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1.0 INTRODUCTION

The overall aim of this work is to develop an understanding of the factors that control the

transverse strengths of high temperature MMCs, and thereby identify the microstructural

requirements to maximize this strength. Our approach is to identify the damage mechanisms that

lead to transverse failure using in situ observations and high resolution strain mapping and, on the

basis of these observations, develop analytical models that allow the roles of various

microstructural properties to be identified. Among the important properties are the strength and

sliding resistances of the interface, residual stresses, and fiber spacing. Some of the implications

for optimum interfacial properties and fiber spacing run counter to "conventional wisdom."

Experimental work has involved titanium aluminide matrix composites with different fibers

to vary the residual stress, and with fiber coatings to modify the interfacial properties. Different

failure modes were observed in composites with large and small residual stresses.

In composites with large residual stresses several forms of damage preceded failure, ',it ;he

damage that led to failure and thus limited the strength was transverse cracking. The analytical

stress field solutions indicate that the stresses driving transverse cracking are greatly increased if

circumferential sliding occurs, whereas this stress is reduced at closely spaced fibers provided

circumferential sliding does not occur. Therefore optimum strength is achieved with either

strongly bonded interfaces, or interfaces that debond easily but have large resistance to

circumferential sliding. The latter condition could also be compatible with the requirement of

debonding and relatively easy frictional sliding for maximum benefit from fiber reinforcement in

longitudinal properties (i.e., increased resistance to fatigue crack growth because of crack bridging

by the fibers). The results suggest a potential benefit from having anisotropic interfacial

properties, perhaps obtained through morphology, to allow easy sliding in the axial direction and

more strongly resisted sliding in the circumferential direction.

In composites with small residual stresses and strongly bonded interfaces, the transverse

strength is limited by cracks that initiate by splitting of the fibers, or cracks that form in the matrix

near the interface, where the analytical solutions indicate a large stress concentration occurs. These

cracks are far more detrimental than a debonded interface which, provided the interface is

sufficiently weak, becomes a hole which concentrates the applied load more weakly. Therefore the

optimum transverse properties are expected for a weakly bonded interface, again compatible with

the requirements for optimum longitudinal properties.

Because of the important role of interfacial sliding on transverse properties and the potential

benefit from tailoring anisotropic friction, studies of the effect of interfacial roughness on sliding

resistance were initiated. Previous analyses of the relation between the force and displacement

during fiber sliding (pushing or pulling) were extended to include effects of interfacial roughness.



Analytical solutions were obtained for a linear roughness profile over the range of displacements

that are smaller than the dominant half-wavelength of the roughness. With the equations expressed

in normalized form, a convenient friction parameter, which defines the roles of the friction

coefficient and the roughness angle, was defined. For certain values of the friction parameter, the

effect of the roughness negates the Poisson's contraction during fiber pulling, giving solutions that

are very close to the response of a system with a constant frictional stress at the interface.

Results of single fiber pulling experiments to measure frictional sliding in titanium

aluminide composites that had been subjected to cyclic loading at various temperatures were

interpreted in terms of these analytical solutions. The experiments involved measurement of relative

sliding displacements using high resolution displacement mapping, giving sufficient resolution to

distinguish various friction laws.
The results of the theoretical effort at ASU are presented in Sections 3.0 and 4.0. Section

3.0 includes the studies of fiber interaction, which was found to be essential in the analysis of the

composites' transverse behavior. Section 4.0 deals with the disturbance of the local stress field in

the vicinity of a free surface. A comprehensive discussion of the transverse strength and failure

mechanisms of the composites under study is presented in Section 5.0 which includes the

experimental observations and the relevant theoretical models. Section 6.0 presents the first stage

of our study involving the effects of frictional sliding.
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On the elastic interaction between two fibers
in a continuous fiber composite under thermal loading

Demitris Kouris
Afechanical and Aerospace Engineering Department. Ari-c na State ULntersitv. Tempe. A Z 85287-6106. USA

and

Eiichiro Tsuc'sida

A4echanical Engineering Department. Saitama Unicersirtv, 255 Shimo-Okubo. L rawa 338. Japan

Received 31 October 1990: revised version received 15 April '991

The problem of fiber interaction in unidirectional fiber composites under thermal loading is considered. A pair of fibers is
modeled by two inhomogeneities that sustain an eigenstrain loading, proportional to the difference of fiber/matrx thermal
expansion coefficients. Utilizing the displac..ment potential approach, the plane strain problem is solved analk.tically. The
effect of incoherent interfaces is evaluated, in companson to the case of perfect bonding.

1. Introduction

The most commonly used approach for manufacturing titanium aluminide composites is consolidation
of the matrix in direct contact with the fibers. The matrix may begin as a rolled sheet or powder, or it may
be applied to the fiber by plasma deposition. In both cases, the final product in all "bare-interface" Ti. Al
composites contains some degree of microcracking both of the fiber/matrix interface and the matrix
between fibers (Cox, 1989).

Causes of the microcracking are, among others, the chemical reactivity of the matrix/fiber system, the
brittleness of intermetallic matrices and the micromechanical damage due to the thermal loading of a
material with an inherent thermal mismatch between its constituents (Cox, 1989). In intermetallic matrix
composites, the local stress state is severely affected by residual thermal mismatch stresses.

The effects of the interfacial integrity 1 on the mechanical properties of thermally loaded composites are
not, yet, well understood. A weak interface may enhance room temperature monotonic strength and
fatigue life for loading in the fiber direction, while degrading transverse modulus, strength, and high
temperature creep resistance (Cox et al., 1989). Nevertheless, the prerequisite to predicting microcracking
in any material is knowledge of the local stress state.

The overall properties of composites have been the subject of a number of investigations that are
primarily based on the self-consistent method (K.roner, 1958; Budiansky, 1965; Hill, 1965). An extensive
list of references is included in Mura (1987).

Based on a successive iteration method introduced by Mori and Wakashima (1990), the average values
of the elastic properties of a composite with randomly distributed fibers have been determined, in closed
form; this approach has been extended to account for the case of sliding fibers (Shibata et al., 1990).

Thi, work has been supported by the Air Force Office of Scientific Research. through the University Research Initiative Award
AFOSR 90-0235.

0167-6636/91 /S03.50 7, 1991 - Elsevier Science Publishers B.V. All rights reserved
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When the fibers are periodically distributed. the Eshelb, transformation strains can be accuratelk
estimated: consequently. the moduli of a composite can be determined, using energ,, considerations. An
extensive treatment of the subject has been presented bN Nemat-Nasser et al. (1982), IwX'akuma and
Nemat-Nasser (1983). and Accorsi and Nemat-Nasser (1986).

In the present study, an attempt was made to determine the local elastic field in the vicinit% of to
identical fibers in a continuous fiber composite under thermal loading. The plain strain analsis followed.
is based upon the observation that thermal mismatch can be modelled as an appropriate eigenstrain field.
sustained by the fiber cross sections.

Our primary interest is to determine how the fiber interaction relates to the local stress state of the
fiber/matrix interface, as well as the surrounding matrix itself. Such an analytical investigation of the
interaction is useful. since most existing closed-form solutions involve single fibers.

The geometry of the boundary value problem is shown in Fig. 1. Two circular inhomogeneities (fiber
cross sections). with a central distance c. undergo an eigenstrain loading. Utilizing the di. -Sacement
potentials approach. an analytical solution for the elastic field is obtained, in a series form.

