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ABSTRACT

Using results of DNS in the case of two-dimensional homogeneous isotropic
flows, we first analyze in detail the behavior of the small and large scales of
Kolmogorov like flows at moderate Reynolds numbers. We derive several
estimates on the time variations of the small eddies and the nonlinear in-
teraction terms; those terms play the role of the Reynolds stress tensor in
the case of LES. Since the time step of a numerical scheme is determined as
a function of the energy-containing eddies of the flow, the variations of the
small scales and of the nonlinear interaction terms over one iteration can be-
come negligible by comparison with the accuracy of the computation. Based
on this remark, we propose a multilevel scheme which treats differently the
small and the large eddies. Using mathematical developments, we derive esti-
mates of all the parameters involved in the algorithm, which then becomes a
completely self-adaptive procedure. Finally, we perform realistic simulations
of (Kolmorov like) flows over several eddy-turnover times. The results are
analyzed in detail and a parametric study of the nonlinear Galerkin method
is performed.

'Part of the work was done while the second and third authors were visiting the Institute
for Computer Applications in Science and Engineering (ICASE), NASA Langley Research
Center, Hampton, VA 23681.
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Introduction

A turbulent flow can be characterized by a spatial and temporal chaotic be-
haviour. Indeed, strong gradients may appear and, in the physical space,
several structures with various sizes are generated by the external force and
by the flow itself. The structures are convected by the mean flow. In the case
of viscous incompressible flows in dimension two, thin and elongated sheets of
vorticity appear. These structures are characteristic of incompressible flows.
The phenomenological theory of turbulence, introduced by Kolmogorov in
dimension three and Kraichnan in dimension two, predicts that the size uf
the smallest scales of a flow decreases while the nondimensional Reynolds
number grows. So, the number of degrees of freedom required to describe
the motion can be estimated in terms of the Reynolds number (- cRe in
space dimension two).
Hence, a Direct Numerical Simulation, i.e. the resolution of all physically
relevant scales, can not be achieved when the Reynolds number becomes too
high and then, when the turbulence is fully developed. A model is then used
in many simulations ; i.e. the small scales are not exactly integrated but
their interaction with the large ones are taken into account in a simplified
way. Basically, the aim of these models is to recover the large eddies of the
flow (or their statistic) without explicitly computing all the scales of motion.

In relation with recent developments in the theory of dynamical systems
and its application to turbulence phenomena, new objects have been in-
troduced (exact or approximate inertial manifolds, see Foias, Manley and
Temam [1]) and new numerical methods have been proposed (the nonlinear
Galerkin methods, see Marion and Temam [2] and [3], the incremental un-
known method, see Temam [4]). These objects and methods are based on a
decomposition of the unknown, such as the velocity field, into its small scale
component and its large scale one, and essential in the nonlinear Galerkin
method is a systematically differentiated treatment of the small and large
scales.

These approximate inertial manifolds are subsets of the phase space and
consist in an approximate form of the small scale equations. They provide
an adiabatic law modeling the interaction between the low and the high fre-



quency components of the flow ; the small eddies are in fact expressed as
a nonlinear function of the large ones, they are slaved by the large ones.
Moreover, these manifolds enjoy the property that they attract all the orbits
exponentially fast in time and that they contain the attractor in a thin neigh-
borhood. In that sense, they provide a good way to approximate the solutions
of the Navier-Stokes equations. The nonlinear Galerkin method, proposed
by Marion and Temam [2], consists in looking for a solution lying on these
specific subsets of the phase space. Several implementations of this scheme
have previously been done by Jauberteau, Rosier and Temam ([5] and [6]),
and Dubois, Jauberteau and Temam ([7]). Results presented in these papers
were mainly feasibility tests involving exact solutions (analytical), where the
authors tried to recover known velocity and pressure fields. These tests pro-
vided good indications on computational feasibility and performances, but
had no physical relevance. In the present article we intend to develop further
the study of the numerical implementation of the nonlinear Galerkin method
for flow problems. We have several objectives which we describe hereafter
in some details. Firstly, we would like to compute physically more relevant
flows, namely here Kolmogorov type flows. Secondly, the effective implemen-
tation of the nonlinear Galerkin method involves several parameters (such
as the cut-off wavelength between low and high frequencies, and the time
during which the high frequencies are allowed to be frozen) ; and another
of our aims is to conduct a parametric study of the method, and to develop
simple self-adaptive methods for the determination of these parameters.

Here, we consider two-dimensional periodic flows governed by the incom-
pressible Navier-Stokes equations. Of course, such flows correspond more to
an idealized situation rather than a physical one. Nevertheless, this model
contains several difficulties which occur when simulating turbulent flows, and
then it provides a good test to implement a numerical algorithm. More phys-
ically relevant situations, such as three-dimensional flows, will be presented
elsewhere. In a parallel effort, we are also treating the case of a flow driven
by a constant pressure gradient between two infinite parallel plates, namely
the channel flow ( see for instance [8]).
In the first section of the paper, we introduce the equations and several nota-
tions. Then, we define the decomposition of the velocity field into large scale
components and small scale structures. This decomposition depends on a
cut-off value, corresponding to a wave-number of the Fourier decomposition
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of the unknowns, and provides two grids in the physical space. In previous
theoretical works (see for instance [1] and [9]), the authors have rigorously
proved that, for a sufficiently large wavenumber, the large scale components
contain most of the energy of the flow. The small scale structures repre-
sent then small quantities, which have to be taken into account in order to
correctly compute the large scales of motion. After recalling these results
and comparing them with numerical simulations, we show, based on both
theoretical and numerical investigations, that the time variation of the small
eddies over one time step can be smaller than the energy carried by these
scales themselves, when the cut-off value is chosen sufficiently large. A sim-
ilar result is also proved for the nonlinear interaction terms expressing the
action of the small eddies over the large ones. Then, introducing the expected
accuracy of the computation e as a parameter, we deduce that there exists
a level such that the one-step -time variation of the small scale components
is smaller than e. We note here that this result is not in contradiction with
the fact that the small eddies evolve faster than the large ones. In fact, their
time scales are smaller but their order of magnitude also decreases for large
wavenumbers.
Hence, the time variations of part of the spectrum can be locally neglected.
We have also proved that the interaction terms enjoy the same property.
These two fundamental results are one of the keys of the numerical algo-
rithm proposed in the following sections.

Based on these results, we have implemented a spatial and temporal mul-
tilevel adaptative method ; i.e. the level of refinement, which define the
separation of the flow into low and high frequencies, evolves in time under-
going successive multilevel V-cycles ; moreover, it follows the dynamic of the
small and the large scales of the motion. Moreover, some part of the spec-
trum are frozen, as well as the interaction terms, during short time periods.
After a complete description of this multilevel procedure, we derive several
estimates of characteristic time scales for the small structures and for the
terms involving their interactions with the large scale components. These
estimates provide an efficient way to evaluate the length of the time interval
during which the small scales, corresponding to several levels of refinement,
as well as the corresponding interaction terms are allowed to be frozen with-
out introducing an error larger than the accuracy e. Hence, we obtain a
completely self-adaptative procedure which depend on only one parameter,
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namely e. At the end of each frozen period, the velocity field is projected
on an Approximate Inertial Manifold (AIM), which provides a simple and
efficient way to directly compute the high frequencies. We analyze here the
perturbation introduced by using first order Approximate Inertial Manifolds
and we deduce in, which range of the spectrum the manifold can be used to
compute the small scales.

The last section is devoted to the description and the analysis of several
numerical simulations performed with the multiscale (Nonlinear Galerkin)
method. The integral scale Reynolds number ReL was successively set to
784 and to 6,328 for spatial resolutions of respectively (256)2 and (512)2.
In these cases, a full dissipation range is resolved as the larger wavenumber
is at least 6 times larger than the dissipation wavenumber. The Reynolds
numbers are not sufficiently large for the solutions to have a k- 3 energy
spectrum power range ; indeed, the computed velocities have an intermedi-
ate energy spectrum between k- 4 and k-3 . Nevertheless, the different scale
components are strongly time dependent, and they provide interesting tests
for the multilevel adaptative procedure. More physically relevant situations,
eg simulations with larger Reynolds number, will be treated and presented
elsewhere. For each simulation, the code has run during more than 50,000
time iterations, which represents 10s of unit hours on a Cray-2.
In this last section, we first compare the results obtained with a previous
version of the algorithm with those obtained with the multiscale procedure
described in subsection 2.4. For this comparison a Direct Numerical Sim-
ulation performed with a standard pseudo-spectral Galerkin approximation
is used as a reference. In the previous versions of the algorithm ( [7], [101),
there was no control of the variations of the small eddies. Hence, the cut-off
wavelengths as well as the length of the period during which the variations
of the small scales are frozen were not properly evaluated. This led to an
accumulation of perturbations and a loss of the accuracy ; this is no more
the case.
Finally, in order to study the effect of the cut-off wavelength on the numeri-
cal results, we perform several simulations with decreasing cut-off values. In
fact, we show that the separation wavenumber can be taken of the order of
the dissipation wavenumber k. ; as A:, is of the order of 20, in our computa-
tion, the cut-off value can not reasonably take smaller value. Nevertheless,
the standard Galerkin pseudo-spectral method, with a larger wavelength of
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the order of the dissipation one, does not provide a sufficient resolution : the
large scales of motion are not recovered in that case. Hence, the multiscale
method provides an efficient way to simulate the enstrophy dissipation and
the energy dissipation ranges. In order to describe the effect of the multiscale
procedure inside the power range, simulations with larger Reynolds number
have to be performed. Such study will be presented elsewhere.



1 Motivations.

1.1 Preliminary.

We consider here two-dimensional viscous incompressible flows driven by an
external volume force f, and governed by the Navier-Stokes equationsI •--vAu+(u-V)u+Vp = f)

V.u = 0, (1)

u(x,t=0) = UO(X),

where u(x,t) = (ul(x,t),u 2(x,t)) is the velocity field, p(x,t) the pressure
(x = (xI, X2)), v is the kinetic viscosity and the density is set to unity.
Equation (1) is supplemented with boundary conditions, namely u and p are
periodic of period L, (resp. L2) in the direction x, (resp. x2 ). We denote
by fl = (0, L1 ) x (0, L2 ) the period and we assume that the average of the
external force over the period SI vanishes, i.e. :

1 I f(x, t) dx = 0, Vt.

Taking the average over the whole domain f2 of the momentum equation
in (1) and using the periodicity of u and p, we obtain

d ( Ifi U(Xt)dx) = 0.

Assuming now that the average of the initial condition is also zero, we con-
clude that the average of the velocity field vanishes :

1 -1 u(x, t) dx = 0, Vt.

