired state perfectly, then this error could be used to continue

training the network. In this way, the network could learn to control a plant whose

dynamics gradually change over a long period of time.

A fundamental problem with learning the inverse of the plant is the network's

behavior when the plant does not have a unique inverse. Most network architectures, when

trained to give two different outputs for the same input, will respond by learning to give an

output that is the average of the training values. For example, if a plant at a particular state

can be forced to act in the desired way by giving a control signal of either 1 or 3, the

network will usually learn an output of 2 for that state, which may be a far worse action

than either 1 or 3.

If the plant is a stochastic system, then the result of a single action will be an entire

probability distribution function, which further complicates the problem of learning either

the forward or inverse model, and of choosing !he best action. These problems often limit

the usefulness of learning plwat inverses.

LDymanic sils

State
Commanded 1 1

F 4r___ 7 r Control t ar. Ie

Ktate NPe r

Multiply by
Dynamic Signs

LK f Reference ___ __._,__-

Desired Next State -

~igure 2t)VV M.c1nin- A'ith 'lr), amir" Sit:nI
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A learning system using dynamic signs is shown in figure 2.6. For a given state,

the network tries to find an actioi, thai will drive the plant to the next state on tbe trajectory

defined by the reference. If it does this, then the new state will equal the output of thle
It

reference, and the subtraction will "yield zero error, so no learning will occur. On the other

hand, if there is an error in the state, then each weight in the network should be adjusted

proportionally to its effect on that error. Finding the effect of a given weight on the control

signal is easy; it is simply the partial derivative of the control wih respect to that weight.

To find its effect on the plant's stLate, however, it is necessary to 1know the pa.-tia derivative

of the state of the plant with respect to the ccoitrol si.,.al.

Often the general behavior of a plant is known, ever though all the P act equations

and constants are not known. For e'tampjnie, it is often clear that applying more control

action will cause one element of the state to increase and another one to decrease, even

though it is not possible to predict exact'y how much change will occur. In this case, die

partial derivative of state with respect to control is not known, but the sign of the partial

derivative is known. If the actual pzutial derivatives were known, then the error in state

would be mnultiplied by the derivative before being used to train the network. Sin(ce only

the sign of the derivative is assumed knowr_, each ,lemewnl of the error is merely multiplied

by p;tL, or minus one. Figure 2.6 shows how the eror in the state is multiplied by this

value before being used to train the network. Th"is "dynamnic sign" has been shown in

somre cases to contain enough inforn.a,ioa to caust the network to converge on a reasonable

controiler [FGG90]. It has beer, shown tGF90][BF90Y' that fo: autonomous submarine

control with a multidimensional state vecto- and a scalar control, the system can learn to be

an effective controller using dynamic signs.
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•lickftmagation Through a Pla"2&ode

State
Command d1 Con r Control State

State St
Plant

Reference

Desired Next State +

Figure 2.7 Backpropagation through a plant model

A more general approach than dynamic signs is for one network to act as a

controller while a second network learns to model the plant. On each time step, the second

network takes the current state and control actions as input, and tries to predict what the

change in state will be, adjusting its parameteis according to the error in its prediction. If

the second network is differentiable everywhere, which is the case in networks that use

Backpropagation, then when it learns the model, it will also know all of the partial

derivatives for the plant. I his then allows errors in the state to be backpropagated through

both networks in order to change the parameters of the first network so that it can learn to

control the plant model. This is the same as the dynamic signs approach described above,

except that the partial derivatives across the plant are estimated automatically instead of

bring set to plus or minus one by hand according to a priori infoxrmation.

Figure 2.7 illustrates this process. The network on the right is trained to predict

what the next state of the plant will be, given the clirent state and control. This training is

indicated by the solid diagonal arrow through the network. At the saine time, the network

on the left is trained to be a better controller. Tius ks done by propagating the error in state

through both networks, while only changing weights in the conioller network. Although
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this signal propagates through the plant model network, it is not used to train that network,

which is why it is represented in the diagram by a dotted arrow. This approach has been

successfully used by Jordan [Jor88].
'S

2.3.3 Optimizing Specified Reinforcement Signals

The above techniques are all based on the assumption that there is a reference

trajectory to follow. At each time step, given the current state, it is assumed that the desired

change in state is known. For some systems though, finding a reference trajectory is fully

as difficult as finding the controller in the first place. For example, a large semi truck

consists of two sections with a hinge between thern- If the truck is near a loading dock and

at an angle to it, it can be difficult to calculate how to back up the truck u that it ends up

with the back end lined up with the dock [NW89]. This procedure may involve turning the

wheel all the way to the left, backing up some, then gradually turning it to the right, then

finally straightening it out, causing the truck to follow an "S" shaped path. If the path to

tollow is known, it is trivial to calculate how to turn the wheel to follow the path, but

finding the correct path in the first place is a difficult problem. The model reference

•ystems discussed above are therefore not useful for solving this type of problem. In this

case, the goal is actually to minimize a quantity after a certain period of time (t0e distance

from the dok at the end), rather than to follow a given trajectory.

This i just one example of the most general ,ype of control problem, which is the

optimization of some quantity over time. This is called "Reinforcement Learning" since the

goal of the controller is to maximize some external reinforcement signal over time tWil&8].

Since several actions may be performed before the reinforcement is received, it is often

difficuh to determine which of the actions were. good and which we-! bad. This "temporal

credit assignment problem" makes reinforcement learning the most difficult type of problem

considered here, Control problems of this type include bawk.ing up a truck to miniilie th.ie

error at the end, finding the route to the moon that req.cires the least fuel, or finding the
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actions for an animal that maximize the amount of food it finds. All of these cases involve

maximizing a reinforcement (or minimizing a cost) over some period of time (finite or

infinite). This is a difficult problem, since it may be necessary to perform acti3ns that

appear "worse" in the short run, but are "better" in the long run. If a controller generateq

some action and then receives negative reinforcement (or positive cost), it is not clear

whether that is the immediate result of that action or the delayed result of a much ear.iai"

action. Thus it is not clear how to learn the correct action, or even how to evaluate a given

action.

This difficult control problem has been addressed by Backpropagation through

time, actor-critic systems, and dynamic programming systems. Actor-critic systems and

dynamic programming systems tend to I---c .--' Z "- ' " ,6,wtlh some overlap, but are a

useful way of classifying the many approaches to thifs type of problem.

Backpropagation Through Time

State
Commanded lonpeExploring Control Plant State

State

odel /

4-

Figure 2.8 Backpropagaticn torougih time: leainiri..n the plant model

One way tc solve the Tinircemrment learning control problem is to cxtend the idea of

b-ckpropagating thiough a plant model. Two networks are usd. One is tra-intJ every time
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step to learn to modei the plant. Figure 2.8 shows hew the network can learn to nmodel the

plant using the current state, the previous state, and the previous control action.

State
Commanded Controller Control Plant Model State

Network Network
State - = I

Figure 2.9 Backpropagation through time, learning the controUer'

Once it has learned, the second network can learn to be a controller based on the

plant model. The two networks are connected as shown in figure 2.9. With all 1pararneters

fixed, the plant model network starts at some initial position, and the controller network

controls the model for a period of time that is known to be long enough to drive the plant to

the desired state. All of the signals going through the networks are recorded during the

trial.

Iritial state State commanded State commanded
commanded at time 1 at time N

L Crontm N10"l Cwxtrofle Moiel 0 COWNro MOde
- Ntwri N]w NetwoAf Networ T Networic Networ

Iniftial State State at Saea
time 1 time N

Figure 2. 10 The ,etworks unrolled in time

The two networks are then "unrc,,ed in time", so that it hx)ks like the signals have
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passed through a very long network once, instead of passing through two small networks

many times. The cost or reinforcement signals are calculated from the plant mode! state at

certain time steps of the "unrolled" network. In the case of the truck backer-upper example

[NW89], this signal is zero on every time step until the end, and then is equal to the error in

state after the last time step. This error can be backpropagated through the large "unrolled"
network to change all of its parameters, thus forcing the controller to be slightly better

throughout the whole trial. This "Backpropagation through time" procedure has been

shown to be. able to solve the problem of backing up a truck [NW89]. It is rclated to ideas

suggested by Werbos [Wer89] and to work done by Jordan [Jor88] and Jameson [Jam90]

where signals are propagated back through time during training.

Backp~iopagation through time does have the difficulty, unfortunately, of requiring

that every' signal on every time step during each trial be saved. For long trials this could be

a problem. Other algorithms could be used instead, such as t.- Williams-Zipser algorithm

for training recurrent networks [WZ89]. This has memory arid processing requirements

that are independent of the length of the trial, but proportional to the cube of the number of

nodes (assuming fully interconnected nodes), so that it can also be impractical for large

netwcrks.

Actor-Criic Syterns

Backpropagation through time is potentially a very useful techniquc, but is still not

completely general. Even assuming the networks can perfectly model the functions they

are trained with, the result will still be a controller that causes the plant to follow a lcally

optimal path. The path will be such that any small change to it will make it wor-se, although

a large change to the path as a whole might still improve it significantly. The

Backpropagation through time algorithm also requires storing all of the signals going

through the network diroughout the whole trial. 'In a regulator problem, where the the plant

may never fail and may never reach the goal state exactly, the trial will be infinitely long.
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An alterradive approach that av,,ids so,-mne of these di,':iculties is to use a syst, .:l with two

components, celled an "acor" and a "critic." 11he actor is, the actual c ntroier that,g

the state, decides which cortrol ac:i,,',,ons shoud !;, used. The critic is a component that

receives external. veinforceme,.,t signa•s and uses, them to train the acttor. This is still a

difficult problem, since rein1"iorcemCet MaY come ýOAng afte, 'Ihe actions &,at cauý,sd it. In

fact, the best actions may actually increase en'ox,•r,: 1ecxe tht. 1 ; -,r o decrease themr, and th' A

critic must recognize that this is the ca,,se. For ,xaji. with, , ', pole system, if thfe

cart starts at the origin with thc pole balanced, and the gc; ,3 is to ne meter to the

right, the reinforcement on each time step might be the regat:ovN of .ion error. The

fastest way to move the system one meter to- the right without 'icww.. the pole to fall over,

is to first move left, causing the p,)le to tilt to the right, and t.he.i cove qu, ,ckJy to the right.

Thus the error in position should increase before it decreases. tf the act ýT is to Jearn the

control actions that will accomplish this, the critic must first leain, to recog&ize thaw. ihis is

desirable. It wvi! have to learn that a iaxge position error with thAe p)oick, tilted Pe oorwect way

is sometimes preferable to a s.maler position error with the pole OWted the wrong way.

Samuel's checker player [Sarn591 was one of the ea&uet s ystem, to take this

approacb. The actor was an algorithm that switched beItwweýen bock playing awid an

beta tree search The se&rch (Aas based on tL relat,- desirability of various board

positions, as determined by the critic. The c-6tic ,., a finear comnbination f jseveral hand-

built heuristic funct.vns, and le amnong for tie cxrr• •. isted of d•iusting the weights of the

linear combination, and also dez2idlng whtich o(f It ;,rwc e m 1r of, heuristic functimois should

be Hichided in the cotnb inatioN

Micthie and (Chamnbers [NMC681 dxcvtlop,-,o<:, the Bo >es system wNhich coasisted of an

actor and a simple critic. They applied tb--u co"ntroller i a cart- pole , ,ter that wouild

signal a failure ;vheuevei the pole fell over. The ciiuc ha,, d its e" ,at acc oa oiacu ar

state on the n -dqbr of !ime steps betwectering Lha, state and w&n a Ln

)atr iupi oved by Barto, 'Suton, a .i A1,13inSolB5A831 wi the 6..'velopi .2 ut ofv th(
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Associative Search Element (ASE) and Adaptive Critic Element (ACE). In that system, the

critic based its evaluation on both the time until failure and the change in evaluation over

time. Evaluations were therefore both predictions of the desirability of a given staTe, and
I"

estimates of what the evaluations would be in future states. This ,;ysteni learned to balance

a pole on a cart more quickly than the Boxes system.

EDynarmic Programming Systems

Dynamic programming is a class of mathematical techniques for solving

optimization problems. Often in a problem the sets of possible states and actions are finite,

or can be approximated as finite sets.. The problem is to find the best control action for

each state, taking into account that it may be profitable to perform actions with low

reinforcement (or high cost) in. one state in order to reach another state that gives high

reinforcement (or low cost). No• only is an action associated with each state, but typically

one or more other values aweL assoc:ated with each state as well.

The noo,,: common formulation of dynamic programmirig az:sociates two values

with each state, A "policy" is the action that is currently consi iered to be the best for a

given sýaatr Asn A ev dAuad-m of a state is an estimate of the long- -rm reinforcement or cost

that will be experie aced if the sy'stem starts in that state and performs optimal :.ctions

,hereafter. AMl policies and evaluations ace initialized to o - set of values, an( 'ien

individual values afre inproved in some order. A given ýx icy oi ýva~uation is improved by

setting it eqail t, the value that would be appropriate for it if the values of Ats neighbors

we~re correct. his f .fr(x:ess is clone repeatedly to policies and evaluation,; in all the

ri-gions, thlr undecr certain circumstances it is guaianteed to convcrge to the optim d

N.o.ation [W390[. Thle. se, of policies function somewhat as an actor, while the set of

ev"aluations tno.li<,p, ,i: . ::,ic. Reinforcement leaning with actor-critic systems rmay

flieiefo••i . •ove irn c i'ught of a,, a kind of dynamic pi ograrinmung.

(t. c& tVJX:LS (f Iy .atit p, ogramirn.ig systenms do not resemble actoi -c systenl.
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Q aýiing, devised by Watkins [Wat89], only involves one type of value. For each

pos,,iok action in each possible state, a number (the "Q value") is stored that represents the

expect d1 ýing-term results if that action is performed in that state followed by optimal

ac ions t ,w, As in the other forms of dynamic programming, a Q value is updated by

ch• ng it zu clu,:er to the value that would be appropriate for it if the Q values of all its

ne~igirou arf, • ,umed to be correct. Q learning is also guaranteed under certain

assu, p6,,jas to converge to the optimal solution.

The tbove discussion assumed that the sets of possible states and actions were

finite. 1here ts a continuum of states and actions, then an approximation to dynamic

programming i ýu:;t be used. The most common approximation is to divide the state-space

nto small rc,,i ns, and store evaluation and policy valucs for each regi( i. If the state-

iLcI is hiý i-, I -inensional, this will require prohibitive'), many values to be stored, and

(i t•roy. aunuiung is not feasible. A natural solution to this "curse of dimensionality"

is 1) •, •,i of furction approximation system to store the evaluation and policy for

he (-,•-) (, ;) F states. Co.nnectionist systems are a natf'ral cardidate for this use.

ris , ioi ,-,_ -lescrbed systems for solving the problefns of emulating a

specifie .,:o T., followlir q.; specified trajectory, and .i)timnizirhg a spe~cified signal.

.Nore ol • i, s dccribed het e imake use of much a priori ki owledgp of the plant.

L )fte Ct fce n•krls ,4f a pLait exist, and it would be useful ito havc onwe method

i,[ qn~ki ;. i.:raic e this K," A ieG),,e( into the c, ntroller. The systems descn•ioed twit also

Ad ti e 'I" 'o vly w want, the plai t , since the network iust lean a new

1, ti, A -• i- e piant chhangeý ý, ,e are prohlems that this thesis addresses.
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3 HYBRID CONTROL ARCHITECTURE

The architecture presented here represents a new meth3d of integrating learning and

adaptation in a synergistic arrangement, forming a single hybrid control system. The

adaptive portion of the controller provides real-time adaptation to time-varying dynamics

and disturbances, and initially accommodates any unknown dynamics'. The learning

portion deals with static or very slowly changing spatial dependencies. The latter includes

any aspect of the plant dynamics that varies predictably with the current state of the plant or

the control action applied.

A conventional adaptive control system reacts to discrepancies between the desired

and observed behaviors of the plant to achieve a desired closed-loop system performance.

These :iscrepancies may arise from time-varying dynamics, disturbances, sensor noise, or

unmodeled dynamics. The problem of sensor noise is u-ually addressed with filters, while

adaptive control itself is used to handle the rcmaining sources ,f observed discrepancies.

In practice, little can be done in advance for time-varying dynamics and disturbances; the

control systcm must simply wait for these to occui and then react On die oiher hand,

unlr.odelbd dynamics that are purely functioas of stite can be predicted from previous

experience. Thii, , _be task given the learning system, Initially, all tinmodeled dynamics

are handled by the tdaptive system; eventually, however, the learning system is able to

anticipate previous y experienced unmodeled dynamics.' Thus, the adaptive system is

free to react to time-varying dynamics and disturbances, and is not burdened with the task

of reacting to predictable, yet initially unmodeled dynamics

The hybrid adaptive / learning system presented in this thesis acconmoc ates both

'This assumes, of course, that the order of the plant (dimension of its state vector, is accurately known.
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temporal and spatial modeling uncertainties. The adaptive part has a temporal emphasis; its

objective is Zo maintain the desired closed-loop behavior in the face of disturbances and

dynamics that are time-varying or appear to be tinxe-varying (e.g., a change in behavior due

to a change in operating conditions). The learning part has a spatial emphasis; its objective

is to facilitate the development of the desired closed-loop behavior in the presence of

unmodeled nonlinearities within the operating envelope. Typically, the adaptive part has

relatively fast dynamics, while the learning part has relatively slow dynamics. The hybrid

approach allows each mechanism to focus on the part of the overall control problem for

which it is best suited, as summarized in Table 3.1.

ADAPTATION LEARNING

reactive: maintain desired closed-loop const:uctional: synthesize desired

behavior closed-loop behavior

temporal emphasis spatial emphasis

I memory z= no anticipation memory =* anticipation

fast dyi.amics slow dynamics

local optimization global optimization

real-time adaptation design & cn-line tuning

(time-varying dynamics) (spatial deprridencies)

Table 3. 1. Adaptation vs. leanjrng,

A schematic of one possible realization of a hybr.:i aa,,)ttv/t h:rg control

system is shown in Figure 3.1.
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COA!
INDIRECT CONTROL
ADAPTIVE PLANT

CONTROL SYSTEM

ANTICIPATED POSTERIOR L
BEHAVIOR ESTIMATE

OJTPUT ! STATE

LEARNING
SYSTEM

Figure 3.1 Hybrid adaptive / learning controller

To simplify the discussion, we assume that all necessary plant state variables are

observable and measured; in the event tlhat this is not the case, a state observer would have

to be used. The indirect adaptive controller outputs a control action based upon the current

state, the desired state, and the estimated behavior of the system being controlled. This

estimate characterizes the current dynamical behavior of the plant. If the behavior of the

plant changes, the estimator within the adaptive controller will update the model. If plant

changes are unpredictable, then the estimator will attempt to update the model as quick' y as

possible, based on the information available in the (possibly noisy) sensor readings.

Adapting to predictable model enors that are functions of state will take just as long as

adapting to unpredictable disturbances and temporal changes, assuming similar noise

levels.

The problem of accommodating predictable spatial dependencies is handled by Lie

learring system in the outer loop. It monitors the indirect adaptive controller's posknor

estimate of the plant parameters, and learns to associate the appropriate plant parameters

with each point in the state-space. The learning system can then anticipate plant behavior

based on past experience, and give its prediction to the indirect adaptive controller. This

allows the controller to accommodate predictable dynamics while still retaining the
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capability to rapidly adapt to unprdictable dynamical effects.

The learning system used here is a feedforward multilayer network. The input is

the current state, and the output is a preic'tion of what the plant parameters should be,

given that state. Prior to learning, the network is initialized so that the hybrid controller

will give the same control signals that the adaptive controller would give by itself. When

the network has correctly learned the mapping, the hybrid adaptive / learning controller will

anticipate nonlinear model errors that are functions of state and are predictable, and will

respond faster and more efficieptly than a simple adaptive controller would. If these spatial

dependencies change, then the hybrid will act as an adaptive controller until it learns the

new mapping. The entire system is automatic; no explicit switching mechanism is needed

to go from adaptation to learning.

Note that any type of connectionist network cou!d be used for the learning system,

it need only have the ability to learn functions from examples. This part of the system

could even be some other fona of associative memory such as a lookup table or a nearest

neighbor classifier. In practice, though, these types of techniques may be impractical since

a potentially infinite number of example points are used for tiaining, and the state-space

may have a high number cf dimensions. For this reason, a connectionist network seems

more appropriate.

3.1 THE LEARNING COMPONENT

The hybrid architecture allows any learning system to be used that can learn to

approitimate a function from a large set of examples of that function. The first learning

system examined here was a feedforward, Backpropagation, sigmoid network. The inputs

to the network and the out nuts from the network, were scaled to vary over a range of unit

width. The training examples were stored in a large buffer, and were presented to the

network in a random order. The network was trained incrementally, weig'-ts wc:,ý changed
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after each training example was presented.

The network was then tried with a different learning algorithm, a heuristic method

that approximates the effect cf using the Hessian to scale the weight changes. A modified

version of this algorithm was also tried.

The learning systems, and the reasons behind their choice for this application, are

"described in further detail in chapter 4.

3.2 THE ADAPTIVE COMPONENT

The adaptive component of a hybrid controller can be any indirect adaptive

controller that can incorporate outside information. The controller might, for example,

estimate parameters of the plant, aid then act as the best controller for those parameters. It

might instead estimate the amount of error in its predictions of the new state or. the next

step, and try to compensate for it. For the experiments performe., here, an indirect adaptive

controller of the latter type was used, both in its original form and with modifications.

A technique based on Time Delay Control (TDC) was chosen as the adaptive

system for the experiments presented here. TDC is an indirect adaptive control method

developed by Youcef-Toumi and Osamu [Y190.

This system works by looking at the difference betweern ic current state of the

p'ant and the stale of the plant on the previous time step. This difference, a!ong with

"knowledge of what action was chosen on the previous timie step, is used to estimate the

effect that the unmodeled dynamics are having on the system. This value h is calculated

explicitly and plays a pivotal role in the remaining calculations. A control action is then

generated to cancel the unwanted effects (modeled and estimated) and to induce the desired

behavior in the plant. The technique uses if!'t)rfnation that is only one time step old, so it is

able to react to sudden changes in the plant or euvironment after a single time step. Of

course, since it is in effect differentiating the state, it is scrPtive to high frequency noise.
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Youcef-Toumi points out that this is not as bad as it seems if the plant itself acts as a low-

pass filter, attenuating the effect of the noise in the control actions.

The controller can also be made less sensitive to high frequency noise by simply

using a larger time step and a filter. This, however causes it to react more slowly to

changes in the plant. Overall, TDC does a good job, but it cannot both react quickly and

remain insensitive to high frequency noise. "i

3.3 THE HYBRID SYSTEM

The cornectionist network used in the hybrid adaptive / learning controller is a

simple, feedforward, back-propagation network, with two hidden layers of ten nodes each.

Given the state and goal for the plant, the network could be trained to output an estimate of

the unmodeled dynamics h. In the absence of noise, this should be the same h that TDC

calculates. If noise is present, it may be possible to determine the current state of the plant

to within a small error. The correct h, however, is difficult to calculate precisely, because

it is found by "differentiating" the state (e.g., using a backwards difference).

One property of connectionist networks is useful here. During training, a network

is given input and desired output values repeatedly. I it is given conflicting desired

outputs for the same input, then it tends to average them. This means that the network can

be trained with data that has small, zero mean noise and still learn the correct mapping.

Therefore, if TDC calculates noisy h's with an equal probability of tile value being too high

or too low for a given state, and if these are used to train the network, then the network will

tend to learn the correct h for each state.

Moreover, a learning system is not only useful when h is noisy; it is also helpful

when it is used to predict h. In its original form, TDC looks at tile state of the plant before

and after a given time step. Back-differencing to estimate the derivative, TDC can thcrn

calculate the unmodeled cynainics h during that period. That h is then used to calculate the
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appropriate control action to be applied to the plant during the next time step. This is a

source o1 error in the controller, since it is always sending out control actions based on

what was correct on the previous time period. With the network, there is a simple solution

to this problem. Instead of associating h with the current state during training, it is

associated with the previous state. After the network has been trained with those patterns,

it should be able to predict, given a state, what h will be during the time step following

that state. This allows a better estimate to be calculated.

The hybrid controller, therefore, has at least the potential to selve both of the

difficulties associated with the original adaptive controller. This is in addition to the main

problem it was designed to solve: lea-ning .ontrol. These considerations provide

motivation for experimenting with the hybrni controller.

The hybrid adaptive / ieaming controller typically runs -t a speed such that the states

and h do not change much over a period of several time-steps. If the network is trained on

similar states several times in a row, it may "forget" what it knows about ather states. One

solution might be to train the network less frequently, such as once a second. This might

be effective, but it would slow down learning by not learning every time step. A better

solution is to use a random buffer. During training, as the plant wanders through the state-

space, the data from each time step is stored in the buffer. One point is also chosen at

random from the buffer on each time step, and is used to train the network. This ensures

that the network is trained on a distributed set of points.

3.4 DERIVATION OF THE HYBRID WrITH KNOWN CONTROL EFFECT

The original TDC equations were designed to allow the incorporation of a priori

information consisting of a linear model of the plant. The effect of control action on state

was assumed to be known perfectly, but the other parameters could initially be incorrect.

The following is a derivation of the TDC equations for a discrete time plant where the
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known dynamics are described by the a priori matrices (9 and r, as well as the knowledge

gained by we learning system T. As in the original TDC, the effect of control on state is

assumed tr, be a linear function, and the constant r is assumed to be known without any

error.

Assume that the plant being controlled is of the form

x(k+l) -=x(k) + ru(k) + '(k(k)) + h(x(k),k) (1)

where at time k, x is the state vector, u is the control vcctor, and all of the unknown

dynamics are represented by the function h. The vector T is the output of the learning

system.

The reference system has the dynamics

Xm(k+l) = ,nxm(k) + lmr(k) (2)

where r is the command vector. The error between the actual state and the reference state is

e(k) = x,(k)- x(k) (3)

The goal is to build a controller that will cause the error to behave as:

e(k+1) = {[\D,,+K}e(k) (4)

where K is the error feedback matrix which allows, the error anics to be specified

indfe~ndendy of the: values of the other parameters.

Substituting (3) into the left side of (4), then substituting (2.) into the result and

s'.•vlng for x(k+1) gives the desired next state:
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Xm(k+1) - x(k+l) = {0m+K}e(k)

•mxm(k) + rmr(k) - x(k+1) = {0m+K}e(k)

x(k+l) = 0mxm(k) + r,,r(k) - {0m+Kle(k) (5)

Setting (1) and (5) equal and solving for u gives the control law that should be

followed ;n order to achieve the desired next state.

4x(k) + ru(k) + '(x(k)) + h(x(k),k) = Ormxm(k) + Fmr(k) - {(4m+K)e(k) (6)

u(k) = r+( rmxm(k) + Pmr(k) - {0m+K}e(k) - Ox(k) - '(x(k)) - h(x(k),k) (7)

where, for a matfx M, M+- •i •')°MT is the pseudo-inverse of M. The only unkanown

in (7) is h. If h changes slowly, then it can he approximated by its previous value.

Solving (1) for h and then applying this approximation yields:

h(x(k),k) x(k+l) - Ox(k) - P(k) - '(x(k)) (8)

h(x(k),k) x(k) - Ox(k-l) - fli(k-l) - TI(x(k-1)) (9)

Substituting the approximation (9) into equation (7) gives the fmial control law

u(k) r I mx(.,k) + rmr(k) - Ke(k) - Ox(k) -- 'P(x(k)) (10)

- x(k) + 0x(k-1) + 1-x(k-1) +)

The controller will adapt to a sudden change in the plant dynamics within one time

step. If the time step is short, the contro!ler will respond faster, but will also be more

sensitive to noise.
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3.5 DERIVATION OF THE HYBRID WITH UNKNOWN CONTROL EFFECT

It is often the case that the exact effect of control action on state is only partially

known, just as the dynainica of the state are only partially known. If a learning system can

learn the unmodeled dynamics, then the partial derivative of the learned function T with

respect to control action u will represent the unmodeled effect of control on state, and can

be used to improve the a priori estimate of this value r. The following is a derivation of

the hybrid system, incorporating these partial derivatives as an improvement over the

approach in section 34.

Assume that a plant has the following dynamics:

x(k+l) = Ox(k) + Tu(k) + TF(x(k), u(k)) + h(x(k),u(k),k) (1I)

where the vector x(k) is the state at time k, the vector u is the control, the matrices 0 and r

and the function TP are the a priori known and learned dynamics, and the function h

represents all of the unknowns, including unmodeled dynamics, nonlinearities as a function

of state or control action, and time-varying disturbances.

Once again, the reference system has the dynamics

xm(k+l) = OmXm(k) + rmr(k) (12)

where r is the command vector giving the state to which the plant should be driven. The

error between the actual state and the reference state is

e(k) = xm(k) - x(k) (13)

and the goal is to build a controller that will cause the error to decrease according to:

e(k+l) = {J4m+K}e(k) (14)

Substituting (13) into the left side of (14), substituting (12) into the result of that,
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and then solving for x(k+l) gives the desire'l state on the next time step.

x(k+1) = 4Dmxm(k) + r.mr(k) {- m+K)e(k) (15)

All known dynamics not defined by 0 and r are represented by the function T.

This can be learned or stored in any manner that allows the alculation of the partial

derivatives with respect to u. When calculating the u for a given time step, it will be

necessary to take into account the fact that T may affect the next state differently according

to which u is chosen. Figure 3.2 illustrates how IF can be approximated by evaluating it at

the current state and previous control action, then forming a line through that point with the

appropriate slope in the u direction. Equation (16) shows this approximation

matnematically.

T'(x(k),u(k)

'T'(x(k) ,u(k- 1)

u

'(x(k-1),u(k-1) .......

x

Figure 3.2 Approximation of ' as a (linear) function of u(k) and nonlinear function of x
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'F(x(k), u(k)) = T(x(k), u(k-l)) + Iu(k) - u(k-!)) (16)

Substituting (16) into (11) gives a more useful formulation of the plant dynamics.

x(k+l) = $x(k) + fIu(k) + '1(x(k), u(k-1))

+ (u(k)-u(k-1)) 2- + h(k,x(k),u(k)) (17)ztl(k), n(k-I)

If the function h representing disturbances, etc. is changing slowly, then it can be

approximated by solving for h in (17) for the previous time step, and using that as the

approximation of h for the current time step:

h(k,x(k),u(k)) - h(k- I ,x(k-l),u(k-I))

h(k,x(k),u(k)) = x(k) - Ox(k-1) - I'n(k-1) - T(w(k-I), u(k-2)) (18)

- (u(k-1) - u(k-2))u(k-2)

Substituting (18) into (17) and solving for u(k) gives the control law in terms of the

desired next state x(k+ 1).

u(k) =( kUk)[u(k-1) (19)

-Ox(k) - P(x(k), u(k-1)) + x(k+l)

- x(k) + 4fx(k-1) + Iru(k-1) + TF(x(k-1), u(k-2))

+ {uk-l) u~k2)} U- , :-I), u(k-2)]

Substituting the desired next state (15) into (19) yields the final control law:

190



ATTACHMENT 1

u~kal 6(k), u(kl)[u1-) aut(k), u(k-1) (0

-4bx(k) - 'f(x(k), u(k-1)) + 0@mx(k) + rrnr(k) - Ke(k)

-x(k) + ft(k-I) + flz(k-1) + 'P(x(k-1), u(k-2))

+ (u(k-',) - u(k-2)) ~xk1,~-)
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4 LEARNING SYSTEMS USED

The learning component of the hybrid control system is responsible for learning the

function that the adaptive component discovers a posteriori. Because the function is

defined over a continuum of states, and can involve a number of dimensions, connectionist

systems were chosen for the learning component. First a standard Backpropagation

network was used, as described in the next section, then Delta-Bar-Delta learning was

tried, as described in the following section, to increase learning speed.

4.1 BACKPROPAGATION NETWORKS

During the operation of an indirect adaptive controller, certain parameters are

estimated on each time step, and the controller uses these to choose an appropriate control

action. Either on the next time step, or soon thereafter, the controller may have additional

information about what the estimates should have been earlier. It is natural to consider

whether a learning system of some sort could learn to map the earlier state to later,

improved estimates, and so be able to make even better estimates the next time that state is

entered. This is sinply a delayed function approximation problem.

The function being learned would output parameters as a function of state. The

parameters and the state may be high-dimensional vectors, and the function being learned

may need to be developed on the basis of a large number of training points generated by the

indirect adaptive controller. In this case, a Backpropagation network would seem to be a

good model for learning the functions involved. For any given function and desired

aý uracy, a network can be. found that will learn that function to the desired accuracy

[11W89]. This is true for networks built from any of a wide range of functions.
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There are a number cf considerations that arise when trying to apply

Backpropagation networks to learning functions in this context. First, the data used to train

the network comes from a system controlling an actual plant. In this case, the training data

consists of states and the appropriate parameters that should be associated with them. The

state used for training will always be a recent state of the plant, and since the state of a plant
4t

may not change much on each time step, the training data during a given period of time will

all tend to come from one region of the state-space. This is even more applicable in the

case of a regulator, where the controller tries to keep the plant near a particular state all the

time. If the controller is doing a good job and there are no large disturbances, the state of

the plant will stay near where it should be. This means that no training points will be

gerie'ated in other regions. Even in a tracking control problem, the plant may still move

slowly through state-space. Therefore, it is important to consider the ability of a given

learning system to learn despite repeated exposure to very similar training patterns for long

periods of time.

Backpropagation, and most of its variants, all try to adjust the weights in the

direction of some gradient and decrease error, as described in chapter 2. The error being

minimized J is frequently defined as the mean squared error between the network output

and the desired value of its output, summed over all possible inputs:

n
j LE, (f(xi,w) - di)T(ftxi,w) - di)

i~ 1

Awi = -a

where:

J = Total eiror for network with weight vector w
n = number of training examples

xi = input to network for ith trainiing example
di = desired output of network for th training example

/(xi,w) = actual output of network for 6h training example

This implies that the network is he updated by epoch learning, where weights are changed
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once per epoch (once per each pass through all the training examples). However, for the

function approximation being done here, the function being learned is continuous. Even if

x is only a two element vector, the error becomes, ,
J = f f (ftxi,w) - dj)T(Axi,w) - di) dxl dx 2

I X2
F

This requires summing over an infinite number of training examples, which takes

infinite time, just to find the error associated with a single set of weights. The common

approximation in this case is to use incremental learning. In incremental learning, the

weights are adjusted a small amount after each presentation of a training example. The

change is made in the direction of the negative gradient of the error associated with only

that one example. If the changes are small compared to the time it takes to see all of the

inputs, then incremental learning will tend to give the same answer that epoch learning

would.

Suppose, however, that increasing a given weight would increase the error for one

third of the training examples and decrease it an equal amount for two thirds of the training

examples; in this case, the correct action would be to increase that weight. If training

examples are presented in a random order, then on each presentation, there will be a one

third probability that the weight will decrease and a two thirds probability that it will

increase. In the long run, the weight takes a random walk that tends to increase it as it

should. If, however, many training points are presented in a row that all have similar

inputs and ou:puts, then their partial derivatives will tend to be similar, and they will all

tend to move the weight in the same direction. The net effect of this is to cause the network

to learn the function in that region extremely well, at the expense of forgetting any

information it had already learned about other region,. This phenomenon is referred to

here asfixation. One simple method to avoid fixation is to use a buffer to hold many of

the training points. Then on each time step a training point can be. drawn at random, and

used to train the network. This scrambling of the training points helps avoid fixation, but it
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may require a large memory to hold all of the data.

Another characteristic of Backpropagation is that it tends to learn slowly. There are

* a number of reasons for this, some of which are clearer when the learning problem is

visualized geometrically. The connectionist network contains a finite number of real-valued

weights. This weight vector determines the behavior of the network, and so the error is a

function of this weight vector. The error can be visualized as a multi-dimensional surface

(or manifold) in a space with one more dimension than the number of components of the

weight vector. A given weight vector corresponds to a single point on this error surface.

The height of the error surface corresponds to the mean squared error associated with that

vector. If there is only one training point, there will be an error surface associated with it.

If there are several training points, then there is an error surface associated with each of

them, and the sum of all those functions gives the total error surface. When a given

training point is presented to the network, it is possible to find the partial derivative of the

error for that point with respect to each weight. The negative of this gradient corresponds

to the direction of steepest descent for the individual error surface associated with that

training example. The sum of all the individual gradients gives the gradient for the total

error surface.

The goal of learning, ther, is to follow the gradient of the total error surface,

changing the weights so as to move downhill to a local minimum in that surface. If a

certain region of that surface is shaped like a trough, then repeated steps in the direction of

the gradient will tend to cause the weight vector to oscillate across the bottom of the trough,

and not move very fast in the direction of the gentle slope along the trough. If large steps

are taken, then it is possible to leave the trough entirely, perhaps then reaching an

undesirable plateau. If small steps are taken, then the weight vector will take reasonable

steps across the trough, but will move too slowly along the trough. Such troughs riay

therefore slow down convergence of gradient descent, and so shw the learn:ing plcw~ess in

a Ba kpiopagation network.
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Not only do troughs slow down learning, but they are also very common and easily

formed. Consider a surface that has a number of roughly circular depressions. If the

surface is stretched a hundredfold along one axis, there will then be a large number of

troughs parallel to that axis. Li the error surface for a network, each weight is one axis.

Therefore simply multiplying a weight by a large constant (and backpropagating through

that constant appropriately) can create troughs in weight space. Similarly, if one of the

inputs to a network varies over a much wider range than another, troughs will tend to form.

To avoid this scaling problem, all experiments for this thesis were carried out with all

inputs and outputs to and from networks scaled to vary ow -ange of unit width.

An obvious solution to the problem of troughs would be to look at both the first and

second derivative for the current weight vector. Instead of simply calculating the gradient

of the error surface at a point, the curvature at that point could also be calculated. Since the

gradient changes rapidly across the trough, the curvature in that direction would be large,

and small steps in that direction would be appropriate. Since the gradient changes slowly

along the trough, the curvature is low in that direction, and it would be safe to take larger

steps in that direction. Thus, if the step size in each direction is decreased in proportion to

the curvature in that direction, then the modified gradient descent will tend to head more

directly towards the local minimum, and can reach it in less time with fewer oscillations. If

the trough is actually a very long, thin ellipsoid (i.e., a perfect quadratic function), then

dividing by the second derivative would allow the local minimum to be reached in a single

step.

Figure 4.1 illustrates a trough with a dot representing the current weight vector.

The arrow pointing to the right is the negative gradient, which points mainly across the

trough and only slightly along the trough. Taking discrete steps along this gradient can

cause oscillation, and could even leave the trough entirely if the steps are too large. The

arrow pointing to the left is the negative gradient divided by the curvature of the surface. It

points directly toward the local minimum (for this ellipsoidal trough), and is a better path to
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follow for fast convergence.

7 7

Figure 4.1 A weight vector on the side of a trough, showing
the negative gradient (right arrow) and negative gradient divided by curvature (left arrow)

For a multi-dimensional surface, the slope is a vector of first derivatives (the

gradient) and the curvature is a matrix of second derivatives (the Hessian). If there are N

weights, then the Hessian will be a N by N matrix, and its eigenvectors will point in the

directions of maximum curvature. The eigenvalues correspond to the curvature in those

dilections. If it was useful to rmdtiply the step size in a direction by the curvature in that

direction, then tue gradient could simply be multiplied by the Hessiau. Unfortunately, the

desired operation is to divide the step size by the curvature. This is equivalent to

multiplying the gradient by the inverse of the Hessian:
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Aw = --G H--

Gi  = .-- gradient
awi
a2j

Hij= -- w = Hessian

J = total error

This involves inverting an N by N matrix on each step! This procedure rmzy be

computationally expensive, so numerous approximations and heuristics have been

proposed to accomplish nearly the same thing.

Computation time is not the only difficulty with using the Hessian. Implementing

the above equations requires the calculation of the total error and its derivatives. But for

continuous function approximation, these are integrals over an infinite number of points.

On each time step, the error, gradient, and curvature can only be calculated for one of these

points.

This was also the case when simply following the gradient, but the problem was

less severe then. If a small step is repeatedly taken in the direction of the gradient

associated with a randomly chosen input, then over time the weight vector will follow a

random walk in the direction of the true gradient. This is effective if the steps taken are

small, and gradually get smaller over time. Now consider calculating the Hessian on each

time step, based only on the derivatives for the current trainrng example. The second

derivatives for one example may be small, even if the sum of them over all the examples is

large. The weight vector would therefore take large steps when it should be taking small

steps.

In the case of a network with only one weight, this problem can be seen

algebraically. The correct step size is the total gradient divided by the total curvature. If the

steps taken are actually the individual slopes divided by individval curvatures, then the

answer is completely wrong:
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Si

wbere:

si = slope (first derivative)

ci = curvature (second derivative)

The left side is correct. The step size should be the total slope divided by the total

curvature. The right side is incorrect. It is not useful to look at eac:h individual training

point and divide its individuW slope by its curvature. In the txpression on the left, a small

ci has almost no effect, whereas on the right side it has a very large effect. When learning

continuous functions, the sunimations above are actually integrals over infinite sets of

points. If weights are changed after each pass through all the training data, then this

problem does not arise. It is only a problem in incremental training where the weights are

changed ztter each individual error is found. When learning functions over continuous

input spaces, the Hessian being inveited should actually be the sum of uncountably many

Hessians. If it is simply the sum of the last few dessians instead, then other problems

arise since it is representing the curvature at the weight vector from several time steps

previous instead of the current weight vector. Then more t ne sieps the Hessian average,;

over (for more accuracy), the greater the danger that it is no onger•iý-eatingful. It is not a

tnAeoretical certainty that second-order methods such as this are niore useful for infinite

training sets beiag trained incrementally, even if the cadculations can be done cheaply.

Furthermore, the very nature of self-modifying step sizes may make the network more

susceptible to fixation if the training points are not picked in a perfectly random manner.
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4.2 I)ELTA-BAR-DELTA

Backpropagation has been modified in a number of ways by different researchers as

a means of speeding convergence during learning. These modifications a,, generally

compared with Bac•propagation on toy problems with small training sets. The De!ta-Bar..

Delta algorithm, a heuristic method developed by Jacobs [Jac9l], is one such attempt at

improving tie rate of convergence. It has been shown by Jacobs qvd confirmed in other

work performed at Draper Laboratory that this rmethod sometimes allows faster learning

than other more conmnon heuristics, on problems involving small training sets. Testing it

on the learnirg problem here allo% s a more zalistic ccmparison on a more "real world"

problem, involving infinite noisy training se.s. One of the goals of this thesis is to

determine the applicability of methods such as this to learning systems for contarol.

Delta-Bar-Delta is a heuristic approximation to the effect of using the main diagonal

of the Hessian matrix. This main diagonal contains only the s-cond partial derivatives of

the error with respect to each individual weight with respect to itself. Delta-Bar-Delta

maintains a local lea-ning rate for each weight, which is heuristic approximation of this

second derivative. The equations governing Delta-Bar-Delta [Jac9l] for a single weight

can be written as:

w(t)= w(#-I) + c() 61)

5(t) I -- 19-) 6t + o 6(1-I1)

(t-1) -e- k if 6(it) > 0

SW 4- 1 if 40t) < 0

-I) if' 4. 0 8(f) Z 0I
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Where:
w(t) = a weight in the network

8(t) = local learning rate for the weight

"8(t) = the element of the gradient associated with the weight

6(f) = weighted average of recent 8

J(t) = total error in the network (e.g., sum of squared error over all inputs)

&, A,k = constants controlling rate of learning

After each epcoh (pass through all thme t.aining examples), the partial derivative of

error with respect to each weight is calculated and multiplied by the local learning rate, and

the weight is changed by that amount. If the current weight voctor is in a trough parallel to

one of the axes, this can be determined by the fact that the sign of the gradient in one

dimection keeps changing, while the sign of the gradient in another direction stays the same.

The sign of the gradient will therefore often differ from the sign of the average of recent

gradients. Once this is noticed, the local learning rate in the direction of the changing sign

is decreased, and the rate in the direction cf the constant sign is increased. This has the

effect of slowing down wasteful movement across the trough, and speeds up movement

along the trough. If the trough i-s aligned at a 45 degree angle to all the axes instead of

parallei to one, then the signs of all the gradients will be constantly changing, and the

weight vector takes small steps in the direction indicated by Backpropagation. This is

unfortunate, but to compensate for this would require additional storage and computation

time proportional to the square of the number of weights.

To see whether the sign of the gradient is changing, Delta-Bar-Delta keeps track of

two things: the current gradient and an exponentially weighted sum of recent gradients. If

these two have the same sign, then the local learning rate is increased, otherwise it is

decreased. There was one final heuristic: when the local learning rate is raised, it is

increased linearly by adding a constant on each time step. When it is lowered, it is

decreased exponentially by dividing it on each time step by a constant. Thus the learning
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rate falls more quickly than it rises, and so when the nature if the error surface changes

often, the weights will tend to change too slowly rather than too quickly, and previously

learned information will be in less danger of being erased by rnomentarily large learning

rates. The exponential decreasing also haIs the advantage of preventing a local learning rate

from ever becoming zero or going negative, either of which would prevent correct

operation of the algorithm.

2b
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5 EXPERIMENTS

In the experiments presented here, a number of different combinations of hybrid

control system components are tested. Two variations of an indirect adaptive controller are

used, both based on Time Delay Control [YI90]. Either the reduced canonical form of the

plant is used, causing all the interesting dynamics to be compressed into a single scalar
/

(described below in Section 5.1), or the full state vector form is used. The learning

component can learn initially unmodeled dynamics as a function of both state, or as a

function of state and control action. When it is a function of control action, then the partial

derivative of the learned unmodeled dynamics with respect to control action is calculated,

giving an improved estimate of the effect of control on state. Finally, the learning system

can be constrained to learn only functions whose partial derivatives with respect to control

action are constant (e.g., the control enters the governing dynamical equations linearly).

