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ABSTRACT

This report constitutes the annual report to the Air Force Office of Scientific Re-
search under the Contract F49620-93-1-0073 which commenced on December 1, 1993,

for the research project on the Blockage and Scattering of Lg Waves.

The objective of the project is to investigate by means of finite-element model-
ing of the problem of blockage and scattering of Lg wave propagation due to lateral
crustal heterogeneities, particularly from presumed explosions at test sites of Novaya
Zemlya across the Barents Sea to ARCESS, NORESS and Graefenburg. This research
project is to provide not only a contribution to a more quantitative understanding of
the blockage and scattering of Lg propagation, but also an enhancement of the ca-
pabilities of the use of Lg amplitude discrimination as event identification and yield

estimation.

As a first step, the effects of the blockage and scattering by a basin of various
widths filled with sediments on the Lg propagation have been investigated. A series
of anti-plane strain (SH) finite-element models, simulating two relevant geological
provinces for the great-circle paths of the posed problem have been constructed, in-
cluding, (1) the Island Margin Model, (2) the Basin Model, and (3) the Basin and
Crust-Pinch Model with an uplifted Moho. Three different center-frequencies, 0.167,

0.334, and 0.667 Hz of an impulsive source are used in the excitation of the Lg waves.

During the first year of the Contract, we found that:

1. the problem of Lg wave propagation in a complex, laterally inhomogeneous
wave guide, such as in the present case of simulating the propagation path

from Novaya Zemlya through the Barents Sea, can be accomplished by multi-
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steps. This multi-step methodology developed here promises to handle even
larger dimension models than we studied here, without degrading the accuracy

of numerical results. The multi-steps we suggested are, namely, that:

(a) an impulsive source be placed in the Island Margin Model to obtain the

seismic response everywhere in the model;

(b) the output of the seismic response, in our case we choose BB/, be used as
an imput source to drive the Basin Model, and the Basin and Crust Pinch

Model.

. the presence of an idealized basin has an effect on the blockage of the Lg wave
propagation. The manner of blockage is of frequency-dependent, of width of the
basin and velocity contrast between the sedimentary basin and the surrounding

granitic/basaltic crust.

. the presence of an uplifted Moho alone without a basin seems only to have a

minor effect on the Lg wave propagation.

. an unusual event which is generally not observed on the surface has been ob-
served in the upper mantle for the Island Margin Model. The event is attributed
to the multi-reflected in the margin and the transmitted through the upper

mantle.

. the velocity contrast between the sediments in the basin and the surrounding
granitic/basaltic crust plays a vital role on determining the characteristics of
both S, and Lg, and particularly on the scattering, development and attenuation
of the Lg waves. For a high velocity contrast, the wave train of the Lg waves is

lengthened drastically.

. the energy envelop of the so-called Lg waves often contains the arrival of the

direct S waves.




As the project has been extended for the second year, systematic studies have
been contrived to gain more basic understanding of the mechanism of the blockage of
Lg wave propagation in a laterally inhomogeneous earth, specifically simulating the
Lg propagation from Novaya Zemlya through the Barents Sea, the Baltic shield and

the European continent.




INTRODUCTION

The principal objective of this research project is to improve basic knowledge of the
Lg propagation and its mechanisms from presumed explosions at test sites of Novaya

Zemlya across the Barents Sea to ARCESS, NORESS, and Graefenburg.

The monitoring of underground nuclear explosions, unlike the monitoring of at-
mosphere and underwater nuclear tests, can be detected with relatively high degree
of confidence. It remains a critical part of the global verification system. Seismology
provides a technical means for monitoring underground nuclear testing. By investi-
gating seismograms and knowing the general properties of the propagation paths of
teleseismic body and surface waves (recorded at a distance over 2,000 km), and of
regional waves (such as P,, Py, S,, and Lg recorded at a distance less than 2,000 km),
seismologists are able not only to calculate the distance to the seismic event and to
deduce the type of motion to excite the waves, but also to make yield estimation and

event identification based on Lg amplitudes.