2. Description of the boundary value problem

Consider two circular inhomogeneities P. and Q2. with centers at 0,. 02, respectively, embedded in an
infinite elastic region. Let the centers coincide with the origins of the Cartesian coordinates (xl, v1 ) and
(x,, y,), and x1. x.-axis be the center line (Fig. 1). If we assume that the central distance is equal to unity,
then

x, x- + 1, Y 2 (1)

Y. Y2

G, v c-7 0,XX

Fig. 1. Geometry of the problem.

,0

0
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The polar coordinates r, 9) are defined through the transformation

x = r cos y. v=r sin 0, (1=1,2)-

The displacement vector u can be expressed as the sum of the %ectors corresponding to the O and O
coordinate systems. Therefore

u~uI-u..(2)

According to the Papkovich-Neuber displacement formulation (Papkovich. 1932: Neuber. 1934). u, and
u, can be expressed as

2Gu1 = grad[o01 + xo,1 +y,02,] - 4(1 - v)[0 11 . 02j. (3)
2 Gu, = grad [on:+ .x:• -'-.V2z~z: 4(1 - v, [Ozz 02] (4)

where 0,; are arbitrary harmonic functions and [0,,. 0_1 is equal to o,) for the x-component and p,,,,, for
the .v-component of the displacement. G. v denote the shear modulus and Poisson's ratio. respectively.

In order to satisfy any conditions along the boundary of the first inhomogeneity !21(r, = a,). it is
necessary to express (4) in terms of the (x,. y-) coordinate system. Such a transformation is readily
available using (1) and is given by

2Gu, = grad[o02 + (X, - 1)0i2 +y,, - 4(1 - v)[0 1 2 . 0:-]

or

2Gu. = grad[(%: - €,,) + x14,, +y,¢2] - 4(1 - v)[0 12, 02::. (5)

Similarly, for the second inhomogeneity Q2(r2 = a,), we have from (1). (3)

2Gu, = grad[(001 + 0,1 ) + x.,, 11 + Y2.02] -4(1 -v)[0 1 1 . 0.,, (6)

Due to the applied thermal loading. eigenstrains £ * and c,* are introduced in fl and Q2,. These
eigenstrains are proportional to the difference of the thermal expansion coefficients between the fibers and
the surrounding matrix. Consequently, the displacements corresponding to the transformation strains 4•*
and c,*. are given by

-i* = -*x f * =€y

U, EX, U,, (

or. in polar coordinates

*,* =-r(,* + c• )+ 'r(* - ,) cs2, (-c)rsin 2. (7)

If we assume that the fibers are perfectly bonded to the matrix, the boundary conditions along the circular
interfaces (r = a,) are

u, u5=, + + 'i, o, = 50 + = T ,-6 (8)

In the absence of any far field mechanical loading, all the components of the stress tensor vanish as
r - :c. Therefore

lim o,j = 0. (9)
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The unique solution of the problem can be obtained, if a set of harmonic displacement potentials is
determined in such a way, that the b.,undary conditions (8) and (9) are satisfied.

3. Analytical solhtion

The displacement potentials chosen for the matrix (r, > a,) are

0,= Po Fo' log p,+ AnAO -"cosn , 0) , po BB -cos nO,. 0 (I)

and for the two inhomogeneities (r, < a,)

p,= A p" cos n8, PO CcosnO, ,- , (0l)
n-I n-I

where p, - r/c and Po = 2Gc.
Using the potential functions (I) and (II) we can derive stresses and displacements in the matrix and thi,

inhomogeneities; it can be easily verified that the boundary conditions (9) at infinity are identically
satisfied.

What remain to be determined are the values of the coefficients F0', An,, B,, ;, and B,. This can be
accomplished by enforcing the boundary conditions along the interface of the inclusions, as described by
(8).

In order to proceed with the boundary of Q?(rj = a1 ) we utilize (3), (5) and the following relations
between the harmonic functions:

logp 2 =- I po costmO0, logPI=- (1) 1 c t (10)

and

, " 1)Sn6 w, P, O m,, P cos no m~wnpzCSrO,. (11)
m-O m-O

where ,'" = (m + n - 1)!/(n - 1)!m!.
Using (3), (5), K = 3 - 4z, and the transformations (10) and (11), we can express the boundary

conditions along the interface of S21(r1 - a,) as follows
u,=ii,+ii,* -

01 0cs O cc B, n I +KoFo . --EA,, n CSn , - I , , -I _ aa• i- O 9
- I n-2 a2

- + a+' cos no, - F2 F_ a'-' cos n,,
n-O n-i

+ o (-1)'"(A2-B2) w.na"-' cosSO
nEO rn-i

~ -1) B~w,,_ 1at .(n-1 -,) cos nO,

n-I rnli
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-Ii- - B ..... +o - (nl - Icos nOI

n--0 n--

I C

F y' Anan` cos nO, - T W) a,- Cos nO,

1- ,(n l_ )a" cos nO,

Sa +(S, + ) + a'a ,* - , ) cos 28,. (12)

The requirement for continuity of the tangential displacements yields

- 's A, ,--no--", sin nOB , .
I a, a1

fl +l+,("- Z e .. , °-, sin nO , -i-to E a ; -1  sin nO1
n-I a, n-I

SB,),"naI sin nO,
n-I M-I

_- .(1) m B'.,KLan-(n - 1 - K) sin nO1

n-I M-I

+ Z na- sin no1,-fT"(.+"+,,siin,,
n-I n-2

11 -÷
+ -2F B ,(n + Il + R)a," l sin nO,

+ --

- a(e. - ,* ) sin 26,. (13)

For the normal stresses along the interface we have

1 0 (+ I) (n-1)(n + 2)SBn,,,2 cosn no 1
-Fol ar+ EA, a•,. - cosn- Cos no

- .n1 a n-2 an

(n + 1)(n + I + K)2+ B... cos no, - 2 (n - 1)a"- cos nO,".-0 an' 2-1
n-O 1  R-1

EE (-)m(2 -B,2,)"'n (n - 1)a0- 2 cos nO,
+1-O n1-I

+. (-1)"Bw"La, -)(n--K) cos nO,
n.. m--I
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+ . a"(1) B;,. ,,(,n +ý 1)(n- 2)cos,,0, - 7 .4 ,,,(,,- 1) U,•i COS 1,,
' (-1( 1 )an- 2 ) cos nO - 2) a:' Cos n

. - .I(n ' )(n

n -2 n -0

-0. (14)

Finally, the shear stresses give

_ n(n+n) i -
A , - sin nOI -+ sin no,

a a

l +' B2 (-+1)(n + Ia+
+ aB', 2  sin nO1 + Fu- (n - l)a;'- sin nO•

- -)"(A2, - B.2,) ,;",n(n - 1)a'-2 sin no
n'0 M1l

-4 E I (-1) m B•,;j,._an 2 (n - 1)(n - 1 - K) sin nO1
n-I rn-I

-4 E E (-1)"IBw.,~a~n(n+ 1) sin nO,
n.I0 rn-I

+ P .n(n- 1)a"- 2 sin nO, + ½ - 1)(n- 1 - W)a?'-- sin nO,
n-I n-2

+ 1 k'BIX n(n + 1)a"' sin nO1
"r0

=0. (15)

where F denotes the shear moduli ratio G/G and all the overbarred letters corresponds to quantities
relating to the inhomogeneities.

Using the same procedure, we can enforce the boundary conditions along the interface of the second
circular inhomogeneity 12,. However, since the fiber cross sections are identical and the thermal loading is
symmetric, we have to satisfy the boundary conditions along the interf re of 12 or 122; the other one will
be satisfied automatically.