These various hybrid controllers are then compared relative to the problem of

controlling a simulated plant having both spatial dependencies and noise. The controller

should learn to control the plant in the presence of spatial dependencies wherever they

occur. As the plant moves from one state to another, the unmodeled nonlinearities may

appear in different ways. First, they might apply briefly in the middle of the transition

from one region of state-space to another. If the effect is short-lived, then it will have a

minimal impact on the trajectory of the plant. Also, once the plant leaves the region where

the nonlinearity has an effect, it will ha e time to recover and move back towards the

desired trajectory.

A more severe problem occurs if the nonlinearity appears and then remains present

even after the state of the plant reaches the desired value. In this case, the nonlinearity has

more time to affect the trajectory, and the plant may never leave its influence long enough to
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recover without adaptive or learning augmentation. If the nonlinearity is present

throughout the plant's trajectory, then the problem is even more difficult. All three

scenarios are considered in the experimentz below,

Finally, the accuracy of the final controller is not the only issue to be considered.

Since it is a learning system, it is also important to consider how fast it can learn, and how

susceptible it is to forgetting one region while exploring another. These issues are

examined by the experiments in the last section, below.

This chapter first describes the plant used for the simulations. The linear dynamical

systems matrices are then derived for that plant, and the experimental results are presented

for the hybrid system in various configurations. Finally, the Delta-Bar-Delta algorithm is

compared with the standard Backpropagation algorithm, and then a modified Delta-Bar-

Delta is examined.

All of the experiments below were based on a cart-pole plant being simulated at

50 Hz (using Euler integration), and a controller running at 10 Hz. The cart-pole system is

shown figures 5.1 and 5.2. The a priori knowledge of the plant was limited to a

linearized model of the system on the flat regions of the track. The 30 degree tilt in the

region between 1 and 2 meters was completely unmodeled and had to be either adapted to

or learned.

Unless otherwise noted, the learning system in all the e ýperiments below was a

Backpropagation, sigmoid, two layer network, with 10 nodes in each layer. Connections

were made from the inputs to the first layer, from the first layer to the second, and from the

second to the outputs. There were also connections from the first layer to the outputs. The

inputs consisted of the four elements of state: cart position x, pole angle 0, cart velocity .X,

and pole angular velocity 0.. The network was trained using the unmodeled dynamics

calculated by the adaptive TDC controller, while moving the cart to a new random position

in the range 0 to 3 meters every 4 seconds. In the case of the reduced canonical form of the

controller, the training was based on moving the cart from 0 to 3 meters and back, every 4

204



ATTACHMENT 1

seconds.

5.1 THE CART-POLE SYSTEM

The plant used for the simulations is based on a standa'd inverted pendulum

system. The problem is to move the cart to some desired traci position by applying force

directy to the cart center of mass, while at the same time balancing a pole that is attached to

the cart via a hinge (see figures 5.1 and 5.2).

'0ie1
=O0.1kg=1 M

lulI_ ION

0-x----,- x

Figure 5.1 The cart-pole system

The design of an effective automatic control system for the cart-pole object on the

split-level uack is a challenging problem. The dynamical behavior of the nominal cart-pole

system has the following attributes:

* nonlinear

* open-loop unstable

a nonmiinnium phase

* 4 state variables: (x,9,xO)
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The equations of motion for this plant ar•.-_ / 2

(n:c + mp)3 sec a + mPlOcos(O- a) - m.10 sin(O- a) - (m, + inp)g sina = f- psgn i

MP120 + isecacos(-- a) -mglsin 6 =

where:

x - position of the cart (m)

0 = pole angle (rad)

6 X rad track incline angle

g 9,8 m/s 2  acceleration due to gravity

mc 1.0 kg mass of cart

MP 0.1 kg mass of pole

1 0.5 m pole half-length

it, 0.0005 N friction between cart and track

.up 0.000002 N. m. friction between pole and cart

If 1 • 10.0 N force applied to cart

When the track angle is zero (horizontal track), both the equations of motion and the

plant parameters are identical to those in (BB9g)] and [BSA83]. To test the learning ability

of the system, one portion of the track is set on an incline, as shown in figure 5.2.
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40

T x
0 1 2 3

Figure 5.2 Cart-pole system

From the origin to I m, the track is level. From I m tc 2 m, the track slopes down

at a 30 degree angle towards the 2 m mark. From 2 m to 3 m the track is level again. The

controller is given no a priori knowledge of the inclination of the track. It must adapt

every time it reaches the incline, unless it eventually learns to anticipate it.

TDC allows a priori knowledge to be incorporated into the controller. Here, the

a priori knowledge is a model formed by linearizing the actual piant equations about the

origin, on the flat part of the track. Assuming small pole angles (0 << 1) and a horizontal

track (a = 0), the equations-of-motion may be linearized, and the Laplace transform of

them taken to yield a simple transfer function between force and cart position:

X(s) (s - 3.8360)(s + 3.8360)
F(s) s 2 (s - 3-9739)(s + 3.9739)

The open-loop poles and zeros (the values of s where the above function is infinite or zero,

respectively) are shown in Figure 5.3. The pole in the right-half plane causes it to be

unstable: when left to itself, the pole on the cart generally falls. The zero in the right half-

plane causes it to be nonrminimum phase: thus to move the cart to the right when the pdie is

vertical, it is first necessary to move it a small amount to the left.
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-4.0 -3.0 -2.0 -1.0 1.0 2.0 3.0 4.0"

Figure 5.3 Open-loop poles and zeros in the complex plane I
This linearized model is incorrect both in the tilted region of track and when the pole

angle is large.

Taking the partial derivatives of the plant equations-of-motion and evaluating them

at the origin yiel, a linear model of the plant. This model is of the form:

xtAx +Bu

0 0 1.0000 0
A = 0 0 0 1.0000

0 -0.7178 0 0
0 15.7917 0 0

0

B 0
0.9756

-1.4634

where the state vector x = (x, 0,x,0). The A matrix indicates that the cart position and pole

angle are the integrals of cart velocity and pole angular velocity respectively, and that the

cart and pole velocities are both proportional to pole position. The B matrix indicates ihat

the force appfied to the plant directly affects the cart and pole velocities. It is often more

convenient to undertake a change of variables in the above equation to put it into controller

canonical form. This form is found by first taking the original equations:

x = Ax + Bu

Y =Cx

where v is the output being controlled. C could be the identity vcctor, but for the plant

being controlled here, C is the new vector 11 0 0 01. A change of variables is then

introduced by substituting Y Ix for x and rearranging the first equation to get:
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x = TAT-Ix + TBu
y=T-lCx

These new equations are then treated as a new plant, with the "A" matrix of the new

plant being TAT-' and the "B" matrix of the new plant TB. The new plant is input/output

equivalent to the original, one since varying u will have the same effect on y as in the

original plant. The purpose of this change of variables is to convert the "A" and "B"

matrices to the more convenient form:

x= Acx + Bcu
y= CcX

0 1 0

Ac = 0 0 1 0
0 0 0 1
0 0 15.7917 0 .

0 C, = [--14.3561 0 0.9756 0)
B ,= 00

This controller canonical form has three important properties: the Bc matrix is all

zeros with a I at the bottom, the A, matrix without its first column and last row is the

identity matrix, and the first column of the A, matrix is all zeros except possibly for the

bottom position The bottom row of the A, matrix could have been anything, and it would

still have been in canonical form. For thv x vector in this new canonical form, the first

element is the integral of the second, the second element is the integral of the third, the third

element is the integral of the fourth, and the last element is a linear function of all elements.

The control action u only directly affects the fourth ehment of the state. This form is

convenient because a reduced version of the TIX7 control law can be developed from it that

involves scalai and vector algebra and vector inner products instead of full vector-matrix

algebra. In pui-ticula the ratnix inversion (or pseudo-inversion) ret]uircd by the original

control law rCeIuces to a simple scalar- division operation. In addition, the learning system

will onlv have to leairn a scalar outptut inst-ad of a four clement ve tor.
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The only complicated part of the above transforrnation was choosing TV. This can

be done in MATLABTh with the following code:

d = poly(A)

Tirv = ctrb(A,B) * hankel( d (length(d) - 1 : -1 : 1

where, if A is n by n, then d is a row vector with n+1 elements. The function poly(A)

returns the coefficients of the characteistic equation of A, which is the polynomial formed

by the determinant of (XI - A). The expression "d (length (d) - 1 : -1 : 1

removes the first element of d, the lowest order coefficient, and reverses the remaining

elements. The function hankel returns an n by n matrix that has its first column equal to

this list and all zeros below the frst anti-diagonal. Each element of the matrix equals the

element one below and to the left of it. Finally, ctrb returns the n by n controllability test

matrix (a row of column vectors) formed from the n by n matrix A and the n by I vector B

by:

ctrb (A, B) =[B AB A2B A3B ... A"-IB]

In discrete-time, the full system is approximated by:

Xk+l =4Xk + -rUk

At 50 Hz: 1.000 -0.000) 0.02 0.0002
05o0"-" 0 1.0032 0 0.0200| --0.0003,

0 --0.0144 I -0.0001 0.01951
0 0.3162 0 1.0032- -. 0293JAt 10 I-V: 1.000 -0.0036 0.1000 --0.0001 [ 0.0049"

0 0 1.0800 0 0.1027 rio= -0.0074L 0 -00737 1.0000 *--0.0036 0.0977
0 1.6211 0 1.0800- -4. 150o2

The behavior of the reference model, in discrete tine, is given by:

2
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Xk+1 = 0 .m Xk + rT. Uk
At 50 Hz: [ 1.0002 0.0048 0.0204 0.0012] -o.G002]

0 -0.0003 0.9958 -0.00C5 0.0182! 0.0003
0.0184 0.4712 1.0343 0.1201] rM50= 0.0184

L -0.0276 -0.4129 -0.0515 0.8226 0.0276-1At 10 Hz:A 1.0038 0.1077 0.1072 0.02761 -0.0038'
-0.0058 0.9108 -0,0109 0.0606 M 0.0658q•MiO 0.0654 2.0162 1.1249 0. 517 6 --0.0654

[ -0.1012 .-1.5989 -0.1931 0.2770 L 0.1012-

The error feedback gain K is zero. This means that, given the plant's state at time

k, the desired state foi the plant at time k+1 will always be equal to the state that the

reference model would have at time k+1 if it started at the state where the plant is at time k.

In other words, for a given commanded state, there will be a set of almost parallel

trajectories through state-space, which are the paths that the reference model would take.

At any given point in time, the desired dynamics for the plant is simply to follow the

reference trajectory t6lat it is currently on. If K was greater than zero, then the desired

dynamics of the plant could be faster than the dynamics of the reference model. The

controller would then have to maintain a reference moael internally. On the first time step,

the state of the reference would be set to the state of the plait. On each time step thereafter,

the reference model would be updated according to the reference dynamics. If the plant

state matched the reference state, the desire-d next state of the plant would be equal to the

desired next state of the reference. If the plant evtr got off of the reference path, then it

would not start following a new reference path, but would instead try to get back on to the

original path. This integrz' :ng kind of behaviir acts to keep small errors in the controiler

from building up over time. Although the acaed complexity of a nonzeio K is never used

in the experiments presentf"d here, it would be easy to add the terms for a noazero K into

the hybrid controller. In fact, the equatiJns derived above explicitly contart the terms for

K, even though .hey are never used here,
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5.2 ORGANIZATION OF THE EXPERIMENTS

The crt-pole track is horizontal everywhere except between the points at I meter

and 2 meters. The 30 degree. incline in this region is a large, unmodeled nonlinearity, and

so is a more difficult region for the controller unless the learning component is working

well. When the cart starts at 0 meters and is told to move to 3 meters, most of the

complicated maneuvering and acceleration will be executed near the start and end of the

trajectory, 6,oth of which are on the well-modeled level part of the track. This trajzctory is

therefore easier for the adaptive controller than moving from 0.8 to 1.3 meters, where it

would have to cross the border of the nonlinearity almost inimediately, and would then

have to stop on the incline near the edge. The following sections are organized around

trajectories of differing difficulty: (i) nonlinearities in the middle. (ii) at the end, or (iii) at

the start, middle, and end.

in all experiments, the inclined portion of the track is between the 1 and 2 meter

mark. Section 5.4 shows results for the cart moviug from 0 meters to 3 meters. Section

5.5 shows results for the trajectory from 0 to 1.3. Section 5.6 shows res'tis when going

from 0.8 to 1.3, an~d also for going from 1.3 to 1.9

The networks weie trained from data generated as the cart wa•r conumarnded e'&nerY 4

secon•ds to move to a new randa,,n poxsition hetween 0 metes a~nd 3 meters. The grapthis

show the performnance of the hybriJ over a 9 :'ecoad pdtjod, after learing had alreadv

occurred. Two hybrid systems are compared, the reau. --d hyl :d, which learns a scal'.°r

version of 6he umniodeled dynamics assoxciated with the canonical system modlel described

above, and the full hybr;d, which learr s the vector form of thfl; unmodeled dynamics.

In sections 5.3, 5.,4, and 5.3, the full h%;brid uses inputIoutput partial deriivwive

infomiation f.orn a wniwork thai ý'. cornsi.ane to have an o,,,cntpu! calculated as a genera

nonlinear function of x, and a constant, 1inear function of u. This network was used

because it was founJ to give better perifnmance than a network calculating outpats as a
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general, nonlinear functiou of both x and u. For the sake of' comparison, one run of the

general network is shown in section 5.6. There is also one experiment shown in section

5.6 for the case of extremely noisy sensors, which is included io demonstrate that both of'

the hybrid controllers can continue to work under extremely noisy conditions.

The results are shown throughout this chapter in a consistent format. The position

graphs show the position of the reference can on the tr-ack in meters, as well as the position

of the cart controlled by the full and reduced hybrid controllers. The other type of graph

shows the error in positicn (reference minus actual) in meters, and the force applied. The

force is scaled by a factor of ten, so that the range of the graph corresponds to the full

±10 N range of admissible forces that can be applied to the cart-pole system.

5.3 M[D-TRAJECrORY SPATIAL NONLINEARITIES

The first set of experiments were intended to test the ability of the hybrid controllers

in the presence of spatial dependencies appearing in the middle of the plants trajectory. In

addition to inherent nonlinearitie, in the cart-pole system, a finrher nonlinearity was added

by tilting the track 30 degrees in the region from 1 meter to 2 meters. In these first

experiments, the cart was commanded to move from its initial position at 0 meters to a final

positioi, at 3 meters, while following a desired trajectory through state-space, and without

allowing the pole to fall over. Since it spent relatively little time in the inclined region, and

since it always left that region before it carae close to the final state, thiis setup introductA

mid-trajectory spatial nonlinearities.
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Fig•ure 5.4 Plain TC., fiora 0 to 3 meters
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Figure 5.5 Reduced TIY'; force and position error
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2 full I DC [0.0,3.0] (m)
tW - . N - c( trol action

------ . . trnckiun error

0 .5 .. . . . . . .. ...... . .. . . .. . . .. ... .... . . . . . .. .

-0 .5 ........ ................... ..... . . .........................
CD

0N

z -'
0 1 2 3 4 6 6 7 8 9

Time (sec)

Figure 5.6 Full TDC; force and position error

Figure 5.4 demonstrates the difficulty of this control task for TDC alone, without

learning. Both the re-duced and full versions of TDC are able to balance the pole, but they

do not follow the desired trajectory very closely. For the reduced version, figure 5.5

shows that there were not very large errors in the cart position until after the actuator started

to saturate at -10 N. If it could have applied more than that level of force, it mnght have

done better. The full TIt)C had equally bad errors, but did not attempt to apply more torce

than was possible.

Figures 5.7. 5.8, and 5.9 depict the same experiment, but with the hybrid

controller.
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Figure 5.7 Full and reduced hybrid systems, from 0 to 3 meters
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Figure 5.8 Reduced hybrid, from 0 to 3 meters; force and position error
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full hybrid [0.0,3.0] (m)
Jcontrol action

------ tracking error• o s .. . .. . . . .. . .. . . .. . . . . . . . . . .. . .i. . . . .. . . . .. . . . . . . . . . . .... . . . . . . . . . . . . . . . . . . .

ITO
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0 .0 ,5 .. .. .. .-.. . ... ......................................... ... . . .. .. .0
z
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Figure 5.9 Full hybrid, from 0 to 3 meters; force and position error

With the aid of learning, the hybrid controllers performed extremely well. The

reference and actual trajectories were almost completely on top of each other, and appear to

be a single curve. The full hybrid is comparable to the reduced version, although the

reduced version tracked the reference slightly better. It is interesting that although the full

TDC attempted to use less force than the reduced TDC, the full hybrid applied more control

action than the reduced hybrid. In fact, the full hybrid tends to oscillate in its application of

control action, even though the cart itself did not oscillate visible.

The experiments in this section demonstrated three things. First, an adaptive

controller can be improved significantly when used in a hybrid architecture with a learning

system. Second, in some cases, such as the reduced canonical form shown here, simply

learning unmodeled dynamics is enough to give acceptable performance. In other cases,

such as in the full (noncanonical) form, the performance is not very good unness the

input/output partial derivatives of the learned function are also used, and the network itself

is modified for this purpose.
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5.4 TRAJECTORY-END SPATIAL NONLINEARITIES

The simulations in sections 5.3 were all conducted while commanding the cart to

move from 0 meters to 3 meters. Since the unexpected tilt in the track was bNetween 1 and 2

meters, the learning system was mainly beneficial during the brief period that the track was

on the incline. Any eirors introduced into the state during that period can be handled after

the plant has moved on to a region where its a priori model is more accurate. A more

difficult problem occurs when the cart is commanded to move from 0 meters to 1.3 meters.

Then the spatial dependencies are important at the end of the trajectory, when the cart

should be decelerating and settling in on the final state. This section compares the behavior

of the reduced and full TDC and hybrid controllers in this more difficult situation.

Figures 5.10, 5 11, and 5.12 show plain TDC trying to move the cart from 0 to 1.3

meters. Both controllers are fine until they reach the edge of the incline at 1 meter. At this

point they are trying to decelervte since they are near the goal. The unexpected acceleration

causes the pole to fall back, and the cart must then back up past the edge to keep it from

falling. This sets up the oscillations around the 1 meter mark which are visible in the

figures. The reduced canonical form TDC eventually allows the pole to fall over, while the

full TDC eventually reaches the goal, but only after 10 seconds of oscillations. This is

exactly the kind of situation for which the integration with the !earning system would be

expected to be most valuable.

Figures 5.13, 5.14, and 5.15 show the hybrid controllers performing much better

on the same problem. Not only is the performance better, but it is accomplished using less

force, and saturating less often.
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Figure 5.11 P)ain TDC, from 0 to 1.3 meters; force and position error
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Figure 5.12 Plain TDC, from 0 to 1.3 meters; force Lnd position error
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Figure 5.13 Full and reduced hybrid systems; from 0 to 1.3 meters
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Figure 5.14 Reduced hybrid, from 0 to 1.3 meters; force and position error
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Figure 5.15 Full hybrid, from 0 to 1.3 meters; force and px)sition error
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reduced one in this case, but not in the case of moving from 0 to 3 meters. When the

nonlinearity affected the trajectory only for a brief period of time in the middle, any learning

system that could predict that nonlinearity at all could do a good job. However, in the more

demanding problem of stopping the cart on the incline near the edge, the exact natre of the

nonlinearities or the slope become more important. In this case, it is more important to get

better estimates of the effect of control on state, by using the partial derivatives of the

function that was learned.

5.5 TRAJECTORY-START AND TRAJECTORY-END NONLINEARITIES

It has been shown above that there is a performance improvement created by using

partial derivative information in the hybrid, A more. difficult control problem arose when

the transition in or out of the tilted region occurred near the end of the trajectory, since that

is the point that the cart starting to slow down and settle ip to the correct position. The

improvement from using partial derivative information was even more pronounced in this

more difficult problem. In ;,his section, a yet more difficult problem is considered, where

the cart is commanded to move from 1.8 meters to 2.3 meters. This trajectory is short, so

when the cart crosses the boundary of the tilted region, this event is both near the start of

the run and near the end of it. Figures 5.16, 5.17 and 5.18 compare the behavior of the

reduced and full hybrid ccntrollers. The commanded path was from 0.8 meters to 1.3

meters.
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Figure 5.16 Full and reduced hybrid systums; from 0.8 to 1.3 meters
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full hybrid [0.8,1.3] (m)
-- control action

.G ----- trackdng error
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Figure- .18 Full hybrid, from 0.8 to 1.3 meters; force and position error

As expected, the incorporation of the partial derivative information has a more

dramatic effect here than it did in dte previous problems. F.,ure 5. i6 shows no overshoot

at all for the hull hybrid, as compared to a large overshoot foi the ieduced hybrid. As

before, the force applied by the full hybrid was greater than the force applied by the

reduced controller.
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Figure 5.21 Full TDC, from 0.8 to 1.3 rmnters; force and position error

The performance of the hybrid is more impressive who'- compared with the result

of plain TDC, as shown i.n figures 5.19, 5.20, and 5.21. Not only were the oscillations

extreme, but the pole actually fell over after 5 or 6 seconds.

The sxne experiment was repeated comnranding the controller to go from 1.3

meters to 1.9 meters. This ens ired that the entire trajectory was on the inclined region of

the track, and so the learning component was 'iery impooaant. The performance of the

hybxid is shown in figures 5.22, 5.23, and 5.24.
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Figure 5.24 Full hybrid, from 1.3 to 1.9 meters; force and position error

"Phe vatue of the extra icartial derivative information in the full hybrid controller is

exceptionally clear in figure 5.22. The full hybrid gives very ac.ceptable pe-forirance,

while dic reduced hybrid actually goes irto a limnt cycle that continues indefinitely. This is

due to the tact that small errors made near the cdge of the inchne tend to cause the cart to go

across the bouwdary, thus g'eady increasing the error; .a,.nw inducing further crossings and

fui-ther errors. The final results, in figure. 5.25, 5.26, and 5.27, are the graphs for the

same experimera with just plaia TDC and no 2carning.

'2"8
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Figure 5.25 Plain TDC, from 1.3 to 1.9 meters
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Figure 5.26 Reduced TDC, from 1.3 to 1.9 rneters; force and position error



AlTACHMENT I
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control action

------ tracking error
"0.5 ......... ........ ... - - - - -

0 .5 .... ......... ........ .. ..... ..........0o .. .i. . . . .

'1o

oZ -0

0 1 2 3 4 5 6 7 8

Time (sec)

Figure 5.27 Full TDC, from 1.3 to 1.9 meters; force and position en'or

5.6 NOISE AND NONLINEAR FUNCTIONS OF CONTROL

The preceding three sections showed systematic testing of the two best nybrid

architectures found. This section, for the sake of comparison, shows one run with a worse

hybrid architecture, and one run with the best architectures in an unreasonably noisy

envirorunent.

Figures 5.28, 5.29, and 5.30 show the results for the hybrid controllers in an

unreasonably noisy environment. On each time step, zero-mean, Gaussian noise was

added to each sensor reading. For each element of the state vector, the noise had a variance

equal to 10% of the total range that the element normally varies over, while following that

trajectory. In practice, if an actual system had sensors this noisy, they would be filtered by

a sepaiate algorithm. Nevertheless, it is interesting to note that the hybrid is relatively

insensitive to Poise, and that it still performs well.
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Figure 5.28 Full and reduced hybrid systems with 10% variance noise; cart position plot

E 1-

.2.

S0.

I- .1
HJ"

0 . ... . .. . . . . . . . .. ' . . . . ]. . . .. . . . . . . . . . . . . . . . . . . . :.. . . .. .- ' . . . . . . . . . . . . . . . . . . .. .. . . . . .. . .0 0

0 1- 3 4 6 7
r2educed hybrihrd [0.po3.0] (in)

---2control action
o• tracking error

0 1 2 3 4 5 6 7 8 9

Time (sec)

Figure 5.29 Reduced hybrid with 10% variance noise, force and position error
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Figure 5.30 Full hybrid with 10% variance f noise; tee and position error

As can be seen from figure 5.28, both hybrid systems did extremely well. The full

hybrid was slightly better than the reduced hybrid, but needed to apply more force. The

performance difference was probably mainly do to the fact that the actuator saturated for a

longer period in the case of the reduced controller, so that it was not able to apply as much

force as it calculated was- actually needed.

When the algorithm for the full hybrid was first developed, the network was

allowed to learn a general nonlinear function of both x and u. The results of using such a

network cat shown in figures 5.31 and 5.32.
hybrd ws sigh~y ettr tan te rducd hbri, bt nededto ppl moe frce Th

pefrac ifrnewspoal anyd otefc htteatao sauae•o
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Figure 5.31 Full hybrid; general nonlinear function of both x and u; cart position plot
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Figure 5.32 Full hybrid; general nonlinear function of both x and u; force, position error

Although the pole never feln, the controller did not follow the reference path very

closely. This controller was ictuafly worse than TDC by itself. The problem arises
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because control action is one of the inputs to thre network. In general, to find the correct

control action to achieve the desired state, it is necessary to find the inverse (with respect to

u) of the function implemented by the network. This can be a difficult problem.

Nevertheless, because the unmodeled dynamics may often be considered as a fairly linear

function of control, it should be possible to approximate the function in a given state as a

linear function of control action. In other words, taking into account the unmodeled

dynamics associated with the control action on the last time step, and aszuming the partial

derivative of I with respect to u has not changed much, it should be possible to calculate

the appropriate u for the current time step. When this idea was implemented, however, it

did not make any significant difference. This may have been because the network actually

learned T as a nonlinear function of u. If a function is almost, but not quite, a line, then

even if the distance between the function and the line is small everywhere, the difference

between their slopes may be large. Learning the nonlinear function and then using its slope

at some point evidently did not give. enough new information to help much. A better

approach would be to have the network learn the best linear function of u,, and then look it

the partial derivatives of this linear function. Of course, '(x,u) could still be a nonlinear

function of x, and would only be constrained to be a linear function rf u. Accordingly, a

network was set up to learn TI as a possibly nonlinear function of x and a linear function of

u. In fact, this alternative arrangement was used for the full hybrid experiment shown in

figure 5.7, and can be seen to be significantly better than the hybrid used in figure 5 31.

Sections 5.1 thrGmIgh 5.6 have explored several different approaches to combining

learned information with an adaptive controller. Using input/output partial derivative

information in the control law seemed to be helpful, but only if the network was

constrained to learn functions nonlinear in x and linear in u. Using the reduced canonical

form had the advantage of allowing the net-,ork to learn a function with one output instead

of four, and worked well enough that the partid derivatives were not needed. This system

worked better for scenarios with computation delay and actuator dynalincs, and worked
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equally well in the presence of noise. Overall, the full hybrid using partial ýderivatives

tended to be the most effectiv-, controller, especially when the trajectory of the plant was

largely in the region of greatest unmodeled dynamics.

5.7 COMPA.iRISON OF CONNECTIONIST NETWORKS USED

5.7.1 Sigmoid

The network used in most of the above experiments was a Backpropagation, two

layer, sigmoid network. Each of the inputs and outputs of the network were scaied before

entering and after leaving it, so that each signal would vary over a range of unit width.

Thus, the network would give equal preference to errors in each output. After trying

several different learning rates, it was found that a rate of 0.005 worked best. The

following graph (figure 5.33) shows the learning curve for the network while learning the

function 'Y(x,u), where IF was a nonlinear function of both x and u. The network cutput

T is a four element vector with one element for each of the four elements of state. The

graph shows the base 10 logarithm of the error in the network's output, as a function of the

training cycle.
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Figuxr 5.33 Learning curve

Even though each point in the curve is the average error in the output over a period

of A00 training points, the curve still appears to be very noisy. This noise tends to cause

the network to forget what it has learned unless the learning rate is fairly low, and so this

noise is probably the reason that a learning rate of 0.005 was the largest rate that converged

to a local minimum. Higher learning rates modified the weights so much on every step that

they changed enough to forget previously learned information. Lower learning rates

caused the network to learn even more slowly than in figure 5.33. The training period

shown in the figure took approximately 63 hours to run on a Macintosh Ilfx. Figure 5.34

shows a three-dimensional :Aice of the six-dimensional surface learned. In the figure, the

three elements of state not shown are held at zero.
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Jor~

Figure 5.34 Function learned

The figure shows each -lement of IF as a separate surfface, with all heights scaled to

iit in the cube., Tie horizontal axis is the LOn~trol action u, and the diagonal axis Is the cart

position x. The function is clearly nonlinear and -.c~ varying in both of these

dimension, although it varies little along tile other dimensions, that are no[ shown.

As 'IT generated vew training points, these were stored 'in a buffer. The Petwofk

was trainecl with points randomly drawn from this buffer. This wvas done to ensure that the

network %kould noý have preblerns vvith reeelvii~g a long string of training points all from

thle saile region, thereby casn, itto forget what it [~ad already learned in other regions.

L~S.pzre this randJoml buffer, the network still iearrned extruniely slowly.

A controller based on tis aIpp oach would need oric of three thLgs to lie practical.

,i rst, !t Could have ';pec ial har-dware, to speed 1q) tile kcaftling. Second, it Oniglir be in1 3

stitiati.)n where lonyc lc,1 n i ri t iii",S are' aC(cept iwe. If a Lt~lc'IN IONAt C.11 W;rn tO AU .1~st to
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normal wear within a few days, then it should be able to learn any urtmodeled dynamics

due to wear faster ttan they occur. Thtird, tlic ilgorithm in the network might be modified

to allow faster learning. Th~is third approach was taken here.

5.7.2 Sigmnoid With a Second.-Order Methed (Deha-Bar-Delta)

One attempt to spced learning was to apply r. pseudo-Newton method to the

sigmoid network. Delta-Bar-Delta [Jac9l] was chosen because it requires very little exvtra

computation firr'-, and it has beenr compared favorably with a number of othe~r methods.

Unfortunately, comparisons between methods to speed learning are often done with

bonchmark problems that do not represent the problem here.. People often compare

learning speeds for learning an XOR functior. ox a multiplexor function. These can be

diff-oult problems for a network to learn, but the network has thle advantage that the set of

tr '-ining points is finite and small, so it is not unreasonable to change weights only after

each cycle through all the t~raining data. Learning a function defined over a real vector is

more difficult, since there is an infinite set of training pointse. The functions enceountered in

this thesis tended to be smooth and have few wrinkles, which mrant that mneie was a large

amnount of reddnidancy -;n thý, data tha~t the learning algorithm shovid have been arnIe to

exploit. Trhose factors combined to yield a p~roblem that was slow for Backpiropagation

alone to learn, but should have been learnable quickiy by other learning methods.

When Dehta-Bar-LDeita was first applied, it itiniudiately set all of the !ocal learning

rates to zexo, causing t!ie weights to freceze. This was because it worked by comparing the

cutrent partial 'trivatI.'e of error (with zespect to a given we-Aght) with an. exponential

average of rcc kit, val ues of this dcrivative. 'Si nce this was toeing done after 'ývery train; ng

point, it saw the noise 'An the training data a~nd .iiterpreied that as rapidly changing signs in

the error derivatives- It respo~nded to thai by repeaittdly decreasing all of the loca1 learning

raVks.

Thil problem arose because Del~a-Bar Delta was riot being used in an epoch
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training mode as it had been designed for. The appareat solution was to calculate two

exponentially smoothed averages of the error partials. If these two averages had different

time constants, then comparing them would be like comparing the cur-rent true de~ivative

with a slightly older true derivative.

The values fo)r these tirr~e constants were chosen heu;ristically. Looking at the

learning curve for normal Backpropagation showed that the errors were noisy, but in a 500

trL ining point period a "representative sample" of training points was probably being seen.

The short-term average was therefore chosen so that 8017/ of the average was deterrmined by

tho last 500 training points. The long-term average was then chosen to be 5 times slower,

bas -ig 80% of its value on the last 2500 training points. In normal Delta-Bar-Delta, the

lea'ming rat.e is increased by a constant every tirne the current derivative has the same sign

as 'h-- long-term derivative average. Since this variation would update learning rates about

50(ý times more often, the rate of increase for learning rates was set 500 times smaller than

is suggested for normal Delta-Bar-Dehta. Similarly, when learning rates atre decreased, the

decrease is implemented exponenzially by dividing by a constant each time. Since the

modified Dclta-Bar-D.c'ta would Ie expewcted to divide oy this constant 500) times as often,

thie 500th r,-,,,t of the suggested constant was used.

There arc, two novel ways that Delta-Bar-D elta can fail. If local learning rates are

lincreased too often, then they get very large, and weights in the network can start to blow

up. On the other hand, if local Ilearning rates are decreased too often, then they rapidly

approach zero, and the weights freeze. If the local learning rates stay within a rea-onable

l'ange, then Delha-Bar-Delta can succeed or fail in time same manner as Backpropagation,

-mJthotigh 'iopefully it reaches the final state faster.

In experimeniting with Delta-B ar-IDelta, evc y run either had exploding weights or

vanishing learnint{ rates. Given the v,ýrv' noisy tr~dning data that the netw,;wk was exposed

to, I was unable to finc a USeful Set t paraineters for Delta-Bar-Delia. It is, W course,

possible dlat SUch a stt of paramecters exlstw, Perhaips IDelta-ibar-LDelta Avoufld yv:rk butte_ _I t
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all the local learning rates were nonralized on each thne stcp to keep a constant average

value, or perhaps some other heuristic might be applied. It is not immediately clear what

would be -dhe best way to deal with this problem.
/

6
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6 CONCLUSIONS AND) RECOWMEINDATIONS

6.1. SUMM4ARY AND) CONCLUSIONS

This thesis has described a new method for integrating an indirect adaptive

-ontroller with a learning sy.3temn to form a hybrid controller, incorpratig te advantages

of each system. When a learning system is traiiied with the estimates found by the adaptive

controller, the hybrid system reacts more quickly to unmodelled spatial dependencies in the

plant. This hybrid system fellows a reference trajectory bietter than the adaptive controller

alone, but it can still be improved upon. By using a connectionist system to learn the

i-unction, it is easy to calculate the partiai derivatives of that function, which in turn allows

bette- estirnat-s of utiuocieled dynamics, and be-tter estimates of the effect ot control actioný'

on state. T his modified controller performed better than either the adaptive controller alone

or the original hybrid system.

The feedforward, sJ~gm~id learning system was able to ',earn the required functiors

accurately, but the leaning tended to be slow. The problem of slow conve-rgence. is widely

recognized and is dtcý.h with by mecthods such as.Delta-Bar-Delta, which accelernte learning

a greati deal in published expzni,-ents. Unfortunately, those pi-ob~ems used for comrparison

usually inmolve small se~ts of training examples. T1e. learning problem that arose in this

thesis t~ooledcally rt~quireti v, infiriite trairing set. in practice, Delta-Bar-Delta was found

to be very sensitive to the choice of learning para~meters. Even modifying Delta-Bar-Delta

to use two tiraces instead of one. did not solve this problem, and it actually introduced

another parameter th,--t ha'd to be chosen. Thilerefore, mnethodis for accelerating ccrivergernce

on small test pr oblems do not appear to sca'le as well as c01MC'M.miy thought.

2141
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6.2 RECOMMENDATIONS FOR FUTURE WORK

The desired reference trajw.tory used io these expezirments was chos:.t manually to

give fairy fast response while stil! being achievable with the 10 Newton force constraint on

tue ccntroller. It would be desirable to to automate the choice of reRcrence, and this may be

possible. The reference trajectory could start off as a joor contrcIler which is achievable

without using muchi force. It could then be slowly improved (automatically) ututil the

actuators nearly saturate, thus finding the, best reference that can be matched by this hybrid

contreoer architectur.e. Te reference could even be a function of state, stored in a separate

connectionist network.

The learning systems used here learned very good approximations, but the learming

tended to be slow. The Delta-Par-Delta algorithm improves the rate of convergence for

small sets of training points, but was not effective for learning as part of a hybrid conv-ol

system, even ater being modified. It tended to be too sensitiw: to the choice of ltnrning

parametcrs. Learning based on following the first derivative should be faster if accurate

measurements of the second derivatives can be found, so a system such as Didta-B ar-Delta

should be. useful if it can automate the choice of paramneters, perhaps based on al es•imate

of how accurate itc, second dLrivative estimates are. Fuftner iesearch hould focus oti this

problern, perhaps by measetIing the stwidard deviatihm of the individual meazsurements to

form au estin1ate of tie accuracy of their average value.

242
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ABSTRACT

Numerous approaches to flight control system design have been proposed in an
attempt to govern the complex behavior of high performance aircraft. Gain scheduled
linear control and adaptive control have traditionally been the most widely used
methodologies, but they are not without their limitations. Gain scheduling requires large
amounts of a priori design information and costly manual tuning in conjunction with flight
tests, while still lacking an ability to accommodate unmodeled dynamics and model
uncertainty beyond a limited amount of robustness that caa be incorporated into the design.
Adaptive control is suitable for nonlinear systems with unmodeled dynamics, but has
deficiencies in accounting for quasi-static state dependencies. Morcmover, inherent time
delays in adaptive control make it difficult to match the performance of a well-designed gain
scheduled controller. An alternative approach that is able to compensate for the
inadequacies experienced with traditional control techniques and to automate the tuning
process is desired.

Recent learning techniques have demonstrated an ability to synthesize multivariable
mappings and are thus able to learn a functional approximation of the initially unknown
state dependent dynamic behavior of the vehicle. By combining a learning component with
an adaptive controller, a new hybrid control system that is able to adapt to unmodeled
dynamics aid novel situiations, as well as to learn to anticipate quasi-static state
dependencies is formed.

This thesis exp!ores the concept of augmenting an adaptive flight controller with a
:earning system. The goal is to examine the extent to which learning can be used to
improve the performance of an adaptive flight control system architecture, as well as to
highlight some of the difficulties introduced by learning augmentation. Performance of the
control system is defined in terms of its ability to control a nonlinear, three-degree-of-
freedom airccaft model reacting to altitude and velocity commands. Th~s hybrid approach
offers potential advantages over convertional techniques in terms of performance, model
")incertainty accommodation, and tuning costs.

Thesis Supervisor: Dr. Milton B. Adams
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1 INTRODUCTION

Numerous approaches to flight control system design have been proposed in an
attempt to govern the behavior of high performance aircraft. This class of aircraft presents

formidable challenges to the desipner since by nature their dynamics are nonlinear,

multivariable, and coupled (Etkin (1982)). Moreover, high performance aircraft tend to

exhibit modes with relativ:ly high natural frequencies and minimal damping as compared to

typical aircraft. Gain scheduled linear control and adaptive control appear to be the most

popular methodologies for flight control law design, but they are not without their

limitations. Gain scheduling techniques combine multiple linear control laws to formulate a

nonlinear controller (Lewis & Stevens (1992)). This process requires large amounts of a

priori model information and potentially costly manual tuning, since a separate linear

controller must be designed for each of a selected set of distinct regions of the operaLing

envelope. In addition to this tedious design approach, gain scheduled controllers lack the

ability to accommodate unmodeled dynamics and model uncertainty beyond a fimited

amount of robustness that can he incorporated into the design. Adaptive cortrol is suitable

for nonlinear systems with unmoleled dynamics but has deficiencies in effectively

accounting for quasi-static state dependencies Moreove,, inherent time delays of adaptive

contiol make it difficult to match the performance (,f an ideal gain scheduled controller

(Stein (1980)). This thesis presents an alternative approach that compensates for some of

the inadequacies experienced with these traditional control techniques.

By combining an adaptive compx)nent with a learning system, an innovative new

hybotd controller is fomned that allows each mcchanisin It) t.K'us on ilie contitol otTicct ive for

which it s be-st soited. The primary role ot the adLIpt i e ( ntrol coMPon,' ni in tc h1, ýIrid

Sy'dcln !S 10 acconiniotcalle n u OiIodlCltd dynaisTh (i e'i e ( dy niia nical tha ,,' r that is n,,l

?5• 1
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expected,.based on the design model). Additionally, the adaptive component has the

auxiliary task of providing estimates of any observed uninodeled state dependent dynamic

behavior to the learning system (i.e., unknown dynamics that are a function of state in

areas of the state space where learning has not occurred) These estimates are obtained by

observing previou , p!ant behavior, essentially providing delayed estimates. Moreover,

since no use is maJe cf past estimates, the adaptive component can be considered to act

without memory. Bped on the estimates from the, adaptive colnponent, a Icarrij, )g system

can be used to learn a functional approx Imation of these state dependencies and ultimately

reduce model uncertainty in the system. Connectionist networks (which include artificial

Sneural networks) have demonstrated the ability to synthesize highly nonlinear, multivariab!e

mappings (Funahashi (1988), Honik, ef -L. (1989)). More specifically, spatially localized

connectionist networks have been proposed as an appropriate learning system for control

applications (Baker & Farrell (1992)). Armed with a mapping from the learning system

that represents the previously unknown state dependencies, the hybrid controller can

auticipate vehic'e behavior that is a function of state and compensate accordingly,

effectively removing the delay in the estimates provided by an adaprive controller. The

impnact of a controller that has the ability to anticipate vehicle behavior can be seen in

improved closed-loop system ?erformance. Moreover, this ability to learn state

dependencies offers advantages over conventional techniques in terns of model uncertainty

accormmodaton and automnation of the tuning process.

1.1 PROBLEM DESCRII-1ON

This thesis presents the developaient and appicatien of a hybrid control system to

Sthe 1 roblen' of ffbg.t aontrof hLih xve-rornnancc aircraft, Time Delay Control (TIDC), a

mo,'eI reference adapt'ven control cr, IS g3 ,nented by a 1iniear., aussian connectionist

.;e?• ork to form the. hyi'bad ffiglhý c'oTl! .,oI ysicr This hyvbrd sy sten is applied to the

i in
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control of the. longitAdinal motion of a high pzrfomnance aircraft during various altitude and

velocity maneuvers. Due to nonlinearities, model uncertainty, unknown dynamics, and a

host ot otht;r difficulties, high performailce aircraft present a significant challenge to the

development of flight control systems.

1.2 T ESIS OB FECTIVES

This thesis explores the use of a learning system to augment an adaptive flight

controller. The extent to which learning can be used to improve an adaptive flight control

system architecture, as well as t~he difficulties intrcduced by learning augmentation, are

examined. The primary objective of this thesis is to illustrate the advantages of a hybrid

adaptive / learning control system in terms of its ability to accommodate unmodeled

dynamics and reduce state dependcrnt uncertainties in the system model. This hybrid

approach offers advantages over conventional techniques in terms of performance,

robustness, and design refinement costs.

1.3 OVERVIEW

In Chapter 2, the challenges associated with high performance aircraft control jaw

design are outlined. Moreover, background information on traditional control techniques is

provided to serve as a foundation for the hybrid control law development, and also as a

basis for comparison of alteznative designs. The thecretical concepts underlying

connectionist learning systems, as well as scme approaches in using learning systems for

control, are also presented.

In Chapter 3, the technical aspects of (he hybrid control law are de'.'z!oped. This is

accomplished by first presenting the underlying theory of the adaptive component and the

spatially localized learning system before moving on to the derivation of the hybrid system.
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General characteristics of the hybrid controller are also presented,

In Chapter 4. two experiwents are pr sented to illustrate the implementation and

performance of the hybrid control law, The first experiment uses the hybrid system to

control a relatively simple nonlinear aerorlastic oscillator. Due to the low dimensionality of

the plaat, and a known truth model, :he analysis and evaluation of the hybrid control

system for the aeroelastic oscillator if greatly simplified. In tire second experiment, the

hybrid system is applied to a realistic high performance aircraft rmodel. Descriptions of the

major components of the aircraft model as well as its significant characteristics are also

provided, An evaluation of aircraft performance when conrzolled by the hybrid system is

presented and compared with other designs for various simulations. Learning system

chafactehstics are also described.

Chapter 5 summarizes the major contributions of this thesis. In addition,

recommendations for future research are presented.

A bibliography of the works used in preparing this thesis follows Chapter 5.

254
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2 BACKGROUND

The design of automatic flighit coatroi systems for high performance aircraft

presents significini challenges for the control engineer. Although well-developed design

methodologies exist for linear systems, similar methodologies aid related theories for

nonlinea" syysiems have proven to be elusive. In this chapter, the formidable challenges

inherent ih high p.rformance aircraft z:ontroi system design are presented in Section 2.1,

conventional control approaches for accommodating these difficulties are presented in

Section 2.2, while the fundamentals of connectionist learning systems and some

approaches for learning control oxe introduced in Section 2.3.

2.1 HIGH PERFORMANCE AIRCRAFT CHARA-TERISTICS

Because the aerodynamic forces and moments that act on an aircraft are

complicated, nonlinear functions of many variables, airicraft exhibit complex flight

dynamics. This section discusses the major difficvlties associated with high performance

aircraft flight control design.

Due to the high cost and dangers involved in fright testing, the mrnjoiity of the effor

in flight control system design and development relies on a model of the airciaft instead of

the actual vehicle. This approach guarantees the presence of Pnowel uncertainiy since it is'

impossible to capture the complete dynanilai behavior of complex aircraft in a mode).

Errors in the model can be attributed to two major factors. structural and parametric

uncertainty (Epker & Farrell (1991)). Typically, the mwathemativaJ structure- of an. aircraft

model is derived from the general equations-of--n*motion for a single, rigid body These 2:e

the classical Euler equatifor~s. FTrom this b~se set of eqnuations, the designer dezerimines

255
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Additionat effects tha~t must bz inclvded too;btaina-n cfffhct~vte light coniro! sys'em design.