The efficiency of Lg wave propagation highly depends on the structure and lithol-
ogy of geological provinces along its propagation path. Ruzaikin et al. (1977) at-
tributed the inefficient propagation of Lg in the Tibetan Plateau to the variation
of crustal thickness, where an unusual thickness of crust is present. Kennett et al.
(1985) suggested that the Lg propagation across the Norwegian Sea might be suf-
fered from a blockage of regional crustal thickening beneath a graben structure of a
basin. Kadinsky-Cade et al. (1981), Ni and Barazangi (1983), and others used the
efficiency of Lg propagation as a method for mapping tectonic boundaries of variable
thicknesses. Baumgardt (1985, 1990a), along the same vein, attributed to the partial
blockage of Lg propagation in Eurasia by the presence of the Ural Mountains from

Semipalatinsk test site in eastern Kazakh to ARCESS.
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Baumgardt (1990a, 1990b, 1991) found that the Lg waves are almost completely
missing at ARCESS and very poorly recorded at NORESS, while "the Lg energy of
some kind appears to get through to the Graefenburg array at about the time ex-
pected for on-time Lg.” It is apparent that variations of Lg amplitudes are closely
associated with the problem of blockage and scattering of Lg waves along its propa-

gation path.

Nevertheless, there is still a great deal of uncertainties in basic understanding of
the generation and propagation of Lg waves in a laterally heterogeneous crust that is
relevant to yield estimation and event identification for nuclear test detection. One
of the problems of Lg propagation in the earth crust has been the blockage and scat-

tering along its propagation path, and the mechanisms affecting its propagation.

Analytic solutions to the Lg wave propagation in such a laterally heterogeneous
crust are generally intractable. It appears that discretization methods such as the
finite-element method can be profitably applied to simulate Lg propagation in lat-
erally heterogeneous media. The finite-element method (FEM) is a numerical pro-
cedure for solving very general partial differential equations, such as the full elastic
wave equations. It can accurately simulate the propagation of transient elastic waves
through complex geologic structures and, otherwise, heterogeneous media.
par During the first year of the AF Contrace F’9620-93-0073, we have studied both
forward- and backward-traveling Lg waves for each of the trapped modes in a later-
ally heterogeneous, realistic geogical structure to give a full representation of the wave
field by means of the FEM. Since the method calculates the elastic components of
displacement at every nodal point on a fine grid which discretizes the subsurface struc-

ture, the results produce not only the complete synthetic seismogram at any nodal
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point but also an image of the displacement wave field as it is propagated through
the Earth, that is, a wave field image, or a snapshot. By correlating the snapshots
with surface records, individual seismic arrivals can be identified on a seismogram, in

terms of the blockage and scattering of Lg waves due to a variety of obstacles.

We used our time-domain-finite-element computer codes, with fast computation
algorithms developed at Aldridge and systematically investigated the effects of lateral

crustal heterogeneities on Lg wave propagation.

A series of anti-plane strain (SH waves) finite-element models have been con-
structed to simulate the evolution and blockage of Lg waves by means of a variety of
relevant geological provinces extending from an Island Margin through a basin and

crust-pinch structure to a normal crust.

RELEVANCE TO THE GOALS FOR DETECTION OF UNDERGROUND
NUCLEAR TESTS

This research is motivated by the works of a number of investigators, who suggested
that the blockage of Lg wave propagation in the continents primarily due to lateral
crustal heterogeneities, and particularly by a series of papers by Baumgardt (1985,
1987, 1990a, 1990b, and 1991), addressing the problem of the blockage and scattering
of the Lg wave propagation from the Russian test sites to the Scandinavian arrays
due to the presence of the Barents Sea Basin. A more quantitative understanding
of the blockage and scattering of Lg propagation and their mechanisms from Novaya
Zemlya to the regional arrays may enhance the use of Lg amplitude discrimination

as event identification and yield estimation elsewhere.




