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I. Technical Discussion

The work performed by Science Applications International Corporation
(SAIC) on this contract, "Fluid Dynamics Lagrangian Simulation Model,"
Contract Number N0O0014-89-C-2106, SAIC Project Number 01-0157-03-0768,
focused on a number of research topics in fluid dynamics. The work was in
support of the programs of NRL's Laboratory for Computational Physics and
Fluid Dynamics and covered the period from 10 September 1989 to 9
December 1993. In the following sections we describe each of the efforts and
the results obtained. Much of the research work has resulted in journal
publications. These are included in Appendices of this report for which the
reader is referred for complete details.

II. Simulation of Inviscid/Viscous Flows Over Complex Geometries

The use of unstructured grids for the simulation of high-speed flows has
been extensively reported in the literature (see references cited in Appendices A
and B). In the present research effort, SAIC extended this technology to nearly
incompressible flows, and applied the procedure to simulate inviscid as weli as
viscous flows past submarine configurations with all their appendages. One
attractive feature of using triangular or tetrahedral meshes over structured
meshes is that complex geometries can be easily represented. For example,
constructing a structured mesh around a submarine with all its appendages
will require a tedious task of decomposition of the domain. In the present
work, unstructured grids are generated using the advancing front algorithm of
Lohner. The governing equations of flow are solved using the finite-element
version of the Flux-Corrected Transport algorithm (FEM-FCT). Details of the
flow solver can be found in the Appendices referred to above.

As a first step, Euler and Navier-Stokes solutions were obtained for an
axisymmetric flow. This provided an excellent case to validate the procedure
employed and also a base to build models for predicting turbulent flows. The
procedure was applied to solve a model problem of flow over a sphere; the
computed results were found to be in good agreement with those found in the
literature for both the potential flow case and the case of viscous flow at Re =
100. These results are included in the paper presented at the AIAA Fluid
Dynamics Conference (Appendix A). Having established the correctness of the




procedure, it was then extended to compute flow over the submarine hull
configuration. Grid refinement studies were conducted for the inviscid flow in
order to establish the independence of the flow solution to the chosen grid.
Also, a laminar viscous flow solution over this configuration was obtained for
Re = 1000. The convergence rate for this problem deteriorated considerably, as
would be expected, due to the presence of the small elements in the boundary
layer that are needed to resolve the high gradients present in the flow variables.
Hence, convergence acceleration of the numerical method was investigated by
appropriately sub-stepping the viscous diffusion terms. It was found that this
method of convergence acceleration does not yield substantial gain because the
allowable time-step for the explicit scheme for low Mach numbers is limited by
the speed of sound. Hence, this convergence acceleration procedure should be
investigated with the barely-implicit correction (BIC) scheme.

The procedure was next extended to solve three-dimensional flows.
Results were obtained for inviscid flow over the submarine with sail and stern
appendages at various pitch angles of attack. This work was presented at the
APS meeting in November 1989, and an abstract of this presentation follows.

Study of Three-Dimensional Flows Past Complex Geometries
Using a Finite-Element Method, R. Ramamurti, SAIC & NRL and R.
Lohner, GWU - The finite-element method of Lohner! has been advanced
to study the flow past complex 3-D geometries. In the present
investigation, the advancing front algorithm? is employed to generate the
unstructured grids over a complete submarine configuration. A two-step
Taylor-Galerkin procedure is used to discretize the Euler equations of
motion. The procedure was tested via application to a model problem of
inviscid flow past a sphere at M.. = 0.2. Comparison of the surface
pressure distribution with potential flow is very good. The procedure is
then extended for the simulation of 3-D flow past a submarine hull
configuration and the results are compared with the axisymmetric
solution. Flow past this configuration with sail and stern appendages is
also investigated for various pitch angles of attack to study the
asymmetric flow properties.

* This work is supported by Naval Research Laboratory under a contract
from DARPA.

1 Lohner, R., Morgan, K. and Zienkiewicz, O.C., Int. J. Num. Meth.
Fluids, No. 4, 1984.

2 Lohner, R. and Parikh, P., AIAA Paper No. 88-0515, 1988.

In order to predict the formation of vortices and hence the noise
generated by them, it is important to carry out a Navier-Stokes analysis.




Therefore, the viscous diffusion terms were incorporated into the 3-D version of
the flow solver. In the numerical procedure, these terms were treated as a
deferred correction in the second step of the Taylor-Galerkin procedure.
Preliminary coarse grid results of the fully appended model at a pitch angle of
attack of 10° show the presence of vortices at the junction of the sail and the
hull and also at the tips of the stern planes. This configuration was also
studied at a yaw angle of attack, in order to predict the forces and moments
that will be involved in a maneuvering submarine. This is documented in the
paper that was presented at the 29th AIAA Aerospace Sciences Meeting and is
included as Appendix B.

In 1990, the research effort was directed towards simulating transient
flow for resolving the D5 water-in-nozzle problem and to give better estimates of
the transient forces acting on the nozzle. This research effort is part of the
Trident related activities at NRL. It has been the primary research effort since
January 1990. Work was also continued on the previous year's effort on
simulating viscous flows past complex geometries such as the submarine hull
with all its appendages.

The finite element method coupled with the adaptive remeshing
algorithm was employed to predict the transient forces and the flow field in the
nozzle. The interaction of the shock waves with the aft-shield was also
investigated. Further, the rigid body motion of the aft-shield was integrated
with the remeshing algorithm in order to study the effects of its movement.
The effects of variable specific heat ratios on the dynamics of the flow was also
investigated. The results of this effort were presented at the 43rd Annual APS
meeting and the abstract follows.

Numerical Simulation of Transient Flow in a Nozzle,* R.
Ramarmurti, SAIC & NRL, K. Kailasanath, NRL and R. Lohner, GWU -
Unsteady flow in nozzles is studied in order to understand the dynamics
of the flow field and to get better estimates on the forces acting on the
nozzle. The numerical simulations have been performed using a finite-
element method coupled with an adaptive remeshing algorithm. The
scheme employed for the flow solver is a Finite-Element Method Flux-
Corrected Transport scheme (FEM-FCT) which has shown excellent
predictive capability for axisymmetric flow fields with strong and weak
shocks. The effect of the presence of a barrier near the exit plane of the
nozzle on the flow is studied by integrating the adaptive rem=shing of the
unstructured grid with the rigid body motion of the barrier. The
movement of the barrier due to the interaction of the shock wave is
calculated. The flow in the nozzle shows the presence of a recirculating
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region which eventually exits the nozzle. The effect of variable ratio of
specific heats is also investigated.
*This work is supported by Naval Research Laboratory and SSPO.

Since March 1991, SAIC evaluated the newly developed incompressible
flow code using unstructured meshes. This is done via application to several
model problems such as flow over a flat plate, developing flow in a channel,
laminar flow over a backward facing step, and flow past a circular cylinder.

III. Vortex Shedding and Lock-On

SAIC conducted a study of a number of problems in the field of bluff
body wakes. The study was carried out using a code obtained from Professor
George Karniadakis at Princeton. This code, NEKTON, is a spectral element
code and required substantial change to enable it to run on the computer at
NRL. Once running we carried out an extensive numerical investigation of
vortex shedding behind a circular cylinder.

The work consisted of determining the effect on the vortex street of
superimposing a small perturbation on the incident mean flow upstream of the
cylinder. Experimental work had suggested that for a range of frequencies and
amplitudes, this perturbation could result in a phenomenon known as "lock-
on", in which the frequency of vortex shedding in the wake was altered to
match the frequency of the perturbation. For frequencies and amplitudes
outside of a hypothetical frequency-amplitude curve, the vortex street could
exhibit a variety of behaviors including quasi-periodic and chaotic shedding
frequencies.

Two papers that were published jointly with Owen Griffin of NRL describe
this work. The first paper to appear was a review article in which the
experiments performed by various investigators were described and the results
compared; a single numerical case in which lock-on was obtained was
described in detail (cf. "Review-Vortex Shedding Lock-on and Flow Control in
Bluff Body Wakes," ASME Journal of Fluid Engineering, December 1991.) This
paper is included here as Appendix C.

The second paper (cf. "Vortex Shedding and Lock-on in Bluff Body
Wakes,”" ASME Journal of Fluids Engineering, June 1993) contains the results
of an extensive numerical investigation in which the shape of the frequency-




amplitude curve was defined, and a more complete analysis of the near-wake
flow in cases of lock-on was done. In this analysis, quantities such as the drop
in the time-averaged streamwise component of the velocity in the wake and the
rms velocity fluctuations were examined, as well as the longitudinal vortex
spacing and the length of the vortex formation region. The results were
compared with experimental data and with data obtained numerically by other
investigators, who had not attempted to define the frequency-amplitude curve,
but had identified one or more individual cases of lock-on. This paper is
included in this report as Appendix D.

IV. Turbulence Studies

This effort involved investigations of wall-bounded turbulent flows and
free-surface turbulence. It included both the development of a new numerical
code and the interpretation of the resulting simulation. The general approach
was to use direct numerical simulations to generate a spatially and temporally
accurate database for interrogation. The simulations were performed and
analyzed on the NRL Cray X-MP. The major elements of these studies are
described in the following.

1. The structure of Turbulent Flows - In wall bounded turbulent channel
flow, the fluid flow is not entirely random, but exhibits a chaotic reoccurrence
of organized events. A common feature of these events is an elongated region of
low speed flow, or a low speed streak. A streak tracing algorithm has been
developed which permits the detection and tracking of low speed structures in
the boundary layer. The development of conditional sampling methodologies in
conjunction with direct numerical simulations provides tools to obtain new
insights into turbulent flows and turbulence-free surface interactions.

2. Free-surface Turbulence - The structure of turbulence near a free surface
was examined by using results obtained from a direct simulation of flow
between a no-slip wall and a shear free boundary, which serves as a model of a
waveless free surface. The turbulence is generated at the no-slip boundary and
convects to the free-surface.




Redistribution of Turbulence Kinetic Energy by Pressure-Strain

An energy balance analysis shows that the pressure-strain term is the
dominant producing term for the spanwise component of the
turbulent kinetic energy at the free-surface. Two phenomenological
models were developed for the redistribution, involving the interaction
of turbulent eddies with the free-surface.

Enstrophy Production

The total instantaneous enstrophy of a fluid is defined as the square
of the instantaneous vorticity, Z; Q; Q;. As a result of the shear free
nature of the top boundary, only normal vorticity may terminate on it.
The vorticity components parallel to the top boundary must go to zero
at the boundary. The time averaged fluctuating enstrophy balance
equations, which are an indicator of the level of activity of the vorticity
field are evaluated. Near the free surface the rate of production and
destruction of enstrophy is set by the stretching and rotation of
fluctuating vorticity by the fluctuating velocity field. The results of
this study were presented at the 29th Aerospace Science Meeting,
January 7-10, 1991, in Reno, Nevada. The associated paper is
included here in Appendix E.

Length Scale and Modeling

Two-point correlations, energy spectra, and length scales reveal
important free surface induced effects. The length scales near the free
surface are compared with the scales near the centerline of normal
turbulent channel flow. This comparison reveals an increase by a
factor of three in the streamwise length scales associated with the
spanwise velocity fluctuations and an increase by a factor of two in
the spanwise length scales for the streamwise velocity fluctuations.
The length scales normal to the free surfacc are decreased for all
velocity components. This indicates a more pancake-like eddy
structure near the free surface compared to the structure near the
centerline of a normal channel. The energy spectra show qualitative
agreement with the Hunt-Graham model, though higher resolution
calculations will be required to make more quantitative comparisons.
In addition, the dissipation rates for the horizontal components of the
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turbulence are reduced near the free surface while the dissipation of
the vertical component remains approximately constant. Details were
presented at the 29th Aerospace Science Meeting, January 7-10, 1991
in Reno, Nevada and are included in this report as Appendix F. A
second paper on the subject was presented at the AIAA 22nd Fluid
Dynamics, Plasmadynamics & Lasers Conference in June 1991 at
Honolulu, Hawaii and is incorporated in this report in Appendix G.

3. Vortex Reconnection

A numerical simulation of the interaction of a vortex ring with a shear-
free boundary was performed. The Reynolds number was 1000, based on the
circulation and viscosity, and the ratio of the core diameter to the ring diameter
was 0.4. In this simulation the vortex ring interacts with the shear-free
boundary through the primary and secondary reconnection events resulting in
a pair of vortex half rings attached to the boundary. The dynamics of the
reconnection process are discussed using the enstrophy balances and an
existing analytical model of the diffusion of a strained vortex pair. Based on
these results, a physical description of the reconnection events was developed.
This work is described in detail in a paper published in the Journal of the
American Society of Mechanical Engineers (ASME) 1991 (AMD - Vo. 119,
Dynamics of Bubbles and Vortices Near a Free Surface) and is included here in
Appendix H. Additional description of the work appeared in an earlier paper
presented at the Winter Annual Meeting of the ASME on Recent Advances and
Applications in Computational Fluid Dynamics in November 1990 in Dallas,
Texas. This is included here in Appendix L.

4. Numerical Methods - A code for the direct simulation of turbulence was
developed. This code, THRDFS, is similar 10 the method of Kim, Moin, and
Moser (1987). The primitive Navier-Stokes equations are rewritten as a fourth-
order equation for the vertical velocity and a second-order equation for the
vertical vorticity. The technique implicitly satisfies continuity, which allows
decoupling of the pressure field from the viscous flow calculation. The
pressure field is evaluated in a postprocessing calculation. Pressure and
vertical velocity on the free-surface are coupled by requiring the normal
momentum equation to be added to the free-surface boundary conditions.




The free-surface boundary conditions have been implemented in two
forms. The boundary conditions are linearized in the first case, resulting in low
amplitude waves and no mode coupling within the boundary conditions. The
subsurface flow field. however, remains fully nonlinear and mode coupling s
permitted. In the second implementation of the boundary conditions the
application is for weakly nonlinear free-surfaces. The full nonlinearity of the
boundary conditions is retained, but the conditions are still imposed on the
mean free-surface.

V. Numerical Simulations in Support of Narcotics Interdiction

We have been investigating the issues involved in requirements definition
for narcotics interdiction. How much of a particular signature could be there,
how does this amount change for different conditions, and what is the temporal
relationship in various scenarios. Our approach has been to simulate
numerically the conditions that zrise during vapor or particulate transport.
The advantages of this approach are that (1) a broad range of scenarios can be
rapidly and inexpensively analyzed by simulation and (2) simulations can
display quantities that are difficult or impossible to measure. The drawback of
this approach is that simulations cannot include all of the phenomena present
in a real measurement, and therefore the fidelity of the simulation results is
always an issue.

A description of this work will be presented in San Diego, California in
July 1993 at a meeting on Cargo Inspection Technologies, part of SPIE's
International Symposium on Optics, Imaging, and Instrumentation.

We will discuss these issues and how they apply to the current problems.
We will show the results of a 1D numerical simulation and compar~ these
results with the analytical solution to show that the model is verifiable at this
level. We will also present data of 3D simulations of vapor transport in a
loaded cargo container and some of the materials issues present in this
problem.

This work was also presented in June 1993 at the Contraband Detection
Trace Chemical Phenomenology Workshop sponsored jointly by ARPA and the
Office of National Drug Control Policy. A set of viewgraphs presented at the
meeting and incorporated into the Proceedings of the Workshop are included in
this report as Appendix J.
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A FINITE ELEMENT SOLVER FOR AXISYMMETRIC COMPRESSIBLE FLOWS
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Abstract
This paper describes an extension of previously devel-
oped Finite Element Euler and Navier-Stokes solvers
oa unstructured grids in Cartesian coordinate systems
[1-8] to axisymmetric coordinate systems. It is shown
how to arrive at a consistent, high-order formulation
by a proper choice of interpolation for the unknowns.
All integrals are derived in closed form, and the ex-
act formulae are pressnted. Numerical examples sim-
ulating both transient and steady-state flows in the
subsonic, transonic and supersonic regime are given.
The results demonstrate the accuracy and wide range
of applicability of the method.

Introduction

Many practical flow simulations require the solution
of the equations describing axisymr.- ric compress-
ible flows. Among these are flows iu or past bodies
of revolution at sero angle of attack, such as ducts,
nacelles, fuselages, missiles, as well as certain types
of explosions and detonations. For an axisymmetric
coordinate system, the Navier-Stokes equations gov-
erning compressible flows may be written as:

8U  8F: 10F7 S. OF? 18F7 S,
Htatror = rtatror e 1
where
’ pu rpv
pu pu?+p rpuv
U= Fo= Jo=
.2 puv | ) rpt +rp
pe wH roH
(1h-d)
0
0
H=pe+p , S, » ’ (le-7)
0
0 0
™ 1 0
F:= ”* vsv "E f” ’
uf'."'"f"‘.". 0

(19— b)

This paper is declared a work of the U.S. Government and
is not subject to copyright protection in the United States.
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Here 2,7 denote the axial and radial coordinates,
p:p,¢, H denote the density, pressure, energy and en-
thalpy, u, v denote the velocities in the s and r direc-
tion. Using Stokes hypothesis, the viscosity coeflicient
4 and the bulk modulus ) are related by

A= (19)

Am =t

3’ 2

and the viscous shear stresses and hest fluxes are
given by

".=2“% ’ f"=2“% ’ (3a,8)

f"=-2‘l§ =g (: g:) v (3¢,d)
aT o
(=kg . (gk— [ (sein

where T and k denote the temperature and thermal
conductivity of the fluid respectively. The equation
set is completed by the addition of the state equations

p=(1-1)p[¢-§("’+v’)] .

_— [‘ _ % W+ v’)] (4a,b)

which are valid for a perfect gas, where 7 is the ratio
of the specific heats and ¢, is the specific heat at
constant volume.

Multiplication of the system of Egs. (1) with r yields

oF;

oy GrFy  OF oE L s o

et 9z
We will denote the form of the Euler equations as

given by Eq.(1) as Form 1, and the form given by
Eq.(5) as Form 2. Both forms have been used as

= Se + 5>
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starting points for discrete approximations. Form 1
was used by Kutler, Chakravarthy and Lombard (6],
who treated it as s system of equatioas in two dimen-
sions. This straightforward use of Form 1 does not
produce a conservative difference scheme, and there-
fore these authors employed a shock fitting scheme to
trace the shocks. Form 2 was employed by Deese and
Agarwal {7}, Yu and Chen (8], and Woan {9]. These
authors used this form in Jameson’s two-dimensional
cell-centered finite volume FLOS2 code. Because the
scheme is cell-centered, no problems appear at r =0
(no nodes are placed there). However, problems are
expected at r = 0 if a node-centered scheme is pre-
ferred.

Two-Step Taylor-Galerkin

The two-step Taylor-Galerkin algorithm has been
used extensively for the computation of both invis-
cid and viscous flows in two and three dimensions for
Cartesian coordinate systems [3-5). Given s system
of partial differential equations of the form:

U  OF; oFy
St o =Set gt S )

where U, F* and S denote the vectors of unknowns,
fluxes and source terms, we proceed as follows:

a) First step : (Advective Predictor)

Untt = U"+---(S.

=) O

b) Second step ;

ntd
AU = UM — U = AL (s."** E%

DF' ) ] .

Inbothmbdep-thocpmddnaemuaonupu-
formed via the usual Galerkin weighted residual
method [3-5). However, we note that at t"+} =
t"+1At, the qun.nmxu U, F, S are assumed as piece-
wise coutant .in the elements, whereas at i* , t"+!,
the quantities U, F, S are assumed piecewise hneu

+SIM+ 53

Choice of Conservative Form and Interpolation

Having selected the time-marching algorithm, we are
now faced with the choice of conservative form. We
can either:
a) Take Conservative Form 1, and integrate consis-
tently, e.g.,

(.}
/nW-oT2trdzdr. (9)

which yields essentially Conservative Form 2, or

b) Take Conservative Form 2, interpret it as & two-
dimensional Cartesian problem, and incorporate
it ‘as is’ into an existing 2-D code.

It is interesting to note that whichever approach we
take, we always require Conservative Form 2 in or-
der to obtain a consistent, conservative scheme. The
next question that arises is how to interpolate the
unknowns involved in order to obtain a discretisation
scheme. We can:

a) lntexpolm (rp, rpu, rpv, rpe) by a piece
wise linear approximation. This is the so-called
‘group formulation’. It appears very economical
snd simple to implement, but for the limit aa
r — 0, all derived quantities, such as the pres-
sure, are not defined. They eithe. “ave to be
obtained using L'Hopital’s rule (which involves
taking derivatives), or the points lying on the
axis » = 0 have to be pushed to r = ¢, where ¢ is
s small aumber. We tried this option, but found
that we always encountered numerical problems
close to the axis r = 0.

b) Interpolate (o, pu, pv, pe) and r byas
piecewise linear approximation. This form yields
s higher accuracy in the r -direction (10} and has
no problems at » = 0. The integrals that ap-
pear in the weighted residual statement are more
complicated to evaluate. However, they may still
be derived in closed form. For these reasons we
chose this second form for the spatial discretizs-
tion of the Euler equations.

The First Step
Evaluating all the integrals in the weighted residual
statement of Eq.(7), denoting N as the derivative of
the shape function N? with respect to j, using the
notation defined in Figure 1, and the expressions

=T . rat+ra+re
=g fa=S—p5—, (10

the following discretization for the Navier-Stokes
equations results:
Continuity:

Pu=13 2-?-;3 +r})py

2 [V (pu); + Ni(ow)if (1)
J-l.a

At 11
-TiE3 2 (pv);
=13




X-Momentum:

A PN

- :‘5‘.121‘(&!,(,-’ +0)s + M (pwo)y] (12)

-5 Y (N (puv)s + NL(pv® + p)y) (13)
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The Second Step

For the second step, we again evaluate all the integrals
exactly. Denoting as M, the consistent mass matrix

we obtain for the Euler equations:
Continuity:

MAp=AtY" VOLy Tu [N,‘.ﬂ., + Nf,ﬂ.,]
o
(1)

X-Momentum:

MApu = At Z’: VOL, Fu [N,'.(('l’ +p)u = 73°)

+ Ny - )]
an
R-Momentum:

M, Apy = At; VOLy Fu [N,'.Wa -1)

+ NG F Pl =)
+At)" VOLy N* (B +72)
y (18)
Energy:

M, Ape =
81 VOLy FuNAGH = (o7 4 o + )
o

+ N = (6r 4o + )]
(19)
Cousistent Mass Matrices
A question that arises from the computational point
of view is whether the consistent mass matrix, which

is obtained by assembling, st element level, the fol-
lowing exact element matrices

w22 (33 ) m(3 1)

L)

2
rell
2

(20

cannot be simplified by taking the average element rs-
dius in the integral (13). This would yield the element
matrix

211
M.-.-———-VOI;;' Yu (1 2 1) = Fu M°, (21)

11 2

N N

which is less expensive to evaluate. Our numerial ex-
periments indicate that this simplification can be em-
ployed without loss of accuracy. The consistent mass




matrix is solved iteratively as in the Cartesian case
[1-8), and again it is found that two to three passes
over the elements are sufficient to raise the phase ac-
curacy of the resulting scheme from second to essen-
tially fourth ordes.

Artificial Viscosities
a) Modified Lapidus artificial viscosity: The modified
Lapidus artificial viscosity [11], which proved success-
ful for Cartesian coordinate systems, can be extended
to the axisymmetric case without any further modi-

fications by multiplying the element contributions by
their respective average element radius.

b) Mass diffusion for the FEM-FCT algorithm: The
mass diffusion which is added to the high-order
scheme to yield s monotonic low-order scheme as part
of the FEM-FCT algorithm [5] can also be extended
to the axisymmetric case by simply multiplying the
Cartesian element contributions by their respective
average element radius.

Numerical examples

A number of numerical examples are given to illus-
trate the performance of the method when simulat-
ing transient and steady-state problems in the sub-
sonic, transonic and supersonic flow regime. For all
steady-state problems, local timestepping was used to
accelerate the convergence.

1) Supersonic flow past a sphere (steady state): the
case under considersation corresponds to a free-stream
Mach Number of My = 3.0. For this steady-state
solution, only the Lapidus artificial viscosity was em-
ployed to stabilise the solution. The exact stand-off
distance for the shock should be of # = 1.216R, where
R denotes the radius of the sphere [12]). The grid was
adaptively remeshed three times [13). The final so-
lution is shown in Figures 2a-2¢c. The experimental
stand-off distance is reproduced exactly by the solu-
tion.

2) Shock impinging on a blunt body (transient): The
problem statement, as well as the solutions obtained
at two different times are shown in Figures 3a-3f. A
strong shock (M, = 10), moving from left to right,
impinges on the concave body displayed in Figure 3a.
An adaptive refinement scheme for transient prob-
lems [14] was employed to resolve accurstely all flow
features. The mesh was adapted every 7 timesteps,
and two levels of refinement were allowed. The FEM-
FCT option was invoked to maintain sharp shock-
resolution. The main aim of this simulation was to
demonstrate the good phase-accuracy and low nu-
merical damping of the present scheme for this class
of problems. As observed in earlier simulations of
this class of problems [15-17] the concave shape of the

*—

body affects the stability of the stand-off shock aiguif-
icantly. Figures 3g,h show the pressure time-histories
st two stations along the axis of symmetry. Station
1 (Figure 3g) lies at the far right end of the domain,
while station 7 lies shortly behind the final position of
the shock. One can clearly obeerve a damped shock
oscillation around its steady-state position. It takes
maay cycles for the shock to settle to its final position.
This behaviour, which is not observed for convex bod-
ies, was also seen in other numerical simulations and
several wind-tunnel experiments {15-17).

3) Elow in an Underexpanded Nossle (steady state):
The nozsle geometry, adapted mesh and Mach pum-
ber contours are shown in Figures 4a and 4b respec-
tively. Several different runs were performed for this
problem. Some had the FEM-FCT option switched
on, others only employed the basic two-step scheme
described above. All these runs showed the existence
of the two shocks depicted in Figure 4b. The run re-
produced here was done with a Lapidus artificial vis-
cosity. Both shocks resuited from inadequate nossle
wall shape, as shown in the expanded Mach-number
contour plot of the region near the throat (Fig. 4c).
The pressure ratio across the shock is significantly
lower than the pressure decrease through the throat,
though the gradients are higher. During convergence
to steady state, the grid was adaptively remeshed
three times. The maximum stretching ratio for the
elements was set to six. A comparison between the
measured and predicted radial distribution of total
pressure at the exit plane is shown in Fig. 4d. Signifi-
cant scatter is shown in the experimental data, whils
no data is available in the region of the muitiple shock
system. Nonetheless, the results demonstrate very
good agreement over most of the exit plane. Some
deviation is shown near the wall. It stems from the
existence of a third shock that starts at the wall just
upstream of the exit plane of the nossle.

4)  Flow past a sphere, Re= 100 (steady, viscous):
Steady viscous flow past a sphere at a Mach-number
of Ma = 0.1 and Reynolds-number of Re = 100 pro-
vides an important test example to evaluate the ac-
curacy of the present scheme. No artificial viscosity
was added for this subsonic case. The problem state-
ment, as well as the results obtained, are shown in
Figure 5. The grid employed for this case (Fig. 5a)
consists of a structured portion divided into triangles
in the boundary layer sone, and an unstructured mesh
elsewhere. From Fig. 5d, it can be seen that the re-
circulation sone extends 1.4 diameters into the wake,
measured from the center of the sphere. This com-
pares well with experimental results [17). Figure 5e
shows very good agreement of computed surface vor-
ticity with earlier numerical results [18,19]). The flow
separates at an angle of approximately 123°.




Conclusions

We have described a Finite Element Solver for ax-
isymmetric compressible flows. The Navier-Stokes
equations are advanced forward in time using & two-
step Taylor-Galerkin procedure. Due care was given
to obtain a consistent integration of all variables.
Although alightly more expensive than the equiva-
lent Cartesian scheme, the current formulation is the
only one that yields full second order accuracy for
all the unknowns in both the axial and radial direc-
tions. A high-order, monotonicity preserving scheme
is obtained by combining this basic two-step Taylor-
Galerkin procedure with FEM-FCT techniques.

Future developments will center on extensions of
the current explicit scheme to semi-implicit or implicit
schemes.
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Figure 1: Notation used at element level
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Appendix B

Simulation of Subsonic Viscous Flows
Using Unstructured Grids and a Finite Element Solver
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Abstract

A finite element scheme [1,2] has been advanced
for solving the Euler and Navier-Stokes equations
with unstructured grids in both Cartesian and ax-
isymmetric coordinate systems. The two-step Taylor-
Galerkin procedure is employed to discretize the gov-
erning equations. The accuracy of the acheme is val-
idated by comparing computed results for flow over
a sphere with well known numerical results and via
a grid-refinement study for an inviscid flow over an
axisymmetric body. The procedure is extended to
solve three-dimensional flows over submarine config-
urations with sail and stern appendages. Convergence
acceleration for viscous flows by sub-stepping of the
viscous terms is investigated.