Gyro'scopic efforts du~to th~e prcsfnc-- of spirPiping .mtorE and ae;oelastic 4ffrcts, due to

iiaa,ýcuracies in zheý rigid bxdy assumption have hisaoricAly been incorporated inic', thtL

equatioils-o&-rotion, 13eyoaid the ciftX~cL'ies associated with tbe selection and development

of The proper model stprumure, the A-i-.uracy of tbo, aý;tua) parmeter values used in the model

P I ays a la.rge rol)e in the cpu*iiwy of an ira7tmodA. Since values of the parameters are

typically obtained fi'ro widtne testing or co)mputat!oflal fluid dynamics (t.g.,

computer simulaicars, of ;ýii.Aov' over an airceaft modell), large disrcpancies are possible.

Additior~al model uncertainty devciops from th,ý fact that )ýo! ail flight conditions can be

easily modeled by a singkL glo.bal mode' strur'"ure. For this reason, soparate mod',,s are

.ntede-d for post-stall lig c ve:tic?,I take-off mrodes, Laid other cxtizt.-n flight cenditioins. In

geiieral, all inodels cor-i it L cegrrxe of u'rdt mus~t be addres~td %.y the flight

control sys~ern-.

NonIin~rz~..~present a na ýor difficulty to th': contr,-)l enginee~r since no general

the-ory I'or conaol design sywb:-sis ;aa' been developed for nonlinear systemns. Airý-rafi

dynarni~cal ic- eii 'Ar is inherently iionlkiear; this nonlinear be~iris cdused1 prix.arily by

the iact zhat th(c aercdQ Ai-ýz fovcýs and umoniints diat dictati- aircraft motion are

t~einselve5 complicated, noiouhnear fiiaczions of many vaniableýý. Moreover, the full six-

degrce-of-friýeeorio iiý,id body tcqua~ions-uf-motion in(J:de aokilineý,r trrns. Ilhe effects of

actuator ý.ae lin-itwg, control positio~i limits, an1 otLer ceuntol linkages are ft'rther

ex amp!3-s ofnonlinearitics.

AnOlt.r Lmplilcation teýnerienced with flighl. conitrol law design is that bligh

pzrformarpce i ritarze iL1jcrcrr.y hi,?h dimcnestonal, 'zultivariabl? systems. A six-

dcgree-o f-f-e~edo,.n tii.rcr afitcqwes t welvP. coiqt&Wd icl~cu ations to ftii'y characterize its

ri.gi(! bcdy dlyiain'cs. Moreovc.r, nrijliirjhe coutol effe.ctcvi (e.r tabilittor, rudder,

and toAo.tW LieenrriloyeiJ to achievt, th., 1prirnaiv objective of simnultaneously

,Cont)BU 4f a nuirnlxer of oucpafs ~egaltitude, heading, -and ve~ccity). As a resutit avy



ATTACHMENT 2

coranol system that attempts to decouple the dynamics and connect independently designed

single-input / single-output controllers will generally sacrifice performance for ease of

design.

The "high performance" qualifier on the aircraft model implies expanded flight

regimes that also tend to exacerbate control difficulties. These regimes include high angle-

of-attack, high Mach, and other regions of the aircraft envelope where large changes in the

aircraft dynamics can be expected. For example, a dynamic mode that is stable and

adequately damped in one region of the envelope may become lightly damped or unstable in

another. This fact, combined with the general trend toward relaxed static stability, requires

rapid control action to stabilize the aircraft.

The above discussion illustrates the major challenges in flight control law design.

Additional difficulties confront the control engineer due to the design methods themselves

(e.g., frequency domain methods do not easily lend themselves to multivariable control)

and due to challenges in applying the control approach to tt.,e real vehicle (e.g., digital

implemnentation issues).

2,2 TRADITIONAL CONTROL TECHNIQUES

Automatic flight control systems have evolved from the "Sperry Aeroplane

Stabilizer," the first functional autopilot, to advanced multivariable digital systems capable

of generating a large number of control actions per second (Lewis & Stevens (1992)). Of

the multitude of design theories and methodologies developed for flight control law design,

the majority can be classified into the two broad categories: fixed control (e.g., robust

control and gain scheduled control) and adaptive control. The following sections introduce

these traditional control approaches. Each technique is critiqued in its ability to

accommodate the design difficulties nresented in the previous section,

257
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2.2.1 Robust Control

Robust control has gained popularity for flight control due to its ability to

accommodate a certain degree of uncertainty associated with the aircraft model. By

explicitly incorporating uncertainty into the design process, robust controllers provide

performance and stability guarantees. However, this resilience to uncertainty, or

robustness, is usually obtained at the expense of a loss in system performance. Since

typical robust control techniques (e.g., classical Bode gain / phase margin methods or H.

design) ioly on a worst case estimate of the modeling error or margins to determine a fixed

parameter control system, the resulting control law is often conservative when applied to

the nominal plant and presents a tradeoff between stability robustness and high

performance. Thus, a control system designed to account for modeling uncertainty results

in suboptimal performance relative to the ideal case where no model uncertainty exists. To

increase performance, the designer can exploit an improved model having less uncertainty,

However, the added complexity and cost of a more refined model often prohibits this

couise of action. Beyond difficulties in achieving maximum performance, robust

controllers are ill-adapted to handle highly nonlinear systems or unmodeled dynamics. In

particular, although slight perturbations due to nonlinearities or unknown dynamics can be

accommodated by further increasing the bounds on uncertainty, difficulties in achieving

adequate performance are further exacerbated. For highly nonlinear aircraft with

substantial unmodeled dynamics or model uncertainty, robust control is impractical from a

performance point of view.

2.2.2 Gain! Scheduling

Flight control systems for modem high performance aircrafk are generally

developed with a gain scheduling design methodology. Gain scheduling nctlh ýdJ, combine

multiple linear control laws to formulate a nonlineai controller. This control approach cav

accomnmodate many of the difficulties assOciated wnfh complex nonlinear s'v.steim;, such as

258
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high performance aircraft. To formulate this nonlinear control law, the operating envelope

is separated into an ad hoc set of distinct regions where the dynamical behavior is

approximately linear. By linearizing the dynamics in each distinct iegion, the designer is

able to utilize the large class of linear control theories (e.g., robust or optimal approaches)

to develop a control law best suited to realize local performance objectives, The combined
4

nonlinear control law is achieved by transitioning among these linear control laws as flight

conditions move among the prescribed linearized regions. Transitioning is accomplished

by interpolating the control parameters (e.g., feedback gains) as a function of scheduling

variables or operating condition. Mach number, angle-of-attack, and dynamic pressure are

the most commonly used scheduling variables. As a result, highly nonlinear systems

require numerous linearized regions, and subsequently a multitude of linear control laws, to

approximate nonlinear behavior.

In addition to the subjective (and tedious) nature of defining a set of linearized

operating regimes and designing a linear control law for each linearization point, gain

scheduled flight control systems are also susceptible to model uncertainty and unmodeled

dynamics. Differences between the observed and predicted vehicle behavior can only be

corrected by on-line manual tuning during flight testing.

2.2.3 Adaptive Control

Adaptive control has been suggested as a viable method for aircraft f :ght control

(Lewis & Stevens (1992). Stein (1980)). Adaptive techniques generally rel on differences

between desired and observed vehicle behavior to adjust (adapt) variable int-rnal

parameters to ultimately achieve acceptable closed-loop performance. Using this approach,

adaptive controllers have shown an ability to accommodate nonlinear pLu.,ts with

unmodeled dynamics. Ilowever, adaptive controllers encounter difficulties i syste! •s w\!h

rapidly varying parameters and e:'tensive nonlinearity. In an adaptive techoique, th,':

controller must wait until undesired plant behavior is o•bserved bef( re it can dctcnmre h,
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to adjust its parameters. Potentially, several control intervals might be required to

accurately detect and compensate for variations in these parameters. Beyond this delay

associated with determining the correct parameters, sensor noise causes additional de!ay

due to the required filtering. For vehicles that regularly experience large parameter

variations, the resulting control law inay spend large portions of time in some suboptimal,

partially adapted config! " tion. I iiis dilermna is exacerbated by the reactive nature of

adaptive controhocs it. that , uiramret rs must be re-tuned whenever the vehicle enters a

new region, even if O, ,rrecý, va "s had previ, ,isl,,? been determined for that region.

Hence, adap. ,o- '•oioller. fail to m~a use o' predictable behavior (e.g., state

depc ,ýencies) that wot d redu,,. he ,inie spei, 'n partially aL .pk states and ultimately

iMprove performanue 1. ' these reasons, dift .,ý1 tdaptw, controller to match

the perfu. )ai, i i weL 4t gne-I ga. sc,,, lec ,ntru

Altl gh ,t as comrmnon as (,am the, in, - ,t'. ap, ches, multi-iegion

araptiv-,e ;c, rollers b, -! also been sugig tte~d as nuai , ýr 1 - trol (Athans, et al.

(9, ), Stein, -t al. (I'b). Esseni .ach 'heolfei -iple local plant

models ,.iin ui indirect adap yvr i' rol 1P n. work.

2.; ©N \Tcr(IONIST 1,Ei RNINC S 'Fh/S

,. oione 'nist learning s s.. -• a received much iti -rntion in :he research

nn Oiny t ot i o1i g t )lems in pat rn )gnition, associative

• .ry :.: t abaset icrievalk '))- Moreovti;, rec 't 'rention has been given

i , conne, ,ik ,-•-Jr k , :yithcsize mnultt, variable, n, nlinear mappings and

1o d formatio! c ht, ;wi lied to ýmpi ( c -nai, ttrol 'svstems. In this

.c tin , "- b si• dev 'ik)pfli o 0 lass (,i t:onnectionist lea-ning

syvltc:l e , rtý, v;Ant !o '',e control pioblem .c ,.ed earlier is presented. Some

altjrct w ic ii t C( Cl ei ioist systt)ins 1 contiol sstem i ~s
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are also introduced.

2.3. 1 Foundations of Connectionist Systems

Connectionist systems, which include what are often called "a'tificial neural

networks," owe their foundations to biologists and research psycho!ojists who or.ig'nally

studied the ability of neural models to mimic the behavior of the brain (Rosenblatt ( 19621,

Kdopf (1988)). Contemporary connectionist systems have advanced significantly from

these early beginnings (Barto, et al. (1983), Rumelhart, et al. (1986)). Many of the recent

connectionist learning systems emphasize the mathematical theory of function

,,pproximaLon, estimation, and optimization (Baker & Farrell (1992), Poggio & Girosi

(i990)).

Connectionist learning systems typically contain a large number of simple

processing units that are combined in a highly interconnected architecture. These

processing units, also known as nodes or "artificial neurons," make up the basic building

blocks of a connectionist system. Figure 2.1 illustrates the internal structure. of a simple, 3-

input node

X2

X2 - W2 Y Z

w3
X3

Figure 2.1 3-input / 1-Output Simple Node

where xt, x2, and X3 are the node inputs, w1, 1 2, and w3 !'re weightings for the respective

inputs, and ,is the sum of the weighted inputs. The outpu of Ihe network, z, is simply

the value of the noNal functionf evaluated at y. Nonlinear n( Wal functions are required to

reahize noinlinear mappings. 'threc examples of nodal ft n•tions are the threshold,
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sigmoidal, and Gaussian functions.

If a large arnount oif a prioi-i information is known about the desired mapping of the

network, the weights between "he nodes can be set to fix.ýd values to realize the network

mapping. However, typical connctionist networks use nodes with fixed functions and

adaptable weights that are adjusted using an appropriate learning law. Under supervised
b

learning, the amount of weight adjustment is determined by evaluating an error formed by

the difference between the calculated output of the network and a known desired output

(Melsa (1989). This contrasts with the weight adaptation by unsupervised learning, where

only iiiputs and a reinforcement signal that characterizes past performance (i.e., not a

known desired output) are utilized in adjusting the weights (Barto (1989), Mendal &

McLaren (1970)). Thus, the operation of adaptable connectionist networks consists of two

distinct phases: output calculation and learning. The output calculation phase is

characterized by the determination of the network output based upon the given inputs,

weights, and nodal functions. Tho purpose of the learning phase is to adjust the weights

(using either a supervised or unsupervised technique) to obtain desired input / output

behavior.

Ccrnectionist networks are frequently categorized by the nodal architecture and

associated output calulation or by the learning technique. One common architecture

dependent on a specific output calculation method is the feedforward connection;,,t network

(Funahashi (1988), Aionik, et al. (1989)). In feedforward structures, the output for any

given node ir not connected back as an input to itself by any feedback loop. Because of

this ftature, preseat outputs do not impact future output values (present outputs can impact

future outputs in the learning phase by adjustment of the weights). Moreover, the output of

the entire systenii can be c:•culated in a single pass since each layer simply outputs

computed values ba,.ed on inputs from the previous !ayer. Figure 2.2 illustrates a simple

feedforward networK.
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Output

* Inputs

"Figure 2.2 Simple 2-Input / 1-Output Feedforward Network

Another major class of connectionist systems consists of feedback (or recurrent)

networks. The distinguishing feature of a feedback network is that nodes have the ability

to influence themselves through feedback. The feedback can act directly from a given node

to itself or indirectly through other nodes. Although feedback networks have an ability to

learn dynamical mappings (e.g.. mappings that change with time), the learning laws

become complicated since the network output is no longer simply a function of' network

inputs and weights (it is also a function of the state of the network). Moreover, any

feedback network representing a dynamical mapping can be expressed as an equivalent

dynamic system of ýwo static mappings separated by an integration or unit delay operator

(Livstone, et at. (1992)).

By altering the nodal function, output calculation, learning approach, or a host of

other variables, connectionist networks have bee,, developed that display an airay of

diffement properties (Barto (1989), Melsa (1989), Minsky & Papert (1969)). Section 23.2

discusses some of the most popular early connetionist systems.

2.3 2 'Early Connectionist Networks

One of the earliest uses of a connectionis, methodology for learning was the

perceptron network (Rosenblatt (1962)). A simple pt, ,P)Lron network is comprised of

sl;igle GI niiultiple layers At tl:r(.,:pt!-n wodes connected in a feedfoi ward confii Iration. A

pcrccptroin node is characreriyed by the binary threshold funct!on used to fi niulate the

outpuAt froi h',e we.ghted sum oft its inpuls as shown in F igure 2.3. If the we iehted sum is
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greater than some prescribed threshold value, the perceptron node outputs an "on" ;ignal or

the value 1. For inputs below the threshold, the nod,- is considered "off' and outputs -1.

fly)

I~J if y > thresbold _____

z =J()- I if yy< threshold Y

threshold

Figure 2.3 Binary Threshold Function

Perceptron networks have illustrated surprisingly powerful mapping capabilities.

Minsky and Papert demonstrated the ability of single-layer perceptron networks to learn

any disc-riminant function among classes that air linearly separable, using a simple learning

rule (Minsky & Papert (196()). The learning rule adjusts the weights incrementally

depending on their impart on the error between the network output and the prescribed

output. It was later shown that multi-layer perceptron networks are capable of

discriminating a large ciass of nonlinearly separatle problems. However, no general

guarantee on the ability of any learning law to locate an optimal set of weights exists for

multi-layer net,,'orks as in the single-layer case.

Another pioneering connectionist network is the adaptive linear element, or

ADALINE (Widrow & Hoff (1960)). ADALINE networks consist of simpIe nOdes

connected in a feedforward architecture. Tht distinguishing features of an ADALINE.

network include a nodal function that sin iply outu t s the w'eightcd sum of the mnpur. .
t 1y .- ) and a to! maliized least iieat ..,qluare (1.M S) leanin., law. 1 Inde,, sul rfvisrýd

lealrning where the cunent i i'n'tS and dCeýird (utrput a1e k i'A. , 01he! MS Wafrnt a J, l"w
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attempts to minimize the mean squared value of the error. When the weights are changed in

proportion to the error, an ADALINE network is guaranteed to converge to the minimum of

the mean squared error for linearly separable problems. In ,n attempt to extend this result

to nonlinearly separable problems, ADALINES can be connected in a hierarchical stricture

to form a network of multiple adaptive linear elements (MADALINES). Although

MADALINES are capable of producing complicated nonlinear mappings, determining the

optimal weights between layers of ADALINES is a difficut process. These difficulties are

the result of LMS learning laws being limited to the determination of optimal ADALINE

weights and not the weights associated with their connecting layers (Melsa (1939)).

2.3.3 The Backpropagation Network

Although the advent of perceptrois, ADALINES, MADALINES, and their variants

played a large role in the development of connectionist networLs, the latest resurgence of

interest in learning systems can be attributed to the backpropagation sigmoidal network,

Although backpropagation is sLictly speakng a learning law, its extensive use has resulted

in the name being generalized to denote the large class of feedfoý 'ard multi-layer networks

that cmploy this particular learning approach. Similar to the early architectures,

backpropagation networks are constnruckd from the combination of simple nodes arranged

in a hierarchical, feedforward fashion. ttowever, instead of the threshold and identity

functions associated with the simple perceptron and ADALINE networks respectively, the

hackpropagation node uses :! no!_ , ., nodal fiinction_ One of the most commonly used

nodal frlI- C11ionS is the s1ignoitla function iltl st S aIcd inI Fig 2,4.

- ',,>tj)
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Figure 2.4 Sig.oidal Function

A sigmoidal function is a continuous, monotonically increasing function with finite

asymptotic values. As a result, a sigmoid offers advantages over discontinuous nodal

functions in that it is continuously differentiable, which plays a large role in the gradient

learain., algorithm described below.

A typical signioidal backpropagation network is shown in Figure 2.5. This

network architecture is generally ut.-divided into three distinct regions or layers: input

layer, hidden layers, and output layer.

I I
Input Layer Hidden Nodal Layers Output Layer

WX6

I I
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The first region, the input layer, is characterized by nodes that act as an interface between

network inputs and the subsequent hidden layer by simply passing the input value to a set

of nodes in the first hidden layer (although weignting is sometimes added to the signal).

Moreover, there is the sa.,ae number of nodes in the input layer as there are inputs, and each

input layer neuron typicall, passes its value to each node in the subsequent layer. The

second region contains the hidden nodal layers. In this region, the weighted sum of the

outputs from the previous layer is used as the input to each sigmoid function to compute the

output of the node. The output is subsequently passed to a following hidden or output

layer. The final region is the output layer, which contains the same number of output

nodes as there are network outputs. The function of the output layer is to compute the

weighted sum of its inputs and pass this value, or the value of a sigmoid function evaluated

at this weighted sum, as the network output. Typically, the number of processing nodes in

backpropagation networks is large compared to the number of different kinds of nodal

functions used in the network, with networks using a single nodal function being the most

common.

4dthough the selection of the network architecture is significant, the perfonuance of

connectionist networks is ultimately determined by the ability of the learning law to find the

optimal weights. For backpropagation networks, weights are adjusted using an "erroi

backpropagation" algorithm (Rumelhart, et al. (1986))- Whereas the learning laws of early

connectionist networks had difficulties in properly adjusting connecting layer weights, the

error backpiopagation algorithm provides a systematic method to adjust weights in all

adaptable layers The basic error backpropagation algorithm uses a supervised gradient

ucs�cant nethod to incrementally adjust the weights in the negative direction of the gradient

S(with respect to the weights) 31 a cost function. The genera. form of the gradient rnb. is

show~i in fquation (2, 1) below

(v
w .. . ':Ai:....(2
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where w is a vector whose elements are the input weights, a is the learning rate (i.e., the

step size), and J is the cost function to be minimized. The iost commonly used cost

function to be minimized is a quadratic function of the error between the network output

and some desired output. In many supervised learning applications, the network is trained

on a finite number of (known) input i output sample points. In tL, :Ise. known as batch-

mode training, the quadratic error cost function takes the following form.

y=_1 [d(xJ)- f,,J(x,w)] [d(x,) - f.,,(x,,w)] (2.2)
n i=,

Here, n is the number of training examples, xi is the network input for the ith training

sample, d(x,) is the desired output at the A training sampie, and f,,(x,,w) is the actual

output of the network for the given input and weights. Using this technique, the w'..,,ts

are adjusted once per each pass or epoch through all the training examples. Recalling that

the output of a layer is a function of the output of the previous layers, the partial derivatives

of the cost function with respect to an individual weight can be found by forming a chain

rule uf paiii defivaii es and wokixng La&.;ward along the same connections as the original

forward path. Since the signioid is a continuous function, the partials always exist.

Hence, propagation of the errors backward during the learning stage requires essentially the

same amount of computation time as the forward calculation of the network output.

As with all gradient descent methods, the presence of local minima prevent any

guarantees being placed on the ability of the learning algorithm to converge to tht optimal

solution. Moreover, simple gradict doscent algorithms tend to converge slowly,

especially if there are "troughs" in the error suiface (Baird (1991)). Since the goal of

learning is to folloow the gradient in a downhill direction, a small learning rate results in

slow convergence, if the learning rate is too high, the weight vector may completely

bypass the L-ough to some p)ssibly suhopti!nal plateau or oscillate across the bottom of the

troug.1 With E tttC IIoVC !1•C1t iL the dilrection of thc nini!, tml.

If' an ac-ccptable kil.rirzg rate iý used, or if oe T)f se\'eral tr. inqniqcs for spIeeding up
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convergence is applied (e.g., adding mornentuin tern,; .o the weight update equation

(F., -,elmhar, et aL. (1986)) or using second order derivative information on the cost (Jacobs

)), backpropagation networks have shown tir ability to adequately map highly

noninear functions. In fact, sigmoidal backpropagation networks with more than o:ne

hidden layer can represent any function to a desired degree of accuracy given enough nodes

and training samples (Funahashi (1988), Hornik, et al. (1989)). This universa, function

approximation property has played a major role in the resurgence of the sigmoidal

backpropagation network in 3plications ranging from pattern recognizion to automntlc

control. However, one Ahould recall that due to the presence of local minima i ;.., there is

no guarantee tha; a given learning rule will actually yield the weights that represent the

desired mapping.

Many % ariants of connectionist networks have been developed in an attempt at

improved learning. However, the majority of all systems have one comm non characteristic.

Learning is essentially a process of functional appioxirnation, where inputs and desL'ed

outputs are synthesized to form a multivariable, nonlinear mapping. The type of learning

system used and its associated details are dependent on the specific application. Section

3 2 presents one such specialized approach that is used for the learning augmented control

of a high performance aircraft.

2.3.4 Connectionist Learning Systems for Control

Due to their ability to approxima:e smo)th multivariable, nonlin-ar functions,

connectionist learning systents have generated a large arnourt of intetest among control

engineers. However, a single, systematic approach fot die application of conrectionist

k:lat••hg systems to control has not ytit matenralk'.d., "his ,eC~tCio briefly i-itx odoces a snall

e' of commonly used ýipp oaches for 1earfinig, C ontrol, an'd lists : ferec• ,es where

CJqt.te,,Ci •vhi r.. t , found.

K," oU'i 4LVfllr "(onr:: tt I, perha'ps, one. of the ,Jixnples, lechnirwta. in
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applying cornec;ionist le.,rning systems to contrl. Assuming there. exists a controller that

,s able to control the plmnt, theý objective of the connectionist learning system is to

synthesize Ihe mapping between the inpwls and the desired output supplied by the existing

controller. Using this approach, the learning system can replace an existing controller in

6Ituations where tht existing controller is impractical (e.g., where it is dangerous for a

horaa to controi the plant) or where the learning system offers a less costly representation.

This approach was successfully applied to a pole balancing problem by Widrow & Smith

(1964), where zhe existing control law was supplied by a human.

Direct inverse control is another method of applying a connectionist learning

system to control (Werbos (1989)). Using this approach, the objective of the learning

system is to identify the plant inverse. This is accomplished by providing the output of the

plant as the network input and the input to the plant (i.e., control signals) as the desired

network output. If the network has a plant inverse (i.e., if there is a unique plant input that

produces a unique plant output), then when the desired plant output is provided as input to

the network, the resulting network output is the control to be used as input to the plant

(Barto (1989)). The drawbacks to this technique are that a desired refeictnce trajectory must

be known in order to supply the network with the desired plant output and the inverse of

the plant must be well-defined (i.e., a 1-to-1 mapping between inputs and outputs must

exist).

In the backpropagation through time method develoixed bv Jordan (I 988), two

connectiornis learning systems are used. The objective of the first network is t idlentify the

plant, from which one can efficiently c.empue the derivative of the model outpo, with

iespect to its input by means of back propagation. Subsequetitly, propagating errors

• we n actual anoo desired plaiat oLtputs back throuqg." 4.his network, produces an erior in the

co•itrol signal, which (can be used to tiadi tht r e• ond .rctwork (Barto (1980)). This

ap" to;b d.kX" an ,inpr(ovee fitC[ (over Oulet• I"v rs' control since it is able to ac'ci.wnlmuate

: v ",.. i~• 11-.dcind ri-versri, ahl'hough ihe oit.i•u> l ra~ectory must 1ti1i t' know.•.

:IvelTI~s S 1
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Another approach for incorporating learning into a control system is to augment an

adaptive technique with a learning system to form a hybrid controller (Baker & Farrell

(1990), Baird (1991)). Augmentation of the adaptive technique may be implemented using

a di.ect or indirect approach. Using a direct approach, the learning system generates a

cratrol action (or set of control parameters) associated with a particular operating condition.

This control action is then combined with a control action produced by the adaptive system

to arrive at the control that is applied to the plant. In contrast, for the indirect approach, the

objective of the learning system is to improve the model of the plant. Here, the learning

system generates model parameters that are a function of the operating condition. The

learned model parameters are combined with adaptive estimates to arrive at a model of the

plant. Given a presumably improved plant model, an on-line control law design is used to

form the closed-loop system. A particular indirect learning augmented approach is used in

this thesis and is developed in Chapter 3.

"Reinforcement learning has also been suggested as a method of applying

connectionist learning systems for control (Mendal & McLaren (1970), Barto (1989),

Millington (1991)). The major difference between reinforcement learning and the

previously discussed approaches is that under reinforcement learning, the objective is to

optimize the overall behavior of the plant, so that no explicit reference / desired trajectory is

required. As a result, reinforcement learning essentially involves two problems, the

construction of a critic "hat is capable of evaluating plant performance in a manner that is

consistent with the actual control objective, and the detennination of how to alter controller

output,, to improve pcrformar.cz as measured by the critic (Barto (1989)). The latter of the

two problems can be addressed by one of the previously discussed techniques.

271
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,3 'rECFIJNICA.1, APPROACH

Asdscsedi Cpter 2, co,,ntarol .i,,thv di ,In t~ high Pý rTrmance, ai-craft

presents cliallenging wnd unique prbersto i-he Io~r'v ihdfii. t ý.hnjqus have

proven to be either prohibib vely costly in tenavu, of 1we ., 1bt x. uiured, , ý;ý and the

complexity of developing a inulti-regioni 1. K earL'.ed ga~l (ýýiduiing 6:, 4n,n c'n i r.nply

sacrificed performance for it.zse of design, This chapter formuýilly pre,ýAv,,ts an li tve

method of integrating an adapti've component with alewn~g cop~~'to iorfn a new

hybrid control law. T'he hybrid system is pesenueJd b- iriLtoduL ng P,,!ch cor s~ionent

separately and then cornbining die. corpne't in a syriergistic w-raogcn vwLtrto ýrr ")I

superior flight contxol systeiy.

3.1 AIDAPTI FN CONTROL. COMPN ENT1421

Ntnaerous adapuive. control ýecthnkqnes have twe devecptd orn s,,stenms

with unmiodeled dynamnics or rnodcl ui.'ncert~aiaty (Asutrom & Wittw,,rvv~k (1989), 51otine &

Li l, 99 1)). One mrajor class of ad~'~contx;l, moe t', aldaptive -,ofvxoý,

'MRAC), is considered. in~ this thesiS. T)A heM.jOrity Of iý t. '" ;'ý C,:Ar *KIe iropedto two

general categories, narnely, di '~ct and mitvitct uiat6pfi ye ,,te~dqptve co.ntroIl

approaches. are charac terized, 1bY 0te s y ;hfeSis of oo'b'O:nved :utdv

plant behavicar withow the tww!'fit of 'anV exo ic i cdle hr coxn.urný-c

adapt.Aye co'nucd metlio&. rely hc avfly on antxplic~r * In. je! . " e (:o.r)' b

ni jrec:t tec:hnique ernploys a Ioý-al plam nl odel lia . &Mpd ate c " mna i:

Own oSt 2, mA i-Ccc ". hinql~cs have the 11dv .x an han)y dAifel er :.itP ,oUwdýSlp
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techniques that are based on explicit plant models can be used. In either case, the adaptive

control system reacts to differences between desired and predicted behavWor by adjusting

internal parameters to achieve desired closed-loop performance. These differences in

behavior are typically attributed to nonlinearities, unmodeled dynamics, mod -1 uncertainty,

or exogenous disturbances.

Although conventional adaptive control methods have the ability to stabilize and

control some nonlinear systems, the closed-loop system is often unable to match the

perfoiTnance of a well-designed and well-tuned gain scheduled controller. This difference

in performance stems from inherent time-delays or lags associated with adaptive

controllers. Typically, the process of updating parameters of an adaptive control law

requires several contro] intervals to accurately detect and compensate for variations in the

plant behavior. Sensor noise exacerbates this dilemma since the required filtering creates

additional lag. Adaptive control approaches also have performance limitations when

prese.nted with quasi-static state de.endent disturbances. In particular, sinc, adaptive

"controllers are v, tive by rature, they are unable to lea-wn and subsequentl' predlict state

dcpendent 1avio a AJker & Furell (1992)). Even if the plant repeatedly e periences the

sairie disturbance at a larheucar lcaLon in the state space, tlw'] aapt ve comlI Jer must wait

tinti dke effects of the di.., re,ýPuwcy are observed before it can i tiatt i iang.s in the

patr~rncte::,. aIeie, .daptive controllers fail to ihake cormiplete us -of c, e; nu ially gained

,Uo"wlcge As will be disc•ssed in a following scction ohis iria .equa. ¢ of adaptive
vorot,,.I cani be oveiconie wiW ') ~ jition) of a lcaing COn)ponlc n.

[he priruary role ol K6.• •:' adaptive control com n.rent in the hybrid :ystein is to

u in•:o lik . u 'e u Lh dylcd A ia i >ior ( ,havi 'Ir that J., not exlqpct-v, b ied or;

I WC dCl I, f .0 i )1 ALid i s• ' 0 _U) , ýA I)ti Ve coarpone ot of the h'!,rid system has the

I i V aKSk ,I'1 p I t CS Iti,"'c u I.C I r 1 t k Id O at. t odeld state (J lW iCpt0 01 A 11,n

KR. hL1; 'tiitI 1 t U t !, I .)n ol ' U*' ,t' ikilu A, ' i d taii s that ne A K)f l 01 'tate I"-

a;'lp oV Oh0 lxtate CqT VY' ',1 ii•. ts" Uc~n, 5•ql~ln . ali K': snppoved)

4ZT"
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3.1.i Cont, L ,wDerivation

Consisw :•t wývth the above discussion, any adaptive control approach that is

applicable :, nowit naariic systems with model incertainty and that develops estimates

of unknown ate l t components of the plant dynamics is a candidate for the

adaptive , mp ,:n In i ,brid coatrol system. Adaptive techniques that require small

a;1)unts : Ol- ie l ioi "xe especially appealing since extra computing power witl

,e required to tr. in .& -arri,: coindonent. One such adaptive controi technique is based

o .me Delay Dti i' X). Developed by Youcef-Tcarni (1990), TDC is an indirect

adapi.v 'e -chnique c .sigz. d for the class of systems with discrete nonlinear dynamics

rep. zsented ii) tile fobl )wh ,, iorn:

gfx(k),k}+ h{,x(k),k} + Ju(k) + k:3. 1)

Noiatu 11nall r jr. -est• -t known (modeled) and unknown nonlinear plant dynamics

vectors, sp e vectors are functions of the state x and discrete time k.

Furthcrmr , , -. possibly tne--varying disturbance vector. The c )ntrol

vector is rt ý-ese, by ,nci ' Piearly through the control input matrix F o0 the new

state. It wiil be a •n rc r(t• ,, :)section only) that - is kn, wn witWout rror.

S'ection adUess thl •A, flCn:•Itaafll }n F'.

C ,. V tiw lo fi, detect , id COtlipcifl\Jte ior unk;nown

I\ nalll!c..; a', wIlv " ' ur r eQ} nCC,.:. jinfl thc Aifference ui the Jyvnarruhal

,,.:lavio 1 e:L .' h ,,I: 0 t! t .u the , ,+'I (FiV1\' kf;1 ?cge. of thr'

t ~A VAJU 1 o~ 1n 1)) TI), u .t citP'
It. ''adI t itu ilanceS d ol the

C'[ V ,.}H S -i 1,: 1)) q: rn i;:.'i v [ t c i'111[ '• :. ; • •} !? / '{, cc' , iC " [• 1C L'v",: W
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known dynamics, the ..,imated unknown dynam;cs, and the estimated disturbances.

Desired state dynamics can then simply be "inse.red" aiong with a proportional error term

to achieve desired tracking error dynamics.

Critical to the TDC control la.w is the method of obtaining the estimates of the

unknown dynamics and unexpected disturbances. By employing information from the

previous time step, TDC is able to react rapidl 'to changes in the dynamical behavior of the

plant. This charactenistic is ideal for systems that operate in an environment with large

variations in the unknown dynamics and unexpected disturbances. However, this

beneficial feature is not without some cost. Since TDC basically "differentiates" the state in

arriving at the control action, any sensor noise affecting the observed va!.ues of the state and

controt will be amplified, resulting in noisy control signals and possible rate or position

saturation of the actuators. This effect translates into poor performance and possibly to

instabilities. To counter the effects of noise, filters are used. Although filters can

accommodate aoise, they add additional lag which reduces the perfonnance of the adaptive

system.

Development of TDC

The full development ,)f the TDC control law is cont~uned in Youtrcf-Tourpi &

Osamu (1990). FO, the sake of completeness, the fundainental tq uations are sommarized

below.

-,ssume that the plant L n b- written 'n the following fonr:

x(k 4-1 'D0(k)+hjx(k),k} u(k)+d(k) (3.2)

where x is an n Jimensional state vccto r, u is an riz dirinensional vecto, of c,(,'ttfl inputs., O,

is an n by n staic ritansiin matrix, IF ir, an n dy m conni ol weightlny inatrix, ad iih and d

are n di ineis'on,,l unkno-vwn stair dynaamics and di stuibantee vectu rs risrpectively NO !i e

thIa. I juati ,n (3 .2) is a ,pcc ia] ca•,:c (t d -quation (3 1 , sintce the curreC,' statl, a,1t linearly

)n the new ý,tate. Here, Ox(k) clan be virxwed as the best time inv-ri n lilear
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approximation of the known function g { x(k),k), linearized about a selected operating

condition. This assumption essentially shifts plant nonlinearities and time dependencies to

the unknown dynamics term h.

Define a desired n dimensional reference trajectory Xm to be the following linear,

time-invariant system:

N.(k + 1) = •mx, (k)+ rmr(k) (3.3)

where Om is an n by n reference state transition matrix, rm is anl n by m reference model

command weighting matrix, and r(k) is an m dimensional vector of reference commands.

7here is no requirement that the reference model be - linear, time-invariant system.

Moreover, it is assumed that the reference command r(k) is constrained in a way that the

uc jh1vA ,aterence trajectory is achievable by the systr: described by Equation (3.2).

The difference between the desired reference state and plant state is taie error vector:

e(k)=x,(k)--x(k) (3.4)

T1he conti-ol ok 'ective of TDC is to torce this error vector to zero with the following desired

error dynamrrics uefined in terms of an error dynamics transition matrix ( "

e(k + 1) = 4be(k) (3.5)

By expressirng Oe in terms of 0,, the error dynamics can be written as

0, = 4,, -+ K (3.6)

where K can be viewed as an error feedback matrix.

Th, control signal u that yields the desired ctrror dynarri..• Iw, ned hy

inciementine Equation (3.4) one time steF forward and substituting Equ.ions (3.2)

through (.,.• ., as follows

e(.k 1- 1),, (k tI) - x(k + 1)
(D,otk) I , ý,.,,(k) -ý r~ fk) .... x,(k) --h{ ik.),k} I-. u(k) -d(k)

F'u(k) 4 ., 2C) + r(k) -- , x k)---h{x(k).,- . (I (k)-- e(k)

IUu(k) [0, • jx(k) -+ F"r(k) -h{x(k),k} d(k) - K,(k)
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Notice that the terms h and d oni the right hand side of Equation (3.7) are

unknown. They will be replaced by estimates h and d. In particular, if h and d change

relatively slowly, then thei1 estimated value can be obtained by solving Equation (3.2) at

the previous time step, yielding an estimate of the sum of the two terms h and d:

h{x(k),k}- ÷ a(k) = h{x(k - 1),k - 1} + d(k - (3.8)

= x(k) - ,x(k- 1)-- ru(k- 1)

Here we assume full knowledge of the state and control values x(k), x(k-1), and u(k-1).

Unfless r-1 exists, which implies that n = m so that the number of inputs equals the

number of states, Equation (3.7) will not have a general, exact solution. Nevertheless, an

approximate solution can be generated as follows

u(k)- F+[[,-- •Ix(k) +rr(L) h{x(k),k}-d(k)-Ke(k)] (3.9)

where r+ is the pseudo-inverse of F. The use the pseudo-inverse of the control

weighting matrix is necessitated by the fact that the majority of control systems have more

states than controls. rhe following pseudo-inverse

r =-rTrf' T (310)

results in the minimization of the L2 norm !IT -- ill,.

Substituting Equations (3.8) into Equation (3 9) results in the TDC control law

u(k) = -F+ Ke(k) (error feedback)

+r[, -]k (state feedback)

+FF r(k) (commiand feedforward) (3.11

A-F [ i- +] (cancellation)

The first ierf in In (uation (3. 11), errorifeedback, epi esents proportional feedback of the

error )etvween the desired and actual state at time k- The state feedback erri detei mines

the contribution of the I tate at discrete time k to ttlie c mtrol This tern i. a tunctLIloll ot the

d it f(errmce tetwecn the desired ti .ijeclry dynamIc, arid the Iineiuized approxim:•ation Of tIe

p1., •d 1,ill CS. ('olmllnafnIds cnter the control law through ihe c¢niiand teedlrw¢,d
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term, As compared to the feedback terms, the command termi is feedforward in the sense

that it is an open-loop term that is not a function of plant state, The cancellation term

attempts to cancel the unknown dynamics and disturbances at the present time k by using

approximations based on observed behavior at the previous tinne k-i.

3.1.2 Implementation Issues

The design parameters of the TDC control law include those associated with the

reference model dynamics {0m, rm} and desired tracking error dynamics 0e (or

equivalently the error feedback matrix K = 4e - 0.m). Of course, these parameters cannot

be selected in an arbitrary fr.±Aner. As alluded to in the previous section, TDC requires the

use of a pseudo-inverse m Lne control law calculation due to the fact that the majority of

systems have more states than controls. Hence, the control weighting matrix is singular

and cannot be exactly inverted. By inserting Equation (3.11) into (3.2), the following

constraint must be met in order for the plant state to track the model state with the desired

error dynamics:

{1 -- ITr}{[4v, - ,]x(k) + Frr(k)- h{x(k),k} - d(k) -- Ie(k)} = 0 (3.12)

Notice that if F is square and invertible, then the first factor on the left hand side

guarantees that the constraint is always net. If this is not the case, then values for the

design parameters Om, r, and K must be selected to minimize the error of Equation

(3.12) for arbitrary r, h, and d. Alternatively, F+ can be selected so that the nonzero

second factor on the left hand side of Equation (3.12) is in the nullspace of (I-'Lr+}.

However, the ,ipproaches for meeting the con, traint of bluation (3.12) when r is non-

square ar" generally difficult,

B3y ond this constraint issue, the errot feedback matrix K is chosen to achieve the

desired ecror dynamics 0' '1 ypicall , error dynamics have been chosen as a function o1 &

the reterenlCC model d11't InIc s e L., twice fas t). 'Nov ever, other selections can he

1ý1. i
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accommodated as long as the error dynamics are stable.

Selection of a desired reference model {(,r, 'm} is frequently application specific.

Although there is no requii,,mnt on the method used to generate a reference model for a

flight control application, typical design specifications are often stated in terms of

characteristics of linear, time-invariant (LTI) systems. For example, military aircraft must

meet MIL-F-8785C (1980) specifications for natural frequency and damping ratio of their

characteristic modes. Thus, a LTI system is often employed in the role of a reference

model. The reference model for the aircraft control problem addressed by this thesis is

discussed in Section 4.3.3.

3.2 LEARNING CONTROL SYSTEM

The purpose of tihe learning system in the hybrid control law is to synthesize a

mapping between the state and controls of the plant and an e limate of the unknown

dynamics h generated by an adaptive component. As discussed previously, connectuonist

networks have demonstrated an ability to learn highly nonlinear, multivaiable mappings.

In this section, the complete development of the learning system employed in the hybrid

controller is presented.

3 2. 1 Incremental Leamni*g and Fixation

Sinte the objective of the netwerk in control applications is to synthesize ia mapping

over a continuotis input space, the training cost function in Equation (2.2) cannot be used

directly (ic., the numbr of training examples is not a finitc set). As a result, one co:irtiion

ippltoach for sN stells with a C nIt"OinlOuS i pllit sp-Acer is 1t0 sc UI(t itIremental larri , (bak er

I' Iminell W]91), Rurntelhart, et al. tl()8to)). Incrriiemenal ca.lning flgorilthns seek t(,

red.ce , cc )ys funCtiorn defiinCd in I' ,itn, ot t11e Ltlf ureit input po*i nt fathe thlan a cotI futICl n

dctfilpC( over Ci tv\cd set otf ".siiipls as in l 1rmation (I 2.2) tl , 'i hi\ approac'h, ',!I, cost
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function defined in Equation (2.2) reduces to the single term

J= I-d(x)-f,.,(Xp) [d(x)- f,.,(x,p)] (3.13)

where d(x) is the desired network output at current state x and fnet(x,P) is the output of

the network as a function of state and parameters p. The general parameter vector p is used

in Equation (3.13) to allow for nodal functions that are not simply a function of the state

and weights. An incremental learning approach essentially provides a convenient, point-

wise contribution to an aggregate cost function similar to Equation (2.2) since it can be

computed quickly and efficiently.

During incremental learning, care must be taken to ensure that samples are

sufficiently distributed throughout the input space so that over a finite period of time, the

individua: point-wise contributions of Equation (3.13) collectively provide an

approximation to a batch-type cost function in Equation (2.2). Since parameters are

updated at each sample, the network reacts to mappinj{, errors at the current input.

Unfortunately, sigmoidal networks possess a relatively high degree of "generalization,"

where parameter changes impact the network mapping over potentially large regions of the

input space. As a consequence, the localized nature of incremental learning can result in

"fixation" of the network, where the network attempts to achieve an accurate mapping at the

current state, while potentially degrading an acceptable mapping already leam•ne in other

regions of the input space (Baker & Farrell (1992)).

The magnitude of the fixation problem is determined by the rate of mapping

degradation in outlying regions relative to the time required to recteive samples from all

xegions of input space. This rate of outlying mapping degradation is in turn determined by

the degree C' generalization and the learning rate. A network with a high level of

generalization requires rapid and extensive distribution of sampling points or a very simall

1I arniig rate to avoid problems associated with fixation. For control problems, the formr kI

is generally not possible since the sampling vrocess is constrained by the system dynamics
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Funthermore, extensive in vestigation of the state spacr- is typically inconsistent with the

control objectives. This point is most evident in regulation, where the goal is to keep the

system near some operating point. Due to such constraints on the sampling process, an

alternative approach to avoiding fixation during incremental training is to reduce the degree

of global generalization in the network. Stuch spatially localized networks are discussed in

the next section.

3.2.2 Spatially Locald Learning

The basic idea of spa ially localized learning is that experience (leanming) in a local

region of the input space should only affect the mapping in that particular locality, with a

marginal effect in all other areas. Spatially localized learning prevents knowledge that has

already been collected in other regions of the mapping from I.cor6ing incorrectly perturbed

(i.e., corrupted). This is accomplished by les3ering the extent of generalization to include

only a local region. Figure 3.1 iilustrates the concept of spatially localized learning. Let

f,QI(x;p0,pI,...,pN) represent the mapping to be learned, where x is the input vector and

p .... .pN are a set of parameters to be learned that define the mappiug.

Dorna offnet , (xr-- -;pNDomaineoft fl)Range of f net

D' f

Figure 3.1 Spatially Localized Learunig: the Ideal Case

Figure 3.1 shows a region of the domain D>" of the function to be learned being mapped to

an associated region of the range Rn. The ideal situation for localized learning, as indicated

in the figuie, is that this local rnapping be a function of a subset of the pararrieter set
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.denoted pn. Thus, the learning oased on samples in LY will only cause the subset of

parameters pn to change. Of course, this represents the ideal situation which is not

practical for a variety of reasons. However, the objective is that the result of learning from

input Famples in one region of the domain should not significantly alter pmeviously learned

mappings in distant regions of the domain.