The 1989 announced intention of the Soviets to shift their underground nuclear
testing activities from the test site near Semipalatinsk in western Kazakh to the
Arctic island of Novaya Zemlya, made the study of regional Lg propagations from
Novaya Zemlya to the Scandinavian arrays and Graefenburg relevant. The distances
from Novaya Zemlya to the regional arrays, ARCESS and NORESS are 10° and 20°
respectively, and to Graefenburg is 29.5°. Ther we have accumulated a great deal of
seismic data. Although our initial models will be somewhat simplified, they are and
essential to gain basic understanding of the blockage and scattering of Lg propagation

across the laterally heterogeneous crust, and then to be compared with actual data.




RESEARCH ACCOMPLISHED

I. GEOLOGIAL STRUCTURE

Gramberg (1988) and Clarke and Rachlin (1990) provided fairly comprehensive
geological maps of the Barents Sea and its vicinities, including Novaya Zemlya, the
Kola Peninsula, Cheshkaya Bay, just above the Arctic Circle. Presumably, on the ba-
sis of the geological information given, Baumgardt (1990b) has constructed a NW-SE
geological cross section (Figure 1). Similar geological cross sections along the great-
circle paths from Novaya Zemlya to ARCESS, NORESS and Graefenburg, in which
we are particularly interested, can be approximately constructed. Thus, from Novaya
Zemlya to the Scandinavian arrays, namely ARCESS and NORESS, and to Graefen-
burg, the great-circle paths of Lg essentially traverse major geological provinces, (1)
the island margin with variable crust thicknesses (from Novaya Zemlya to the Barents
Sea), (2) the basin with variable width, depth and sediments (the Barents Sea Basin),
(3) the shield margin (from the Barents Sea to the Baltic shield), and finally (4) the
shield and European continent with variable crustal thickness and lithology (from the

Baltic shield to Graefenburg).

The Barents Sea Basin can be characterized by variations of crustal thickness with
sediment accumulation as much as 15 km, and by missing of a granitic layer. This
structure is based on low in magnetic anomalies caused by the missing of granitic
layer and on high in gravity anomalies caused by the elevated Moho. As reported,
the granitic layer in the adjacent province is characterized by P wave velocities on
the order of 6.0 to 6.5 km/sec, and S wave velocities 3.46 to 3.75 km/sec (Clarke and
Rachlin, 1990). The sediments assume P wave velocities from 3.9 to 5.5 km/sec, and,

correspondingly, S wave velocities 2.2 to 3.17 km/sec (Baumgartdt, 1990a, 1991).

The basaltic layer assumes P wave velocities from 6.5 to 6.8 km/sec and S wave
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velocities from 3.47 to 3.63 km/sec.

The upper mantle is assumed to be normal with P wave velocities ranging from

8.1 to 8.2 km/sec, and S wave velocities of 4.6 to 4.7 km/sec.

The density of the sediments are taken to be 2.2 to 2.5 gm/cm?; that of granitic
layer to be 2.67; that of basaltic layer to be 3.0 in the crust; and that of ultrabasic

rocks in the upper mantle to be 3.27.

I1. MODEL CONSTRUCTION

For the first year, we restrict our investigation for the great-circle path of Lg tra-
verse the first two major geological provinces, namely (1) the Island Margin Model,
and (2) the Basin Model, and (3) the Basin and Crust and Pinch Model. Two basic
models have been constructed to simulate the geological structures along the path
from the former USSR nuclear test sites of Novaya Zemlya to the Barents Sea. The
island margin portion of both the tow basic models is identical. The Barents Sea
portion of the two basic models is different by the interface between the lower crust

and the upper mantle,

(1) Model I, the Barents Sea is represented by an idealized sedimentary basin
which occupies the upper crust. The interface of the lower crust and the upper man-

tle is flat (Figure 2-(a)).

(2) Model I, the Barents Sea is represented by a sedimentary basin, which again
occupies the upper curst. The lower crust is intruded by the Moho uplift of the upper

mantle into the crust (figure 2-(b)).

An impulsive, transient source of the first derivative of Gaussian type forcing

9




functions is placed on the island marked by **’.