We now denote by w V V x u the vorticity and as usual we rewrite the
conservation of momentum equation in (1) as:

Ou
S-vAu+(wxu)+ VP = f, (2)
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where P - p + .I u This choice is motivated by two facts. First, it
is important to note that a pseudo-spectral evaluation of (w x u) requires
three Fast Fourier Transforms (FFT) fewer than the usual form (u. V)u.
Also, this form of the equations semi-conserves the kinetic energy for inviscid
flows, when a collocation or pseudo-spectral discretization is used (see [II])
and ensures numerical stability, while the original form does not.

Since the unknowns u and p are space periodic functions, they can be

expanded in Fourier series :

u(x,t) = j i(k,t) Wk(x),
kEZ2

(3)
p(x,t) = 0 3(k,t) wk (x),

kEZ2

where wk(x) = e2irkL'X, kL = (k,/LI, k2 /L 2 ) and kL-x = (kIxI/LI + k2 x2 /L 2 ).

The Fourier coefficients fi(k,t) = (fi,(k 1,t), fi2(k2 ,t)) (resp. P(k, t)) are com-
plex numbers and we recall that

i(- k, t)= i';(k,t), i= 1 or 2,
(4)

1 3(-k,t) =

where e denotes the complex conjugate of c. This property is very important
in practice ; it allows to store twice fewer coefficients in the second direction
of the spectral space, when we look for a finite approximation of u(x, t) and
p(x, t), i.e. by storing fi(k, t) for k such that k2 > 0, (4) allows us to recover
the Fourier coefficients fi(k, t) for k2 < 0.

Let us now introduce Pair the projection operator onto the divergence
free space ; Pdi, can be easily expressed as :

Pdi,,W(X) = -' (Ok k 12 (k @k)) wk(x).

Assuming that u and p lie in the proper Hilbert spaces (see for instance [12J, [13J)
and applying Pdj, to the Navier-Stokes equations, we obtain

Ou
- -vAu + B(u,u) = g, (5)

7



where g = Pdivf and B(u, u) is a bilinear form defined by:

B(u, u) = Pdi (wxu)

( _ k k)(6)

- kZ ("wuX U)k - r (k (w xU)k) Wk (x)
keZ2

As we shall see later, the numerical procedures are directly applied to this
last form of the Navier-Stokes equations.

1.2 Separation of scales.

1.2.1 Small and large scales equations.

Let us choose an integer N. We introduce PN the orthogonal projector onto
the space spanned by the first N 2 Fourier modes. A pseudo-spectral Galerkin
approximation UN of the velocity field u is given by

UN(X,t) = 1 d(k,t)wk(X),
kEIN

where IN = [1 - N/2, N/2] x [0, N/21, and UN satisfies the following equation

dund -- VAUN + PNB(UN,UN) = PNg. (7)

Here we only consider external force with no high wavenumber coefficients,
namely:

i(k) = 0, for k E IN\Imo, for some mo. (8)

Instead of (8), we can also assume that the spectrum of the external force
has an exponential decay for wavenumbers larger than a given one.
We now introduce the decomposition

UN = YN, + ZN1 , with mo :5•N 1 N< N, (9)

where
YJV1 = PNI UN = •i (k,t)wk (10)

kEWN
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and
ZN, = Q•,N = fi(k,t)wk. (11)

kE IN = IN\INI

We note that, in the decomposition (9), YN, represents the large-scale struc-
tures of the flow, and ZN, corresponds to the small-scale components, or in
other words, the fine structures of the flow. Since, the operators PN, and
QNV commute with the differentiation operators, we have:

PN,(AUN) = A(PNUN) = AYN,,

and
QN(AuN) = z(Q 1uN)= AzN,.

By projecting (7) with respect to PN, and QN,, we obtain the following
coupled system of ordinary differential equations (ODE)

{O - vAyN, + PNIB(yN, + ZN,,YNI + ZNI) = PN, g,
S(12)

- VAZN1 + QN B(yN, + z 1 ,yN, + zNs) = 0.

The initial conditions associated with (12) are PN1 uo and QNN U0. In (12), as
well as in the following, we will only use the projection operator PN, with
N1 larger than m0 .

We now introduce two norms:

IJI2 (1~ I',~~2 dX ) 1/2,

and

ii'l = ( I Vp(x,t) 12 dx ),
for any given field jp(x, t) = (W 1(x, t), W2(x, t)). We note that these norms are
related to well-known physical quantities. Indeed, with the above definitions,
the kinetic energy e(u) of the velocity field u is related to I - 12 by

I U1e(u) = InuI•,
( )2 1
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.....

and in the case considered here of periodic boundary conditions, the enstro-
phy, ens(u) is :

en-(u) = 2½11 u ii = 2 1 2

We now recall theoretical results, constituting the basis of this framework
they were established by Foias, Manley and Temam in [1] and [9]. In [1], the
authors proved that for sufficiently large values of N and N1 , namely N and

N, ý_ G 2 , where G designates the Grashoff number G = (A, - 1/L2V Al

where L is a characteristic length of the domain), and after a transient time,
depending only on the data, the small scale components ZN, (t) remain small
in both norms introduced above, while the large scales YN1 (t) are of the order
of u(t). We do not know how close to the inertial range the corresponding
cut-off eigenvalue AN, = cN• can be, and it is one of our objectives in this
work to explore this point. In [91, the authors derived other estimates of the
ratios

ZN,(t) 12 and 1 ZN,(t) 1l

I YN,(t) 12 1 YN,(t) 11

in terms of the Grashoff number at appropriate powers of 1/(N 1 +1), when the
cut-off value N, is still of the order of G2 . Moreover, by using the analyticity
in time of the solutions of the Navier-Stokes equations and invoking the

Cauchy formula, one can show that I 9Z-N' 12, as well as I ' II, are

respectively of the order of I zN, 12 and 11 ZN, 11, for N, sufficiently large,
corresponding to a wavenumber in the dissipation range. Even if these results
do not provide fine estimates on the norms of the time derivative of the small-
scale components, they show that the time derivatives of the velocity field u
have also a decaying spectrum, which is not the case of course in the inertial
range.

This behavior of the small-scale ZN, is very important and is one of the
keys of the numerical implementation of the multilevel method, as we will
see in the following sections. Although, these results were proved theoreti-
cally only when N, is of the order of G2 , and AN, is far in the dissipation
range, numerical results show that zN, is small compared to YN, for much
smaller values of N1 , and the same is true for their time derivative. From
the phenomenological theory of two-dimensional turbulence point of view,
due in part to Kraichman (cf [14] and [15]), the energy spectrum of a de-
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veloped turbulent flow is expected to display a power-law inertial range and
an exponential decay for wavenumbers larger than the Kraichnan's dissipa-
tion wavenumber (see Figure 1). So, the theoretical results mentioned above
are in agreement with this assumption in the sense that for sufficiently large
wavenumbers, the energy spectrum has a decaying behaviour. The exponen-
tial range is generally referred as the dissipation range.

Inertial Range

E(k)

Dissipation

Range

k

Figure 1: Energy Spectrum E(k).

Due to the bilinearity of B, we can split B(UN, UN) into

B(UN, UN) = B(yN, +ZN 1 ,YN 1 + ZN,)
(13)

= B(YN 1 ,YNI) + Bint(YNI,ZNI),

where

Bint(YN,, ZNi) = B(YNI, ZNI) + B(ZNI, YNJ) + B(ZN,, ZN,).

It represents the interaction between the small and the large structures and
the interaction of the small structures among them. We now recall that a
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classical (Galerkin) approximation of u based on the first N2 Fourier coef-
ficients consists in setting ZN, to zero in (12), so that PN, Bi.1(yN,,ZNJ) is
neglected. If ZN, represents a small part of the kinetic energy, namely

e(ZN,) < (YN),

then, we can expect that

I PNIBit(YNI,ZN1) 12 < I PNB(yN,,YNI) 12.

Therefore, the contribution of the interaction terms is much smaller than the
component of the nonlinear terms, involving only the large scales YN,. This
argument can be justified when comparing Figures 4 and 5. More precisely,
we have the following

I PN, Bmt(YN,,ZN,) 12 < I PNB(YN,,YN,) 12

"I AyN, 12 dyN 12

However, the interactions terms can not be neglected in the first equation (12)
unless N, is taken very large. Indeed, their effects on long time computations
can modify the behavior of the large scale components. Since the evaluation
of these terms at each time step is very expansive, we try to take their effects
into account in a simplified manner. We will see that the time variations
of ZN, and PN, Bintt(YN., ZN 1 ) are locally negligible, and this will allow us to
freeze them during some parts of the iterations.

1.2.2 Time variations of ZN, and PN, Bint(yNý, ZNJ).

We now aim to derive an estimate of the variations of ZN, over one time
iteration. This quantity can be represented by

AN, = At I NR, 12,

where the dot represents the differentiation with respect to t. The time step
At is given by the CFL stability condition :

At N IUN IL-< a, with a < 1. (14)
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We recall that N is the total number of modes in each direction. We assume
that the smallest scale IN = I/kN, kN = N/2, is smaller than the Kraichnan
dissipation scale 1,4 = 1/k,. Let us first consider the case where IN, = 1/kN, is
lying between 4. and t N, and t N, IN,, 1, are of the same order of magnitude:

IN :5 IN, : 1,q.

Let us assume, as shown in Figure 6, that the time derivative iN, is of the
order of the dissipation term (remember we are in the dissipation range),

I iN, 12 - V I AZN, 12-

Due to the exponential decay of the velocity spectrum in the dissipation
range, we can write

V I AZN1 12 - cl vk•1 I ZN, 12, (15)

where cl is a nondimensional constant of the order of unity. It follows by (14)
that :

AN, = At IZNi 12 -- C vAt kN, I ZNI 12
a (16)

<- C2 VN UNhA "'I IZNi 12

Then, using the estimate of k. obtained in [16] namely

_ koG 1/3  = ko I g 11, 3

i,213A1/3

we obtain:

AN, ý_C2 -aCkOgI' 1(Ž12 1/ 1 3 1 Z~J1 12.-
I0 I UN IL- kNk

As kN, _< kN, we obtain :

AN1  _ C3-UN1/ (1 ZNI 12

Since kN, , then for sufficiently small values of the viscosity ', the vari-
ations of ZN, over one time iteration are much smaller than I ZN, 12•
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We now try to derive a similar estimate when

1, __ INI,

i.e. when IN, is in the inertial range. In that case, we assume as shown
on Figure 7, that the time derivative -N, is of the order of the interaction
nonlinear terms

I iN, 12 - I QNNIBit(YN,,ZN,) 12.