Introduction

the governing equations. The convergence of the solu-
tion procedure to steady state depends on the speed of
sound and the minimum cell-Reynold’s number and
is rather poor for low-speed, viscous flows. There-
fore, two acceleration procedures are investigated in
this paper. The first obe tries to circumvent the
timestep-limits imposed by cell Reynolds-numbers by
using sub-stepping of the viscous fluxes. The second
one tries to circumvent the timestep-limits imposed
by .2 speed of sound by employing & semi-implicit
technique, whereby the pressure-modes are integrated
implicitly.

Governing Equations

The equations governing the fluid flow are the
Navier-Stokes equations which can be written as

¢ ]
oo U OF 10 LOF
Numerical solution of ﬂowﬂpa:lt complex geome- s 8 . 0:0 o g;‘ g:
tries is an important tool for a fluid dynamicist. The . Fe 1 8F] G . .
use of unstructured grids consisting of triangular el- Tt gt gty tiT . (9
ements in two dimensions and tetrahedral elements where
in three dimensions together with a finite-element j =0,k = 0: 2-dimensional case,
method has proven valuable in computing high-speed, § =1,k = 0: axisymmetric case,
compressible flows [1,2]. The advantage of using tri- 5=0,k=1: 3-dimensional case,
angular or teltnhednl meshes o;e: mmdcturod mted !
is that complex geometries can ily represented. = , v, pw,pe)T
For example, constructing a structured mesh around U = (p.pu, v, pw, pe)
a submarine hull with its sail and stern appendages pu pv
would require the tedious task of decomposing the do- pu+p puv
main. On the other hand, the advantage of the struc- Fe = Fr=v 3
tured meshes is that they provide better resolution in « = puv 0,Fe = PV EP (.
the vicinity of the body and hence, allow better reso- puw pyw
lution of the strong gradients present in viscous flows. ol ol
To accurately resolve these gradients, which are pre-
dominantly in the normal direction, it is necessary pw 0
to have a fine mesh spacing in this direction while
retaining a large spacing in thn:e:lan;entid dimclﬁ;:i puw 0
In the present work, a struct mesh is emplo . - H = , Se= ,
in the normal direction retaining unstructured mesh K ’PW’ H=petp ¢ P
in the tangential direction. These structured meshes pu +p 0
are then divided into triangular and tetrahedral ele- wH 0
ments in two and three dimensions respectively. The
remainder of the unstructured grid is generated using 0
the advancing front grid-generation algorithm [3]. Tes
In this paper the finite-element method is applied F}= Tes {
to solve low subsonic viscous flows both in axisymmet- Tes

ric and 3-D Cartesian coordinates. An explicit two-
step Taylor-Galerkin procedure is employed to solve
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Here z,r and z denote the axial, radial and span-
wise coordinates, p,p,e, H denote the density, pres-
sure, energy and enthalpy and u,v, w denote the ve-
locities in the 2, r and z directions respectively. Using
Stokes hypothesis, the viscosity coefficient p and the
bulk modulus A are related by

.
a=-2 @)

and the viscous shear stresses and heat fluxes are
given by

dw

8
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where T and x denote the temperature and thermal
conductivity of the fluid respectively. The equation
set is completed by the addition of the state equation

(3a - 33)

e =K

p=-Dple-3W+e)] . @

which is valid for & perfect gas, where v is the ratio
of the specific heats.

For the axisymmetric case, the system of Eqs. (1) is
multiplied with r to yield

orU  OrFs
o + 8z

i t
+a;_‘ =S.+%%+%—?+S, . (5)

Using this form of the conservative equations can be
shown to be the same as integrating the system of Eqe.
(1) in & consistent manner. In the weighted residual
framework, the use of conservative form represented
by Eq. (5) in conjunction with separate interpolations
for r and U avoids the problems encountered for r = 0
using a node-centered scheme. Details of evaluating
the integrals in the weighted residual statement and
interpolation of the unknowns are given in Refs. [2,4].

Two-Step Taylor-Galerkin Procedure

A two-step form of the one-step Taylor-Galerkin
scheme is employed as the time advancing scheme.
This belongs to the Lax-Wendroff class of schemes
and has been used extensively for the computation
of both inviscid and viscous flows in two and three
dimensions for Cartesian coordinate systems [1,2).
?iven a system of partial differential equations of the
orm

oU OF: OF¢
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where U, F! and S, denote the vector of unknowns
advective fluxes and advective source terms, and F,f
and S, denote viscous fluxes and viscous source terms,
the two-step is as follows.

e e oo, )
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b) Second step ;
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In both substeps the spatial discretization is per-
formed via the usual Galerkin weighted residual
method [1,2). However, we note that at 1"+% =
t® + 1A, the quantities U, F,S are assumed piece-
wise constant, whereas at t" , t"*! the quantities
U,F, S are assumed piecewise linear. Also, it should
be noted that the viscous terms are added during the
second-step of the procedure as a deferred corrector.

Artificial Viscosities

For inviscid flows considered in the present pa-
per, additional smoothing has been implemented in
the flow-solver. Two post-smoothing artificial viscosi-
ties have been implemented. These are
a) a modified Lapidus artificial viscosity, and
b) a pressure-based artificial viscosity.

The modified Lapidus artificial viscosity has been
described in [5). The viscosity only acts in the direc-
tion 1, and is of the form

av-1)| . Viv|
_al—l ’ 1= . (9)
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Here A is the element-size, and v denotes the velocity-
vector.

The pressure-based artificial viscosity is a modifica-
tion of that proposed by Morgan et al. {6]. The vis-
cosity coefficient employed is of the form

M= 122 (Me — Mc)p; | _
Yoo l(Mr — Mc)lp; + €3 (ML + Mc)"%o)

Here My and Mc again denote the lumped and con-
sistent element matrices, while p; denotes the pressure
at node i. The terms following ¢ are added to distin-
guish ‘noise’ from a true physical discontinuity. If ¢
vanishes, the artificial viscosity is of first order, while
for ¢ > 0 second order is achieved.

Barely-Implicit Correction Scheme

For low subsonic flows, the time-step for explicit
schemes is limited by the largest eigenvalue of the
system of equations. The idea behind BIC is to treat
the ‘speed of sound modes’ implicitly and keep the
treatment of the ‘pure advection modes’ explicit. The
advantage of such a semi-implicit scheme is that the
matrix to be inverted has a much simpler structure.
A modal decomposition of the Jacobians of the ad-
vective fluxes into their ‘speed of sound modes’ and
the ‘pure advection modes’ yields

. O8Fi
J= =8 - 4f J .
Al = Bai AL+ A (11)
Based on this the advective fluxes can be written as
F{:F{,+F{, . (12)

Details of the modal analysis are given in Ref. [7].
The aim is to construct a time stepping scheme that is
unconditionally stable for the ‘speed of sound modes’
contained in A}, but only conditionally stable for the

‘pure advection modes’ contained in Af. In order to
achieve this goal, we integrate the FJ, terms implic-
itly, and the remaining FJ, terms explicitly:

8AF] -
AU + eAtT:;SZ =al. (13)

Here AU denotes the incremer:s it are obtained for
the explicit, uncorrected scheme: and © is an implic-
itness parameter. Exploiting the sparse structure of
the ‘pressure fluxes’ F],, we can reduce the system of
coupled equations given in Eq. (13) to a single elliptic
equation. This is achieved by combining the momen-
tum and energy equations, and the equation of state.
Note that this is different from the projection schemes
widely used for the simulation of incompressible flows.
These combine the continuity and momentum equa-
tions, and not the momentum and energy equations.
The end result, after some algebra (see Ref. [7]), is the
following elliptic equation for the pressure increment
Ap:

%4p _

)
Ap-0%A0(y - I)E ("—f—’) S

b
Aj+A(pe+p) . (14)

where

[} -
A(pe+p) = -OAt(y - ”E [(pe + p) Adiy] . (15)
'l;hl‘l'e.ovenll solution sequence then proceeds as fol-

First the solution is advanced explicitly yielding AU
The pressure increment Ap is then obtained from Eq.
(14). The velocities u; are then corrected to get u7*+".
The new values for the energy (pe)*+! are computed
using Eq. (15).

The solution of the elliptic equation for pressure in-
volves inversion of a large matrix. However, the band-
width and condition-number of this matrix are much
better than in the case of totally implicit schemes.
Furthermore, because of its inherently elliptic charac-
ter it is very well suited to any type of iterative solver.
Numerical tests indicate that for the Mach-number
range M., = 0.05 — 0.1, only two to ten over-relaxed
Jacobi passes are required.

Substepping of Viscous Fluxes

A Fourier stability analysis for the explicit
scheme described above, shows that the scheme is sta-
ble provided

3[1 + E -1

c< Rea ' (16)
where C is the Courant number and Re, is the min-
imum cell Reynolds number. Convergence to steady
state can be accelerated by local time-stepping. Al-
though this local time-stepping strategy is efficient for
inviscid flows, convergence is rather poor for viscous
flows. One way to improve convergence is to treat
the viscous terms in an implicit manner. Here we
employ an alternative approach of sub-stepping the
viscous terms. If the allowable time-step due to the
viscous terms is much smaller than that for the ad-
vective terms, the use of substeps becomes a viable
alternative. The implementation of the sub-stepping
procedure is as follows:
During the second-step of the solution procedure,
the inviscid fluxes are advanced with their allowable
timestep At,. The corresponding contribution to the
right-hand side of Eq. (8) can be written as

Ra = At, - (S.|"*} - %:;fr'*i) .

Next, the ratio of allowable timesteps for the inviscid
and viscous fluxes is computed as

Pio = E . (18)




Given r;,, the required number of viscous substeps n,
and the sequence of inviscid timesteps At!,l = 1,n,
are computed. Next, the contribution of the viscous
fluxes to the right-hand side is computed as

[} .
R, = Z atd '(%%I"'“-"“l + S, mrim-ly

ms=l
(19)

Here, for m = 1, the flux contribution is computed
at time-level n. The viscous contribution R!, is thea
added to the corresponding fraction of the inviscid
right-hand side R,

]
Rl =R+ ZER . (20)

Finally, the boundary conditions are applied to R.,
and the unknowns are updated using

AU =y _yn=R, . (@)

Our numerical experiments indicate that:

a) It is important to keep the viscosity of the fluid
constant during substepping. Otherwise, the linear
stability analysis is no longer valid.

b) The advancement of viscous and inviscid fluxes
must be accomplished in a time-accurate manner, as
described by Eqs. (20) and (21). Otherwise, the
critical balance of viscous and inviscid fluxes is de-
stroyed, leading to numerical instability for large al-
lowable timestep-ratios riy.

A simple timestep-sequence for substepping is to con-
sider constant substeps

att=Lat, i=1,n, . (22)
Ry
Results
i - Flow
W —

Steady viscous flow past a sphere at a Mach-
number of My, = 0.1 and Reynolds-number of Re =
100 provides an important test example to evaluate
the accuracy of the present scheme. No artificial vis-
cosity was added for this subsonic case. The problem
statement, as well as the results obtained, are shown
in Figure 1. The grid employed for this case (Fig. 1a)
consists of a structured portion divided into triangles
in the boundary layer zone, and an unstructured mesh
elsewhere. From Fig. 1d, it can be seen that the re-
circulation zone extends 1.4 diameters into the wake,
measured from the center of the sphere. This com-
pares well with experimental results [8]. Figure le
shows very good agreement of computed surface vor-
ticity with earlier numerical resuits [9,10]. The flow
separates at an angle of approximately 123°.

Elow past a Body of Revolution
-at Zero Angle of Attack

Having established the correctness of the proce-
dure, the present scheme is then applied to solve flow
past a hull-shaped body of revolution. First, the in-
viscid equations are solved on a coarse grid conasist-
ing of 988 points and 1807 elements. The results for
My = 0.2, are shown in Fig. 2. In order to estab-
lish the reliability of the solutions, a grid refinement
study is undertaken. The grid is refined using the
classic h-refinement technique. The results in terms
of pressure contours for the two grids are shown in
Fig. 2b and c. Figure 2d shows the comparison of
the surface pressure distribution, obtained employing
the two grids. One can see that the effect of grid
refinement is minimal on the quality of the solution.
This indicates that the first mesh was already quite
adequate.

Next, the procedure is applied to solve steady
viscous flow past this configuration at My, = 0.1 and
Re = 1000. The grid employed for this case consists
of 7276 nodes and 14093 elements, and is shown in
Fig. 3a. Results in terms of pressure and vorticity
contours and velocity vectors are shown in Fig 3b-d.
Cotrect trend in surface pressure distribution is ob-
served. The vorticity contours show a tendency for
the flow to separate in the afterbody region. This so-
lution is obtained with local time-stepping but with-
out sub-stepping of the viscous terms. For this case,
convergence acceleration via substepping of the vis-
cous terms with constant sub-step sizes did not yield
substantial gain. This is due to the fact that the al-
lowable time-step for the advective terms is already
quite small at this low Mach number.

-2-D Flow Past Circular Cylinder
Using BIC-FEM-FCT

For low subsonic flows, the barely-implicit
scheme in conjunction with FEM-FCT is employed,
80 that the time-step limitation due to the speed of
sound is eliminated. This procedure is applied for
solving unsteady flow past a circular cylinder for Re =
100 at a Mach-number of My, = 0.1. This particu-
lar Re-number was chosen, because in this regime the
experiments show the strongest variation of Strouhal-
numbers as a function of Reynolds-number {11). Fig-
ure 4 shows the grid employed, the velocity vectors
and the entropy contours in the wake. The numer-
ically obtained Strouhal-number was graphically in-
distinguishable from the experimental data. This is
not surprising, as the grid close to the cylinder is ex-
tremely fine, allowing good boundary layer resolution,
and the advection scheme is fourth-order accurate in
phase-space. Four substeps for the viscous fluxes were
employed. The savings occured by this combination
of semi-implicit scheme and the substepping as com-
pared to an explicit solver were in excess of 1:50.
The main ingredients for this high savings-factor stem
from: a) elimination of the speed of sound limitation
(1:10), b) low velocity in the boundary layer (1:5), c)
substepping of the viscous fluxes (1:3).




3D ional Flow
visci W =

Next, the procedure is extended to 3-D and an
inviscid flow past a sphere was chosen as the test case,
since axisymmetric results from the present study and
earlier results are available for this case. Figures Sa
and b show the grid employed and the pressure con-
tours over the surface of the sphere. Figure 5¢c shows
the comparison of the surface pressure distribution.
From this figure, it is clear that the axisymmetric case
compatres very well with the potential flow solution;
the agreement of the 3-D solution is fairly good ex-
cept near the two stagnation points. This discrepancy
may be due to the small artificial dissipation that was
needed to stabilize the 3-D solution procedure.

W
The procedure is applied to solve inviscid flow
past a submarine with sail and stern appendages, at
& Mach number M, = 0.2 and various pitch angles of
attack a, from 0° to 10°. The grid employed for this
case consists of 383,956 tetrahedra and 70,222 nodes
and is shown in Fig. 6a. Convergence to steady state
was achieved in 1000 iterations, and the results in
terms of surface pressure contours for a = 0° and 10°
are shown in Fig. 6b and c respectively. Figure 6d
shows that the variation of the lifting force due to
pressure with angle of attack is linear. The non-zero
force at a = (° is due to the presence of the sail.

Next, viscous flow past the fully appended sub-
marine configuration at @ = 10° and Re = 10°
was considered. Results were obtained employing
a coarse grid consisting of 410,162 tetrahedra and
71,524 nodes. At the time this calculation was per-
formed, we did not have the capability to grid the
boundary layers with semi-structured grids appropri-
ately in 3-D. Thus, this run has to be viewed as an ex-
periment as to what happens if Navier-Stokes bound-
ary conditions are imposed on an Euler mesh. To our
surprise, many viscous features were well reproduced
on this coarse mesh, e.g. the necklace vortex at the
junction of the sail and the hull, shown in Fig. 7a.
From the vorticity contours at various cross-planes
along the sail shown in figures 7b and ¢, it is clear that
this vortex moves up along the sail. Also, a second
vortex appears from the top of the sail and is shown
in Fig. 7c. These vortices pass well above the stern
planes controlling the motion of the submarine. The
vorticity contours near the trailing-edge of the stern
plane, Fig. 7d, show the presence of tip vortices.
Viscous Flow Past a Sphere Using.
Semi-S | Grid

The three-dimensional viscous flow results pre-
sented so far show proper qualitative behaviour de-
spite the relatively coarse mesh employed in the com-
putation. In order to resolve the strong gradients
present in viscous flows, a structured mesh is em-
ployed in the vicinity of the body. A typical grid
consisting of 153,179 tetrahedra and 28,302 nodes is
shown in Fig. 8a. The velocity vectors in the wake of
the sphere show that the recirculation zone extends

upto one diameter into the wake measured f{rom the
center of the sphere.

Summary

A finite element scheme has been employed to
solve Euler and Navier-Stokes equations. Results
were obtsined for both axisymmetric and three-
dimensional flows and the solution procedure was vali-
dated via application to a model problem of flow over
a sphere. The validation was carried out for both
Euler and Navier-Stokes solutions. Convergence ac-
celeration for low-subsonic viscous flow cases was in-
vestigated by sub-stepping of the viscous terms when
the time-step was limited predominantly by the min-
imum cell-Reynold’s number and by employing the
BIC-FEM-FCT when the time-step was limited by
the speed of sound. Preliminary results were obtained
for three-dimensional viscous fiows past complex ge-
ometries. A 3-D semi-structured grid which combines
structured grid in the normal direction in the vicinity
of the body and unstructured grid in the remainder of
the computational domain was developed for use with
Navier-Stokes solver. Presently, fine grid results are
being obtained for flow over a sphere at Re = 100.
The convergence acceleration methods discussed in
this paper will be incorporated in the 3-D solution
procedure which will then enable efficient computa-
tion of unsteady viscous flows.
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Fig. 5. Results for Inviscid Flow Past a Sphere, M, = 0.2,
(a) Grid; (b) Comparison of Surface Pressure Distribution;
® (c) Pressure Contours.
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Fig. 7. Results for Viscous Flow Past Fully Appended Submarine.
(a) Particle traces; (b) Voricity Contours Near Leading-F.udze

of Sail; (c¢) Vorticity Contours Near Trailing-Edge of Sail:

(d) Vorticity Contours Near Trailing-Edge of Stern Plane
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Review—Vortex Shedding Lock-on
and Flow Control in Bluff Body
Wakes

0. M. Griffin

Naval Ressarch Laboratory,
Washington, 0C 20375-5000. The results of recent experiments demonstrate that the phenomenon of vortex shed-
Fellow ASME ding resonance or lock-on is observed also when a bluff body is placed in an incident
mean flow with a periodic component superimposed upon it. This form of vortex
shedding and lock-on exhibits a particularly strong resonance between the flow
M. S. Hal perturbations and the vortices, and provides one of several promising means for
Science Applications International modification and control of the basic formation and stability mechanisms in the
Mcuanmé near-wake of a bluff body. Exampies are given of recent direct numerical simulations

of the voriex lock-on in the periodic flow. These agree well with the resuits of
experiments. A discussion aiso is given of vortex lock-on due to body oscillations
both normal to and in-line with the incident mean flow, rotational oscillations of
the body, and of the effect of sound on lock-on. The lock-on phenomenon is discussed
in the overail context of active and passive wake control, on the basis of these and
other recent and related results, with particular emphasis placed on active control

——— e —

of the circular cylinder wake.

Introduction

Vortex streets are formed in the wakes of bluff, or un-
streamlined, bodies over a wide range of Reynolds numbers,
from approximately 50 to 10® and even higher. The physics of
vortex street formation and the near-wake flow have been the
focal point for many past experimental studies, ¢.g., Roshko
(1954, 1955), Gerrard (1966), Bearman (1965, 1967), Griffin
and Ramberg (1974) and, most recently, Unal and Rockwell
(1988a, b), Ongoren and Rockwell (1988a, b), and Williamson
and Roshko (1988). One reason for this interest has been the
importance of knowing how the mean and fluctuating fluid
forces are generated on the body due to vortex shedding. An-
other reason is the perceived connection of the near-wake flow
to the eventual evolution of the overall middle and far-wake
vortex patterns (Cimbala et al., 1988; Browne et al., 1989).
One of the most cogent descriptions of the physics of vortex
streets and bluff body wakes was given by Morkovin (1964)
as “‘a kaleidoscope of challenging fluid phenomena.” This
description is in many ways still true today. Modern high-
speed computers and direct and large-eddy numerical simu-
lation techniques now allow and, in the future, will further
allow the vortex formation and wake modification and control
processes to be studied computationally at high resolution
(Karniadakis and Triantafyllou, 1989, 1990; Grinstein et al.,
1990, 1991).

If a bluff cylinder is flexible and lightly damped, or rigid
and flexibly mounted, then resonant oscillations can be excited
by the incident flow. As a consequence of this flow-induced
resonance, the body and wake oscillations have the same fre-

Contributed by the Fluids Engineering Division for publication in the Journat
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quency which is near one of the characteristic frequencies of
the structures (Bishop and Hassan, 1964; Koopmann, 1967).
Extensive recent reviews of vortex shedding from bluff bodies
and vortex-induced oscillations have been given by Sarpkaya
(1979) and Bearman (1984). This coincidence or resonance of
the vortex and vibration frequencies is commonly termed lock-
on. The term phase-locking also has been used in the literature
(Rockwell, 1990). Lock-on or resonance occurs when the body
is oscillated in-line with the incident flow (Griffin and Ram-
berg, 1976; Ongoren and Rockwell, 1988b), and the lock-on
resonance also is induced when a cylinder is forced to oscillate
normal to the flow over the appropriate range of imposed
frequencies and amplitudes. Two recent studies (Tokomaru
and Dimotakis, 1991; Filler et al., 1991) have shown that ro-
tational oscillations of a circular cylinder can cause lock-on.
The recent computations of Karniadakis and Triantafyliou
show that a lock-on state can be reached when a small spatiaily
and temporally varying periodic disturbance is introduced into
the near-wake of the cylinder. The disturbance is analogous
to a vibrating wire with the appropriate frequency and am-
plitude.

Vortex resonance, or Jock-on, has been observed also when
the incident mean flow has a sufficiently large periodic com-
ponent superimposed upon it (Barbi et ai., 1986; Armstrong
et al., 1986, 1987). In this case the cylinder remains stationary,
but the vortex lock-on resuiting from the inflow perturbation
modifies the character of the near-wake flow. There is a com-
plete equivalence between this case and in-line oscillations of
the cylinder when the acoustic wavelength is long compared
to the cylinder’s diameter. The introduction of an appropriate
sound field also can cause lock-on to occur (Blevins, 198S).
All of these external disturbances represent potential means
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for active control of the bluff body near-wake flow (Rockwell,
1987, 1990). Active control of the vortex shedding in the wake
of a stationary circular cylinder by means of acoustic feedback
was demonstrated in the recent experiments of Ffowcs Williams
and Zhao (1989). Passive control of the shedding process can
be accomplished by geometric alterations such as a wake split-
ter plate (Bearman, 1965; Roshko, 1954, 1955; Mansingh, 1986).
Recent discussions of the stability and control of separated
flows in general are given by Oertel (1990) and Rockwell (1990).

Vortex lock-on and resonance phenomena have numerous
practical engineering applications. These applications abound
in offshore exploration and drilling, Naval and marine hy-
drodynamics, and underwater acoustics. Other areas of en-
gineering practice impacted by these phenomena are civil and
wind engineering, nuclear and conventional power generation,
and electric power transmission. Modification and control of
the flow can be employed to reduce the intensity of the wake
in order to reduce the drag, for example. These same processes
also can be used to intensify the wake flow in order to enhance
heat transfer, mixing and combustion.

The emphasis of this review paper is on vortex shedding
resonance and lock-on in the near-wakes of bluff bodies. Vor-
tex shedding in a flow with a periodic component superimposed
on the basic mean flow is introduced here as the first case for
study. This is an interesting bluff body flow which has not
been studied previously in detail. The more widely studied cases
of vortex shedding resonance and lock-on due to body oscil-
lations both normal to, in-line with the incident mean flow,
and rotational are also discussed in some detail. The intro-
duction of sound also is discussed for the relatively few con-
tributions which are available. The discussion here is directed
principaily toward the circular cylinder, but limited discussion
of other body configurations is introduced at places where it
seems apprepriate to do so.

Near-Wake Flow Scaling

Roshko (1954, 1955) and Bearman (1967) originally showed
that a characteristic group of nondimensional parameters for
scaling of the wakes of bluff bodies could be derived by ap-
plying relatively simple physical arguments. The most recent
formulation (Griffin, 1978, 1981, 1989) is a universal wake
Strouhal number St* for vortex shedding based upon measured
parameters of the bluff body near-wake flow.

If one considers two shear layers a distance d’ apart, with
the velocity just outside the layers equal to U,, the mean ve-
locity at separation, then a wake Strouhal number can be
defined as

.Sl

L@@ o

The characteristic frequency f,, associated with the flow is
assumed to be proportional to the ratio U,/d’. Here the clas-
sical Strouhal number of the vortex wake is

St= _fmd

(2)
where d is the cylinder diameter and U is the incident flow
velocity. When Bernoulli’s equation is applied to the flow just
outside the bnundary laver at separation, the base pressure
coefficient is

2
C”__Z(Pbuzpu) - (%) ‘ o
If the base pressure parameter or velocity ratio K= U,/U is

introduced, then
K*=1-Cp @)

and
St* =§ (1-) . (4a)
K \d
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A wake Reynolds number Re* is defined in a corresponding

way as
P/ R,K(ﬂ)' )
v d

where Re=Ud/v is the usual free-stream Reynolds number.
These scaling relations are employed later in the paper to cor-
relate the near-wake flow properties with one another.

Flow Perturbations and In-Line Oscillations

The recent experiments of Armstrong et al. (1986, 1987) and
of Barbi et al. (1986) were conducted to examine the problem
of vortex lock-on for a cylinder in a stream consisting of a
steady flow with a periodic component superimposed upon it.
In earlier experiments, Hatfield and Morkovin (1973) at-
tempted to study the same problem, but the results were in-
conclusive because the flow perturbation amplitude and
frequency were too low to cause lock-on. The results obtained
by Barbi et al. and Armstrong et al. show some very basic
similarities with the earlier experiments of Griffin and Ramberg
(1976), which were conducted to examine vortex shedding lock-
on for a cylinder oscillating in-line in a steady incident flow.

The vortex lock-on regime measurements by Barbi et al. are
compared with those of Griffin and Ramberg in Fig. 1. The
vertical axis represents two different measures of the pertur-
bation amplitude. For the experiments of Griffin and Ram-
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berg, the ampinude parameter is defined by the ratio of the
peak-to-peak amplitude of cviinder displacement 2a and the
cylinder diameter d. And for the experiments of Barbi et al.,
the normalized *‘peak-to-peak’’ incident velocity perturbation
is given by 2AU/wd. The horizontal axis is the ratio of the
vibration frequency f and the Strouhal frequency f;, of a sta-
tionary cylinder. Also shown are the cylinder vibration results
of Tanida et al. (1973) and of Tatsuno (1972), reproduced
from the paper by Griffin and Ramberg. The dashed lines
enclose the region occupied by the results of Armstrong et al.
(1986, 1987) which are shown on an expanded scale in Fig. 2.
Vortex lock-on and cross-flow oscillations usually occur near
the Strouhal shedding frequency f,,. For in-line oscillations
and flow perturbations, the lock-on is caused by frequencies
which occur near twice the Strouhal frequency, f=2f,,, since
the fluctuating drag force is in the flow direction. However,
in many cases the actual iock-on frequency is near the Strouhal
frequency, or half the oscillation or perturbation frequency.

There is generally good agreement between the bounds of
the lock-on regime for the two different types of external
disturbance or flow control, though there is some scatter at
the highest amplitudes. This is most likely due to Reynolds
number effects, as noted by Barbi et al. The latter experiments
were conducted at Re between 3,000 and 40,000, whereas the
results of Tanida et al., Tatsuno, and of Griffin and Ramberg
were conducted at Re between 80 and 4.000. The overall dif-
ferences are relatively small in any case.

In Fig. 2 the vertical and horizontal axes have been scaled
in the same way as in the previous figure. The original results
of Armstrong et al. had been plotted in terms of the rms velocity
u' and the reduced velocity U/f,,d. Three body shapes were
investigated. i.e., a circular cylinder, a D-section cylinder, and
a vertical flat plate. It is clear that the circular cylinder, with
free separation points, has a lock-on range of about twice the
breadth of the two bodies with fixed separation points. This
basic difference in the lock-on behavior for these types of bluff
bodies was previously discussed by Bearman and Davies (1975)
and by Bearman (1984) for the case of body oscillations only.
As shown by the former, the afterbody shape plays an im-
portant role in the character of the lock-on or resonance, e.g.,
in terms of the response of the base pressure and near wake
flow to the forcing.

The base pressure coefficient C,, is influenced by the flow
perturbations in much the same manner as tn the case of cyl-
inder oscillations. For the stationary cylinder the base pressure
coefficient is near C,, = — 1.44; this value, though somewhat
low for a circular cylinder, is in reasonable agreement with the
results of West and Apelt (1982) for a comparable wind tunne)
blockage ratio of nine percent. When the flow perturbation
was largest, the base pressure was decreased to Cjp= —1.85
at the point of maximum resonance, a reduced velocity of U/
fiod=2.5 (half the Strouhal value). The measured vortex for-
mation region length /,was reduced by this level of perturbation
to 0.9d from 1.2d, the value measured for the unperturbed
flow (Armstrong et al. 1987).