In order to avoid the artifitially terminated effect of the left boundary of the island

margin at BB’ on the FEM, an Island Margin Model is construsted as follows:

(A) The Island Margin Model

The Island Margin model is characterized by a sloping interface of the crusts and
the upper mantle. The source is located on the island side of the model (Figure 3-(a)).
The S wave velocities of the granitic/basaltic (averaged) layer and the upper mantle
are taken to be 3.51 km/sec and 4.7 km/sec, respectively. The source are simulated
by an impulsive explosion with three different center frequencies, namely, 0.167 Hz,
0.334 Hz, and 0.667 Hz to investigate the effect of the source frequency contents on
the Lg wave propagation. The right artificially terminated boundary is placed on the
other side of of the island by AA’; the left artificially terminated boundary is placed
about 100 from BB’.

(B) The Basin and Crust-Pinch Models

We consider a series of models with two different basin widths of 150 km and 250
km, but with a fixed center frequency of the source 0.334 Hz. The seismic waves,
as shown in Figure 5-(b), so generated by the impulsive source of the island margin
received at the BB’ BB’ in Figure 3-(a) are used as the input waves at BB’ for the
basin, and basin and crust-pinch models to provide the continuity, as if the waves

propagated from the impulsive source on the island. (Figure 3-(b) or Figure 3-(c).)

The geophysical parameters of these models are as follows: The basin mod-
els as shown in Figure 3-(b), with a basin width = 150 km; shear velocities for:

granitic/basaltic (averaged) = 3.51 km/sec, and the upper mantle = 4.7 km/sec.

(1) for sediments = 3.51 km/sec;
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(2) for sediments = 2.70 km/s=c;

(3) for sediments = 2.20 km/sec;

The basin and crust-pinch models with an uplift of the Moho as shown in Figure
3-(c), with

(4) the same parameters as case (1).

(5) the same parameters as case (2).

(6) the same parameters as case (3).

The basin models as shown in Figure 3-(b), with a different basin width, i.e.,
a basin width = 250 km; shear velocities for: granitic/basaltic (averaged) = 3.51
km/sec; and the vrper mantle = 4.7 km/sec.

(7) for sediments = 3.51 km/sec;

(8) for sediments = 2.70 km/sec;

(9) for sediments = 2.20 km/sec;

The basin and crust pinch models with an uplift of the Moho as shown in Figure
3-(c), with a basin width = 250 km; shear velocities for : granitic/basaltic (averaged)
= 3.51 km/sec; and the upper mantle = 4.7 km/sec.

(10) the same parameters as case (7).

(11) the same parameters as case (8).

(12) the same parameters as case (9).

III. RESULTS

Figures 4-(a), 4-(b), 4-(c) are the synthetic seismograms obtained from Model
A by using 0.167 Hz, 0.334 Hz, and 0.667 Hz, sources respectively. The synthetic
seismograms obtained from Model B by the source of a center frequency 0.334 Hz are
shown in Figures 6-(a) to 6-(f) (correspending to Case 1 to Case 6), Figures 7-(a)

to 7-(f) (corresponding to Case 7 to Case 12). We have also calculated two series
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of models with the same geophysical parameters as Case 7 to Case 12, but with the
0.167 Hz center frequency source (as shown in Figure 5-(a)), and the 0.667 Hz source
(as shown in Figure 5-(c)), respectively. We assign the six cases with 0.167 Hz source
as Case 13 to Case 18 with the corresponding synthetic seismograms as shown in
Figures 8-(a) to 8-(f), and the six cases with 0.667 Hz source as Case 19 to Case 24

with the corresponding synthetic seismograms as shown in Figures 9-(a) to 9-(f).

It is expected that a seismogram would have typically regional waveforms, with
relatively sharp P, onsets, an emergent arrival corresponding to the S, onset, and the
strong Lg arrivals. However, the present finite element numerical results, of course,
do not generate the P, waves, since we treat it as an anti-plane strain problem for

the Lg waves.