Utilizing the symmetry relations

A' =(-)nA'A,A. B.'(-1) "+'B,2 = B,

a, =a, a.

we can express the conditions (12)-(15) as follows

+ , (A n-I+anI n. ' Foa(-- I+n+)-1)F O a - A a .-- I -' B - a--1 7 B , - a1. --a

rn-I rnlIM-1 M-
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x • -j - I

2 F T1(n-K)a' 11-

= !a(• -- •,* 6'°'+ (. + ' )6,- (n =0.1,2 .... ). (17)

a, a,- . an-1 + Foa -

(, + (Am- + nan( - + : B_ Vt..-a"-(n-1- K)a"-)

+ B -(n+I +")a"" + TAn -+ -fTB(n )a"1

+1-rB.-(n + I + )a"÷1

= 'aE (n = 1,2, 3....), (18)

-•18(°'+ +An(n + + - (n- 1)(n + 2) + (n + 1)(n + 1 + K)

a a.. an an.

Fo( - 1)- I a'- 2  + (Am + Bm)ýn."f(n --
M-1

B .. Wnj ( n 1)( n1•K)an- 2

M-1

- ½B._(n - 1)(n - I W)a"-2
- .+ 1(n + 1)(n- 2)a'

=0 (n=0,1,2,...), (19)

and finally.

n(n+ 1) n(n- 1) IB (n+ 1)(n+I +K) -2+Fo(n
A n+2 + 1.I a m 7., a On 1a

- T (A, + m) w"n(n - 1) a 2

S-00
+ T_ B,,,w"_,(n - 1)(n -1- K)a- 2 + ½ B,,,w,,¶",n(n + 1)a"

+ An(n- 1)a"- + ½B,,_(n- 1)(n- 1 - W)a--2 + }B...n(n + 1)a'

=0 (n=I,2,3.... (20)

where 8.") denotes Kronecker's delta.
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4. Incoherent interfaces

The anaktical formulation followed above, is based upon the assumption that the fiber cross sections
(circular inhomogeneities) are perfectly bonded to the surrounding matrix. However, the presence of thin
fiber coatings or reaction zones along the fiber/matrix interface, suggest that a third phase may need to
be considered. In order to study the effect of such a third zone. it is necessarv to know in advance t,
thermomechanical properties: unfortunately, these in situ properties are not easily obtained.

Such difficulties can be avoided by considering a spring-type thin layer, which also accounts for the
imperfect bond between the constituents of the composite. This model allows for displacement discontinu-

ties along the fiber/matrix interface, while tractions remain continuous. Such an approach has been
utilized by Lene and Leguillon (1982). Benveniste (Ic84. 1985) and Jasiuk et al. (1989). among others. In a
comprehensive study. Hashin (1990) investigated the effect of such interfacial conditions on the thermo-
elastic properties of unidirectional fiber composites, using the generalized self-consistent scheme.

In the present study, as in Kouris and Mura (1989). we will assume that. along the interface. tractions
and normal displacement remain continuous, while the tangential displacement discontinuity is propor-
tional to the interfacial shear stress, i.e.

2G[u] =O ?aý,8  (21)

ee

S~perfect bonding, a =0.3 :

rJ 0

T_ 2

0 45 90 •35 180

Fig. 2. Vanation of the normal stress along the fiber interface, for different shear moduli ratios.
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v,,here [ue] = u,-- (i-U, G and a denote the shear moduli of the matrix and the radius of the
inhomogeneity, respectively, and X is a proportionality constant that describes the condition of the
interfacial bond and . rresponds to the compliance of the thin interfacial la~er.

VWhen X is equal to zero, fibers and matrix are perfectly bonded: as X approaches infinit'. the condition
of perfect sliding is obtained (no shear tractions along the interface).

In view of (21). the boundary condition (18) is transformed into

n n- -K n + I-+-K
n . , ,-I-_ 'B , -?- Foa"'(8('-1)

aa ~

- E (A, ++B,_)"na"'-(8"'- 1)

+ Bm,•-,,a "-'(-n,)(6,"' '1) +: B_ n + +K

m-I M-I

+ A na" n -]+ n- +A(n -1)

+ a n + I + W) + .An(n + 1)

=,a( c,-'*)862 (n= 1,2,3,...), (22)

while (17), (19) and (20) remain unchanged.

03

perfect bonding, a 0.3

I I

0.1 ______

Tre
Po

0 .10 - - -- - - -

L I I-=2
-0-- r=i1

1- 2
-01 r=.F -- - 0=.5

I- = =0.1

-0.2

0 45 90 135 180

e
Fig. 3. Shear stress distribution along the interface for various r.
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5. Results and discussion

The linear system (17)-(20) that was obtained by enforcing the interfacial conditions. %as solved 0
numerically. In order to ensure matching of the boundary conditions up to three significant figures. no
more than 15 series terms are required. The solution yields the coefficients F,) A,. B_, .4,. and B,,. and its
convergence is numerically evident. After evaluating the series coefficients, stresses and displacements in
the matrix and the fiber cross sections can be determined, by utilizing 0t displacement potentials (I1 and
(II). It has been assumed that the thermal load P, = 2GC,* = 2G0,* = I and v, = •= 0.3.

The purpose of the parametric study that follows, is to quantify the effects of the fiber,' matrix shear
moduli ratio and the fiber/ fiber distance, on the elastic field (stresses and displacements) in the vicinit, of
the fibers.

As the fiber material becomes stiffer (F = G/G increases), the absolute values of the matrix interfacial
stresses increase, as shown in Fig. 2-4. The distribution of the normal stress a, in the matnx, along the
central line, is illustrated in Fig. 5-7. When the effects of fiber interaction are negligible (a = 0.1). the
values of a, along the interface are proportional to F. as expected from the single fiber solution. Hom-e~er.
as the fiber radius a increases (fibers approach each other(, the trend is reversed: a, becomes inversely
proportional to F. In Fig. 7. the distribution of a, based on superposition of the single fiber solution
( = 5). a commonly used approximation, is compared with the results of the analytical solution. It can
be observed that for F = 5, the approximation overestimates the interfacial streqs by a factor of 4: in
addition, the error is directly proportional to the shear moduli ratio F.

As the radius of the fibers increases (and for constant r = 2), the values of the interfacial stresses
increase, as expected (Fig. 8).

12 I I

perfect bonding, a - 0.3

10

45 90 135 180

r

Foo

Fig~~~~~ 4. Di0bto ofteho5 tesaogteitrae
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perfect bonding, a = 0.1

021
I I

.2.

I ,

0 15 020 025 030 035 040 0-45 C50

x

Fig. 5. Effect of r on the distribution of a, along the central axis. for a - 0.1.

In order to investigate the behavior of the incoherent interface defined by (21), stresses and displace-
ments were evaluated for several values of A between zero (perfect bonding) and infinity (sliding). The
shear moduli ratio r and the fiber radius a were kept equal to 2 and 0.35, respectively.

It was found that as A increases, the elastic field approaches rapidly the one corresponding to perfect
sliding; for any A > 50, stresses and displacements remain unchanged and identical to the conditions of
perfect slip. As shown in Fig. 9, the shear stress along the interface tends to zero as X increases- however.
the values of the hoop stress aq increase as the condition of perfect slip prevails (Fig. 10). The small tensile
values observed in the case of perfect bonding (A = 0) become significant as the degree of interfacial
coherence decreases. Such high tensile values suggest the possibility of a mode I crack initiation at 0 = 0 0.

Finally, the variations of a,. and oa along the x and y axes, respectively, are illustrated in Fig. 11 and
12.