Lesser decreases in C,, were measured for smaller levels of
the flow perturbation, with an overall dependence upon re-
duced velocity U/f,d. The mean drag coefficient Cp increased
from 1.28 to 1.52 for the perturbed flow as compared to the
unperturbed flow. The base pressures of the flat plate and D-
section bodies also were decreased by the introduction of the
incident flow perturbations. But the decrease was only half of
that measured for the circular cylinder at the same perturbation
amplitude, which further shows the effect of free versus fixed
separation points on the vortex resonance. These experiments
were conducted at Reynolds numbers between 15,000 and
35,000, and the base pressure coefficients of all three stationary
bodies in the unperturbed flow were effectively constant over
this range.

A recent experimental study of voriex resonance and lock-
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Fig. 3 Time sequence of locked-on vortex shedding produced by cyi-
inder oscillations in-line with the flow at an oscillation frequency of
f=21,,; from Ongoren and Rockwel! (1988b)

on due to in-line oscillations of a circular cylinder was con-
ducted by Ongoren and Rockweil (1988b). These experiments
also included oscillations of the cylinder at inclination angles
to the flow between o =0 degrees (in-line) and a =90 degrees
{cross-flow), but the emphasis of the discussion here is on the
in-line oscillations. The cross-flow oscillations (Ongoren and
Rockwell, 19882a) are discussed in the next section. A wide
range of vortex patterns was visualized by introducing pulsed
hydrogen bubbiles into the incident flow about a circular cyl-
inder mounted vertically in a free-surface water channel.

Both symmetric and asymmetric vortex patterns were ob-
served over a wide range of oscillation conditions. For the in-
line oscillations, vortex lock-on was observed at f=2, 3, and
4 f..» With an asymmetric street formed at twice the basic
Strouhal frequency and a symmetric street formed at three
times the Strouhal frequency. The asymmetric pattern was
complex in that one row consisted of a line of single vortices,
whereas the other row consisted of a line ot oppositely rotating
vortex pairs. The vortex lock-on at three times the Strouhal
frequency resulted in the formation of a symmetric street of
vortices. In these cases the basic patterns persist downstream
over a large number of oscillation cycles. When the oscillation
frequency is four times the Strouhal frequency, a symmetric
pattern is formed but rapidly loses its coherence in the early
wake.

A time sequence over a full in-line oscillation cycle is shown
in Fig. 3 for the condition /=2 f,,. Figure 3(a) was taken with
the cylinder in its forwardmost position and shows a vortex
shedding from one side of the cylinder as in Figs. 3(c) and (d).
As the cylinder moves through its maximum downstream po-
sition and changes direction, a second vortex is formed and
shed from the same side of the cylinder as in Figs. 3(e) and
(/). Then a single vortex is formed from the other side of the
cylinder as the motion cycle continues as shown in Fig. 3(g).
Ongoren and Rockwell observed that the pattern persisted over
50 or more cycles of the oscillation, but often, if the flow was
stopped and restarted, a mirror image of the pattern was
formed. This is but one example of the complexity of the flow
patterns which accompany the oscillations. In this case the
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Fig. 4 instantanecus streamilnes, at Re = 200, of the forced wake re-

Sponee at f=2.2/,, lor vortex shedding from a cylinder in a perturbed

fiow. The wavelength A of the voriex street is 4.68 cylinder diameters.

The spectral slement computational grid is superimposed on the stream-
pattem.
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Fig. 5 A typical power spectrum of the flow velocity, at Re = 200, for
the location (x=2d, y= 2d) and the forcing conditions given in Fig. 4.
Only the locked-on shedding frequency, f= 1.1/, the perturbation fre-
quency, f=2.2/,,, and thelr harmonics are dominant in the spectrum.

oscillation and vortex frequencies are phase-locked, but under
other nonresonant conditions there was competition between
the symmetric and asymmetric modes. Under these conditions,
the lock-on persists in one mode over a specified number of
cycles and then switches to the other mode. The mode com-
petition also is influenced by the upstream feedback of dis-
turbances from the near-wake of the cylinder. Complex patterns
of three vortices such as these also were photographed by
Griffin and Ramberg (1976) at similar frequencies during their
wind tunnel experiments.

Numerical simulation provides yet another method of ex-
amining the effects of inflow perturbations and cylinder os-
cillations on the wake. This consists of superimposing an
oscillatory component on the inflow boundary condition for
a domain such as that shown by the spectral element grid in
Fig. 4. The example given here was computed at NRL using
a computer code similar to one employed extensively by Kar-
niadakis and Triantafyliou (1989, 1990,. The grid consists of
56 spectral elements, each of order N=6. Results of the com-
putation are shown in Figs. 4, 5, and 6, in which the lowest
dominant frequency of the resulting vortex wake is near half
the perturbation frequency when a boundary condition of the
form

u=1.0+(0.8)sin(4.47 /,, t)

v=0.

is enforced at the inflow. This also represents an in-line os-
cillation, and is thus expected to result in a shedding frequency
near f=1.1 f,, if lock-on occurs at one-half the perturbation
frequency. The amplitude of the oscillatory component can be
expressed as

a=0.8=7.03x f,,,
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Fig. 7 Limits of the lock-on regime as a function of amplitude and
trequency for cross-fiow oscillations; from Koopmann (19687)

so that lock-on does occur and the results are in keeping with
those shown in Fig. 1.

After an initial period of time corresponding to the quasi-
steady stage in the forced perturbed flow calculation, the re-
sulting streamwise velocity history at a point in the near wake
is periodic. The corresponding power spectrum in Fig. 5 con-
tains primary peaks at f=1.1 and 2.2 f,, as expected, and
secondary peaks at superharmonics of these values. No ad-
ditional peaks appear in the spectrum. The phase plane plot
corresponding to this case is shown in Fig. 6, and with the
power spectrum gives evidence of lock-on in the fully developed
flow. Streamlines corresponding to this case are also shown
in Fig. 4. The vortex spacing here is approximately \ = 4.66d,
representing a decrease of seven percent over the unforced
value of A =5d. The normalized frequency A/d(f/nfe)=5.13
for this case. These values compare well with the results of
experiments which are discussed later in the paper. A more
extensive discussion of the spectral element computations of
the perturbed flow cylinder lock-on is given by Hall and Griffin
(1991).
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Fig. &c)
Flow visusiization of the vortex

from a circular cylinder
oscillating in cross-flow at a Reynoids number of Re = 190. (a) stationary
cylinder, unforced wake; (b) 2)¥d= 0.5, #1,, = 0.9; (c) 2yid= 1.1, #1,,= 0.9,

Cross-Flow Qscillations

The excellent reviews by Sarpkaya (1979) and by Bearman
(1984) dealt with cross-flow oscillations of flexibly-mounted
bluff bodies, bodies which were free to oscillate, and those
which were forced. The purpose of the present paper is to
complement these works, to compare with some pertinent past
resuits, and to highlight more recent developments in the con-
text of flow control and modification. The basic character of
cross-flow lock-on due to forced oscillations can be represented
by the measurements of Koopmann (1967) which are shown
in Fig. 7. The appearance of the lock-on range is very similar
overall to the corresponding cases of in-line oscillations and
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Fig. 9 The measured dependence between the inltisl cirouistion X of
the vortices and the ratio of the formation region length 4 and the weke

width ¢° at formetion. The Reynoide number is Re = 144 from Grittin
and Ramberg (1978).

flow perturbations shown in Figs. 1 and 2. However, the im-
posed oscillations are near the Strouhal frequency f,, rather
than twice its value.

Many other effects of the cross-flow oscillations are also
similar. For example, the longitudinal spacing of the vortex
street adjusts in a similar manner to the example shown earlier;
oscillation frequencies less than /., expand the vortex street
while frequencies greater than f,, contract the pattern. In-
creasing the amplitude of oscillation reduces the lateral spacing
of vortices to the point of zero spacing, after which there is a
drastic change in the appearance of the pattern as the flow
adjusts to preclude the transition to a thrust-type vortex street.
Three previously unpublished examples from experiments at
NRL which demonstrate this effect are shown in Fig. 8. The
street behind a stationary cylinder appears in Fig. 8(a) and
shows the well-known geometry which has been visualized by
numerous invectiutors. When the amplitude of oscillation is
increased as shown in Fig. 8(b), the lateral spacing is much
reduced. For still higher amphtudes of oscillation, beyond the
limit of zero lateral spacing, a complex asymmetric pattern
such as that shown in Fig. 8(c) emerges. These photographs
were taken in a wind tunnel using an aerosol as the indicator.
This emergence of the asymmetric pattern also has been ob-
served by Ongoren and Rockwell (1988a) in water, using hy-
drogen bubbles as the flow indicator.

The formation region of the vortices as defined by the mode!
of Gerrard (1966) also varies inversely with frequency in the
resonance or lock-on regime (Griffin and Ramberg, 1974; On-
goren and Rockwell, 1988a), and is reduced in length by in-
creasing amplitude of oscillation at any given constant
frequency. These changes in the near wake vortex formation
cause corresponding changes in the strength or circulation of
the vortices. Reductions in the vortex formation length result
in increasing the vortex strength by as much as 75 percent at
a Reynolds number of 144. An example is shown in Fig. 9
where the nondimensional initial circulation of the vortices is
plotted against the ratio of the formation length to the wake
width at formation. The basic importance of the length scales
to the near wake flow physics is discussed later in the paper.
This increase in the vortex strength is accompanied by a cor-
responding increase in the rate of vorticity generation with
amplitude of oscillation.

The base pressure coefficient C, also is reduced significantly
by the oscillations in the lock-on or resonance regime (Stansby,
1976). As an example, the minimum base pressure on a circular
cylinder at resonance was decreased by 33 percent as the am-
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Fig. 10 Effect of the ratio of osciliation frequency f to the natural
shedding or Strouhal frequency /,, on the vortex formation region of a
circular cylinder: from Ongoren and Rockwell (19883). All of the photo-
graphs were taken with the cylinder at its maximum negative position.

plitude of oscillation (measured in diameters from equilibrium)
increased from 0.14 to 0.3d. The Reynolds number of the
experiment was Re = 8600. As mentioned earlier herein, Arm-
strong et al. (1987) measured comparable decreases in the base
pressure. However, the level of inflow perturbations was much
less than the oscillation levels required to achieve the same
level of base pressure modification. As noted earlier, the latter
reduction in base pressure was accompanied by a reduction in
the length of the voriex formation region from 1.2d 10 0.94.

The most comprehensive recent study of cross-flow oscil-
lations is that of Ongoren and Rockweil (1988a). The Reynolds
number range of the experiments was Re =580 to 1300. They
found that two fundamental types of lock-on take place; at a
frequency of one-half of the Stouhal frequency, a subharmonic
form of lock-on takes place whereby the shed vortex is always
from one side of the body, whereas at frequencies near the
Strouhal frequency the classical form of lock-on described
above takes place as vortices are shed alternately from the
body to form an altered Karman vortex street pattern.

It has been known for some time (Bearman and Currie,
1979; Zdravkovich, 1982) that a drastic change in the phase
of the vortex shedding, relative to the body oscillations, occurs
in the vicinity of the natural shedding frequency. However,
Ongoren and Rockwell and, earlier, Bearman and Davies (1975)
showed that the afterbody shape plays an important role in
the phase shifting in that bodies with a short or nonexistent
afterbody, i.e., a circular or triangular cylinder, experience a
large phase shift, while a body such as a square or rectangular

" cylinder with a relatively large afterbody experiences little or
no phase shift. This phase shift results in the switch of the
initially shed vortex from the upper to the lower side of the
cylinder or vice versa. The presence of the afterbody appears
to induce reattachment of the initially shed vortex and to reduce
the likelihood of the phase shifting. This is yet another indi-
cation of the importance of the vortex formation region and
near-wake flow to the shedding process.

The changes in the vortex formation region with the fre-
quency of the oscillations are shown by the photographs in
Fig. 10 from Ongoren and Rockwell (1988a). The flow was
visualized in water in the manner described in the previous
section of the paper, and again the results are remarkably
similar to the earlier wind tunnel photographs of Griffin and
Ramberg (1974). All of the photographs were taken with the
cylinder at its lowest position in the oscillation cycle, and the
shift in phase of the shedding relative to the cyliner can be
seen by comparing the wakes at f=0.9 f,, and f=1.05 f,,. The
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Fig. 11 Flow visusiization of syncihwonized vortex shedding due o ro-
tational osciliation of s circular . Legend for data points: 0, = 8;
Re = 15,000; (a) St,= 0.3, (b) 8¢,=0., {c) St=. 7, () St,=0.9; trom Tok-
umaru and Dimotakis (1991).

substantial decrease in the length of the vartex formation re-
gion with frequency of oscillation also is evident from the
photographs.

Other effects of the cross-flow oscillations observed by On-
goren and Rockwell included a large swinging motion of the
circular cylinder wake about the body at frequencies less than
the Strouhal frequency. This swinging motion is largest near
the Strouhal frequency and then it abruptly disappears. There
is evidence of some correlation between the phase shift in the
shedding and the abrupt disappearance of the swinging motion.
The swinging motion does not appear in the case of bodies
with fixed separation points. There were numerous complex
wake patterns observed at other frequencies. For instance,
small-scale vortices were shed at superharmonic frequencies
of n=2, 3, 4, and higher nonharmonic frequencies, and the
downstream wake eventually recovered to a lock-on and altered
asymmetric pattern similar in form to the classical Karman
vortex pattern. However, the altered pattern departed sub-
stantially from the classical Karman street, with the frequency
taking the values f.=//n. An interesting aspect of the paper
by Ongoren and Rockwell is the number of historical refer-
ences, ¢.g., Meier-Windhorst (1939).

Rotational Oscillations

Vortex lock-on and control of the near-wake flow also can
be realized with small rotational oscillations of a circular cyl-
inder. There are very few studies of this aspect of the problem,
the most recent being those of Tokumaru and Dimotakis (1991)
and of Filler et al. (1991). An important distinction between
the two studies is that in the experiments of Tokumaru and
Dimotakis the maximum rotational velocity of the cylinder
was on the order of the velocity outside the boundary iayer at
separation (approximately 1.4U), whereas in the experiments
of Filler et al. the maximum rotational velocity of the cylinder
was only 0.03U. These studies seem to show, however, that
the range of lock-on frequencies, though still probably am-
plitude-dependent, is much reduced from what has been ob-
served for imposed oscillations and flow perturbations as
discussed earlier. There are essentially two types of forcing
which can be introduced by rotational oscillations. The first
is the classical form of lock-on or resonance which takes place
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when the oscillations are near the Karman vortex shedding

bations and other types of impased body oscillations as well.

A series of photographs of vortex lock-on at increasing val-
ues of the oscillation Strouhal number St, are shown in Fig.
11. The oscillation parameter Q, = v,/ U, where v is the peak
circumferential velocity, was kept fixed during the sequence
of conditions shown in this figure, from Tokumaru and Di-
motakis (1991). The experiments were performed in a CalTech
water channel at a Reynolds number of Re 3,000, and the
flow was visualized by introducing a2 mixture of colored food
dye into the water upstream of the cylinder. The dye mixture
was made neutrally buoyant by diluting it with ethyl alcohol
(P.E. Dimotakis, private communication). In all of the cases
shown the vortex shedding is locked-on in the classical manner
with the imposed rotational oscillations. When the oscillation
Strouhal number was increased to St = 1.5, the wake forcing
went through 2 transition to the Bloor-Gerrard shear layer
forcing. For a fixed value of oscillation Strouhal number of
Sty=1, the transition to shear layer forcing takes place at an
oscillation parameter of approximately Q= 16.

A plot of the velocity u’ in the wake from Filler et al. (1991)
as a function of the oscillation Strouhal number St/ is shown
in Fig. 12. Here the oscillation parameter @, = w,d/2U, where
w, is the frequency of the rotational oscillations. At the lower
frequencies near the usual Karman shedding frequency a large
resonant peak is seen when the oscillations are in that range.
However, at the higher imposed frequencies there is a sec-
ondary broad peak in the range of the shear layer instability
frequencies. In the Karman frequency range of vortex shedding
the wake behaves like a nonlinear oscillator near resonance.
This behavior is well known (Bishop and Hassan, 1964; Bear-
man, 1984) and has been explored by numerous investigators
for the cases of cross-flow and in-line oscillations. The forced
Bloor-Gerrard shear layer instabilities are simply convected
downstream in the near wake. An important finding by Tok-
umaru and Dimotakis (1991) is that active control of the near-
wake vortex formation and flow physics by rotational oscil-
lations of the cylinder can reduce the drag on the cylinder by
as much as a factor of six! This decrease in the drag coefficient
Cp is accompanied by a comparable decrease in the wake
displacement thickness &° (a factor of five) as defined by an
integral of the cross-stream wake velocity distribution over the
height of the channel.

There are very few studies of rotational oscillations on wake
flow control and vortex resonance or lock-on. Exampies from
the two most recent have been given here. For earlier examples
the reader should refer to the work of Okajima et al. (1975)
and of Taneda (1978). This is a new and potentially exciting
approach to the active control of vortex formation and bluff
body wake flows.
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The Eftects of Sound

mapplicadonofmappropﬁnemndﬁeldtotheﬂow
about a rigid cylinder can induce vortex iock-on and resonance
in the wake. There are even fewer reported studies of the effect
of sound than of rotational oscillations, the principal exampie
of the former being that of Blevins (1985). The oaly other
direalyrehledworkisthnofOkumoweul.(l”l).Asnowd
byBlevins.theeffectonthevomxsheddiuofmmnsﬁc
wave propagating along the axis of a circular cylinder was
examined by the latter. Only a minor influence was observed
for sound excitation levels above 20 Pa.

The experiments performed by Blevins were at Reynolds
numbers in the range Re= 20,000 to 40,000 in a wind tunnel
that allowed a transverse sound field to be applied such that
the cylinder was located at the node of the acoustic pressure
field. This is the point of maximum induced velocity due to
the sound. It was observed by Blevins that the vortex lock-on
was induced by the velocity rather than the pressure.

An example of the results reported by Blevins (1985) is shown
in Fig. 13. The (requency of the vortex shedding was f; =392
Hz, and the frequency of the applied sound field was /=380
Hz. Thus the lock-on occurred at a frequency less than the
Strouhal frequency. The average spectral output from a flush-
mounted hot-film probe mounted on the cylinder is plotted
for the three test runs. The spectrum labeled 1 shows the typical
averaged spectrum for a rigid cylinder in a uniform flow, with
the broad peak in this case centered at the vortex shedding
frequency of 392 Hz. When a 100 Pa sound field is applied
two peaks are present—a sharp peak at 380 Hz induced by the
appﬁedsound.andabmderredueedandshiﬁedpukdue
to vortex shedding. An increase in the applied sound field to
ZSOPaprodueeutypiullock-onspearumva'th:mlemrp
peak at the frequency of the sound. The lock-on frequency
here is less than the Strouhal frequency, and it was observed
by Blevins that the induced resonance always was stronger at
the reduced frequencies as compared to frequencies higher than
the Stroubal frequency. The sound field and the vortex shed-
ding were phase locked over a range of phase angles which
varies nearly linearly with the applied sound frequency.

An additional observation by Blevins (1985) was that tur-
bulence in the free stream suppressed the influence of sound
on the vortex shedding. The resuits suggest that the induced
sound field velocity must exceed the turbulence velocities in
order for the sound to influence the vortex shedding. Also,
the introduction of sound substantially increased the coherence
of the vortex shedding along the span of the cylinder as is
usually found when a circular cylinder is oscillated.

The Near-Wake Flow Field
There is a physical dependence between the wake width d’
at the end of the vortex formation region of a bluff body and
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Table 1

Symbol Bluff body type
» Half cylinder
(D-section)
[ Flat plate
. Circular cylinder
® Circular cylinder
20m Wide splitter plate
L 2 (D-section)
- Hydrofoil
+ D-section cylinder
%= V¥  D-section cylinder with
and w/o splitter plate
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Fig. 14 Wake width d’/d as a function of the base pressure parameter
or velocity ratio XK. The legend is given in Tabie 1. The shaded ares in
the tigure corresponds to a variety of body geometries and flow con-
ditions given in Gritfin (1989).

the base pressure coefficient — C,, or the related velocity ratio
K. As discussed earlier, these are important characteristic phys-
ical parameters of the bluff body wake. In general, the bluff-
ness of a given body shape is represented by a wider wake,
and corresponding lower base pressure or higher velocity ratio.
For a cylinder vibrating normal to the incident flow, the var-
iation of both the measured base pressure and wake width with
the frequency ratio f/f,, over the lock-on regime show the
same resonant behavior (Griffin, 1989). Both -C,, and d’
increase to a maximum value and then gradually decrease as
the upper limit of the lock-on range of frequencies is reached.
Only the base pressure variation was measured by Armstrong
et al., but the wake width can be estimated as a function of
U/f,d, using the wake similitude relationships summarized
earlier in the paper and measured values of St and C,, (or X).
For the range of Reynolds numbers corresponding to the ex-
periments of Armstrong et al., the wake Strouhal number St*
is essentially constant at a value of 0.16, so that

d’'/d=(St*/SH) K

from Eq. (4a).

The wake widths for several cylinders and flow conditions
are plotted as a function of X in Fig. 14. The legend for the
data in the figure is given in Table 1. This range of the base
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Wind tunnel experiment
Wind tunnel experiment
Wind tunnel experiment
Wind tunnel experiment

Wind tunnel experiment

Wind tunnel experiment
Wind tunnel experiment

Legend for data plotied in Fig. 14

Mehod  lovestguon

Armstrong et al.
(1986, 1987)
Armstrong et al.
(1986, 1987)

Armstrong et al.
(1966, 1987)
Barbi et al.

(1986)
Grinstein et al.
(1991)
Blake et al.
(1977
Simmons (1975)
Bearman (1965)

Computation

pressure parameter or separation velocity ratio X represents
the entire regime over which vortex shedding takes place over
bluff bodies, whether the shedding is natural or unforced, or
the shedding is controlled or modified by some means such as
oscillations, in-flow perturbations, sound, and wake splitter
plates. The shaded area represents a host of results for oscil-
lating circular cylinders, D-section cylinders, and flat plates
under a wide variety of conditions (Griffin, 1989). There is
generally good agreement between the new perturbed and steady
flow results and the earlier data, except for the two circular
cylinder results from Armstrong et al. which are displaced to
the right of the overall trend of the data set. This departure
from the overall trend of the results is due to the much reduced
base pressure measured on the circular cylinder in those ex-
periments, as previously mentioned. In the experiments of
Armstrong et al. the circular cylinder and flat plate base pres-
sures were virtually the same under otherwise unvarying con-
ditions of blockage, incident flow, axial uniformity, etc. One
might expect the base pressure coefficient for a circular cylinder
at the Reynoilds numbers studied to be closer to the values of
Cpo= —1 to 1.1 measured by Barbi et al. and others at the
same Reynolds numbers.

The wake widths for flow over a D-section cylinder com-
puted by Grinstein et al. (1990, 1991) are also plotted in Fig.
14. The resuits shown represent a two-dimensional computa-
tion using the flux-corrected transport (FCT) algorithm, but
comparable results were obtained with companion three-di-
mensional computations described by Grinstein et al. (1990).
These computations were made for compressible flows with
freestream Mach numbers in the range 0.3 to 0.6 at standard
temperature and pressure conditions. However, for these Mach
numbers compressibility effects are relatively small and rea-
sonable comparisons can be made with incompressible flow
experiments. The wake widths plotted in Fig. 14 were obtained
directly from computed contour plots of rms velocity 4’ at
the end of the vortex formation region. The results shown
represent flow over the body both with and without a splitter
plate attached and they agree remarkably well with the ex-
perimental results of Blade et al. (1977), Simmons (1975) and
Bearman (1965). The D-section biuff body resuits overall rep-
resent the lowest regime of X which has been observed thus
far.

A comprehensive experimental study of the effects of wake
splitter plates on vortex shedding from a circular cylinder was
made recently by Unal and Rockwell (1988b). The experiments
were conducted in the Reynolds number range Re= 140 to
5000, and the primary objective was to study the effects of the
passive wake interference on the formation region of the vor-
tices. An unusual aspect of these experiments was the ratio of
the plate thickness A to the cylinder diameter d, whiph was
approximately 0.5. Also, the plate length was approximately
1,=24d cylinder diameters, in contrast to the splitter plate
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Table 2 Loagitudinal vertex spacing or waveleugth in the neor-
wake of a circular cylinder vibrating in-line with an incident uni-

form flew
'Vibncion Frequency Vortex Relative Vortex
J(H2) V7 /N Nd ANMA 12/ /U0
Reynoids aumber = 190

69.2 1.88 $.2 +0.07 0.94

3.6 2.00 49 0 0.93

75.6 2.06 4.7 -0.08 0.91

8.9 2.14 4.7 -0.04 0.96

80.4 2.18 44 -0.09 0.92

Average =0.93
of the streamwise and cross stream components of the wake
velocity fluctuations which can be employed comparably to
— ] assess the temporal state of the near-wake.

®

®

Fig. 15 (a) Instantansous streamiines at Re = 100 for netural shedding.
(D) instantaneous streamiines at Re = 100 and neer-wake forcing at the
excitation frequency, 1, =0.78/, (a lock-in state); from Kamiadakis and
Triantatytiou (1989).

geometries discussed above. The leading edge of the plate had
a tapered and sharply pointed configuration.

These experiments yielded several importans conclusions and
reinforced those previously reached by other investigators. The
first is a reiteration of the importance of the dynamics of the
formation region to the overall near-wake flow and the pos-
sibility of control and modification of the vortex wake. Second,
the wake formation is dominated by an absolute instability
and there is a close relation between the vortex formation
process and the dynamics of the near-wake Karman vortex
street. Other conclusions are the importance of Reynolds num-
ber to the wake formation, at least over the range examined,
but that no locking-on or vortex resonance occurs in the pres-
ence of the passive wake interference. Nonetheless, the results
of these and the other experiments and computations discussed
here have demonstrated the potential importance of both pas-
sive and active control to the flow physics of bluff body wakes.

The downstream vortex spacing or wavelength is a valuable
and important diagnostic parameter for the state of the spatial
structure and development of the near-wake. Measurements
of the spacing for a variety of in-line and cross-flow oscilla-
tions, and also for the unforced wakes of stationary cylinders
were reported originally by Griffin and Ramberg (1976). These
can be compared to the direct numerical simulations of Kar-
niadakis and Triantafyllou (1989) and our recent NRL simu-
lations (Hall and Griffin, 1992). The vortex spacing or
longitudinal wavelength can be empioyed as a measure of the
spatial state of the flow as compared to phase plane diagrams

534 / Vol. 113, DECEMBER 1991

Two exampies from Karniadakis and Triantafyllou are shown
in Fig. 15. The upper instantaneous streamline pattern cor-
responds to the unforced wake at Re= 100 while the lower
pattern corresponds to a wake forced by a spatially localized
acceleration which varied with time in the near-wake vortex
formation region with normalized amplitude and frequency,
respectively, of 4 =0.10 and f/f,,=0.75, and which decayed
exponentially in the far field. The center of the disturbance
was located at x=2, y=0, measured in multiples of cylinder
diameter. This is a unique form of control disturbance which
had not been investigated in any previous work. For the un-
forced wake A = 5d and for the forced wake A = 7d, an increase
of forty percent. A similar example from the NRL perturbed
flow computations is given in Fig. 6.

Comparabie measurements were made at Re = 190 by Griffin
and Ramberg (1976). The resuits are summarized in Table 2.
The cylinder oscillations were in-line with the flow over a range
of frequencies near twice the Strouhal frequency (as in Fig. 1)
and, for the cases shown, a single vortex was shed during each
oscillation cycle. Thus this basic forced wake pattern shared
many of the same overall features of the wake forced with the
cross-flow oscillations. The measured changes in the forced
wake vortex spacing correspond directly with those from the
direct numerical simulations; for f<2f,, the wavelength is
increased while for £> 2/, the wavelength is decreased as shown
in Table 2. Extrapolating the measured results in the table to
the case shown in Fig. 15 using a least-squares straight line
given by Griffin and Ramberg (1976), the vortex spacing is
A=6.2d. This compares reasonably well with the computed
results of A=7d. The measured vortex spacing for the sta-
tionary cylinder at Re= 190 (A = 4.9d) is virtually identical to
the computed value at Re = 100 (A = 5d).

The vortex street wavelengths computed by Karniadakis and
Triantafyllou and more recently at NRL are compared further
with measured street wavelengths for both forced and unforced
conditions in the range of Reynolds numbers from 100 to 2000
in Fig. 16. The computations fit well with the overall trend of
the measured data, which show only a very slight dependence
on Reynolds number in this range. The vertical scale in the
figure essentially is a normalized form of the convection speed
of the vortices, or the downstream speed of the vortex cores.
The constant phase or convection speed is representative of a
non-dispersive physical system.

Several measurements of the vortex phase or convection
speed, i.c., the speed at which the vortex cores travel down-
stream, are given in Table 2. Though there is some scatter, the
data generally are grouped around the average value of
U,=0.93U. This gives some evidence that both forced and
unforced or natural periodic vortex wakes have the same basic
non-dispersive properties.