The arrivals of both the S,, and Lg are clearly shown in Figures 4-(b) and 4-(c),
on the finite element synthetic seismograms due to an impulsive source with center
frequencies of 0.334 Hz and 0.667 Hz,. respectively. The arrival of S,, for an implusive
source with a center frequency 0.167 Hz as shown in Figure 4-(a) is a broader event
because of a long duration of the pulse. In the distance range investigated, 10 - 250
km, the so called Lg begins with the direct arrival of S, i.e. SH. In another word, the

direct S is often included in the energy envelop of the Lg waves.

In order to illustrate the crustal wave guide phenomena for the energy of the Lg
and S,, waves, we have calculate seismograms as a function of depth from the crust
through the upper mantle. Figures 5-(a), 5-(b) and 5-(c) show the responses at BB’
(see Figure 3-(a)), corresponding to the center frequencies of the source, 0.167, 0.334,
and 0.667 Hz, respectively. The energy is virtually trapped in the curst to make it a
nearly perfect wave guide for the Lg wave generation and propagation. Howerer, for

lower frequencis, there is a leakage of energy from the crust to the upper mantle. As
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the interface of the crust and the upper mantle is placed at a depth of 30 km with
the center frequency of the source 0.667 Hz, (Figure 5-(C)) shows that the energy
of Lg is all confined to the crust. For a lower center frequency such as shown in
Figure 5-(a) with a center frequency of 0.167 Hz, the energy of Lg in the subsurface is
transmitted through the upper mantle as deep as a half of the crustal thickness to a
depth of 45 km, that in Figure 5-(b) with a center frequency of 0.334 Hz, the energy
of Lg is tranmitted through the upper mantle at a depth of about 38 km, or a quar-
ter of the crustal thickness. Therefore, the crustal wave guide for the Lg waves for a

variable thickness of the crust such as for the margin model is of frequency dependent.

Figures 5-(a),(b), (c) show an interesting event which is generally not observed
on the surface, that is the arrival of an event in the upper mantle ahead of S, in
the crust. These arrivals are interpreted as a multi-reflected in the margin and then
refracted into the upper mantle, devoted by S g, where ’cl’ stands for reflected in the
crust and and 'R’ stands for refracted and transmitted through the upper mantle. As
a matter of face, the amplitude of S, g increses as a funtion of depth as observed at a
distance of 250 km clearly shown in Figures 5-(a), (b), and (c). These arrivals are less
multi-reflections in the margin. The average envelops of the Lg waves are broader for

the source with lower frequencies.

The responses, as shown in Figure 5-(b), are used as the input source at BB’ in
the Basin Model (see Figure 3-(b)). Figure 6-(a) shows the synthetic seismograms
obtained from the model with the basin replaced by the granitic/basaltic (averaged)
velocity of 3.51 km/sec, that is, a layer of grantic/basaltic (averaged) over the upper
mantle. Shear wave reverberation in the averaged granitic/basaltic layer is clearly
shown to produce an expected group velocity for Lg of approximately 3.5 km/sec,

and for S,, waves with a group velocity of 4.4 km/sec.
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Nevertheless, Figures 6-(b) and 6-(c) are the results obtained from the Basin model
(with basin width = 150 km as in Figure 3-(b)) with two different sediment velocities,
2.7 km/sec and 2.2 km/sec, excited by the input waves at BB’ in Figure 5-(b). In
both cases, in addition to the arrivals of S,, and Lg observed from 20 - 400 km, there
are scattering events from the two limbs of the basin clearly shown at the locations
between the source and the left limb of the basin as marked by the dashed lines. The
reflections come later but stronger for the basin velocity of 2.2 km/sec case (Figure
6-(c)) due to a higher contrast of velocity between the crust and the sedimentary
in the basin in comparison with that of the 2.7 km/sec case (Figure 6-(b)). In the
locations closer to the source, the main features as shown in Figure 6-(b) and 6-(c),
are the emergent arrivals followed by the distinct Lg arrivals. While at the locations
adjacent to or beyond the left limb of the basin, the Lg waves have been developed
into a complicated long tremor (or codas) with the amptitude diminish with time.
With the presence of basin, the synthetic seismograms also show the delay of the

arrivals of Lg waves.