6. Conclusions

An analytical solution was presented, for the problem of fiber interaction in a continuous fiber
composite. under thermal loading. The fiber cross sections were modeled by two circular inhomogeneities
which undergo a uniform eigenstrain loading, proportional to the mismatch of the thermal expansion
coefficients.
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perfect bonding, a = 0.35

1 2

--0- r.- ='

265

0 375 0400 0425 0450 .75 J 500

X

Fig. 6. Vanation of a, along the central axis. for a - 0.35.

It was found that the stresses in the vicinity of the fibers, strongly depend upon the fiber matrix moduli
ratio. The distance between fibers, has also a considerable effect on the elastic field: such an observation
suggests that superposition of the single fiber solution. may not be a valid approximation.

Finally, a spring-type interfacial model was investigated. It was concluded that the loss of interfacial
integrity, leads, very rapidly, to stress intensities that correspond to the conditions of perfect slip.

40



perfect bonding, a 0 45

"--

- --------- --- 4

045 046 047 048 049 C58

x
Fig 7. Vanation of a, along the central axis. for a - 0.45.

perfect bonding, 1- 2

05 'I

04

-0- a -0¶0
-.- a=020 I

---0 0 2 All'_a_-_0_30P o a ._ -a 0 .4 0'

a .a0 45

I I I

0 i N

0 45 90 135 180

0
Fig. S. Shear stress along the interface for various fiber radii, a.
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Fig. 9. Effect of the interfacial parameter X on the shear stress distribution.
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.04- ._____
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Fig. 11. Effect of A on o, along the x-axis.
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Fig. 12. Vanation of a, along the x-axis for different values of A.



1 46 D Koijris. E Tiuchida Continuous fti'wr ,()Ilp,)Slfes

AcknowlIedgment

The authors wish to thank Dr. Brian Cox. of the Rockwell International Science Center. for his \aluable
suggestions.

References

A-ccorsi. M.L. and S. Nemat-Nasser (1986). Bounds on the Kouns. D. and T. Mura u1989). The elastic field of a hemi-
oserall elastic and instantaneous elastoplastic moduli or sphenical inhomogeneit% at the free surface of an elastic
periodic composites. Mfech. ,Wafer. 5, 209. half space, J. Mech. Phrs. Solids 37. 365.

Beni'eniste. Y. (1984). On the effect of debonding on the Kroner. E. (1958). Berechnung der Elastischen Konstanten des
overall behavior of composite materials. Vech. Mlater. j. Vielkristalls aus den Konstanten des Einknistalls. Z. Phi-s
349, /151. 5014.

Ben~eniste. Y. (1985). The effective mechanical hehavior of Lene. F. and D. Leguillon (1982). Homogenized constitutise
composiz materials wvith imperfect contact betmcen the l3% for a partially cohesive composite matenial. Int J
constituents. Weh W~ater 4. 197. Solids Strutec. 18. 4.43.

Budiasnsky. B. (1965). On the elastic moduli of some heteroge- Mon. T. and K. Wakashima (1990). Successive iteration method
neous materials. J. Miech. Ph'ins. Solids 13, :23. in the evaluation of a'.erage fields in elasticallk nrhomioge.

Cox. B.N. (19h9). Life prediction for structural materials in neous materials. in: G.J. Weng. M. Taya and H. Abe. eds..
hypersonic engines, Final Report to Rocketd 'vne. Micromechanics and Inhomogeneit*v. the Toshio Wura Anni-

Cox. B.N.. M.R. James. D.B. Marshall. W L. Morris. C.G. versar 'v Volume. Spring~er. New York. p. 269.
R~hodes and M. Shaw (1989). Mechanics of failure in Mura. T. (1981). Micromechanics of Defects in Solids. 2nd ed..
titanium alumninide composites in: S. Benson. T. Cook. E. Martinus Nijhoff. Dordrecht.
Trewin and R.M. Turner eds.. Proc. 10th International Nemat-Nasser. S.. T. Iwakuma and M. Hejazi (1982). On
SAMPE European Chapter Conference. Elsevier. Amster- composites with periodic structure. Mech. Mater 1. 239.
dam. p. 313. Neuber. H. (1934). Ein neuer Ansatz zur Lbsung raumnlacher

Hashin. Z. (1990). Thermoelastic properties of fiber composites Probleme der Elastiztltstheorie. Z. Angew. Math. Wech.
with imperfect interface. Mech. Mater. 8. 333. 14. 203.

Hill. R. (1965). A self-consistent mechanics of composite Papkovich. P.F. (1932). Solution generale des 6quations
materials. J. Mech. Phi'ns. Solids 13. 213. diffirentielles fondamentales d'ilasticiti. expnimee par trois

Iwakuma. T. and S. Nemat-Nasser (1983). Composites with fonictions harrnoniques. C.R. Acad Sci. 195, 513.
periodic microstructure, Computers Strtict. 16(1-4). 13. Shibata. S.. t. Jasiuk. T. Mori and T. Mura (1990). Successive

Jasiuk. I.. J. Chen and M.F. Thorpe (1989), The effect of iteration method applied to composites containing sliding
interface on te elastic properties of random systems with inclusions: effective modulus and anelasticity. Mech. Mater.
rigid inclusions. Proc. of the American Socierv for Corn- 9. 229.
posues. p. 513.



3.2 Stress Concentration due to the Interaction between Two Imperfectly

Bonded Fibers in a Continuous Fiber Composite

published in the ASME Journal of AlO11Md Mechanics

09



.6u~a of6 Brief Notes
A Brief Note is a short paper that presents a specific solution of technical interest in~ mechanics but
whi..i does not necessarily contain new general methods or results. A Brief Note should not exceed
1500 words or equivalent (a typical one-column figure or table is equivalent to 1.50 words; a one line
equation to 30 words). Brief Notes will be subject to the usual review procedures prior to
publication. After approval such Notes will be published as soon as possible. The Notes should be
submitted to the Technical Editor of the JOUR.-AL OF APPLIED .M|ECHANICS. Discussions on the Brief
Notes should be addressed to the Editorial Department, ASME. United Engineering Center. 345
East 47th Street, New York, N. Y. 10017, or to the Technical Editor of the JOuRNAL OF APPLIED
MECHANICS. Discussions on Brief Notes appearing in this issue , ill be accepted until two months
after publication. Readers who need more time to prepare a D;.cussion should request an extension
of the deadline from the Editorial Department.

Stress Concentration due to the 2 Analytical Approach
Interaction Between Two Imperfectly The geometry of the boundary value problem under con-

sideration is shown in Fig 1. The cross-sections of the tw_
Bonded Fibers in a Continuous Fiber continuous fibers are modeled by two circular inhomogeneities

(plane strain) and the transverse remote tension is indicated
Composite by T, and T,.