We recall that
QN, BU,(yN,, ZN,) 12

= I QN, B(yN,,ZN) + QN, B(ZN,,yN,) + QNN B(ZN, ZN) 12
(17)

- I QNi B(YN,,ZNJ) 12 + I QNB(ZN,,YN,) 12

"+ QNIB(ZNI,,zN,) 12.

As Q1, is a projection operator, we have
INB

IN ,B(YN,,ZN,) 12 •-I B(yN,,ZN,) 12.

The bilinear form B can be estimated as follows (see for instance [12] and [13])

1 B(yN,,ZN,) 12 :-- CA IYNI IL- °II ZN, II"

As I YN, IL-I--- UN IL-, for sufficiently large values of N1 , we obtain

I B(yN,,ZNJ) 12 : C4 IUN IL-II ZN I I.

The decay of the velocity Fourier components implies that

IIZNI •5 CSkN, I ZN, 12, where c 5s 1,

so that

I QN B(yN,,ZNI) 12 • C4 CS kN, I UN IL- I ZN, 12.

We also have

N QNIB(zN , ,yN,) 12 •. 1 B(zN,,yN,) 12,
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which can be estimated by (see [12], [13])
I B(ZN1 ,YN,)12 --< sC I ZN' 112121 AZN, 1,2 IIYN II"

In fact, the norm II YNý 1I and the infinity norm I yNv IL® are of the same
order. We then obtain

I B(zN,,yN,) 12 c, I2 Z 1 • 2 AZN, 1 2 YN, ILOO

From the inequality (15), we deduce that

I QN1 B(ZNI,YNJ) 12 •• C8 kN1 I YN, IL- I ZN1 12.

A similar estimate can be derived for the third term QN B(ZN1 , ZN 1 ). We

finally obtain

IQNN1 int(YNI,ZNl) 12•5_ C9 kN1 I UN IL- I ZN, 12"

Then,
AN, :5 c9 kN, At I UN ILolI ZN1 12.

As
At <

I UN [L- N [UN ILC xi2 kN'
we find

AN, <_co CN 72 -) I ZN, 12,

AN,•CG~, (JkN /
which also implies that AN, <1 ZN1 12 in the inertial range as well. Fig-
ure 8 supports the theoretical estimates derived above. We want to note,
at this point, that these results will remain valid if energy is injected in the
small scales by a given external force, having a decaying spectrum ; i.e. if
i(k) -1 k 1l e-alkI, for I k I larger than a given wavenumber.

Let us now introduce e the accuracy of the computations ; e represents
here an energy error. We assume that e is a given parameter, which can
be chosen under several considerations ; examples will be given in Section 3
devoted to the description of the numerical results. The accuracy c can be
associated with a small scale, i.e.

there exists a level NI(e) (:5 N) such that (18)

1 ZN,(.) 12- 6-



According to the estimate previously derived, AN,(,) is much smaller than e.
From the previous estimates we can deduce that there exists several levels of
discretization N1 lower that N1(e), for which AN, is also smaller than -. Let
us denote by N•(c) the lowest level of refinement satisfying AN'(,) _:5e. The
above result means that the small scales can be integrated with a larger time
step, even if their time scales are smaller than the ones of the large eddies.
By definition and due to the behavior of I iN, 12, with respect to NI, the
quantity AN, increases for decreasing values of N1. Hence, the appropriate
time step for IN,(,) is larger than the appropriate one for IN'(,). Moreover,
on Figure 4, we note that I ZN, 12 presents strong variations during the time
evolution. Consequently, the levels N, (e) and Nl(c) are not constant in time.
To take into account this specific dynamics of the small scales, we propose,
as it was done in [10], [7] and [17], to use multigrid technics. The integration
of the intermediate scales IN,, IN,(,) < IN, < IN;(,), consists in performing
a succession of multigrid V-cycles during which some parts of the spectrum
are frozen during the time evolution. Hence, we use here a property of the
first order term of the evolution equation of the small scales.

On Figures 11, we can see that the variations of PN, Bit(YN,, ZN,) and of
ZN, are correlated. Therefore, we deduce that the variations of PN, Bint(YN, I ZN,)

over one time iteration is smaller than PNi Bint(YNI, ZN,) ; in fact, one can
show that:

,= AtIPNiAt(YN,,ZNI)12• CI0  IPNBint(YN,,ZN,) 12.N

The nonlinear interaction term Pp. Bit(YN,, ZNj) represents a small part of
the large scales time derivative yq,. Hence, its variation over one time itera-
tion can be neglected without a lost of the accuracy on the large scale approx-
imation. We use here a property of the time evolution of PN, Bit(YNI, ZN,)

which is a second order term of the large scale evolution. As the time scale of
zN, is much smaller than the one of zN,, the time derivative PN, •int(YNI, ZN,)

behaves as iN, and then is very oscilating with the time. From the previous
inequality, it appears that the quantity A'y, can be controlled by the term
PNI Bit(YNj, ZN,) ; hence, we estimate the level NI(e) by imposing that the
ratio

I PN,(.)Bint(YN;(e),ZN'(.)) 12

1 PN;(.)B(YN'(e),YN'(e)) 12
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remains smaller than a given constant. As the computation of the nonlinear
terms requires several calls to the FFT routines, the evaluation of the above
ratio is expensive and then prohibitive. So, we have looked for another form
of it. In the numerical results, we have noted that

I PNBUit(YN,,ZNJ 12 IIzN,11 _ (ens(zN1) 1/2

I PN, B(YN,, YN,) 12 -IYN,ý I- ens(yN,))

as we can see on Figures 13. Hence, we use the ratio of the enstrophy of the
small scales over the enstrophy of the large ones to evaluate the level N,1(e).
As we have seen before, the notion of variation of the scales is intrinsic to the
definition of N•(e). More sophisticated criteria will be derived in Section 2.2.
Finally, we want to note that controlling the size of PN, Bit(yN,, zN1 ) and its
time variation ensures that the interaction of the small scales over the large
ones is negligible, in the sense that this interaction can be locally neglected
from a numerical point of view.

2 Description of the multiscale method.

As it was shown in Section 1.2.2, the small scales of the flow as well as the
terms involving their nonlinear interactions can be fixed in time during a few
time steps. Nevertheless, their order of magnitude may change drastically
over a period of time; so, the cut-off value N1 defining the separation between
the small and the large eddies can not be let fixed in time. Hence, we
propose a multilevel adaptative procedure evaluating the appropriate level
of refinement as time evolves. Using partly theoretical arguments, we show in
this section that we can derive estimates for the variations of the small scales
and of the transfer terms to the largest scales. We then deduce estimates
for the length of the frozen periods. Finally, we introduce these estimates in
the algorithm and we derive a dynamic procedure allowing an a priori and
an a posteriori control of the length of the quasi-static time intervals. In the
first subsection, we describe the multilevel adaptive procedure ; secondly, we
derive time scales estimates of the fine structures and of the transfer terms.
In the third part, we give an explicit approximation law used to compute
the small scale components of the flow and we derive error estimates for this
Approximate Inertial Manifold. Finally, we describe the whole algorithm
including the modifications previously discussed.
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2.1 The multilevel adaptive procedure

As in the preceeding Section 1.2.1, we choose an integer N larger than m0
(cf (8)), which represents the total number of modes retained in the trunca-
tion and we denote by

UN - Z l(k,t) wk,
kEIN

an approximation of u. We associate with N the largest wave number of
UN, namely kN = N/2. Hence, the smallest scale in the computation is
IN = 1/kN.

We are now given a sequence of levels Ni satisfying

N, < N2< ... < Ni < Nj+j < ... < N. (19)

As we want to perform pseudo-spectral approximations of equations (12) on
these different levels of refinement, the elements N, of these sequences have
to satisfy the restrictions imposed by the Fast Fourier Transforms (FFT) ;
namely, the Ni's must be of the form 2P 3 9 5', where p >_ 2 and q, r > 0. Such
an algorithm enables us to define a suitable sequence of levels N,. Examples
of sequences will be given in Section 3, where the numerical results will be
described. We note that an FFT allowing only decompositions in powers of
2 is not efficient for this purpose.

Let us now assume that the approximation UN(X, t) is known at a time
ti. As it was suggested in the previous section, we define two levels of dis-
cretization Ni, (tj) and Ni, (tj) by the following procedure:

il is defined by the condition that
for every i > il, (20)

1 < 01.
en-qyN (t)

i2 is defined by the condition that
for every i > i2 ,j ~ f$ <62.(21)

e(yN1(tj)) <
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where 01 and 02 are two given constants ; 02 is chosen so that e(ZN,2 ) is of the
order of the accuracy e2. In the previous versions of the algorithm, the pa-
rameter 01 was arbitrary fixed ; we will derive an estimate of 01 in section 2.4.
. In order to be sure that Nil < N 2 , we impose the additional condition that
(i2 - i1 ) has to be larger than a given constant. This is motivated by the fact
that, as we described in the previous section, the intermediate region of the
spectrum between Ni, (tj) and Ni2(tj) is a transition zone between the large
scales and the static (frozen) small scales.

We now introduce the quantities

01(t,) ens(yN, (tj)) 1 (22)

and

02(ti) = _ey__(_)) (23)

Let T,(tj) be the length of the time interval during which the scales smaller
than IN, , i.e. z5 jN2 , can be frozen without loosing the order of approximation
on the larger scales ; estimates for the characteristic length -r'(tj) will be
derived in Section 2.2. In previous works, see for instance [8], T.'(ti) was
estimated by the characteristic relaxation time of the viscous term, namely:

,'o(tj) = (,,kN,

As we will see in Section 3, this estimate is not fine enough ard may induce
strong errors in the approximation of the velocity field. The available levels
of refinement, lying between Ni, (tj) and N,2(ta), are

Nil < Nil,+ <... < N< <... < Ni2-1 < Nj2,

which correspond to (i2 - il + 1) levels. For the sake of simplicity, we omit
here the dependence on tj for the levels Ni, and Ni2.

As in classical multigrid methods, we use the concept of V-cycle to per-
form the integration of (12) on the interval [ti, tj-+-Tc]. Let us define a V-cycle
starting at time tj. Such a V-cycle is constituted of two phases described as
follows

19



"* phase I: on the interval [ti, tj + (i2 - i1)At], the current level Ni(t) is
defined by :

Ni(t) = Ni2_jI, forj =0, .. , i2 - il,

hence Ni(t) decreases from Ni2(tj) to Ni,(tj).