The experiments of Tokumaru and Dimotakis (1991) also
included measurements of the vortex street wavelength A over
a wide range of the oscillation Strouhal number Sty=fd/U.
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Fig. 16  Longitudinal vortex spacing Md( #n1,,) as 8 tunction of Reynolds
number Re. All of the messurements were made in the wekes of sta-
tionary and osciliating cylinders. Dsta points at Re = 190 and 200 cor-
respond to in-line osclilations and fiow perturbations with n= 2; sl other
results comrespond to cross-fiow oscillations (experiments) and neer-
wake perturbations (computations) with n= 1.

LOCK-ON SOUNDARY

Fig. 17 State selection (amplitude versus frequency) disgram for lam-
inar wakes. The plot shouid only be interpreted in a qualitative sense;
from Kamisdakis and Triantatyliou (1989).

For the observed range of lock-on where St,=0.3 to 1.0, the
geometry of the vortex street adjusted in terms of the wave-
length A and the frequency f to form yet again an essentiaily
non-dispersive street pattern, though there is some slight scatter
in the measurements. The lateral spacing of the near-wake
vortex street also decreased with increasing St, over this lock-
on range. The Reynolds number for these experiments was
Re=15,000, and some complementary smooth cylinder ex-
periments were conducted at a lower Reynolds number of
Re=3,300 and with surface roughness added to the cylinder
at the higher Reynolds number. The resuits were similar in
both cases. These observations for the case of active control
with rotational oscillations confirm and extend the conclusions
drawn earlier for both forced and unforced wakes.

Near-Wake Flow Stability

The introduction of the absolute/convective theory of fluid
dynamic stability has led to a promising new approach and a
new theoretical framework for understanding the physics of
vortex formation and near-wake flow development (Koch,
1985; Triantafyllou et al., 1986, 1987; Monkewitz and Nguyen,
1987; Rockwell, 1987; Chomaz et al., 1988; Unal and Rock-
well, 1988a, b; Ongoren and Rockwell, 1988a, b; Karniadakis
and Triantafyllou, 1989; Oertel, 1990; Huerre and Monkewitz,
1990; Rockwell, 1990). A flow is said to be absolutely unstable
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when an initial infinitesimally small disturbance grows expo-
nentially in place at the location where it is introduced. In the
case of a convective instability the initially small disturbance
is transported or convected away from the point of its intro-
duction, leaving behind an undisturbed region of flow. Chomaz
et al. (1988) have introduced the term global instabiliry. They
note that the existence of a local absolute instability is only a
necessary, but not sufficient, condition for the existence of a
global instability in a shear flow, and that the localized region
of absolute instability must physically grow to a large size to
become globally unstable.

Recent stability calculations based upon computed and
measured mean velocities in the wakes of stationary circular
cylinders suggest that the vortex formation region is absolutely
unstable while the fully-formed vortex street is convectively
unstabie. The vortex formation region is thought to be a com-
plex global region of upsiream and downsiream propagating
vorticity waves, self-excitation of the flow, and modal com-
petition and interaction (Rockwell, 1990). This region of self-
excited oscillations and flow resonance plays an important role
in frequency selection, and thus in programming and control
of the flow separation and the overall unsteady flow. More
extensive stability calculations of this nature may also lead to
better understanding of bluff body wakes, and their active
control and modification by any of the means discussed here.
A. better understanding of passive wake control and modifi-
cation, ¢.g., By splitter plates and base bleed, may be achieved
in the same manner. The most recent and comprehensive dis-
cussions of absolute/convective and local/global instabilities
for spatially developing shear flows, including bluff body
wakes, are given by Huerre and Monkewitz (1990), Oertel
(1990), and Rockwell (1990).

Karniadakis and Triantafyllou (1989) conducted a linear
stability analysis of the time-averaged flow in the near-wake
which was derived from their direct numerical simulation of
the cylinder wake at Re=100. The flow was assumed to be
locally parallel and slowly varying in the downstream direction.
The averaged flow was found t0 be absolutely unstable for
approximately 2.5 diameters downstream from the cylinder.
This corresponds generally to the length scale of the vortex
formation region at subcritical Reynolds numbers below 10*
(Bloor and Gerrard, 1966), a wide range of Reynolds numbers.
At greater downstream distances the flow is convectively un-
stable. Thus the continuous formation of the vortex street is
thought to be sustained by the near-wake absolute instability.
Good global agreement was found between the stability anal-
ysis and the computation in that the Strouhal number was
St=0.179 in both cases. This is slightly higher than most ex-
periments (Roshko, 1954; Williamson, 1988), which may be
due partly to finite grid size and the extent of the computational
domain, and to the three-dimensional effects which invariably
exist in a cylinder wake. Williamson (1988) has shown the
importance of the spanwise variation of the cylinder wake flow.

Summary and Concluding Remarks

Previous observations of vortex resonance or lock-on for
bluff body near-wakes which have been accumulated by nu-
merous researchers over the years now have been extended to
several additional types of imposed disturbances of both fun-
damental and practical importance—a bluff body in a per-
turbed incident flow consisting of a mean flow with a periodic
component superimposed upon it, rotational oscillations of
the body, and sound. And the first of these cases has been
shown to be fundamentally identical, under appropriate con-
ditions, to the lock-on or vortex resonance of a cylinder os-
cillating in line with an incident uniform flow. The vortex lock-
on results from the periodic flow exhibit a particularly strong
form of resonance, with a relative perturbation amplitude of
2AU/wD =0.014 resulting in a reduction in base pressure from
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Coo= —1.44 10 ~1.85, or 22 percent, for a circular cylinder
(Armstrong et al., 1986, 1987). For a circular cylinder oscil-
lating in cross-flow, as noted earlier, a peak-to-peak vibration
amplitude of 2a/d = 0.20 10 0.30 is required to provide a com-
parable reduction in C,, (Stansby, 1976). Conditionally-av-
eraged wake velocity measurements by Armstrong et al. (1987)
have indicated that the strength of the vortices was increased
by 29 percent and the spacing was decreased by 25 percent for
the largest perturbation levels of their experiments.

These are quite remarkable modifications of the near-wake
flow for such a relatively small perturbation amplitude. Thus,
seemingly small perturbations of the basic wake flow can pro-
duce large changes in vortex strength, base pressure and drag
on a bluff circular cylinder or other cross-section. Modification
and control of the basic formation or instability mechanisms
of the wake thus can provide a means for making substantial
changes in the near-wake vortex pattern, and possibly even the
middle- and far-wake patterns as well (Cimbala et al., 1988,
Browne e1 al., 1989).

Karniadakis and Triantafyllou (1989) have characterized the
state of both the forced and unforced vortex wakes by means
of a state diagram as sketched in Fig. 17. At a smalil but finite
amplitude the transitions corresponding to the upper and lower
limits of the lock-on are given by two bounding frequencies;
within these limits only periodic lock-on states exist. Two quasi-
periodic regions are thought to develop at frequencies well
above and below the lock-on regime, together with chaotic
states in narrow regions immediately adjacent to the lock-on
boundaries. These are conceptually similar in overall appear-
ance to the vortex resonance or lock-on measurements of
Koopmann (1967) for cross-flow oscillations of a cylinder,
reproduced here in Fig. 7, and for the in-line flow perturbations
and cylinder oscillations shown in Figs. 1 and 2.

As the threshold amplitude a, is approached, these finite
regions shrink to a single frequency f,. For cross flow oscil-
lations of the cylinder f,=f;, while for in-line oscillations of
the body and periodic perturbations of the mean flow f=2f,,
as shown in Fig. 2. The small amplitude perturbations intro-
duced by Armstrong et al. (1986, 1987) correspond qualita-
tively to those discussed by Karniadakis and Triantafyllou.
The relatively large amplitude cylinder oscillations and flow
perturbations investigated by Koopmann (1967), Griffin and
Ramberg (1974, 1976) and Barbi et al. (1986) and shown in
Figs. 1 and 7 introduce nonlinearities and complex changes in
the near-wake flow field as shown by the flow visualization
studies of Griffin and Ramberg (1974, 1976), Williamson and
Rashko (1988), and Ongoren and Rockwell (1988a, b). At the
largest amplitudes of oscillation, highly compiex vortex flow
patterns were observed; and a more extensive kaleidoscope of
complex vortex patterns over an even wider range of frequen-
cies and amplitudes was observed experimentally by William-
son and Roshko (1988).

Further research based upon these new analytical and com-
putational approaches described herein is likely to lead 10 new
and more complete fundamental understanding of the near-
wake vortex dynamics and vortex lock-on, which until now
have been studied mostly by using the more traditional mod-
deling approaches combined with experiments. The results dis-
cussed in this paper suggest that modification and control of
the basic instability or formation mechanisms of the wake by
imposed oscillations, i.c., cross-flow, in-line and rotational,
incident flow perturbations, and an imposed sound field pro-
vide a means for making substantial alterations to the near-
wake vortex pattern, and possibly to the middle- and far-wake
flow patterns as well which exist relatively far downstream
from the wake-generating body.
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Vortex Shedding and Lock-On in a Perturbed Flow




Vortex Shedding and Lock-On in a
Perturbed Flow

Vortex shedding resonance or lock-on is observed when a blyff body is placed in
an incident mean flow with a superimposed periodic component. Direct numerical
simulations of this flow at a Reynolds number of 200 are compared here with
experiments that have been conducted by several investigators. The bounds of the
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lock-on or resonance flow regimes for the computations and experiments are in |

Owen M. Griffin good agreement. The computed and measured vortex street wavelengths also are in ’ :
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Fellow ASME. Jforced, and forced vortex street wakes are nondispersive in their wave-like behavior. L

Recent active control experiments with rotational oscillations of a circular cylinder
find this same nondispersive behavior over a three-fold range of frequencies at
Reynolds numbers up to 15,000. The vortex shedding and lock-on resulting from
the introduction of a periodic inflow component upon the mean flow exhibit a
particularly strong resonance between the imposed perturbations and the vortices.

parison of these computations with experiments shows that both natural, or un- ' ‘
l
i

Introduction

Vortex streets are formed in the wakes of circular cylinders
and other bluff, or unstreamlined, bodies over a wide range
of Reynolds numbers from approximately 50 to 10° and even
higher. The physics of vortex street formation has been the
focal point for many past experimental studies, e.g., Roshko
(1954, 1955), Gerrard (1966), Bearman (1965, 1967), Griffin
and Ramberg (1974) and, more recently, Ongoren and Rock-
well (1988a, b), and Williamson and Roshko (1988), because
of the importance of the near-wake flow to the eventual ev-
olution of the overall middle and far-wake vortex patterns.
Modern high-speed computers and direct numerical simulation
techniques have allowed the vortex formation and modification
processes to be studied numerically at high resolution (Kar-
niadakis and Triantafyllou, 1989, 1992; Grinstein et al., 1991).

When a bluff cylinder is excited into resonant oscillations
by an incident flow, the cylinder and its shed vortices have the
same frequency near one of the characteristic frequencies of
the body (Koopmann, 1967; Sarpkaya, 1979; Bearman, 1984;
Griffin and Hall, 1991). This coincidence or resonance of the
shedding and vibration frequencies is commonly termed lock-
on, and such a state emerges when the body is oscillated ex-
ternally in various orientations relative to the incident flow
over the appropriate range of imposed frequencies and am-
plitudes (Koopmann, 1967; Griffin and Ramberg, 1974, 1976;
Ongoren and Rockwell, 1988a,b; Nuzzi et al., 1992). Two
recent experimental studies (Tokomaru and Dimotakis, 1991;
Filler et al., 1991) have shown that rotational oscillations of
a circular cylinder cause lock-on and result in marked changes
in the geometry of the near-wake flow.

Vortex resonance or lock-on is observed experimentally when
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the incident mean flow has a sufficiently large periodic com-
ponent superimposed upon it (Barbi et al., 1986; Armstrong
etal., 1986, 1987). The cylinder remains stationary in the flow,
but the vortex lock-on or resonance produced by the inflow
perturbation modifies the character of the near-wake flow.
This is equivalent to the in-line oscillations when the acoustic
wavelength is long compared to the cylinder diameter.

The introduction of an appropriate sound field also can
cause lock-on to occur (Blevins, 1985). And control of the
vortex formation and shedding by periodic mass injection into
the cylinder’s boundary layer prior to separation has been
demonstrated by Williams et al. (1992). All of these external
disturbances are potential means for active control of the bluff
body near-wake flow (Oertel, 1990; Rockwell, 1990).

Vortex lock-on and resonance phenomena have numerous
practical engineering applications in addition to their impor-
tance in a fundamental physical sense. Applications abound
in offshore exploration and drilling, Naval and marine hy-
drodynamics, and underwater acoustics. Other areas of en-
gineering practice where these phenomena play important roles
are civil and wind engineering, nuclear and conventional power
generation, and electric power transmission.

The main topic of this paper is a particular case of vortex
shedding resonance and lock-on in the near-wakes of bluff
bodies. Vortex shedding in an incident flow with a periodic
component superimposed on the basic mean flow is computed
here to high resolution using the spectral element method. This
is an interesting bluff body flow which has not been studied
e_ithcrAcomputationally or experimentally in detail up to this
time.

Flow Perturbation and In-Line Oscillation Experiments
The experiments of Armstrong et al. (1986, 1987) and of
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Barbi et al. (1986) were conducted to examine vortex lock-on
for a cylinder in a stream consisting of a steady uniform flow
with a superimposed periodic component. The results of both
studies show some very basic similarities with the earlier ex-
periments of Griffin and Ramberg (1976), which are conducted
to examine vortex shedding lock-on for a cylinder oscillating
in-line with an incident flow. More recent experiments with
in-line oscillations have been conducted by Ongoren and Rock-
well (1988a,b).

The vortex lock-on measurements by Barbi et al. are com-
pared with those of Griffin and Ramberg in Fig. 1. The vertical
axis represents two different measures of the perturbation am-
plitude. For the experiments of Griffin and Ramberg the peak-
to-peak amplitude of cylinder displacement is given by 2a/d.
And for the experiments of Barbi et al. the normalized ‘‘peak-
to-peak’’ incident velocity perturbation is given by 2AU/wd.
The horizontal axis is the ratio of the vibration frequency f
and the Strouhal frequency f, of a stationary cylinder. The
two types of external disturbance are essentially identical for
the case shown. Also shown are the cylinder vibration results
of Tanida et al. (1973) and of Tatsuno (1972), reproduced
from the paper by Griffin and Ramberg. The dashed lines
enclose the results of Armstrong et al. (1986, 1987). Vortex
lock-on and cross-flow cscillations usually occur near the
Strouhal shedding frequency f;,. For in-line oscillations and
flow perturbations the lock-on is caused by frequencies near
twice the Strouhal frequency, 2f,,, since the forcing fluctua-
tions in the drag force are in the flow direction. However, in
many cases the actual lock-on frequency is near the Strouhal
frequency, or half the oscillation or perturbation frequency.

There is generally good agreement between the bounds of
the lock-on regime for the two different types of external
disturbance or flow control, though there is some scatter at
the highest amplitudes. This is most likely due to Reynolds
number effects, as noted by Barbi et al. The latter experiments
were conducted at Re between 3000 and 40,000, whereas the
results of Tanida et al., Tatsuno, and of Griffin and Ramberg
were conducted at Re between 80 and 4000. The overall agree-
ment is good.

The base pressure coefficient C,, is influenced by the flow
perturbations in much the same manner as in the case of cyi-
inder oscillations. For the stationary cylinder the base pressure
coefficient is near C,, = — 1.44; this value, though somewhat
low for a circular cylinder, is in reasonable agreement with the
results of West and Apelt (1982) for a comparable wind tunnel
blockage ratio of nine percent. At the largest flow perturbation,
the base pressure was decreased to Cp,= —1.85 at the point
of maximum resonance, a reduced velocity of U/f,,d=2.5 (or
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half the Strouhal value). The measured vortex formation region
length /, was reduced by this level of perturbation to 0.94 from
1.2d, the value measured for the unperturbed flow (Armstrong
et al.,, 1987). The mean drag coefficient Cp increased from
1.28 to 1.52 for the perturbed flow as compared to the un-
perturbed flow.

The Numerical Method

Recent advances in computational fluid dynamics permit
new approaches to examining the effects of inflow perturba-
tions and cylinder oscillations on the bluff body near-wake.
One of these methods, which we employ herein, consists of
superimposing an oscillatory component on the inflow bound-
ary condition for a domain such as the spectral element grid
(see Fig. 4). The computational results presented in this and
the following section were obtained by means of direct nu-
merical simulation of two-dimensional flow past a circular
cylinder at sub-critical Reynolds numbers. The equations solved
are the incompressible Navier-Stokes equation

OV+(VeV)V= =~ Vp/p+vV 2y
together with the continuity equation
Vev=0

A no-slip boundary condition is imposed on the surface of the
cylinder, a Neumann boundary condition is used at the out-
flow, and periodic boundary conditions are imposed in the
longitudinal or downstream direction at the cross-stream
boundaries of the domain. At the inflow, a uniform stream
with a superimposed time-periodic small amplitude pertur-
bation is used in most of the cases presented in the section on
computational results. In the first case discussed, that of nat-
ural or unforced vortex shedding, the inflow consists solely of
a uniform stream.

The computer code employed here is a variation of the spec-
tral element formulation used by Karniadakis and Trianta-
fyllou (1989, 1992). Modifications of the code performed at
NRL have not altered the basic spectral-element methodology,
which is described in some detail in the above-mentioned ref-
erences. However, numerous variations have been made in the
computational grid and in the computed flow quantities over
the grid in order to examine the details of the flow history and
development, the velocity spectra, and the flow geometry of
the near-wake of the cylinder. Briefly, a time-splitting algo-
rithm is employed in the usual way, with the nonlinear term
being solved first using a third-order explicit Adams-Bashforth
scheme with a Courant stability condition. Incompressibility
is enforced when the pressure term is solved in the second step,
and boundary conditions are imposed in the third step, when
the new velocity is found by implicit solution of the viscous
term. In the second and third steps, intermediate values ob-
tained from the previous steps are used as the *‘old”’ values.
Although it is not possible to say formally what the resulting
overall order of the splitting scheme is, the lowest order step
is the third, implicit backward Euler step, which is order O(Af).

The spatial resolution of the computed flow can be affected
in two ways: by choice of the size and number of elements
and by choice of the order of Lagrangian interpolating pol-
ynomials used within the elements. In the present work, the
fifty-six element grid was essentially the same as that shown
in Karniadakis and Triantafyllou (1989), and can be seen in
Fig. 4. Within each two-dimensional element sixth-order in-
terpolating polynomials were used in both the streamwise and
cross-stream directions, for a total of 7 x 7 or 49 Gauss-Lobatto
collocation points within each element. This resulted in very
fine resolution in that portion of the domain surrounding the
cylinder, and a more coarse resolution in the far wake. Clus-
tering of the collocation points near the element boundaries
resulted in smooth solutions across these boundaries.
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Fig. 2 (s) The spectrum comresponding to the x-component of the ve-
locity U, at the history point located at (x,)) =(2,2). This is the natural
shedding case (no perturbation) at Re = 200.

As with all spectral methods, a weighted residual technique
is used to generate the discrete equations, and the system of
discrete equations then is solved using a conjugate-gradient
algorithm. A benchmark case demonstrates the ability of the
code to accurately predict the important flow parameters in-
volved in the simulation of vortex shedding from bluff bodies,
using the shedding frequency and the vortex street wavelength
as diagnostics. For this we chose natural or unforced shedding
at Reynolds number Re = 100 based on cylinder diameter, since
this case was also studied by Karniadakis and Triantafyliou
(1989) and extensive results are available in their paper. Our
predicted natural shedding frequency of St =0.176 differs from
the value of 0.179 predicted by Karniadakis and Triantafyllou
(1989) by only 1.67 percent, which is insignificant owing to
the fact that the St =0.179 value overestimates recent experi-
mentally determined values, e.g., Williamson (1989), by ap-
proximately eight percent.

No asymmetry is needed in the initial or boundary conditions
in order to initiate the asymmetric vortex shedding in this
simulation of natural shedding, as well as all of the Reynolds
number Re=200 simulations discussed in the next section.
Rather, asymmetries due to computer truncation are sufficient
to cause the vortex shedding to develop naturally as it does in
any laboratory flow due to the presence of infinitesimal am-
bient disturbances. The asymmetry is not due to any numerical
instability, but rather to the highly unstable nature of the
symmetric flow that is realized briefly early-on in the com-
putations. We refer to this early symmetric solution as the
quasi-steady state of the flow.

Computation of the Flow

The first case for which we present numerical results is nat-
ural or unforced vortex shedding at a Reynolds number of
200. For this condition the inflow boundary condition at the
left of the domain is a uniform flow, and the near-wake and
vortex shedding patterns develop without forcing. We include
this case for comparison with the perturbed flow results.

The spectrum corresponding to the x-component of the ve-
locity U, at a point (x,¥)=(2,2) is shown in Fig. 2, where the
units are scaled by the cylinder diameter. The highest peak in
the spectrum is located at the natural shedding frequency f,,
corresponding to St=0.195, and other peaks can be seen at
higher harmonics of this shedding frequency. Approximately

2000 time intervals were used to produce this spectrum and all -

of the computed spectra discussed in this paper. Each time
interval represents ten time steps in the calculation, and 2000
time intervals correspond to approximately thirty shedding
cycles.
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Natural shedding; Re = 200

Fig. 4 instantaneous streamiines for natural shedding at Re = 200. The
spectral element grid employed in the computations Is shown super-
imposed on the spectrum.

The cylinder base-region flow in the vortex formation region
is important to the development of the near-wake flow (Bear-
man, 1965; Gerrard, 1966), and to the ensuing physical evo-
lution of the wake. One measure of the downstream extent of
the formation region is the maximum in the fluctuating velocity
which occurs just downstream of the cylinder on the wake
centerline. The formation region length also can be measured
in terms of the minimum of the local pressure coefficient C,
on the wake centerline (Roshko, 1954, 1955). The fluctuation
U Of the x-component of velocity on the wake centerline is
plotted in Fig. 3 as a function of distance downstream from
the cylinder, as measured in multiplies of the cylinder diameter.
The computed peak in u.y, is located at about 1.25 cylinder
diameters downstream, which is comparable with measure-
ments from laboratory experiments which have been reported
in the literature (Bloor and Gerrard, 1966; Griffin, 1971).

A cross-wake distribution of the velocity fluctuation iy, at
x=5d is plotted in Fig. 3(b). The same quantity at x=13d is
shown in Fig. 9%(a) where it is superimposed on a perturbed
flow case. The corresponding mean velocities are shown in
Fig. 8. The deficit in the mean velocity is apparent as well as
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the approach to the free stream condition as the distance from
the centerline is increased. The peaks in the rms velocity at the
two downstream locations also show the usual concentrated
off-wake effects of the passing vortex pairs. The computed
fluctuations in the wake are slightly less than comparable wind
tunnel measurements near this Reynolds number (Griffin and
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Fig.5 Limits of the lock-on regime for perturbed flow at Re = 200. Each
closed circie or cross represents a numaerical simulation. Those simu-
lations in which lock-on occurred are indicated by closed circles. The
shaded region forms the approximate boundary between the lock-on and
non-lock-on regimes.

[T S T S TT T 4

uf

Spectrum, S (arbitrary units)
w'

w' o

0*

(a)

Frequency, fd/U

°
8

Y

14

W o W

!

w

Spectrum, S (arbitrary units)

AT

(b)
ooo 013 030 o oso LX) aso ]

Frequency, fd/U

'’

Ramberg, 1974), probably owing to differences between the
two-dimensional computations and the three-dimensional ex-
periments.

The final result for the natural shedding case is the instan-
taneous streamline pattern shown in Fig. 4. Here the stream-
lines are spaced evenly across the computational domain at
the inflow, and the spreading of the streamlines in the near
wake gives some evidence of the deficit in the mean flow in
the cross-wake direction, as was shown in Fig. 3(b). The wave-
length of the vortex street for this unforced flow is A=5d,
which is typical of the results shown in Fig. 12.

Next a perturbed boundary condition of the form

U,= 1.0+ Au sin wt,
U,=0.

was enforced at the inflow, where U, and U, denote the x-
and y-components of the velocity, respectively. Here Au =aw,
where w=2xf, and the perturbation frequency f=2af,,. The
parameter a varied from 0.05 to 0.25, while a was varied to
give values of the perturbation frequency ranging from 1.4f,,
to 2.8f,, (Fig. 5). Each closed circle or cross in this figure
represents a direct numerical simulation. Those that represent
lock-on behavior are indicated by the closed circles.

The shaded regions in Fig. S indicate regions across which
breakdown occurs, from a periodic, locked-on flow to a non-
periodic or quasi-periodic flow in which the primary frequency
is the natural shedding frequency rather than the perturbation
frequency. We have not attempted to define precisely the width
of this region, but only to bracket it. As will be shown in the
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following, in all of the cases lying outside of the lock-on region,
the flow continues to be strongly influenced by the nertur-
bation, as evidenced by the chaotic nature of the flow i*. con-
trast with the regular, periodic natural shedding case. However,
we have chosen to define non-lock-on cases as those for which
the highest peak in the spectrum occurs at the natural shedding
frequency or at a frequency corresponding to neither the per-
turbation nor the natural shedding frequency.

We first examine cases a, b, d, and e in Fig. 5. For these
four cases, the amplitude of the perturbation is held fixed while
the frequency is increased from 1.5f,, (case @) to 2.4f,, (case
e). A forcing frequency of 1.5/, results in a nonperiodic ve-
locity history with the spectrum in Fig. 6(a), which shows
clearly the chaotic nature of the flow. The highest peak in the
spectrum occurs just below the natural shedding frequency of
St =0.195. Increasing the forcing frequency from 1.5f;,10 1.6/,
results in case b in Fig. 5. The flow is periodic, with shedding
frequency equal to 0.8 f;,, and thus lock-on has occurred. The
flow pattern is more complex that that of the unperturbed
case, and we see from the spectrum in Fig. 6(b) that there is
now significantly more energy in the higher harmonics of the
perturbation frequency than occurred in higher harmonics of
Jso- The wavelength of the vortex patternis A= 5.7d, an increase
of fourteen percent from the unforced value of A=5d.

Moving farther to the right in Fig. 5, we again increase the
perturbation frequency to 2.3f,, for case d. Lock-on again
takes piace, this time at a frequency of 1.15f,,. The spectrum
corresponding to this case is shown in Fig. 6(c).

The results from case e demonstrate that we have crossed
over the shaded region and are once again outside of the lock-
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on region. The dominant peak in the spectrum (Fig. 6(d))
occurs at neither the natural shedding frequency nor the per-
turbation frequency. The three highest peaks in the spectrum
are labeled. Peak number 1 occurs just above the natural shed-
ding frequency at approximately St =0.2, peak number 2 oc-
curs at half the perturbation frequency or St =0.23, and peak
number 3 occurs at the sum of these, or St =0.43. Thus peak
3, the highest, is a higher harmonic of neither the natural
shedding frequency nor the perturbation frequency, but of the
average of the two. This case is indicative of a wider transitional
region than we have shown in Fig. 5, in which the dominant
frequency in the flow is neither the perturbation nor the natural
frequency. Indeed, the presence of two nearby peaks in the
spectrum suggests intermittency in the shedding frequency.

We next examine case f in Fig. §, which lies just to the left
of the lock-on region. Here the frequency of the perturbation
is the same as in case b, but the amplitude has been decreased
from 0.2 to 0.1 nondimensional units. Referring to the spec-
trum for case b in Fig. 6(b), we see the dramatic change brought
about in the flow due to this change in amplitude. The peak
in the spectrum for case f, labeled number 1 on Fig. 7(a), is
at the natural shedding frequency of St=0.195. The peak la-
beled number 2 occurs at half of the perturbation frequency,
or approximately St =0.078. When the amplitude of the per-
turbation is reduced further to 0.05 in case i, the spectrum in
Fig. 7(b) shows that now the natural shedding frequency is
clearly dominant, and thus this condition is farther outside the
lock-on region than the previous resuit.

At this value of perturbation amplitude, we now examine
the effects of increasing the perturbation frequency by pre-
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Fig. 8 The cross-stream distribution of mean velocity U/()) at () x= 3d
and () x= 5d downstream from the cylinder, case g. The results for the
natural shedding case (dashed lines) are superimposed.

senting results for cases / and n. A dramatic change occurs as
the perturbation frequency is increased to 2.0f,, (case /). While
the resulting flow resembles the natural shedding case, the
frequency of the oscillation is lower than the natural shedding
frequency obtained in the unforced case by approximately five
percent (Fig. 7(c)), and higher harmonics correspond to mul-
tiples of this latter value. The reason for this discrepancy has
not yet been determined conclusively; our original estimate of
the natural shedding frequency at Reynolds number 200 was
approximately five percent lower than that of Karniadakis and
Triantafyllou (1989), while their estimate was judged to ov-
erestimate the experimentally determined value by approxi-
mately eight percent. Thus the present computed result is within
an acceptable range.