In the absence of the fibers, the uniform stress field is de-
scribed by

D. Kouris'
2Gu, = (K- 1) r(T. + T,) + I r( T,- T,) cos20,S2Gu, =- r(k7y-IT) sn42

I Introduction 2Gu.=-r(T,-T,) sin28,
One of the common modes of failure of intermetallic com- 2

posites is attributed to th" presence of interfacial cracking. a,-=.I (T + T,) +I (Ti- T,) cos2e,
The loss of interfacial integrity is a consequence of the in- 2 2

herent differences between the thermoelastic properties of the 1 (,
matrix/fiber system as well as itr chemical reactivity. a*=• ( cosi, and

In an effort to evaluate the local stress state due to thermal I
residual strains, Kouris and Tsuchida (1991) obtained an an- 2',e=--(Ty-T1 ) sin20, (I)
alytical solution for a pair of fibers, under plane-strain con-
ditions. The fiber cross-sections were modeled by circular in terms of polar coordinates, where i = 3- 4y.
inhomogeneities :hat sustain uniform eigenstrains, propor- The centers 01, 0Oof the fiber cross-sections coincide with
tional to the mismatch of the coefficients of thermal expansion. the origins of the Cartesian coordinates (xi, yi) and (x2, y,).
It was found that the relative distance between fibers (volume If we assume that the central distance is equal to unity then
fraction) has a considerable 4-ffect on the stress concentration,
which cannot be accoun'tJ ior by means of an "ave-age" X1 =X 2 + 1, Yi YZ (2)
approach. and

The problem of an infiniw,. thin plate with two circular in-
clusions, perfectly bonded to the plate, has been considered =r, cos0, y,=r, sine, (i= 1, 2).
by Shioya (197 1). Under conditions of generalized plane stress, The displacement vector u can be expressed as the sum of the
the solution has been obtained on the basis of Airy's stress vectors corresponding to the O0 and 02 coordinate systems.
functions by utilizing bipolar coordinates and a perturbation Therefore,
method. u = un + u2. (3)

In the present study, an analytical solution is obtained for
a pair of fibers embeeded in a linear elastic matrix under remote Due to the applied mechanical loading, the far-field boundary
tension. The plane-strain formulation is based upon a dis- conditions require that the nonzero stresses a, and o,, at in-
placement approach and the effects of he condition of the finity, are equal to the external load To, and T,, respectively.
interface are examined. The results focus on the stress state In order to account for the imperfect bond between the fibers
of the matrix along the interface, and the matrix, and spring-type thin layer along the interface

is considered. Such a model allows for displacement discon-
tinuities along the interface, while tractions remain continuous.

S - The thin layer provides a viable alternative to the "three phase"
'Mechanical and Aerospace Engineering Department, Arizona Slate Univer- approach and has been utilized by a number of researchers

sity. Tempe, AZ 85287-6106. Assoc. Mem. ASME. ( apr ben utlie bynaenumber of researhs
Manuscript received by the ASME Applied Mechanics Division. Feb. 14. 99* (Lene and Leguillon, 1982; Benveniste, 1984; Jasiuk et al.,

final revision. Sept. 10, 1991. Associate Technical Editor: G. J. Dvorak. 1991; among others).
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Fig. I Geometry of the problem

Based on the model described above, the boundary condi- Using the potential functions [1] and [II], we can deripe
tions along the circular interfaces (r, = a,) are stresses and displacements in the matrix and the inhomogene.

ities; with the addition of the uniform field described in (l),
U, = ii [us] = X 7# a, = U,, and r,# = (4) what remain to be determined are the values of the coefficients

2G Fo', A', B., A', and BP,. This can be accomplished by enforcing
the boundary conditions (4) along the interface of the inclu-where [zu] = us,-U@. Here, the quantities with a bar refer to sions.

the inhomogeneities; in addition, G and a denote the shear Using the transformation formulas that have been given in
moduli of the matrix and the radius of the fiber cross-sectior. Kouris and Tsuchida (1991), the requirement for continuity of
respectively. The constant of proportionality X indicates the the normal stress along the interface of the :ross-section of
degree of interfacial integrity; X - 0 corresponds to perfect the first fiber (r, = a,) is expressed by:
bonding, while when X - c, conditions of perfect slip are
obtained (the interface does not sustain any shear tractions). - 0I f n(n+ I)

In order to account for the disturbance due to the presence o, a,- - + A, .- T cosnO,
of the inhomogeneities, we utilize the Papkovich-Neuber dis- at I
placement formulation. Consequently, the displacement fields I (n-1)(n+2)
u, and u, are +1_ , (n-l) n+2

2Gu, = grad [10, + x, ,1+v, 0,:,1 
a2,

-4(1 - P) {€. €:,], (i= 1.2) (5) g.. . (n. )(!+I, K) cosn 1,

where po,, ol,, and o,: are arbitrary harmonic functions. 2.o

For the problem under consideration, the potentials chosen 2
are: for the matrix (r, > a,) - FO.. (n-I) a'-2 cosn81

o, =po [ ,F log pi+ jA'. p" cos601] + I),, - Wn' n(n- I) a", coSne,L "" i (1) ,,-o r-I

and for the two inhomogeneities (r, < a,) (n- 1)x (n- I - K) cosnO,

=o "A' p, cosn, +~ • om (~ -l)" B,, W', a+ (n + 1) (n - 2) cosne,

ji I, ý oP kB.? cosn., t.o -a 0 n(n-I)an- cosne,
R-1I

where p, = r,lc and Po = T. The central distance c is taken to 1 _, (n- 1) (n- I -Z) a,- 2 cosnO,
be equal to unity and T is equal to T, or T,. 2
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_! •L. , ( 14-I) (n - 2) a0 cosn9.

I ( t) I _.
-(1 +t) -- (1 -t) cos281, (6) - -- 5.

wheret=T1,/T,(O<t<l)and W'. = (mr+n- l)!/(m- l)Wn!.
Similar expressions are obtained for the remaining boundary 0 - -4

conditions given in (4).
Using the same procedure, we can enforce the boundary

conditions along the interface of the second circular inho-
mogeneity. However, since the fiber cross-sections are identical 06

and due to the symmetry of the problem, we only have to
satisfy the boundary conditions along one of the interfaces;
the other will be satisfied automatically.* *

Utilizing the symmetry relations

A4'=(- I)" A,,=A, B.=(-)1)"' 8-=B,., (7) -_ _ _ _ _ -_ - '" __

4( l) ~~2= B'-( j~flI B ~ a,,, =a,=a, -I00 O5 ¶0 '5 20 25 ,3 35 4 is

we can express the condition (6) as follows: d 'a

on ( n + I) I (n - I)(n + 2) Fig. 2 lDstribution of eylp, at the interface versus the fiber distance;

- 1 ) + A, n - + I B_ comparison between the exact and approximate solutionsa2 a"'÷ 2 a

I (n+ l)(n+ I +)
+ 2 B. a -0.75 -

-F 0 (n-1) a"- 2 + (A,+B.,) W%' n(n- I) an-2 07o0

""-1

BW''- a-

I B,. W-.., (n+ l)(n-2) an -A, n(n- 1) d'a 0.55 -

2 ,.

IB ,, 1  (n-I) (n l- x) I (n+ I) (n-2) ae - , 0

=--(l+t)6, -2(I-t) (n=0,1,2,...) (8) o.40o- -- - - - ,2 2-T

where 64') denotes Kronecker's delta. 0.35i _ _ _ _ _

0.0 05 1 0 1S 2 15 1 3 5 40 .45

3 Results and Discussion d/a

The linear system of equations consisting of (8) and the F. 3 Effect of the incoherent Interlace on the distribution of eyip, for
remaining boundary conditions is solved for the unknown coef- a TI AIISCS system

ficients Fo. A., B,. A,, and 8,. The series solution requires
no more than 15 terms to ensure matching of the boundary
conditions up to the three significant figures, and its conver- can observe that they are in error; such an error becomes
gence is numerically evident. After evalulating the series coef- significant with increasing r (stiffer fibers) when the fibers
ficients, stresses and displacements in the matrix and the fiber approach each other (high volume fraction). It is expected,
cross-sections can be determined, however, that as the fiber distance increases, the differences

In order to illustrate the effects of the fiber/matrix shear between the exact and approximate solutions tend towards
moduli ratio r(r = GIG) and the fiber/fiber distance on the zcro.
stress concentration, the external load has been taken as Another aspect of the problem relates to the effect of inco-
P0= T= Ty (t= i). herent interfaces. As a example, we consider a Ti3AI/SiC (SCS6)

In a number of studies that investigate effective properties composite with the following properties: (a) Ti3AI (ma-
of composites, the "single fiber" solution is utilized in order trix)-G=30GPa and ,=0.25 (b) SCS6 (fibers)-G=
to obtained global properties, in an average sense. Such an 154GPa and ;=0.17.
approach, however, may be quite inaccurate in predicting the The distribution of a/po versus the fiber distance, is shown
local stress field, which is essential from a fracture point of in Fig. 3; here X = 0 corresponds to the condition of perfect
view. Figure 2 indicates the variation of the matrix interfacial bond, while X = 100 indicates perfect sliding. As the fiber
stress a.,/Po (at the central line) versus the normalized fiber distance decreases, a weak interfacial bond causes a consid-
distance d/a; the shear moduli ratio is taken equal to 2, 5, and erable relaxation of the matrix stress and, therefore, enhances
10 and rm,;O0.3. the fracture toughness. However, if the fibers are far apart,

If we denote with an asterisk (*) the values of a/po that are the degree of the interfacial integrity has no effect on the stress
obtained from superposition of the single fiber solution, we concentration.