"* phase 2 : on the interval [tj + (i 2 - i,)At, tj + (2(i 2 - ii) + l)At], the

current level Ni(t) is defined by :

NO(t) = Ni,+(j, 2+,•1_), for j = Z2 - i1 + 1, ... ,2(i 2 - i1 ) + 1,

hence Ni(t) increases from Ni,(ti) to Ni2(tj).

Level Ni

N

N ..................... .. .....

t j t t j~ J - n t

Figure 2: Evolution of Ni(t).

Then, a V-cycle consists in [2(i2 - il) + 1] time iterations. The quantity r,(tj)
is adjusted so that the time interval [ti, tj + rJc can be divided into a fixed
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number of such cycles. Figure 2 summarizes this process.

Let t be an intermediate time on the interval [ti, tj + r"] ; according to
the previous procedure, the current level Ni(t) is given byJ N,2.r+l, if 1 < r < (i2 - ii),

Ni (t) = Nit+(,-(i2-iI+I)) (24)

if (i2 -ii+1)<_r•<2(i 2 -il),

where r is given by :

t - tj = (2p (i2 - ii) + r) At.

Knowing the size Ni of the coarse grid at time t, we decompose UN(t) into:

UN(t) = yN,(t)+ZN,(t),

where yN,(t) represents the scales larger than £N,, and ZN,(t) the scales
smaller than IN, and larger than IN. The computation of both components
YN, (t) and zNj, (t) are performed as follows:

* computation of zN, (t) :

ZN,(t) = ZN,(t-At),

i.e. zN, (t) is frozen and set to its last value.

* computation of yN,(t) : in order to evaluate yN,(t), we integrate
equation (12) over the interval [t - At, t] ; then it follows that

fi(k, t) = e-sk*2Atfi(k, t - At)

+I e-vIkj (t-.)Bk(YN,(r),yN,(")) dT (25)

tAt+ / e-IkI2(-')Bi.,(yN, (,), N.,,(T)) dr

for every k in IN, = [1 - Ni12, N1/2] x [0, Nj/2].
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The first integral is computed by an explicit Runge-Kutta scheme of order
3 (see [7]). With this scheme the interval [t - At, t] is split into three sub-
intervals of the form [ti, ti+1], where to = t - At and t3 = t. On each of these
sub-intervals, the second integral is approximated as follows:

t,,e_,,lkJ'(tj+1 _6) Bint,k (YNi (6), zN, (b)) db 26
(26)

SA t e-_IkJ 2(t+ i-) Bint,k(YN, (ti), ZN ,(t ))

We note here that this approximation is an explicit Euler scheme on the
interval [ti, ti+1], where the following approximation is performed

Bint*k(YlV ( ti ), ZN, ( ti)) -• Bint,k(YN, ( ti), ZlV, (ti)) ).

This integration requires the storage of PN, Bit(yN,(ti), ZN,(tj)), at the be-
ginning of the cycle, for each coarse grid Ni between Ni, and Ni2, i.e. for
(i2 - il + 1) levels.

As the time rc(ti) is adjusted to be a multiple of a complete V-cycle,
the current level at time tj + r"(ti) is equal to Ni2, the highest coarse level.
Referring to the integration process described above, the large scales YN,2
are known at the end of the cycle, i.e. at time tj + r,(ti). The smallest scales
ZN,2 are then updated by projecting the approximate solution UN(tj + -rc(ti))

on an approximate form of the small scales equation (12), for instance

ZN,2 (tj +• Te(tj)) = O(yN,2 (tj +" T(t 3)),ZN.2 (tj), TC(t,)). (27)

(27) is the equation of an Approximate Inertial Manifold. Such manifolds
were first derived in [1) ; (27) provides an interaction law between the small
and the large scale components of the flow, and expresses ZN,. as a function
of yN,2 . Further information on such law can be found in [181, [19], and [7].
Other kinds of approximate inertial manifolds are derived in [20] and [21] ;
the implementation of an Approximate Inertial Manifolds of first order will
be discussed in Section 2.3. In Section 2.3, we will discuss on the efficiency
of these nonlinear forms and derive some estimates which explain in which
range of the spectrum they can be implemented. From a strictly compu-
tational point of view, an approximate inertial manifold is efficient in the
sense that this equation allows us to estimate the small scales as an explicit
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function of the large ones. Moreover, a first order law only requires one eval-
uation of the nonlinear terms, on the fine grid (see Section 2.3).

Finally, at tj+l = tj + rc(tj), i.e. at the end of a whole cycle, we have an
approximation of UN(tj+l) by:

UN(tj+l) = YN, 2(tj+l) + ZN.2 (tj+l).

We start the full procedure again by computing two new levels Nil (ti+1 ) and
Ni, (tj+1 ). Then, we perform new V-cycles on the time interval [tj+l, tj+1 +
rT(tj+i)], and so on.

Basically, we can summarize this process by saying that the full time in-
terval [0, T] of the whole computation is split into several small time intervals
[tj, tj + Tc(tj)] and, on each of these intervals the velocity spectrum is split
into three fundamental regions :

"* the dynamical range, corresponding to wavenumbers smaller than kN,,.

It represents the large scale structures of the flow - i.e. the scales con-
taining most of the energy and the enstrophy of the flow. The modes
lying in this part of the spectrum are integrated at each time step of
the time interval [tj, tj + 7-,(t,)].

"* a transition range, corresponding to wavenumbers between kN, and
kNi,. An up and down oscillation process is used, i.e. the current level
of discretization Ni(t) undergoes all the intermediate levels between
Nil (t) and Ni,(t), while the time evolves.

"• a quasi-static range, i.e. for wavenumbers larger than kNi,. It repre-
sents the smallest scales, which are numerically negligible ; i.e. their
energy and their variations are smaller than the expected accuracy.

Figure 3 represents these three different regions of the spectrum.

Now we want to make some remarks on the effect of the integration
procedure previously described on the smale scale components of the flow.
One of the crucial points concerns the technic used to update the small
structures zN, (t) lying in the transition range.
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Figure 3: The multilevel procedure.

Let us first recall the equation satisfied by the kOh coefficient of the Fourier
decomposition of UN

)-. + v k 12 fi(k) +Bk(yN , ,yN1 ) (28)

+Bint,k(YNM,ZNj) = 0.

We assume here that k is such that I k 1> m0 and hence (see (8))

j(k) = 0.

We can then write (28) in the following form

d (e-jkj1ti(k)) = ehIkl2t (k(Y, -29)

Integration of (29) over a time interval [t, t + r] leads to:

fi(k, t + r) = e- rik i(k, t)

-- t+1. edkI2(-(Ht+)) [•k(Yni, Ynf) + Biti(Yn, Zn,)] dO (30)
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We note that if k is large enough, u(k) is a component of the small scales.
For instance, we assume that :

I k 1Ž N,l(t).

Then, k lies either in the transition or quasi-static range. According to the
implementation of the multilevel method in (30), Ci(k, t) is replaced by an
approximation close to the actual value, as the perturbations are smaller
than the accuracy e. If k lies far enough in the dissipation range, then the
dissipative terms are quasi-dominent, namely :

I ZNI 12 !- I PAZN, 12 1 I QNNI BiUt(YN,,ZN,) 12,

as we can see on Figure 12. In that case, the errors introduced by the quasi-
static integration are quickly damped by the effects of the operator -A :
few corrected iterations are needed. If k is not as large, i.e. if it is closer to
the inertial range, then the coupled nonlinear terms become the most impor-
tant terms of equation (30). In that case, the error is convected by nonlinear
effects in the largest wavenumbers, and are finally damped by viscous effects.

During the V-cycles, the modes closer to Ni, (t) are more often integrated
than the ones close to N&2(t). The structure of the V-cycles is thus well-
adapted to the integration of the small scales. As we will see in Section 3,
devoted to the description of the numerical results, there is no accumulation
of errors in the intermediate scales and there is no energy pile-up in the high
wavenumbers of the Fourier decomposition. The enstrophy cascades are well
described by the V-cycle technic.

2.2 Time scale estimates for the small eddies and for
the nonlinear interaction terms.

Time scale estimates for zN1 .
From now on and for the sake of simplicity, we omit the subscripts N1 in the
notations. We then denote by z(t) the small scale components of the flow.
As the Navier-Stokes equations are analytic in time (see [1]), we can write a
Taylor expansion of z(t) :

z(t + r) = z(t) + r"(t) + o("2). (31)

25



As we saw in Section 1.2.2, the quantity ri-(t) can be much smaller than z(t).
We can then assume that the higher order terms, in the Taylor expansion
are negligible by comparison with the first order ones.

As in the previous section, we denote by e the accuracy, i.e. the solution
is approximated with an error of the order of e. Let us assume that, on an
interval [t, t + r], we tolerate an error of the order of e on the approximation
of the small scale components. From (31), we then derive an estimate on r,
namely :

T• < (32)
1 i(t) 12

We denote r(e) = Kell i(t) 12, where K is a nondimensional real constant of
the order of the unity. As the time derivative I i(t) 12 has a decaying spec-
trum, the quantity r(e) then decreases with decreasing values of the level
N,. Estimate (32) then provides a restriction on the available level on which
the modes can be frozen, i.e. there exists a level Ni such that T(E) becomes
smaller than the time step At. On Figure 14, we have plotted the ratio r(e)
for different values of N,. These results are obtained from the computation
presented in Section 3. In this case, the accuracy is given by the temporal
discretization and is of the order of At3 . As the time step At is of the order
of 10-3, we can estimate Ke c_ 10-'. So, for a fixed given value of the level
Ni, the corresponding time scale r(,) presents very strong variations. In a
previous version of the algorithm, 7" was estimated by (vkN . )-i and then. 2

was constant in time ; this choice is obviously inappropriate. Deriving an
estimate on r(e) is essential to insure the efficiency of the algorithm. Indeed,
we can imagine a situation where the procedure (20) and (21) allows the
choice of a level Ni1 while the condition (32) is violated, i.e. that r is much
smaller than the time step. Hence, the constraint (32) provides an additional
way to determine Nil and Ni2.

In the transition range [Nil (ti), N 2 (tj)], we have a time estimate rNj (c),
given by (32), for level Ni :

TN,(a) =I iN, (t) 12~

As we have noted above, the quantity TN,i(e) decreases when Ni decreases.
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According to the definition of a V-cycle, on the lower level Ni, (tj), the char-
acteristic time scale has to satisfy :

rN,, (c) At(33)

We recall that (33) is motivated by the fact that the scales ZN,1 will be
frozen over only one time iteration during a complete V-cycle ; (33) is then
a constraint that Ni, (t,) has to satisfy. As we have previously remarked, the
time derivative can be evaluated by the nonlinear terms, i.e.:

I 'Nj, 12 I QN,, B(uN, UN) 12.