This local generalization property of spatially localized learning contrasts with

typical structures (e.g., sigmoidal networks) that are characterized by a much larger, more

global generalization. The following discussion introduces and develops one example of a

spatially localized learning system that is used in the hybrid control system. Learning is

accomplished by an incremental gradient descent leamning algorithm

3.2,3 The I1n.,in,:--Gaussian Network

One learning system design that exhibits spatially localized properties is the linear-

Gaussian network. 'The linear-Gaussian network is an example of a local basis / influence

fiunction system (Baker & Farrell (1992), Millington (1991)). The network manping is

cý-nstructed from a set of hyperplanes that act as "basis" functions over a localized region of

the input space. Although many functions could be used as a loca. basis, hyperplanes offer

an atractive choice for the control pioblem due to their simple structure. ardA similarity with

c' nventional gain scheduled mappings. The influence function associated with each local

basis function is an elliptic hyper-Gaussiar. As; . name suggests., the role of the

iafiuei,,.e function is to determine the region of applicability of a particular local basis

function in thc input space. For example, a basis function associated with a hyper-

Gaussian whose center is very close to the current input plays a much larger role in .he

determination of the output of the mapping than a basis function whose Gaussian is

centered far away from the current input, The following discussion details the litear•

Gaussian network.
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N Žde Desciiins

The local basis function of a linear-Gaussian node is formed by adding the

weighted sum of the inputs with a bias. Equation (3.14) shows the re!atioaship between

the zl'l linwar basis functior Li and its inputs, x:

Li(X) = W,(x - xi) + (3.14)

Here, if n is the numbei of node inputs and m is the number of node outputs, then Li is an

m dimensional vector, x is a n dimensional vector of node inputs, W, is an mnx, matrix

whose elbments are the weights on the input, xio is a n dimensional vector that represents

the center of the Gaussian nodal function described below, and bi is a m dimensional bias

vector.

The linear-Gaussian node uses a hyper-Gaussian as an influence function for the

basis Li in Eqý .a~ion (3.).4) The value for the it-h Gaussian function Gi is given by:

G1(x) = exj- (x - x,.TD,)( - x1 4l] (.5

where Di is a diagonal matrir containing values for the spatial decay of the Gaussian, xoi is

the Gaussian center, and x is the input vector. Figure 3.2 contains an illustration of a

typical Gaussian function.

G(x)

xo

Figuire 3.2 Gaussian F~unctionl

Die Gaussian is a. Conimaous function witb finite a-symptotic values. Moreover, a
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Gaussian is differentiable over the entire input space, which is important in any learning

algorithiii that relies on partial derivative information for training (e.g., gradient methods).

The output of the linear-Gaussian node is simply the product of the linear basis function

and the Gaussian influence function. The general structure is shown in Figure 3.3

X w0 tLXX)H xG)

x QI

X,

Figure 3.3 Linear Gaussian Node

where IB represents a summing node with bias and II a multiplication node. By dividing

the ith Gaussian function by the sum of all the Gaussians, the resulting quotient is the

normalized ith influence function, F-. This relationship is shown in Equation 3.16 below

G-;(x)-G (x) (3.16)

G, (x)

where

(x) = I and O<!7(x)_<l1 (3.17)

Combining Equations (3.14) through (3.16) yields the following equation for the m

dimensional vector output of a linear-Gaussian network:

Y(x}) ( L(x)F (x) (3.18)
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Network ArcAhitecture

Linear Gaussian networks use a feedforward architecture and consist of three main

layers: input, hidden, and output as depicted in Figure 3.4. The first layer of the network,

the input layer, simply passes the input values to th, subsequent hidden layer. As one

would expect, there are the same number of input nodes as there are network inputs. The

hidden layer is not directly observable to the external environment. This hidden layer

contains two elements, namely the linear-Gaussian nodes and nodes that normalize the

Gaussian influence function. By adding enough linear-Gaussian nodes, a single hidden

layer network can provide arbitrarily accurate function approximations. Furthermore,

multiple hidden layers of linear-Gaussian nodes lead to non-localized mappings. For these

reasons, only linear-Gaussian networks with a single hidden layer are investigated. The

final layer is the output layer. It contains as many nodes as there are outputs. A typical

linear-Gaussian network is shown in Figure 3.4

Input Layer Hidden Layer j Output Layer

1G~x) L z I,

11 I :IG l

Figure 3.4 Multi-Input, Sing!e Output Linear Gaussian Network

where the negative sign of the rightmost HT node indicates that the argument is reciprocated

prior to the inuhiplication.

285



ATTACHMENT 2

Laing Alg~rihm

The linear-Gaussian network uses a supervised, incremental gradient descent

algorithm to adjust the network parameters in the negative direction of their gradient with

the cost function:

p, (k + 1) = pi (k Ai aO(.9al:l >0 (3.19)

where pi is a vector of the adjustable parameters of the ith node (e.g., weight matrix

elements, bias, spatial decay', or center) and J is the cost at a particular training sample, and

c is the learning rate. The typical cost used for linear-Gaussian networks is shown in

Equation (3.20)

J = - [d(x) - f, (x,p),r[d(x (x, ,) (x,p)] (3.20)

where d is the desired output as a function of input state x, and f is the output of the

network a# a function of input state and network parameters p. In minimizing the cost at

each step (i.e., for each training sample), all of the parameters, or just a subset, caa be

adjusted using Equation (3.19). The local learning rate for each parameter can be adjusted

independently in order to achieve a more rapid convergence.

Besides the basic nodal and architectural differences, the learning algorithm of the

linear-Gaussian network also differs from that of the classic signioidal network. Since the

normalized Gaussian influence functions represent a measure of the significance that each

node has on a particular value of the input x (i.e., the influence of each node on the output

for a given input), it is reasonable to eliminate insignificant nodes from the learming

calculation. Due to the elimination ( ai, , nodes, the computational efficiency and hence

the training time of the network are improvei. F or example, for a given input value x, the

learning algorithm might first order the Gaussian nodes by their normalized influence and 4,

use only enough nodes so that the sum of the normalized influences equals or exceeds

some threshold value (e.g.. 99%). Since the remainirg nodes have only a minor effect ori
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the local region, their outputs need not be included in the parameter update. For large

network. , this can result in a substantial reduction in computation.

The number of nodes needed by a linear-Gaussian network is dependent on the

characteristics of the function it is attempting to approximate and on any rquirements

placed on the desired rate of convergence and the level of acceptable errors in the learned

mapping. Although no set of strict rulezs has been developed for selecting the number of

nodes, several guidelines do exist. For functions that are very smooth, the mapping can be

realized with relatively few nodes spread evenly throughout the input space. A large

number of nodes will not improve this mapping and will only serve to increase the network

training time. However, more complex functions with large local variations will :equire a

large numbtr of nodes, each with a relatively small sphere of influence.

The sphere of influence of a Gaussian function is determined by the spatial decay

matrix. Hence, the spatial decay matrix is a factor in determining the size of the local

regions in the input space. If the spatial decay is large, the transitionw between the regional

linear basis functions will be more abrupt if the density of basis functions is not high. This

property is ideal for more complex functions. However, a large spatial decay will require

many more nodes to sufficiently map the entire input space. In contrast, small spatial decay

rates result in large regions of influence that are ideal for smooth, slowly varying functions.

Initial values for the weights, biases, and Gaussian centers must also be selected.

The basis function described by a weight matrix and bias vector represent a best guess of

the desired mapping based on a priori information. Hence, values for the weights and

biases can be initialized from an existing gain scheduied controller or other linearizable

control law, In cases with considerable a priori knowledge, the adjustable parameters are

presumably much closer to their optimal values, and training time is greatly reduced. If no

a priori knowledge is available about the mapping, the weights and biases are se: to zerv.
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The initialization of the Gaussian centers effectively locates the influence functions in the

input space, and generally, the centers are placed so that the entire input space is spanned.

In summary, a linear-Gaussian network is one example of a spatially localized

learning system. This network combines linear basis functions with Gaussian functions to

provide the properties of local learning and the generalization properties of typical

connectionist networks. Networks that employ spatially localized learning are mequired for

control systems that iegularly encounter scenarios that might cause fixation, as described in

Subsection 3.2.1. Although linear-Gaussian networks tend to require more nodes and thus

more memory (due to localization), improved learning efficiency and, more importantly,

better functional mappings can be obtained.

3.3 HYBRID LEARNING / ADAPTIVE CONTROL

The hybrid control law developed in this section represents one approach to

combining a learning system with an adaptive component with the objective of improving

performance in the presence of unmodeled dynamics and model uncertainty. In

augmenting an indirect adaptive controller with a connectionist learning system, the general

goal is to develop a control law that combines the strengths of each component.

3.3.1 Hybrid Control System Architecture

Adaptive control systems are capable of control!ing complex dynamic systems.

However, traditional adaptive control techniques only react (aftez the fact) to differences

between actual and expected behavi,•r - they have no anticipatory capacity, Learning in

connectionist systems is fundamentally a proce-;s of fitnction approximation. Hence, given

the vehicle state and the applied control as an input and the unknowp dynamics as desired

outpuits, a connectionist learn~ing system Js capable of realizing a mapping of the state and

control dependent dynamics. Thus, by augmenting an adaptive controller with, a learning
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system, it is possible to anticipate the stwte lependent components of the plant dynamics by

"looking up" the values of that component of thz J'ynamics for the current situation from

the network, instead ot wa;ting for an adaptive component to react to observed differences

between the actual and expected state values. By incorporating a learning system into the

control law, the hybrid controller is able to use experientially gained knowledge.

Figure 3.5 illustrates the control system architecture of the hybrid adaptive / learning

controller (Baker & FRrrell (1991)).

command 01 Indirect_ control • state

Adaptive c o Plant
Control
System

Anticipated Posterior'
Behavior Estinae

•. L~Uani~ng --

System }

Figure 3.5 Hybrid System Architecture

The role of each corfx, ern:. in the hybrid systrem is straigbtforward. The adaptive

co.rojv ';•. rprovides an adaptive capehi,,.iy to accommodate uninModeled dynamic behavior

I!:.;, ni.:o expected (based on the design model). Moreover, it provides a posterior

e•,tarae of any urunodeled state and control dependent behavior which can be used to train

the learning system. T"he role of the learning system is to anticipate vehicle behavior that

varies predictably witb the current state and control.

3.3.2 Learning Versus Adaptation

Since both the adaptive ,comlnitnt and thc learning component in the hyb.id control

sy:Jrei are based on parameter adjustniet algotiltbns that us. information gained by

-a-
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observing the closed-loop behavior of the plant, one might think it is difficult to distinguish

between the two components. However, for the majority of systems, distinguishing

qualities do exist. The following discussion presents the 'ifferent goals and characteristics

of the adaptive and learning components in an attempt to differentiate the two.

The adaptive component of the hybrid system can be characterized by its reactive

approach to accommodating local disturbances and apparent time-varying dynamics.

Nonlinearities that are a function of the operating condition of the plant appear to the

adaptive component as time-varying dynamics when they are actually changes in the local

linearized behavior of a nonlinear, time-invariait plant. Since adaptive controllers typically

lack the ability to associate the required changes in the control action as a function of the

operating conditions, the controller must continually adapt to all unexpected effects, even

those which are experienced repeatedly and are actually due to time-invariant nonlinearities.

In other words, adaptive controllers have no "memory" and are unable to anticipate

dynamics that are strictly a function of state. Thus, this lack of memory prevents any

anaicipatory action by the controller. Moreover, to prevent a situation where. the adaptive

controller is continuously in some suboptinmal, partially adapted state, the generation of the

unknown dynamics estimnae must be relatively fast when compared to the plant dynamics.

In sunimary, the adaptive component reacts to unexpected effects in order to maintain

locally desired behavior; it is best at accormnodating novel situations and slowly time-

varying dynamtics.

The reactive characteristics of the adaptive component directly contrasts with the

constructional emphasis of the learning component. In particular, the objective of the

learning component in the hybrid control law is to associate initially unknown state

dependent dynamics with the state and contiol at the current operating condition. Jlhe

association is essentially a memory function (or mapping) that sIores experientially gained

knowledge. This knowledge of originally timnown dynamics can be exploited by the

hybrid control systeii as a means of anticipating tral"Ie mn bchl'vior instead of waitiig to
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react to errors observed in the output. Moreover, this allows the adaptive component to

focus on accommodating slowly varying exogenous (not state dependent) disturbances.

Since the objective of learning is to realize a mapping of state dependencies over the entire

operating envelope, the learning system is characterized by a global optimization and

relatively slow dynamics. Table 3.1 summarizes the major differences between adaptation

and le•aiing (Baker & Farrell (199 1)).

Table 3.1 Adaptation vs. Learning

ADAPTATION LEARNING

reactive: maintain desired behavior constructional: synthesize desired behavior

(local 0 timization) (global optimization)

tem poralenphasiý _ _ _ ier phasis

no "memory" =* no anticipation "memory =anticipation

fast dynamics - slow dynarrfics

The goal of the hybrid controller is to combine the different behavioral

characteristics of the adaptive and learning components in a synergistic fashion Ideally,

the adaptive controller accommodates local unmodeled dynamics and novel state

dependencies, while the learning system is responsible for reducing state and control

dependent model uncertainty.

. 3 3 Control 1..aw ek-velopnmnt

As dijscussrd pirviously, TDX( is one example of a particularly simple indirect

adaptive control approach. Recall that |DC calculates an estimate of the sum of the

nnkno wn dyvnarnic s h and disturbances d ,st the previous ,ime step by examining the

diftercrce In the dyn a! ,1cA behavior tbetween the current state of t!he plant and the exl cred
, state gi en•• the t Male and ,lro' at the p)revious, titc step A s$,unming that h and d do not

n ,te , IX" ues his oh1.! vluW ýti t ut ni of h ancd

'•91
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d in formulating the control law. By integrating TDC with a learning component to form a

hybrid controller, this delay in the estimated value of h cmn be eliminated. Although this

delay is possibly insignificant with short control cycle times in the absence of sensor noise,

such is not the case in a more realistic environment. If the control law is generated at a fast

rate, the unknown dynamics and disturbances at the previous time will accurately reflect the

current values (in the abseace of noise). However, as the cycle time is increased, the

potential for error in the estimates grows. If sensor noise is present, it is still possible to

predict the current state within a given tolerar However, since h and d are essentially

found by taking the derivative of the state, sensor noise can have a large impact on these

estimates and subsequently the control generated by TDC.

The most common technique for offsetting the effects of sensor noise is to use a

filter. Note, however, that filtering the noise only adds to the delay already associated with

h and d. For this reason, a hybrid approach can offer significant advantages due to the use

of a connectionist learning system. Since sensor tioise can alter the estimates of h and d

significantly, it is possible to have conflicting desired output values for the same input

(over time). Given this contrasting information, connectionist systems tend to learn the

average value. Thus, if the sensor noise is zero mean, which is the assumed case, the

correct mapping will still be realized by the learning system. Since the recall of the learned

estimates of the state dependent dynamics is nearly instantaneous, the hybrid system is

essentially able to remove the delay associated with the adaptive component.

As alluded to earlier, the hybrid control law can be derived by augmenting the TDC

equations with a learning component. Assume the nonlinear plant can be written in the

following form:

x(k + 1) = x(k) + ru(k) f, .,{x(k),u(k)} + h{x(k),u(k),k4 + d(k) (3.2i i,

where x(k) is an a dimensional state vector at discrete time k, u(k) is an m dimensional

control vector at k, % is an n by n state transition matrix, F is an n by m controW weighting

matrix, h and ( are n dimensional unknown dynamics and disturbances vectors
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respectively, and f,,f is the n dimensional learned component of the state dependent

dynamics. Equation (3.21) differs from the form of the plant model used in the TDC

derivation only by the leared dynaniics term fact. Moreover, the unk-nown dynamics term

is allowed to be a function of control as well as state, essentially accounting for errors in

the assumed (but unlikely to be) perfectly known Ir.

As before, the desired reference trajectory is given by

x. (k + 1) = 0,,x.(k) + r'r(k) (3.22)

Here xm(k) represents the n dimensiional desired model state vector at time k, Om is the n

by n state transition matrix defined by the linear relationship between the current and next

state, r(k) is the m dimensional command vector and F is the n by m model command

weighting matrix. As was the case with the derivation of the TDC control law in Section

3.1. 1, there is no requirement that the reference model be linear. The only requirement on

the reference model is that the desired trajectory is achievable, otherwise the control law

may saturate the effectors and yie!d unsatisfactory performance.

If the difference between the desired reference state and plant state at discrete time k

is represented by the error vector

e(k) = x.(k)- x(k) (3.23)

then the control objective of the hybrid control law is to force this error vector to zero with

the following dynamics

e(k + 1) = [b,,, + Kýe(k) = 4be(k) (3.24)

where K is interpreted as the error feedback matrix and ,e is the desired error dynamics

matrix.

If Equation; (3.2 j I through (3.23) are substituted into Equation (3 24), the conLrol

signal u that yields the desired error dynamics is obtained from:

Fu(k) = [-,, -- O)x(k) )-', rmr(k) - f,,,, x(k), u(k)}- h{x(k),k} -- d(k) -- Ke(k) (3,25)
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To isolate the functions on the right hand side of Eq, .ation (3.25) that are dependent on a at

the current time k, approximations for the unknown dynamics and disturbances as well as

the output of the connectionist network are made.

If h and d change relatively slowly, then their estimated vaiue can be obtained (as

before) by solving Equation (3.21) at the previous time step, yielding

ii{x(k), u(k), k} + d(k) = h{x(k - 1), u(k - 1), k - 1} + d(k - 1)

= x(k) - 4Ox(k- 1)- Fu(k - 1)- f,., {x(k - 1),u(k - 1)}

The network function faet in Equation (3.25) can be approximated using the first-order

Taylor series expansion shown in Equation (3.27) to isolate the linear dependence on u at

time k. Since the network is continuously differentiable, the Jacobian in Equation (3.27) is

"known to exist. Moreover, this Jacobian information is already calculated since it is needed

for the learning algorithm discussed in Section 3.2.

f,,,, {x(k), u(k)} f,., {x(k), u(k - 1)} + -- (u(k) - u(k - 1)) (3.27)

Substituting these approximations into Equation (3.25) and solving for u at the

current time k (using a pseudo-inverse) yields the following hybrid control law:

u(k)= r+ A-] Ke(k)
du

+ir + •- ] [0. -- Ox(k)

+[r+ du rr(k)

dt 4- (3.28)

r+± ýL[f,,,{x(k),u(k - l)}0 • U(k -1)

The differences belween the TL-C control law in Equation (3.11) andi the hybnid cr.ntrol lai%

are the result of the added learning terniLs. 'The fifth ternl in Equation (3.28) r,ýpreser.ts the
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learned state dependent dynamircs. The partial derivative of the network output with respect

to the control used in the pseudo-inverse calculation is a linear correction for errors in r as

discussed below.

Beyond removing the delay associated with a purely adaptive controlle., the hybrid

4ontrol system is able to reduce model uncertainty. This is accompi shed by using partial

derivative information for the learned network term with respect to the control inputs. For

example, if there are errors in the coefficients of the assumed linear control weighting

matrix F, or the control ac-tually affects the next state in a nonlinear fashion, the partial of

the learned dynamics with respect to the control represents the locally linearized unmodeled

effect of the controls. Assuming accurate derivative information can be obtained from the

network, the actual manner that the controls impact the next state is thus the assumed linear

control weighting matrix corrected by this learned effect. The technique of using the

partial information to improve the a priori design and ultimately reduce model

uncertainty represents a potentially major improvement over the TDC control law.

2ýK
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4 EXPERIMENTS

A learning enhanced hybrid flight control system is demonstrated using the realistic

model of a high-performance, supersonic aircraft that is described in Section 4.2.

However, because the complexity of this aircraft model makes control systtem taialysis

difficult, the hybrid controller is first applied to a relatively simple nonlinear aeroela-tic

oscillator, described in Section 4.1. For this simple example, an exac,. truth model of the

nonlinear plant dynamics is known, and the mapping that is synthesized by the control

system can & compared to tbe known dynamics.

The obective of the •xpetiments detailed in this section is to iffustrate some of the

properties of the hybrid control ,ystem. In particular, the gujal is to detnonstrate the ability

of the hybrid system to imp•.r " the control of a nordi near plant with model uncertainty and

uwnodeled dynamics that ar= a function of state and control. Both the aero-elastic oscillator

and the high performance aircraft fall into this category. A secondary objective is to

illusu-ate the learning characteristics of spatially localized connectionist networks when

applied to control systems.

Section 4, 1 and Section 4.2 each begins with a description of the plant model of

interest (i.e., the aeroelastc oscillator and the hligh perfr•rmance aircraft) and the physical

motion that the model represents. This description is followed by a brief discussion of the

open-loop dynamics and other characteristics of that model. Next, the. reference model,

along with the motivation for its selection, is rresentee'. Issues in applying the hybrid

control law to each plant are also discussed. Th4s development is followed by two

expt rjrints for each p[afi ,t ! dihJhSi .W- pthbilifies ofthe hyhrnd controller,,
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4.1 AEROELASTIC OSCILLATOR

4.1.1 Desciription

The aeroelastic oscillator models the motion of a square prism in a steady wind with an

external control force. If the aeroelastic oscillator is constrained to translational motion

normal to the incidert wind, the dynamics resemble a classic mass-spring..dashpot system

with an additional aerodynamic lift force due to an effective angle-of-attack between the

wind and the prism (Parkinson & Smith (1963)). Figure 4.1 illustrates the aeroelastic

oscillator model, where V(t) is the incident wind, L(t) is the aerodynamic lift force, flt) is

the control force, m is the mass of the square prism, r is the damping coefficient, and k is

the spring constant. The two state variables, position x(t) and velocity v(t), represent

motion normal to the incident wind.

L(t),f(t)

A

--- '>"x(t),vOt)
m

kI

Figure 4.1 Aeroelastic Oscillator Model

The aerodynamic lift force is a nonlinear function of the effective angle-of-attack of

the prism with respect to the.L incident wind. The effective angle-of-attack is due to the

motion of the prism as illustrated in Figure 4.2, where a denotes the effective angle-of-

attack and VREI is the relative velocity.
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vx

Figure 4.2 Effective Angle-of-Attack

Although current aerodynamic theory does not offer an analytic solution for the flow

around a square prism, experimental data has been used to develop an approximation to the

coefficient of lift (CL) as a seventh-order polynomial of the effective angle-of-attack
I

(Parkinson & Smith (1963)). Expressions for the coefficient of lift as well as for the

resulting lift force L are given by:

CL = - + {Vj (4.1)

L = 1pV2 hlCL (4.2)

2

where the small angle approximation a = . / V has been used, p is the air density, h is the

side length of the prism, and I is the axial length of the prism. The differential equation

governing the dynamics of the aeroelastic oscillator is:

d2x dXm- +r- + - + kx = L + f (4.3)

Equation (4.3) can be nondimensionalized by dividing through by kh and making

the following change of variables:

x ph21 V rX= n-; = _ = .; U=-.; b= --- =Cot
h 2mn oh 2mo

Applying this change of variables and substituting for the lift from Equation (4.2) yields:

d X dX dX rA ) Y+ n(6,,) ,,, (dxy7
+ 2b + X = AU-+

d'r2  d,,- U U dr)J U' dT U7 .d) +f (4.4)

Equation (4.4) can be rewritten in a state space realization as:
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xl~ ; 2=dX

,dr (4.5)

[i] [2 (nA, 2b)1x']+[T]f [(+ [ X2X U. X] (2

where xI and x2 are nondimensionalized position and velocity states, respectively.

Although the aeroelastic oscillator is a relatively simple second-order plant with a

single control variable (forcef), it still presents difficulties to conventional control design

techniques due to the nonlinearities and uncertain parametric/ values (e.g., A 1, A3, A5, A7)

for the lift force. For these reasons, the aeroelastic oscillator has been selected to illustrate

the properties of the hybrid controller.

4.1.2 Open Loop Dynamics

The nonlinearities in the open-loop dynamics of the aeroelastic oscillator in

Equation (4.6) are a function of both mass velocity and incident wind velocity. For low

incident wind velocities, the focus of the state trajectories in the phase plane is stable and

the plant returns to the origin after exogenous disturbances. However, for higher wind

velocities, the system tends to oscillate in a stable limit cycle. If the wind velocity is further

increased, state trajectories in the phase plane are characterized by two stable limit cycles

separated by an unstable limit cycle. Since the aeroelastic oscillator either returns to the

origin or exhibits a stable limit cycle in face of disturbances for any value of incident wind,

it is globally open-loop stable and a feedback loop is not required to provide nominal

(bounded h-put / bounded output) stability.

4.1.3 Reference Model

As discussed ;n Section 3.3, the hybrid control law is designed to cause the plant

state trajectory to follow a reference trajectory generated by a reference model. This

ref'crence model has a significant influence on the performance of the closed-loop system,
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since by definition it represents the desired trajectory of the controlled vehicle states. As a

result, if an unsatisfactory reference mitdel is selected, the vehicle acting under the hybrid

control law will also be unsatisfactory. Furthermore, if tOte refeience model demands

unrealistic state trajectories (e.g., reference trajectories tlhat are chosen without regard to the

limitations of the actual plant dynamics), control saturation leading to inadequate

performance or even instabilities (in the general case) can occur. For these reasons, the

reference model must be selected to yield satisfactory dynamics within the lirnitations of the

vehicle or plant as required by specifications.

For the aeroelastic oscillator, the reference model was chosen to be the linear

closed-loop system that results from applying an optimal linear quadratic control design to

the aeroelastic oscillator dynamics linearized about the origin, The quadratic cost functional

weights states and control equally. Thus, the obiective of the hybrid control law is to force

the true nonlinear model to behave identically to the linear reference model. Although not a

requirement, a linear reference model is often used to achieve specifications (objectives)

that have been stated in terms of natural frequency and damping ratio requirements. The

reference model for the aeroelastic oscillator has been designed with a natural frequency of

1.12 radians per second and a damping ratio of 0.76.

4.1.4 Application of Hybrid Controller

To aid in the design simulation, and analysis of the hybrid learning system, a

custom-built software package developed at Draper Laboratory and coined "NetSim" was

used. NetSim is a general-purpose simulation and design package that enables a variety of

connectionist learning control systems to be developed int'ýractively (Alexander, er a.

(1991)). Through a graphical interface, pre-cormpiled code modules are connected in a

block diagrammatic fo;mat to form the desired system. For dynamic systems, typical

modules include plants, transforms (eg., signal modifiers such as delays or switches),

sunmming and gain objects and even dynamic compensators. NetSimu also contains design
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tools that allow the user to create connectionist networks by graphically specifying the

network nodes and architecture. All of the code modules are automatically linked together

at run time, resulting in a complete system in which the outputs can be viewed on-line

while the simulation is in progress.

The closed-loop simulation for the aeroc'astic oscillator system uses four main

modules as illustrated in the block diagram in Figure 4.3. This figure is a screen dump of

the actual simulation window. The main modules include the reference mode!, hybrid

controller, aeroelastic oscillator, and linear-Gaussian network. In addition to these main

components, supporting operators are needed to modify the signals passed between the

main modules to deliver the expected variables in the proper time sequence. The arrows

between modules represent exchanges of variables, and the number in the lower left comer

of each block dictates the order of execution at each time step. Modules called more than

once per time step are shown with multiple sequence numbers.

Each module in Figure 4.3 peiforms a specific function in modeling the closed-loop

dynamic system. The first module in the sequence is Random. Random outputs a

randomly generated commanded position at the current time k. This command is held

constant for a user specified amount of time. Once that time has elapsed, a new command

is issued. AO Reference outputs the desired (model) state trajectory of the aeroelastic

oscillator for the given command. The reference trajectory is generated using a discrete

version of the optimal linear design as discussed abo've.
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ED g rer4,elocstc Oscilatamor te Arainic Simulation

that se lerencijn st ne brid 0n r olr0s.ipleDor s

i. [. WA a i

L2 9

Figure 4.3 Block Diagram of the Aeronasdc Oscillator System

The AO Switch module supplies the network with the state and control at the

appropriate time. It also sends a flag to the network to insure that leating only occurs with

states and control at consistent times (e.g., earning occurs when the state, control, and

desired output are all at the samt time instant). AO Network is a linear-Gaussian network

that serves as the learning system in the hybrid controller. The Mfultiplexor (shown with

sequence numbers 5 and 8) gathers the outputs from the network that are necded for

implementing the hybrid control law. Jlvbrid calculates the control signal based on the

hybrid control law developed in Section 3.3. This control signal is passed to the .Ae;ro

Oscillator module. The Aero Oscijiator module contains the continuous nonlinear

equaiicons-of-Inotion of the plani. Thiew- equations are integrated using either all Euler or

4 fh order Runge-Kutte technique. The. type and rate of integration, as V0cf as plant

parameters and inum! 2,onditions, are sý-klcte~d by the user. Table 4.) surnmaarize!. the output

of each module for orvc time steo.
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Table 4.1 Module Execution Summrary

S~eqnuience # Module________ Module Ou tpu

I 1 Random r(k)

2 AO x.(k + i)= Ox.(k) + r(k)

-- _____Reference

3 Switch x(k),u(k - 1); Don't Leam Flag

4 AO ;

Network

5 Multiplexor f,,.(x(k),u(k 1)) ;
I x (k),v(k - 1)

6 Switch x(k-l), a(k-1); Leam Flag

7 AO fA0(x(k - 1),u(k -1))

Network

8 Multiplexor f.,(x(k),I!(k - 1)) - '

f,,(x(k-- u),u(k.- 1))

9 Hybrid u(k)= -F + Ke(k
duj

df.,
+F + T•,3

x.- (k) u ](k )j ~-f ',,,4,)

10 AerL." - (nt-2bI.

Osci-la + ,0•o

IA -- A, -m4,



ATTACHMENT 2

4.1.5 Aeroelastic Oscillator Experiment I

In experiment 1, a selected reference trajectory was repeated continuously in order to learn

the state dependent, previously unknown dynamics fet. The control objective was simply

the regulation of both states about the origin given an initial position of-1 and velocity of

0.5. By using the geometry and velocity parameters for a particular incident wind velocity

found in Parkinson & Smith (1963), the equations-of-motion used in experiment 1 become:
3+ 0 5.9X27] (4.7)

[2•=[- 1 i.2 1x2 j+[Iju+[-26.1x 2 3 +127.3x 2 -158 ]

T.he nonlinear terms Equation (4.7) were not supplied to the control system and represent

the unknown dynamics in Equation (3.21).

Figures 4.4 and 4.5 illustrate the reference trajectories for positi, i and velocity

(based on the linear model described above) for the selected initial conditions and

command. These reference trajectories represent the desired states at each time step, and

any deviation from the reference by the actual states can be considered an error. The

position and velocity trajectories of the nonlinear aeroelastic oscillator controlled by TDC

alone (TDC Position / Velocity) are also shown in Figures 4.4 and 4.5 and are almost

indistinguishable from the reference. In this case, the TDC controlled trajectories were

produced by integrating the aeroelastic oscillator equations-of-motion at 200 Hertz and

generating a control signal at that same rate. Moreover, there was no noise in the observed

state and control values used by T'DC. Combining these facts, it is not ýurprising that the

TDX controller does extremely well in generating a control law that drives the plant along

the reference trajectory. Indeed, because of the extremey srmall time step, the unktiown

dynamics observed at the previous time pro-vide an accurate estimate of the unknown

dynamic:; at the current time that is require-d by the TDC control law. Also plotted ill

Hweu~s 4.- and 4.5 are the trajectories generated using the constant gains of the !inear

connotoiler utsed to forlm the linear refer'nrce model and applied to the actual nonlineitr



ATTACHMENT 2

aeroelastic oscillator (labeled Linear Position / Velocity). Errors between trajectories under

this linear control and the reference trajectory are due primarily to the nonlinear

aerodynamic lift force. These plots show the degree of performance improvement (relative

to a linear feedback law) that is possible with an adaptive controller operating under ideal

conditions.

Position vs Time

0.2- ---.. .. .

0.0- -

= -C.2 -- - --- -- -
"••~~ -o. . l -- ... ..__ __.S-024

-06 Reference Position

"rmTDC Position
-0.8 - Linear Position

0 2 3 4 5 6

Time

Figure 4.4 Position trajectories for the refer-,nce model, linear control law, and TDC at
200 Hertz contirller rate.
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Velocity vs Time

- -- - Reference Velocity

0.4- ........ TDC Velocity
---- Linear Velocity

- 0.0 -. . -- - - =j
0.0 -I. . .

-0.2 L I 1''. -

0 2 3 4 5 6

Time

Figure 4.5 Velocity trajectories for the reference model, linear control law, and TDC at

200 Hertz controller rate.

Since the sensing and computatiiv-l requirements associated with generating state

information for the aercelastic oscillator at the 200 Hertz integration rate may be unrealistic,

the controller is slowed to calculate the control signal at a more moderate rate. For this

experhn ent, the control was generated at 10 hertz. In order to produce unknown dynamics

that are a function of control as well as state, an unknown external force equal to three

times the control force was added to the unknown dynamics. In other words, the control

form in Equation (4.7) was inodifted from the assumed known value

[7]F

to the applied value

F01+ [011

wherc the aaded term is not known by the controller. A relatively large fore error was

used to highlight the ability of the hybrid control system "o reduce large unc.nrtainties.

Consistent with the hybrid control law developed in Section 3.3, the learning
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system used a spatially localized network with 32 linear-Gaussian nodes. For training the

network, a learning rate of 1 was used with the spatial decay of all the nodes fixed at 2.

These values were selected based on the known mapping of the nonlinearities, the size of

the input space (i.e., range of all possible position, velocity, and control combinations),

and to a certain extent on trial and error. Initial values for le slopes and biases were set to

zero while the Gaussian centers were placed randomly in the unit cube formed by scaling

the state and control inputs. Figures 4.6 and 4.7 illustrate the hybrid controlled states for

the first learning trial compared to the TDC controlled states and reference model. Since the

slopes and biases of the learning system are initialized to zero, the learning system does not

impact tle states at start-up, and all of the unknown dynamics are incorporated into the

TDC adaptive component. However, after a short time (within the first trial), the learning

system begins to build a mapping of the unknown dynamics. This mapping is used to

ehminate the delay associated with the unknown dynamics estimate in TDC and to improve

the estimate of the local linearized behavior (i.e., using the derivative information as

discussed in Section 3.3 to reduce model uncertainty). These features can be directly

related to the improved performance seen in the state tracking of the reference trajectory.
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Position vs Time

0.2--_ __ _

0,.0- _-----ova ..

S-0.4- _ __

S,~Reference Position
TDC Position

-0.8- -Hybrid Position

0 2 4 6

Time

Figure 4.6 Position trajectories for the reference model, TDC, and hybrid control law at
10 Hertz controller rate, first learning trial.

Velocity vs Time

0.8i

Reference Velocity
0.6 - TDC Velocity

o Hybrid Velocity

S0.2 -. =:.:

0.0 ,y -- •

-0.2

0 2 4 6

Time

Figure 4.7 Velocity trajectories fbr the reference model, TDC, and hybrid control law at

10 HerTz controller rate, first learning trial.

Afier the trajectory is repeated 10 times, the learning system has built a mapping of

the previously unknown dynamics as a function of the sate anu control along thaw

trajeclory Figure 4.8 compares the es mate of the unknown dynamics useAl by TDC to
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that of the hybrid controller generated from the learned mapping (after 10 trials). Since the

mapping used to generate these points represcnts a static function, the unknown dynamics

"can simply be looked up as a function of the current state and control. This can be

contrasted with TDC which uses an estimate of the unknown dynamics based on the state

and control at the previous time.

Unknown Dynamics vs Time
0.5_ - • - _- -- 7- . -- =E_-S_-C

_ .TDC

0.4 - ~ Network

-0.3-

S0.2-.

- - -- I----0.1 .

60 5 62 63 64 65 66

Time

Figure 4.8 Unknown dynamics estimate frorn network and TT)C after 10 trials.

As discussed in Section 3.3, the hybrid controllber uses tje. output of the network

(fnet) as well as the derivative of the network outpuz with respect to the corwrol (ftt/lu) to

formulate the c'ntrol law. This derivative infom-ation provides local improvenmenrs to') the

linear control weighting vector, r. Since the truth model fbr the aeroelastic oscillator is

known, it is possible to analyze. the accuracy of the derivative information. Foi example,

the partial of the unknon dynamics with respect to the control force is simply, in

continuous time, the constant trhee (due to the added external control force). When

converted to discrete dnim, this vw.ue is 0.3! 82. After 10 trials, the networks mnean velue of

the 3f4n!iu is 0.2285. Alth hogh it has not yet leamned the coiTect value, it nonetheless

provides some improverne it to the control wei,,linrg r•anlrix.
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Figures 4.9 and 4.10 illustrate the state trajectories controlled by the TDC. contio!ler

and the hybrid controller after 10 trials. Clearly, the hybria controller uses experientially

gained kniowledge to improve the tracking of the reference states.

Poskion vs Time

0.0--- - .- I- - -

.2 -__.__--

"• 04 -- '-------

-0-6- Reference Position-o.-7 17• TDC Position

-08. Hybrid Position

64D 62 64W

Time

Figure 4.9 Position tajectories for the reference model, IDC, and hybrid control law at
10 Hertz contreller rate, 10 trials.
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Velocity vs rime

0.8 - _____

- j -. Reference Velocity
0.6 ........... TDC Velocity

-_____ Hybrid Velocity
S• 0.4-

-_. ' •" 0.2 - -.i....' ' ....... .......
..........I.

-0.2

60 62 64 66

Time

Figure 4.10 Velocity trajectories for the reference model, TDC, and hybrid control law at

10 Hertz controller rate, 10 trials.

This ex, eriment shows that the hybrid controller has the ability to improve the

controlled performance of the aeroelastic oscillator when a specific trajectory is repeated

numerous times. This improveýd performance is realized by exploiting a learned fuictional

oiiappmg of thf. previously unknown model dynamics to improve the control law. The next

experiment illustrates the ability to synthesize. a mapping over a much larger input space,

using randomly generated state traJectories.

4.1.6 Aeroelasu.c Oscillator Experiment 2

In experiment 2, the de:;ired trajectory is selected in a rarndom. fashion in order to

map the unknown dynamics ovcr a much larger region of the state space than the single

trajectory in ,xrFcri:tnent 1. By commanding a random position between -1 and 1, a large

portion oýf the state space along with the associated controls is visited and subsequently

niapped. As in experiment 1, dhit aerlelastic oscillator was integrated at 200 Hertz and the

Scontrol sigxal issued once, every 20 integrations (10 hertz). For this experiment, a spatially

i-= faized learnifin :;ysI1ni ,vith 99 liiear-Gaussian nodes was used. The spatial decay for
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each node was fixed to I and the initialization was the same as for experiment 1. The

number of nodes, spatial decay, and other parameters were again selected based on the

expected nonlinearities, size of the input space and trial and error.

Figure 4.11 (a) shows the mapping synthesized by the learning system as a function

of velocity and control. Learning was based on following the randomly generated

reference trajectory for 60 seconds (10 trials). This mapping is compared to the nonlinear

terms and extraneous control of the aeroelastic oscillator truth model shown in Figure

4.1 1(b). Comparing the two plots, the slope in the control direction (force) for the network

mapping is nearly constant with a mean of 0.3120 and standard deviation of 0.0264

whereas the actual slope is 0.3182 (in the discrete time model). Moreover, the mappings in

the velocity direction appear very similar. Hence, the network has synthesized the

previously unknown dynamics of the system. (Note: the cunent version of the software

does not allow a direct error surface plot to be generated.)
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Unmodeled Dynamics
Learned by the Network

vel

force

Actual Unmodeled Dynamics

velocity

velocity = [--0.7, 0.7]
force = [-1.5,1.51
network output = [-1,1]

force

Figure 4.11 (a) Network Mapping of Unknown Dynamics (b) Actual Unknown
Dynamics.

Figures 4.12 and 4.13 illustrate the positioni and velocity trajectories for the TDC

and hybrid controlled states after 30 secxonds of simulation. As predicted by the relatively

accurate mapping of the unknown dynamics, the position and velocity show improved
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performance for the hybrid controlled aeroelastic oscillator over that of TDC.

Position vs Time
o.2- | l I I

_Reference Position0.0 -==2Psto S"-'•- •-TDC Position

-0.2 Hybrid Position
r,-0.4

-o.6 . . .. N .

-0.8-

-1 .0!I

30 31 32 33 34 35 36

Time

Figure 4.12 Position trajectories for the reference model, TDC, and hybrid control law at
10 Hertz controller rate, 10 trials.

Velocity vs Time

0.2 -

-0,4 /Reference Velocity

-0.6 TDC Velocity
- - Hybrid Velocity

-0.8 - ----------

30 31 32 S3 34 35 36

Time

Figure 4.13 Velocity trajectories for the reference nmdel, TIDC, ýnd hybrid control law at
10 Hertz controller rate, 10 trials.
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4.2 HIGH PERFORMANCE AIRCRAFT MODEL

4.2.1 Aircraft Description

The high performance aircraft model that is used to illustrate the concept of learning

enhanced flight control was developed by NASA to provide the aeronautical community

with a common focus for research in flight control theory and design. This model is also

being used to serve as a basis for the 1992 AIAA Control Design Challenge (Duke (1992)).

A complete description of this generic, high performance, state-of-the-art aircraft model is

found in Brumbaugh (1991). The foilowing summarized the major characteristics of the

aircraft model as well as its critical components.

The NASA model is the basis for the sirlhlation of a high-performance, supersonic

vehicle representative of modem fighter and attack aircraft. ThVs model supports vi'tually

all missions in nonterminal flight phases. These missions include flight phase that are.

normally accomplished using gradual maneuvers such as climb, cruise, or loiter as well as

phases that requiri rapid maneuvering, precision tracking, or prectse flight-path control

(e.g., air-to-air combat, weapon delivery, or terrain fi howing), The aircraft model

includes full-envelope, nonlinear aerodynamilcs in addition to a full-envelope, nonlinear

thrust model. An illustration of the basic configuration of the aircraft is shown below in

Figure 4.14. Significant features of this airc'aft configuration include a single vertical tail

with rudder surface, a horizontal stabilatýr capable of symmetric and differential

movement, and conventional trailing edge ;.,ierons.
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Aileron

r

Stafifator

Figure 4.14 NASA High Performance Aircraft Model

The basic geometry and mass properties of the aircraft ,ar summawized below in

Table 4.2.

Table 4.,2 Basic Aircraft Geometry and Mas-; Properties

Aircraft Geometry and Mass Propertes

Win& Area 608.00 ft2

Wing Span 42.80 ft.

Mean Chord 15.95 ft

Weight 45000.00 lb

To aide in the design and development of a competent flight control law, the model

carn be easily broken into separate components, each performing a specific function. The

major components of the aircraft model are as follows: aerodynamics, propulsion, actuator

dynamics, and equations-of-mnotion. Also included with the model is the standard

atmosphere component, an environmental model, and the integration component that is

used to simulate the aircraft in software. Of course, one element that is not in this list is the

flight cont-rol law, which is to be determined by the designer. The function of each of the

major components, as well as a brief di',cussion of its origins, are presented in the

following paragraphs.
As alluded to previously, the NASA aircraft slm]arion contains a nonlinear, full-
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envelope terodynamic model. The primary function of this cornponent is the calculation

of aerodynamic forces and moments generated by the aircraft throughout its flight regime.

In general, the aerodynamic forces and moment.- are complicated, nonfinear functions of

many variables. The approach taken by the NASA model in calculating the complex force

values is based on modeling the force terms as the product of dynamic pressure., a reference

area (wing area), and an appropriate dimensionless aerodynamic coefficient. Similarly, the

aerodynamics moment tenn is modeled as the product of dynamic pressure, a reference

area, a ci&mensionless aerodynamic coefficient, and a reference length (mean chord). The

aerodynamic coefficients are primarily functions of Mach number, angle-c.f-attack, and

sideslip angle. Thle NASA aircraft model acquires coefficient values from multidimensional

data tables or from direct calculation. The coefficients contained in the tabular data have

been generated r' -ough a combination of wind-tunnel tests and computer programs that

numerically integ. ,e the titovetical aerrcdynanic pressure over the surface of' the aircraft.

For the tabular data, linear interx laticin is e~implloyed to obtain intermediate values.
Vehic~e titirust is :enerated b, die 1gropulsmon model, Twin afierbuning tubuf n

engines, e a::h capable ,i! generating C2,000 pounds of thriist, deliver nower to the aircraft.

Each cregtde thr-asit vector acts along the aircraft x-body axis at a point !(0 feet behind the

center of gravity and 4 feelt h4terally from the centerline. Engine dynanfics are modeled by

separa'ltrfn the powerplant into two wqparate sections. The firt wsection,. the engine core, is

viodec',- zs a rfist- order, dosed--loop sy':texn that outputs thrust for a given throttle input.

kMorecvr:ý, rate limits that siuafllteS, Spooi up effects aad a gain scheduler teat mnodels

chaTi.g. W jx, formance dute to Mach numiber and altitude charnges have been added to

pro+ •2; kti,i, to 1he closed- loop system. Gains are obtained from tabular data and a

Iin , p, ionw routine basc"d om Mach number ajid altitude. A second section, the

Sfir b>'.v+,+, modeled wNýh si ilar first- Oider dyna bics ,ut has the added features of a

r'1.-i! n' I.t,!t an.d s1Iq ueri-c if g } tL modle fuelI pu up and prCs4+ure reguIIlator iefl A:Cs.

" h t tesc' conpol , :',I S l- ,'rise fle full *~ivcIoIt, nowlmenar thrw'- t model.
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Atmospheric parameters required by the aircraft simulation are computed by the

standard atmosphere model. For a given altitude, values for acceleration due to gravity,

speed of sound, temperature, and other essential parameters are generated from tables

based on the U.S. Standard Atmosphere of 1962. Linear interpolation is used between

elements of the table.

The actuator dynamics model is a first-order system that outputs surface position

for a given surface command. Furthermore, rate and position limits are included in the

system. All actuato's are considered to be identical.