Journal of Applied Mechanics MARCH 1993, Vol. 601 205



BRIEF NOTES

Acknowledgment

This work has been supported by the Air Force Office of
Scientific Research through the University Research Initiatise .r

Award AFOSR90-0235.

References
Benveniste. Y., 1984. "On the Effect of Debonding on the Overall Beha•ior

of Composite Materials." Mechanics of. uierwlis. Vol. 3. pp. 349-358
Jasiuk. I.. Chen. J., and Thrope. M. F.. 1989. "Elastic Moduli of Composites

with Rigid Sliding Inclusions," Journal of Mechanics and Physics of Solids, to
appear. Fig. I Geometry of the problem

Kouris. D.. and Tsuchida. E.. 1991. "On the Elastic Interaction between two
Fibers in a Continuous Fiber Composite under Thermal Loading,� Nfechancs
of Materials, Vol. 12. pp. 131-146.

Lene. F., and Legutllon, D., 1982. "Homogeneized Constitutive Law for a a2 I ai I 8.:
Partially Cohesive Composite Material," Int. Journal of Solids and Structures. --'-' ar - --
Vol. 18, No S. pp. 44.-458. ar" r ar cl

Shtova. S.. 1971. 'On the Tension of an Infinite Thin Plate Containing a c11<a, U= aua=0 (= 0 2 0
Pair of Circular Inclusions," Bulletin oflhe JSME, Vol. 14, No. 68, pp. 117- 't
126. C1 t>a, r=a, o,=g(.

r--co, u--0, au,'at- 0

"bi=Tr L ,=1 (a +_'. U) -;

A Superposition Method for One- Ua-"" au It 1a

Dimensional Axially Symmetric LuX\ar r' o, \ 7r) +6a. '

Elastic Waves where X and A stand for Lame constants and c, reprc'ent5 the
longitudinal wave speed of the material. Equations tSb) and
(6a,b) are for plane-strain state. For plane stress. X in Eqs.
(Sb), (6a) should be replaced b- 2Xs/(Q. -* 2A) and a: = 0,Zhang Xiangzhou2 Lamb provided a formal solution to Eq. (I). It reads (Eringen
and Suhubi, 1975; Lamb, 1902):

0,c 1 1<r (7o)

Introduction cs(r,t) = I/ch- ub
Responses of an elastic, infinite medium containing a cylin- u)du, c~t>r. (b

drical, circular cavity to axially symmetric dynamic loading is
of fundamental interest in elastodynamics. The geometry, Subsequent to Eqs. (7a,b), the following expressions for u
loading, and mathematical formulation involved in the re- and au/ar can be obtained directly:
sponses are simple. Nevertheless, this problem is very difficult
to solve analytically. As indicated in standard reference books,
the integral in the solution of the problem is "extremely dif- (0, cl<r (8a)
ficult" to evaluate, and there is "an essential difficulty" in- cosh-lcj,.,
herent in this kind of wave propagation (Eringen and Suhubi, u(r,t) = - cosh uf' (cI- rcosh u),.'u
1975); the solution and it.. derivation are "not simple" (Mik- I
lowitz, 1978); the problem is "much more difficult to analyze" r-fO21/[cct:r- (8b]
(Achenbach, 1976); and so on. Therefore, an analytic solution f()cI[r(c t>r. 8b)

method, which can solve the problem effectively, still appears 0. c-1 <r (9a)
to be desirable. r

In this Note, a superposition method, based on Lamb's au clh-tCI1/, f'(O)ct12
formal solution, is developed to treat the problem. Numerical au cosh~uf (cIt - rcosh u)ddu + r: r)
examples demonstrate that the method is able to solve the ar 'o

axially symmetric wave propagation problem accurately and ) f(O)ct (I
neatly. /+ .- --- r-/ clt>r (9b)S(¢cl-r-) "\"Ct-'

Basic Solutions for the Radial Motion Problem
A cross-section of a linearly elastic, infinite medium con- wheref' (x) = df(x)/dx.

taining a cylindrical, circular cavity is depicted in Fig. I. The The displacement and stresses in :he medium are developed
medium is at rest initially and then undergoes a radial motion for t > a/cl. However, our main concern lies withia the prime
due to an axially symmetric, normal traction g(t) suddenly stage of the dynamic response, that is, within a certain interval
applied on its circumferential boundary. As is well known oft, la/cl, 71, with Tbeinga sufficiently large number. Within
(Achenbach. 1976), the radial displacement u and the normal the interval, any continuous function f(c¢' - r) in Eq. (7b)
stresses a,, a,, and a. developed in the medium should be sought can be expanded into the following form:
via the following basic equation and conditions:

":Department of Aircraft Engineering. Northwestern Polytechnical University, (10)
Xian, 710072. China.

Manuscript received by the ASME Applied Mechanics Division. Jan. I. 1991; Denoting p, u and au/ar derived from the term a. (cir -
final revision. Oct. 17, 1991. Associate Technical Editor: S. K. Datta. r)' in the above formula with a, = I by Oa., u and (ou/ar),.
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Abstract

The paper analyzes the elastic field caused by the interaction of two

elliptical inhomogeneities subjected to residual strains. The thermally

induced residual field is modeled by uniform eigenstrains sustained by the

inhomogeneities. The boundary value problem is formulated in terms of

the Papkovich - Neuber displacement potentials. A number of numerical

examples illustrate the differences between the perfectly bonded and

slipping interfaces. 0

1. Introduction

Prerequisite to analyzing or predicting microcracking in any material

is knowledge of the local stress state. In the case of composites, whether

continuous fiber or laminated, the local stress state is severely affected by

residual thermal mismatch stresses. In addition, the thermo-mechanical

behavior of a composite is closely related to the properties of the fiber -

matrix interface. It has been shown that the tensile interfacial strength is

related to the transverse and compressive strength of the composite, while

the shear interfacial strength affects the transfer length and composite

fracture, as well as the deformation of the matrix. S

In a recent study (1), the interaction of two continuous fibers, under

conditions of plane strain, has been investigated. The cross sections of the

fibers were modeled by two circular inhomogeneities with elastic constants 0

that are generally different from the ones of the surrounding matrix. The



presence of the residual field due to thermal loading was taken into

account via uniform eigenstrains (2), that are sustained by the

inhomogeneities. It was found that the local elastic field is severely

influenced by the relative distance between fibers, the elastic properties of

the constituents and the integrity of the interface.