A change again occurs as we increase the perturbation fre-
quency to 2.3f,, for the final case n. The flow pattern again
becomes complex as shown by the spectrum in Fig. 7(d), with
the first dominant peak occurring at the natural shedding fre-
quency of St=0.195. A second peak of nearly equal height
occurs at a frequency equal to approximately St =0.45, or twice
the perturbation frequency. Thus again we see the perturbation
frequency having a greater effect on the higher harmonics of
the flow.

For a more complete analysis of the near-wake flow in a
lock-on condition, we further examine case g. As in the natural
shedding case, we first measured the drop in the time-averaged
x-component of the velocity across the wake at two different
downstream locations. Time averaging again was done over
approximately thirty shedding cycles. We see from Fig. 8(a),
which shows computed velocities three diameters downstream
from the cylinder, that the drop in mean velocity across the
wake is approximately 35 percent. Comparing this with an
approximately 30 percent drop in the natural shedding case
(superimposed), indicates that the effect of the perturbation
is to slightly decrease the mean flow along the centerline. How-
ever, the rms fluctuation corresponding to this mean flow is
greater than that seen in the natural shedding case, with a
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proportionately greater fluctuation along the centerline. In the
natural shedding case there was a nearly 70 percent drop in
the rms fluctuation across the wake three diameters down-
stream from the cylinder. By comparison, the rms fluctuation
in the perturbed flow exhibits an approximately $7 percent
drop across the wake (Fig. 9%(a)). Farther downstream at x= Sd
the time-averaged flows of the natural shedding perturbed cases
are nearly identical (Fig. 8(})). At this same downstream lo-
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cation, the maximum rms fluctuation of the perturbed flow
has decayed approximately to that of the natural shedding
case, but the fluctuation remains greater at the wake edges and
along the wake centerline (Fig. 9(b)). The corresponding um
for the natural shedding case is shown in Fig. 3(b).

The mean flow and the rms fluctuation in the velocity along
the centerline behind the cylinder are shown in Fig. 10. Com-
paring the rms fluctuation with the natural shedding case (Fig.
3(a)) we see that the peak of the fluctuation, which marks the
end of the vortex formation region, has moved from its natural
shedding position approximately one diameter downstream
from the cylinder to a point approximately one and a half
diameters downstream. This is an expansion of the vortex
formation region with perturbation frequency when f<2f,,.
Comparably, the downstream extent of the formation region
is contracted when /> 2f,,. Both of these modifications in the
shedding are analogous to those observed when a circular cyl-
inder undergoes both in-line and crossflow oscillations under
lock-on conditions (Griffin and Ramberg, 1974, 1976; Ongoren
and Rockwell, 1988a, b).

A zone of reversed mean flow is found adjacent to the
cylinder as shown in Fig. 10, followed by a stagnation point
(U=0) and the transition to positive mean flow at approxi-
mately one diameter downstream. The extent of the reversed
flow region is controlled by the perturbations in much the same
way as the overall formation region.

The U, versus U, phase plane plots for cases f and g are
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Table 1 Longitudinal vortex spacing or wavelength in the
near-wake of a circular cylinder vibrating in-line with an in-
cident umiform flow; adapted from Griffin and Ramberg
(1976)

fVibmion Frequency  Vortex Relative Vortex
requency, ratio, spacing, o ,  convection speed
Hz) T Nd AN/ 172U
Reynolds number = 190
69.2 1.88 $.2 +0.07 0.94
73.6 2.00 4.9 0 0.93
75.6 2.06 4.7 -0.05 0.91
8.9 2.14 4.7 -0.04 0.96
80.4 2.18 44 -0.09 0.92
Average=0.93

shown in Fig. 11. The history point in both cases is once again
located in the separated flow just outside the wake at
(x.y) = (2,2). These phase plane representations of the velocity
demonstrate most graphically the periodic nature of the forced
or lock-on state of the flow, as opposed to the chaotic state
of the non-lock-on state.

Discussion of Results

The longitudinal vortex spacing or wavelength is a valuable
physical diagnostic for the state of the spatial structure and
development of the fully-developed vortex street. Measure-
ments of the spacing for a variety of in-line and cross-flow
oscillations, and also for the unforced wakes of stationary
cylinders have been reported by Griffin and Ramberg (1976)
These can be compared to the direct numerical simulations of
Karniadakis and Triantafyllou (1989) and our recent NRL
simulations that are discussed here. The wavelength of the
pattern can be employed as a measure of the spatial state of
the flow, as compared to phase plane diagrams of the stream-
wise and cross stream velocities, which can be employed in a
comparable way to assess the temporal state of the near-wake.

One example given by Karniadakis and Triantafyliou (1989)
is that of a wake forced by a localized spatially and temporally
varying disturbance in the vortex formation region, with nor-
malized amplitude and frequency, respectively, of a=0.10 and
J/f+%=0.75. The center of the disturbance was located at x=2,
y=0, measured in multiples of the cylinder diameter. This is
a unique form of control disturbance which had not been
investigated previously. For the unforced wake A\ = 5d, while
for the forced wake A= 7d, an increase of forty percent in the
wavelength.

Comparable measurements were made at Re = 190 by Griffin
and Ramberg (1976) and the results are summarized in Table
1. The cylinder oscillations were in-line with the flow over a
range of frequencies near twice the Strouhal frequency as in
Fig. 1. The measured changes in the forced vortex spacing
correspond directly with those achieved in the direct numerical
simulations, since for f<2f,, the wavelength increases while
for £> 2f,, the wavelength decreases. Extrapolating the results
in the table to the condition f= 1.6/,, in the present case and
to f=0.75f,, from Karniadakis and Triantafyllou using a least-
squares fit given by Griffin and Ramberg, the vortex spacing
is A=6.2d. This compares reasonably well with both com-
putations. The measured vortex spacing for the stationary cyl-
inder at Re=190 (A=4.9d) is very nearly equal to the
wavelength computed here at Re =200, namely A =5d.

The computed vortex street wavelengths are compared fur-
ther with measurements for both forced and unforced con-
ditions for Reynolds numbers from 100 to 2000 in Fig. 12.
The computations agree well overall with the experiments,
which show only a very slight dependence on Reynolds number
in this range. The vertical scale is a normalized form of the
vortices’ convection speed, or the downstream transiagjonal
speed of the vortex cores. The constant phase or convéction
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correspond to in-line oscillations and inflow perturbations {(composite
of six) with n=2; ail other data commespond to cross-flow osclilations
(experiments) and near-wake perturbations (computations) with n= 1.

speed is representative of a nondispersive physical system, as
compared to the many dispersive, complex physical systems
which occur in nature, e.g. surface water waves and mixing
layers under certain conditions, where the phase speed depends
on the wavelength or wavenumber and the frequency.

Several measurements of the pattern’s convection speed also
are given in the table. Though there is some scatter, the average
value is U,=0.93U. Tokumaru and Dimotakis (1991) also
found that the convection speed remained nearly constant at
a similar value in a lock-on state produced by rotational os-
cillations at a Reynolds number of 15,000, even as both the
imposed frequency of the oscillations varied over a three-fold
range and the street wavelength underwent similarly marked
changes. This gives some additional evidence that both forced
and unforced or natural periodic vortex wakes have the same
basic nondispersive character over a wide range of externally
imposed disturbances.

These modifications of the near-wake flow are achieved by
the imposition of relatively small inflow perturbations. Thus,
seemingly small perturbations of the wake flow are capable of
producing large changes in vortex strength and shed vorticity,
base pressure and drag on a bluff circular cylinder or body of
other cross-section. Modification and control of the basic for-
mation or instability mechanisms of the wake can lead to
substantial changes in the near-wake vortex pattern, and pos-
sibly even the middle- and far-wake flow as well as found by
Cimbala et al. (1988), and by Browne et ai. (1989).

Summary and Concluding Remarks

Several issues pertaining to bluff body near-wake flow con-
trol and modification have been investigated for a bluff body
in a flow consisting of a basic mean flow with a superimposed
periodic component. Direct numerical simulations of per-
turbed flow about a circular cylinder are in good agreement
with experimental results, particularly in reproducing the vor-
tex shedding resonance or lock-on regime boundaries at
Re = 200. The lock-on regime defines the frequency range over
which perturbations in the incident flow cause vortices to be
shed at the forcing frequency rather than at the natural shed-
ding frequency. At an amplitude of 2AU/wd =0.2, perturba-
tion frequencies in the range 1.6/, to 2.3/, result in lock-on,
and the extent of this frequency range decreases with decreasing
perturbation amplitude. The change in the lock-on boundary
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was more rapid at frequencies less than 2fy, Which is in qual-
itative agreement with experiments from Fig. 1 and Koopmann
(1967).

Computations of the near-wake flow show that in flow per-
turbations causing lock-on can control the location and extent
of the vortex formation region and the level of velocity fluc-
tuation both along and across the wake. Some typical results
at f<f,, show a shift downstream of the vortex formation
region, as identified by the peak rms velocity fluctuation along
the wake centerline, and an increased fluctuation level along
the centerline that extends to at least five cylinder diameters
downstream. These modifications to the near-wake flow are
indicative of selectively increased vortex strength and shed
vorticity in the near-wake as a result of the locking-on.

The computed values of the vortex wavelength A in the
perturbed flow are in good agreement with measurements in
both unforced, or natural, and forced wakes for Reynolds
numbers between 100 and 2000. The predominant vortex street
frequency and wavelength adjust in such a way that a constant
phase or convection speed of the pattern is achieved over a
wide range of conditions which cause Jock-on. Recent active
control experiments with rotational oscillations of a circular
cylinder at a Reynolds number of 15,000 show that the wake
adjusts in the same way over a three-fold range of imposed
frequencies. The essentially constant vortex phase or convec-
tion speed is indicative of the basic nondispersive physical
character of forced and unforced, or natural, bluff body near-
wakes.
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Abstract

The interaction between vorticity and a free sur-
face, modeled as a shear free boundary is studied us-
ing & direct numerical simulation of an open channel
flow at low Reynolds number (Rey, = Uy, h/v = 2340
where A is the channel depth and Uy, is the meaan free-
surface velocity). As a result of the shear free nature
of the top boundary, only normal vorticity may ter-
minste on it. The vorticity components parallel to
the top boundary must go to sero as the boundary is
approached. The time averaged fluctuating enstrophy
balance equations, which are an indicator of the level
of activity of the vorticity field are evaluated. Near
the free surface the rate of production and destruction
of enstrophy is set by the stretching and rotation of
fluctuating vorticity by the fluctuating velocity field.
The transport of enstrophy by the fluctuating veloc-
ity has a minor role. Of the the production terms,
the three involving the stretching of vorticity along
its axis are the most important, and a simple model
explaining this is presented.

Nomenclature
U; Instantaneous velocity
u; Fluctuating velocity
Q; Instantaneous vorticity
wi Fluctuating vorticity

RMS fluctuating velocity

RMS fluctuating vorticity

Mean velocity
Mean free surface velocity

u':' = v 2:,.:; ul?

U." = v 281,8; U.?
Ui(z2)
Uy, = Th(za =0.0)

u* = /Toatl 7p Friction velocity
FP=v/v Viscous lengthscale
t* =yfu*? Viscous timescale
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! Research Mechanical Engineer, NRL, Member AIAA
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ul = u/u’ Non-dimensional velocity
lf =L/ Non-dimensional length
tt =t/t* Non-dimensional time
(a(x)) = 3 snsemite 3(X) Averaging operator

= L,, Channel height
Le, Streamwise bax length
Le, Transverse box length
v Kinematic viscosity
P denasity
Fn=U;,/Jsh Froude number
Re=Uh/v Reynolds number
Re® = u*h/v Wall Reynolds number

Rey, = Up,h/v Free surface Reynolds no.

1._Introduction

The total instantaneous enstrophy of a fluid is
defined as the square of the instantaneous vorticity,
Y Q4. Enstrophy can be determined as well from
the mean vorticity, {3, and the fluctuating vortic-
ity, @sa;;. This paper will be limited to an analysis
of the fluctuating vorticity. The dominate motiva-
tion for studying the enstrophy balance equations is
the natural interpretation of enstrophy as a measure
of vortical activity. The no-slip boundary, where the
majority of the fluctuating vorticity is produced is the
source of the turbulent kinetic energy. Much of the
turbulent kinetic energy is believed to be associated
with coherent structures and a quasi-regular turbu-

lent burst cycle. If it is assumed that coherent vortic-

ity is an important feature of these structures, then
enstrophy is a good tool for analysis. Although a clear
connection between vorticity and coherent structures
or events has yet to be developed, the concept of the
vortex loop has often invoked to explain the visual-
izsation of the results of experiments or direct numer-
ical simulations (DNS). The connection between vor-
ticity and turbulent structures may be equally valid
at the free-surface. As will be discussed below, the
conditions at the free-surface require that vorticity
tangential to the surface vanish as the surface is ap-
proached. Simultaneously, the surface-normal gradi-
ent of the component of vorticity perpendicular to the
surface must vanish. These are reflectional bound-
ary conditions, and are significantly different than the




condition of rotational symmetry about the z,-axis
(aligned with the channel centerline) that occurs in
the closed channel case.

Another important interpretation of enstrophy
can be made through its relation to the isotropic dis-
sipation function. The isotropic dissipation function,
commonly used in & — ¢ turbulence models, is defined
as:

€= yp—a—, (l)

for homogeneous turbulence. However, the following
can be shown

1 1
EE‘E 5-0_37+‘2.033 Oz
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In Eq. 2 the identity for homogeneous incompressible
turbulence,

E—L( __3.74)_ (_3 _3;‘)
9z; 0z,  0z; "0z;) ~ “\Bz; 0z;; (3)
=0,

has been used!. Therefore the.isotropic dissipation
function is related to the fluctuating enstrophy as

¢ = Viws. (4)

Consequently, the study of the enstrophy balance can
be viewed as the study of the creation and destruc-
tion of the isotropic dissipation function. The enstro-
phy balance equation may be a more convenient tool
to study the dissipation because its terms have bet-
ter physical interpretations. Furthermore the com-
ponent equations wgw; (no implied summation) can
be examined individually. As men‘ioned above, while
the isotropic dissipation is not the local dissipation of
turbulent kinetic energy, it is relevent for turbulence
modeling.

2. The Numerical Simulati

The incompressible three-dimensional Navier-
Stokes equations are solved for initial and boundary
conditions approximating a turbulent open-channel
flow of water at a Reynolds number of 2340, where
Rex = Uy, h/v and A is the channel depth and Uy,

e

Free Surtace

Fig. 1 RMS Fluctuating Vorticity.Symbols: e,

/. ! . ’
Wiie = comy Wy jme w=, Wy.

is the mean free-surface velocity. Based on the fric-
tion velocity, u, = ‘/3';“, the Reynolds number is
Re. = 134. The governing equations are recast into
a 4'* order equation for the vertical velocity and a
2"¢ order equation for the vertical vorticity and the
continuity equation is solved explicitly in the recov-
ery of the streamwise velocity. This formulation was
first discussed by Orssag and Patera? and later im-
plemented in a simpler form in the large scale direct
simulations by Kim, Moin and Moser3. It is the lat-
ter formulation that will be used. This method in-
volves the use of the homogeneous solutions of the
time discretised 4** order equation to satisfy all the
required boundary conditions. The equations are nu-
merically solved after they are Fourier transformed
in the streamwise (z,) and spanwise (z3) directions
and Chebychev transformed in the vertical direction
(z2). The z3 axis, scaled by the channel height has
its origin at the free surface. The channel bottom is
z3 = —1. The calculations are performed on a grid of
48 x 65 x 64 nodes in 21, 23, T3, respectively, for a reso-
lution of 26.3/, in the streamwise direction and 13.2/,
in the spanwise direction ( l. = v, /7_L.‘7) The total

box size is 1684/, x 1341, x 632l.. With the geometry
scaled by the channel height, the height, length and
width of the channel are 1, 4x and 3x/2, respectively.

In the free-surface problem the nonlinear and
time-dependent boundary conditions must be satis-
fied on an unknown surface elevation, n. The bound-
ary conditions can be simplified considerably if the
surface is not allowed to deflect (n = 0). The rigid




lid approximation is equivalent to

yp=0atzy=0. (5)

To further simplify the boundary conditions, the
usual balance of normal stresses® is replaced by

%% =0atzy=0. (6)

Eq. 6 can be derived from the zero tangential stress
conditions, the continuity equation, and the rigid lid
assumption. These conditions and the definition of
vorticity can also be combined to form the remaining
{ree-surface boundary condition,

%:0»:,:0, (7
where the vorticity is non-dimensionalized by Uy /A,
Up is the initial (t = 0) free-surface velocity.

At the bottom wall of the channel, the no-slip ve-
locity boundary conditions are composed. The no-slip
velocity condition sustains the shear layer which is re-
sponsible for maintaining the turbulence. The bound-
ary conditions are periodic on all dependent variables
in the streamwise and spanwise directions.

After the wall shear stress achieved a statistically
steady state at the correct value, and the total stress
across the channel was linear, turbulent flow data was
acquired. Forty-two realizations of the turbulent flow
were saved during an interval of approximately 4000¢*
(t* = v/u*?). We have compared single point statis-
tics and spectra with from the closed channel calcu-
lation performed at the Naval Research Laboratory”
and, where possible, results from the high resolution
NASA Ames closed channel computation3. In gen-
eral, the single point statistics in the wall and buffer
regions are very similar to the closed channel results.
The effects of the upper boundary are apparent in the
range of 0.0 < z3 < —0.3 as compared to similar data
from the closed channel calculations.

3. Fluctuating Vorticity

The near wall behavior of the rms vorticity, w'
in Fig. 1 is similar to the prior results of Kim, Moin
and Moser®. Near the free surface the horizontal com-
ponents of vorticity vanish, while the vertical compo-
nent approaches a constant value of whv/u*? = 0.035.
This can be compared to 0.057 at the centerline for a
low resolution closed channel simulation performed at
NRL and 0.042 for the results Kim, Moin and Moser3.
A Taylor series expansion about the top boundary in-
dicates that w} and w§ both approach zero linearly.
A physical explanation of why | z;l- 1> 7;‘ | as the
free surface is being approached can be deve!oped by
examining the &;&; balance equations.

4. Balance Equations

The relationship of enstrophy to fluctuating vor-
ticity is similar to the relationship of turbuient kinetic
energy io fluctuating velocity. The balance equations
are derived in the same manner as the balance equa-
tions for the components of the Reynolds stress ten-
sor. The equations for the mean and instantaneous
vorticity are multiplied the mean and instantaneous
vorticity, respectively. These equations are time av-
eraged resulting in equations for the mean enstrophy
and the mean equation of the instantaneous enstro-
pky. Subtracting the latter from the former yields
the equation of the mean fluctuating enstrophy. As
in the case of the Reynolds stress tensor, the equa-
tions for the individual components of the enstrophy,
T1wy, Wy, w33 can be formulated. The details of
the derivation of the balance equation for the fluctu-
ating enstrophy are contained in Balint, Vukoslavce-
vic and Wallace®. The steady state balance equations

are.
%

9 l——-. - a0
U;E(iu.'u. = 8 —(= w.u.) -G 3z

+U|U, ZU' + wiw; a“: (8)

- Rlo ——
il _3 i I T 2T
azj az, 3: 5

with i = 1,2 or, 3 for the component equations and
an implied summation for the total fluctuating en-
strophy. _

According to Tennekes and Lumley® and Balint*,
et al., the eight t=rms of the enstrophy balance equa-
tion have the following interpretation:

(1) U-aL(%w.w.) The convection of the
ﬂuctuatmg enstrophy,

(2) -u; ;L(iu.u.) Transport of fluctuating
enstrophy by fluctuating velocity,

(3) —Ujw; 3?::
of enstrophy,

(4) owj fg production
by mean velocity gradient,

(5) wiw; g{-; production
by fluctuating velocity gradient.

6) Tuids:

(7) u’—'},:,?’-:

o EE
The interpretation of terms i1 — 6 can be ex-

panded by examining the non-linear term of the vor-
ticity equation from which they were derived:

Vxux w=(w-Viu-(u-V)w. (10

Gradient production

Mixed production,
Viscous diffusion,

Viscous dissipation.




The first term is the amount of instantaneous stretch-
ing or rotation of the vorticity by the gradient of the
velocity field. Following Batchelor®, if P and Q are
two local points on a vortex line, then

. bu

(w-V)u leplal_lop ' (1)
where éu is the variation u over the distance PQ.
That component of éu which is aligned with w acts to
stretch or compress the vorticity while the component
perpendicular to w causes the vortex line to undergo
instantaneous rigid body rotation. For example if we
assume the vorticity is aligned in the 23 direction then

O
ws 823

is the rotation of the vorticity vector from the w3 com-
ponent to the w;. A similar interpretation holds for
u;e:. In the remaining direction the vorticity and
the velocity gradient are aligned and stretching or
compressing of the vorticity occurs. This is shown
in Fig. 2. The second term on the right hand side of
equation (10) is the convective part of the substantial
derivative.

Terms (1), (2), and (3) of Eq. 8 can be identi-
fied with the convective part of the nonlinear terms:
(1) and (2) can be considered as transport terms and
(3) being a gradient production term. For the ge-
ometry under study term (1), transport by the mean
velocity is zero. Terms (4), (5) and (6) are stretch-
ing/compression/rotation terms. Term (4) accounts
for the production of &;@;y due to the rotation of ws
into wy by 2. This term, which is non-zero only
fori = 1, and J = 2 represents the action of the
mean velocity on the fluctuating vorticity. Term (5)
is the production of enstrophy due to the stretch-
ing/compression and rotation of fluctuating vorticity
by the fluctuating velocity field. As will be shown
later, this is an important term near the free-surface.
Term (6), the so-called mixed production term ac-
counts for the production of enstrophy due to the
stretching and rotation of the mean vorticity field,
{13, by the fluctuating velocity fields, u;. This term
represents the action of the fluctuating velocity field
on the mean vorticity field. The last two terms are in-
terpreted as viscous diffusion and viscous dissipation
of fluctuating enstrophy.

5. The Enstrophy Balances
The terms of Eq. (8) have been calculated and
are shown in Fig. 3. They are normalized by the ini-
tial free-surface velocity and the channel height. The
balance for the total enstrophy and its components
near the free surface are in Figs. 4 a-d. Gains in en-
strophy are indicated on the right hand side of these
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Fig. 2. A schematic of vortex stretching and rotation
by the fluctuating velocity.

figures. The individual terms give a better indication
of the mechanisms by which the enstrophy is gener-
ated and destroyed. Note that the scale of the ab-
scissa has been changed between Fig. 4a and Figs.
4b-d.

5.1 Balance Near the Wall

The majority of the production and dissipation
of vorticity fluctuations occurs near the wall where
the mean velocity gradient and the mean spanwise
vorticity are large. In a very thin region near the wall
the diffusion and dissipation of enstrophy are in bal-
ance. In the region (—0.8 > z2 > —0.95) the mixed
production term (6), the production by the mean ve-
locity gradient term (4), and the turbulent produc-
tion terms (5) are the dominate sources for fluctuat-
ing enstrophy, in increasing importance away from
the wall. These terms are the rotation/stretching
terms of the balance equations. The gains are al-
most completely balanced by the viscous dissipation.
The transport/convection related terms are all small.
With the exception of near the free surface, the terms
of the individual balances decrease with increasing
distance from the wall. Near the free-surface there is
a thin region (z2 > —0.10) of significant change. De-
tails of the individual balances near the wall can be
found in Leighton, et al.”.

5.2 Balauce Near the Surface

As can be seen in Fig. 4a, the viscous dissipa-
tion of enstrophy (8) and the turbulent production
(5) dominate in the region —0.10 > z; > -0.33. In
this region there is still some production of fluctuat-
ing enstrophy by the mean velocity gradient. Since
the mean velocity gradient must approach zero at the
shear free surface, the enstrophy production due to
the mean gradient must go to zero. Turbulent pro-
duction of enstrophy, the dominate production mech-
anism for the upper 1/3 of the channel decays rapidly




for 23 > -0.05. Viscous diffusion and turbulent
transport act to increase the enstrophy in the region
z3 > —0.10. Enstrophy dissipation balances the pro-
duction and diffusion near the top boundary. In the
thin region y > —0.08 the significant changes in the
terms of Eq. 8 can be understood by examining the
component terms.

Figs. 4b-d show the level of gain or loes for each
component of enstrophy near the surface. In the up-
per 1/3 of the channel the transport term becomes rel-
atively more important, albeit the term is still small.
The fluctuating normal velocity field transports wyw)
and wsws towards the surface. As the gradients in
w} and wy increase near the surface, there is a cor-
responding increase in the enstrophy transport (see
Fig. 1). The action of the transport term of waws,
while always small, is to reduce the level of normal
vorticity near the surface.

Figs. 4b and 4c show that the mixed production
terms do play a role in the top of the channel, but ap-
proach gero as the shear-free surface is approached.
It is interesting to note that the mixed production
term for the T1w; balance equation is negative in the
region (0.0 > y > —0.33) and almost completely bal-
anced by the production due to the mean velocity
gradient. In the case of &y, this term expresses the
effect of the rotation of the mean vorticity vector by
the fluctuating velocity field to cancel the fluctuating
axial vorticity. This is done at nearly the same rate
at which vorticity is being rotated out of the mean
vorticity into the fluctuating normal vorticity by the
fluctuating normal velocity.

The dissipation and diffusion curves in Figs. 4b-
d indicates a strong dependence of the diffusion and
dissipation process on the orientation of the vorticity.
Viscous diffusion, which has been negligible in the re-
gion —0.1 > y > —0.85 becomes the dominate source
for the horizontal components of enstrophy (wiw; and
waw3) near the surface, (y > —0.05). Due to the re-
flective nature of the shear free boundary, the horizon-
tal components of vorticity go to zero at the bound-
ary and any such vorticity near the boundary will be
influenced by the anti-parallel image vorticity. The
effect of the image vorticity or equivalently the shear-
free boundary is to increase diffusion of the vortic-
ity in the fluid towards its image, and in the process
increase the dissipation of enstrophy. For the nor-
mal component (waw3) the process of dissipation and
diffusion are entirely different. In this case the im-
age vorticity is not anti-parallel vorticity promoting
diffusion, but simply a continuation of the physical
vorticity acroes the shear-free interface. The dissipa-
tion of the mean square fluctuating normal vorticity
in Fig. 4c is related to the radial diffusion of normal
vorticity.

Free Surtece

Fig. 3. The terms of Eq. 8.

Also apparent in Figs. 4b-d are the differences
in the characteristics of the turbulent production and
the transport of enstrophy between the cases of the
horizontal vorticity and the vertical vorticity. With
the exception of the mean and mixed production,
terms (4) and (6) the horizontal terms are similar. In
the upper 1/3 of the channel, the turbulent produc-
tion of enstrophy contributes positively, exhibiting a
generally slow decline with increasing distance from
the solid wall. However in the layer —0.05 > y > -0.1
the decline stops, and at least for the transverse com-
ponent of enstrophy, there is a slight increase in pro-
duction. Since Q; and 3 approach zero at the shear-
free boundary, the production of these components of
enstrophy must also approach zero. The non-zero tur-
bulent production of the normal component of enstro-
phy at the surface is a result of the shear-free bound-
ary and a normal strain field, which will be discussed
later.

The production term (5) is further separated into
the various stretching and rotation components in
Fig. 5. For all three enstrophy components the pro-
duction due to stretching dominates. For the stretch-
ing terms to be relevant, there must be some strain
aligned with the vorticity. While this strain is not ac-
counted for by the existence of the anti-parallel image
vortex, numerical experiments involving interacting
vortex rings or vortex tubes indicate a rapid increase
in the component of strain aligned with the vorticity
during the vortex reconnection. A similar
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Fig. 4a. Enstrophy balance in a turbulent open

channel flow near the free surface.
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process may be relevent when the horizontal compo-
nents of vorticity approach the top surface. The flow
field transporting the vorticity to the free surface may
also be responsible for the strain.

Although the rotation terms are small and de-
clining as the surface is approached, the terms repre-
senting the rotation of vorticity from the axial to the
transverse direction and from the transverse to the
axial have small increases near the boundary. This
may be due to the rotation of small eddies, having
vorticity components parallel to the surface by large
eddies.
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Fig. 4c. Mean square fluctuating normal vorticity
balance in a turbulent open channel flow near the free
surface.
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The enstrophy balance in the vertical (z3) direction
shows the effect of attachment of the normal vortic-
ity to the free surface. The turbulent production of
Waw3 varies slightly in the upper 1/3 of the channel.
However, as can be seen in Fig. 5 the production
mechanism changes with increasing distance from the
shear-free boundary. Near the surface, z; > —-0.08,
the stretching of the vorticity is important. Below
(z2 £ —0.08) the gain in enstrophy is due to rotation
of the fluctuating vorticity field, and stretching has
become negligible. The source of the strain near the
free-surface is probably the flow induced by the low
pressure within the vorticity attached to the surface.