The dynamics of the aircraft ?re simulated using the eqrotions-of-motion module.

The nonlinear equations-of-mntion are derived from the general six-degree-of-freedom

relations for a rigid aircraft. Beyond the rigid body assumption, it is also assumed that the

vehicle is traveling with nonzero forward motion in an atmosphere that is stationary with

respect to an Earth-fixed reference frame. The nonzero forward motion assumption

mandates that only nonterminal flight phases be simulated by this model. Since each

degree of freedom. requires two state variables (the basic variable and its rate), a total of

twelve first-order differential equations are required to completely describe the motion of

the aircraft. Table 4.3 lists each state variable and its symbol. Note that if speed is

assumed to be relatively constant, then angle-of-attack and sideslip angle may be
suppIlemented for the y and z body axis velocity vector projections respectively. A detailed

derivqi~on of these equations-of-motion can be found in Etkin (1982) or Roskam (1979).

The state variabl-s are propagated in time via the integration module. This module

use.s a second-order Runge-Kutta midx)int ýagorithm to arrive at a new state based on the

state and control at the previous time. Running at 50 Ilertz, this integration technique has

been found to piovide a balanced tradeoff between numerical stability and processing

s pc(].
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Table 4.3 The twelve aircraft state variables and symbols

State Variables and Symbols

D1isplacement North x

Displacement Fast _,

Altitude h

Velocitr U

Angle of Attack a

Side Slip Angle

Pitch Angle 0

Roll Angle __ _

Yaw Angle ._

Roll Rate, .

Pitch Rate q

Yaw Rate r

An auxiliary component of the aircraft mwxlet that is not critical to the simulation but

is invaluable to the control law designer is the observation model. The function of the

observation model is to output a large class of aircraft measurements States, state

derivatives, accelerations, airdata parameters, force parameters, and a multitude of other

imniprtanr( data are funlished for observation. Of these parameiters, state infcýrmation as well

asvchic.e b:dv axis rate t: make up the set of parameters that have been traditionally used

ht f0e dbaik fight c o~i-rol.

By linking the previotsly descriord modules, a realistic, higtly complex, nonlinear

airc-aft model that poses forrmidahle challenges to the flight control designei is as.xlnrbled.

'Thc hi t, pRtornnacct aircraft computer .model receivc froim NASA was written in the

I[,)R'TRAN tiogrorimmitrg liigutage,. iL oideL :o pr0u(Xcc a imitxel coiupatible with the

Nctsu ', ,iiillation and dtcsi•,n !,ack.n disc!,sed in Section 4. IA, this FORTRAN vrr.aion

319



ATTACHMENT 2

was transposed into the C programming language by the author.

4.2.2 Ceneral Aircraft Characteristics

The flight envelope of the NASA aircraft model is characteristic of a high

performance fighter aircraft (Brumbaugh (1991)). Figure 4.15 below illustrates

approximate bounds of aircraft operation in terms of altitude and Mach number.

NASA Aircraft Flight Envelope

70000.

60000-

41110-

Altitude (ft) •

20

0.0 0.5 1.0 1.5 2.0 2.5 3.0

Mach

Figure 4.15 l-g Aircraft Flight Envelope.

To examine ýhe nonlinear dynamics of a complex aircraft model, the equations-of-

motion are frequently linearized about various operating conditions. By linearizing the

dynamics at a sufficient namnber of operating conditions within the envelope, an irnaroved

ov rall picture of the actual nonlinear dynamics can be gained. Generally, operating

:conditions near the boundary of the envelope, as well as a few centrally located points, are
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selected. The most common tecimir - in obtaining linearized dynamics is by invoking the

small perturbation theory based on a Taylor series expansion. This theory uses

infinitesimal perturbations from an eqailibrium or trimmed steady-state reference condition

to predict aircraft response to ,erturba' ns thuc are not infinitesimal. A trim condition is

classically defined as a constant velocity and altitude state with control surfaces and

throttles set to maintain this condition. If It is assurmed that all z erturbations and their

derivatives are small, the quadratic and higher order pro lucts of the perturbations will be

negligible comparm, to die first-order quantities. In other words, a linear model is obtained

by deriving relations of small deviations of all state and control variables about a steady-

state equilibrium condition L 1 retaining linear terms while ignoring quadratic and higher-

order terms. A detailed version of the following short derivation of this theory can be

found in (Athans (1990)).

Let x(t) and u(t) represent state and conxrol variables, respectively, with

X(t) C- 9V (4,8)

u(t) E 91' (4.9)

The nonlhiear state dynanmics in continuous time are given by

i(t) = f{x(t),U(t)} (4.10)

The reference state and control values representing an equilibrium condition (e.g.,

U(t) = 0) for the nonlinear equation are denoted by a subscript zero.

0o= {xf,uo} (4.11)

Small perturbations about the equilibrium condition are denoted with a lower case delta:

x(t) x0 + bx(t) (4.12)

,(t) - L )(4.13)

u(r) dtl0 + ,uu(t) (4 14)

Expanding the state dynamuics in a Taylor sefres atx)ut the equilibrium condition and solving
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for Si(t) while retaining linear terms and disregarding higher-order terms yields ýhe

following state perturbation dynamics:

6*(t) = A0&(t) + B0&(t) (4.15)

where

(Ao),= (4.16) a

(3) (4 1 7)

A0 and Bo are the Jacobian matrices of the Taylor series expansion of f{x(t),u(t)} centered

about xo and uo. Although the Jacobian matrices can occasionally be found in closm , form

for relatively simple systems, more complex systems often require numerical

differentiation. For this reason, numerical differentiation is used for the aircraft model to

calculate the Jacobian matrices.

Using the small pertuibation theoiy to linearize the equations-of-motion about an

equilibrium condition can provide insight into the local behavior of the nonlinear aircraft

dynamics in terms of stability, transient responses, and other system characteristics.

However, this theory is not without its limitations. Large numbers of linear models must

be computed to characterize the dynamics in highly nonlinear regions of the, flight envelope.

Moreover, the small perturbation theory is ill-suited to handle phases of flight where large

deviations from the nominal trim condition are encountered (Le., higli angle-of-attack flight

or spinning maneuvers).

Linearizing the equations-of-motion of the NASA aircraft has revealed that the

longitudinal dynamics are only lightly coupled with the lateral dynamics at the majo ,ity of

flight conditions. Moieover, control of the longitudinal or pitclfing motion is doirdnated~ by

symmetric movement of the horizontal tail anx engine th':ust whereas the rolling and

yawing motions a;sociated iith the lateral dynamics are tncst heavily itiflueaced by the
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ailerons and differential movements of the horizontal tadl For this reason, the airy.craft flight

control design problem can be separated into two distinct problems, each less complex than

the whole. The existence of the lightly coupled modes and the ability to decompose the

control system design is common to all but the most unconventional aircrf..

[he uncoupled, linearized longitudinal dynamics of the aircraft can b8- described by

a total of five coupled lin.ar, time-invariant differential equations that are a function of pit:h

rate, velocity, angle-of-attack, pitch angle, end altitude. If the linearized equation for the

dynamics of the total thirust in the longitudinal directioii is added to this set of variables, the

state of the aircraft for longitludinal motion is as follows (where T i3 total thrust):

x=[q u a q h TI (4.18)

If the dynamics of the inertial altitude and thrust are temporarily neglected, the four

remaining differentiai equations define the traditional natural modes associated with aircraft

pitching motion, namely dlie short period and phugoid moes. The short period mode is

characterized by a highly damped, high frequencý oscillation. The short period oscillations

represent chaages in anglc-of-attack axJ pitch angle with near constant trim speed. In

contrast, the phugoid rndo& exhibits very lightly damped, low frequency oscillations when

excited. Under the infiuence of the phugoid mode, the angle-of-attack remains essentially

constant while the spýed and pitch angle experience changes. This motion represents a

continual exchange of kinetic -wd potential energy ( f a slowly rising and falling airplane.

Table 4.4 contains the natural frequencies (alo) as well as the damping ratios (4) for the

open-loop longitudinal modes (sp = short period, ph = phugoid) of ihe NASA aircraft

mode! at tour equilibrium points (trim conditions) netux the subsonic boundary of the flight

envelope. Trim conditon 5, which is not on the boundary, is included since it will be u•sed

as the initial conditLon for rxperiments described in Sections 4.2.5 and 4.2.6.
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Table 4.4 High perftmiance aircrift longitudinal modes at various altitude wid Mach
number trim conditions.

Natural Fiequency and Damping Ratio: Longitudina! Modes

Trim Condition Altitude Mach (on ( I W

1 5000 0.31 1.88 0.58 0.11 0.04

2 5000 0.90 4.68 __ 0.28 * - *

335000 0.68 1.92 0.32 0.08.

4 35000 1 0.90 2.11 0.21 0.02 0.12

5 9800 0.60 1 2.77 0.52 0.08 0.07

** at this trim condition, the aircraft does not exhibit a hgid ±.motion __

For purposes of comparisoa, the values of iiatural frequency and damrping ratio for

a high maneuverability aircraft in nonterminal flight phases can be found in the military

specification regulation, MIL-F-8785C (1980) This regulation requires the phugoid mode

to have a damping ratio greater than 0.04 and the short period damping ratio to be between

0.35 and 1.30. Moreover, the short period must have a natural frequency approximately

founded by I and 10 radians per second, depending on load factor -nd angle-of-attack.

Examining Table 4.4 above, the NASA aircraft fails to meet the requirements for

longitudinal motion in some areas of the flight envelope. However, through the dse oft a

control system, the aircraft modes can be modified to meet the military specifications. Fol'

the hybrid contryl law, this is accomplished by se.lecting a reference model that meets these

spccifications.

4.3.3 Aircraft Refevence Model

As discussed in Section 3.3, the reference' model genierates the desired state

trajectory for the hybrid con,(rolled aircraft *Utawes. DurliIg the l.-oces.. of scýIect'ng a

I#:ferer•c,': model, v'cke arteoition was paid to er•iuring that 1the',,int the rzferr nce

t~aiecs,; did iow, rtluix• ks Ocawra controw actions. Since the rate and position of the
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hofrizo:tud stabilator is fimited, unrealistic demands on control can Iranslate into either rate

of position saturation (e.g., an inability to exercise the control that has been calculated by

O ths control law)> Control saturation leads to inadequate performance (i.e., fails military or

other specifications) and pos,,ibly to instabilities.

"Tihe reference model for the high performance aircraft was chosen to be the linear

c&,sed..loop system that results from applying an optimal linear control design to the open-

loop dynamics linearized about a selected trim condition. For the experiments in Section

4.2.5 and 4.2.6, the linearized dynamics at trim condition 5 (see rable 4.4) were used.

The state and coutrol weights for the quaaratic cost function used by the optimal control

law were initially selected using guidelines suggested by Bryson & Ho (1975) and

Kwakemaak & Sivan (1972). Trial and error (based on simulations of the linear dynamics)

were used to arrive at the final cost function. The natural frequency and damping ratios for

the modes of the closed-loop reference system are listed in Table 4.5.

Table 4.5 Reference Model Longitudinal Modes

Natural Frequency and Damping Ratio

1.46 0.96 0.75 0.96

Compared to the open-loop dynamics, the closed-loop reference model has modes

that are heavily damped. Moreover, the natural frequency of the phugoid is much higher in

the closed-loop system. This reference system meets military specification requirements.

4.2.4 Application Isslies

In this section, the application of the hybrid flight control law to the high

performance tircraft model is oiscussed. Figure 4.16 illustrates the block diagram

rtepre',eatring the closed-loop simulation of the hybrid controlled aircraft model in the

NetSim slfitll'tior, anrd ,.esign package.
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Hybrid Controlled Aircraft Simulation

I OrderSys Referenc! rcraet i

TS1

2 .. 10 3

L Ric et -1 A/C Switch

Figure 4.16 Block Diagram of the Hybrid Controlled Aircraft Simulation

The main modules in Figure. 4.16 represent the reference model, hybrid controller,

high performance aircraft model, and the linear-Gaussian network. The function of the

remaining modules is to modify the output signals (represented by the connecting arrows)

passed to the main modules. Again, the number in the lower left corner of each block

dictates the order of execution at each time step. Modules that are called more than once per

time step are shown with multiple sequence nunibers. The following paragraph outlines

the principal function of each module.

Random is the first module that is executed. It generates randomly selected

reference commands for the altitude and velocity of the aircraft within a user-defined

operating range. The length of time these commands are held constant before a new set of

reference commands is generated is also determined by the user. The commands are

supplied to the 1st Order Sys module. This module processes the reference commands

with a user-defined, rate-imited first-order filter. The purpose of this module is to smooth

the step comnands generated by the random module, effectively outputting a smoothed

ramp to a step command. The function of Reference is to generate the esired state

trajectory that is to be followed by the hybrid control law. The reference model t, zt is used
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is discussed in Section 4.2.1. The A/C Switch module supplies the state at the current

time, as well as the state and control at the previous time step to the network. The switch

also sends a flag to the network to ensure that learning only occurs with states and controls

that are at consistent times. The linear-Gaussian network in the hybrid control architecture

is contained in A/C Ne. The role of the Multiplexor (shown with sequence numbers 6

and 9) is to store the output of the learned mapping for various inputs of state and control

required by the hybrid control law. Hybrid executes the hybrid control law developed in

Section 3.3. The complete high performance aircraft is model is contained in the Aircraft

module.

4.2.5 Hfigh Performance Aircraft Experiment 1

In experiment 1, the aircraft was given random cbmmands for altitude and velocity.

More specifically, the random altitude commands were between ±.500 feet and the random

velocity commands were between ±10 feet per second. As discussed in Section 4.2.4, the

commands are filtered by a rate limited, first-order system. The rate limits for altitude and

Iocity were set to 50 feet per second and 4 feet per second per second, respectively. The

filtering and rate limiting is intended to result in a physically feasible reference trajectory.

The initial condition for the aircraft was an e&uilib-ium condition at an altitude of 9800 feet

and velocity of 539 feet per second (trim condition 5 in Table 4.4). For each new

randomly generated command, the aircraft was reinitialized to this same trim condition. By

randomly selecting commands, the objective was to generate state trajectories that fully

traverse a small region of the aircraft operating envelope.

Similar to the experiments involving the aeroelastic oscillatoi, the linearized

dynamics of the aircraft supplied to the hybrid controller were perturbed from their actual

values. The purpose of the perturbations was to increase model uncertainty, a feature the
A

hybrid controller is able to accorminiodate. The perturbations to the dynamics can be viewed

as a situation wherein the flight control system is provided linearized dynamics that
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represent a trim condition other than that for which the maneuvers are actually to take place.

The intent is to illustrate that the hybrid controller is able to adequately control the. aircraft

given an inaccurate linear representation, indicating that less accurate a priori design

information is needed and thereby use of the hybrid controller can effectively reduce design

costs.

The learning component used in the hybrid control law was again the spatially

localized system developed in Section 3.2. For this case, the network consisted of 8 linear-

Gaussian nodes. This relatively small number of nodes was consideied to be sufficient due

to the modest nonlinearities expected for the specified class of reference trajectories. Of the

two largest factors in determining the nonlinearity of the system, angle-of-attack and Mach

number, only angle-of-attack experiences significant changes during the maneuvers

associated with these ieference trajectories. This is due to the relatively small commanded

changes in altitude and velocity when compared to the flight envelope, and thus small

changes in Mach number. The centers of the linear-Gaussian nodes were arranged in a

user-defined grid over the input space, with the highest density of nodes in the angle-of-

attack dimension (due to expected nonlinearities). Moreover, the spatial decay of each node

was varied as a function of the center location of its nearest neighbor. The closer the

neighboring center, the higher the spatial decay, and conversely, the farther the neighboring

center, the lower the spatial decay. This pattern ensures that each point in the input space

can be adequately mapped to the desired output values. Initial 'values for the slopes and

t)iases of the linear-Gaussian nodes were set to zero, since no a priori design information

was assumed. Due to this initialization to zero, the learning system does not impact the

states at start-up and all of the unknown dynamics are initially faced by the TDC adaptive

component. After evaluating the relative magnitude of each element of the unknown

dynamics and disturbance vectors supplied by the adaptive component, the cost function

(Equation 3.20) was weighted to ensure all errors betwecti the desired output and actual

network output have the same significance. Equation (4, 9) demonstrates how the cost
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function can be weighted for specific errors between the desired and actual network output:

j= [d(x)- f,(x,p)] (C[d(x) - f ,(x,p)] (4.19)

where C is a diagonal matrix with user-supplhes weights along the diagonal. The global

learning rate (cx) was selected by trial and error in order to find the highest rate of

convergence to the desired output with adequate accuracy while still maintaining a static

mapping (i.e., one for which parameters are not in a continuous state of change).

The model of the aircraft dynamics, which is in a contintous time form, was

integrated at 50 Hertz to provide a balanced tradeoff between numerical stability and

processing speed. However, the control signal was calculated at a more moderate rate of

10 Hertz in order to reduce the real-time sensing and computation requirements in

determining the complete state.

After running the simulation with randomly generated commands for 500 trials, of

20 seconds each, the learning system was able to build a mapping of a significant amount

of the previously unknown dynamics. Since the true mapping of the unknown dynamics is

not known (in contrast to the case with the aeroela-stic oscillator), the cost, as defined in

Equation (4.19), is used as a measure of performance of the learning system. Figure 4.17

illustrates both the initial cost mad the cost after learning after 500 trials for a 500 foot climb

and simultaneous 10 feet pe," second increase in velocity.
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Cost vs Time

..... Initial Cost

Cost After Learning

00 4

0 5 10 15 20

Time (sec)

Figure 4.17 Comparison between initial cost and cost after 500 trials.

Since the cost is significantly less for the case after learning, th is ind' ates that the

learning component of the hybrid law has built a mnapping of a significant amount of the

unknown dynam~cs. If the simulation is allowed to run even longer, the cost will further

decrease. However, since the tnue aircraft model dynam~ics are very high dimensional and

contains states that are not included as inputs to the network (e.g., the state of the

actuators), it is impossible to completely learni the initially unknown dynamics. For this

reason, there. will always be a finite, non-zero cost.

T'he state trajectories for the reference mrodel, for the TDC controlled aircraft, and

for the hybrid controlled aircraft for a commanded 500 foolt climb and 10 feet per second

increase in velocity are shown in Figures 4.18(a) through 4.23(a). Since the difference

between these trajectories is typically small compared to the absolute initial trim values, the

errors between the desired reference and the actuai trajectory for both the TDC and hybrid

controlled aircraft are shown in Figwres 4.18(b) through 4.233(b) rhe hor~zontal stabilator

deflection and throttle position for the TDC and hybrid controlled aircraft are shown in
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Fi,• .� � 4.24 and 4.25. These values represent the actual values used or. the aircraft. Due

t .i itor dynamics, theme atual values are generally not the commanded output calculated

ty tbc given control law.

As illustrated by the state trajectories, the hybrid controJ law offotrs improvements

o'rý,x the TDC contrviler. Although the errors in velocity and altitude are relatively small,

•r,.zrs in the vehicle rates and angles are significut in the sense that oscillations about the

rvf-1•rence trajectory are redu(ed. This reduction in oscillations for the hybrid controlled

a,,,•craft has the potentiaý to change a response that was formerly objectionable to the pilot to

one that is satisfactory. Moreover, the horizontal stabilator deflection for the hybrid

;-ontrolled aircraft is improved over that of the TDC controlled aircraft in the sense that the

control signal is less oscillatory (and subsequently !Lzss taxing on the actuators).

The trajectoxies for the reference model and the hybrid contrc led aircraft diff.er for

two Major reasons. The first, as previously ciscussed, is the inability of the learning

system to map the unknown dynamics for ctr,%e;i that are not given as inputs to the network

(e g, actlaia sti',•s). Perhaps more significant are the difficulties associaved with

1a~e~llit ,~ to 'at . more. states Ohan there are available control inputs. Since a pseudo-

nrw~r,, m $' vi Ied in the hybrid contiol law when tht. number of controls is less than the

nur•[t.r YF ;tx•,ý as discussed in Section 3.3, the tracking of (ie complete state is not

guara"•,v , for a simulated case without anN unkncwn ojyn:an-ics (Anderson &

Schmidt (,,, E.. Due to this inability to control all the state variables, it is almost cet.tain

that differences will exist between the reference and actual trajectories. As a result, errors

between tile reference trajectory and the hybrid controlled trajectory do not oex-,: ssarily

represent iý,lure of the learning system to man me unknown dyhamics, but an inability t,

control all the stal*es to a refeixncL qajectory with a litmited n.nber (A controls.
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Pitch Rate vs Time

0.II

Reference Pitch Rate
......... TDC Pitch Rate

S-Hybrid Pitch Rate

-0.1'--I
0 5 10 15 20

Timoe (see)

Figure 4.18(a) Pitch rate trajectories for the reference model, TDC controlled
aircraft, and hybrid controlled aircraft after 500 trials.

Pitch Rate Error vs Time

"--------- IT)C Pitch Rate Error
9, Hybrid Pitch Rate E

i 0.04- -

-. W

-0.04-

Tin1e

Figure 4.18(b) Error in pitch rate between refertnice trajectofy and TIXL or hybrid
controlled aircraft.
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'Velocity vs Time
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...__.'__ TDC Velocity

Hybrid Velocity
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Figure 4.19(a) Velocity trajectories for the referenc'e model, TDC controlled
aircraft, and hybrid controlled aircraft after 500 trials.

Velocity Error vs Time
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Fi gui re 4. 1 9)(b') [ ~r In l• ty' bc-twcen r1wetvcr.' trAiectory 'ind tI'X hybrid
c•: Mill o.I VJt ,ircli!t.
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Angle-of-Attack vs Time
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Figure 4.20(a) Angle-of-attack trajectories for the reference model, 'ITDC controlled
aircraft, and hybrid controlled aircraft after 500 trials.

Angle-of-Attack Error vs Time
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F;gure 4.20(b) Error in ,rngle-of-attack beoveen reference trale•_tory and TIXC or
hybri) controlled a .rcraft.
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Pitch Angle vs Time
0.3 l T_.- -

* Reference Pitch Angle
TDC Pitch Angle
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Figure 4.21(a) Pitch angle trajectories for the reference model, TDC controlled
'.ircraft, and hybrid controlled aircraft after 500 trials.

Pitch Angle Error v. Time

I TIDC Pitch Angle Frror

- 0.02- -Hybrid Pit>,, Angle Error
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515 20
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Figurv 4.2116) Er-;r in pitch angle between refereno trajectory and TI)C or hybnris
controlled aircraft.
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Altitude vs Time

10300 -.. ,,. - --- -

10200- - ---"

"-"10100 0_ _-,

"* 10000 -..... - -....... --

._ _- -- ......... Commanded Altitude
9.00 Reference Altitude

9800 TDC Altitade
Hybrid Altitude

9700- II I
0 5 10 15 20

Time (sec)

Figure 4.22(a) Altitude trajectories for the reference madel, 'T'DC controlled aircraft,
and hybrid controlled ailcraft after 500 triaJls.

Altitude Ertor vs Time
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2 ---- z LHybrid Altitude Error

4 .-

1 - 6

0 5 10 15 20

Time (sec)

Figure 4.22(h) Error inl altitude between rettrience traie:or'y and "ix? or htybrid
contro! led ari aft.
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Thrust vs Time
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Figure 4.23(a) Thrust trajectories for the reference model, TDC controlled aircri4t,
and hybrid controlled aircraft after 500 trials.

Thrust Error vs Time
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Fiur 4.23( b Ur:oi [k uuuisr bef~veen reCelen r;He jv;i~ I).~~v
co'troIled at•craft.
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Horizontal Stabilator vs Time
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Figure 4124 Horizontal stabilator deflection for the TDC and hybrid con"oiled aircmft.

Throttle Postion vs Time
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Figure 4.25 Tfrotdt positon for the '1 1iX and hybrid cont-IHed aixicaft.
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Nonetheless, exlperiment 1 demonstrates that the hybrid controller is able to

improve the performance of the aircraft over the purely adaptive TDC controller. This

improved performance is realized by exploiting the learned functional mapping of the

previously unknown model dynamics to remrove the delay associated with the adaptive

component and reduce the model uncertainty to arrive at a superior nonlinear control law.

The next experiment illustrates the ability to generalize the synthesized mapping to a larger

input space generated by using a more demanding commanded altitude rate.

4.2.6 High Performance AircraftExperiment 2

The objective of experiment 2 is to demonstrate the local generalization abilities of

the learned functional mapping to areas of the input space that have not explicitly been

trained. By increasing the rate limit on the randomly generated altitude command to 100

feet per second, the region of the input space for which controls must be computed is

effectively increased. Moreover, the reference trajectory is more demanding in the sense

that larger controls (resulting in larger angles and angular rates) are required to follow this

trajectory.

Beyond the increased altitude rate limit, the setup of experiment 2 is ideatical to

experiment 1 in terms of the learning system, initialization, and control calculation rate.

Figures 4.26 through 4.31 contain the state trajectories for the reference model, TDC

controlled aircraft, and hybrid controlled aircraft for a commanded 500 foot climb (at a 100

feet per second rate) and 10 feet per second increase in velocity using the previously

traimmd network in experiment 1. The horizontal stabilator and throttle position applied to

the aircraft for both the TDC and hybrid responses are shown in Figures 4.32 and 4.33.
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Pitch Rate vs Time
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Figure 4.26 Pitch rate trajectories for the reference model, TDC controlled aircraft, and

hybrid controlled aircraft using the network learned in experiment 1.

Velocity vs Time
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Figure 4.27 Velocity trajectories for the reference model, TDC controlled aircraft, and
hybiid controlled aircraft assig the network leai ned in experiment 1.
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Angle-of-Attack vs Time
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Figure 4.28 Angle-of-attack trajectories for the reference model, TDC controlled aircraft,
and hybrid controlled aircraft using the network learned in experiment 1

Pitch Angle vs Time
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Figure 4.29 Pitch angle trajectories for the reference model, TD)C controlled aircraft, and
hybrid controlled aircraft using the network iearnfd in experiment 1.
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Altitude vs Time
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Figure 4.30 Altitude trajectories for the reference model, TDC controlled aircraft, and
hybrid contro'led aiJcraft using the network learned in exveriment 1.

Thrust vs Time

30000" i Reference Thrust

......... TDC Thrust
Hybrid Thr'ust

20000 ...

0 55 1152

°limne (see)

Figure 4.31 Thrust traJeCtories for the reference mrodel, T]DK•conirolle-d aircraft, and
hybrid controlled aircraft using the network learned im experiment 1.
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Horizontal Stabilator vs Time
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Figure 4.32 Horizontal stabilator deflection for the TDC and hybrid controlled aircraft.
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Fi ure 4.33 Thrott!c posifiori for dhe T[)( and hybrid co(lfllrlied aucraft.
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As illustrated by the state trajectories, the TDC control law is unable to provide the

control necessary to reach the commanded states, whe:eas the hybrid controlled aircraft

generally follows the reference trajectory. Moreover, the banging of the horizontal

stabilator and throttle against their limits for the TDC controller illustrates a desperate

attempt to regain the desired state trajectory. This failure of TDC demonstrates the

consequences of not using experientially gained knowledge to remove the delay in the

estimate in the unknown dynamics and an inability to accommodate model uncertainty

(e.g., improve the a priori estimate of the control weighting matrix).

Experiment 2 also demonstrates the ability of the learning system to generalize to

nearby regions of the input space for which it has not explicitly received training samples.

This feature is especially important due to that fact that the hybrid control law uses a

passive learning system. Under passive learning, the iearning system does not guide the

vehicle in an active search of the input space. Instead, the learring system is opportunistic

in the sense that it le:arns for a given region of the input space presented by the adaptive

controller for the state trajectories that have been flown. As a result, areas of the input

space in which TDC in unable to traverse can not initial'y receive training information.

However, due to generalization, the hybiid controller is able to stal-ilize and control the

aircraft in areas the purely adaptive control law fails. Later c o.: ursions through these

regions will provide additional inputs for tue learning system to z,. tess. This, of course,

suggests a conservative approach to flight testing / lewrring if thc 'y,7 id controller were to

be employed. Sinceý the hybrid controller is able to akL,.uateiy c .ui, the aircraft givetn an,

ipaccurate linear representation, less a f.iori design infonna',, , is needed (i.e., fewer

design point linearizations), effectively reducing design: 1. J d automating the tuning

process.
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5 CONCLUSIONS AND RECOMMENDATIONS

5.1 SUMMA'RY AND CONCLUSIONS

This thesis describes the development and applicatioa of a hybrid contcoi system to

the problem of flight control for a high performance aircraft.. By combining an adaptive

component based on the TDC approach with a learning Eystem, an innovative new hybrid

controller has 'been formed that allows each of these two mechanisms to focus on the

control objective for which it is best suited. 1be adaptive component of the hybrid

controller accomnodates some of the unmodeledl dynamics and provides estimates of any

,,'nmodeled state dependent dynamic behavior to the learning systemn. The connectionist

`raiýT system synthesZes it -Functional approximnation of the state dependent dynamic

beh~t :i .Using this learned mapping, the hybrid control system is able to predict state

dependent behavior, effectively removing the delay an adaptive controller exneriences due

to its reactive nature.

The impact of a c~ontrctller that has the ability to, anticipate ve hicle behavior has been

illustrated in teains of improved closed,-loop aircraft performance. It lia,3 also beeni shown

that by using dcrivative information fr-om the learrned moappinig, model u~ncertainty could be-

reduced ai each operating condition, essentially automating the tuning process normally

ass(Kclated with galin scheduled controllers. 1)uc to its ability to reduce model uncertainty,

the hybr id systiem adeq.iarely controls the aircraft e~ en ini situations where. an inaccurate

linecal repre~sentation was used as the system inodel dufing the ffnitial design of the &:.ontrol

law. As a result, lcss la priori design infloriiifl is INVleded (i.e., fewerdeinjut

lirwedrliatl(:).fs), ef~i"Ccively reduciný?,, de~sjg -19 S
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This thesis has also demonstrated the ability of a spatially localized learning system

to synthesize a nonlinear, multivariable mapping in a control environment. More

specifically, it has been shown that a linear-Gaussian network is able to learn a functional

approximation of the initially unknown dynamics, given state and control information,

ising an incremental learning approach,

5.2 RECOMMENDATIONS FOR FUTTURE WORK

The major constrair to the amount of improvement the hybrid control system could

realize was not a function ef the unknown dynamics or the ability of the learning system to

synthesize this mapping, 'Jut the requirement that all the states follow their given reference

trajectory. Since aircraft have more states than controls, this requirement is unrealistic from

the control standpoiat. Mc eover, in many cases, only a few of the states are of direct

importapce. Further resear-h following (Anderson & Schmidt (1990)) should focus on

reducing the numrt er of ck itrolled states to be the same as the number of control inputs

Using this appro :h, 'ie p' eudo-inverse requi-ed in thie derivation of the hybrid control law

would be repla: ;d b , a true inverse, essentially allowing perfect model f illowing for the

case where ah of (he mi:ially unknown dynamics are learned and ther is no state and

control observation noise,.

Anot ,- r tafea for future work is the expansion )f the hybrid control system to map

the entire f ight envelope, as compared to a small subset of traijectories. This research

would rleire a much larger network than that used for the experiments in this thesis, due

to the exi 'ted nonlinearities in Mach numn'ir as well as angle-of- attack. A thorough

c xanhinatO( of fhe abilities of the hybrid control law trained over the entjre flhght envceope

could fu,,ther highlight the advantages of this leairning enhanced contr(I le.r ,)v

Cony •iitonal techniques.

A future investigarillo. into ulSin1g dif :Ire-i0 types o0 ada1 l)ti Ceco .)ronel L[ts ci.e., thcr

S?,t
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than TDC) in the hybrid control law is recommended (Astrom & Wittenmark (1989),

Slotine & Li (1991)). Moreover, future reseaxch should examine areas of automatic flight

control other than autopilots (e.g., stability augmentation systems and control

augmentations systems) where the hybrid control law offers potential improvements.
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ABSTRACT

Leart•Jng systems reprerent nn approach to optimal control law design fo,"
situationvs here initial trodel uncertainty pred-udes the zse of robust, fixed cnfrol
iaws, This thesis analyzes a variety of technivjues for the incremental synthesis
of cptimal control lavws, where thý. descripior incrcmet~nd implies that an on-line
implementation Miers the informatiom acquired through xeal-ti:me irteractions with
the plant •nd the operating eaviromneut. A direct/indirect framtework is proposed
as a means of ci.6wsiring a•,-.)arhes to lew-ning optimal control laws. Within this
fnwmework, relationships among exatsting direct aJgorithms are examiaed, and a
specific class of indirect c-.)rtrol iaws is developed.

Direct leariing control i "mpaies that the fwedbac. loop that motivates the !eari-
iig process is dos)d around r;ystem performance. Reinforcement learning is a type of
dirlt learJning tec-hiqiue with o(-igias in the prediction of animal learaiing phenorn-
e.a that, is large1y rc-it'icted to discr#!tc input aud output spaces. Three algorithms
that employ the concept of reiniorcement lear~trxig are presented: tie Associative
.or;rol Process, Q learning, axwd the Adaptive Heuristic Critic.

Indirect learning control 6'enotes a class of incremental control law synthesis
methods for which the leirning loop is closed around the system model. The ap-
proach discussed in this thesis integrnf., es information froin a learned mapping of the
initially unimodeled dyuamics into finite horizon optima] control Iws. Therefore,
the derivation of the control ?aw structitre rs well as the dlosed-ioop performance
remain largr!.y external to the learniug pcoeess. Selection of , method to approxi-

mate the no'linear function thbt rt:presents the initially utniodeled d3yrnacs is a
s*eparat. z;e , explicitly addressed in this thesis.

DynaiPic p:'ogratuming and differetial dynaiiic progrrmnming are reviewed
to illistrate how learniPg' netiiods relate to these clasic4 l approazhe' to optimal
control denign.

The acrocAast:c osc'liator is a two state maws-spri.g-.dashpot system excited
by a nonlinei'ar lift force. Several lezvnirng control -lgorithms arn: applied to the
acrer~lasv (os,cl-itor to either regulate tbe ruass position about . commainwded point
or tr traci' t ,.,3Žun refe-rer,ce trajectory; the advantagss and dis&d vantages of
these n, itgor.i ms are iiscussed.

........ o ",,essor N471, e E. Vandir 'Velde
T i iwdr't of .Ac-f.Co..Sau.ics ,

'I V i % i,'~ .~ :t'tVb r of T~ch~:Aica :.tat] ........... ,,a e i'<a,;r:,tcor'
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Chapter 1

Introduction

1.1 Problem Statement

The pr'mar-y objective of this thesis is to XUtcreIr'nt aly s; nthezrlc a nonimn-

ear optimali. control law, throughia ie o dkpitrcin betelth

(lynaxiic systexnl, its enivironmnent, and a learniing systemn, when substantial Irn.tal

in idel rrncertainty exists.- The dy,ýnarnic syste'tn is assumed to 6c~ noahln-ýar, titufl

invariant., and of knlowin state iics'n but ottic, wise oalN ina4; uratiAy de--scri b4-

by a.i i a priori m1odel. The probhcly, hci clfore, i equile- either ex-jiicit or iiuplici1

sy st~t-i ideut ificat i-n No (list, IITbanlct ý, 1104, or1 Otter burn vri" dymauics (Ix

v-t.- Fl opiliHal contro dlawv is as'd, I e tt(B I- vM Bat BdI ()I the Staite

taject( ly tIdthe c '11i iol 5S(1 1wnI~ce, ior 0h 1ýý oV l il(IltBion
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Chapter I - Introduction

1.2 Thesis Overview

One objecti ve of this thesis is to present an investigation of several approaches

for incremeatally syinthesizing (on-iine) an optimal control law. A second objec-

tive is to propose a direcA/indirect fraunewoik, with which to distinguish learning

algorithms. This fraim•work subsumes concepts such as supervised/ursupervised

learning and reinforcement loaxiiing, which are not directly related to control law

synthesl,•. Th•is thesis tnifies a variety of concepts from control theory and behav-

ioral science (where the learninJg processiz baeen considered extensively) by pre-

senting two different leaxting algorithms applied to the same control problem: the

Associative Control Process (ACP) algoritiun [14], which was initially developed to

predict animal behavior, and Q learning [16], which derives from the mathematical

theory of value iteration.

The aeroelastic oscillator (§2), a two-state physical system that exhibits inter-

esting nonlanear dynamics, is used throughout the thesis to evaluate different control

algorithms which incorporate learning. The algorithms that are e.xiplored in §3, §4,

and §5 do noc explicitly employ dynamic models of the system and, therefore, may

Lc categorized as direct methods of learning an optimal control law. In contrast, §6

develops an Midirect, model-based, approach to learning an optimal control law.

'The Associative Control Proce-ss is a specific reinforcement learning algorithm

applied to optimal control, and a description of the ACP in §3 int:oduces the

(co>ncept of dir,,ct learning of -n optimal co. '-el law. The ACP, which inclades

a proini.,ent network architecture, originated In the st-idies of animal beli vior.

I he Q learning algorithin, which denive; from the mathematical thtx-rems of policy
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iteration and value iteration, is a simple reinforcement !earning rule independent

of a network architecture and of biological origins. Interestingly, Kiop:"s ACP

[14] may be reduced so that the resulting system accomplishes Watkins' Q karning

algorithm [16]. Sutton's theory of the temporal difference methods [15], presented in

§5, subsumes the ACP and Q learning algorithms by generalizing the reinforcement

learning paradigm appfied to optimal control.

Several control laws that are optimal with respect to various fiaite horizon cwst

functionals are derived in §6 to introduce the indirect approach to learning qoctimal

controls. The structure of the control laws with and without learning augmentation

appears for several cost functionals, to illustrate the manner in which learning may

augment a fixed parameter control design.

Finally, dynamic programming (DP) and differential dynamic programming

(DDP) are reviewed in Appendix A as classical, alternative methods for synthesizing

optimal controls. DDP is not restricted to operations in a discrete input space

and discrete output spare. The DP and DDP algorithms are model-based and,

therefore, learning may be introduced by explicitly improving the a priori model,

re.,L1t;ng in an indirect learning optimal controller. However, neither DP nor DDP

is easilY implemented on-line. Additionally, DDP does not address the problem of

synthes'izihg a control !law over :he full statc space.

1 ,1 Z
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C;hupter 7. - Introductd op

1-.3 Concepts

The primary job of an automatic controller is to manipulate the inputp of a

dynamic system so that the system Aihavior satisfies the stability and perfeormance

specifications which constitute the control objective. The design of such a control

law may involve numerous ditfculties, including multivariable, nonlinear, and time

varying dynamics, with mamy degrees of fi edom. Further desigu challenges arrse

from the existence of model uncertainty, disturbances ,zd noise, complex objective

function.,, operational constraints, and the possibility of -vomponient failiue. An

examination of the literature reveals that contral design meth~odlogies typicahy

address a subset of these issues while making simplifying assumptions to saisfy the

remainder -- a nothu to which this thesis conforms.

This section is intended to introduce the reader to some of the relevant issues
by previewing concepts that appear throughout the thesis and are peculiar to learn-

ing systems and control law, development. Additionally, this section motivates the

importance of learning control research.

1.3.1 Optimal Control

This thesis examines methods for synthesizing optimal control laws, the ob-

jective of whjch is to extremize a scalar functional evaluation of the state trajectory

and control history. The solution of an optimal control problem gentially requires

the solution of a coustrained optirmization problem; the calculus of vahiati,,s aund

dylaunc progra'aling address this issue. However, aLn optimal control rule :nay he

evaliuitei bLy these wetnod.s only if ani accurate xtodel of the dynarnics in available.



ATTACHMENT 3

1.3 Concepts

In the absence of a complete and accurate a priori model, these approaches may

be applied to a model that is derived through observed objective fuxL :tion evalua-

tions and state transitions; this constitutes indirect learning control. Alternatively,

in environments with substantial initial uncertainty, direct learniag control caii bo

considered to perform incremental dynamic programming without explizitly esti-

mating a system model [1].

1.3.2 Fixed and Adjustable Control

Most control laws may be classified into one of two broad categories: fixed oi"

adjustable. The constant parameters of fixed control designs are selected using aa

a priori model of the plant dynamics. As a result, stability robuGtness to modeling

uncertainty is potentially traded against performance; the attaiaable performance

of the ciosed- loop system is limited by the accuracy of the a p~riori description

of the equations of motion and statistical descriptions o)f noise and ditui ice.

Adjustable control laws incorporate real-time data to reduce, either explicitly or

implicitly, model uncertainty, with the intention oi improving the closed-loop re-

sponse.

An adjustable control design becomes necessary In enviroi.lnents where the

controller must oper'te in uncertain conditions or when a fixed parameter control

law that pC, forIs sufflcieLtly weLl cannot "he desig ld friom the limited a prio:i

Siiformatioin. The two ulain claswes -)f adju'iiOblc tontiol awc ,kd(- tat~on and learn-

IIn-,; both ro.fdl',uýe th- le'el " Uflc-¶rtatrntv filte'iyg empirical data tvat is gained
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~ - Irtrodiudthstj

L3.1 Aoaptlye Control

ik;is,. axd ditu~btices, wwcich w-e prcen:ext 'n ae real systems, c~pes~ent "he

v~xnprndct able, tim~e (7epezi~eo. fe,%Mxc" oi the aynexxius. Vtxrdiwearities and cou-

pled d-; micsf, wh~c h are preic~ uit ýý-av func oais, constitute the rennaining

mdlerirors. A Adaptive control tcl.Uiqus re~t to dyazucE~ that. appear to, be

time rarying, whi~c le~rvta entro1~er pxugres3iveiy &ecquire spatially dependent

knowie'Jdge about Unmodeled aynamics. Thiis ftins-amental dJifference in focus allows

learu2 g' kysterns to avoid several ei-ficlen-ies exlui~ctrd by adaptive algorithms in

~cori~~iMod~el el~.s VWherxex~ the plant operating condition. changes, a

new regioL of The. ionhiacr rjarn~cp may bl- e-ncountirew- A memrxoryless adaptive

conn%.cI method must reactively adijust the control law p~rameters after 3bserving

tbC Sy,,kh,,n beha'ýIor fbi the cuirrert condition], ý '.en Lif that 4ý'eratingz condition hvs

been pre-vi,),j41y ex-pecienced. The transýýent efects of frequeyjAy adapting coutrol

pa~ramxeters ulay Jegrade cloed- loop performance. A learzdagsystcin, wlLich utilizes

inemory to recall the appropriate cont;:ol parainet~ets as a fhivctiot of the opera~1ng

coudition or state of the system, may Ibe chaxacritn.ed as predid~ive rather than

rezui(ýAve.

Adaptive control exists ir. two flavors: direct and indihrect. Ldirect adaptive

control methods calc-ulate contzol actioas fromn ani ex-plcit aiodel of the system.n.

wihis enhajiceri With respect to the. a pr cmpitlxmigh a sytm da

*it oiprocedure. Dir ect iviapt ive \Od)ftrol 1in1ahod fO. .' the u';tmio sys'teml

pftratntei s withotut e~xpb(lit ly developing rnivmnsA h itQ.ystcmnnodl

Fhe terw s~jixiitI'p~I:s a funactionI tilat dot iio't e~xpiciliy (nd oi
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While direct adaptive techniques to perform regulation and tracking are well estab-

fished, adaptive optimal controllers are primarily indirect.

1.3.4 Learning Control

A learning control system is characterized by the automatic synthesis of a

functional mapping through the filtering of information acquired during previous

real-time interactions with the plant and operating environment [2j. With the

availability of additional experience, the mapping of appropriate control actions as

a function of state or the mapping of unmodeled dynamics as a function of state and

control, is incrementally improved. A learning system, which is implemented using

a general function approximation scheme, may either augment traditional fixed or

adaptive control designs, or may operate independently.

1.3.5 Generalization and Locality in Learning

Generalization in a parameterized, continuous mapping implies that each ad-

jvstabl, ,:Ixaaaeter influences the mapping over a region of non-zero measure [4].

The effect of generalization in function synthesis is to provide automatic interpola-

tion betweer training data. If the plant dynamics are continuous fuictions of time

and state, then the control Jaw will also be continuous. Therefore, the vaxlidity of

ge.Tiialization follows directly fLom the continuity of the dy-arnics and the desired

co,,it r,,law [2].