At time tj, Bi,,t(yN, , zN, ) is obtained by using the following relation

B,,t(yNi1 ,ZNJ) = B(UN, UN) - B(yN.,yN,,).

Hence, B(uN, uN) will be computed at that time. Then, the computation of
the quantity

,NKe Ke 34
=N, ( - N., (tj) 12 j Q, B(UN, uN) 12 (34)

will not add extra cost. With (33), we are sure that on all levels Ni higher
than N,1, the corresponding scales can be frozen during more than one time
iteration.

The characteristic time TNi2 (C) provides an estimate of the global time
length rr(tj) of the whole cycle [tj, t, + r,,(tj)] ; T"N,2 (e) can be evaluated as
in (34), i.e. : Ke

rN,,(6) = Q, B(UN, UN) 12 (35)

Remark 1 : if N,2 lies in the quasi-static range, another estimate can be
derived ; as we have seen before, we have :

I -N, (t,) 12 - I AZNi,•(t,) 12.

Then, we can write:

I •N. (tj) 12 > ClIp AZN,2 (tj) 12,
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where cl, is a constant of the order of unity. From the definition of the norm
I - 12 and of zN,, we can obtain :

V I AzN,2 (tj) 12Ž v (kN,2)2 I ZN,i2(t,) 12

We then obtain the following estimate of TN,2 (e)

TN,2 (6) < Ke

c,,V (kNj)2 I Z, 2 (tji) 12

Moreover, we recall that, by definition :

I ZN,2 (tj) 12 = 02(ti) I yN,i2(t) 12

We finally have an a priori estimate for T"N,2

-N,2 (-) <5 . (36)-- v kN,2 202(tj) I YNi 2 (t,) 12

If e is the accuracy of the time scheme, we recall that K corresponds to a
high order derivative of UN versus time. Hence, we can reasonably assume
that K is at least of the order of I YN,2 (tj) 12 . This case occurs when a Direct
Numerical Simulation is performed.

Time scale estimate for the transfer terms.
Let us denote by y instead of YN, the large scale component of the flow. We
recall that y is governed by the equation :

S - PAy + PB(y, y) + PBit(y, z) = Pg.

Here, P denotes PN, and 2 - •. Let us rewrite the previous equation under
týie form :

y = vAy + Pg- PB(y,y)- PBmt(y,Z).

We introduce the function F defined by

F(y) = vAy + Pg - PB(y,y),

so that:
y= F(y) - PBit(y,z). (37)
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In this form, it clearly appears that the transfer terms PBit(y, z) is a cor-
rection to the time derivative of the large scale components. As it was done
before for the small structures, we derive a Taylor expansion of y(t)

Tr2

y(t + r) = y(t) + jry(t) + -k(t) + o('.r). (38)

We assume here that the terms of order larger than three are negligible.
From (37), we can derive:

t (y)- Pb!,(y,z).

Reporting this expression into (38), we obtain

y(t + 7r) = y(t) + r7(t) + 2PF(y) - 2-PBji,(y, z) + 0(Tr3).

As we tolerate an error of the order of e on y(t + r-), the coupled nonlinear
terms PBit(y, z) can be frozen during a time T, if:

72

- I PAM (y, z) 12 < Ke. (39)

Then, it follows an estimate on r:

T < M P e 12) = r '(e). (40)

We note that, if e is the accuracy of the scheme, condition (40) is necessary
to preserve the order of the time scheme. On Figure 15, we have plotted
the evolution of the ratio r'(e) for different levels of refinement N,. As for
-r(e), the quantity r'(e) decreases when N, decreases, which is due to the
fact that PBi,,(y, z) has a decaying spectrum, like i(t). So, for the levels
Ni lying in the transition range, i.e. between Ni, and Ni2, the value of r'(e)
corresponding to the level Ni, is the most restricted one. Hence, in order to
control the variations of PNj Bmt(yN., ZN,) on the different levels, a sufficient
condition is to estimate i-'(e) on the lower level Ni, of the transition range.
We want to note that the mathematical estimates which can be derived on
the time derivative PBi,t(y, z) of the transfer terms do not provide efficient

29



information ; nevertheless, the numerical experiments show a correlation
between

I P•,it(y, z) 12 and Ii(t) 12

1 PBant(y, z) 12 Z(t) 12
as we can see on Figure 11. So, we deduce that

7 * 22 I (t)l 2
-I Pb,,,t(y, z) 12 >- c12  I PBmt(y, z)12 Iz(t)21'

where c is nondimensional constant of the order of the unity. Hence, it follows
that :

( 2Ke I z(t) 12 /27 <" < = T'"(e). (41)

Gc12 I (t) 12 1 PBmt(y, Z) 12)
We then obtain with (41) an estimate of r as a function of I i(t) 12. From
a computational point of view, (41) is much more efficient than (40). As it
was noted before, we have to derive an estimate on N'. (e) in order to control
the time variations of the transfer terms which depend on the scales in the
transition range. We now recall that the level Nil is defined by the evaluation
of the ratio :

0 1 ( t j ) -" I I y N ( t j ) j j

Moreover, this ratio is equivalent to the ratio of the coupled nonlinear terms
of the large scales in the energy norm, namely

I PN,, Bint(YN,, ,ZN, 1 ) 12 > C13 II ZN., (ti) II = 13 (t
I PN, B(yN,,,yN,1 ) 12 II YN, (ti) II

where c is of the order of the unity. The estimates can then be written under
the new form :

S2Kc" [I ZN,, (tj) 12 /2
•'r,, ( 0) (ti) IPN,,B(yN,,,yN,,) 12 xI i•N,,(tj) 12 (42)

In (42), the time derivative of the small scale components -Nj, (tj) can be
estimated as it was done previously. Finally, rN,, (e) provides a constraint on
the choice of the level Ni,, while rN,, (c) and r, (e) provides two estimates
of the length of the whole cycle.
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2.3 Approximate equation for the quasi-static scales
ZN 1 : projection on an Approximate Inertial Man-
ifold.

In this section, we intend to discuss the efficiency of the Approximate Inertial
Manifolds (AIM) and show in which part of the spectrum they can be used.

We consider an approximation of the equation of the small scales (12) in
which we drop the coupled nonlinear terms:

dz
dt - IAz + QB(y,y) = 0. (43)

We now introduce an operator e` 411 defined by:

e--tAz = E e ,IkJ'fi(k, t) wk.
kEIN\IN 1

Then by applying this operator to (43), we obtain:

- (e-'Tz) = -e&-tAQB(y,y). (44)

We assume, in agreement with the method described in Section 2.1, that z
has been frozen on the time interval [ti, ti + r,(tj)] where rT(ti) is estimated
as in the previous section. For the sake of simplicity, we write here t instead
of tj and r, instead of rT(ti). We then integrate (44) over the interval [t, t+r],
which yields :

z(t + r,) = eLcz(t) - it+• e-•(°-t--h)4QB(y(a),y(cr)) da.

Consider then the following approximation of the right-hand side:

Jt+1 e (U(t+2))&QB(y(a),y(o)) d0

(45)

"• (-vA)-'(I - ev-eA)QB(y(t + r,),y(t + -r")).

Finally, z(t + Tr) is computed by:

z(t + =r. -
- ewI )QB(y(t + rT),y(t + Tr))
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(46) means that the small scales are slaved by the large ones. Also, from a
computational point of view, (46) provides an efficient way to evaluate the
small scales. In comparison to a classical time scheme, (46) presents the
advantage that only one evaluation of the nonlinear terms is required. The
error occuring by using (46) instead of integrating the small scales equation
is constituted by two components, namely the time discretization on the
approximation of the integral and the dropped terms QBiat(y, z)

I -(Z) 12 < I i (s-(+TQ))"QBt(y(o,), Z(O,)) dO 12

+ f e-'-)) (QB(y(a),y(a)) - QB(y(t + rT),y(t +,r,))) da 12

< Tc I QBijt(y,Z)t,,- 12 + 2 Tr I QB(y,y)t,,.1 12
(47)

where I QBmt(y,), Z ,2 = Max I QBmt(y(o), z(o)) 12, and similarly for
I QB(y,y)t,,. 12•

Considering the previous discussions,

I i(t) 12 1 QBmt(y(t), z(t)) 12

- I QBt(y, Z)1,,2 1

I QB(y,y),,o 12 .

Then, we obtain an estimate of the error :

I E(z) 12 < C14 T. I i(t) 12 (48)

Recalling that r, is defined such that

-rtl i(t) 12 -< K •,

we then have the following estimate:

I C(z) 12 < CH, K

Then, from the definition of the level Ni, and r,, the error introduced by
using the approximate equation (46) is always smaller than e. We want to
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note that the error e(z) does not depend directly on the level Ni2 : there is
no restriction on the value of N,2 . The Approximate Inertial Manifold (46)
can then be used to simulate the evolution of the fine structures of the flow
even for wave-numbers lying inside the inertial range of the spectrum. In
the numerical simulations presented in the next subsection, (46) will be used.

Remark 2 : Let us now consider the Approximate Inertial Manifold intro-
duced in [1], namely :

- vAz + QB(y,y) = 0. (49)

We recall that (49) consists of an approximation of the full equation of the
small scale components z, where the time derivative z as well as the coupled
nonlinear terms QBit(y, z) have been dropped. In the case considered here
of periodic boundary conditions, it is easy to invert the Stokes operator (-A)
and then z can be evaluated as a function of y :

z = (-vA)-'QB(y,y). (50)

At this point, we note that for large values of r,, (46) and (50) are equivalent.
The order of magnitude of the dropped terms in the small scale equations
may induce a restriction on the use of (50) to evaluate z. In fact, we want
to find criteria telling in which range of the spectrum (50) can be applied.
The spatial error 6(z) appearing when (50) is used is exactly given by the
difference between (50) and the z equation, i.e. :

6(z) = (vA)-'(i + QBit(y,z)).

We can then estimate

I 6(Z) 12 - (vk ,)-1 I + QBit(y, Z) 12.

In the numerical experiments that we have conducted, we have seen that the
right-hand side of the previous inequality is of the order of (vkN2,)-1 I " 12
hence it follows that

I 8(z) 12 -< C15 (ykN )-'I iz(t) 12,

where cjs is a nondimensional constant of the order of unity. Then, the spatial
error introduced by (50) mainly depends on the size of I i(t) 12 . Assuming
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that N, lies in the dissipation range and that I i(t) 12 can be estimated by
I PAZ 12, we obtain .

I 6(Z) 12 !ý C16 I Z 12,

by using

IZNi 12 ý- (P~kN2,) I ZN 12.