6. Vortical Eventa At The Free Surface

Fror: figure 5, it is apparent that the term in
Eq. 8 most responsible for the production of en-
strophy is transverse nntdnng of transverse vortic-
ity, w;u;*}‘ Figure 6 is a plot of this property for
the plane 23 = ~0.05. The turbulent structures or
events responsible for generating this component of
the enstrophy are localised and intense. The contour
intervals are lOumE To more clearly identify the
structures associated with the localised production,
histograms of the level of production by turbulent
stretdnng have been determined and are contained
in Leighton”, et.al. From the histograms it was deter-
mine that, at this plane (z3 = —0.05) that approxi-
mately 3—06% of the area was responsible for 30-60%
of the turbulent enstrophy production. This behav-
ior is typical for for all nine components of term (§),
Eq. 8. This conclusion was verified by calculating
the skewness and flatness for these production terms.
For each of the nine cases the skewness and flatness
factors were large (10 — 102 for skew and 102 — 10* for
flatness).

Based on the obeervation of production events lo-
cal in space, and the behavior of the average fluctuat-
ing vorticity, two models of the interaction of vorticity
with the surface were developed.

6.1 Two models for the production events

The two proposed models of the interaction of
vorticity with the free surface can be described as
‘the spin model’ and ‘the splat model’. These mod-
els are similar to and have been infleuenced by the
models presented by Koh and Bradshaw® and Hunt®.
Although the names are meant to be suggestive of
the kinematics of the enstrophy producing events, the
models are similar to the models by the same name
for the pressure source terms described in Ref. 9.

In the ‘spin’ model, a vortical structure originat-
ing in the buffer layer, tilts downstream and is at-
tached to the free surface in a quasi-stable configu-
ration. This model is relevent when discussing the
vertical component of enstrophy. These structures,
which can be liken to vortex tubes connected to the
free surface have been observed in flow visualizations
of the DNS dataset of the open channel fiow. Within
these vortex tubes there is a significant ‘down draft’.
It is conjectured that this down draft is responsible
for the transport of enstrophy away from the surface
and provides the strain necessary to maintain these
structures. Were it not for these down drafts, and
the vorticity intensification they provide, these vorti-
cal structures would eventually diffuse and cancel.
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Fig. 5. Turbulent production of fluctuationg eastro-
phy by stretching ( heavy lines) and rotation (light
lines), “T“:ﬁ:

The eventual diffusion has been seen in a simulation
of vortex reconnection in which there was no down
draft.!0 In this case there was radial diffusion of vor-
ticity from the core near the intersection of the vortex
ring and the shear-free surface.

In the ‘splat’ model a volume of fluid ‘contain-
ing’ vorticity impacts the free surface, leading to
stretching, intensification and cancellation of vortic-
ity. The fluctuating normal velocity field promotes
the increase of horizontal component enstrophy near
the free surface by two mechanisms: transport and
vortex stretching. Due to the large gradient in Tiwy
and T3 near the top boundary, the vertical velocity
fluctuations provide an efficient means of transporting
vorticity to the free surface. As the turbulent eddy
approaches the top boundary the vertical momentum
is deflected into the horizontal direction. During this
‘splat’ event, the vorticity contained in a turbulent
eddy interacting with the top surface will be rotated
parallel to the boundary and stretched. The vortic-
ity in the fluid near the free surface will be subjected
to a large strain and will have a large gradient due
to the proximity of its reflected image. This leads to
increased production of fluctuating enstrophy by the
fluctuating velocity fields and to large enstrophy dis-
sipation or vorticity cancellation. Other details about
this type of model can be found in Ref. 9.




7. Counditioual Sampliag and Ensemble Averaging

To verify that the two models are qualitatively
correct, the open channel flow was conditionally sam-
pled on the plane z; = —0.05. The condition used
was that the local value of the enstrophy production
by vortex stretching ( rotation was not considered )
exceeded the mean value by a factor of ten, and that
the production was a local maximum. The enstro-
phy production at the locations determined by the
first condition accounted for approximatedly 50% of
the production by stretching and rotation, but only
about 2% of the area. For the spanwise component,
wyws §23, only detected events with negative vorticity
were considered. There were approximately an or-
der of magnitude more events with negative vorticity
contributing to the turbulent production of spanwise
enstrophy than events with positive vorticity. For the
remaining components, only events with positive vor-
ticity were considered. In this case there were as many
positive as negative vortical events detected.

Certain properties associated with these events
have been ensemble averaged and are shown in figures
7 - 10. The properties are averaged on a vertical line
through the detected events. The ensemble averaged
vorticity, shown in Fig. 7 are larger than those shown
in Fig. 1, almost by a factor of ten, an indication that
these events are substantial contributors to the rms
vorticity.

7.1 _The Spin Event
As discussed above the spin model involves a vor-
tical structure, like a vortex tube attached to the free
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surface and extending into the buffer layer. The ex-
istance of substantial ensemble-averaged vertical vor-
ticity in regions far from the free surface, as seen in
Fig. 7 supports the conceptual model of an attached
vortex tube.

Fig. 8 is the ensemble-averaged vertical velocity.
In the case of the normal component of enstrophy,
the negative velocity will stretch the attached vertical
vorticity. This is the down-draft within the vortex
tube mentioned earlier. The peak negative velocity
occurs at z2 = —0.15. The strain rates g%: are shown
in Fig. 9. The peak in the normal strain occurs at
the surface, again consistant with the proximity of the
vortex stretching with the free surface. The strain
and the resulting vortex stretching are negative for
23 < —0.15. This may be due in part to the tilting of
the vortical structure in the main part of the flow.

The final figure is the rate of dissipation of en-
strophy for each of the components. The normal vor-
ticity is largely unaffected by its image and has a low
level of dissipation. Due to this small dissipation, it
is conjectured that these events will have a longer du-
ration than the ‘splat’ events.

7.2 The Splat Event

Although the conditionally sampled results are
consistant with both the model and the RMS vorticity
distributions, they donot explain the greater intensity
of the ws components. The location of the maximum
transverse vorticity is above the conditioning plan,
y = —0.05 while the maximum for the axial vorticity
is below. This characteristic and the amplitude of the
maximum are consistant with their rms values.
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Fig. 6. Enstrophy production due to transverse stretching of transverse vorticity ( wauagi‘_-:). Planview of

plane y = -0.05. Contours are for wyws §23 = 10waw3 §43.
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Fig. 8 is the vertical velocity associated with these
events. For the rising turbulent eddy of the model
the vertical velocity is positive, resulting in a ‘splat’
at the surface. The strain rates ﬁ}: are shown in
figure 9. The transverse strain is larger is the axial
strain. This is consistent with the larger transverse
turbulent production and vorticity.

Fig. 10 is the rate of dissipation of enstrophy for
each of the components. The terms in z; and 23 direc-
tion are similar. The dissipation occurs very close to
the boundary and is very intense: approximately an
order of magnitude larger than the mean value. Due
to the reflective nature shear-free boundary there ex-
ists an image vorticity acroes the boundary resulting
in annihilation of vorticity near the shear-free bound-

ary.
8. Conclusions

The enstrophy balance equations have been eval-
uated for a direct numerical simulation of turbulent
open channel flow. The free surface has been mod-
eled as a shear-free boundary. Near the free surface
there are two dominate sources of enstrophy: Trans-
port due to velocity fluctuations and production due
to the vortex stretching and rotation by the velocity
fluctuations. At the free surface, diffusion is the dom-
inate source of enstrophy. The gains in enstrophy are
balanced by enstrophy dissipation. When the compo-
nents of the total enstrophy are considered individu-
ally, the components parallel to the surface, (Z7w7 and
Tsw3) are found to be responsible for the variation in
the balances near the surface. The balance equations
for @307 show little variation near the surface.

Two models, referred to as the ‘spin’ and ‘splat’
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Fig. 7. Ensemble averaged vorticity, conditioned by
the requirement that wiw; §% > 10wiw; §%.
— (wy);e=enm, (wa); ===, (ws).

models can be used to explain this behsvior. The
splat model is similar to the model discussed in Hunt®
in which an eddy is swept to the surface. ‘The result-
ing redistribution of normal momentum into horizon-
tal momentum: v:ill stretcl and inteusify any vo.ticity
transported in the eddy Due to the iinage vorticity
resulting from the reflective nature of the free surface,
the intense vorticity will quickly cancel with its image
and the enstrophy dissipetion will be enhanced.
Fundame:tal to the ‘spia’ model is a stable vor-
tical structure originating in the buffer layer and ex-
tending to the free surface. The mild variation of
the normal balance is a result of the quasi-stable na-
ture of the attached structure. Without close anti-
parallel image vorticity, thece structures do not dis-
sipate quickly. The downflow within these vortical
structures result in sufficient strain to maintain the
vorticity against the eflects of viscous diffusion.

A large portion of the production of enstrophy
near the free surface is due to these highly localized
intense events. The area responsible for this produc-
tion is very small. Approximately 3 — 6% of the area
on the plane z; = ~—0.05 is responsible for 30 - 60%
of the production. Conditionally sampling and en-
semble averaging the production events verified that
their characteristics are consistant with the proposed

models.
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Abstract % = coordinate direction
z5 = 238 /¥
The velocity data from a direct numerical simu- v =12y
lation of low Reynolds aumber turbulence in an open & = Krooecker's deita
channel have been used to compute the terms in the ¢ = isotropic dissipation functioo
budget equations for the turbulence kinetic energy, @ = averaged quantity
the dissipation of turbulence kinetic energy and the v = kinematic viscosity
Reynolds stresses. The budget data show that the dis- L = decomposed pressure strain, Eq. (9)
sipation rates of the horisontal compoueats of the tur- o = density
bulence are reduced near the surface while the dissipa- r = shear stress
tion of the vertical component remains approximately n = instantaneous vorticity vector
constant. The data also show that the pressure-strain o R = instantaneous vorticity component
term is the dominant producing term for the spanwise 3, ete. = terms in Eqe. (6,7)
component of energy in the near surface region. A
model for this behavior valid for lows exhibiting bo- Subscripts
mogeneity in the spanwise and streamwise directions i = 1.2 3. coordi directions
is proposed and tested against the data. In general . - v'ah;e’st free surface
the model is found to work well but wider testing is w = value st wall

necessary.
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aij = Reynolds stress anisotropy
As, A, A = functions of a;;

Ga,do, etc. = terms in Eqe. (5)

Ca = model constants

9 = gravitational constant
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k = turbulence kinetic energy

f of = v/u,, viscous length scale

P = fluctusting pressure

P = defined in Eqs (8a,b)

Rey = U,A/v, Reynolds number

R = u,h/v, wall Reynolds number
Sij = mean strain rate
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U = instantaneous velocity vector
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Y = fluctuating velocity component
Y, = ,-_/ 7w/ p, friction velocity
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L Introduction

The turbulent flow below s gas-liquid interface
plays an important role in diverse areas ranging from
environmenta!l flows and industrial mixing processes
to the remote sensing of ship wakes. The near-
boundary influences upon transfer and diffusion at the
interface are of primary concern in environmental and
industrial applications, whereas remote sensing issues
uitimately involve any surface motions that may be
detectable. For example, the two most common and
persistent features seen in synthetic-aperture-radar
images of ship wakes are bright “narrow vees” and
long dark “scars”, which may be a result of surface
Bragg wave generation or modification through inter-
actions with near surface turbulence. Common to all
of these problems is the need for a better understand-
ing of the structure of turbulence below a free surface

For several decades it has been realised that the
presence of a free surface influences the evolution of
mean velocity and turbulence but the mechanisms
have not been completely described. Early observa-
tions of Nikuradse! showed the flow in straight open
channels to be three-dimensional and that the max-
imum of the streamwise mean velocity occurs below
rather than coincident with the free surface. More
recently, the studies of Ueds? and Komori et al.3 for
open channe! flows showed that the oddy viscosity is
significantly attenuated by the presence of the free




surface. In the latter paper it is aleo shown that in
a region near the free surface the surface-pormal ve-
locity fluctuations are diminished while the fluctus-
tions in the plane of the surface are incressed. The
largest increase in the near-surface region is in the
spanwise component. This paper aleo indicates that
the viscous dissipation, ¢, has vanishingly small noz-
mal gradient near the free surface. A similar redistri-
bution of the turbulence intensities was obeerved by
Thomas snd Hancock.* In their work a moving wall
experiment was devised such that the wall moved at
the velocity of the adjacent turbulent fluid so that no
velocity gradients and shear stresses were present at
the wall, conditions similar to those at an uncontami-
nated, waveless free surface. Damping of the velocity
fluctuations in the wall-normal direction accompanied
by an increase in the streamwise fluctuations was ob-
served. The spanwise fluctuations were only slightly
increased. In recent experimental studies by Ramberg
et al.® and Swean et al.%7 single-point hot-film mea-
surements of the velocity correlations were obtained
near the free surface in a jet flow. These measure-
ments also showed the existence of a thin layer near
the free surface wherein the redistribution of turbu-
lence energy occurred rapidly with most of the verti-
cal component transferring into the spanwise compo-
nent, an obeervation similar to that of Komori et al.
referenced above.

All of the above =xperiments experienced prob-
lems in acquiring data very near the surface. The hot-
film studies suffer from the effects of probe contam-
ination and bio.kage brought about by the intrusive
sensor near the boundary. Laser doppler velocimetry
methods have problems due to reflection and refrac-
tion at the free surface. As & result of the experimen-
tal problems associsted with obtaining reliable mea-
surements Dear an air-water interface, the situation is
that considerably less is known about the character-
istics of turbulence near a free surface as oppased to
flow near to solid walls.

Due to the interest and relevance of the prob-
lem, a direct numerical simulation of turbulent open
channel flow has been performed by Leighton et al.®
This paper is an analysis of time-averaged data from
Leighton's calculation with the goal of evaluating and
improving turbulence models for use in practical cal-
culations of the near-surface flow. In the next section
a brief description of the calculation is given.

2. Direct Numerical Simulati

The incompressible 3D Navier-Stokes equations
were solved for initial and boundary conditions ap-
proximating a turbulent open-channel flow of wa-
ter at Rey = 2340 based on the channel depth, A,
and the mean steady velocity at the free surface,

U, = Uz(23 = A). The governing equations were re-
cast in the manner suggested by Orsag and Paters®
and implemented by Kim, Moin and Moser!® for
closed channe] flow. The final equation system, in
which the pressure has been eliminated, consists of a
4" order equation for the vertical velocity,

(QZT’ - =)= (o—f? + a%)(u x Q)

;] (4 9
% (FST(U x )3 + 33—;(“ x 0)‘). (1

and a 2*4 order equation for the vertical vorticity,

(.g - %’7) a; = 7,2—,(11 x ),
-ﬁ;w x Q),, (2)

where all variables are non-dimensionalised by A and
U, and bold-face type indicates vector quantities with
f = (V x U). Following solution of Eqs. (1,2),
the streamwise and spanwise velocity components
(U1, Us) are recovered from the incompressibility con-
dition and the definition of vorticity.

The equations are solved after they are Fourier
transformed in the streamwise (z;) and spanwise (23)
directions and Chebyshev transformed in the vertical
direction (22). The calculations were performed on
a 48 x 65 x 64 grid in 2y, 23, 23 respectively, which
allows the resolution of all essential turbulent scales
without resort to subgrid models. With the geome-
try scaled by the channel height, the vertical, stream-
wise and transverse dimensions of the channel are 1,
4r and 3x/2, respectively. In wall units the domain
is 134£° x 1684 x 632¢°, where £* = A/R* with
R* = 134. For comparison purposes s companion cal-
culation was performed for a closed channel flow. For
reasons of economy this calculation was at half the
wall-normal resolution of the open channel case and
was at a lower Reynolds number, B* = 125. Nev-
ertheless the qualitative behavior of the data for all
aspects examined was identical to that reported by
Mansour, Moin and Kim (henceforth MXM).!! As
such these closed channel data can serve in certain
instances to compare qualitatively the different be-
havior in the open and closed channe! simulations.

The boundary conditions are periodic on all de-
pendent variables in the streamwise snd spanwise di-
rections. No slip conditions are used at the chan-
nel bottom while the free surface is approximated as
a rigid free slip surface with vanishing shear. The

- shear-free rigid lid condition is an approximation to

the exact free surface condition which is valid at low
Froude number (7,(gh)~%) for a surface free of any
contaminants. Leighton et al.® have estimated the
surface displacement s pesteriori from the results of
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Fig. 1 Mean velocity profile across the channel.

the simulation and using the channel height, h =
0.04m, from the experiments of Komori et al. For
these conditions the rms surface deflections could be
expected to be approximately 1.6 x 10~*m (0.004h)
and negligible as observed in the laboratory experi-
ments. For later reference the boundary values of the
dependent and derived variables at the wall (z; = 0)
and free surface (22 = 1) are:

U = v,-U,-n,..g% 0iz2=0. (3)

and

8U1 8U3 My, U, e
823 88, -Uz-—— ——3-—0.22—1. 4)

The derivative conditions on U; arise from continuity
consideratious at the respective boundaries.

The computer code used in the simulation was
designed and developed to run on the CRAY X-
MP/24 at the Naval Research Laboratory. Approxi-
mately 105 seconds per timestep per grid point were
required for the simulation. After the wall shear stress
achieved a statistically steady behavior, 42 realiza-
tions of the instantaneous velocity data were saved
during a time interval of approximately 4000t* where
t* = v/ul. Statistics were obtained by averaging in
the streamwise and spanwise directions and in time.

3. Discustion of Resul

The mean velocity normalized by u, is shown
in Fig. 1. Also shown by the dashed lines are the
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Fig. 2 Profiles of turbulence kinetic energy and
Reynolds stress across the chaapel.

wall laws u* = z§ and u* = 25Inzy + 55 A
best fit of the present data for the logrithmic region
is u* = 2.4Inz$ + 5.6. The lower slope is consis-
tent with the value of 2.43 found by Nezu and Rodi!?
for open channel flows over a Reynolds number range
439 < R* < 6139. The intercept is nesr the up-
per bound (5.29 £ 0.47) found in their experiments
and is probably a low Reynolds number effect.!! The
notable difference between the velocity data in Fig. !
and closed channel behavior is the absence of a clearly
defined wake region in the outer flow, rather the log
law is maintained until very close to the free surfrce
when the velocity adjusts to the vanishing gradient
condition.

Figure 2 shows the normalised turbulence kinetic
energy k = 4(ui + ui + ug) snd the Reynolds shear
stress, WUz, which has been further scaled for plot-
ting by a factor as shown. According to the boundary
conditions given by Eqs. {3,4) the velocity compo-
nents and pressure can be expanded about the free
surface as,

w1 =a; +ay? +007)
vz = bay + day® + O(y*)
us=as+csy’ +0(°)
P=a+ 6y +00*)

where y is defined with the origin at the free surface
Use_of these expansions and averaging results in ¢ =
1(a‘ + aj) + O(3?) ear the surface and Ok/By = 0
at the surface which is evideat in the figure.

(3)
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Fig. 3 Profiles of normal stresses across the channel
and comparison with data of Komori et al 3

Figure 3 shows the three components of k from
the simulation. The symbols are the experimen-
tal resuits of Komori et al.? which were taken at
Rey, 53 3100. There is qualitative agreement between
the experimental and numerical results. Both exhibit
an increase in the horisontal components as the free
surface is approached and the increase is greatest for
the spanwise component. The computed local mini-
mum of the spanwise component occurs further from
the free surfuce than in the streamwise component
which is also consistent with the experiments. This
behavior is more easily recognisable in Fig. 4 which
contains the distributions of the three components of
the turbulence kinetic energy made non-dimensional
by the local value of k. Also shown in this figure
are the data from the closed channel calculation ref-
erenced in the previous section and, as noted, these
data are presented for qualitative comparison ounly.
For the closed channel calculstion the z; = 1 bound-
ary corresponds to the channel centerline. Figure 4
shows that near the free surface, £2 > 0.7, most of
the energy from the vertical component is transferred
to the spanwise component with only a small increase
in the horizontal component. This contrasts with the
behaviors of the various components of turbulence en-
ergy in the closed channel simulation where the rel-
ative interchange of energy appears to be primarily
from the streamwise component to the vertical in the
region near the channel centerline. In order to un-
derstand this behavior, the budget equations of the
individual velocity correlations have been examined.
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Fig. 4 Profiles of normal stresscs normalised by the
local value of turbulence kinetic energy. Dashed lines
are from a closed channel simulation.

For the flow under consideration, which is statis-
tically steady and homogeneous in the spanwise and
streamwise directions, the transport equations for the
one-point velocity correlations are,

Dujuj
Dt

The symbols on the right-hand side of Eq. (6) denote
the rates of production, pressure diffusion, turbulent
transport, pressure strain, viscous diffusion and dis-
sipation, respectively. The explicit representations of
these terms are:

=0=P,; +1i; + Tij + &; + D;; ~ ¢;;. (6)

Oz, 2, '
=-1(% ?E-'_)
n" = 4 ( 8:.- + 88,‘ '

The equation obtained by taking half the trace of
Eq. (6) is the equation for the turbulence kinetic en-
ergy, k. The equation for the trace of the dissipation
rate tensor, ¢ = (€11 +€33+¢33)/3, is given by Hanjali¢
and Launder!® as,
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Fig. 5 Distribution of the terms in the budyzt of u?

in the upper half of the channel.
De o= (3'7‘__5'3) 80 _ (8":_5'“)8_‘71
Dt~ 0=-2 8z, 82, ] 8z, w 0z, 8z, ] 8z,
—-2vy ; 03[] e : L}

82, 92402, o:. 8z, 6z¢

9 C@.—@E) —vd (2“_';.‘?.".-‘)
p Ozy \ 9z, 9z, 8z, ' \ 3z, 8z,
Be Nu: \*
+V§T 2( 83.88[) (N
The first four terms are production terms (P} to P3),
while terms five through eight are pressure transport
(1), turbulent transport (T¢), viscous diffusion (D,)

and dissipation (Y), respectively.

The terms in the budget equations for the three
normal stresses and the dissipation rate are shown in
Figs. 5-8. All terms in Eqs. (6,7) have been normal-
ized by u?/v and the budgeta are displayed only for
the upper half of the channel nearest the free surface.
Since the production of turbulence is much lower than
in the high shear region close to the solid wall, the in-
dividual terms in the equations are typically an order
of magnitude lower than their corresponding values
near the wall. The near-wall data are svailable in
Leighton et al.* and are very similar to the data of
MKM.1!

Figure 5 shows that away from the surface all
terms in the uf budget have the same relative im-
portance except Dy, the viscous diffusion. Moving
toward the surface, the production rate vanishes with
the mean velocity gradient. At the wall, the viscous

Fig. 6 Distribution of the terms in the budget of v}
in the upper half of the channel.

terms balance the turbulence transport and the pres
sure strain, the latter having become a slight positive
contributor to the budget very near the wall. The
u; balsnce in Fig. 6 is relatively more complex than
that for u'f For this component the magnitude of the
budget terms near the free surface are only reduced by
about one-half from their values near the -lid wall
Near the free surface, the asymtotic behavior of the
various terms can be determined by using Eqs. (5) as.

Tn=-+ -

B2 = -2a,8; - 6(cy80 + 3, da)y” + -
P12 = 20,8; + 255 + 3a,d0)% + - -
Dz = 28538, + 24baday” + - -

€22 = 26255 + 1202d3% + - - -

It is seen that at the free surface ¢33 balances Dy, and
the two pressure-velocity terms cancel. Note that the
pressure strain has rapidly become a consuming term
in the near-surface region whereas it had been a ma-
jor producer in the budget equation in the outer flow
This is m contrast to the behavior shown in Fig 7
for the u component. In this case &35 increases near
the surface and at the surface is considerably more
of a source for u§ than is @y, in the uf budget. This
largely explains why the transverse component of tur-
bulence kinetic in Fig. 4 is increased relatively more
80 than the streamwise component as u approaches
zero at the free surface. In the next section a model
for this behavior is proposed.
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Fig. 7 Distribution of the terms in the budget of ﬁ
in the upper half of the channel.

A curious festure contained in Figs. 5 and 7 is
the behavior of ¢;; as the surface is approached. Mov-
ing toward the free surface the dissipation rates ex-
hibit a sharp drop in magnitude in the upper 5-10% of
the channel. The ¢33 on the other hand shows a very
slight increase in magnitude and could well be approx-
imated as constant in this region. This behavior is
contrary to stsndard modeling assumptions near the
free surface. Hossain and Rodil* and later Naot and
Rodi!® have assumed that in most respects other than
the vanishing of the surface-normal velocity compo-
nent, the free surface behaves like a symmetry plane.
The exception is the presumed behavior of the dis-
sipation rate for turbulence kinetic energy which is
expected to increase near the surface. This is based
oun the assumption that the macro-length scale of the
turbulence (L « k1-8/¢) is reduced by the presence of
the boundary. This scale does not become zero since
it reflects the fluctuating motion in all three direc-
tions and the horizontal extent of the eddies is not
restricted.

The terms in the budget equation for the dissi-
pation rate are shown in Figure 8. In the upper por-
tion of the channel the first three production terms
in Eq. (7) are small and have been lumped together
ac shown. Until very near the free surface the pro-
duction by turbulence, P}, largely balances the dis-
sipation term. Very near the surface the dominant
terms are the viscous diffusion and the dissipation,
each exhibiting very large gradients of opposite sign
near the boundary. Reconsidering Figs. 5 and 7, it
is seen that in these cases also the rapid variation in
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Fig. 8 Distribution of the terms in the budget of the
turbulence kinetic energy dissipation rate in the upper
half of the channel.

the dissipation term appears to be at least partially
offset by the variation in the diffusion term. It should
be remembered that ¢;; (or ¢) is not the actual dis-
sipation of turbulent energy for inhomogeneous flows
although it does approximate the total dissipation for
bigh Reynolds number. The particular terms D;; and
¢, have arisen from the combination of the actual
dissipation rate with the rate of work by the viscous
shear stresses of the turbulence.!® In flows far from
solid walls the viscous diffusion is generally neglected
and as such the modeled dissipation rate implicitly
models the work term. Figure 9 shows the balance of
turbulence kinetic energy obtained from the trace of
Eq. (6). The viscous terms have been added and to-
gether they balance the transport terms at the wall 1t
is seen that the total viscous term varies only slightly
near the boundary and might be easier to model. Fu-
ture work will re-process the velocity data to deter-
mine the actual dissipation term separately from the
work term.

4. Pressure-Strain Rate Model
The above data show that the pressure-strain
term is a key contributor to the redistribution of nor-
mal stresses near the boundaries. Leighton et al ®
have decomposed the fluctuating pressure into a ‘slow’
pressure, pf!), a ‘fast’ pressure, p{?), and a Stokes

pressure, p{*), in the manner suggested by MKM !!
These components satisfy the equations:




Fig. 9 Distributijon of the terms in the budget of tur-
bulence kinetic energy in the upper half of the chan-
nel.

V20 = _(2"_-'2_“1 - 2"_-'.45"')
82,’ 82.’ 82',' az.- '
80, 8u, (8a)
2,(2) o _g9U1 Ou2
v L4 - 2682 021 !

T2p() = 0,

with boundary conditions,

1)
0;:2 =0:29=0,1
2)
%’; =0:2z;=0,1 (8b)
)
o 1_%u c 29=0,1.

Bz; _ Res 07}

The pressure data from the solution of Eqs. (8a-b)
have been used to decompose the pressure-strain term

into
=235 = 61 + 8D + 0.

Figure 10 shows this splitting in the upper portion of
the channel for each of the components. The Stokes
term is only of consequence very near the solid wall
and is not plotted. It is seen that the slow or return
terms are dominant in the region plotted. Only in
the ¢33 component is the fast term the larger of the
two and for the @32 term the fast component is nearly
zero over the whole domain shown.
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Fig. 10 Distribution of the rapid and return contri-
butions to the pressure-strain rate for each diagonal
component.

The distributions of @;; shown in Fig. 10 differ
markedly at the free surface relative to their behav-
ior at a solid wall.!! Most importantly they do not
vanish in any component. Clearly some sort of sur-
face proximity effect is needed in order to model the
rapid variations exhibited. Generally the total term
i8 modeled, :

o =8 +oP +eL+ell, ()

e
where ®{/! is some variant of Rotta's'? model,

o) = ~Cyeayj, (10)

and the rapid term includes at least the isotropization
of production term, (P;; — 4 P;6;;). Typical of these
models and one that is borrowed from in the current
study, is that due to Launder, Reece and Rodi.!8

@ _ _(C3+8) 2
o) = _—Lli—_(P" - 51:,5‘,.)
930C2-2), . BCr+8) . 2,
2 55 ksu 11 (BIJ - §Pk6|; ), (11)
where,
80 ___ 80
By = ~TWig - T g L,

and C) = 0.4. The wall terms are usually modeled
in a form analagous to Eqs. (10,11) but with different
coefficients and including a damping function. The
Launder, Reece and Rodi form is,

3
81 + {2 = (0.125¢ay; +0.015(P, - B.-,))"’—t;.




0.0 0.2 0.4 0.6 08 1.0

Fig. 11 Distribution of the second and third invariants
of the Reynolds stress anisotropy tensor across the
channel.

This particular damping function is singular at a free
surface since k does not vanish. A virtual origin could
be used and has been employed by Naot and Rodi!3.
An alternative is to use a term based on the surface-
normal velocity such as f, ~ (u3)-3k/ez,, which does
not become singular and is more appealing on phys-
ical grounds. However, the approach taken in this
study is to make use of the properties of the sec-
ond and third invariants, A; and A3 of the stress
anisotropy tensor, a;;.