"The ,:oinwcept of locaility of learning ;,, related to generalizaticon, but diffeis in

c.,pv. I.oc.ality of learniog implie that a chxaJge iv a•l' single adjustable par rnct:cr

wil on1Y ,3dtei the mapped function ovw. a loca•lized region of the input space For
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l ze earnir~g, extemis,,ve triu','k,'j;, n a restricted rfegion of Aihe input space,

which~ raiight ý:jccur wh(.r.,, a S~yst'ý-Ax. 'A'ste aou a trim :,,ondifio,., can corrupt

the proviv~ous].y, acquirvd n~pi~;k-other vxegions "herefo~re, cm-n~liiw sem&ring for

whch ~ ~ ~ ~ ~ ~ ~ ~ ~~~. ,riigsmlsmy~ ow~r..xl . region of thle input Sp~c'ý,

requires the locality attribute [2,3,4.1

1.3.6 Su'perv'seci and Unsuper'ised Leamlhivg,

Lem-rnng procedures, iny be d stinguiished. as sui;'A~rv-Sied -K unsupervised ac.-

cordbng to the type of iustrru ctona i •onnation: provided 1by th ', ernviroxument.

supervi~sed leasring coxntrolkh, requires bod:I t tea& er th'at r~i the de"'ired

tetn response axd the cost fumic Lional dephccends cm the sytoutpvu.t ern'oPr

[5), Supervised, lear ning, qorls~vteis oftex. form Lhe ecrvo.t: sxgma' by compoaring

mea~sured s;ystein duixactes 'w, tics-with predit'o~ gnr te Ka IerJno'i

The supervised kkarnu41,g Ixj:s Ie~uae Wý ,i~ djsaA Iaweew

the Internal Y.nd&,fiutwries b-, her a

The dits. of ¼uue.(hc. cOrtxoý * k"AH)\ ý ~nxtluough a .sCuLJ~i evaluative

feedbaA-k sigaal, suIi- i %s' Ovw measn( toy;~ieA~ a c",M~.xon, 'at is kssii

inf ormnative thmi~ the vradint ye,ý: lw ý Ose~ co'' (W~ t h trlý w-axh ý, I ist~afhl

paranwt r, TINII type. of hlearni-ng o ý'\' U 0 1uv h ' X~aU¼1h

scallI~.\ e-111 ki t*nu.I whu~ic ¼ w ues Jfron, ' d "Inkux iii '1'1 In dlm

(-ate 11 o Uarf kv UVotliti k' ":-) InU ifL ' " h ~ Ilk h t ck

Žfo'_11 ' )I 1)l two e0l i,:I ev;¼ e . :iig ic' V '
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1.3.7 Direct and Indirect Learning

The classifiers direct and indirect learning are borrowed from the concept of

direct versus indirect adaptive control. Direct learning control impjies the feedbazk

loop that motivates the learning process is closed around system performance. In.

direct learning control denotes that the learning loop is dosed around the systemn

model. Whereas in ý§3 - §5 the learning process is closed around system performance,

in §6, the learning loop is closed around system model improvement, leaving the

control law derivation and resulting system performance "open-loop."

Direct learning approaches to optimal control law synthesis, which employ re-

iidorcement learrin': tecLiuques, aze not readily applicablh to the reference model

t,rack:ing problem. The adjustable pattw-neters in a reinforcx ment learning method

eXICfl>dte an evaluation o.: the cost to complete the obj, ftive. In a t.'acking emvi-

rom~n,,ntn , the com:u'and objective chanrg-ýi an( future ',Iues may not be known.

bf e t cost to 'oinpletc the. objective cl.D gnes aid the applicatioi of meth-

ods .frotu §3 - §5 is restricted to regulation.

Ind, rccc i ,%xrg aT,,prx• a'hes to opýhifta co: mrol f imrarily emplcy sup rrvied

, ianii", In contrast, direct lea nfimg i•wthods for optimal control law

syut~h~'s pr' c ipi:,:ly ,'1)loy unsupervised lear-ning algorithm.,;.

}'~lu•,,,•• t ..... [, e~arnin•g

I ) ijl, I N ' Cy TI, Iv(,v& in 4, 11c study of anima[ hcarmijug pI I11 r1nmat, Ilfforce

.mi tLth' ~.niix• ~.! ,?,:�.yr, t•,v. h carrii cig that 1 cmdh tI. p iefonta. re

rlhs, : 5,"}. tU V,••,, :-'<::'e t,., IVIl~•: r )T •CeCII( t whic f~y tp)i~sent .r
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a cost. At each discrete time step, the controller observes the current state,

ýekc, , ],) lies an action, observes the subsequent state, and receives reinforce-

tL , ý,.•tA objective is to maximize the expected sum cf discounted future

. .i• , The probability of choosing an action that yields a large discounted

fu *l, e. aforc, aent +hould be increased; actions that lead to small discounted fu-

tuil r-iniiu •er LeL t should be selected le•ss frequently [1]. Reinforcement learning

nietho is ol. n tcquire successful action sequences by constructing two complimen-

ti.ty- ii wti', as: a policy function maps the states ir.to appropriaf - control actions

1nd e ihitn function maps the states into expectations oi the, a.scounted

I" ye, for ernent.,

, ,,udy of connectiornist iewaring methods has evolved from research ir

,'s to theo:ies foiuded in the ?Aabli..:bed discillines of function

ap 6 xi, -1,, tii? A tion, reinforcement leariliui ha&, b Mn demonstrated to

be a at mio'lue i,. lying sonic stable, riuniin( wu, oJAtI na control problems

W,, ýT'g, uddresses t0 credit as•;iggnmekt, pr,,blei I, wii-.' refers

. . it,' " (,l f•ý I4 ,vllih act U-s iII ii sej.iuc( e al' "r-3 .41:. ' fOr

1':( t , , p )I 1 • I ost I,(, - i envirllrnei: vs hee

INa ,I . ,c ii * hif. P I' t I(, A- iiti1CLy, " w eillfbrccinent leafiert,:

u ,I , ' i.. i, i,. ' a! &,it iati, tr:vd l i,,, !C5 a,.io

,(,( t ti bu.fovis aw ;I~C I ) I !. I ýi, uS,o tl i4, collkol sin ,u has

'tip
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an information collecting role implies a tradeoff between the expected gain of Infor-

mation, which is relatdI to futire performance, and the immediate reinforcement,

which measures the current system performance [8].

1.3.9 BOXES

BOXES [8] is a simple implementation of a learning controller. The state

space is discretized into disjoint regions, and the learning algorithm maintains an

estimate of the appropriate control action for each region. Associated with any

approach using a discrete input space is an exponential growth in the number of

bins, as the state dimension or the number of quantization levels per state variable

increaLses [3] Therefore, quantization of the state space is seldom an efficient map-

ping techniaue and a learning algorithm that uses this strategy can generally only

represent only a course approximaLion o a continuous n-ntrol law. Altuough this

lookup table technique facilitates some aspects of implein,-utation, any parameter-

ized function approximatior scheij c capable (-f representing contiauous functions

will l1 more etbcier1t with rsp-ct to the necess_ -y number of free parameters. Ad-

ditioiallv, g -:zation is inherent t, such con. inuous maptAinlg2 [ý]. A BOXES

approach exhib, s locý.2ity in learning, but does not generalize information acicl's

bin 'ooundaries.

,71



ATTACHMENT 3

Chapter 2

The Aeroelastic Oscillator

.%1 General Description

A simple aeroelastic scillator (AEO) may be modeled as a classical mass-.

spring-dasshpot system with the addition of two external forces: an aerodynamic

lift force and a control force (Figure 2.1). The mstas, a rertangular block exposed

to a steady wind, is constrained to translate in the dircction normal to the vector

of the incident wind and in the plane of the page m .':pe:'gations

of the AEO plant are boriowed from Parkinson and Smih [9] as well as Lfrm

ho10ý 1,1301 ,.Id Stewart [10]. The low dimensionality of the dynamnic state, which

cofiiist"s (_0 the position X(t) -rnd the velocity of 1he mi-az, reduces the complexity

of 7-ox•ptc. vimulations wnid allows the vystejr. dynamics to be ea:.Ily viewed in

a txo-lrOdiineiu tial pIh.\St- plane. The AEO exhibits a cotnbinati*o. cŽ interosting

ndnlineL.., Jyniiics, generated by the nordlne,ý, aero vn:aqnc lIft, aW-d paramntea"
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4 .ncertdinty that constitute a r-od context in which to study learning as a method

of iu,ý.rementally synthesizing an optimal control law. The control objective may be

eitler regulating the state near the origin of the phase plane or tracking a reference

tý,a'ectory.

L(t), Fo(t)

"",".-.. ... .2' - - --... .

...............................

k,• L: . T-7. J~~ ~ ~

Figure 2.1. The aero-clastic oscillator.

2.2 The Equations of Motion

It) investigate the AF) (lynmnics-, thei blohk is modelei a a point mass at

which all for(c:e. act. 'fThe hlilogenet"ous equation of m1otio fo.r the ýV-roeliastic oscil

1ator Is a L-,wcoH)(t oider, linear, dir-ementia, equation with coDstaWt coeth1ciets. This

(qIiation a'curately represents the physical system for zCero imicidhut wind(Ispeed, in

I173
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the range of block position and velu,-ity for which the spring and dashpot respona

linearly.

d&x dx- + r -d + kx = 0 (2.1)
nd t 2  dt7

Table 2.1. Physical variable definitions.

Physical Property Symbol

Block Position X(t)

Plock Mass M

Damping Coefficient r

Spring Coefficient k

For the unidnven system, the block position may be described as a function of

time by a weighted sum of exponentials whose powers are the roots of the charac-

teristic equation.

.(t) Ce", - c~c, (2.2)

S....r •r 2 -4mk -r 1 1" *___ - - - ± I;- 4rmk (2-)
2rn - 2trn 27rr

k >0 and r,rn >0 R i -s,,] j<0 (2,4)
4

I'lhe condition that the da.&shpot crtfflcient is positive and the spring ctwfici-it is

lion,.-gative, implies that the position aid veh.Wcity trarisients w il! de(say exp(ilt'I1

tially This unfolrced ,,. ,, .I IIlii iAAl thLl ur-igin of the phasu,

planle.
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2.2 The Equations of Motion

The aerudynamnic lift L(t) and control force Fo(t) constitute the driving corn-

ponent of the equatica of motion. Including these forces, the equation of motion

becomes a non-homogeneous, second-order, differential equation with constant co-

efficients.

dcx dx
m-4 r y-- + k '= L + Fo (2.5)

dt t

0.6

S I i i ,, I

0 0.4 . . . . ... ,............. . . . _4 . .. "- -- -----• .. . . r- . .

l1.• I "Ix l

C, _ _ _ I llI '

0.2 --- .---

Angleo ofAtc in Dere
-06.2

0 2 4 6 8 i0 12 14 16

Angle of Attac~lk or Au Degrees

Figure 2.2. Tile aA-rola~stic oscillatoc" noullineas (,)efficlient of lift.

Tile lift ftotce is a no,,linvar finiction o)f file effe-ctivc• angle of attac'k of tile

" ~ ~~~iuv,'s blolk,-k Witt, r-esplect to) the li(itlt'(le t iLif flowv. N" cuirr'lit •r,]itxctittr

providh-s.m a",al tv ytic luethL.),d for pt~n'dictitig th,' flo~w W)u~t e xci x'tedre",-l ,iu

block- 41[ ctreforc, thc' co)•etiik,'c't of, lift i.s•q,~(,,lm ¢tt.,t cvlqlin-,&ld •at~a, h._,, it

I r, 5
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seventhi.order polynomial in the tangent of the effective angle of attack a (Figure

2.2) (9,10]. This approximation to the empirical data is valid for a range of angles

of attack near zero degrees, jal < 18'.

L= pV, hICL (2.6)
2

CL L + 45 A7,v.
CL A 1  A()A(V)A(~ 27

tan(o) = X (2.8)

VV

V

Figure 2.3. The total velocity vector ve and the effective angle of
attack a.

Thble 2.2. Additional physical vawiable definitions.

Physical Property Symbol

Density of Air p

Velocity of Incident Wind V

Area of Cross-secticn of Mass Blocl hi

Coefficient of Lift CL
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Following from Ohw abseizce of even powers of • in the polynomial (2.7), the

coefficient of lift is an odd symmetric function of the angle of attack, which, given

the geometry of the AEO, seems physically intuitive. The definition of the effective

angle of attack is most apparent from the perspective that the AEO is moving

throughi a stationary fluid. The total velocity v, eqials the s"um of two orthogoual

components: the velocity associi.ted with the oscillator as a unit translating through

the medium (i.e. the incident flow V), and the velocity i associated with the mass

block vibrating with respezt to the fixed terminals of the spring and dashpot (Figure

2.3). This total velccity vector will form an effectiv¢e angle of attack a with respect

to the incident flow vector.

The dimensional equation of motion (2.5) can be nondimensionalized by di-

vi'Jing thr'ough by k h and dpplying the rules listed in Table 2.3. The resulting

equation of motion may be written as (2.9) or equivalently (2.10).

(P, dXf dx' (n~d' 3  (ns\d' 5

2P... - .' nA 1U -- 7- U3 
+ dr t

dr 2 + dr dL 7, dU dr

k- AiJ(•-7 (A bk r

-,-. ( - ( + (2.9)

~ i ), '\IU +n

The coeffircirA, of lift is pararneterizea by the :following luTa empiricai~ly de..

terrmied constancts: .A1 =2.69, A.3  168, A5  6270, A7 = 59900 [9,10j. The

377
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othe- nondimersional system parameters were selected, to provide interesting non-

linear dynamics: n = 4.3. 19', f = 1.0, and U = 1.6. These parameters deaine

Uc - 1729.06 and U = 2766.5, where the nondimensional critical windspeed Uc is

defined in §2.3. The nondimensional time is expressed in radians.

Table 2.3. Required changes of variables.

New Variables Relationships

Reduced dIsplacement =

Mass parameter n =2m

Natural frequency = -

Reduced incident windspeed U= -

Damping parameter M =

Reduced time (radians) r kot

Nondimensional Control Force F' = Fo

The transformation from nondimeiisional para-ne' (n, fP, and •) to di-

mensional parameters (p, h, 1, in, ,V, r, and k) is not unique. Moreover, the

nondirpensional parameters thts appear above will nok transform to any physically

realistic set of dimensional parameters, However, this set of nundimensional param-

eters creates fast dynaanics which facilitate•s the anelysis of learning techniques.

An edditional change of variables scales the maximuxn amplitudes of the

block's disiiacemnent. and vel9city to apprximnateey unity in o:der of rntkgnif ude.

The dvnamics that are , tr" . ' thi- -..esis lr exper:nents wuth the roeh'

378
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lastic oscillator appear in (2.12).

' X' F'
X= -x F=-- (2.11)

1000 1000

d2X-- + 21 + X = 11000nAlU d - ( 1000Ed 3

d~r2  17i000I a kUd)

+-n's 1000 dAd - (nA 7 ( 1 0 00 dX ]+ F (2.12)( 3)( dri (! U5 ,.

Equation (2.12) may be further rewritten as. a pair of first-ord-er differential

eqvations in a state space realization. Although in the dimensional form i - I

in the nondirnensional form, X =,x

dX d2 X
t =-X x2 = Xi = X2 X2 =- (2.13)

[.1~ 2# 11n!-~ [X:1] + [xr [f%

I [ 1 A.3 3 hAs± nA7,5 i00..r2 7 (

(x 100i05 [-vm-(°OOO-r2) + -U3(1°00x2) _ T( (2.14b)

2.3 The Open-loop Dynamics

The rxeduced critical windspeed U,, which depends on the nondirnensiona!l

Triass paramveter, the danping parameter, and the first-order coefficient in thOn- c'e..

ficient of lift polynolomial, is the vhale of the incident windspeed at which the negative
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linear aerodyicamic damping exceeds the positive structural damp:ag. 1

U 2•(2.15)
rtAl

0.5 ~--'- ------- 7

0 . -4 =- -A- ---

-1.0 -

-1.5 -1.0 -0.5 0.0 0.5 1.0 1.5

Position

Figure 2.4, The aeroelastic oscillator open-loop dynamics. An outer
stable limit cycle surrounds an unstable limit cycle that
in this picture decays inward to an inner stable lint
cycle.

The nature of the open-loop dynauxics is stronglY dependent on the ratio of the

reduced incident windsped to the reduced ciitical windspeed. At values of the

incident windspefd bh'ov, thc- criticzI ývalue, ilhe 1.a, of the pthas,& plane is stable

FThe tern., reaucetd is !•! av',aoy u:; with nor(fimer, ioni.
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and the state of the oscillator will return to the origin from any perturbed initial

condition. For windspeeds greater than the critical value, the focus of the two

dimensional state space is locally unstable; the syF+em will oscillate, following a

stable limit cycle clockwise arouind the phase plane. The aeroelastic oscillator is

globally stable, in a bounded sense, for all U. 2 The existence of global stability

is suggested by the coefficient of lift curve (Figure 2.2); the coefficient of lift curve

predicts zero lift ( CL = 0) for a = ±15.3* and a restoring lift force for larger jai.

That the aeroelastic oscillhtor is globally open-loop stable eliminates the necessity

for a feedback loop to provide nominal stability during learning experiments. For

incident windspeeds greater than Uc, a limit cycle is generated at a stable Hopf

bifurcation. In this simplest form of dynamic bifurcation, a stable focus bifurcates

into an unstable focus surrounded by a stable limit cycle under the variation of a

single independent parameter, U,. For a range of incident wind velocity, two stable

limit cycles, separated by an unstable limit cycle, characterize the dynamics (Figure

2.4). Figure 2.4 was produced by a 200Hz simulation in continuous time of the AEO

equations of motion, using a fourth-order Runge-Kutta integration algorithm. An

analysis of the open-loop dynamics appears in Appendix B.

2.4 Benchmark Controllers

A simulation of the AEO equations of mtiou m continuous time was ing:..e.

mented in the NetSim environment. NetSim is a ge'ntral purpOSe SiIul..tioIA and

2Each state trajectory is a member of Lo• (i.e. is(,)~L is fiuik') for all i:erturbatious

6 with bounded Euclidean norms, 1[6][•.
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design software pacamge developed at the C. S. Draper Laboravtry [11]. Ten NetSim

cycles were completed for each nondimensional time unit while the equations of mo-

tion were integrated over twenty steps using a fourth-order Iunge Kutta algorithlm

for each NctSim cycle.

Two simple control laws, based on a linearization of the AEO equations of

motion, will serve as benchmarks for the learnirug controllers of §3, §4 and §5.

2.4.1 Linear Dynamics

From (2.14a), the linear dynamics about the origin may be expressed by (2.16)

where A and F axe given in (2.17).

_(r) = Ax(r) + Bu(r) (2.16)

A = [ '~ U 21 B =(2.17)

This linearization may be derived by defining a set of pertuxbation variables, .(r)-

_0 -t- &7(r) and u(r) = uo + 6u(r), which must satisfy the differemtial equations.

Notice that .x(r) = i(r). The expansiorv of bx(T) in a Taylor series about 'zx), ao)

)ields (2.18).

.T the pair (,Kt), u0 ) repre•sents ,i etquililbrinm of the dynr-ilnlcs, then f ( o)z

0.) by definition. LHluation (2. 16) is achieved by discw'ding the noulinear terms of
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(2.18) and applying (2.19), wiere A and B are the Jacobian matrices.

A 4-(2.19)

2.4.2 The Linear Quadratic Regulator

The LQR solution minimizes a cost functional J that is an infinite time

horizon integral of a quadratic expression in state and control. Tht system dynamics

must be linear. The optimal control is given by (2.21)

J F [x(r)Tx(r) + u2(-,)] dr (2.20)

u'( r) = -Gx_(r) (2.21)

[0.4142] (2.22)
• 3.C079J

The actuators which apply the control force to the AEO are assumed to saturate at

±0.5 nondimensional force units. Therefore, the control law tested il this section

W&s written as

u(r) =f(-jO.4142 3.0079].(T)). (2.23)

0.5. If x > 0.5
f(x) .. 0.5, if x < -0.5 (2.24)

otherwise,

The state traieq'Jotr, v which resllt, ed frorm applying the cointrol law (2.23) to the

AE), f"Or the initial conditions {-1.0, 0.5}, appears in Figure 2.5. The controller
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applied the maximum force until the state approached the origin, where the dy-

namics are nearly linear (Figure 2.6). Therefore, the presence of the nonlinearity in

the dynamics did not strongly influence the performance of this control law.

If the linear dynamics were modeled perfectly (as above) and the magnitude

of the control were not limited, the LQR solution would perform extremely well.

Model uncertainty was introduced into the a priori model by designing the LQR

controller assuming the open-loop poles were 0.2 ± 1.8j.

AI=[ 0 1 1
-- 3.28 0.4] (2.26)

The LQR solution of (2.20) using A' is O = [0-0.1491,1.6075]. This control law

applied to the AEO, when the magnitude of the applied force was limited at 0.5,

produced the results shown in Figures 2.7 and 2.8. The closed-loop system was

significantly under-damped.

2.4.3 Bang-bang Controller

The bang-bang controller was restricted to two control actions, a maximnum

positive force (0.5 nondimensional units) and a maximum negative force ( --- 0.5);

this limitation will also be imposed on the mnitial direct learning experiments. The

control law is derived from the LQR solution wid is non-optimal for the AEO system.

In the half of the state. space where th, tK LQR. solution specifies a positive force, the

-i.ang bang control law (2.25) apphles the rnaxinu.tn positive for-Ce. Similuly, in the

half of the state sp•wc whure the LQR soation s.peci~es a. niegaive .ofce, Oze bang--

bang control Law applies the m&.-Kumnm neg ahive force. The switching liue which
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1.0 r - -

I

0.6 --

.•- 0.4 . . . . . .

0.4 ------- -- --• -

0.0 ---------- ----------------.--------- -

-0.2 ------------ -

-0.4 .... .
-1.0 00- 0 0.5 1.0

Position

Figure 2.5. The AEO state trajectory achieved by a magnitude
hmited LQR control law.

1.0 '
2 2 1

0.0 -----..-............

0.05. ..................... ......
2 2 1

-0. t.----.-I 
--

!
-1 .5 - . . . . . . . . . . . . . . . . . .

-2.0 .. Saturated Force
Commanded Force

-2.5 " I

0 2 4 6 8 10

Fig ure 2.6. The 1 QR conitrol .istory wid t he lii 1ited forct 'which
'y"Itds Figure 2,5.
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0.48 -- - --- ------

S0.2 -----------

04------------ -- - ----

-- •> 0.2

0.0---------- - ------- ----. --- -

____________________ I ___________________

-0.4 -- ----
-0.4-

-1.0 -0.5 0.0 0.5 1.0
Position

Figure 2.7. The AEO state trajectory achieved by a LQR solution
which was derived from a model with error in the
linear dynamics. _0 {-1.0,0.5}.
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0.8 _ _ _ _ _ _ _ _

~0.4 ----- ~ ----------------- - ------

> 0.2 ----------

-0.2
-1.0 -0.5 0.0 0.5 1.0

Position
Figure 2.9. The AEO state trajectory achieved by a bang. bang

control law derived from the LQR solution.
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divides the state space passes through the origin with slop, -. 0.138; this is the line

of zero force in the LQR solution.

U(r) 0.5, if > 0 (2.25)I-0.5, otherwise.

The result of applying this bang-bang tontrol law to the AEO with initial

conditions {-1.0, 0.5} appears in Figure 267 he trajectory initially traces the

trajectory in Figure 2.5 becauge the LQR solution was saturated at -0.5. However,

the trajectory skowly converges toward the origin along the line which divides the

positive and negative control regions, while rapidly alternating between exerting the

maximum positive force and maximum negative force (Figure 2.8). Generally, this

would represent unacceptable performance. The bang-bang control law represents

a two-action, linear control policy and will serve as a non-optimal benchmark with

which to compare the direct learning control laws. The optimal two-action control

law cannot be written from only a brief inspection of the nozliuear dynamics.
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The Associative Control Process (ACP) network [12,14] models certain funda-

mental aspects of the animal nervous system, accounting for numero.,s classical and

instrumental conditioning phenomena.' The original ACP network was intended

to model limbic system, hypot;halamic, and sensoriuotor function as well as to pro-

vide a general framework ,ri;hin which to relate aniimai l-arning psychology and

control theory. Through real-time, dosed-loap, gol se•king intractions between

the lerning system and the environment, the ACP algorithm can Wchieve solutons

to spatial and tempor&l credit assignment probltms, .'his capability auggests tbnt

the ACP algorithm, which accomplishes reinforcement or sel- suprvised learning,

may offer solutions to difficiiV optimal control problems.

Animal learning phenom~ena are investigpted through two ciasses of laboraLory coa-

ditioning proceduret-. Classical condittoning is an open-loop process in which the
experience of the animal is independent of the behavior of the animal. The experi-
ence of the animal in closed-loop instrurnental corditioniing oA opemran conditioning
experiments is con,..ngent on the animal's behavior [12].
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This chapter constitutes a thorough description of the ACP network. ,,iewed

from the perspective of applying the architectuxe and process as a controller for

dynamic systems. 2  A detailed description of the arehitecture and ftmctionality

of the original ACP network (§3.1) serves as a foundatioD, from which to describe

two levels of modification, intended to impro-!e the applicability of the Associative

Control Process to optimal control problerns. Initial modifications to the original

ACP specifications retain a two-layer network structure (§3.2); se-ierai difficuhies

in this modiJied ACP motivate the development of a single layer architecture. A

single layer formulation of the ACP network abandons the biologically motivated

network structure while, preserving the zuathematicul basis of the modified ACP

(03.4). This minimal represe, t•tion of an Associative Control Proress perf. -ms

an incremiental value-iteration procedure similar to Q learning and is guarinteed to

converge to the optinnal policy in the ixifinite horizon optimal control problrn tunder

certain condition& [13]. This chapter concludes with a summary of the application

of the modified and single layer ACP methods to the regulation of the aeroelastic

oscillhtor (j3.5 and §3.6).

3.1. The Original Associative Control Process

The definition of the original ACP is derived from Ktopf I12], Klopf, Morgau,

and Weaver [i4j, as well as Baird and Klopf [1.3J. Althouigh originally introduced in

the literature es a model to predict a vnriety of arimal learnfing results from classical

2This context is in cofl0raSt to the perspective 'hat an ACP network models azipecas

of biological y!stems.

3K,
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and instrumental conditioning experiments, a recast versioa of the ACP network

has been shown to be capable of learning to optimally control any non-absorbing,

finite-state, finite-action, discrete time Markov decision process [13]. Although the

orig'nal form of the ACP may be .ncompatible with infinite t',ne hlriizon optimal

coritrol problems, as an introduction to the ACP derivatives, the original ACP

appears here with ax, accent toward applying the learning system to the optimal

control of dynamic systems. Where appropriate, analo5es to animal learning re-

sults motivate the presence of those features of the original ACP architecture which

emanate from a biological origin. Although the oitput and learning equations are

central in formalizing the ACP systein, to eliminate amnbiguities concerning the in-

tercoanection and fuictionality of network elements, substantial textual description

of rules is required.

The ACP network consists of five distinct elements: acquired drive sensors,

motor centers, reinforcement centers, primary drive sensors, and effectors (Figure

3.1). In the classical ,onditioning nomenclature, the acquired drive sensors represenm

the conditioned stimuli; in the context of a control problem, the acquired drive

sensors encode the sensor measurements and will be used to identify the liscrete

dynamic state. The ACP requires an interface with the environment that conDtains a

finite set of states. Therefore, for the application of Lhe ACP to a control problem,

the state space of a dynamic system is quantized into a set of m disjoint, non-

unifortri bins which fill the entire state space. ' The ACP learning system operates

in diScrete t.Le. At any stage in discrete time, the state of the dynamic system

SA sufficieat cnmmition i:3 for the bins to fill the entire operatioral envelope, iL.. the
region of the itate space that the state way enter.
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yp(k) - YN(k) Effector

Sy•(k) ] -)

_4M r p(k)

::~Reciprocal Inhibition

! ,

.N k) r(k)

x•,(k) -"k)

Ie Reinforcement Pia
Acquired 0 Centers Primary

Drive Ie Drive Sensor
Sen~sor's

Motor
Centers

Figure 3.1. The ACP network aichtiterture

392



ATTACHMENT 3

3.1 The Original ACP

will lie within exactly one bin, with which a single acquired drive sensor is uniquely

associated. The current output of the i0 acquired drive sensor. xz(k), will be either

tnity or zero, and exactly one acquired drive sensor will have unity output at each

time step. 4 The vector of m acquired drive signals, x(k), should not be confiued

with the vector of state variables, the length of which equals the dimension of the

state space.

A motor center and effector pair exists for each discrete network output. 5 The

motor centers collectively determine the network's immediate action and, therefore,

the set of n motor centers operate as a single policy center. In animal learning

research, the effector encodes an action which the animal may choose to perform

(e.g. to -turn left). As a component of a control system, each effector represents

a discrete control produced by an actuator (e.g. apply a force of 10.0 units). The

output of a motor center is a real number and should not be confused with the

output of the ACP network, which is an action performed by an effector.

The output of the j'h motor center, yj(k), equals the evaluation of a nonlin-

ear, threshold-saturation function (Figure 3.2) applied to the wtihted sum of the

acquired drive sensor inputs.

Y,(k) f~ Z(W+(0 + WJ7(k)) xj(k)] (3.1)

0 if X< 0

f.( W I if z > 1 (3.2)
x otherwise

, This condition is Lot neces3ary in the application of the ACP to predict anitma1 learn
ing res;ults.

Recel that thI ACP network output. must be a membe r of a finite set of control
actions.
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1.0-

0 1.0

Figure 3.2. The output equation nonlinearity, (3.2).

The threshold 0 is a non-negative constant less than unity. Justification for the

presence. of the output nonlineanty follows directly from the view that a neuronal

output measures the frequency of firing of the neuron, when that frequency exceeds

the neuronal threshold. 6 Negative vt ties of yj(t), representing negative frequencies

of firing, are not physically realizable.

The motor center output equation (3.1) introduces two weights from each

acquired drive sensor to each motor center: a positive excitatory weight W4(k)

and a negative inhibitory weight W,• (k). Biological evidence motivates the presence

of distinct excitatory and inhibitory weights that encode attraction and avoidance

The term rnf irxnal output refera to the output of a motor center or a reinforcement
center.
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behaviors, respectively, for each state-action pair. The time dependence of the

weights is explicitly shown to indicate that the weights change with time through

learning; the notation does not imply that functions of time are determined for each

weight.

Reciprocal inhibition, the process of comparing several neuronal outputs and

suppressing all except the largest to zero, prevents the motor centers that are not

responsible for the current action from undergoing weight changes. Reciprocal inhi-

bition is defined by (3.3). The motor center j3 (k) which wins reciprocal inhibition

among the m motor center outputs at time k will be referred to as the currently

active motor center; j,,•(k - a), therefore, is the motor center that was active a

time steps prior to the present, and yj,,(k-.)(k) is the current output of the motor

center that was active a time steps prior to the present.

. = j

such thatforall I E {1, 2, .n. n} hnd I:j

yi(k) < I9j(k) (3.3)

The current network action corresponds to the effector associated with the

single motor center which has a non-zero output aftev reciprocal inhibition. Poten-

tially, multiple motor centers may have equally large outputs. In this case, reciprocal

inhibition for the original ACP is defined such that no motor center will be active,

no control action will be effected, and no learning will occur.

The ACP architecture contains two primary drive sensors, differentiated by the

labels positive and negative. The primary drive sensors provide exte-nala evaluations
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of the networks performarce i the form of non-negative reinfor-ement signals;

the positive primary drive sensor measures reward while the negative primary drive

sensor measures cost or punishmer.,z. In th! language of classical conditioning, these

evaluations are collectively labeled the unconditioned stimuli. In the optimal control

framework, the reward equals zero and the punishment represents an evaluation of

the cost functional which the control is attempting to minimize.

The ACP architetcture also contains two reinforcement centers which are iden-

tified as positive and negative and which yield non-negative outputs. Each rein-

forcement center learns to predict the occurrence of the corresponding external

reinforcement and consequently serves as a source of internal reinforcement, allo,,-

ing learning to continue in the absence of frequent external reinforcement. In this

way, the two reinforcement centers direct the motor centers, through ;earning, to

select actions such that the state approaches reward and avoids cost.

Each motor center facilitate.i a pair of excitaiory and inhibitory weights from

each acquired drive sensor to eAch reiniorcement center. The output oi the positive

reiniorcement center, prior to reciprocal inhibition bnewc<m the two reinforc-ment

centers, is the sum of the poaitive external reinforczrment rp(k) and the veighted

suni of the acquired drive sevnso, iap.,ts. The apprupziate set of weights fr-om the

acquired drive sensors to the reinforcement center corresponds to the carret-tly

active mctor center. .ThLerefore, calculation of thc outputs of the re-inforcement

centers requires prior deterinmnation of jr,•(k).

In P .P(k) + j... (kI

Th , output of the negative reinforcement center YN(K) is calctilated similarly, using,
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the negative exterual reinforcement rN(k).

fn~k [TN(k) + + W ~;()k)xt(k)(.)

The ACP learnhig mechanism improves the stored policy and the predictions

of future reinforcements by adjusting the weights which connect the acquired drive

sensors to the motor and reinforcement centers. If the jth motor"center is active

with the ith acquired drive sensor, then thle reinforcement center weights Wp•j(k)

and Wýj1(k) arc eligible to change for r subsequent time steps. The motor center

weights W;*(k) are eligible to change only during the currert time step. Moreover,

all weights for other state-action pairs will remain constant this time step.

The impetus for motor center learning is the difference, aftez reciprocal inhi-

bition, between the outputs of the positive and negative reinforcement centers. The

following equations define the incremental changes in the motor center weights,

where the! constants c, and cb are non-negative. The nonlinear function f. in

(3.6), defined by (3.9), requires that oriy pcsitive changes in presynaptic activity,

Axi(k), stilaulate weight changes.

AW*(k)
otherwise

(3.6)

ýc(k) -- c. -4- c6 yp(k) -- N(k)l (3,7)

•The weights of both positive and ,%egative reiiforcement centers are eligible fo; change
clven though both reinforcement centers caanot win reciprcw.c inhibiton. In contr;mSt,
only the motor centei that wins rer-iproc~al inhibition can expe~rieace weight changes'
if no Ynotor centaý,t is currently active, however, no learning occur., i.n either the Motor
centers or the reiaoIycer.ent centers.

3.7



ATTACHMENT 3

Chapter 3 - The &amociakive Qmntrol Proce"

Axi(k) = -) x-.k - 1) (3.8)

fx ifx>O (3.9)
1(X) 0 otherwise(

The learning process is divided into temporal intervals referred to as trials; the

weight changes, which are calculated &t each time step, are accumulated throughout

the trial and implemented at the end of the trial. /The symbols k0 and ki in (3.10)

represent the times before and after a trial, respectively. A lower bound on the

magnitude of every weight maintns each excitatory weight rways positive and

each inhibitory weight always negative (Figures 3.3 and 3.4). The constant a in

(3.11) is a positive network parameter.

W,•(k 1 ) W+)+ W w4(k) (3.+oA)

Ak1  (k13. a

Wj(ki) 1w-- WI(ko) + Z AW,;(k)J (3.1Ob)

fw+ (x ) a f (3.11a)
' •x otherwise

aa--(-) (3.11b)
~.x o'the::wise

Elua,:ions (3.12) through (3.15) define the Drive-Reinforcement (DR.) learning

mechanism used in the positive reinforcement center; negative reinforcement center

learning follows directly [12,14]. Drive-fteinforcement learning, which is a flavor of

temporal difference leaning [15], changes eligible connection weights w2; a function

of the correlation betweex earlier cbanges in input signals aild lat,•r chfague in
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fw+(x)

a

Figure 3.3~. The lower bound on excitatory weights, (3.11la).

fw--(z)

a

Figure 3.4. IThe upper boand onIifitIhIhi y iw. hts, (3. 111b).

0u~t1)ft Sitgu01Us I'lite C0 NUItstt r(Which 'InI nixiiual Iciriiz l h )1i
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are non-negative. Whereas r may be experimentally deduced for animal learning

problems, selection of an appropriate value of r in a control problez. typically

requires experimentation with the particular application. The incremental change in

the weight associated with a reinforcement center connection depends on four terms.

The correlation between the current change in postsynaptic activity, Ayp(k), and

a previous change in presynaptic activity, Azi(k -a), is scaled by a learning rate

constant c, and the absolute value of the weight of the connection at the time of

the change in presynaptic activity.

AWAj(k) = Ayp(k) ci. cUV(k - a), f. (Axi,(k - a)) (3.12)
Q=1

Ayp(k) = yp(k) - yp(k -- 1) (3.13)

Axij(k-a) {xi(k-a)-xi(k-a--1) ifjt=hr-wa) (314)10 otherwise

W1V%. k f)= fw- W (ko) + z_.. A Wp,,,( k (3.15a)

r
,(f w a k)+LA 14,'-W' (k1 ) f w- [1'p,1 ,(ko)+ 1i A st(k) (3.15b)

Note that the accumulation of weight chwiges until the completion of a trial elimni-

nates the significance of the tine shift in the tern i W,,(k-a) in (3.12).

The credit assignrnent problhm refers to the situation that some judiciouls

,hoice of aictionl at the prcstWltt , 1W fl1ay Yield little or no iinimidiate .irturn, rcl

ative to other possible actions, but may idlow Inaximization of future retuins. •

'The term retturn deitote.ý a siagh, reiaf]-cemetit that eiuals the reward iminuls
the (ost. i itII etvfiro) iiiet th.at imctvtires simliItau mi()s l1011 te01 re'waud aind (u-;st

signals, a c(nitrol.# r should inuxim iz•, -"he return.
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The assessment of responsibility among the recent actions for the current return

is accomplished through the summation over the previous r time steps in the re-

inforcement center !earning equation (3.12). In the negative reinforcement center,

for example, a correlation is achieved between AyN(k) and the previous r state

transitions. This process of relating the current AYN to the previous Ax's is re-

ferred to as chaining in animal learning. The learning rate coefficients discount the

responsibility of previous actions for the current change in predicted return, where

the reinforcement center outputs are predictions of utatme costs and rewards. Bio-

logical evidence suggests that no correlation exist., ietween a simultameous action

and a change in predicted return, i.e. c.0 =0, and .! . ci > c, for 1 < j < K-.

3.2 Extension of the ACP to the Infinite Horizon, Optimal

Control Problem

Limited Inodificattioný o the ar'chitec ure and finctionality of the original As-

sciati Ve Control Process :esult in a network with ii uproved applicability to optriIId

coil! rol probleims. Although Baird ;n(d Kl(ltpf [131 bav siig(eted that this 1o,.!ified

ACP will coiwvergt, to the optlifl control policy uder reasonable assunmptions;, the
.a1 1sis i '3.3 aid the- rcsults; in !3-6 siuggest that the niec...sary condition to

obtaiml aln optilml sohlitioU ulay he r-sstrictive. l'his s Iscti,,n i,'hluded t.o follow the

(it'vl opnwnit ,f tIe A ( P ai i(I to in(oti vate tf e s.I ngih layetr AC P &Fa,,l tect.iire The

dletillitioli of tch m,,difird .A('C fo•lows,ý from 1 alr1(l amid Klh opf [131ý

The ii,,diticu, A (i i• a01tIid )Y P) ýIt .joCi Wi.t • ,'a&S 4 jf 1)1( hi-lls; the e'n

Vti1•ic ut with which lIw A('l' iit ci acts niiis• bc a 1lio aiS,, hilnt!, liiiite statte
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finite-action, discrete-time Markov decision process. Additionally, the interface be-

tween the ACP and the environment guarantees that no acquired drive sensor winl

exhibit unity output for inore than a single consecutive time step. This stipulation

results in non-uniform Lirue steps that are artificially defined as the intervals which

elapse while the dynamic state resides within a bin. 9 The learning equations of the

original ACP can be simplified by applying the fact that xz(k) E {1, 0} and will

not equal unity for two or moie consecutive time steps. Accordingly, (3.8) and (3.9)

yield,

f.(Axi~k) 1 if Xi(k) = 1

.f.(Axi(k)) = 0 otherwise.

Therefore, a consequence of the interface between the ACP and the environment is

f5 (Az,(k))= =.,(k). A similar result follows from (3.9) and (3.14).

f { if x,(k -- a) = 1 andj = i,,,.,k(k - a)f"(Axij(k - a)) 1 0 othe-rwise (3.17)

The role of the reinforcement center weights becomes more well defined in the

modified ACP. The sum of the inbibitory and excitatory weights in a reinforcement

center estimate the expected discounted future reinforcement received if action j it,

performed in state i, followed by optimal actions being performed in all subsequent

states. 1o achifve this sigAipficr-nce, the reinforcement center output and learning

equations must be recast. The external reinforcement term does not appeaw in the

output equation of the reinforcement center; e.g. (3,4) becomes,

Sk).' \ (k)(k) + ' ,V I(k)) •1(k)] (3.8)

SSimilar to §3., the state spac'., ie w quaLtized intc binU.
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The expression for the change in the reinforcement center output is also slightly

modified. Using the example of the negative reinforcement center, (3.13) becomes,

"ALYN(k) = "-YN(k) - YN(k - 1) + r'N(k) where 0 < y <1. (3.19)

If the negative reinforcement center accurately estimates the expected discounted

future cost, AyN(k) will be zero and no weight changes will occur. Therefore, the

cost to complete the problem from time k- 1 will appro idmately equad the cost

accrued from time k- -.1 to k plus the cost to complete the problem from time k. 10

YN(k - 1) = --yN(k) + rN(k) when AtIN(k) 0 (3.20)

The value of rN(k), therefore, represents the increment in the cost functional AJ

from time k -1 to k. Recall that time steps Eare an artificially defined concept in

the modified ACP; the cost increment must be an assessment of the cost functional

over the real elapsed time. "' The possibility that an action selected now does not

significantly effect the cost in the far future is described by the discount factor 7,

which also guarantee the convergence of the infinite horizon sum of discounted

fiuture costs.

The constants in (3.7) are decreed as follows: c. 7 1 and. cb =0. Additionaly,

the terms whici involve ýhe absolute values of the weights are removed from both

the wotor center learning eodation and the reinforcement center leartling equation.

10 This statement is s'rictly true f-r ,y = 1.
H Time is discrete in this sý stem. Time steps w'?! coinjch witi an izategral numrber of

Sdiscrete t:me incremeincs.
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Equations (3.6) and (3.12) are written as (3.21) and (3.22), respectively. With

the absence of these terms, the distinct excitatory and iLhibitory weights could be

combined into a single weight, which can assume positive or negative values. This

change, however, is not made in (13].

iSik = {f. (Ax,(k)) [yp(k) .--y (k) -- y.(k)] if j = j(a.2(k
0 otherwise

AWpA(k) = Ayp(k) • c. 5 (Ax,(A1 - ,,)) (3.22)

a=1

The motor center learning equation (3.21) cauises the motor center weights to be

adjusted so that W,,(k) 4 WJ(k) will copy the corresponding sum of weightv, fo:

the rein.lorcement center that wins reciprocal inhibition. The saturation limiits on

the motor cenux outputs are generalized; in contrast to (3.2), fA(x) is redefined as

f.,(x).

-8 ifx_<-p•
ifx • ,>/.,() = • •> •(3.2:a)

x otherwise
Additionafly, the definition of reciprocal inhibition is adjusted sligbtly; the non-

maximizing motor center outputs are suppressed to -a minimuxm value -ft wticb is

not necessarily zero.

Although the learning process is still divided into trials, the weight increments

are incorpo)rated into the weights at every time step, instead of after a trial has

been completed. Equations (3.10) and (3.15) awe now written az (3.24' and (3.25),

respectively.

11,%:", (k.) f: v + [ `(k - + z% '+' 1, k(3.24ta)

wl; k) -- f1- [i' (A-- i)+t A4(•)4 (3.2.T,)
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k) = .fw+ [ WA(k - + 1) + (k)]

S= fw- [W ,(k - 1) + AW 11(o)] (3.25b)

A procedural issue arises that is not encountered in th- original ACP network,

where the weights are only updated at the end of a trial. The dependence of the

reinforcement center outputs on jm,(k) requires that the motor center outputs be

computed first. After learning, however, the motor center outputs and also j,,(k)

may have changed, resulting in the facilitation of a different set of reinforcement cen-.

ter weights. Therefore, if wveight changes are calculated such that j () chang!.,

these weight changes should be implemented and the learning process repý-•;ted until

j,,x(k) does not further changc this time step.

In general, exploration of the state-action space is necessary to assure global

convergence of the control policy to the optimal policy, anid can be achieved by

occasionally randomly selecting j,,,m(k), instead of following reciprocal inhibition.

Initiating new trials in random states also provides exploratory inlfbration.

3.3 Motivation for the Single Layer Architecture of the ACP

This section des-cibes qualitative observations from the applicatlor of the

modified two-layer ACP to the regtddat~oi of the aeroeia;tic oscil!ator; additional

quantitative results %ppear in §3.6. In this e.nAiýonment, the modified ACP learning

system fails to converge to a useful control policy. '•llis section explains the failure

by illustrating several chaxacteristics of the two-laver iai;!ic-fxetation c•f the ACP

algorithm that ku'e i.compatible with the applici tioL to optina.l control problems.
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The objr ctive of a reinforcement learning controller is to construct a policy

that, when followed, maximizes the expectation of the discounted future return. For

the two-layer ACP network, the incremental retur= is presented as distinct cost and

reward signals, which stimulate the two reinforcement ceLtaers to learn estimates of

the expected discounted future cost and expected discounted future reward. The

optimal policy for this ACP algorithm is to select, for each state, the action with

the largest difference between estimates of expected discounted future reward and

cost. However, the two-layer ACP network performs reciprocal inhibition between

the two reinforcement centers wid, therefore, selects the control action that either

m.aximizes the estimate of the expected discoumted future reward, or minimizes the

estimate of the expected discounted future cost, ieper ding on which reinforcement

ceater ývins reciprocal inhibition, Consider a particular state-action pair evaluated

with both a large cost and a large reward. If the reward is slightiy greater than the

cost, only t-he large reward will be associated with this state.action pair. Although

f•he true evaluation of this state-action pair is a small positive return, thio action in

this state may be incorrectly selected as optimal.

The reiuforc•nent center learning mechanism incorporates both the current

aud the previous outputs of the reinforcement center. For example, the positive

reinforcement center ieua"•iing cquqtion includes the term Ayr(k), given in (3.26),

whiclh, represents the error in the estimate of the expected discownted future reward

for the previous state yp(kk.- -1).

Ah,(k) ::-= ,y(k) - y,,,(k 1) + ri (k) (3.26)

A ril'forcn"llent ceitter tOlxat tooet thlt reciprocati inhibitior, process will huve axi out-
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put equal to zero. Consequently, the value of Ayp(k) will not accurately represent

the error in yp(k-1) when ytp(k) or yp(k-1) equals zero as a result of recipro-

cal inhibition. Therefore, Ayp(k) will be an 1nvalid contribution to reinforcement

learning if the positive and negative reinforcement centers alternate winning re-

ciprocal inhibition. Similarly, AYN(k) may be erroneous by a parallel argument.