Hence, in that specific case, the error 6(z) is of the order of z itself. Thus (50)
can be used in the quasi-static range of the spectrum where z is of the
order of the scheme accuracy. On Figure 16, we can see that the quantity
(vkN, )-I•1 i(t) 12 becomes larger thani z 12 itself when the cut-off value N,
decreases. Hence, it seems that if (50) is an efficient way to compute the
very fine structures of the flow lying far inside the dissipation range, it is no
longer the case for the scales of the order of, and immediately larger than
the dissipation scale t,,.

2.4 Description of the complete multilevel algorithm.

In this section, we summarize the complete multilevel method which includes
the time scales derived in Section 1.2.2. We still denote by e the accuracy
of the computation ; we recall that e is a given parameter in the following
algorithm.
As in subsection 2.1, we choose a sequence of levels Ni such that

N, < N2< ... < Ni< Nj+ < ... < N.

The whole time interval of the simulation, namely [to, to + T], is split into
several intervals of the form

*7-1

where tj = to + Er e(t&). Futhermore, we assume that the final time to + T
k=1

satisfies
to+ T =t,

so that we have m intervals. Let us now assume that the approximate solution
uNv(x,t) is known at time tj with j < m. As in 2.1, we compute two levels
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of refinement Ni,(tj) and Ni2 (tj) according to the procedures (20) and (21).
Moreover, we impose that

TNj,(e Ke >At
IiNj, 12 ŽAt

With (35) and (42), we derive an a priori estimate of respectively TN,2 (E) and
TN () , we then obtain an evaluation of the length rc(ti) of the Ph- cycle:

,r(tj) = min(rN,2 (e), T,,(e)). (51)

We note here that, with this definition, rc(tj) can be smaller than one V-
cycle, i.e. (2(i 2 -il)+ 1)At ; in such case, levels Ni, and N,2 are too small and
need to be reevaluated. With (51), we have an a priori estimate of the global
length of the whole cycle. Finally, we have computed the three characteristic
values :

Nil(tj), Ni2(ti) and Tc(tj).

As in 2.1, the integration is performed on the interval [tj,tj- + -(tj)] by a
succession of V-cycles. At the end of each V-cycle, i.e. at time tj+pv =
tj + (2p(i 2 - i1) + 1)At, we derive an a posteriori estimate of the quantities
T"k,. (e) and TN,2 (e). Hence, we take into account the evolution of the scales
lying in the transition range of the spectrum of the velocity (see Figure 3). At
this time, if (tj+Tr(tj))-tj+pv is larger than one full V-cycle, i.e. 2(i 2-il)+1
time iterations, we perform another V-cycle after reajdusting the value of
T,(tj) with the new values of rN,, (e) and TN,2 (e). Now, in the other case, i.e.
if (tj + Tr,(tj)) - tj+pv is smaller than one V-cycle, we stop the whole cycle
by saying that

ti + r (t,) = ti+i.

At tj + r,(tj), we compute the small scale components ZNi2 of the spectrum
by projecting the solution on the Approximate Inertial Manifold (46).
Then, we readjust the two levels and restart a new cycle as it was done in
Section 2.1.

Before we conclude this section, we want to note that with this algorithm,
in opposition with the previous ones (see for instance [10], [7] or [17]), the
constants 01 and 02 of the procedures (20) and (21) can be fixed very easily.
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Indeed, as we have previously seen the parameter 02 is chosen so that e(zN,.)

is of the order of e2. The constant 01, which provides an estimate of the ratio
ii ZN,, II / II YN.1 j, can be evaluated at the initial state, i.e. t = 0, by

01 = At 11 YN,1 I11 YN,1 12"

Hence, we insure that :

ANi, = At I iN,, 12_ CAt I YN,1 1211 ZN_, 11 _

Then, the condition on rN,, (,) is satisfied i.e. TN,, (,) > At. Moreover, we
can implement a self-adaptative procedure allowing a dynamical reevaluation
of these constants during the time evolution. So, if 01 and 02 were previously
fixed in an empirical way in the algorithms, we have found now a more
efficient way to evaluate these constants.
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Figure 4: Time evolution of the ratio LI1 for N1 = 32, 64, 128 and

N1 = 196.
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Figure 5: Time evolution of the ratio I PN, Bfyor, YN) 12
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Figure 6: Time evolution of I 1N, 12 and v I AZN, 12 for N1  = 128 and
N, = 196.
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Figure 7: Time evolution of I iN, 12 and I QN Bint(yN, , ZN 1 ) 12, for N1 - 32

and N, = 64.
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Figure 8: Time evolution of At I iN, 12 and I zN, 12 for N1 = 32,64,128 and
196.
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Figure 9: Time evolution of I zN, 12 for N1 = 32, 64, 128 and N1 - 196.
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Figure 10: Time evolution of I kYN, 12, v I AyNI 12, I PN, B(YN,, YN,) 12 for

N1 = 32.
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Figure 11: Time evolution of N 2L~ and LN AM (YM, ZNJ12U for N,

32, 64, 128, and 196.1 i12IVBit(Y, V 2
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Figure 12: Time evolution of IZN, 12, " I AZN, 12, 1 QZIB(yN,,YN,) 12 and

NI iBt(YN,, ZN,) 12 for N1 = 32, 64, 128 and 196.
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Figure 13: Time evolution of ,P ,, B,•, (VN,,VNIZN,)12 and IYI ZNl I I for Ni

32, 64, 128 and 196.
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Figure 14: Time evolution of r(e) K'1 N1  32, 64, 128 and N,

196.
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Figure 15: Time evolution of r'(f) =(I P K, !3tY, 2) N,

32, 64, 128 and N, 196.
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Figure 16: Time evolution of (Vk2 )- I jN 12 and I ZN, 12 for N,
32, 64, 128, and 196.
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3 Numerical results.

3.1 Comparison with the Galerkin method and with
a previous version of the multilevel method.

In this section, we report numerical results obtained by using the nonlinear
Galerkin method and a classical Galerkin projection. The flow of Kolmogorov
type is forced by a time independent external force f which acts, in the
spectral space, on only some low frequency components of the velocity field.
The initial condition is chosen so that its spectrum has a specified shape but
the phases of its Fourier components are randomly chosen. So, the flow at
time t = 0 has no organized struture. We have let the flow evolve on over
10' time iterations, i.e. from t = 0 to t = 100 ; this is much longer than the
integral time scale, which is of the order of the unity. We have compared the
solutions obtained with both methods.

3.1.1 Description of the computation.

The initial condition here is computed from a given spectrum of the initial
vorticity wN = V x u0N, where uN is the following expansion:

UoN(X) = o,k(t)e (52)
kEIN

with x = (z 1 , X2) E 0. We choose woN by setting

Wo,k = I to,k I e'k, (53)

where Ok E [0, 21rl is generated by a random function, and:

SC17 if k=1kI kc,

I4o,kI = (k + (54)

0 otherwise;

C17 is determined such that I WoN InL= 2.0 ; ko, is equal to 60. At this point,
we note that if I tbo,k I- ckfl, then the energy spectrum of uo

Eo(k) = (Ifio,k 12 +IOo,k 12)

Ikl = k
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is like ck2'- 2 . So, in the case. presented here 8 = -0.5 and we have Eo(k) -.
k"'-. On Figure 28, one can see the isovorticity lines of the initial velocity
field and Figure 17 shows the energy spectrum E(k).

The external force f is constant in time and has only a few non-zero
wavenumbers, namely:

fk = (fi,kf2,k),

with
1Ik1 cis if kEZ2/kIkl+Ik 2 1= 3,
I fi,k I = 0 otherwise,

cjs is determined such that I f 12= 0.225. The Fourier coefficients of f are
finally obtained by

ik = I fik I eilk,
where the phases Ok E [0, 21rl are randomly generated.

In order to describe all the scales of motion, the number of modes N
in each dimension of the space must be chosen so that the associated grid
size 27r/N is smaller than the dissipative (Kraichnan) scales 4, ; in term
of wavenumber, it means that kN > k,. We recall that under the dissipative
scales, the motion is damped by viscosity. In fact, the total number of degrees
of freedom needed to describe the motion, from the dissipative scales to the
large scales containing eddies, can be estimated by the ratio (k,,/ko) 2 (see [22]
and [16]). Constantin, Foias, Manley and Temam, in [16], have related this
quantity to the dimension of the attrator of the Navier-Stokes equations

(k,/kL) 2 ~ ReL,

where ReL is the integral scale Reynolds number, which can be defined by

ReL = t .

Here t92 = (2/ I0 I) e(u) and L = 1/kL is the integral length scale defined
as :

L = •-i'•/3, where E = (1/2) 2andr=vuu /If l (-10- 3 ).
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L is of the order of 1.72 and 0 is of the order of 0.45 (see Figure 19). It
follows that ReL = 784 and k, = 17, which corresponds to N, = 2 kin = 34
modes in each direction of space. In order to be sure to resolve all the scales
of motion, we have chosen N = 256. Figures 17 show the energy spectrum
E(k) :

E(k,t) = i(k,t) 12,
Ikl = k

for various times. It seems that the dissipation wavenumber k,, is of the
order of 20. Hence, the previous estimate based on the dimension of the at-
tractor matches well the computational results. We note also that, if the
phenomenological theory of turbulence of Kraichnan, predicts a decay of the
energy spectrum like k-3, results presented here seem to show a faster decay
closer to k- 4 . This results are in agreement with the ones obtained by Orszag
in [23] and by Brachet et al. in [24], which show that a k- 3 energy spectrum
can only be obtained when the Reynolds number is larger than 25, 000.
We also remark, that if, at t = 0 the small scales corresponding to a wavenum-
ber larger than 60 are set to zero, a dissipation range appears very quickly,
as we can see at t = 5. The enstrophy transfer from the large scales to the
small ones acts on the smallest scales after a few iterations. Figure 18 indi-
cates that the transition period is very short. The small scales are damped
by viscous effect until an equilibrium between viscous and nonlinear terms
appears. After that, we can see that I ZN, 12 oscillates in time and seems to
become completely independent of its initial value. Figures 28 and 30 repre-
sent the isolines of the vorticity, at different times in the interval [0,100]. We
can see that the very small random structures of the flow at the initial time
disappear quickly. It appears that fusions of these very small structurcs lead
to larger ones. So, after a transient period, the flow is mainly constituted by
large structures.

The time step is chosen by considering the accuracy and the stability of
the computation. For the stability, At must satisfy a CFL condition like

At N I UNILO < a (< 1). (55)

From Figure 25, we can see that I UN ILO< 1.25 during all the computation,
so (55) implies the following restriction on the time step

At < 1.7 10-3 (a = 0.5).