Aj = ajaij ; As = 6jajxau. (12)

As pointed out by Lumley!®, if one component of
velocity vanishes, then the difference, 4, — 43, be-
comes the constant value 8/9 irrespective of the be-
havior of the other two velocity components. In this
case the function A = 1 — 9(A; — A3)/8 = 0 in the
regions where the turbulence becomes locally two-
dimensional. At the free surface the pressure-strain
rates do not vanish #0 it is necessary to modify this
approach. Figure 11 shows the variation of A; and
A3 computed from the simulation data. Near both
boundaries A3 ~ Ay — 8/9 as a3 — —~2/3. Near the
free surface it is observed that Ay becomes negative.
This is very close to the z, location where a3y becomes
positive (see Fig. 4). For flows in which the non-zero
velocity components remain uncorrelated as the third
component vanishes, the vanishing of Ay corresponds
exactly to the vanishing of one of the remaining re-
maining gi;. Equation (12) shows that for such a flow
Aj reaches a minimum of ~2/9 when a;; = a33. It is
plausible to assume that in the absence of boundaries

the horisontal components will tend to approach this
state at a free surface. The available experimental
data as well as the current simulation data support
this conjecture. If this is the case then the vanish-
ing of As can be used as a detector for free surface
proximity effects.

A model based on Lumiey’s suggestion and used
as the basis of the current model is that due to Laun-
der and Shima.? In their model 6’ is given by
Eq. (10) with the coefficient,

C) = 2.58AA%{1 — exp((0.0067k%/ve)?)}.  (13)

The rapid term is given by the first term in Eq. (11)
with the coefficient, 8(C3 +8)/11, replaced with C; =
0.75A %. The Launder and Shima model also contains
additional explicit expressions for the wall terms in
Eq. {9) that are not repeated here since they are not
used.

In the current work an effort has been made
to construct a model with a minimum of parame-
ters. In Eq. (13), both the coefficient, A, and the
term in braces containing the Reynolds number act
to damp the pressure-strain rate near a solid wall
Equations (8a,b) are only dependent upon viscosity
thru the boundary condition on the equation for p'*’
and MKM have shown that for low Reynolds flows of
the type under study here, ¢f,’ ) is small even near the
wall. The term in braces has thus been omitted in
the current study. Exploratory calculations retaining
the term, and using the statistics from the simulation
have shown that the term has little effect on model
performance and in fact the pressure-strain rate data
are better correlated with its omission. Although the
concern here has not been model performance near
the solid wall, this study has also retained the third
term in Eq. (11) since its inclusion substantially im-
proves the behavior in the @33 component near the
wall. The basic form of the current model then be-
comes,

¢(!) = —ClAt'd‘, N Cl £l 3A 25 (14)

Q(?) = AS( (C2+8)(P|J zplsij)

8(C5 + 8)(8., _ ngsu»

(15)

The numerical value in the definition of Cy above has
been adjusted from its former value to account for
the factor of approximately 1/2 that the retention of
the exponential term of the original mode] would have
contributed in the outer flow. The form adopted for
the free surface region is,

®!)), = ~Ci(A ~ A")e(2.2ai; +9.8(airani — Az/3)).
(16)
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Fig. 12 Comparison of the modeled pressure-strain
rate with the data from the simulation.

where C, is given by Eq. (14) and 4’ = 1 -9/8(A4, ~
|Aa]) . As discussed earlier this term will only be-
come active when the anisotropy in one of the hori-
zontal components vanishes while the vertical veloc-
ity is damped near the free surface. The constants
2.2 and 9.8 have been determined so as match the
overall level of the data in the surface region. The
274 order term has been shown by Speziale et al. !
to occur in a formal expansion for ®,; and it is used
in the current formulation to achieve more closely the
separation in @33 and &, observed in the simulation.
Near the free surface the anisotropy in the uz com-
ponent of velocity is relatively small compared to a;;
s0 to first order in anisotropy the model predicts that
®;; > ®3s. The second order term is small in both
components but has a much greater relative effect on
the us component.

Figure 12 shows the model performance when
computed with the simulation data which are rep-
resented by the symbols. The lines are computations
with Eqs. (14-16). The incorrect near-surface asym-
totic behavior is mostly due to the sharp variation
in ¢ discussed in the previous section. Incorporat-
ing the proper asymtotic behavior near the free sur-
face will be a topic for further research. Near the
solid wall the current model performs ressonably well
and markedly better than the original Launder, Reece
and Rodi model which was analyzed by MKM.!! The
asymtotic behavior near the wall is not correct and
this must be examined as weil. Without the inclusion
of the term containing B;; in Eq. (15) the change in
sign in the near wall region for $33 is not achieved but

rather the modeled distribution is uniformly positive
until vanishing st the wall.
5_Concluding B l

The simulation data show that there is a prefer-
ential redistribution of turbulence energy to the span-
wise component of energy as the normal component
is damped at the free surface. This is in accordance
with the still-limited experimental obeervations. The
budget equations show that the pressure-strain rate
term, particularly the return term, is a key contrib-
utor to this behavior. The budgets also show that
the isotropic part of the dissipation of turbulence en-
ery decreases rapidly very near the free surface which
is contrary to current modeling asumptions which
assume it to increase to account for reduced levels
of eddy viscosity observed near the free surface. A
model for the near-surface pressure-strain term has
been proposed and shown to correlate the simuiation
data fairly well. In its current form the model is lim-
ited to flows in which the correlation of the horizontal
velocity components is small while the vertical com-
ponent vanishes. Much wider testing is necessary to
determine when this condition exists. Future efforts
will consider this point along with questions raised re-
garding the dissipation of turbulence at the surface.
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ABSTRACT () = averaged quantity
Two-point correlations, energy spectra, and & _ :::cﬁ :;en‘:::'vennmber
length scales are examined in the vicinity of a free :' — kinematic viscosit
surface, modeled as a shear-free boundary in a di- - densit Y
rect numerical simulation of open channel flow. The : - ¥ .
<o . . = momentum thickness
length scale results indicate that a typical eddy is flat- - = shear siress
tened as it interacts with the surface. The scales as- d’ = instantaneous vorticity vector
sociated with the vertical component of velocity seem Q — nstantaneous v orticitgyy com R
to determine the extent of the source layer described =1 ponen
in the Hunt-Graham model. The energy spectra show
qualitative agreement with the model, though higher Subscripts
resolution calculations will be required to make more £ = 1, 2,3, coordinate directions
quantitative comparisons. Additionally, the proxim- ] = value at free surface
ity of the free surface to the bottom solid wall of the oo = value in free stream
channel evidences itself as a wall-layer streaky struc- w = value at wall

ture which persists to a noticeably greater distance
away from the wall. Some speculations are offered to
explain this effect.

NOMENCLATURE
h = channel height
k = turbulent kinetic energy
Y od = v/u,, viscous length scale
Rey = U,h/v, Reynolds number
R* = u,h/v, wall Reynolds number
R, = Uxf8/v, momentum thickness
Reynolds number
t = v/u?, viscous timescale
U = instantaneous velocity vector
Us = instantaneous velocity component
u; = fluctuating velocity component
Uy = /7w /p, friction velocity
Aij = turbulent microscale
Aij = turbulent macroscale
Ri; = two-point correlation tensor
z; = coordinate direction
z} = ziu, v
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1. INTRODUCTION

The study of the structure of turbulence near a
free surface is obviously important to our understand-
ing of the complex interaction of the atmosphere and
upper ocean. It is also of fundamental relevance to the
wall-bounded turbulence problem, since it isolates the
boundary influence on turbulent fluctuations from the
turbulence production mechanism at the wall. The
first detailed experiment which addressed itself to this
particular problem was that of Uzkan and Reynolds!
(UR). They passed grid generated homogeneous tut-
bulence over a wall which moved with the mean flow
and therefore generated no mean shear at the bound-
ary. They found that the streamwise turbulence in-
tensity near the shear-free boundary did not peak as
it does near a stationary solid wall, but instead de-
creased monotonically from its free stream value to
zero at the boundary. Later, Thomas and Hancock?
(TH) performed a similar experiment at a Reynolds
number about 20 times greater than that of UR and
found that the intensity of the streamwise component
increases as the boundary is approached.

The discrepancy between these two results was
explained satisfactorily by Hunt and Graham?® (HG)
who proposed a two layer model for the interaction.
At high turbulent Reynolds numbers there exists a
thin viscous layer near the wall embedded in a larger
source layer. The source layer should be roughly the
size of the integral length scale of the free stream tur-
bulence and exists essentially because of the no mass-
flux condition at the boundary. Their theory predicts
a redistribution of turbulent energy in the source layer

_—




from the vertical component of velocity to the stream-
wise and spanwise components. The UR result was
casily explained since, at the low Reynolds number of
their experiment, the viscous layer domninated the re-
gion near the surface and the turbulence was accord-
ingly damped. At the higher Reynolds number of the
TH experiment, the source layer dominated and the
redistribution of the turbulence behaved according to
the HG model. Many of these results were later con-
firmed by the large eddy simulations of Biringen and
Reynolds®. Recently, Brumley and Jirka® (BJ) pre-
sented results for experiments in which homogeneous
turbulence interacted with a free surface. Their re-
sults agreed reasonably well with & modified form of
the HG model.

The simulations performed here were designed to
represent as closely as possible the physics of free sur-
face/turbulence interaction in which the eflects of sur-
face waves can be safely neglected. For this purpose,
fully developed turbulence between a solid wall and a
free surface is simulated. The physical processes rep-
resented by these simulations differ in some important
respects from processes involved in the physical exper-
iments noted above. First, in these simulations, no
viscous layer can develop since u; and uj, the fluctu-
ating streamwise and spanwise velocity components,
are not forced to zero as in the UR and TH experi-
ments. In fact, even in the BJ experiments a viscous
layer developed near the surface due to the presence
of surface contaminants. Secondly, in these simula-
tions, the turbulence impinging on the free sutface is
not isotropic since it is being generated at a solid wall.
It is evident that the solid wall is acting as a genera-
tor of anisotropic turbulence which is then convected
toward the free surface. Lastly, it is possible to ex-
amine the question of the influence, if any, of the free
surface on the turbulent structure at the solid surface
boundary. In this work two-point correlations, energy
spectra, and turbulent length scales will be examined
in an effort to investigate the turbulent structure near
a free surface in the absence of surface waves.

2. DIRECT NUMERICAL SIMULATION

The incompressible three-dimensional Navier-
Stokes equations are solved for initial and boundary
conditions approximating a turbulent open channel
flow of water at a Reynolds number, Re,, based on
the channel height, A, and the mean velocity at the
free surface, U,, of 2340. The notation z,, z-, and
z3 is used to denote the streamwise, wall-normal,
and spanwise coordinates respectively. The govern-
ing equations, formulated in the manner suggested
by Orszag and Patera® and later implemented in a
simpler form by Kim, Moin and Moser”, consist of a

fourth order equation for the vertical velocity, U; :

9v? v _[(8& &
(5 - )= (G o) o

d (o 8
3= (3:‘,(” x )3 + 5—(U x n),). (1)

and a second order equation for the vertical vortic-
ity, Qa:

6 W /] 8
(5 - E;) 0 = 5-(U x O - 32U x ),
(2)
where all variables are made non-dimensional by A
and the initial value of U, . Here, the instantaneous
velocity vector is given by U and the instantaneous
vorticity vector is defined by 1 = (V x U). Follow-
ing the solution of equations 1 and 2, the streamwise
and spanwise velocity components, U, and Us, are
recovered from the incompressibility condition.

The equations of motion are solved in Fourier-
Chebyshev space where Fourier modes are employed
in the horizontal plane and Chebyshev modes in the
wall normal direction. The calculations are performed
on a 64 x 65 x 48 grid in z;,z2,z3 respectively.
With the geometry scaled by the channel height, the
streamwise, vertical, and transverse dimensions of the
channel are 4x, 1, and 3x/2 respectively. In terms of
the viscous parameters consisting of the friction ve-
locity, u,, and the kinematic viscosity, v, the domain
is 1684£* x 134¢* x 632¢* and the Reynolds number,
R*, is 134. To facilitate substantive qualitative com-
parisons with the wall-bounded turbulence problem,
a companion calculation for a closed channel flow is
utilized. For reasons of economy, this calculation is
at half the wall-normal resolution of the open chan-
nel case and is at a somewhat lower Reynolds number,
R* = 125. Nevertheless the behavior of these data for
all aspects examined is identical to that reported by
KMM.

The boundary conditions utilized are periodic on
all dependent variables in the streamwise and span-
wise directions. No-slip conditions are used at the
channel bottom while the free surface is approximated
as a rigid, free-slip surface with vanishing sheaz. The
shear-free rigid lid condition is an approximation to
the exact free surface condition which is valid at low
Froude number for a surface free of any contaminants.
Leighton et al.® have estimated the surface displace-
ment a posteriori from the results of the simulation
using the channel height, & = 0.04m, from the experi-
ments of Komori et al.? . For these conditions the rms
surface deflections are expected to be approximately
1.6 x 10~*m (0.004%) and are clearly negligible as ob-
served in the laboratory experiments. The boundary
conditions at the solid wall (z, = 0) and the free sur-
face (z; = 1) are:




Uy=U3=U3=0;,22=0, (3)
and oU aU.
1 _ —2 = =V, = 1.
T = 5 Uz=0;z2=1 (4)

The code developed for the simulation is de-
signed to run on the CRAY X-MP/24 computer at
the Naval Research Laboratory and requires approxi-
mately 10~% CPU seconds per timestep per grid point.
After the wall shear stress achieved a statistically
steady behavior, 42 realizations of the instantaneous
velocity data were saved during a time interval of ap-
proximately 4000¢* where ¢* = v/u?. Statistics were
obtained by averaging in the streamwise and spanwise
directions as well as over all realizations. Swean et
al.19 find good agreement between these simulations
and open channel flow experiments.

3. TWO-POINT CORRELATIONS
AND ENERGY SPECTRA

The turbulent structure near the free surface is
revealed in some detail by examining the two-point
correlations and energy spectra at different depths be-
low the surface. The two-point correlation function,
R;j, is defined by :

Rij(Azy, Az3, 22, 220") =

ui(z1, 23, Z2)u;(2y/, 23', T3') )
—— !
u.-’ sz

where, z;' = z; + Az, j=1,3. Here, only the prop-
erties of R;j for which z; = z and i = j will be
descrited. These correlations were computed by av-
eraging over all flow realizations and all flow symme-
tries (see Sirovich!!). Figure 1 shows a comparison of
the streamwise correlations for open and closed chan-
nel flows at several z, locations. Note that in each
figure a secondary axis is given showing the correla-
tion length in terms of wall variables, i.e. Az} for
this case. In the region close to the bottom solid wall
(0 < z2 < 0.5; 0 < z§ < 68) the streamwise correla-
ticns are virtually identical for all three velocity com-
ponents. As an example, note the similarity between
the correlations at z; = 0.071 for open channel flow
with those of closed channel flow at z2 = 0.076. The
only notable difference ‘s a somewhat longer stream-
wise correlation length for u; in the open channel case.
At distances farther from the wall, however, the dif-
ferences between the two flows become increasingly
more pronounced. As the free surface is approached,
two trends are evident. First, the streamwise dis-
tance at which Raz(Az,,0,z2), (subsequently de-
noted Raa(Az,)) attains its minimum value increases
as the free surface is approached. For example, at
z3 = 0.524, the minimum occurs at Az; =~ 1.34 and

as the free surface is approached this increases roughly
17% to Az; =~ 1.57. For the closed channel case, how-
ever, this distance undergoes virtually no change as
z, varies from 0.572 to the centerline. Secondly, we
observe that the streamwise correlation length of the
vertical component of velocity in the open channel
case, which may be loosely defined by the first sero
crossing, decreases significantly between z; = 0.524,
where no zero crossing exists, and z2 = 0.952 where it
attains a value of Az; 2~ 0.75 . In the closed channel
case this scale also decreases, but not nearly as rapidly
as in open channel flow where there appears to be a
clearer separation between Rj2(Az,) and Rss(Azy)
near the free surface. In Fig. 2 the corresponding
results for the spanwise correlations, R;;j(Azs), are
shown for both cases. As in the streamwise results,
close to the wall there appear to be no significant dif-
ferences between these fiows. Farther from the wall
(z3 > 0.8), it is evident that the correlation length
for the uz component in the open channel flow is sig-
nificantly smaller than those for the other two veloc-
ity components. This behavior is not evident for the
closed channel case in this same region. Again, as
with the streamwise correlation length resuits, there
is a clear separation between Rz9(Az3) and Rys(Azs)
as the free surface is approached. One feature of note
is the existence of a discernable local minimum in the
spanwise correlation of the streamwise velocity com-
ponent out to normal locations as large as z3 >~ 0.8
(i.e., 5 108 viscous lengths) in the open channel case.
This indicates a considerable persistence of a spanwise
periodic structure in the flow which will be discussed
in more detail in Section 5.

Energy spectra, ®;;, as a function of the stream-
wise wavenumber, «,, are shown in Fig. 3 for two
different surface normal locations in close proximity
to the free surface boundary (z2 = 0.978 and 0.952).
Additionally, a third energy spectrum at z; = 0.798
is given in each plot as a reference condition. Ex-
amination of the turbulence intensity profiles (refer
to the Fig. 7 discussed later) at this location indi-
cates that free surface effects will be negligible. The
®11(x1) spectra show that very near the free surface,
the energy at low wavenumbers remains unchanged.
However, for the intermediate band {2 < x; < 10) a
small increase in energy is evident. There is no change
in the spectra at high wavenumbers. These features
are quite consistent with the HG predictions. From
the ®2a(x;) spectra it is quite evident that, as the free
surface is approached, the energy at low wavenumbers
decreases more rapidly than at high wavenumbers.
This is also consistent with HG. However, it is to be
noted that the HG model predicts that the ®32(%1)
spectrum far from the boundary will merge with the
spectra near the free surface at a wavenumber of or-
der 2x/Az,, where Azxs is the vertical distance from




the free surface. This is effectively due to the cut-
ting off of eddies smaller than Azz by the presence of
the surface. In these calculations, however, the min-
imum resolvable streamwise length scale dictated by
the grid spacing is 4x/64 = 0.196, which is in fact of
the same order as the source layer. It is evident that
higher resolution will be required to resolve these ef-
fects. Nevertheless, the basic structure of ®a3(«;) is
suggestive of this kind of wavenumber cutoff behavior.
The ®33(x;) spectra show some increase in energy at
low wavenumbers as the free surface is approached,
but virtually no change for ky > 3. These observa-
tions are also qualitatively consistent with HG.

4. MACRO AND MICROSCALES

Turbulent flows are known to contain a wide
range of length scales; here we examine both the tur-
bulent macroscales and microscales. The macroscale
can be considered the length scale that represents
the size of a typical energy containing eddy which
is eventually broken up and dissipated by viscosity
at smaller scalest?. The microscale, though not the
smallest length scale in the flow, can be thought of
zs an average length within which most of ihe energy
dissipation occurs. In high Reynolds number flows
there is a large separation between these two scales,
but in the current computations this separation is not
large.

The microscale, A, corresponding to velocity
component u; in direction z; is defined by:

3, = —g/LRilz) ©)

z,=0

If the turbulence is homogeneous in direction z; then
it can be shown that an equivalent definition is :

bt =:§/@7. (7

The z; and z3 microscales are computed using both
definitions given above and nominally produce iden-
tical results. The macroscale A is defined by :

A.‘j = /Rjj(z.-)d::,-. (8)
1]

It should be noted that in some circumstances, par-
ticularly for the streamwise velocity component, the
correlation function R;jj(Az;) does not decay suffi-
ciently at the end of the computational domain so
that the macroscale given by (8) may underestimate
the true eddy length scale. Also, since quasi-periodic
structures exist close to the wall with their periodic-
ity primarily in the spanwise z3 direction, R;;j(Axz3)
can be negative. This also has the effect of produc-
ing a macroscale which undei estimates the length of

the largest eddy structures nea- the wall. For these
reasons, the microscales reported below may actually
be larger in some cases than the macroscales. This is
simply an artifact of the method used here. A better
estimate for the macroscales can be had in some cases
by using the length associated with the second zero
croesing of the correlation function.

Figure 4 shows the results of the calculation of
the streamwise macroscale, A; (i.e A;;), and the span-
wise macroscale, A3, for both the open and closed
channel cases. Recall that the solid wall is at 23 = 0
and the free surface (or cencerline) is at z; = 1. The
scales are nominally given in terms of outer units
(i.e., channel height) since conversion to wall vari-
ables can easily be obtained by multipyling by 135 in
the open channel case and 125 for the closed chan-
nel. For the streamwise macroscales, significant dif-
ferences between these two cases are apparent in the
rather large region 0.4 < z3 < 1.0. Here, the most
notable observation is that the us velocity compo-
nent A; length scale changes by a factor of approxi-
mately three (=5 0.60 at the open channel free surface
relative to 0.19 at the centerline of the closed chan-
nel). For the streamwise velocity component, A, dif-
fers only slightly at the free surface from the closed
channel centerline value (1.4 vs. 1.14); however, there
is a substantially different behavior in how these final
values are attained. The closed channel length scale
smoothly achieves an asymptotic value of order one
at the centerline, whereas the behavior near the free
surface resembles that observed near the solid bound-
ary (i.e., a peak at some distance from the bound-
ary indicative of the source layer thickness). The
free surface eflects on the spanwise macroscales, Ay,
are confined to a smaller region (0.8 < z3 < 1.0)
than those on the streamwise macroscales. Substan-
tial differences are again observed between the values
attained at the free surface relative to those at the
closed channel centerline. Both the u; and u; compo-
nent macroscales differ by a factor of about two with
the u; scale larger and the u; scale correspondingly
smaller at the free surface.

In Fig. 5 the microscale results are compared
for the open and closed channel flows. Trends similar
to those observed for the macroscale results of Fig.
4 are apparent. The streamwise scale, A, of the uj
component is larger at the free surface than at the
closed channel centerline (0.40 vs. 0.29); whereas,
A; for the ua component is somewhat lower (0.21 vs.
0.27). Similar to the spanwise macroscale results, the
spanwise microscales differ at the free surface with
the u; component scale larger and the u» component
scale smaller by the same amounts than their closed
channel centerline values.

The vertical macroscale, Azj, is given by:




1
Agj(z2) = / R;;(0,0, 22, 23)dz}. )
1]

At a given vertical location z3, Az gives a ineasure
of the vertical size of a typical eddy that can ex-
ist at that depth. These results are shown in Fig.
6. It is observed that Ay; and Azz increase contin-
uously away from the solid wall until approximately
z2 = 0.6, where the free surface effects become evi-
dent as both decrease. Generally speaking, both the
free surface and solid boundaries have similar overall
effects in that the eddy size that can exist there is
smaller than that existing away from the boundary.
However, the lack of viscous dissipation near the free
surface apparently allows for a somewhat greater ver-
tical extent than that found near a solid wall, as one
would expect. The Ajs macroscale results may not
be easily interpreted near the solid boundary since
Rgs(z2, z2") becomes negative there, presumably due
to the presence of the counter-rotating vortex struc-
ture typically associated with the wall layer. Near
the free surface however, Ras(z3, z2') is strictly posi-
tive so that the interpretation of Aj3 as a length scale
is more meaningful. As with the other two vertical
macroscale components, the proximity of the free sur-
face (or perhaps boundary in general) evidences itself
a8 a decrease in the A,g scale. These results generally
tend to confirm the HG model prediction of a strong
truncation of the vertical extent of a typical eddy near
the free surface.

To summarize, the macroscale results are partic-
ularly useful in understanding the change in shape
of a typical eddy as it interacts with the free sur-
face. Predominantly, the free surface effects relative
to the closed channel centerline behavior are larger
spanwise scales associated with the streamwise veloc-
ity component u;; generally smaller streamwise and
spanwise scales for the wall normal velocity compo-
nent u,; and larger streamwise scales associated with
the spanwise velocity component uz. Additionally,
the vertical macroscales, A,;, associated with all three
velocity components decrease on approach to the free
surface. This presents a reasonably clear picture of
eddies which flatten out or become pancake-like in
the horizontal plane as they undergo a reduction in
their vertical extent. This is certainly in agreement
with one’s intuitive expectation of the similar effect of
a solid boundary on an impinging eddy. These results
indicate a streamwise stretching by a factor of about
three and a spanwise elongation of approximately two.

It does not seem possible to make a quantita-
tive comparison of these results with the HG model
in its present form, since their model does not ac-
count for the strong anisotropy of the open channel
flow studied here. Obviously there is some difficulty
in defining a far-field integral length scale in this flow,

whereas this scale is well defined for homogeneous
turbulence. However, since the source layer of the
HG model is generated by the no mass-flux boundary
condition, it would seem that the scales of uy should
give the best indication of the extent of free surface
effects. In Fig. 7 the mean-square turbulence inten-
sities scaled by the local turbulent kinetic energy are
shown. This demonstrates clearly that all three veloc-
ity components show the effects of surface proximity
at a distance of about Az; = 0.3. (Sce Swean et al.1°
for a discussion of the redistribtion of energy from
the vertical velocity component to both the stream-
wise and spanwise components.) Indeed the vertical
velocity component is the only one which has asso-
ciated macroscales of about this size and which are
smaller than the macroscales at the centerline of the
closed channel flow. This seems to indicate that the
length scales for u; also determine the extent of the
source layer. This result is certainly consistent with
the source layer model of HG as noted above.

5. WALL-LAYER STREAK SPACING

In Section 3 the persistence of a spanwise peri-
odic structure at relatively large distance away from
the wall was noted for the open channel flow. These
streamwise-elongated structures, commonly referred
to as wall-layer streaks, appear in flow visualization
studies as regions of low-speed fluid close to wall.
Though there remains some controversy as to the sig-
nificance of the streaks, there appears to be increasing
evidence that they are indicators of quasi-streamwise
oriented vortices. These vortices in turn are thought
to play a role in the production of new turbulence
and in Reynolds stress production. They were first
observed experimentally by Hama (see Corrsin!3) and
later studied in more detail by Kline et al.}4. Their
visualization studies showed that the streaks were
typically observed below 3 = 30 and that they oc-
curred randomly in space and time. Kline ef al. also
found that the average spanwise spacing between the
streaks, A+, was approximately 100 essentially in-
dependent of Reynolds number. The experimental
results reported by Nakagawa and Nezu'® for open
chaunel flow indicate that the mean streak spacing
increases v ith distance from the wall and ultimately
approaches a value of A+ = 2z§ for z3>50. This led
them to speculate that the increase in length scale
resulted from a coalescence (similar to the pairing in-
teraction observed in free shear fiows) of neighboring
low-speed streaks as the distance from the wall in-
creases. However, it should be noted that for the
locations above z3 > 30 the spanwise length scale
they observe is very weak and may not necessarily
correspond to well-defined streaks.

More recently, Smith and Metzler'®, in agree-
ment with the findings of Nakagawa and Nezu, found
that the average spanwise wavelength increased from




93 at z3 = 1 to 146 at z§ = 30. They noted, how-
ever, that beyond z§ = 30 that the streaks were
not sufficiently well defined to warrant making streak
counts and they suggest that z =~ 40 is the upper
limit for which extended regions of low-speed fluid
continue to exist. Also in agreement with Nakagawa
and Nezu, they found that streak coalescence in the
region 10 < 3 < 30 contributed to the increasingly
disrupted streak pattern and overall increase in the
spanwise length scale with distance from the wall.
They noted that since the most active merging occurs
in the region of maximum turbulent energy produc-
tion, this merging process may very well be important
to the turbulence production cycle. The observation
of wall-layer streaks has not been confined strictly to
experimental studies; various numerical simulations
appear to very satisfactorily capture the wall-layer
dynamics. As an example, KMM show very good
agreement with the experimental determinations of
the variation of mean spanwise streak spacing with
distance from the wall.

In Fig. 8 the dependence of the mean streak
spacing on z§ is presented for both open and closed
channel flows along with various experimental and
numerical simulation results. Here the mean streak
spacing is defined as twice the spanwise distance at
which R,1(Az3) reaches a minimum (note that this
definition of A+ is consistent with KMM). The results
indicate clearly that for z} < 12 there is excellent
agreement among all the studies that A+ =~ 100. The
streak spacing in the open channel case shows a jump
from a value of 105 at 3 = 12 to approximately 130
at z3 = 15. Farther from the wall, the open chan-
nel streak spacing increases at a rate which is roughly
the same as in the closed channel but always remains
larger. Thus, Fig. 8 shows that at z§ =~ 65, A+ has
attained a value roughly twice twice that observed at
z¥ =~ 12. It is also clear that, unlike the closed chan-
nel case where the streak spacing is apparently only
clearly defined out to perhaps zJ =~ 50, the spanwise
periodic streaks can definitely be observed well out
to z3 = 80 in the open channel flow. This is in fact
within the logarithmic layer of the streamwise veloc-
ity profile (see Swean et al.1° for the open channel
flow mean velocity profile). It is apparent that the
the streaky structure in open channel turbulence is
both larger in scale and persists farther from the wall
than in closed channel turbulence.