In the present paper, the study is generalized to account for the

interaction of elliptical inhomogeneities. 1he problem is formulated in

terms of displacement potentials (Refs. 3 and 4) and solutions are obtained

for perfectly bonded as well as slipping interfaces. Unlike Eshelby's result

for the single inclusion (5), the stress field inside the interacting

inhomogeneities is no longer uniform. The local elastic field is determined

in the form of infinite series and is dependant upon the relative distance,

the aspect ratio, and the elastic properties of the inhomogeneities. A

number of numerical calculations are presented to illustrate the results.

2. Displacement Formulation

Consider an infinite region with two elliptic inhomogeneities, fl and

!Q2, with centers at O1 and 02, respectively. Let the centers be at the

origins of the Cartesian coordinates (x1 , Yi) and (x2 , Y2), and x1 , x2 - axis be

the center line as illustrated in Fig. 1. If the central distance 0102 = 4, then

x1 = X2 + ý, Yl = Y2. (1)

The elliptic coordinates are obtained from the coordinate transformation

xi = C coshczi cosp3i, yi = C sinhai sin[3i (2)

where i = 1, 2 and C is the eccentricity of the inclusions.



0

For the two inclusion problem, the displacement vector u can be

represented as

u = U1 + u2 (3)

where ul and u2 are the displacement vectors corresponding to the

origins, O1 and 02, respectively. S

A general solution of the displacement equations of equilibrium can

be described according to the Papkovich-Neuber displacement formulation.

The displacement fields, ul and u 2 , are given by

2Gul = grad((o1 + xtVI1 + Y(P2 11] -(K + 1)[ [P.11421] (4)

and
2Gu 2 = gra((o02 + X2(P12 + Y2(P22] - (K + 1)[(012,922] (5)

where G is the shear modulus, Kc = 3 - 4v for the plane strain, v is Poisson's

ratio, (Pij are arbitrary harmonic functions, and [(PiajPmnJ corresponds to (Pij 0

for the x-component and (Pmn for the y-component of the displacement

field. In order to satisfy the boundary conditions along 0 1 (oxI = a 0 ), it is

necessary to express (5) in terms of the O coordinate system. Substitution 0

of (1) into (5) yields,

2Gu2 = gra4(po2 + (xi -PI12 + Y9 22]- (KI + l)[cp12,P22]

or (6)

2Gu 2 = gradqP02 - oP12 + X19 12 + Y1922I - (O + l)[(912,9p22]

According to a similar procedure for the boundary conditions along

f22 (a 2 = ao), eqn (4) becomes,

2Gul = gra49poi + pIi + x 2911 + y 29 21] - (IC + l)[p11,921]. (7)



The residual field due to the thermal loading is represented bý a pair

of uniform eigenstrains E, , ). These eigenstrains (Mura. 1987) are

proportional to the temperature change and the mismatch of the

coefficients of thermal expansion. Consequently. inelastic displacements

are introduced in the inhomogeneities according to

U, C1x. (8)

u., = £.,y.

Their corresponding components in elliptical coordinates are

u- = C~sinh2o[ (I + cos2p3)Fx +(I- cos2p3)4c, (9,4 X 1 9)

C2h sin2P [ (1 + cosh2a) c* + (1 - cosh2a) ry],

where
h= (10)

C (cosh2at- COS2pJ) 112

When the inhomogeneities are perfectly bonded along the elliptical

interfaces (oxi = ao), the boundary conditions are represented by

ua = -4 + u-, Up = up + up, ct = Ca, and Tap = Tao

The quantities overscored are associated with the inclusions.

3. Solution of the Boundary Value Problem

If a set of harmonic displacement potentials can be determined such

that the boundary conditions along the interfaces (11) as well as the

requirement for vanishing tractions as a --- om are satisfied, then the unique

solution can be obtained. Based on symmetry considerations, the



Papkovich-Neuber displacement potentials for the matrix (o, > o0) are

chosen as

(Poi P= [OF a, + • Ai e-na, cosnl]]
n=1

(Pli=Po I Bnne-na'cosnpi
n=1 (12)

92i = 0

where Po = 2GE* and ex = ey = C* (13)

Similarly, the displacement potentials for the two inhomogeneities (ai < XO)0

are chosen as

ioi = Po I An coshnai cosnpi
n=1

(pli = Po B BI coshna, cosnp3i (1 4)
n=1

(P2 = 0

The following relations between the elliptic harmonic functions will

be used to satisfy the boundary conditions at the interface of Q 1(a 1 = ao0 )

and 0 2 (a 2 -o 0 ),

a, = Y on coshna 2 cosn1 2,
n=O

0

a2 = Zn coshnao cosnl3,
n=O (15)

enal cosnol3 = Y (-1i) dmn coshna 2 cosnP2,
n=O



ena2 cosnf2 =(-Ir d,., coshna 1 cosnp 1.
n=O

where the coefficients tWn, Zn, and dm,n are given in Appendix A.

For the displacement potentials described above, the boundary

conditions (11) lead to the evaluation of the unknown coefficients (i.e.,
Fio, Ai, Bi, A•. and Ri).

Using (9), (12), (14) and (15), eight equations are obtained for the

interfaces !Ql(0l-= 0o) and 0 2(a 2 = a0 ). However, since the inhomogeneities

are identical and a symmetric load is applied, only the boundary conditions

along one of the interfaces need to be considered. This can be

accomplished, provided that the following symmetry relations among the

coefficients are taken into account when a 1 = a 2 = ( 0 "

Fo =Fo =F 0
2

An= An = (-1)n An2, An = A = (-1)n W (16)

Bn= BI = (-.l)n+f l B2, BT = B'-I = (_1)n*l n2

Consequently, the condition u, = iio + -ua* at a, = ox0 corresponds to

+F 0-8. - (AAUA B d.nUB I - C Bnn+i UB2
n=1 4 n=2 4n=O

C- 0Ii +BmdnIUc-X Bmdm~n-I UC2

F0~ + (Am + 4Bm m=OiUc -

"C- X Bmdm.n+l UC3"-' An UAI 4-F B-IUBI EXBn+i U424 n=O m=O n=1 n-=2 n=O (17)

C 2 sinh 2ao( 8nO+ Sn.2).
2



where F=G/G

The condition up = U + - at ax = ao gives

An VA1- + B-I VBI +~ Bn+I VB2
n=1 4n= n=

+ FoZn + (Am + Bm)idm.n VCi- X Bmdm.n-I Vc 2
n=2 m=1 n=2 m=I

(18)

SBmdm.n+ 1VC3#Xn AVAI E n -IVB I C B0 +1 VB20
4 n=O m=r n=1 n=2 n=0

=-:' 8n,2

2

The condition a, = ca at a, = ao yields

"Fo sinh2SXno-lx An'2SAI+IX AnSA2" 1- An+2 SA3 Bn- 3 SBI
n=4 n=1 n=- 1 n=4

+ _6 Bn-I SB2+f•"X Bn+1SB3- -C- Bn+3 SB4
n=2 n=O n=-2

- FoZn-2 + (Am+ m) dm,nI2 ISC+ FoZn + Y, (Am+ + .Bmrndm.n SC2

n=4 m= n=1 m=I
4 +~~~A + ýBm) 0 m,n-2 fSOI+ "

- FoZn+2 + d(Am + •Bm dmn+2 SC3 + 1mdm.n-3 SC4

n=- I M=l 1n=4 =

--c- x Bmd 1�.°s _C,- Bmdm n+••. C6 + -C- Bmdm.n+ 3 sC,
16 mm~- C5-1 16 n- ~

n=2 m=1 n=O m=l n 2 m=I



a*. .. (19)
4 Y X-23A - X-ASA 4~

n=4 n=1 n=- I n=4

1 T B 2 s• -IC6 B..+1 s_3+ -C6 .g s.3116 6 nn=O-2
n=2 n=0 =-

0 =0

The condition =t1 = at a, = a00 corresponds to

-o 5nF .2 ~I~An-2TAI +X An TA2-X 162T3 C Bn-3TB 1
2 n=4 4 n=14 n-16 n=4

+ Bn-ITB2 + Bn- TB3 - Bn+ T
16 n=2 16 16

n=On=-2

I FO.I IF°Zn.2  AI mFoZn + i (Am+ Bm) dm.n TC2

n=4 1= n= .0.