48



We have set At to 10-3. Here, the smallest scales (Figure 18) are of the order
of 10"1. Hence a time step of 10-3 allows to recover most of the spectrum.
Indeed, the time differentiation scheme used here is a third order method,
then the accuracy is of the order of 10'.

3.1.2 Comparison with a previous version of the algorithm.

In a first time, we present results obtained with a previous version of the
multiscale method. In this version of the algorithm, r, was set to (vkNq )-!

and the constants 01, 02 of procedures (20) and (21) were a priori chosen
(see [8]). This multiscale method is compared with the pseudo-spectral
Galerkin method.
To perform this analysis, we have retained two different points of the compu-
tational domain, namely xi = x2= - -Y - -1) and xl = X2 ='4 -N

and we have stored the value of the horizontal component of the velocity
ul (XI, 2 , t) at these points during the time evolution. On Figures 20 and 21,
we have plotted the time history over the interval [0, 100] of those two char-
acteristic values of the flow. Results plotted here seem to be identical for
both methods, but the differences between the trajectories obtained with the
different algorithms are too small to appear on such graphic representation.
So, we have listed below the exact values at different intermediate times for
these trajectories.
In Tables 1 and 2, we have listed the values of the horizontal component
of the velocity at times t = 0, 25, 50, 75 and 100. These results correspond
to the Galerkin method for the first column. In the third column, we can
see the difference between both orbits. It appears that this quantity grows
as time evolves and becomes much larger than the accuracy which is of the
order of At3 = 10- for this computation. On this computation, the current
level Ni(t) oscillates between 108 and 200. Looking backward to the results
presented in section 2.2 on the estimates of the characteristic length r, (see
Figures 22), we note that :

TNi, < 10-3 - At,{ i < 10-2 10At, for N, = 108.

Hence, levels Nil used by the multiscale method are not appropriate.
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Table I Galerkin Multiscale Difference
Version 1 I

t = 0 -0.9650082490 10-2 0.000

t = 25 0.2980770146 0.2980770543 3.88 10-8
t 50 0.3592114126 0.3592114913 7.87 10-8
t = 75 0.3819454889 0.3819452151 2.738 10-7

t = 100 -0.1233746011 -0.1233715822 3.0189 10-1

Table 2 Gerkin Multiscale Differene
Version 1

t = 0 0.450144224510-1 0.000
t = 25 0.3879730195 0.3879729977 2.18 10-8
t = 50 0.2458823192 0.2458824078 9.114 10-7

t = 75 -0.3332440190 -0.3332451088 1.091 10'
t = 100 0.3196664945 0.3196686370 2.142 10-6

Indeed, we recall that rN,, < At means that, for the level Nil equal to
108, the scales smaller than IN,, can not be fixed even on one time iteration.
AlsoT"N,, < 10At means that the coupled nonlinear terms PN,, b(YNN,, ZN,,)

can not be frozen on a time interval longer than 1OAt. Recalling now that
in this version of the multiscale algorithm, the characteristic length was es-
timated by (vkN, 2)-1 , therefore the length of the frozen period oscillated
between 50 At and 80 At. The constraints on the levels N1l and Ni2 imposed
by the different estimates derived in section (2.2) are violated in this compu-
tation and so, the expected accuracy can not be recovered by the multiscale
method.

Table 3 Galerkin Multiscale Difference
Version 2

t = 0 -0.9650082490 10'2 0.0000
t = 25 0.2980770146 0.2980770146 < 1.0 10-1°
t = 50 0.3592114126 0.3592114126 < 1.0 i0-1°
t = 75 0.3819454889 0.3819454893 4.0 10-10
t = 100 -0.1233746011 -0.1233746004 7.0 10-1
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Table 4 1 Galerkin Multiscale Difference

T_ Version 2
t = 0 0.450144224510-' 0.000
t = 25 0.3879730195 0.3879729977 2.0 10-10
t = 50 0.2458823192 0.2458824078 < 1.0 10-10
t = 75 -0.3332440190 -0.3332451088 2.0 10-10
t = 100 0.3196664945 0.319668637U < 1.0 10-10

3.1.3 Comparison with the improved version of the algorithm.

In Tables 3 and 4, we report results similar to those in Tables 1 and 2,
but now, the second column corresponds to the version of the multiscale
algorithm presented in Section 2.4. Here, the trajectories of the multiscale
method remain close to the trajectories obtained with the classical method.
The difference is less than At 3 = 10-9 over the whole time interval [0, 100].
Here, the level Nil is always larger than 128, so that the estimated limit
value of -r is greater than At (see Figures 22 and 25). The levels Nil and Ni2
chosen by the new algorithm are higher than those obtained by the previous
version. This fact is due to the restrictions imposed by the new criteria on
T,. For some values of the time t, the level Ni, decreases to a lower level
for a short time interval and then goes up to its last value. In such a case,
we have remarked that the restriction imposed on r, induces a restriction on
the level Ni1. Indeed, even if a level is acceptable on a few multigrid cycles,
variations of the smallest scales or of the transfers terms become too large,
so that Ni1 has to change to an upper level. Moreover, we want to mention
that, during the whole computation, neither the restriction due to the small
scales evolution rN,2 , nor the restriction due to the transfer terms evolution
T"N, is dominant. Therefore, it is necessary that both criteria be retained.
Finally, we want to note that the algorithm can still be improved. Indeed, we
recall that the actual choice of levels Ni, and Ni2 are determined according
two different criteria. One is based on the estimate of ratios of the kinetic
energy (or enstrophy) of the small scales over the kinetic energy (or enstro-
phy) of the large ones, and the other one is based on the estimates of the
critical characteristic time -r,. So, it follows that r, may have a relatively
large value, and then, the levels should be adjusted to a lower value in order
to have a more reasonable estimate of r,. This can be viewed on Figure 27,
where the time evolution of r, is plotted. In fact, the very strong oscillations
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of r• are not always necessary, and, by optimising the evaluation of Nil and
Ni 2, this time evolution can become smoother.
Finally, to achieve the comparison between the different algorithms, we want
to note the non-negligible fact that the multiscale method requires twice
less CPU time than the classical pseudospectral method. On Figure 24, the
quantity :

TNLG - TG
Tel

is plotted, where TNLG is the CPU time required by the nonlinear Galerkin
method (multiscale), and TG the CPU time required by the classical Galerkin
method.
Finally, we want to mention that these simulations required more than 75
hours of CPU on a Cray2, without counting all the preliminary tests needed
to the developments and improvements of the algorithm.
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Figure 17: Energy spectrum at t =0, 5, 30, 50, 85, 100.
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Figure 18: Time evolution of (ZN, 12 for N, = 32, 64, 128 and N1 = 196.
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Figure 19: Time evolution of I UN(t) 12.
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Figure 20: Time evolution of the horizontal component of the velocity

UN(X,y,t) at point x = y = -- 1).
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Figure 21: Time evolution of the horizontal component of the velocity

UN(X, y,t) at point x = y = -1).
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Figure 22: Time evolution of -rf TZ -N f ZN1  for N,=32, 6, 128 and
Ni=196.
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Figure 23: Time evolution of r-(e) = B 2c )12 for N,

32, 64, 128 and N1 =196.
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Figure 24: Time evolution of the CPU time for the classical method (full
line) and for the multilevel method (dashed line).
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Figure 26: Time evolution of the levels Ni, (ti) and Ni, (ti).
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Figure 27: Time evolution of the characteristic time -r,(t,).
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Figure 28: Vorticity structures at time t = 0.

2.0000

1.0782

0.1565

-0.7653

-1.6870

Figure 29: Vorticity structures at timet = 30.
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Figure 30: Vorticity structures at time t = 60.
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3.2 A direct numerical simulation at higher Reynolds
number

We present here numerical results obtained in a numerical simulation, sim-
ilar to the previous one, but with a larger value of the Reynolds number.
The external force is kept the same and the viscosity is divided by 4. The
initial condition is still a random field computed from a given vorticity. The
computation is performed over 50, 000 iterations, so that, the flow is no more
dependant of its unstructured initial state. An a posteriori analysis of the
behavior of the adaptative multilevel procedure confirms the previous as-
sumptions and proves that the multiscale method is well adapted to Direct
Numerical Simulations. This computation required about 50 CPU hours on
a CRAY2. This total computing time includes all post-treatments done by
the code, i.e. computations of different norms of several quantities related to
the small and large scales. The CPU time spent to compute the velocity field
is 32 hours, which corresponds to 7 106 second per mode and per iteration.

3.2.1 Description of the initial condition.

As in (3.1), the initial field uo is computed in the spectral space from the
coefficients of a given vorticity

=N - o(k)eikx, (56)

kEZ 2,jkl<N

and the coefficients wo(k) are given by

SC19 i k 1-1 e'° if I k _ kQ = 60

wo(k) = 0 otherwise

where c19 is such that I ILO = 2.0. As we can see on Figure 32, the slope
of the energy spectrum at the initial time is equal to -3.
The viscosity is set to 2.5 10', which gives a Reynolds number equal to
6,328 and the integral scale L = 2.93. So, the dissipative wavenumber / is
of the order of 28 which corresponds to N,, = 56. As we want to p- form a
Direct Numerical Simulation a total number of modes of 512 in each tiriction
provides a grid fine enough to resolve the scales under the dissipative ones.
On Figure 32, we can see that the dissipative wavenumber obtained by the
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computation is below 60. Moreover, on Figure 32 we see. that the slope of the
energy spectrum is smaller than -3, which is a faster decay of the energy
than for a fully develloped turbulent flow.
As in the previous computation, a time step equal to 10-3 is small enough to
insure the stability of the scheme and allows to compute all the scales with
enough accuracy.