Though the reasons for these differences are far
from evident, a few speculations are now offered to
explain this behavior. The only obvious difference be-
tween these two flow fields is the boundary condition
imposed on the upper boundary. Since the shear-free
boundary suppresses the production of new turbu-
lence we can envision that this must in turn suppress
the ejection of low momentum fluid that would oth-

erwise occur if the boundary were rigid (i.e no-slip
boundary conditions). The suppression of these ejec-
tions from the top boundary (free surface) toward the
bottom boundary (solid wall) may be responsible for
slowing down the production of turbulence by low-
ering the probability of shear layer formation in the
region of the solid wall. Thus, the larger, more coher-
ent streaks near the wall in open channel turbulence
are due to the suppression of turbulence production
at the free surface. Furthermore, in boundary layer
flows the entrainment of outer irrotaional fluid may
act like ejections from the upper wall of a channel.
In this sense, boundary layer flow has a closer resem-
blance to closed channel flow than to open channel
flow. These results suggest that the outer flow does
have an effect on the wall region at least at these low
Reynolds numbers.

6. CONCLUSIONS

The structure of turbulence near a free surface
has been studied using the resuits of a direct simula-
tion. The method employed here to understand this
structure is to compare the open channel turbulence
results with its well studied closed channel turbu-
lence counterpart. A comparative examination of the
turbulent macroscales and microscales in these two
cases reveals a significant flattening of a typical eddy
near the free surface. This flattening is evidenced
by a notably larger streamwise scale associated with
the spanwise velocity component and a comensurately
larger spanwise scale of the streamwise velocity com-
ponent. Additionally, the vertical macroscales for all
three velocity components are smaller than the com-
panion closed channel values. In this flow, the source
layer described by the Hunt-Graham model appears
to extend about 0.3 channel heights below the free
surface. This source region seems to correlate most
strongly with the structure of the vertical component
of velocity. All length scales for this component are
about the correct size and all are smaller than the
macroscales at the centerline of the closed channel
flow. A direct quantitative comparison of these re-
sults with the HG model is not possible since the
model does account for the strong anisotropy of the
turbulence present in this flow. The energy spectra
for all three components of velocity are in qualita-
tive agreement with the HG model though resolution
eflects and anisotropy limit direct quantitative com-
parison.

An interesting phenomenon revealed by the cur-
rent study is the increase in size and persistence of
the spanwise periodic structure near the wall. In open
channel turbulence this structure is larger in scale and
penetrates farther into the flow than in closed channel
turbulent flow. The origin of this effect is not clear
but one possible explanation is that the free surface
suppresses interactions which would normally occur




between the no-slip boundaries of channel low. This
observation lends support to the possibility that the
outer flow has a significant eflect on wall layer struc-
ture. In future work, a quantitative comparison of
these results with a modified form of the HG model
will be attempted and higher resolution simulations
will be undertaken to further elucidate the structure
of the turbulence near the free surface.
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Appendix H

The Enstrophy Balance During the Interaction of a
Vortex Ring with a Shear-Free Boundary
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Appendix I

Three-Dimensional Vortex Interactions with a Free Surface
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THREE-DIMENSIONAL VORTEX INTERACTIONS WITH A -
FREE SURFACE

Hemry T. Wang
Laboratory for Computational Physics and Fluid Dynamics
Naval Research Laboratory
Washington, D. C.

Richard L. Leighton
Science Applications International Corporation
MclLean, Virginia

ABSTRACT

This paper presents a numerical calculation of the three-
dimensional flow due to a pair of vortices rising toward a shear-
free surface. A spectral method with transforms in Fourier-
Chebyshev space is used to solve a vertical velocity-vertical vor-
ticity formulation of the Navier-Stokes equations which elimi-
nates the pressure term and implicitly satisfies the equation of
continuity. The method is used to study the subsequent evo-
lution of various initial three-dimensional perturbations to the
two-dimensional case. It is shown that this evolution leads to
flows which range from being negligibly different from the two-
dimensional case to being numerically unstable, depending on
the type, magnitude, and wavelengths of the initial perturba-
tions. It is also shown that an approximate calculation for the
surface elevation is in good qualitative agreement with experi-
mental results for weak vortices corresponding to low values of
the Froude number.

INTRODUCTION

The flow field around a pair of counter-rotating vortices in
the vicinity of a bounding surface is of interest in a number of ap-
plications. These vortices naturally arise behind lifting surfaces
such as airplane wings and underwater hydrofoils. In aerody-
namic applications involving the landing or take-off of aircraft,
it is of interest to ascertain the characteristics and persistence
of the vortices near the runway left behind by previous aircraft.
In marine applications, it is important to assess the presence of
the nearby free surface on the lift performance of the submerged
hydrofoils. More recently, the use of modern remote sensing
techniques makes it of interest to ascertain the small surface el-
evations caused by the subsurface vortices since they change the
reflection and refraction characteristics and hence are detectable.
In this connection, it is now realized that even small amounts
of surface contaminant can lLave large effects on both the free
surface perturbation and the underwater vortices.

Representative of recent experimental studies on vortex
pairs are those by Barker and Crow(1], Sarpkaya[2], Sarpkaya,

213

Elnitsky, and Leeker{3], and Bernal, Hirsa, Kwon, and Will-
marth[4]. In these experiments, care must be taken to not only
generate the required vorticity but also enough fluid to fill the
vortex recirculation cell enclosing both vortices; otherwise, the
generated vortices quickly dissipate[1]. To this end, fiap mecha-
nisms are used in [1,2,4), while underwater wings are used in (3.
In these and related studies, it is usually observed that thereis a
tendency for the vortices to rebound away from the surface, the
tendency being stronger for no-slip(1] and contaminant surface
conditions(4] than for the shear-free case. Barker and Crow pos-
tulate that this rebound phenomenon is due to the effect of finite
vortex core, which tends to deform in the vicinity of the bound-
ing surface. However, Saffman|5] shows that this effect must be
due to viscosity, since the integration of the inviscid Euler equa-
tions always predicts a monotonic asymptotic approach of the
vortices to the bounding surface. By using a finite-difference ap-
proach to solve the Navier-Stokes equations, Peace and Riley(6]
support this argument by showing that even for the shear-free
case some vorticity is lost to the surface due to viscous diffusion.
In [2] and [3), it is shown that the surface perturbation due to
the vortex pair consists of three-dimensional ridges or s.riations
perpendicular to the axis of the vortices, and depressions or scars
which are parallel to the axis.

Recent numerical studies have largely focused ou the it-
erative solution for the underwater vortex flow field and the
unknown position of the free surface. Sarpkays, Elnitsky, and
Leeker{3], Marcus and Berger7}, Telste(8], and Yu and Tryggva-
son(9] assume the fluid to be inviscid while Ohring and Lugt[10]
consider the more general case of a viscous fluid. The gener-
alized vortex/boundary integral technique proposed by Baker,
Meiron,and Orszag{l11] is used in {3.8,9]. The basic technique
consists of placing a number of vortices on the free surface, and
at each time step iterating on the strength and location of these
vortices until the dynamic and kinematic free surface conditions
are satisfied. The approaches differ on the number and initial lo-
cation of the vortices, the desingularization of the velocities near
the individual vortices, and the filtering or damping techniques
needed for numerical stability. Marcus and Berger use a finite




difference approach to model the Laplace equation and the free
surface conditions. Ohring and Lugt also use a finite difference
approach to model the spatial derivatives in the Navier-Stokes
and free surface equations. In all of these studies, it is observed
that the vortex trajectories vary as a function of the Froude num-
ber Fr = Vy/,/ga, where V; is the initial translational velocity
of the vortex pair, g is the gravity constant, and a is the initial
vortex spacing. For high values of Fr > 1, approximately, the
vortex trajectories are little affected by the presence of the free
surface and tend to burst through the interface. As the value
of Fr decreases, the trajectories increasingly approximate those
for a rigid wall until there is little difference between these cases
for Fr < 0.15, approximately{3)].

In a related study, the present authors{12] consider the case
of the vortices rising to a surface with various types of contam-
inant. Here, the unknown free surface condition is not the ele-
vation but the variable shear due to the surface tension gradient
caused by the spatially varying contaminant concentration. A
spectral method, with transforms in Fourier-Chebyshev space, is
used to model the spatial derivatives in the Navier-Stokes equa-
tions.

All of the above studies assume two-dimensional flow where
the axes of the vortices are assumed to be straight lines parallel
to the bounding surface. It is well known that these vortices usu-
ally do not conform to this approximation. Crow{13] shows that
the exponential growth of certain eigenmodes eventually causes
the initially straight cores to break up and form uncorrelated
vortex rings. Also, the ambient flow field contains perturbations
due to turbulence or irreguarities in the forward speed of the
lifting surface. Finally, since the vortices are being continuously
generated by the lifting surface traveling at forward velocity U,
and the vortices have a finite rise velocity V;, the vortex line is
inclined at the angle v = tan~}(V,/U) with the horizontal.

In the present paper we investigate the effect of various types
of initial three-dimensional perturbations on the subsequent de-
velopment of the vortex cores rising to a shear-free surfece. We
present results for three sets of cases. The first set is the pre-
vious two-dimensional case tc verify the accuracy and stability
of our three-dimensional approach. The second set consists of
various sinusoidal variations in the axial direction of the hor-
izontal locations of the vortex centers. The third set consists
of various random three-dimensional perturbations to the initial
two-dimensional flow field. Our numerical approach is essen-
tially a generalization to three dimensions of our previous two-
dimensional spectral approach[12]. The resulting basic equa-
tions and solution procedure are similar to those given in Kim,
Moin, and Moser{14] or Handier, Hendricks, and Leighton[15).
However, the formulation given in these references is for no-slip
boundary conditions appropriate for channel flow while we con-
sider shear-free surface conditions. Also, we calculate the free
surface elevation from the computed flow field.

We first give a brief outline of those equations and solution
procedures which are described more fully in {12,14,15]. How-
ever, we give a more detailed description of our boundary and
perturbed initial conditions which differ from those given in these
references. We also describe our a posteriori calculation of the
surface wave elevation and discuss its accuracy. We present and
discuss our results which are piven in terms of three-dimr.ensional
plots for the surface elevation and line and contour plots for the
subsurface vorticity and velocity fields. We pay particular at-
tention to the growth or decay of the initial three-dimensional
perturbations. We conclude by briefly summarizing the principal
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findings.
THEORETICAL APPROACH
Basic Equati

Figure 1 shows the coordinate system and the dimensions
of the computation domain, while Fig. 2 shows the initis] vortex-.

initial vortex spacing a, the initial translational velocity of the
vortex pair Vo, and the fluid density p, as reference variables.
Figure 1 shows that our computation domain is 2 units in the:
vertical y direction where nonperiodic boundary conditions are :;
applied, and 10 units in the horizontal z and z directions where .}
periodic boundary conditions apply. The z direction coincides 3
with the axis of the vortex cores and vortex motion takes place -
in the yz plane in the two-din.ensional motion considered in pre- *
vious studies. In terms of dimensionless variables, the Navier- «.
Stokes equations in the so-called rotational form is given by

. % :'fg.“:-‘

%‘u—+wxu=—VP+%V’u @
where u is the fluid velocity, t is the time, w = V x u is the .
vorticity, P = p + u - u/2 is the dynamic pressure head, p is the
pressure, Re = paVp/p is the Reynolds number, and u is the
fluid dynamic viscosity. As noted by Hussaini and Zang{16], the
use of this form in Fourier collocation methods, as in our study,
conserves kinetic energy and hence tends to minimizge the effect of
nonlinear instabilities. For an incompressible fluid, conservation
of mass takes the form

V-u=0 (2)

The troublesome term involving P may be eliminated and the
incompressibility condition implicitly satisfied by writing Eq. (1)

Fig. 1-Coordinate System and Computation Domain
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Fig. 2-Initial Vortex Configuration




in component form for the velocities (u,v, w) in the (z,y, 2z) di-
rections, taking second order spatial derivatives of these equa-
tions, and using Eq. (2). This results in a fourth order equation
for the velocity v and second order equat‘rn for the vorticity
component wy, as follows{14,15]

%v’u =H,+ %V‘v @3)
ey e 0

where H, and H, are the nonlinear terms arising from w x u.
N ical Solution P I

We advance Eqgs.(3) and (4) in time by using the weighted
implicit Crank-Nicholson method for the linear term and the
weighted explicit Adams-Bashforth method for the nonlinear
term. In the case of Eq.(4), this results in the following equation
for the value of w, at the new n + 1 time step in terms of values
at the previous n and n — 1 time steps

A

(1- Aty ooV + SeED - B3 (9)

n+l =
2Re (1+

where At is the size of the time step. Since we assume the flow
to be shear-free at the upper and lower boundaries, i.e. 3u/dy =
Sw/8y = 0 on y = %1, the resulting boundary condition on w,
is

?—w—l=00ny=i1 (6)

whereas w, = 0 for the no-slip conditions considered in [14,15].

The fourth-order Eq.(3) for v is split into two second-order
equations as follows

(1= 206 = (14 2ovgt + 2LeEr - ) ()
Vzvn«n - ¢u+l (8)

Our boundary conditions of no flow through, and no shear on,
the upper and lower surfaces take the following form

v—%=00ny-‘:hl 9

Again we note that for the no-slip case[14,15] the second-order
derivative in the above equation is replaced by a first-order
derivative.

We do not solve the above formulation directly in physi-
cal space but in Fourier-Chebyshev transform space, where the
unknowns v, ¢,w, are expanded as exponential functions in the
periodic z and z directions, and in Chebyshev polynomials T, in
the y direction. For example. in the case of v, this series takes
the form

L/2-1 M/2-1
v(z,y,2,t) = Z Z Zv(l m,n,t)exp(ioiz + iBmz)Taly)
=0 m=-M/2n=0

(10)
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where L, M, N + 1 are the number of grid points in the z,2,y
directions, respectively, ay = 2xl/L; and B = 2xm/L, are
respectively the {th and mth wavenumbers in the z and & di-
rections, and L, = 10 and L, = 10 are respectively the lengths
of the computation domain in the z and z directions. The grid
points z; and z are evenly spaced while the y,, points are cosine-
spaced 30 as to have the highest deasity neary = £1.

By noting that the spatial derivatives 3/8z and 8/8: respec-
tively correspond to multiplications by ta; and i in transform
space, it can be seen that the three-dimensional Poisson Equa-
tions (5), (7), and (8) reduce to three sets of L/2 x M Poisson
equations in the y direction at each time step. For example, the
equation for ¢ takes the form

in+l 7 i 3
aaav? !a_,z G(y' ai, ﬁﬂ! ‘l.—' H:‘-’ H'-‘
(11)

Due to the presence of the nonlinear terms A% and A%} we
must, at each time step, inverse transform to physical space, per-
form the operations required to obtain H,, and then transform
H, to get H,. We perform these transforms by using standard
Fast Fourier Transform techniques. Also, to avoid alissing errors,
whereby energy from modes outside our range of consideration is
placed into lower modes, we use the well known de-aliasing tech-
nique whereby we consider (3/2)(L x M) physical points but use
only the modes corresponding to L x M points.

The Poisson Equation (11) effectively reduces to the inver-
sion of a N +1x N +1 matrix for the coefficients of the Chebyshev
polynomials. By using recursion relations which relate deriva-
tives of a Chebyshev function of order n to neighboring orders,
the second derivative in Eq. (11) for the N + 1 grid points gives
rise to two quasi-tridiagonal matrices for the coefficients of the
even and odd Chebyshev polynomials (see, for example, Chapter
5 of {17]). Inversion of these matrices is considerably less time
consuming than full matrices of the same order.

Our use of the implicit Crank-Nicholson scheme to advance
in time the linear terms of our solution assures their stability,
regardless of the size of the time step At. However, our use of
the explicit Adams-Bashforth scheme for the troublesome non-
linear terms requires that At not exceed the criterion given by
the Courant-Friedrichs-Lewy condition, which basically states
that At should be sufficiently small so that the solution does not
completely propagate across any grid cell in the computation
domain. The strictly correct manner of implementing this is to
evaluate the ratio of grid size to speed of propagation throughout
the computation domain at each time step and use the minimum
value of this ratio as the new value of At. Instead, we find that
the following approximate approach yields stable solutions for
the present calculations. We take 2/N, the average in the y
direction, as the representative grid dimension and the initial
velocity of the vortex pair (which is unity in dimensionless co-
ordinates) as the typical speed of propagation. Qur time step is
then approximated by

_(a?+p'2. )‘uvil

Até&3

N (12)

where § = 0.2/12.

Once ¢ and &, have been computed, the remaining two
components of velocity in transform space, & and %, may be
conveniently obtained by solving the following two simultaneous
algebraic equations which arise by using the continuity Eq. (2)
and the definition of w, = 3a/8z - Jw/dz




P P 0%, %
Froid il v S (13a)
ﬁ FPo -0 E!. (13b)

522 T 9 "1y o=

The remaining two components of vorticity, &, and &, are then
obtained algebraically from the definition w =V x u.

The dynamic pressure head P is then calculated by the fol-
lowing Poisson equation which results from taking the divergeace
of Eq. (1) and again using the continuity Eq. (2)

ViIP=V.(ux w) (14)
The boundary conditions for P at y = 1 may be conveniently
obtained by considering the momentum equation in the y direc-
tion. For our case of shear-free surfaces, the condition is

opP

-8-v-=000v=il (15)

From P we can conveniently calculated p = P ~ u- u. By then
considering the continuity of stress in the y direction at the free
surface (see, for example Skop[18]) we can calculate the first
order elevation n as follows
qurz(p——I:—e-%)ony=+l (16)
We note that the above calculation of the elevation is a posteriori
and hence only approximate since by assuming the free surface
to be flat, i.e. v(y = +1) = 0, we have neglected the mutual
influence of vortex motion and surface elevation. However, the
results of previous studies tend to show that this approxima-

tion becomes more accurate with decreasing Fr, and may give
reasonable results for values of Fr < 0.13, approximately(3).

Initial Conditi
The initial position of our vortices is as shown in Fig. 2.

For the case of two-dimensional Gaussian vortices, the vorticity

COMPONENts Wy, wyi wsi,t = 1,2, of each vortex are given by

weizy, ) = e [z =~ P + @ -wl] fe? (17a)

wyi(Z, ¥, 2) = wsi(z,y,2) =0 (17b)

where z; = ~0.5, 22 = 405, ¥y = y»p = -050, I}, = -2,
T2 = +2x, and ¢ = 0.25 is a measure of the core size. Hereafter.
this case is referred to as CTWOD. We consider two series of
three-dimensional perturbations. In the first series, we allow the
z spacing of the vortex centers to sinusoidally vary in the axial
z direction. We report results for the case where the amplitude
of variation is £20%, with period L., and refer to this case as
CZ1CY. We considered other values of amplitude and period,
and found that halving the amplitude leads to only small dif-
ferences from the two-dimensional case, while consideration of
shorter periods usually leads to numerical instsbility before the
end of the calculations. In the second series, we perturb all three
components of «w throughout the computation domain by ran-
dom values in the range tewmer Where wme, = [/(x0?). We
consider values of ¢ equal 0.010, 0.030, and 0.050, and refer to
these cases as CO010, CO030, and CQ050, respectively.

_We caq in principle sum the vorticity contribution fro bot
vortices to obtain the total vorticity field w and then obtain ti
velocity u by wsing the following vector identity and boundm
counditions

V'u =-Vx w

du _ 0w

A~ Oy Qony=+1

{1t

(s

We note, however. that due to the finite si

p‘lxmion domaiu. the velocities induced byn:r“vo:;e;:
,ull not conformi to the prescribed boundary conditions, lead
ing to possible highly oscillatory behavior of the resultan
vdof:uesnwy = %1. This in turn may lesd to nu
merical instabiliticx in our time marching scheme. To min
imize this oscillatory behavior, we introduce the following
three pairs of image vortices which tend to render the veloc

ity field compatible with the prescribed boundary conditions :
Ti=-Timi=~2~y .

Fai = ~Fipni = 42—y,
Fsi=+Ti,pa = +4 + i

where i = 1.2. We then apply Eqs. (18) and (19) to the vortic
field due to all four pairs of vortices. (9 v

NUMERICAL RESULTS
Calculation Pagmneters

We performed our caleulations on a Cray X-MP/24 main-
frame computer. We nsed a calculation grid of 16 x 49 x 48 ia
the z,y,z directious for the two-dimensional CTWOD and low
pertu.rbation CO010 casex, and a finer grid of 16 x 65 x 48 for the
remaining higher perturbation cases. The time steps were taken
to be respectively (.000S aud 1.0005 for the coarse and fine grids,
as approximated by Eq. (12). The calculations were carried out
for a total time of 6 dimcusionless units for the coarse grid cases,
and 5 for the finer grid cases, vesulting in 7500 and 10000 time
steps for the conrwe and fine gvids, respectively. Computer ex-
ecution times for ouc time step are approximately 0.52 seconds
for the coarse grid nud 0.59 seconds for the finer grid, resulting
in total execution ties of 3900 and 5900 seconds for the cosrse
and fine grids, respectively. Assuming the vortices to be nomi-
nally Propagating at uuit velocity at all times, the nonphysical
b.oundanes at = = tL./2 begin to be strongly felt by the vor-
tices for ¢ > 5. approximately. The main reason for calculating
the coarse grid cases beyond this point is to investigate their ou-
merical stability cven under these nonphysical conditions. The
value of Re is takeu to be 100K). This is approximately one order
of magnitude higher than that considered in those studies which
solve the Navier-Stokes equations[6.10] and is close to the range
of 3000 to 4000 considered in experimental studies|1,2,4]. This
is lugetle_vl' du:;d to our uw of the spectral approach wh;c.h more
accurately moadels xpatial variation ite-di
: APy than the finite-difference ap-

We present our results in three forms. Fj i
plots showing the varintion of the velocity vl::tc'l wv:rl::::':’:
the z and y directions at the = plane containing the maximum
vorticity, and the velocity « in the r and y directions at the zy
Plane containing thix snme maximum vorticity. These plots show
in convenient forin the stability of our caleulation procedure and
the arnount of amplitication of the initjal perturbations. We then
pfesent contour plots of the vorticity to show in greater detail the
dfﬁ'erences between the varions cases, Finally, we present three-
dimensional plots of the surface clevation to qualitatively show
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the degree of agreement with previous studies and the effect of
the three-dimensional perturbation in this case.
Line Pl { Subsurface Fl

Figure 3 shows six line plots which give the variation of u
in the zy plane, and v and w. in the yz plane at ¢t = 3 for Case
CTWOD. Figures 4-9 show, in the following order, corresponding
line plots for Case CTWOD at ¢t = 6, Case CO010 at ¢t = §, Case
CZI1CY at t = 3, Case CO030 at t = 0 and 3, and Case Q050 at
t=3.

Figures 3-4 show the stability of our calculations for the two-
dimensional case. The axial velocity u remains identically sero
at all times. Also, even at t = 6 when the vortices have props-
gated to nesr the end of the periodic computation domain and
are experiencing strong influence from the image vortices across
these nonphysical boundaries, the calculated results continue to
be smooth and free from numerical instabilities. On the other
hand, Figure 5 shows that the low level perturbations for the
CO010 case are sufficient to cause the corresponding line plots
to exhibit the high frequency noise characteristic of numerical
instability, specially noticeable in the variation of w, with y. At
earlier times, the calculated results are stable and differ little
from those for CTWOD.

Figure 6 shows that the calculated results for Case CZ1CY
are stable and differ moderately from those for the two-
dimensional case. Figure 7 shows that for Case CO030, where
the initial vorticity is given a random perturbation in the range
+0.03wmaes, the high frequency content in the initial conditions
is substantial for the vorticity but relatively little (though no-
ticeable) in the case of the velocities u and v. Figure 8 shows
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that at ¢ = 3 the calculation far Case COO030 is approaching nu-
merical breakdown while Figure 9 shows that the corresponding
plots for Case COQS50 sre already slightly in the instability re-
gion. Figure 8 also shows that the initial perturbations which
are largely confined to the vorticity at t = 0 are now also evident
in the velocities.

Contour Plots of Subsuciace Flow

Figure 10 shows the contour plot of the vorticity w, at the
midplane z = 0 and ¢ = 3 for Case CTWOD. Figures 11a-c show
these plots for Case CZ1CY at t = 3 for z = —L,; /4.0, +L, /4,
respectively. Figures 12a-c show corresponding plots for Case
CO030. Figures 11a-c show the expected trend that the verti-
cal distance of the vortex pair below the free surface varies with
z due to the unequal rise velocities caused by the initial axial
variation of the z spacing of the vortex pair. As a result, the
vortex contours show different stages of interaction with the free
surface. Figure lla, corresponding to the case of the vortices
being closest to, and hence interacting most strongly with, the
free surface, suggests the formation of s ribbon-like structure,
similar to that cbeerved by Pumir and Kerr{19]. They point
out that the calculation ' of its subsequent evolution is usually
limited by grid resolution. It is also of interest to note that Fig-
ure 11b, which corresponds to the = location where the initial
vortex spacing is identical to the two-dimensional case, exhibits
contours which are similar to those shown in Figure 10 for Case
CTWOD. Figures 12a-c show that the contours due to the ran-
dom vorticity perturbation case CO030 are no longer symmetric
about the plane z = 0.
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Fig. 13b—Surface Elevation 5 for Case CO010 at ¢ = 2

Figures 13a-c show three-dimensional plots of the surface

elevation n for Case CO010 at ¢ = 0, 2, and 3, respectively. Fig-
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3 the vortices are essen-

in [2,3]. Figure 13c shows that at ¢

Fig. 13c-Surface Elevation 5 for Case CO010 at ¢t =3

gures 14 and

resulting in a wider

/4 and closest at z = +L./4.

in [2], the scars are fixed or “slaved” relative to the vortices

and appear slightly ahead of them. The figure also shows that
at this value of ¢ the initial three-dimensional perturbations are

now amplified to the point of being noticeable. Fj
more pronounced as the amplitude of the (otherwise identical)

random perturbation is increased in amplitude. It appears that

these perturbations excite a dominant mode in the axial direc-
tion. Figure 16 shows the expected trend that the vortices are

tially moving parallel to the free surface,
lower mound above the vortices. Similar to the trends vbserved
15 show how the general shape remains largely the same but is

furthest apart at z = ~L,

Fig. 14-Surface Elevation n for Case CO030at ¢ =3

=0

Fig. 13a-Surface Elevation n for Case C0O010 at ¢
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Fig. 16-Surface Elevation n for Case CZ1CY att =3

CONCLUSIONS

We have presented a spectral approach for solving the three-
dimensional incompressible Navier-Stokes equations where we
expand our solutions as triple series involving exponential func-
tions in the periodic z and z directions and Chebyshev polynomi-
als in the nonperiodic y direction. We eliminate the troublesome
pressure term and implicitly satisfy the continuity condition by
going to a fourth order equation for the y component of velocity
and a second order equation for the y component of vorticity.

We apply this method to study the flow due to a pair of
counter-rotating Gaussian vortices rising to a shear-free surface.
We consider the two-dimensional case as well as two series of
three-dimensional perturbations to the initial conditions. In one
series, we consider the horizontal z spacing of the vortex centers
to undergo a one-cycle sinusoidal variation in the axial direction
and in the second series, we randomly perturb the three compo-
nents of vorticity by 0.01, 0.03, and 0.05 wmez. We find that our

computation scheme is stable for the two-dimensional case even
at t = 6 when the vortices are interacting strongly with the noa-
physical boundaries of our computation domain. We present our
results in terms of line and contour plots for the subsurface flow
and three-dimensional plots for the surface elevation. In terms
of differences from the two-dimensional case, they are small for
the 0.01wne case and moderate for the other cases. The two
largest random perturbation cases eventually become anumeri-
cally unstable before the vortices are influenced by the nonphys-
ical boundaries of our computation domain, at which point the
calculations are physically meaningless. The surface elevations
show the same mound and depression pattern obtained in pre-
vious experimental and numerical studies. In addition, we show
the effect of the three-dimensional perturbations.
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Appendix J

Requirements Definition by Numerical Simulation




il JEN 4O SR o Gl e

CONTRABAND DETECTION TRACE CHEMICAL
PHENOMENOLOGY WORKSHOP
June 10-11, 1993

“Requirements Definition by Numerical Simulation”

James Hickman, Chris Kostas, Kang Tsang
Science Applications international Corporation

Abstract:

We have been investigating the issues invoived in requirements definition for narcotics
interdiction for the past six months. Our approach has been to simulate numerically the
conditions that arise during vapor particulate transport. The advantages of this
approach are that: (1) a broad range of scenarios can be rapidly and inexpensively
analyzes by simulation and (2) simulations can display quantities that are difficuit or
impossible to measure. The drawback of this approach is that simulations cannot
include all of the phenomena present in a real measurement, and therefore the fidelity
of the simulation results is always an issue.

We will discuss these issues and how they apply to the current problems. We will show
preliminary data on numerical simulations of simple configurations. We will also show
the results of a 1D numerical simulation and compare these resuits with the analytical
solution to the same problem to demonstrate that the model is at least verifiable at its
most basic level.
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