Moreover, the fact that learning occurs even for the reinforcement center which

loses reciprocal inhibition assures that either Ayp(k) or AyN(k) will be incorrect

on every time step that a motor center is active. If no motor center is active, no set

of weights between the acquired drive sensors and reinforcement centers are facili-

tated and both reinforcement centers will have zero outputs. Althoughi no le:urning

occurs in the rein-, rcement centers on this time step, both L.yp and AVN will be

incorrect on the next time step that a motor center is active.

The difficulties discussed above, which arise from the presence of two coin-

peting reinforcement centers, are reduced by providing a non-zero external rein-

forcement signal to only a single reinforcement center. However, the reinforcement

center which receives zero external reinforcement will occasionally win reciprocal

inhibition until it learns that zero is the correct output for every state. Using the

sum of the reinforcement center output and the external reinforcement signal as the

input to the reciprocal inhibition process may guarantee that a single reinfoi cement

center will always win reciprocal inhibition. 12

The optimal policy for each state is defined by the action which yields the

largest, expected discounted future return. The ACP network represents this in-

12 The original ACP uses this tcchniqpe in (3.4) and (3.5); the modified two-layer ACP

eliminates the external :einforcmeunt signal from the reilfor, ,aiet center output in
(3.18).
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formation in the reinforcement centers and, through learning, transfers the value

estimates to the motor centers, where an action is selected through reciprocal inhibi-

tion. The motor center learning mechanism copies either the estimate of expected

discounted future cost or the estimate of expected discounted future reward, de-

pending on which reinforcement center wins reciprocal inhibition, into the single

currently active motor center for a given state. Potentially, each time this state is

visited, a different reinforcement center will win reciprocal inhibition and a diffexent

motor center will be active. Therefore, at a future point in time, when this state

is revisited, reciprocal inhibition between the motor center outputs may compare

estimates of expected discounted future cost with estimates of expected discounted

future reward. This situation, also generated when the two rinforcement centers

alternate winning reciprocal inhibition, invalidates the result of reciprocal inhibition

between motor centers. T'herefore, the ACP algorithm to select a policy does not

guarantee that a complete set of estimates of a consistent evaluation (i.e. reward,

cost, or return) will be compared over all possible actions.

This section has introduced several fundamental limitations in the two-layer

implementation of the ACP algorithm, which restrict its applicability to optimal

control problems. By reducing the network to a single layer of learning cen-

ters, the resulting architecture does not interfere with the operation of the Drive-

Reinforcement concept to solve infinite-horizoD optimization problems.
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3.4 A Single Layer Formulation of the Associative Control

, Process

The starting point for this research was the original Associative Control Pro-

cess. However, several elements present in the original ACP network, which are

consistent with the known physiology of biological neurons, are neither appropriate

nor necessary in a network solely intended as an optimal controller. This section

presents a single layer formulation of the modified ACP (Figure 3.5), and contains

significantly fewer adjustable parameters, fewer element types, and no nonlinearity

in the output equation. Although the physical structure of the single layer net-

work is not faithful to biological evidence, the network retains the ability to predict

classical and instrumental conditioning results [13].

The interface of the environment to the single layer network through m input

sensors is identical to the interface to the modified ACP network through the ac-

quired drive sensors. A single external reinforcement signal r(k), which assesses the

incremental return achieved by the controller's actions, replaces the distinct reward

and cost external reinforcement signals present in the two-layer network.

A node and effector pair exists for each discrete network action. 13 The output

of the J" node estimates the expected discounted future return for performing

action j in the current state anc subsequently following an optimal policy. The

sum of an excitatory and an inhibitory weight encode this estimate. Constructed

from a single type of neiironal eleýnent, the single layer ACP architecture requires

13 A node combines the functionality of the motor and reinforcement centers.
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Sensor inputs Action Nodes Effectorqs

S(k)

----.... LReciprocal

2(k In(,b)t -

x ,M
Reinforcement (k)

Input

Figure 3.5. The single la;er ACP architecture.

only a single linear output equation and a single learning equation.

(k)= (Wi, (k) + W,;(k)) xi(k) (3.27)

The optimal policy, to ruaximnize 'the expected discotuted future return, 3ele2cts

for each state the action corresponding to thf node with Kreatestouitput tPeciptor,4d

inh!,bition between the n nodes defines a currently active nud:,t r,.(k), 3i.lr r ,to
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the process between motor centers in the two-layer ACP. However, the definition (f

reciprocal inhibition has been changed in the situation where multiple nodc. have

equally large outputs. In this case, which represents a state with multiple equally

optimal actions, jm,±(k) will iqnal the node with the smallest index j. Therefore,

the controller will perform an action and will learn on. every time step.

The learning equation for a node resembles that of a reinforcement center,.

However, the absolute value of the connection weight at the time of the state change,

which was removed in the modified ACP, has beer restored into the leamritig equa-

tion [13]. This term, which was originally introduced for biological reasons, is not

essential in the network and serves as a, learaing rate parameter. The discount fac-

tor 7 describe-, how an assessment of retu.rn ia the future is less sig.iftcant than

an assessment of return at the present. As before, cr:dy weight associted with a

state-action ppir being active in the previous r time steps axe eligible for change.

A =(k) ,• (.)- + . r)+,(k)j

"W, Wj(k .. ) f ( k.•(j, -J)) (3.28)

( (k a)) ifj -. j,,.•.(k a) -.wd xZ(k a) (3.29)
( ' i 0 othe.',+ie

... -(k. . fw V V.; 1) + A I
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3.5 Implementation

The modified two-layer ACP algorithm and the single layer ACP algorithm

were implemented in NetSim and evaluated as regulators of the AEO piant; fun-

damental limitations prevented a similar evaluation of the original ACP algorithm.

The experiments discussed in this section and in §3.6 were not intended to repre-

sent an exhaustive analysis of the ACP methods. For several reasons, investigations

focused more heavly on the Q learning tecthnique, to be introduced in §4. First,

the ACP algorithms can be directly related to the Q learning algoritlun. Second,

the relative functional simplicity of Q learning, which also possesses fewer free pa-

rameters, facilitated the analysis of general properties of di-ect learning techniques

applied to optimal control problems.

This section details the implementation of the ACP reinforcement learning

algorithms. The description of peripheral features that are common to both the

ACP and Q learning environments will not be r,.upeated in §4.5.

The requirement that the learning algorithr's input space consist of a finite

set of disjoint states necessitated a BOXES [81 type algorithm to quantize the con-

tinuous dynamic state information that was generated by the simulation of the AEO

equations of motion. " As a result, the input space was divided imo 200 discrete

states. The 20 angular boundaries occu-red at 18° intervals, st.r ing at 0°; the 9

boundaries n. magnitude occurred at 1.15, 1.0, 085, 0.7, 0.55, 0.4, 0.3, 0.2, fad 0.1

"14 The terms bins ad discrete' states are iiherpreted synonywously. The aeroeastic
oscillator has two state %r.•ables: poesiti, and veocity. The memurement of these
Variables in the spwe of mont•nuous r(!al namb'ers wiH be refeareri to ?.s the dynfamic
s•tate or continuors state.
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nondimensional units; the outer annulus of bius did not have a niaximm limit on

the magvitude of the state vectors that it contained.

The artificial definitien of time steps as the non-tmiform iutervals between

entering and leaving bins eliminates the significance of r as the longest interstimulus

interval over which delay conditioning is effective.

The A CP learning control system was limited io a finite number of discrete

outputs: +0.5 and -0.5 nondimensional force units.

The learning algorithm operated through a hierarchical process of trials and

ezperiments. Each experiment consisted of numerous trials and began with the ini-

tialization of weigh, and counters. Each trial began with the random initialization

of the state variables -ad ran for a specified length of time. "5 In the two-layer archi-

tect-are, the motor center and reinforcement center weights were randomly initialized

using unifc-m distributioni between {--.�O, -a and {a, 1.0}. In the single layer

architecture, all excitatory weights were initialized within a small uniform random

deviation of 1.0, and all inhibitcry weights were initialized within a small uniform

random deviation of -a. The impetus for this scheme was to originate weights suf-

ficiently large suclh that learning with rion-positive reinforcement (i.e. zero reward

and nen-nega+,ive cost) would only decreast the weights.

The learning syste'n ope-a tes in discrete time. At every time step, the dy-

namic state transitions to a new value either in the same bin or in a new bin and

the Systeir ew•aates the curreiA assessment of either cost and reward or reinforce-

men. Fbr each discrete time step that the state rcnnaits in a bin, the relnforcernent

lylnti cttates (position and velocity) were iuifordly i3.stribeted between -. 1.2 and

-. 1.2 "ty " "s units.
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Table 3.1. ACP parameters.

Name Symbol Value

Discount Factor -y 0.95

Threshold 9 0.0

Minimum Bound on JWI 0.1

Maximum Motor Center Output fi 1.0

Maximum Interstimulus Interval -r 5

accumulates as the sum of the current reinforcement and the accretion of previous

reinforcemeats discounted by -. The arrows in Figure 3.6 with arrowheads lying in

Bin 1 represent the discrete time intervals that contribute reinforcement to learning

in Bin 1. Learning for Bin 1 occurs at t5 where the total r--inforcewent equals the

sum of r5 and -f times the total reinforcement at t4.

Bin 1 t2 5Bi 2

Figure 3.6. A state transition and reinforcement acumul,,rtion1 cal-
toon.

For the two-layer ACP, the reward presented to the positive reinforcement

center was zero, while the cost presented to the negative reinforcement center was

a quadratic valuation of the state error, In the :;ing.e layer learning ýLrcitecturh,
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the quadratic expression for the reinforcement signal r, for a single discrete time

interval, -vas the negative of the product of the square of the magnitude of the

state vector, at the final time for that interval, and the length of that time interval.

The quadratic expression for cost in the two-layer ACF was -r. The magnh'Cude of

the control expenditure was omitted from the reinforcement function because the

contribution was constant for the two-action control laws.

-= (t2 -t 3 ) [-(t2)2 + -+(t 2 )2] (3.31)

3.6 Results

Figure 3.7 illustrates a typical seg'ntnt of a trial prior to learning, in which

_ an ACP learning system regulated the AEO plant; the state trajectory wandered

clockwise around the phase plaii', suggesting the existen ce of two stable limit cycles.

The modified two- layer ACP system failed to learn a control law whi(ch drove

the state fromn an arbitrary initil condition to the origin. lIsted, the learned

control law onr(:,iued traject~oi is with i.nacceptabhl bthavior near the origin (Figure

-.8). The terminial condition f or the AE() state coitrolled by a,• (Linm.al r-gulator

withi a finite 1111.)nber of d1iscrete coitlrol levels, is it liniit cycle. tkW(ev,-', the two

]atvei A\('T faild t converg t Ohe opti inal cont-ro) pol icy .X it.)l tigih IAthfi ti' of

,L ý;,t 4 harl Iig td, rau;icth'l fin wwhiic h•hl i Vm.' t,. an opti'llid

';4 )!1tiOli CMi TlIot I',•)ZC: ,ii V fItull. "lI trte', ]v3 del va.o i,>itiiifis ,s.vcal w IN t iýd I)blS

I> 1 týt,0 i,,c of t hI alK,,it}Ln:..
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I II

-1.0

0.5 ---...

0.0 '

-0).5

-1.0 "--- • • - ' '
-2.0 -1.J -1.0 -,0.5 6.0 0.5 I.0 1.5

Position

Figure 3.7. A characteristic AEO stae trajectory achieved by a
reinforcement learning algorithm prior to learning.

The single layer archittctuxe of the ACP learned the optimal control law, which

successfully regulated the AEO state variables near zero from axty irnfida condition

within the regioa of training, {-1.2, 1.2). The performance of thc coitrol po]Cy

was liraited by the coarseness of the bins and the Froximity of 'Dn boundaries to

features of the norlineua dyvailuics. The restricted haoice of corntrol actions also

bounds the achievable performnance, contributing vwo sbe rough trajectory in Figure

3.9°
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1.0

0.8

0.6 - ---------.. ---..

-0.4

S0.2

-0.2

-0.4 .. . ..

-1.0 -0-5 0.0 0.5 1.0
Position

Fig-ure .. 8. The AEO state trajectory achieved by the modified
two-layer ACP after le-amng.

1.0- I I

0.8

0.4 -------- --- _ -

0.2> 0.2 ----------H - ----
-0.2 ------

-0.4 -..-

-1.0 -0.5 0." 0.5 1.0

I Osition

Figure 3.9. The AEG, state t Jajectory achieved by fh( single layer
ACP affer learning.
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Policy and Value Iteration
/

The notation anud ýoncepts presented in §4.1 through §4.4 follow directly from

Watkins' thesis (16] and [17]. §4.5 and §4,6 prese.t results of applying Q learning

to the AEO. §4.7 explor'es a continuous version of Q learning.

4.1 Terminology

4.1.1 Total Discounted Future Return

A discrete-time system that performs an action •k in a state xk, at time k,

receives a perfornmauce evaluation rk associated with the tra,.&;tion to the state zk+ I

at timen k + 1; the evaluation rk is referred to as the return at time k. I The total

future return after time k, which equals the sum of the returns assessed between

time k and the completion of the problem, imay be unbounded for an infinite

SWatkins defin'fs return as th-ý to~al discounted ftkare retmxrd: this papcr eqt:ate-s ttk
terro, returrn and rvuard.
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horizon problem, However, the return received in the distant. future is frequently

less important, at the present time, than contemporary evaluMtions. Therefore,

the tota! discounted future return, defined in (4.1) and guaranteed to be finite, is

proposed.

00

,nrk+n = rk + 7rk+l + _2 rk+2 +... + 7trk+ +... (41)
n=:O

The discount factor, C •5 y < 1, determines the present vrdue of future returns.

4,1.2 The Markov Decision Process

A non--absorbing, finite-state, finite-action, discrete time Markov decision pro-

cess is described by a bounded set of states S, a couxtable set of actions for each

state A(x) where x E S, a transition function T, and an evalu.a.io medanism R.

At time k, the state is designated by a ran iora variable Xk and the true ,alue Xk.

The transition function defines Y&+l = T(xk, Gk) whene ak E A(xk); the new state

must not equal the previous state with probablity equal to unity At time k, the

return is denoted bky a random vatiable Rfk = R(r ak) aewd the actual evaluation

rl.. The expectation of the return s written R;. The Markov pýDpe.ty implies th,,t

the transition a&nd evauatio. 'ffunctions depend on the curreat state and curr, nt

aclion, and do not depend on previous siates, actions, or ewvauatiohs.

4.1.3 Value Function

In a Markov decision process, the expertation of the total discounted future

retauri depends only or the current Atate anft the stationary policy. A convenient

notation for the probability that perfornming actmicn C, in state a will leave the
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systeem in state y is P,,(d), The random variable representing the future state

Xk+,, achieved by starting in "he state X k at time k and follo,•ing policy f for n

time steps is w-itteu ns X fxk, f, n).

X(xk,f,O) = Xk (4.2a)

X(z•k,f, 1) = Xk+1 = T(xk,f(xk)) (4.2b)

If policy f is followed for n time steps from state xk at time k, the return realized

for applying f(xk+,) in state xk+,, i; expressed as R(Xk, f, n).

R(x,;f, 0) = R(rk, f(xk)) =Rk (4.3a)

R(xk,f,n) = R(Xk+.,f(Xk+.))= Rk+.(4.3b)

The expected total discounted futui e retulrn subsequent to the state x, applying

the invaijant policy f, is the vilue frinction V1(x).

V1'(X) + R(x,f,O)+4.(xf,1) + ... + ,,"R(x.•f, n) +... (4.4a)

R( , ,0) + -y7±V (Y V-77Y:) (4.4b)

X- (4.4c)

In (4.4c). y ;s the sutbset of S that is reachab•Le from x in a single time step.

4.1.4 ikction Va!te

'•?e au f•(x, a) is the c.-xpectation t che total (Lscomu ted future

retirli for star-tig in sItII ar pcr-fo"ninig ationr a, ar'ý(l sabse'qu(,Itly follkw,,&,ing
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policy f. Watkins refers to astion-values as Q values. A Q value represents the

same is.formation as the sum of an excitatory weight and an inhibitory weight in

Drive,-Reinforcement learning, which is used in the single layer ACP.

Qf(T, s) = R(xa+-yP(a)V(Y) (4.5)

The expression for an action-value (4.5) indicates that the value function for policy

f must be completely known prior to computing the action-values.

Similarly, Q1(x, g) is the expected total discounted. future retu"rn for sta-ting

in x, performing action g(x) according to policy g, and subsequently following

policy f.

4.2 Policy Iteration

The Policy Improxvement Theorem [16] states that a policy g is uniformly

bftter than or equivalent to a policy f if and only iff,

Qf(x, g) > Vj(x) for all x E S. (4.6)

This th.•orem ad the clefinition of action-values imply that for a policy g which

satisfies (4.6), V/,(x) > Vj(1x) for all x E S. The Policy Improvement Atgorithm

Selec's an, improved policy g according to the ieg g(x) - a C. A(x) stich that

a i;s the argurnerit that maximizes Qf(x,a). HowCvCr, to determine the ac"ion-

valdues Qf(r, a) fr f, the entire valui_ fu-ction V1o(x) must fi st be calculated. In
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4.3 Value Iteration

the context of a finite-state, finite-action Markov process, policy improvement will

terminate after applying the algorithm a finite number of times; the policy g will

converge to an optimal policy.

The Optimality Theorem [16] describes a policy f* which cannot be improved

using the policy improvement algorithm. The associated value function Vt.(x) and

action-values Qp.(x, a) satisfy (4.7) and (4.8) for all x E S.

Vf-(r) = max Qf.(x,a) (4.7)
aEA(z)

f (x) = a such that Qj.(x,a)= V 1 (x) (4.8)

The optimal value function and action-values are unique; the optimal policy is

unique except in states for which several actions yield equal and maximizing action-

values.

4.3 Value Iteration

The value iteration [16] procedure calculates an optimal policy by choosing for

each state the action which effects a transition to the new state that possesses the

maximum evaluation; the optimal wadue function determines the evaluation of each

state that succeeds the cun-ent statt. The expected total discounted future return

for a finite horizon process which consists of n transitions and a subsequent inal

return, to vahiate the terminal state, is reprcsented as V". The value functi'O
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which corresponds to the infinite horizon problem, is approximated by repeatedly

applying rule (4.9) to an initial estimate V0 .

V*(X) = max [R(-,a) + " J'(a)V"-(v)] (4.9)

Value iteration guarantees that the limit in. (4.10) approacdes zero uniformly over

all states. Therefore, V' converges to the optimal value 5fiuction and the optimal

policy can be derived directly from 17.

lir IV, - VrI = 0 (4.10)

Although this procedure is computationa:ly simplest if all states are systematically

updated so that Vn is completely determined from Vn- 1 before V'+ 1 is calculated

for any state, Watkins has demonstrated that the value iteration method will still

converge if the values of individual states are updated in an arbitrary order, provided

that all states are updated sufficiently frequently.

4.4 Q Learning

Unfortunately, neither the optimal policy nor optimal value function can be

initial1y known in a control problem. Therefore, the learninig process involves si-

imdtaneous, incremental improvements in both the policy function and the value

f-inction. Action-values Ql,(xrk,ak) for eac]h state-action pair at time k contain
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both policy and value information; the policy and value functions at time k are

defined in (4.11) and (4.12) in terms of Q values.

I(.) = a such that Qk(x, a) = VjQ(x) (4.11)

(X) = ;x [Qk(x, a)] (412)

The superscript Q denotes the derivation of the policy and the value function from

the set of action-values Qf, (xk, ak). Single step Q learning adjusts the action-va•ues

according to (4.13).

Qk=(k (1) -. )Qk(xk, aA) + of(rj + -yf'j'(x&+i)) (4.13)

The positive learning rate constant a is less than unity. Only the action-valce

o1 the state-action pair (xk, ak) is altered at time k; to guarantee convergence of

the value function to the optimal, each action must be repeatedly performed in

each state. As a form of dy-namic programming, Q learning may be de-scibed as

;ncremental Monte-Cazlo value iteration.

4.5 Implementation

'rh.s ,ction formar ,'; the implemrnerOtIfola of the Q lez'n a•g alori•,wi. h a a. a

regiilator fot" the a r,<t•C, ocifato, oplarh:t. 'Y '.1 1riov 'nent extenlato be: Q

learilii,y procc:rs was sitn Jar to'thaý. use I.for the. AC2P x~ri~ ir, §3,~5 w-,.d ýJV13,1.
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However, the quantization of the state space was altered. The boundaries of the

260 6ins that 7overed the state space were defined by magnitudes M and angles

A; the outer annidjus of bins did not have a maximum magnitude.

-41 {0.0, 0.0., 0.1, 0.16, 0.2, 0.25, 0.3, 0.35, 0.4, 0.5, 0.6,

0.7, O.&5, 1.0}

A {0c0, 18', M6, 54"', 72", 90', 1080, 1260, 1440, 1620, 1800, 198',

2160, 2340, 2520, 2700, 2880, 3060, 3240, 342-}

The bins were labeled with ýateger uumbers from 0 to 259, starting with the bins

in the outer ring, within a ring increasing in index with increasing angle from 0°,

and continuing to the next inner :ring of bins.

For each state-action pair, the Q learning aMgorithm stores a real ntumber that

represents the Q value. At the start of a new NetSim -xcperiment, all Q values were

initialized to zero.

The two parameters x'hich appear in (4.-3) were: 7 = 0.35 and ar = 0.5. In

this context, a is a learning rate paraineter; in the ACP descript'.on, a was the

nduimcm bowmd or. the absolute value (f the weights. The reaiun rk was given in

(3.31) as the negalive of the product of the squared magnitude of the state vector

and the length of the time internal.

4.6 Results

"h 1w-~Yl'.t3 0 tw.)o cxperirlentas, conducted in the Neaiim [1•II environment,

chara-cterz'i., th. ,ilt, , r1!.-:•' iof t .w Q learrxing lgor. The two experixnents
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Figure 4.1a. A Cartesian representation of the two-action optimal
control poficy.

differ in the set of allowyable control actions.

Ezperiment 1: Uk E {0.5, --0.5k

Experiment 2: u r E {0.5, 0.33, 0.167, 0.0, -0.167, -- 0.33, --0.5}

The learned optimal policy for Experimeit I appars in Figures 4.1a and 4.ab

The control law applied a +0.5 force whenevet the state resided in a birt cctaining

a 4- anld applied --0.5 whenevwr the state wms in atxi empty bin The general orin of
tis control policy resebmOles the ~:or opurmal bang- ,omg law i hat wa. derived from
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900

Jos) Q . . . . . .. 72 0
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+ .6 +o

1440 o3
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1620 .. 20 ISO18

0 . . . . . . .
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+ + +4+ +

+ + 4 +

+1 +
+ + + 4

+ '
2512 2W50

2700

0 Figure .4 l b. A polar representation of tbe two action optimal con-
t-r 4 policy

a !LQRB solution In §2.4,3. Figure 2.9 demonostrated that for the ttofl-Ophlim&l bang-

banig co-trol policy, the state t'rajectory slowly approaichd the crigin along a linear
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4.6 Resuit,

-10.

-2.0 i.
-2.5 • ~ ........... oe

-2 Forc = -0.'5

0 50 120 15 0 250

Box NumberFigure 4-2. 
*rent 1: Execte ion ted future return(

vlue) for eacJ state-action pair.(
"curve. To avoid the high cost of this behavior the optima o

"solution w.] not contain a linear swithn crve. A positive fopice must be appliein SOme states where the bangbng ride (§2.4.3) dictted a negative force and anegative force must be applied in SOme bias below the linear switching curve. Theavoid that resuot m the control po/jCi constructed 
1 and

2 avoiJ the problem of slow convergence auong a single switc.fjn r AhhoughSOrne regions of the control policy atpea tc be aibit.ry, there exists a structure
For tw() bins bouuided by the s l:>e rnag11itIude 

and separated by 18o the optia

0t wid typ;cdly b)e OPposite. For example, the three + biw.t bo1)- '8 0.6,
r 0.7, 54', and 1080 a re ra 01 s of the bJatnk- bIj's bouIIded by 0.6, n.y, " o

'i• ~y 07 234,, ýqjrd



ATTACHMENT 3

Chapter 4 - Policy and Value Iteration

0.0 I

-0.5 -----------

-1.o0...

I Force = 0.5

-1.5 ,- .-..--- Force = 0.333 ..
C- Force =0.167

-2.0 Force = 0.0
-2.0 -... Force = -0.167

Force = -0.33

-3.0 - 7 I I-2.5 .... .. Force =-0.5

0 50 100 150 200 250

Box Number

Figure 4.3. Experiment 2: Expected discounted future return (Q
value) for each state-action pair.

288'. The 15 pairs of bins which violate this pattern lie primarily Dear the linear

switching curve (§2A.3).

Figures 4.2 and 4_3 compare the expected discounted future returns for all

sta' e--action p.)ur-s in Exptrim ent., 1 and 1, respectively. The expected discourited

futuare rcturn was negative for" all st.ate action pairs because only negative return

(i.t:. cost) was a.rsessed. Moreover, the Q Aithles for bins nearer the origin were

g~reater thanm the Q valu.s fhr outlying bins. The fact tht:; ýt noon opt.inil action

lr)-fIhrm d il a t sigle bill .(,•)s not, signit'i a.1.ntlY afifect, the t,,tal cost for a tra jtctc ry,

wiltn oIet .i~.i ak'tionuS arc followed in >11l othet him; (ill tlis hle.-y'), evplains the

wii iil 4itv ICt ',t'fc hllost Q v"JIhw ttss,5 iat .4. with dltii'Wrelll 7,ti ,"•,i d 1 the sul,"l

-1.A)
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state. Additionally, the Q values varied almost periodically as r function of the

bin nunber; the largest vriance existed for the bins farthest from the origin. All

trajectories tended to approach the origin along the same paths through the second

and fourth quadrants (Figures 4.4, 4.6, 4S, and 4.10). Therefore, if an initial

condition was such that the limited control authority could not move the state onto

the nearest path toward the origin, then the trajectory circled halfway around the
S~/

state space to the next path toward the origin. This characteristic was a property

of the AEO nonlinear dynamics, and accounted for the large differences in - values

for neighboring bins. In Experiment 1, there existed bins for which the choice of 4he

initial control action determined whether this circling was necessary. For these bins,

the expected discounted future returns for the .wo actions differed substantially.

'Te coinrol law constructed in Experiment 2 was expected to outperform

the control law constructed in Ezperiment ! (i.e. for each bin, the maximum Q

value frem Figure 4.3 would exceed 0.e maximum Q value from Figu'e 4.2). For

the data presented, this expectatiou is trun for 60% of the bins. The bins that

violate this prediction are entirely located in the regions of the state space that the

state euters least frequently, F-.perirnent 2, with a geater nurnber cf state-action

pairs, requires substantisly mo.'e training than Experiment 1. The fact that for

certain bnin, the maximum Q vwue from Experiment 1 exceeds that for Experiment

ft "i;gnals insufficient learning in those biun for Experiment 2.

No explicit search mechanism was employed during learning. Moreover, the

(iyfin&U:-i tended to f hrc- aL trajectories onto the saint, paths, so t.mat ;•+any bins

"were oddoro entered. Therefore, to assure that a &loba.ly optimAl policy was at-

tidned, :-'Ildicient, trnds were required so that. the ',w)dom sclection o, t6e initlal

4,X!
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U0.0 ---
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-1.0 -0.5 0.0 0.5 1.0

Position

Figuie 4.4. Ezperirnent 1: State trajectory, xO {-1.0, 0.5}.
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0.6 ~~1- .n -ra

0.4 ---------- -
'I jSI I

0.4 2
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Figure 4.8. Ezperiment 1: State trajectory, - = {1.0,0.5}.

0.8

0.6 -----------0.4 ... . .. T....

0.2----....

-0.0 .. .-------.

"-0.2 -- Ii,
,-0.4

0 2 4 6 10

Time

F'igure 4,7. E'zperlnevat 1: Centrol history, x:n--ijU }

42r2



ATTACHMENT 3

Chapter 4 - Policy and Value Rteration
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Figure 4.3. Experimcrd 2: State trajectory, {-1 ..
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state provided sufficient experience about performing every action in every bin.

Over 2000 trials were performed in each experiment to train the learning system.

If the learning rate had been a focus of the research, an explicit search procedure

could have been employed. Additionally, in some experiments, the Q values did not

converge to a steady state. Some of the bins were excessively large such that the

optimal actions (in a continuous sense) associated with extreme points within the

bin were quite different. Therefore, the Q values for such a bin, and subsequently

the optimal policy, would vary as long as training continuel.

All Q learning experiments learned a control policy that successfully regulated

the aeroelastic oscillator. The state trajectories and control histories of the AEO,

with initial conditions {-1.0, 0.5} and {1.0, 0.5}, which resulted from the control

laws learned in Experiment3 I and 2, appear in Figures 4.4 through 4.11. The lim-

itation of the control to discrete levels, and the associated sharp control switching,

resulted in rough state trajtctories as w,€ll as limit cycles around the orion. The

results illustrate the ii:'.portance of a smooth control law; a continuous control law

(LQR) was discus6;xl in §2.4.2 and a characteristic statr trajectory appeared in Fig-

ure 2.5. Thz- absence ol actuatot dynamics and a penalty on the magnitude of the

control allow the application of larger values of control to maximize, reinforcemnent.

Therefore, Ezperiment 2 seldom selected a smaller or zero control force, ever. for

bins Iear the origin. In Ezperiment I the magi.itude of the control wa& constant.
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4.7 Continuous Q Learning

The algorithm described in §4A operates with both a finite set of states and

discrete control actions. The optimal control a* maximizes Q(z, a*) for the current

state x. To identify the optimal control for a specific state, therefore, requires the

comparison of Q(x, a) for each discrete action a E A(x). 2 However, quantization

of the input and output spaces is seldom practical or acceptable

-1-

0i

Control

Figure 4.12. A continuous Q function for aLn arbitrary state x.

A potential n~ew a~gorithm, reluted] to the Q lew-ning piiocess of §4.4 might se-

A finite numnber of Q vaJues exist and, therefore, the ma•ximu-m value is easily

obtained.
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lect, for each discrete state, the optimal control action from a bounded continuum

and employ a continuous Q function that maps the control levels into evaluations

of the expected discounted future return (Figure 4.12). However, to identify the

optimal control for a state requires the maximiization of a potentially muLti-modal

bounded function; this extremization procedure is problematic relative to the max-

imization of discrete Q values. The maximization of a multi-modal function at each

stage in discrete time is itself a complicated optimization problem and, although not

intractable, makes any continuous Q learning procedure impractical for real-time,

on-line applications. This Q learning algorithm directly extends to incorporate

several control variables; the optimal controls for a state are the arguments that

maximize the multidimensional Q function.

The Q learning concept may be further generalized to en.,ploy continuous in-

puts and continuous outputs. The algorithm maps expectations of discounted future

returns as a smooth function of the state and control variables. Th- ciuaTent state

will define a hyperplane through this Q function that resembles Figure 4.12 for a

single control vatiable. Again, a maximization of a potentially multi--modal func-

tion is requifred to compute each control. Although the continuous nature of the

state inputs does not operationally affect the identification of an optimal control,

the mapping and learning mechanisms mnusit incorporate the local generalization of

information with respect to state, a phenomenon which does not occur for discrete

state bins. A continuous Q fiic-tion could be represented by any functiou approxi-

mation scheme, such as the spatially localized counectionist network introduced in

§6.

Baird 1421 aldre,.•ý.e.ed the dif••culty of determining th., ,obal aximurfi of
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multi-modal function. Millington [41] proposed a direct lea'ring control method

that used a spatially localizcd connectionist / Analog Letiznig Element. The

learning system defined, as a di,,tiibuted functiou of' state, a continuous Probability

density function for control selection,
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Temporal Difference Methods

Temporal difference (TTD) methvis wCciffSC a clars of incremental learntng1

prc cedures that predict future systein behavior as F2 function of current obs-erva-

tboa6., The earliest temporal difference algorithm appeareo' Ir- Samnuel's chezker-

pla~ylng x, -o amn [181. 1 Manifestations of the ITD algorithm do exist i9 .Ln HOliand's

bucket brigade [Lý, Sutton's Adaptive Hewuistik: Critic [5,291, and tlop.Cs Drive-

Reinforcemient teaining (312]. This chanpterý suxmilnjzes Sutto.i'"s 'Žnificatio, oif timýse

elgorit hms itotc a gene-,ral temporal difsie hoy[tjadtea iaye.tc~x~

laiisand :sintij betwe'en the Adanitivtt deuxbilc Crtc flrivk -Iter-Ioxtcerie',tJ

lea-natig, and Q leernitig

SThe a~brase te-mnponzl i d'fervnce~ was pxcrostd by Sutato~n 1988 ý(i51
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5.1 TD( A) Learning Procedures

Most problems to which learning methods are applicable can be formulated

as a prediction problem, where future system behavior must be estimated from

transient sequences of available sensor outputs. Conventional supervised learning

prediction methods associate an observation aud a 6inal outcome pair; after train-

ing, the learning system will prechct the final outcome that corresponds tc, an input.

In contrast, temporal difference methods examine temporally successive predictions

of the final result to derive a similar mapping from the observations to the final

outcome. Sutton demonstrates that TD methods possess two benefits relative to

supervised learning prediction methods [15]. Supervised learning techniques must

w ait until the fLnal outcome has oeen observed before performing learning calcula-

fions 8nd, therefore, to correlate each observation with the final outcome requires

storage of the sequence of observations that preceded the final result. In contrast,

the TD approach avoids this storage reqairement, incrementally learning as each

new prediction and observation are made. This fact, and the associated temporal

distribuition of required calculations, make th~e TD algorithui a•enable to running

ona.*inc with the physical plant. Through more eficljýnt uws- of experience, TD al-

go-ithm's converge more rapidly and to mrnre accurate predictions. Although any

learnioig wfethod shoiild converge to ax equivalent evaluation with infinite2 expe-

ience, TI> ,t.IAods are guarau ed to p.erform better tban 8upervised learning
rieica- 1,11l ... "L L.•

teciniques after limtied experie.... rid- a Ma'kov decisiou process.

'.... 1pcal ditftrence wid conventional s apervised karning aie mdi stinguislAmae

f•ou . ,;Ingle stfYp JwelfiYon p trcnble, s whwre the acctacy of a prediction is revealed
a•.) • ...... {iT>...... ., , a a . . .. ..
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immediately. In a multi-step prediction problem, partial information pertinent to

the precision of a prediction is incrementally disclosed through temporally suc-

cessive observations. This second situation is more prevalent in optimal control

problems. Multi-stage problems consist of several temporally sequential observa-

tions {fI, x 2, ... , ,X,} followed by a final result z. At each discrete time t, the

learning system generates a prediction Pt of the final output, typically dependent

on the current values of a weight set w. The learning mechanism is expressed as a

rule for adjusting the weights.

Typically, supervised learning techniques employ a generalization of the

Widrow-Hoff rule [21] to derive weight updates. 2

Awt = - P,)A.P, (5.1)

In contrast to (5.1), TD methods are sensitive to changes in successive predictions

rather than the error between a prediction and the final outcome. Sutton has

demonstrated that for a multi-step pre(iction problem, a TD(l) algorithm produces

the same total weight changes for any obsexvation-outeim.e sequence as the Widrow-

Ho.ff procedure. The TD(1) algorithm (5.2) alters prior predictious to an eqiiai

degree..

A t (.-, S~ - ,) ,'9(5.2)

The teinporal differe•.,-i'ý: nethod g'Irice from '1 D( I to w i. alg or thm that adjist!-'

tJrio: I)rlitiJcJOIns ix) Ypropoit.hni to at fluctor that equals ,,.iity fow the current tiae and

*V' e Widrow1(4 . aHAI I ,,,I a) t' he a rule,; r-Siao t.hatt i-• hib a Uinazam

Ufl( tiuoa.f av , :•, u•; that Aý Pý
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decreases exponentiaLly with increasing elapsed time. This algorithrn is referred to

as TD( A) and (5.3) defines the learning process, where Pm+i is identically z.

t

Aw, = f(Pt+i -- Pt) At-•Pk (5.3)
k=1

0 < A < 1 (5.4)

An advantage of this expone tial weighting is the resulting simplicity of determining

future 'values of the summa, ion term in (5.3).

t- -1 t

S(t + 1) = .j At "i.k = ,P, + Ž At+•-lwPk (5.5)
/ =1 k=

= A,,t+1 + A E At-skA,,Pk = :,IPt4l + AS(t)
k=1

In the limiting ca'.: w, ere A = 0, the learni ig process deternmnes the weight in-

crement entirely 7' tb rt.3ulting effect on the most recent prediction. ''his TD(0)

algorithm (5.6) retembileg (0.1) if the final outcome z is r:placed by the subsequent

prediction.

AW = o(Pt+j - P,)A,,2t. (5.6)

5.2 An Ex'erision of TD(A)

'I'll 11) .; o n 'ug Ptoc-edu 1,t geliaiOzt, to accomplish thto,

p ~ic, a Jjsr rnult' (1, C la timll I f,'S , S1101 Wuc th iiexpectcd (1 s0 ut(d fiuturt
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5.3 A Comparison of Reinforcement Learning Algorithms

cost amsociated with an infinite horizon optimal control problem. in conformance

with Sutton's notation, ct denotes the external evaluation of the cost incurred

during the time interval from t-1 to t. The prediction Pt, which is the output of

the TD learning system, estimates the expected discounted future cost.

00

Pt ' " "rCt+i+n (5.7)
n:=0

The discount parameter -y specifies the time horizon with which the prediction

is concerned. The recursive nature of the expression for an accurate prediction

becomes apparent by rewriting (5.7).

p,-_ =, += c + + Y+ P, (5.8)
n1-O

Therefore, the error in a prediction, (ct 4 -yPt) - PA-, serves as the impetus for

learning in (5.9).

t

--W, = ±(c, + -fP -P,_ 1) > A'-AxP* (5.9)
k=i

5.3 A Comparison of Reinforcement Learning Algorithms

The modified TD( \ ) rule (5.9) is referred to as the Ad•pti ve v lemistic Critic

A I 1(A M ") ( learli to p1)1.iict lie "111111 W"ktii1 of the (lis.c ..tzmW ie. fiit lire Vail:i. (f the

\Ji W ii lii~b~evn CW~~1 r"pa *flS 1~ 1",4 t~ 1 oflig eqafull-tl T( Drive-

O w 1,0- , 1tx zf,,,< ý"tlk,. oi* of thtt'-;c: (k!v c.t 1 1ixg' a~lgorit .
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ChAipter 5 - TempoiO Neffrerence MWbad*

The .iugle stcp Q learning algorithm (5.10) defines a change in a Q value,

which represent-s a prediction of expected discounted fature cost, directly, rather

than throu,: ±i adjustments to a set of weights that define the Q value.

Qt+i(rtat) = (1 -- a)Qt(x at) + (, + YV(xt )) (5.10)

Although the form of the learning equation appears different than that of the AHC

or DR learning, the functionality is similar. The improved Q value Q,.+I(xt, at)

equals a linear combinatinr of the initial Q value Qt(xt, at) and the suna of the

cost for the current stage ct and the discounted prediction of the subsequent dis-

counted future cost -" ltQ(xi+i). A similar linear combinatioa to perform incremental

improvements if achieved :n both the AHC and Drive-Reinfurcement learnittg by

calculating weight changes with respect to the current weights.

Both the Drive-Reinforcement (DR.) and the Adaptive Heuristic Critic learn-

ing mechanisms calculate weight changes that are proportional to the prediction

error 1)t.

CtP, = ±ct -7P, - Pti (5.11)

The DR learning rule is rcwritten in (5.12) to conform to the c-rrent notation.

Auw.1  Apt 7k f. (ALXCk) (5.12)
k=1

h, tHit DIR wa(Id AlH algorithms, a n1on zerc prediction error causes the weights to

,td eJ :. tshat FJ. would have ben clo'-,er to ct + ±Pt. The cowistat of
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5.3 A Compar:&on of Reinforcemnent Learning Algorithms

proportionality between the weight change and the prediction error differs between

DR learning and the AHG.

The Drive-Reinfercemcnt weight changes axe defined by (5.12). The limits

on the summation over previous stages in time and the binary facilitation function

f, prescribe modifications to a finite number of previous predictions. An array

of constants, ck, encode a discount that determines the contribution of previous

actions to the current prediction error. In contrast, the summation term in the AHC

learrdng equation (5.9) allcws all p.revious predictions to be adjusted in response

to a current prediction error. The extent to which an old prediction is modified

decreases exponentially with the elapsed time since that prediction. In the AHC

algorithm, the sensitivity of the prior pr,•dhction to changes in the weights, APk,

scsAes the weight adjustment.

Similar to the AHC and DR learning, an incremeLtal change in a Q vallue is

pioportional to the prediction error.

Qt(xt,oa) = Qt+,(xt,at) - Qt(xt,at) = a(ct - Qt(xt,at)+-yVt(xt+:)) (5.13)

The expression for the prediction error in (5.13) appears different from (5.11) and

warrants some explanation. Vt(x,+4), which represents maz, [Q(xt+i, at+0)J, de-

notes the optimal prediction of discoLnted future cost and, therefore, is functionally

equivalent to Pi in (5.11). Moreover, the entire time basis for Q learning is shiftoe

forward one stage vith respect to the AHC or DR leatrning rules. As a result, Q,

k-perate's similar to -Pt-.- in (5 11) and the symbol ct performs the same function in

(5,11. ) and (5.13), although the cost is measured( over a different period of time in the

Q lear-ing rule than in the AIC o,r DiR lea-aing ruleci (5.9) wnd (5.12), resprc&ively.
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Chapter 3 - Temporal Differeuce Method-

To summarize the comparison of direct learning awgorithms, each f the tbhee

temporal difference techniques will lekzn a value function for the expected dis-

counted future cost. More generally, any direct learning ýklgoritnhr wil) maintain

and incrementally improve orot, policy and value 'unction iniormation. Further-

more, although the forms of the learning equetious differ slightly, each method

attempts to reduce the prediction error ,Pt

Although the fun ctionality cf direct learning algorithms may be similar, the

structure will vary. For example, Q learning disinguishess the optimal action by

m-imizing ever the set of Q values. The Associative Control Process determines

the optimal action through the biologically motivated reciprocal inhibition proce-

dure. Fuxrbermrore, whereas Q values may equal any real wunber, the outputs of

ACP leaining centers mast be non-negative, acknowledging the inability of neurons

to rea~ize rnegative frequencies of firng.
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Chapter 6

Indirect Learning Optimal Control

Eaih control law derived in this chapter atterapts to optimally track a refer-

ence trajectory that is generated by a linear, fime-invarin-it reference model (t-.1);

optimization is performed with rnspert to quadratic coust ftmdcionais over finite time

horizons. The notation in this chapter uses subscvipti to iukicatf. the stage . dis-.

crete time nd suvpersrnpt' to distinguish the plant -nJ 1,efi.rence modal_

X r.=, + frr,( (6, 1a)

y" = Cfx (6.1b)

5m.m a.- . u u r,- fir .
Yk =+ C 1Y I ... .. ( 1 rl (6 .1c)

- '- ý' ,,r + r)~ + 0,,, r r4-, ( d)

Alto.,gh a few subkequent ,ah',. of the' conmmand input aftcr rk r:',ty be' cha&uac-
terized at t;re k, the fiture ifput sc uer.c, wih be la.,gely u:.1kro'rn1. o y
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ianti'cite horiza u, lineaz qr quadrati (LQ) control techniqu's to the tracking problem

requires a descriptiork of h,,: fatture command inp•ts. Eurthennore, in a multi-

objecIir mission, su& as surcraft flight involviig sevral different dight conditioas,

the e6steencf of futixre maucu-iers should negligibly influeuce the. optimization of

perfjrmance duiaag the current operation. Finally, optimizations over unnecessar-

ily long timne frames may require prohibitively long computations. Therefore, finite

horizon LQ control direcmy addresses relevant control problems.

6,1 Single-Stage Quadratic Cp**mization

The control objective is to minimize the quadratic cost functional Jk which

penalizes' the cturxent control expenditure and the output error ek+1, given by the

difference between the reference output and the system output at time k+ 1. The

weighting matrice3 R,• and Q am'e symmetric and positive definite.

.1 ;1 e[ •QCe+i + vi Ru* (6.2)

-e+ = yr+, _,,_ ,,,+I (6.3)

A ,in-glc first-or.cier vece•ssa'y •cndticn define.- the condition for a !ontrol Uk to

wiminuzo the cost functioapI Jý 122,2:3J.

0~ kGi
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6.1 Single-Stage Quadratic OptImization

&Uk j QeA+i + Ruk = 0 (6.4b)
ILIk -+/

6.1.1 Linear Compensation

Assuming a minimum-phase plant, the linear compensator is the solution to

the problem of optimal tracking, with respect to the cost functional (6.2), of the

reference system (6.1) with a linear, time-invw.iant system (6.5). Applied to a

nonlinear system, this control law serves as a baseline with which to compare a

single-stage, indirect learning control law. The fact that indirect learning control

is a model based technique distinguishes the approach from direct learning control

algorithms.

Xk+1 = IýXk + ruk (6.5a)

Yk = CXk (6.5b)

Yk+I = Cltx'k + CFuk (6.5c)

That the partial derivative of ek+l with ,espect to uk is independent of Uk implies

that (6.4b) is linear in the optimal control. Therefore, (6.4b) may be written as an

exact analytic expression for the optimal control [24].