3.2.2 Analysis of the computation.

We first want to make some remarks on the behavior of the multiscale
method. Figure 36 shows the time evolution of the two characteristic lev-
els Ni, and N ,2 which define the transition range. As it was expected, the
variations of Ni, and Ni2 follow the variations of the ratios

I ZN 1 2 and I PN1 Bit(yN , ZN) 12

1yN, 12 a PN, B(YN,,YN) 12

for values of N1 larger than 256, as we can see on Figures 33 and 34. On
Figures 37 and 38, the variations of the characteristic times 7-N, and i-4, are
plotted. We remind that "rN is used to determine the lower level Ni, and the
length of the period during which the smallest scales, i.e. for I < IN, 2 , can be
frozen. From Figure 36, we note that the lower level of the transition range,
namely Ni,, has to be larger than 256. In fact, we find Ni, of the order of
320, for its lowest value. Figure 35 confirms that the time derivative of the
velocity has a decaying spectrum.
On Figures 39, we have plotted the time evolution of the different terms
appearing in the equation of the small scale components ZN,. As we have
observed in the previous computations, the time derivative I iN, 12 iS of
the order of the coupled nonlinear terms I Q, Bi, t(yN,, ZNJ) 12, while the
dissipative norm v I AZN1 12 is much smaller for lower values of N1. For
the scales lying far inside the dissipation range, we also note that all the
quantities are of the same order.
Figure 40 show the vorticity at different time of the integration interval [0, 50].
The unstructured initial field disappear completely after a flew times the eddy
turnover time. After a short transient period, the flow evolves by keeping
the same global structures. Figure 40 represents three-dimensional views of
two-dimensional maps. Lighting technics have been used, so that shadow
effects allow to see the very fine structures of the flow.
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Figure 32: Energy spectrum at t = 0, 15, 30, 50.
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Figure 33: Time evolution of the ratio I for N1 = 64, 128, 256 and

N, - 480.
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Figure 35: Time evolution of ratio kI for N1 - 64, 128, 256 and N, =

480.
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Figure 36: Time evolution of the levels Ni, and Ni2.
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Figure 37: Time evolution of TrN, (f) E for N, 64, 128, 256 and

N, =480. Zit1
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Figure 38: Time evolution of T", (f) 2c~~ for N,

64, 128, 256 and N, = 480.
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Figure 39: Time evolution of (resp.) v IAzN, 1 2 13 i N, 12, NQ B(YN1 , YN 1) 12

and N, Bint(YN,, ZN1  12 for N, 64, 128, 256 and N, 480.
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Figure 40: Vorticity structures at time t = 30.
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Figure 41: Vorticity structures at time t = 50.
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3.3 Simulation of the whole dissipation range with
the multiscale method.

In this section, the example is the same as in the Section 3.1. Our purpose
is to study the effect of the cut-off value Ni, on the computed solution, so
that several numerical experiments have been conducted. We have decreased
Ni, so that it is of the order of the dissipation wavenumber k, ; the whole
dissipation range is then modelized by the multiscale strategy described in
previous sections. In both simulations, we have noted that the multilevel
method allows to recover all the large structures of the flow. Finally, we have
made a similar test with the classical method, i.e. we have decreased N in
order to estimate the lower level required to recover the large scales.

3.3.1 Analysis of the numerical simulation.

In order to decrease the value of Ni,, the parameter e has been set to 102.
In this case, the level Ni, adjusts itself, using the procedure described in Sec-
tion 2, to the value 24 which is smaller than N, = 34. Figure 43 shows the
evolution of the two characteristic levels Ni, and Ni2, and Figure 44 shows
the evolution of the characteristic time r,. The level Ni, is quasiconstant and
is equal to 24 while the level Ni2 is approximately equal to 128 ; Ni2 is chosen
to be far inside the dissipation range. On Figures 42, we have represented
the energy spectrum of the computed solution at different intermediate times
of the interval [0, 65] on which is conducted the computation. There is no
energy pile-up at high wavenumbers and the dissipation of the enstrophy is
well preserved. By comparing the vorticities obtained with this simulation
and the Direct Numerical Simulation performed with the classical Galerkin
(pseudospectral) method with a spatial resolution equal to (256)2, we note
that all the large scale vortices are well described by the multilevel method.
At the times t = 60 and t = 65, we still have the fusion previously mentioned.
We also note that oscillations appear on the domain. They are due to the
approximation made on the small scales. They also point out the problem
of separation of scales related with a Fourier decomposition. Indeed, Fourier
waves oscillate over the whole domain and they can not be directly associ-
ated with a scale vorticity. This nonlocal property implies the oscillation
appearing on Figures 47. Nevertheless, it appears clearly that all the large
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Table 7
T),) X Difference

t = 10 0.8299845080 10-1 0.8355520907 10-' 5.56 10-4

t = 20 0.2091267106 0.2087057712 4.21 10-7
t = 30 0.3664263833 0.3652791132 1.14 10-3

t = 40 0.2926552919 10-1 0.2587214575 10-1 3.39 10-3
t = 50 0.2458823192 0.2432537325 2.63 10-3

t = 60 0.1573811778 0.1414418124 1.59 10-2

Table 8

ITable8 10) u11NL(xI,X2) Difference

t = 10 -0.7118241214 10-1 -0.7088992727 10-' 2.92 10-4

t = 20 0.1478691156 0.1470191181 8.49 10-4

t = 30 0.4236670791 0.4264640060 2.79 10-3

t = 40 0.4898684126 0.4800345247 9.83 10-3

t=50 0.3592114126 0.3480702322 1.11 10-2

t = 60 0.5173406258 0.5179894219 6.48 10-_

structures are captured with the multilevel method.

The total CPU time required for this simulation is about 4796 seconds and
the difference in L2 (or energy) norm with the solution obtained with the
previous DNS is of the order of 3.6 10-3 at t = 50. The upper level Ni, of
the multilevel procedure is approximatively equal to 128 during the whole
computation. The small scale energy on this level is less than 10-' and then
much less than e. Hence, the level Ni, can be decreased to at least 64 as we
can see on Figure 16 ; in that case, the CPU time will be reduced.

On tables 7 and 8, we have compared the solutions obtained here with
the one obtained by direct simulation. It appears that the difference between
the two solutions is of the order of 10-2 and hence, of the order of E. The
oscillations, appearing on Figures 45, 46,and 47 are probably due to the fact
that the intermediate scales, lying in the inertial range and corresponding
to wavenumbers larger than kN,1 , are not relaxed at each time iteration. A
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better understanding of the effects of the multilevel procedure on these scales
must be done in order to improve the results presented here.

3.3.2 Comparison with a low resolution Galerkin simulation.

Finally, in order to show the efficiency of the multilevel method on such sim-
ulations, we have performed an additional test with the classical method.
Indeed, we have first fixed the total number of modes to 32 and we have
integrated the system over 50,000 time iterations, which corresponds to the
time interval [0, 501. The solution obtained is different than the one obtained
when a Direct Simulation is done, i.e. with 256 modes. Figure 47 shows
the vorticity structures obtained with this simulation at time t = 50. The
number of modes is not sufficiently large so that the large scales can not
be computed. The vorticity looks like a non-structured quantity. Figure 48
shows the energy spectrum at different time of the interval [0, 50]. By fix-
ing the resolution to (32)2, it seems that we do not allow the appearance of
small scales and their dissipation mechanism occuring in the viscous range,
the dynamic of the flow is drastically modified. We note that this simulation
is stable in the sense that no quantity grows artificially. A similar simulation
has been done with N = 48 instead of N = 32. The picture of the flow (see
Figures 47, 49) is more realistic than in the previous case. The large scales
of the flow are almost well captured. Nevertheless, the simulation performed
with the multilevel method with a lower level N3, = 24 gives a better quali-
tative result. The CPU time required by this simulation is 2730 seconds and
the difference with the DNS is of the order of 3.1 10' in L' norm. Hence, the
accuracy recovered here is the same as the one obtained with the multilevel
level method when Ni, = 24. The result obtained here confirms the fact that,
in the previous computation, the level Ni2 can be decreased to 48 ; in such
a case, the CPU time required by the multilevel method will be at least two
times less than 2730 seconds.

To conclude, we have proved with these experiences that the multilevel
method allows to modelize the whole dissipation range and the end of the
inertial range without disturbing the large scales of motion. Moreover, we
have shown that if the small scales lying in the dissipation ral.ge can be
modelized, as well as their interaction with the large scales, they are essential
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to describe the evolution of the flow.
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Figure 42: Energy spectrum at t =5, 20, 35, and 50.
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Figure 43: Time evolution of the levels Ni, and Ni,2.
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Figure 45: Comparison of the vorticity structures at time t = 60.
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Figure 46: Comparison of the vorticity structures at time t - 65.
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Figure 47: Comparison of the vorticity structures obtained with the classical
Galerkin method for N = 256 and N = 32, at time t = 50.

2.0541

0.9099

-0.2342

-1.3783

-2.5225

2.0752

0.9270

-0.2212

-1. 3694

1-2.5176

77



Figure 48: Energy spectrum at t =5, 20, 35, and 50.
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Figure 49: Comparison of the vorticity structures, between results obtained
with the classical method for N = 256 and N = 48, at time t = 50.

2.0541

0.9099

-0.2342

-1.3783

-2.5225

1.9906

0.8436

-0.3035

-1.4505

-2.5976

79



Figure 50: Energy spectrum at t =5, 20, 35, and 50.
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Conclusions

In this article, we have proposed a multilevel method which treats differently
the large and the small scales of homogeneous isotropic flows. Moreover,
we have derived mathematical estimates for all the parameters (cut-oft level,
time scales) involved in this dynamical procedure leading to a completely
self-adaptive procedure. Firstly, several computations have been conducted
in the context of DNS, i.e. the whole spectrum up to the dissipative scale was
simulated. In such case, the multi-level method is able to recover a velocity
field with the same spatial resolution than the Galerkin method, but with a
substantial speed-up of at least 2 in CPU time.

Secondly, in an approach similar to LES, we have decreased the number
of modes retained for the resolved scales and used the same algorithm to
modelize the interaction between the low and high frequencies. In such case,
we have seen that when the resolved scales are larger than the dissipative
ones, but of the same order of magnitude (1/12 as compared to 1/17), the
large eddies of the flow are captured correctly; this is not the case when the
pseudo-spectral Galerkin method is used with only 322 modes, i.e. with a
larger scale of the order of 1/16.

Although, we only presented computational for moderately large Reynolds
numbers, where the small scales are strongly dependent on the energy-
containing eddies, we think that these results are very promising. Indeed,
we can reasonably hope that the multilevel (nonlinear Galerkin) method can
be used efficiently for Large Eddy Simulations. Results on this point will be
presented elsewhere, in the case of two and three dimensional homogeneous
isotropic flows.

Finally, we want to observe that, by opposition with LES methods, no as-
sumptions on the energy spectra or on the velocity correlations are made here.
Therefore the method can be applied to the simulation of non-homogeneous
flows. First attempts have been made in this direction, for the channel flow
problem. Our efforts will be concentrated on this problem in the near future.
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function of the energy-containing eddies of the flow, the variations of the small scales and of the nonlinear interaction
terms over one iteration can become negligible by comparison with the accuracy of the computation. Based oa this
remark, we propose a multilevel scheme which treats differently the small and the large eddies. Using mathematical
developments, we derive estimates of all the parameters involved in the algorithm, which then becomes a completely
self-adaptive procedure. Finally, we perform realistic simulations of (Kolmorov like) flows over several eddy-turnover
times. The results are analyzed in detail and a parametric study of the nonlinear Galerkin method is performed.
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