Figure 7-(a) and Figure 6-(a) are virtually identical. Figures 7-(b) and 7-(c), which
are corresponding to the cases of Figures 6-(b) and 6-(c) but with a wider basin width
of 250 km, show all the essential wave characteristics as revealed in Figures 6-(b) and
6-(c), except the laterally scattered waves from the limbs of the basin are delayed by
traveling the additional width of the basin. These scatterd waves are also separated

into the S, and Lg arrivals.

Figures 6-(d) and 7-(d) are the synthetic seismograms for the cases with an uplifted
Moho corresponding to the Moho-uplift width of 150 km and 250 km respectively,
but without the presence of the basin. With the input waves of a center frequency
0.334 Hz, the wavelength is still too short to have the effect of the uplift of the Moho

on the Lg propagation observed on the surface. The arriving times for both S,, and
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Lg is earlier and S,, are stronger than those for the cases without a Moho-uplift.

Figures 6-(e) and 7-(e) show the synthetic seismograms for the basin and Moho
uplifted model (Figure 3-(c)) otherwise identical configuration as in Figures 6-(d)
adn 7-(d), except the width of the basin being 150 km and 250 km, respectively. The
scattered waves due to the limbs of the basin are clearly observed in both Figures
6-(e) and 7-(e). Both S, and Lg are well developed in both the cases of the width
of the basin 150 km and of that 250 km, in the distances from 20 - 400 km from the
source location. However, in the case of the width of the basir 250 km, the amplitude
of the Lg decays more rapidly than that in the case of the width of the basin 150
km. The phenomenon of the Lg blockage by the basin in the case of the basin alone
model is clearly shown beyond the observing distance 300 km for the case with the
width of the basin 250 km (Figure 7-(c)); and beyond the observing distance 200 km
for the case with the width of the basin 150 km (Figure 6-(c). In the case of the
basin width 150km, the amplitude of the Lg, decays in the distance from 220 km to
340 km, and then regains beyond 340 km. These observations clearly demonstrate
the phenomena of the blockage of the Lg waves by the presence of the low velocity
sedimentary basin. Now we examine Figures 6-(f) and 7-(f), which are the Basin
Model with the identical structural and velocity parameters, but the width of the
basin being 150 km and 250 km, respectively. In Figures 6-(f) and 7-(f), again the
scattered waves due to the limbs of the basin come later but stronger due to a higher
contrast of velocity between crust and the sedimentary in the basin in comparison

with those in Figures 6-(e) and 7-(e).

Although an uplifted Moho appears to have only minor effects on the Lg propaga-
tion for the center frequency 0.335 Hz of the source investigated, the uplifted Moho

associated with the basin does have considerable effects on the Lg propagation. We

find that:
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(1) The larger the velocity contrast between the basin sediments and the sur-
rounding granitic/basaltic crust is, the stronger is the scattering, and the longer are
athe delay and attenuation the Lg waves;

(2) The wider the basin width, the longer is the delay of the Lg waves.

For detailed investigation of the effects of the center frequency of the impulsive
source and the velocity of the sedimentary basin on the Lg waves, we, in addition,
have calculated the cases for the center frequencies of 0.167 Hz and 0.667 Hz of the

source for:

(1) A layer case without Moho uplifted and with Moho uplifted with a basin
velocity of 3.51 km/sec (Figures 8-(a), 8-(d), and Figures 9-(a), 9-(d), respectively);

(2) A basin model without Moho uplifted and with Moho uplifted, with a basin
velocity of 2.7 km/sec (Figure 8-(b), 8-(e), and Figures 9-(b), 9-(e), respectively);

(3) A basin model without Moho uplifted and with Moho uplifted, with a basin
velocity of 2.2 km/sec (Figure 8-(c), 8-(f), and Figures 9-(c), 9-(f), respectively);