U~kla......1 =-crr t6.6)
a)u

u, (Cl?) Q [C'V4x' + (Cr'rk - C'x,] (6.7)
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The sufficient condition for this control to be a minimizing solution, that 82j

is non-negative, is satisfied for physical systems.

.=(cr))Qeik+i + Ruk = 0 (6.8)

&ik = (Cr)TQ(cr) + R > 0 (6.9)

6.1.2 Learning Control

In contrast to the single-stage linear compensator, the single-stage, indirect

learning controller is the solution to the problem of optimal tracking of the refer-

ence system (6.1) by a nonlinear, time-invariant system (6.10), with respect to the

cosi functional (6.2). Again, the zero dynamics of the plant must be stable. The

expression for the discrete time state propagation (6.10a) includes the a priori linear

terms from (6.5) as well as two nonlinear terms: fk(xI, Uk) represents the initially

unmodeled dynamics that have been learned by the system, and *k(xk) represents

any state dependent dynamics not captured by either the a priori description or the

learning augmentation. The assumption of an absence of time varying disturbances

and noise from the real system implies that ail dynamics are spatially depeii~lea

and will be represented in the model. The system outputs are a known linear - an-

bination of the states. The notation explicitly shows the time dependence of fk

and %P'k, which change as learning progresses; fk will acquire more o. the subtleti(S

in the dynamics wid, consequently, Tk will approach zero.

Xk-f I l, (P + I'tk +- fk(,Ik , Uk) 4 'P(Xk) (6.1 Oa)
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6.1 Single-St4ge Quadratic OpdrZA|ion

yk = CXk (6.10b)

Wk.+ = COXk + Cr'Ut + CAf(xk, uk) + C%(zk) (6.1Oc)

In this formulation, the first-order necessary condition (G.4) k.r a control u,,

to be optimal with respect to (6.2) cannot be directly solved for uk because of

the presence of the term f&(zk, uk) which may be nonlinear in uk. The Newrton-

Raphson iterative technique [25J addresses this nondinear programming problem by

linearizing fk(xk, uk) with respect to u at uk-1. -,4 is the Jacobian matrL, of fk

with respect to u, evaluated at {Zk,,u k-,}. Using this approximation for fk(Xk, uk),

Yk+1 assumes a form linear in uk and (6.4) may be vnitten as an ,aalytic exprei ion

for Uk in terms of known quantities.

fk(Xk, Uk) ;ý, fk(Xk, Uk-1) + f ~(Uk - Uk.1)(61.

yA+ ; ciaxk + cru,, + CfA;(Xk, Uk...1) + C ff(Uk - Uk..4) + C'I'k(xk) (6.12)

O0ki ( -(6.13)

5A k au&

The solution (6.14) is the first Newton-Raphson estimatte for the optimal con-

trols; a pseudo-inverse may be used in (6. 14) if the full matrix inversicn doe, not

exist. Subsequent estimates u. may be erived by linearizing (6.1,0) about u".

However, the estimate obtained in the first iteration is often sutficieýitly accurate

because the initial lineasi•-ation is about uj.- and the admissible chanige in control

Au k - uk_ 1 will be limited by actuator rat- limits and a sutlihc.> ly smal]

discrete time interval [25,26).
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The form of the learning augmented control law closely resembles the linear

control law (6.7). In (6.14) CF is modified by 8 which describes the variation in

control effectiveness that was uamodeled in the linear system. The final three terms

of (6.14) are not i"sent in (6.7) and enter from the nonlinear teims in (6.10).

•,•~ ~ "o I f k

-fk 7 ,.- k - (6.14)

A simple -aptive estiran. '-ht mmo -."ied 'y. , a time k is generited

',y solvi g(6,10) at the prciuub ,u e , , . d assuming *k(xk)

.J' ~ ~ ~ r tii -hs ~ ~usceptible tO L4 '-,Ii. isturbanczes present

! hc eal sy,'tem r2 71

• (z• = 1 • . -'-Iuj_i - .f, S '_,, )(.5

rabe : nents ~av . (e. v,: a control law that .s opti-

a rc c ' t,( . " t cost functiorpal .t , ji,,• lena.]4z,.s tiangeý, ia. control. Th'h

,6 si it)a i i i igC'- lwge corit\U ;tes ti~a avin i )i-,!

a A_ vA 4e, a- r, a -i 1NYSiti 11uta~tious of the wact ua Or'. 1i110 cto I&W.
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6.2 Two-Stop Quadratic Optimization

(6.18) resembles (6.1.4) with tLe addition of two t rrms ivol iri 3, which is 3yvn-

metric and posit•ve definite.

1[e [,T Qe 1+, -uT.Rut + Au SAuj (6.16)

AAk = UA. - Uk-.I,' (6.17)

' u [(cl'+C )Q Cr+C) +R+S..1

-(cr + cCf)T Q((Yr4cx_ +C R+. -1

- Cfk(xTk, tlk,\) +C ~ -lC'4'(Xk)) ± suk-..: r.

6.2 Two-Step Quadratc Cptimnization,

This section par-allelh the disc-ussion of §6.1 to derive 'fhe c.At ro. laws that are

optimal! with iespcct to a two time step, quadratic wst functional (6.19); a few new

issues arise. The expression for the r,::feience output two Zirtic steps into the future

(6.1 d) involves a future vk-due of. the cclmal.:id ip t. r-k+ . l is derivatio: ,ýassunles

that Tk~ 11 k

-7-j 'ek,. +- (!*._+I t- 2 k.+ +- tLk I tk + k4- I~, Ri ký4
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Ch•pý, er 4. .. ýrv,A':rect Learnt•ng Opti•msd Control

Two necessary condirions axe required to de:,,;:c a control which is optimal with

respect to (Co. 19). Each of the weighting matrices in (6.19) is symmetric and positive

definite,

-0 (6.20a)

(2Lk\fU Q'. (e1ek2 Q Qe+2 "F R&hk 0(6.20b)

ajk 0 (6.21a)

T

( 4+1 +2ek+2 Q4ek+l +--4 =0 (6.21b)

6.2.1 Linear Coirpensation

The output of the linear system (6.5) two ti-ne steps into the future is easily

deetermined because .-he dynainics are ass1xm.Ad to be entirely known.

y,+2 (C'AX;k + CAOFtUk + Cf'ukl (6.22)

"[he 'Ifu teous, Solutin of (6...,(,G) avid 6(.2ib) yields a solution fox n,, WI ex-

pr(':sii c'fot t k, Is also arvallat1 ,14', However, to parf"te. the

.1~~nv c(rolprOe:~ 'his cwThuro! wifl b~e rvecaiculmt(! ,at the u-Ixt tineivep To
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6.2 Two-Ste.) Qmicdratk Optimization

illustrate the similarity of the linear and learring control laws, as well as to expres'0

the laws in a compact form, several substitutions are defined.

A = C1" (6.24a)

B = Cq'F (6.24b)

A=.ATQ'A- ?R1  (6.25a)

T = B T Q2A (6.25b)

S=ATQ (6.25c)

(B" -- TA-"AT)Q 2  (6 25d)

tik [AT Q' A + B". Q2 4 I -r

[(0 C'4? + E C'r',P ) X

-- (0 C"f + B ((Y'VT' + C'r)) rk

(0 (4 4- C ) (6.26)

6.2.2 Learning Control

Flor the nonhnt;1r SYySt.1n, the output Ykc 1, (Q.274) nuist be p.> proxilated by

knowil quaultieth; that axe linear in Ujk and tl. Firs', O•be r, inear tenrm& in

(6.27A I-tre (--,•duated ut ti k," ,'uri--, it tin"", k la:",'h r tijall at: V4- I , 'Uv ai p o':i

Inatil()n rX.A IN dtiriv-ed for the next state..Adc t itily, A, rw lxj',' ed oil all l adhe
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estim~ated by lineariZing fk(Xk~l , Uk+ 1 ) about the point {xk, tk.1 }.

Yk+2 = C%ýkx+h. ±CIuk+1 + C'fk+l(xk+1 , s+l) +C(~k+1(Ik;+1,) (6.27a)

Sc-4'.ý+ + Cru,,l + Cfk(Xk+i , Uk+-) + C'Ik(ik+I) (6.27b)

14+1 = LkXk + rUA + fk(Xk, Uk-1) + Lf (Lk - '4k-i) + TIk(XAk) (6.28)

O Xk,Uk..(1TI~~u-

Yk2;:' C'I&-44i + CrFkil + Cfk(xTk, Uk-1)'+ C (uk+1 Uk;-1)

+ 9 C.k~ - Xk) + C'I'k(ik+l) (6.30)

Using ftbis approximation for Yk+2, the simultaneous so]; 7ion of (6.20b) and

(fl.21b) yxelds an expression for Uk ir, termis of (6.25) and (6.31). The v-Priables A

and B include !Lcth the rinta~r compouents of the a priori model as wiell &s learned

state depcnident corrections. 2,t is a correcti:?n to the constant 1' matrix and ý)a.Or

is a correction to the constant 41 mnatrix.

t~ 2(~~f Of O fO
A. Ot, -+C .. 1 (6. 31)

A '~1gbtI1?Sile~tfU2l : .' u"ht jotof t he first-ord'i1 i ctc-s~ary con~ditn ., al-o yields

WIe eso for u ~at A: t Is C al, 11a041 on1 Cvt.Ty tf.ime teCP. IbiAS Ckojttol
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6.3 Implementation and Results

law resembles the form of (6.26) and introduee7s several terms associated with the

nonlinear dynamics.

Uk =[A T Q1A + BTQ 2 S + R?0 -TA-IT T] 1

[(E Cry' + -z Crpj~\

+ (o cT d- E (Crirr, + CTr)) rk,

- (ec~+ (CPý + kf L X
k (x O-x ) )

+ (0 C('!+ (C"ý' "-cL~ o c LfL) Uk.-I

-(eC±Ba (c:P+C+o!'L<fk(X~.-,u~k.l)

(3 Be- + ED(xk)

C B 1)1 (6.32)

6.2.3 Multi-stage Quadratic OptirnizF-tion

The arguhillents prvseijitet` :u 1and t1hus fir iri 'ý'.2 . 7 , gveflralize( to

derive a control law whIod Js o)pt~iiua 2 with res'pect. to a cost fitictio~ia] (6.3,1) that

look, 7, ntl JIUc ~ps jilto tOle fiut m- The so)ut ion 4f till' proIblen.low w, will

1,0111( SI d l-su 111pt iofs ab olit thle O t V~t 0. .f 01 heCOVI.'l B (1i Inputt r for ua fit ilre

tinic st epýý Addlt (ik ia11v, til It 0117'O t '' ur~ write utnl ex phicit expretsSion f(' 14ks

heo I( -s iI(olteI int kh ( ItesI! L I !`~i )). -ti q I(l C'le es~ a'. atrtte.

-' Ck,~A.~~, o
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6.3 Implementation and Results

6.3.1 Reference Model

The reference model, whiclh generatee trajectories that the plant ,tates at-

tempt to follow, exhibits a substanti." influence ou the closed-loop system perfor-

mance. While a reference model that does aot satisfv p t- formance specifications will

y. eld an unacceptable closed-loop system, a reference model that demands unreal-

istic (i.e. unachievable) state trajectories may introduce ilistability through control

saturation. Therefore, the reference model must be s~lected tn yield satisfactory

performance given the limitations of the dynamicu [28].

i'he reference m ýdel was selected to be the ri ,'sed-)op system that resulted

from applying the optimal control from a linear quadratic design, to the aeroelastic

oscillator dynamics liinearized at the origin [29]. The discrete time representation of

the r •ference model as well as the AEO linear dynamics are presented for At = 0.1.

Q =11  0] (6.34a)

R = 1.0 1 10-7 (6.34b)

C:C'=: :1 ] (6.35)

0.994798 0. 1 ""0 1 (6 36)-... 0. 106070 1. . O,5 (63 a

r U 0f)5?Q' 1
: -. ) iO (6.36b)
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, [ 0.9C524 0.00026) (6.37a)= -o.9oW, 24 -0-000286j

[0.094826] (6.37b)
=0.905124

Design of an optimal control law might be accomplished with a learning system

that incrementally increases closed-loop performance requirements, by adjusting the

reference trajectory in regions of the state space where the current control law can

achieve near perfect trackiag. This is a topi, for future research.

6.3.2 Functiou Approximation

'The discussion of direct learz.ng optimal control (§3 - §5) focused on learn-

ing system architectures and algorithms which, themselves, operate as c mtrollers.

The discussion of indirect Jearuzing optimal control is primarily concerned with the

manner in which exps,ý,. ential iri'ormation about unmodeled dynamics may be in-

corporated into optimal control laws. The method by which a supervised learning

system approximates the initially unruodeled dynamics is a separate issue which

has received much investigation [21,30,31,321.

After a brief sumwary, this thesis abstracts the technique for realizing the

nonlinear mapping f (x, u) into a black box which provides the desired informat~onr

fk(.•k,u;,-,), 1 -•z , -,, and fk(Xk_1,uk•,i).

A spatially loc(JdzeNd connectionfist network is uised to repr,'ent the fapping

froln tte space ,i at(.-: and control to the initially , tnmodeled dyialnics. The iineu.-

Gaussianl netv•,oi" achio tes spatial locality by coupling a local bwjWs flCtion with

aWI KIffluein:-e fluic- 1 . The influence functi'm, which d( .,niinn.es *He Iegion in
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the input space of applicability of the associated basis funaction, is a hyper-Gaussian;

the basis functioa is a hyperplane.

The contribution of a basis function to The netwc' r.utput equals the product

of the basis function and the influence furnction, evaluated at the current input,

where the influence function is normalized so that the sum of all the influence

functions at the current input is unity [28]. The control law provides to the network
an estimate of the model errors, zk - 4x- - ru,~1 . The supervised learniug

procedure follows an incremental gradient descem" agorithm in the ,-,p.ce of the

network errors by adjusting .he paramete-s that describe the slopes and offsets of

the basis functions.

In terms of equations and for arbitrary input and output dimensions, Y(x)

is the network output evaluated at the current input z. The network consists of n

nodes (i.e. basis function and influence function pairs).

n

Y(X)z ,(.~, -) (6,38a)

L,(x) is the e•,luation of the i1" basis function at the current input. Wj is a

weight matrix that deLUnes the slopej of the hyperplane and bi is a bias vector. xo

defines the center of the influence function.

L,'() = Wd(x- xo) -, (6.38b)

1, ( r) is ,he 1'<) normalized influence function a±,d is not rdated to the discrete ti61

,B mtatrix. G,(x) is the t" intlkence ftuitiov evilo.at.•xt ait x, where the diagonal

4U')



ATYACHMENT 3

6-.3 YpIeMneII.&tA0Gn Ud Rkebzltt

knatrix Di represen-ks .he rpatial decays of tI.o Gau.;sip.ns.

r,.() •Gz() .

G (x L[ (6.38d)

The learning network bad three inputs (position, velocity, and control) and

two outputs (unmodeled position and velocity dynamics). in addition, the partial

derivatives of the syotem outputs with respect to the inputs were available.

1.0 ------

>

-0.5 ---

=1.0

-1.0 -05 0.0 0. 5 1.0

Velocity

Figure 6.1. The jmtialy unmodelO1hý velocity dy,•n cs as

flnnctiou of velocity Xý"
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The AEO dynamics are repeated in (6.39). The learning system must syn-

thesize on-line the mnitial model uncertainty, which consists cf the nonlinear term

g(x 2) in the velocity dynamics.

[x' + F (6.39a)
[-i] = [-1 nAjU 2.1] [X. + x~±L~

g~x~) = n 3 A5  - nA7OO7 ~ jb
9(2)-!-310OX)'+ _U,3(1002) fS(.OX(6j)

The manner in which the position and control enter the dynamics is linear and

perfectly modeled. Therefore, the function f will be independent of the position

and control (Figure 6.1). Additional model errors may be introduced to the a priori

model by altering the coefficients that describe how the state &nd cont:ol enter the

linea dyiamics. The lemning system will approximate all model uncertainty.

Although the magnitude of the control had been limited in the direct learning

control results, where the reinforcement signal was only a function of the state

error, Limitation of the control magnitude was not necessary for indirect learning

controllers because control directly entered the cost functional.

6.3.3 Single-Stage Quadratic Optimization Results

For the minimization of the weighted sum of the squares of the cunrent contre.1

and the succeeding output error, the perfformance of the learning enhanced control

law (6. 14) was compar'ed to the associated tie•a control law (6.7), in the context

of the(A atat,". oscilator. ueu t.s arpmea in x Yigures 6-2 thirough 6.9. hne c•t iol

ia.d leforc•lce model were .pdated at. i0t)z; the AEO siiaation was i W..rated

using a foatth-onder iftuige Kutta algoiithin with a stp, sizeo 00005.
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1.0 -a ,a I I

a i 1
A I a I

0.8 ------ a0.a a..... ..........'- ..... "..... -.-- '---.I.....

a/a - Reference Position
0.6 -a- Reference Velocity

a • ...... Learning Position

---- Learning Velocity
0.4 ----- Linear Position

------.. Linear Velocity

0.2

0.0 _"

0 2 4 6 8 10 12 14 16

Time

Figure 6.2. Position and velocity time histories for the reference
model as well as the AEO controlled by the linear and
lear-ning control laws, for the command r = 1 and the
initial condition x., = {f0,0}.

Figure 6.2 illustrates the reference model position and velocity time histories

as well as two sets of state time histories for the AEO controlled by the linear and

learning control laws. The presence of unmodeled nonlinear dynamics prevented

the linear control law from closely tracking the reference positiou. In col'trast,

the learning system closely followed the reference, after sufficient training. Both

control laws ira'tained the velocity near the reference. Although the futl lea,iong

Aoitro! law (6.14) wass implemented to produxice these re-sits, knowl'tdge of the form

(f the AE() onhlineuitles could have tce,•n osed to limiiite the terms -omna.ninlg

Firure 6.3 represents the errors between -he AEO states ansd thc reference

4M3
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model, for both control law designs. ID a separate experiment that introdu,' ed

model uncertainty in the linear dynimics, the linear control law (6..7) failed to

track a command step input with zero steady-state error. The learniag control !aw

results looked similar to Figure 6.2.

The specifics of the incremental function apploximation were not a focus of

this indirect learrning control research. The learaing process involved numerous

trials (more that, 1000) from random iniitial states within the range {-1.0, 1.0};

the c,,nr. tanded position wam tdso selected randomly between the same limits. The

aldocetion of network resoarce.-s (i.e., adjustable parameters) ind the selection of

lear-ning rates iuvolve heuris,.s. Moreover, the learning performzance depended

strongly on 'these 0ecibiorn!., Automation. o. the network design proncess w ouk have

greatly ,,%cilitated , his resear.ch.

The .;ea'aing control law reqtfiuhes the xvalue,•s of the netv crk ,utputs At the

cuxnrent ,tatý.! a.,d the! ,)vio ,s control, as well a,; the partial deri ýtive of the uetwork

• jin½With •s.... 'I:o i,1he cc.nttro, at the cui'rent stat,, tiC le Previous cont Li.

\.dl,•.nab, th;e aýýpitive tera 4',•(i:•) reqa.hres the •abn> •. he network outpu,3

tat 1.he previous state and th. previoums co,,arol.. I ,- ner,ý. rk o *-.puts, which rppeai

in Figue 6.4, catg. ,,. rapidly wiwtn the veloc ty is not neaur zero, i.e. at the

¾~ ~ o 1guni -t a triat. Sotn~e _apid c.hwiges rn O .-w ' outputs resu~lted frotm

1Ua' (wg' v, J, x. w o;id co. clu ait ly pixItethe iionlloeý,r dynamuC-13.

~ci tip') \c. the (c'o:Arol "t's well &iý the ;(e iIIs of (6. 14) that

6r .I .,r ..'ý. Ifhe couloi f'In theiiui ul, law

IVf . OAl' .K.",i ic ,'O le iors Ieuiin' iii the network 's apprto:,A.x:a-

4,&5
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0.0 SI I

S0.05 ----
2 II I

I I
-0.10 . .---- ------

Position Term]L-0.!5.. .............. _ .... V i~tyTerm ..j

-0.25
0 1 2 3 4 5

Time

Figure t.7. The estimated errors in the approximation of the ini-
tially unmodeled dynamics fA(xk, uki.-).

tion of the ncrcnldr ar dynamics. These errors are most noticeabl- in the estimation

of the velocity dI.ynamics at velocities not aeax zero. ?igure 6.8 illustrates the initial

model erro,. not rep eeited by the function f; the i daptive term will reduce the

efflect of these xenr ,g model errors. Experiments d& nonstrated that the system

performed nearly as w, 11 whei. the adaptive contribution was removed from the con-

trol. A conitioller that ugton'nted the lineax law with only the adaptive correction

was not e vaiuated.

V egtc 6,8 shows the r(,soMi s of control laws (6.14) ad(t (6.7) regulting the AEO

f"w X.c, l .1. 0.5}. Tihe control magnitude W,.W htnit A at 0.,' , t ,heiv) +Ats

o•a. Le.uI,.,lpta.d iWoe 'taSiI to., the benchirmtar.L, and the dir(c7t 1-8 nimg control

I5 • it'.. 1i).n is not ex picitly 1 sIo )w h gi F igre 6.8; -: tat traj'-(t-.y prdIIced by
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1.0
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Figure 6.8. AEO Regulation from •- = {-1.0, 0.5} with control
saturation at ±n.5.
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"Figure 6.9. Control history &;sociated wdith Figur:e 6.8.
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the learning controiler approached the origin much more quickly than the trajectory

produced by the linea-r controller. The control objective remains to track a reference

trajectory and, therefore, subtly differs from the goal of LQR (Figure 2.5). Recall

that this reference model does not necessarily maximize system performance. Figure

6.9 shows the force histories which yielded the trajectories in Figure 6.8. The rapid

switching in the leamning control force results from learning errors and the sensitivity

of the control law to the approximated Jacobian of fk(xk, uL-.).

This indirect learning control technique was capable of learning, and therefore

reducing the effect of, model un-i tainty (linear and nonlinear). Therefore, the

indirect learning -ot.troller derived from 1-hknear model with model errors performed

similar to Figure 6.8 and outperformed the LQR solution which was derived from an

inaccurate linear model (Figure 2.7). The indirect learning controller with limited

control authority produced state trajectories similar to the resuits of the direct

learning con.,trol experiments.
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Summary

The aeroelastic oscillator demonstrated interesting nonlinear dynamics and

scrved as an acceptable context in which to evaluate the capability of several direct

and indirect learning controllers.

The ACP network was introduced to illustrate the biological origin of rein-

forcement learning techniques and to provide a foundation from which to develop

the modified two-layer and single layer ACP architectures. The modified two-layer

ACP introduced refinements that iace~ascd the architecture's applicability to the

infinite horizon optimal control problem. However, resaltb demonstrated that, for

the defined plant ,,r.d environment, this algorithm failed to syntheslzýý an optimal

control policy. Finaly, the .ingle layei ACP, which functionally resembled Q learn

ing, successfuliy constructed aw optiml control policy that regulated the iwro-.l&stic

oscillator.

4ý learning aIppr•)1•O .a t!_ . ,ir..

thliey of v'lue iterat.i, ii rather than from behavioral science.. With suflicient train-
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ing, the Q learnir<, algorithm converged to a set of Q values that accurately de-

scribed the expected discounted future return for each state-action ,'air. The opti-

mal policy that was defined by these Q values successfully regulated the aeroelastic

oscillator plant. The results of the direct learning algorithms (e.g. the ACP deriva-

tives and Q learning) demonstrated the limitations of optimal control laws that

are restricted to discrete controls and a quantized input space. The concept of ex-

tending Q learning to accommodate continuous inputs and controls was considered,

However, the necessary maximization at each time step of a u,,,utinuous, poten-

tially multi-modal Q function may tender impractical an on-line implementation of

a continuous Q learning algorithm.

The optimai control laws for single-stage and two-step finite time horizon,

quadratic cost functionals were derived for linear and nonlinear system models. The

results of applying these control laws to cause the AEO to op',imally track a linear

reference model demonstrated that indirect learning control systems, which incor-

porate information about the unmnodeled dynamnics that is inc(.,emeqtally lewrned,

outperfornu fixed paramelter, linear control laws. Addition.ly, operating with con-

tinuous inputs and outputs, indirect learning control methods provide better pedfor-

malice than the direct learning methods previously ýuentimne4. A spatially hlcalized

connect'iV.ist m)etwork wa:s employed to construct the approx imation of the initially

mum ,deMIc. dynaiunic:s Ciat is required for Indirect ]c1rr c utrol.

7.1 (CoIclusions

"Ili' thl esis s Acllck-t,'! c &t.vIal tir¢':ct lt'i ning ,pttiuu'l toltu&,l al£,oitlit is an'd
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has also introduced a class of indirect learning optimal control laws. In the process

of investigating direct learning optimal controllers, the commonality between an

algorithm originating in behavioral science and another founded in mathematical

optimization help unify the concept of direct learning optimal control. More gen-

erally, this thesis has "drawn arrows" to illustrate how a variety of learning control

concepts are related. Several learning systems were applied as controllers for the

aeroelastic oscillator.

7.1.1 Direct / Indirect Framework

As a means of classifying approaches to learning optimal control laws, a di-

rect/indirect framework was introduced. Both direct and indirect classes of learning

controllers were shown to be capable of synthesizing optimal control laws, within

the restrictions of the particular method being used. Direct learning control implies

the feedback loop that motivates the learning process is closed around system per-

formance. This approach is largely limited to discrete inputs and outputs. Indirect

learning control denotes a class of incremental control law synthesis methdcds for

which the learning loop is closed around the system model. The indirect learning

control laws derived in §6 are not capable of yielding stable closed-loop systems for

non-mninimum phase plants.

As a consequence of closing the learning loop around system performance,

direct learning control procedures acquire information about control saturation.

Indirect learning control methods will ]earn the imodeled dynamics as a fumction

of the applied control, but will not "see" control saturation which occurs external

to the control system,
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7.1.2 Comparison of Reinforcement Learning Algorithms

The learning rules for the Adaptive Heuristic Critic (a modified TD( A) pro-

cedure), Q learning, and Drive-Reinforcement learning (the procedure used in the

ACP reinforcement centers) were compared. Each learning system was shown to

predict an expected discounted future. reinforcement. Moreover, each learning rule

was shown to adjust the previous predictions in proportion to a prediction error that

was the difference between the current reinforcement and the difference between the

previous expected discounted future reinforcement end the discounted current ex-

pected discounted future reinforcement. The constants of proportionality describe

the reduced importance of events that are separated by longer time intervals.

7.1.3 Limitations of Two-layer ACP Architectures

The limitations of the two-layer ACP architectures arise primarily from the

simultaneous operation of two opposing reinforcement centers. The distinct posi-

tive and negative reinforcement centers, which are present in the two-layer ACF',

incrementally improve estimates of the expected discounted future reward and cost,

respectively. The optimal policy is to select, for each state, the action that maxi-

mizes the difference between the expected discounted filtuxe reward and cost. How-

ever, the two-layer ACP network performs reciprocal inhibition between the two

ieinforcement centers. Therefore, the information passed to the motor centers ef-

fects the selection of a control action that either inalmizes the estimate of exet.,d

discounted future reward, or minimizes tle estimate of expected discoul)ted filture

cost. In general, a two-layer ACP architecture will not learn the optimal policy.
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7.1.4 Discussion of Differential Dynamic Programming

For several reasons, differential dynamic programming (DDP) is an inappro-

priate approach for solving the problem described in §1.1. First, the DDP algorithm

yields a control policy only in the vicinity of the nominally optimal trajectory. Ex-

tension of the technique to construct a control law that is valid throughout the state

space is tractable only for linear systems and quadratic cost functionals. Second,,/

the DDP algorithm explicitly requires, as does dynamic programming, an accurate

model of the plant dynamics. Therefore, for j lants with initially unknown dynamics,

a system identifi, ation procedure must be included. The coordination of the DDP

algorithm with a learning systems that incrementally improves the system model

would constitute an indirect learning optimal controller. Third, since the quadratic

approximations are valid only in the vicinity of the nominal state and control trajec-

tories, the DDP algorithm may not extend to stochastic control problems for which

the process noise is significant. Fourth, similar to Newton's nonlinear program-ing

method, the original DDP algorithm will converge to a globally optimal solution

only if the initial state trajectory is sufficiently close to the optimal state trajectory.

7.2 Recommendations for Future Research

Several aspects of this reseaxch warrant additional thought. The extension

"of direct learning methods to continuous3 inputs and continuous outputs might be

an awibitiou.; endeavor. Millington (41] addressed this issue by using i., spatially

loCalized connectionist / Analog Learning Element that defined, as a distributed
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function of state, a continuous probability density function for control selection.

The learning procedure increased the probability of selecting a control that yielded,

with a high probability, a large positive reinforcement. The difficulty of generalizing

the Q learning algorithm to continuous inputs and outputs has previously been

discussed.

The focus of indirect learning control research should be towards methods of

incremental function approximation. The accuracy of the learned Jacobian of the

unmodeled dynamics critically impacts the performance of indirect learning optimal

control laws. The selection of network parameters (e.g. learning rates, the number

of nodes, and the influence function centers and spatial decay rates) determines how

successfully the network will map the initially unmodeled dynamics. The procedure

that was used for the seltction of parameters was primarily heuristic. Automation of

this procedure could inpro,,e the learning performance and facilitate the control law

design process. Additionally, indirect learning optimal control methods should be

applied to problems with a higher dimension. The closed-loop system performance

as well as the difficulty of the control law design process should be compared with

a gain-scheduled linear approach to control law design.

4
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Differential Dynamic Programming

A.1 Classical Dynamic Programming

Differential dynamic programnming (DDP) shares many features with the clas-

sical dynamic programming (DP). For this reason, and because dynamic program-

ming is a more recognized algorithm, this chapter begins with a summary of the

dynamic programming algorithm. R. E. Bellman introduced the classical dynamic

programming technfique, in 1957, as a method to determine the control function that

minimizes a performance criterion [33]. Dynamic programming, therefore, serves as

an alternative to the calculus of variations, and the associated two-point boundary

value problems, for determining optimal controls.

Starting from the set of state and time pairs whicl satisfy the terminal con-

ditions, the dynamic programming algorithm progresses backward in discrete time.

To accomplish the necessary nminimizations, dynamic programming requires a quan-

tization of both the state and control spaces. At each discrete state, for everý stage
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in time, the optimal action is the action which yields the minimum cost to com-

plete the problem. Employing the principle of optimality, this completion cost from

a given discrete state, for a particular choice of acti i, equals the sum of the cost

associated with performing that action and the minimum cost to complete the prob-

lem from the resulting state [23]. Jt*(,_) equals the minimum cost to complete a

problem fr'om state x and discrete time t, g(, ui, t) is the incremental cost fumc-

ti3n, where u is the control vector, and T(I_ u, t) is the state transition function.

Further, define a mapping firom the state to the optimal controls, S(j_; t) = !_(t)

where u(t) is the argument that minimizes the right side of (A.1).

Jt*(j_(t)) = min [g(4(t),IL(t),t) + Jt+I(T(O(t),u(),t))] (A.1)

The principle of optimality substantially increases the efficiency of the dynamic

programming algorithm to construct S(K; t) with respect to an exhaustive search,

and is described by Bellman and S. E. Dreyfus,

An optimal policy has the property that whatever the initial
state and initial decision are, the remaining decisions must
constitute an optimal policy with regard tV the state resulting
from the first decision [34].

The backward recursion process ends with the complete description of S(Z_; t)

for all states and for t = N- 1, N-2, ... 1, where N is the final time. Given the

initial state x*(I) =- ý,1), (A.2) defines the forward DP recursion step.

St) (A.2a)

47t) (A2)
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Although dynamic programming provides a general approach to optimal con-

trol problems, including the optimal control of nonlinear systems with state and

control constraints, the DP algorithm requires substantial data storage and a large

number of minimizations. The substantial data storage that dynamic program-

ming requires results from the inefficient lookup table representation of Jt" and

u* at each quantized state and time; each item of' dta is represented exactly by

a unique adjustable parameter. This curse of dimensionality also existed in the

direct learning algorithms. Many practical problems, haviug fine levels of state and

control quantization, require a continuous functional mapping, for which a single

adjustable parameter encodes information over some region of the input space. Ad-

ditionally, a continuous mapping eliminates the necessity to interpolate between

discrete grid points in the input space to determine the appropriate control ac-

tion for an arbitrary input. A learning system could be employed to perform this

function approximation. A second disadvantage of the DP aigorithm is the neces-

sity of an accurate dynamic model. If the equations of motion are not accurately

known a priori, explicit system identification is necessary to apply any dynamic

programming procedure. The coordination of the DP algorithm with a learning

system that incrementally improves the system model would constitute an indirect

learning optimal controller.

A.2 Differential Dynamic x'rogramming

Discrete time differeixtial dynamic programming, introduced by D. Q. Mayne

[35] and refined by D. H. Jacobson and Mayne [36], is a numeric approximation to

478



ATTACHMENT 3

Appendix A - Differential Dynamic Programming

the classical dynamic programming algorithm and is, therefore, also applicable to

nonlinear discrete time optima] control problems.' Starting with a nominal state

trajectory and a nominal control sequence, the DDP algorithm selects neighbor-

ing trajectories and sequences that yield the optimal decrease in the second-order

approximation to the cost functional J(1_) E'VI g(Z, M

The differential dynamic programming ciass of algorithms incorporates fea-

tures of both dynamic programming and the calculus of variations. Before pre-

senting an overview of the basic DDP algorithm, several of these pi'operties will

be reviewed. DDP does not involve the discretization of state and control spaces,

which dynamic programming requires. Additionally, whereas dynamic program-

ming constructs the value function of expected future cost to achieve the terminal

conditions for each discrete state and each stage in discrete time, DDP constructs

a continuous quadratic approximation to the value function for all states near the

nominal trajectory. Finally, DDP solves for a control sequence iteratively, as do

many solution techniques for the twco-polnt boundary-value problems which arise

from the calculus of variations. Bellman's algoiithm (D1), in contrast, generates a

control policy in a single computaionally intensivt procedure.

Each iteration of the differential dynamic programming algorithm consists of

two phases: a backward run to determine _u(j; t), the linear policy which defines

the change from the nominal control as a function of state, for states near the norm-

inal, mnd a forward run to update the nominal state traj,-•ctory and nominal control

sequence [37,38]. The DDP algorithm requires accurate models of the increment&!

Jacobson and Mane also applied the differenuial dynamic programming method to

tontinuous time systems [36].
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cost function g(., u, t) and the state transition fumction T(x_, i, t). Furthermore,

the original DDP algorithm requires that both of these functions are twice differ- V

entiable with respect to states and controls; this condition is relaxed to a necessary

single differentiability in several modified DDP algorithms.

The following development of the original DDP algorithm follows primarily

from Yakowitz [39]. The nominal control sequence R,, along with the initial state

x(1) defines a nominal state trajectory &,.

u= {,(1), t(2), ... u (g) (A.3a)

x= (I), :x(2), ... T(N)} (A.3b)

The backward recursion commences at the final decision time, N, by constructing

a quadratic approximation to the nominal cost.

_,(,u ,N) = QP [g(x_, 1, N)] (A.4)

The QP[.] operator selects the quadratic and Linear, but not the constant, terms of

the Taylor's series expansion of the argument about the nominal state and control

sequences. A first order necessary condition for a control u" to minimize L(x, Y, N)

appvars in (A.5), which can be solved for the optinal input.

A,,L(x, u, N) = 0 (A.5)

t•ti(x, N) -(N) u,(N) = qv 4 . O.5_6_(N) (A.Ga)

4a)



ATTACHMENT 3

Appendix A - Differential Dynamic Programming

&_(N) - _(N) - -_.e(N) (A.6b)

The optimal value function, f(_., N) - min,, [g(j, I, N)], is also approximated by a

quadratic.

V(i; N) = L(_, u(,g N), N) (A.7)

The DDP backward calculations proceed for t = N-1, N-2, ... 1. Assuming that

V(.; t + 1) has been determined, the cost attributed to the current stage together

with the optimal subsequent cost to achieve the terminal conditions is represented

by L(x, R, t).

L(-, u, t) = P [g(;_, ~t) + V(_(I., 1, t); t + 1)) (A-8)

The necessary condition AL(_, _, t) = 0 yields the policy for the incremental

control.

u(x_; t) = P + 04,(x(t) - X.,(t)) (A.9)

(x__, t) = z•(t) + u(x; t) (A.10)

The expression for the variation in control (A.9) is valid for any state x.(t) suffi-

ciently close to the nominal state x(t). The vector • and matrix 17 , 1 <t N,

must be maintained for use in the forward stage of DDP. The optimal value function

appears in (A.11).

V(x; t)- L(xu(xt), t) (A.11)

'FLe forward run calculates a successor control sequence and the corresponding

state trajectory. Given x(1), uy(i) = tt(1) + a, by (A.9) anid (A.10). Therefore,
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x *(2) = !(;L(1), mu (1), 1). For t = 2, 3, ... N, (A.12) defines the new control and

state sequences which become the nominal values for t, next iteration.

u_*(4, 0 = 6U(O(), t) + _•(t) (A.12a)

10 (t + 1 ) = T-W_ (t), it*(t ),t) (A. 12b)

The reduction of required computations, which differential dynamic program-

irung demonstrates with respect to conventional mathematical programming algo-

rithms, is most noticeable for problems with many state and control variables and

many stages in discrete time. Whereas each iteration of the DDP algorithm involves

solving a low dimensional problem for each stage in time, mathematical program-

ring schemes for the numerical determination of an optimal trajectory typically

require the solution of a single high dimensional problem for each iteration. To

quantify this relationship, consider the problem where the state vector is a member

of Rn, the control vector lies in R•, and N represents the number of stages in

discrete time. The DDP algorithm inverts N matrices of order m, for each iter-

ation; the computational effort, therefore, grows linearly with N 2 The method

of vaxiation of extremals provides a numeric solution to two-point boundary-value

problems [23]. A single iteration of Newton's nethod for determinining the roots

of nonlinear equations, a technique for implementing the variation in extremals

algorithm, in contrast, require.i an N , rn imiatrix to be invertet!; the cost of an

iteration, therefore, grows in prop)ortion to N' [401. Furthermore, both algorithms

are quadratically cmnvergctI.. In the case where N - 1, how, ver, the" [DP algo

rithin •nd Newton's method defline identical increwiital III iproveeilents 11ii state nid

2 The control seqience will be in R`'
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control sequences. [39] Similar computational differences exist between the DDP

algorithm and other iterative numerical techniques such as the method of steepest

descent and quasilinearization [23].
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An Analysis of the AEO Open-loop
Dynamics

This analysis follows directly from Parkinson and Smith [9]. Equation (2.12)

may be written in the form of an ordinary differential equation with small nonlinear

damning.

-- + x =f where P = nA, < 1  (B.1)

If 0 = 0, the solution is a harmonic oscillator with a constant maximum vibration

amplitude X and phase 0. ,

X = XcoS(r + ) (B.2a)

dX -

d-r = -Xsn(,r + 4) (B.2b)

If p is non-zero but much less than one (0 < p < 1 ) the solution may be expressed

by a series expansion in powers of p.

X = Xcos(" ±+ 4) + g1 (Xy r, 4,) + 1I2g.2(X, T, 4) +4 .. (B.3)

All quantitie8 in this analysis are nondimensional
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In the expansion, X and 4 are slowiy vai'ying functions of r, To first-order, this

series may be approximated by (B.2), where X and 4) are now fiuctions of 7. For

slowly varying X and 4), these equations predict nearly circular trajectories in the

phase plane. The parameters presented in §2.2 and used for all AEO experiments

do not strictly sm'tisfy these assumptions. However, the analysis provides insights

to the AEO dynamics.

Following the outline presented in [9], each side of (B.1) is multiplied by Xc

and the algebra is manipulated.

(X + X)X = pc f(x) (B.4)

Sld(X + X) -- (X + .t) (B.5)

X 2 + j -= -X 2coS2(r +- 4) + Sin( + X2) = (B.6)

/jI f(X) = -.- Xsin(,r + O)f (-Xs:n(r + 4,)) (B.7)

_= -p~ in(7 + O)f k-A))n(r 4 (B.8)2 dr"

That X varies slowly with r implies that the cycle period is small compared with

the time intervals during which appreciable changes w the amplitude occur. There-

fore, an average of the bel; iior over a single period eliminates the harmonics and

is still sufficient for the purpose of examining the tnie evolution of the amplitude.

I dX-2  [

2 dr 2f ro siri(r + 0) f (-Y(r + 4)& (B.9)
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Recall from (2.12) and (B.]) that f(I-) is given by

7-dr- o1-00[5-1 nAi) dr cIU " d7

s (lO000?)s A7  X 7

+( A,~) (100 ) (A U ) (1000d-a)7]. (B.10)

Therefore, (B.9) reduces to

cW nA, 1 00 2Pi X~2 -3( 104 X

dr 1000 1 X~) 4 j

5 8A--s 10005 X6• - " (_A7 U) 100

In the following analysis, let R represent the square of the amplitude of the

reduced vibration, i.e. R = X 2 Equation (B.11) may immediately be rewritten in

terms of R.

-- dR
-a- =R - bR2 + cR 3 - dR4  (B.12)
dr

Recalling that p <, 1, stationary oscillations are nearly circular and correspond to

constant values of X 2; constant values of Y 2 are achieved when

dRdr 0. (B.13)
dr I*ý

This condition is satisfied by R = 0 and also by the real, positive roots of the cubic

a -- bR + cR 2 - dR2 = 0. Negative or complex values for the squared amplitude of

vibration would not represent physical phenomena.

486



ATTACHMENT 3

Appendix B - Analysis of AEO Open-loop Dynamics

Stability is determined by the tendency of the oscillator to converge or diverge

10in response to a small displacement bR. The sign of JL W) j dtemiesth

stability of the focus and the limit cycles and will be positive, negative, or zero for

4 unstable, stable, and neutrally stable trajectories, respectively.

d ldR\
"r= a - 2bR + 3cR2 - 4dR3  (B.14)

The stability of the focus is easily analyzed.

W ' = a = nAl (UR ha, (B.15)

A = ,__ > o (B.16)dOa a=0

Given that n, U, A,, A3 , A5 , and A7 are positive, the coefficients b, c, and d

will also be positive. If 0 = 0, the system has no mechanical damping and a will

be positive for all values of windspeed. However, if 3 > 0, then a > 0 only if

U > U, : ,,_ Therefore, if 3 = 0 the focus is unstable for all windspceds greater

than zero, and if Pi > 0 the focus is unstable for U > Uc. This minimum airspeed

for oscillation is the definition of the reduced critical windspeed; oscillation can

AP, be elimin ted for windspeeds below a specific value by sufficiently increasing the

mechanical damping.

Three distinct solutions exist when a > 0; the focus is unstable for each. The

choice among thes possibilities, which are characterized by the real positive roots

of the cubic a - bR+ cR 2 - dR2 - 0, depends upon the win&speed. (1) If R, is the
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Figure B.1. The steady state amplitudes of oscillation T.. versus
the incident windspeed U.

single real, positive root, there is a single stable limit cycle of radius V'?1 around

the unstable Zocus. This condition exists for two ranges of the reduced windspeed.

(2) Three real, distinct, positive roots, R3 > R2 > RI, correspond to two stable

limit cycles at v/Rk and v/-R3 separated by an unstable limit cycle at vr. (3)

R1 and R2 coalesce to a double, real, positive root while R3 is a distinct, real,

positive root. The magnitude of the radius of the single stable limit cycle depends

on plior state information; this hysteresij is discussed below. Tbis condition occurs

at two values of the reduced incident windspeed.

The most interesting dynamics occur when the second of these situations ex-

ists. Figure B.1 plots the steady state amplitude oi oscillation , for circu.lax
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Appendlz B - Analysis of AEO Open-loop Dynamics

0.4-

0.2

0

S0.0 • • . --

S-0.2

-0).4 .. ..

0.0 0.1 0.2 0.3 0.4 0.5 0.6

Squared Oscillation Amplitude, R

Figure B.2. versus R for U = 2766.5.

limit cycles, as a function of incident windspeed.

A hysteresis in X.. can be demonstrated by inc-easing the reduced airspeed

from U < Uc, where Y.. = 0. For UL < U < U2, the amplitude of the steady

state oscillation will correspond to the inner stable limit cycle; for U > U2, X.,

jumps to the larger stable limit cycle. As the dimensionless windspeed is decreased

from U > U2 , the amplitude of the steady state oscillation will remain on the

outer stable limit cycle while U > U1 ). When the windspeed is decreased below

U = U1, the steady state amplitude of oscillation decreases to the inner stable limit

cycle. Therefor'e, for a constant windspeed U1 < U < U2, Y,, resides on the inner

2U• < U1 < U2.
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stable limit cycle when the initial displacement is less than the magnitude of the

unstable limit cycle, and Y,o lies on the outer stable limit cycle when the initial

displacement is greater than the magnitude of the unstable limit cycle.

For a specific value of the reduced wind velocity, the rate of change of the

square of the oscillation amplitude, 4, can be plotted against the square of the

amplitude of oscillation R (Figure B.2). If !0 is positive, the oscillation amplitude

will increase with time, and if !0- is negative the oscillation amplitude will decrease

with time. Therefore, an oscillation amplitude where the value of 0- crosses froL .

positive to negative with increasing R is a stable amplitude. The focus will be

stable when the time rate of change of oscillation amplitude is negative for R

slightly greater than zero.
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