The essential features of S, and Lg and the scattered S,, and Lg for the center
frequencies 0.167 Hz and 0.667 Hz of the source above are precisely similar to the
cases of those for the the center frequency 0.334 Hz of the source for these cases (see

corresponding Figures 7-(a) to 7-(f)), viz.,
1. The emergent arrival corresponding to the S, onset;
2. A distinct strong Lg arrival at the distances closer to the source;

3. At the locations adjacent to or beyond the left limb of the basin, the Lg waves

are spread out into long codas with their amptitude diminishs with time;

4. The larger the velocity contrast between the basin sediments and the surround-
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ing granitic/basaltic crust is, the stronger is the scattering, and more the delay

and the attenuation of the Lg waves,

5. The higher the frequency of the source, the more attenuated are the S,, arrivals.

The effects of the velocity of sedimentary basin on both the development and
appearance of S,,, and Lg are substantial. When the contrast of the velocities between
the basin and the surrounding granitic/basaltic crust increases, the wave train of the

Lg is lengthened drastically.

For all the cases of the presence of the basin, either with a Moho-uplift or without
a Moho-uplift, and when the locations of observation are beyond the left limb of the
basin, there are several wave-packet-like arrivals observed. The ones followed S,, may

be interpreted as the conversion of the S,-to-Lg wave from the interface.

Another interesting feature is that there show minimum Sn arrivals in the adjacent

of the left limb of the basin.

The amplitude variations of the seismic responses for the cases with Moho-uplift,
in comparison with the corresponing cases with no Moho-uplift, depend on the ob-
servation locations and the frequency contents. To understand the meshanism of Lg

propagation, further systematic investigaion is needed.

FUTURE WORKS

The first year investigation of the problem of the blockage of the Lg waves due to the

island margin to the Barents Sea has laid the foundation for the future work.
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In order to understand the problem of the blockage of the Lg wave propagation
in a laterally inhomogeneous earth, systematic studies must be continued, including

the following:

(1) Replace the the averaged granitic/basaltic crust by a crust consisted of two
separate layers with different geophysical paramenters. (2) The problem of the sensi-
tivities of various geometrical and material parameters, viz., (i) the size of the basin
e.g., the ratio of the depth to the width of the basin; (ii) the dip angle of the basin
sides; (iii) the variation of thickness of the crust, (iv) the crustal-Q variations, to the
variations of Lg amplitude. (3) Extend the present study to the problem for the cases

of elastodynamics i.e. P and S waves.

Moreover, we shall extend the Island Margin, the Basin, and the Basin and
Crust Pinch models to include the Baltic Shield and European Continent to ARESS,
NORESS and Graefenburg. If time permits, we shall compare the FEM results with

the observations.

CONCLUSIONS

During the first year of the Contract F49620-93-1-0073, we have studied the problem
of the blockage of Lg waves by the finite element models of island Margin, basin, and
basin with an uplifted Moho to simulate the great-circle path from Novaya Zemlya

to the Barnets Sea.

The efficiency of the crust (an averaged granitic/basaltic crust in the present case)
as a wave guide of the Lg waves strongly depend on the frequency content of an im-

pulsive source.

18




The effects .. the presence of a basin in the crust on the Lg wave propagation
depend on frequency content of the source, the width of the basin and the velocity

contrast between the sedimentary basin and the surrounding crust.

The presence of an uplifted Moho alone appears to have a minor blockage effect

on the Lg wave propagation.

In order to understand the blockage and characteristics of Lg waves, it is insuf-
ficient to investigate the Lg waves on the earth surface alone. It is fruitful to study
the evolutional characteristics of Lg waves in the interior of the crust and the upper

mantle.

The finite element codes with the fast execution algorithm proves to be a well

suited tool for the modeling purpose intended in this research.
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FIGURE 1 (A) GEOLOGIC MAPS OF BARENTS SEA BASIN (AFTER
GRAMBERG, 1988). (B) NW-SE CROSS SECTION (AB) ACROSS THE

BASIN. (After Baumgardt, 1990b)
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direction of Lg propagation ,
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Figure 3-(a) The Island Margin Model
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Figure 3-(c) The Basin and crust-Pinch Model
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