Fon2+ (Am + Bm) dm.n+2T 3 -f Bgdn3T 4
4 n=- I m=1 n=4 m=l (20)

+ Bmdm.n-i TC5 - Bmdm,n+t TC6 - - Bmdm.n+3 TC7
16 n=2 m=-- n=O m= 16 n=-2 m=1

4 n=4 n=l n=-1 n=4

+ 0 B ..I 1 ff+..0 04.

16 n T2 16n2n=O n=-2

=0.

where 8ij denotes the Kronecker's delta. Uij, Vij, Sij, and Tij are known

functions of n, ao, v and •



After solving the system of equations (17) - (20) for the unknown

coefficients Fo, An, Bn,;kn, and stresses and displacements can be

evaluated.

The analytical formulation for the problem of perfectly bonded

inclusions has been demonstrated above. However, if there are no shear

tractions along the interfaces, the inclusions are free to slip. The

incoherent interfaces are then represented by

ua = Ua + -UO*L, (Ta = iffa, Tap = 0, and Tp = 0. (21)

Consequently, the method of solution is similar to the perfectly bonded

case.

4. Discussion

In order to illustrate the results, the linear system (17) - (20) was

solved. Matching the boundary conditions up to three significant figures

required no more than 15 series terms. With the values of the series

coefficients known, the stresses and displacements in the matrix and

inclusions can be obtained. Without loss of generality, Po = I and v

0.3 has been assumed.

Since the main focus of the present study is to investigate the mutual

interaction between the inclusions, only variations in s, r, and X are

considered. The dimensionless parameters s and X are defined as

s=A
b' Tb (22)



In analyzing the normal stress along the interfaces, variations of the

relative stiffness F (6/G), and distance X between the inhomogeneities are

illustrated in Fig. 2 - 3. As the inclusions become stiffer relative to the

matrix (F increases), the absolute values of the matrix interfacial stresses

increase. In both cases the normal stress aa assumes an absolute

maximum at 13 - 0. These values of the normal stress increase in the case

of sliding.

The effect of various shear moduli ratio F (relative stiffness). on the

hoop stress, •19, is more pronounced in the case of perfect bonding.

Nevertheless, higher stress concentrations are again obtained at 13 = 0 (Fig.

4 - 5).

These results demonstrate that the interaction between the two

inclusions is greatly effected by the inclusion/matrix stiffness ratio. Thus,

the often used approximation that utilizes superposition of the single

inclusion is not generally valid. Only for the the special case where the

matrix and the inclusions have the same stiffness (F = 1) will the

superposition method give valid results, as expected.

In order to qualify the inhomogeneity of the local stress state along

the central axis, the distribution of the normal stresses Gx and Cy along

the x - axis were studied. For the case of perfect bonding, the distribution

of ay for various F is almost uniform inside the inclusions (Fig. 6(a)).

However, this is not the case when sliding occurs. It is noted that the

discontinuity along the interface (x = 2), is proportional to F (Fig. 6). The

examination of the aspect ratio effft yields the stress distribution shown

in Fig. 7. When the inhomogeneities are free to slip, the stresses are almost

independent of s, except at the point of the interface (x = 2). As s

decreases the interfacial stresses in the matrix increase considerably,



indicating the possibility of crack initiation. When the parameter s -• 0

(inclusions become thin inserts), the stresses in the matrix along the

central line become localized around the inclusions. The results for s = 0.99

(a -- b = 2), correspond to the solution of two circular inclusions given by

Kouris and Tsuchida (1991).

Finally, the effects of various shear moduli and aspect ratios on the

interfacial matrix stresses is investigated. It is found that the normal

matrix stress ax at the interface remains compressive for all values of the

relative distance X between the inclusions. This is not the case, however.

for the normal stress ay (Fig. 8). It can be observed that the distributions of

Oy for perfect bonding and sliding are drastically different. When the

effect of different aspect ratios is considered, a loss of the interfacial

bonding corresponds to very high tensile values of Oy. As the value of s

decreases, the differences between perfect bonding and sliding become

more pronounced.

5. Conclusions

The present study analyzes the problem of two interacting

inhomogeneities subjected to a uniform eigenstrain loading. An analytical

solution was obtained for a pair of elliptical inclusions with perfectly

bonded or slipping interfaces.

It was concluded that the local stress field is considerably effected

by the proximity of the two inserts. In addition, loss of the interfacial bond

yields high stress concentrations, particularly along the interface.

The influence of the relative stiffness and the inhomogeneity aspect

ratio were also investigated. It was observed that the approximation based



0

upon the superposition of two single inclusions leads to erroneous values

of the interfacial matrix stresses.
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Appendix A

The coefficients (On and Zn can be obtained utilizing the complex-

variable formulation. Let zj = xi + iyj. The relations (1) can be written as

X1 + YI = x2 + iy2 + ý. (Al)

Using (2) and (Al), are relations between 01 and 02 is given as

cosh (aj + i.3 1)= cosh (a2 + 0i32)+ •- .(A2)
C

From the definitions of (On and Zn, the values of 0 ~n and Zn can be

obtained

CO-ZO-ad+ ' m 2m.0
m= 

L

and (A3)

* = e X j+ d2m.n
m= 1

where n - 1, 2 ..... The value of ad is given by

ad = COSh"h. 1I (A4)

The coefficients dm,n can be obtained by starting with (Cooke 1956)

e-mel cos mot = m I Im (kc) X-1'e'xtcos kYL dLX (AM)
Jo



and

e"2 cos X•Y2 = n (-1) In (XC) cosh na 2 cos n132 (A6)
n=O

where x2 > 0, m = 1, 2, ..., and

e= 1. n=0
I = 2, n= 1,2,.. (A7)

From the relations (1), (A5) and (A6) can be transformed into

e-mal cos mo3 = m Im (XC) X-eI - En (-1)r In (xC) cosh na 2 cos n32 dk (A8)
on=0

Using the definition of dm,n, the coefficients dmn are obtained by

dm.n = F£nm Im (XC) In (XQC) e-- X-I d). (A9)

Appendix B

The constants Ujj, Vij, Sij, and Tij are the following.

UAI = ne-naO

UBI = (n-l+ )e~n-2)o + (n-I- iK) e'nc0

UB2 = (n+I+ K) e-nao + (n+I - K))e4n+ 2 )O 0

Uc = n sinh nao

Uc 2 = (n-l+ K) sinh(n-2)cxo + (n-l- K) sinhnao 0



U3= (n+ I+ Kc) sinh nao + (n+ I- ic) sinh (n+2)axo

UAl = n sinh nao

UIBI = (n- 1+ -9) sinh(n-2)cto + (n-I- R) sinh naot

U2= (n+1+ Z) sinh nao + (n+1- WZ) sinh (n-i2)ct0

VAI = n enoo

VB I = (n-I- K) I e-(n-2)o~+ enao

VB2 =(nl+ I+K) ( e-nao + e(n+2 )ao

VCI= n cosh ncx0

V2= (n- I -KM cosh(n-2)ao + cosh ncco)

V3= (n+1I+ KM cosh nao + cosh (n+2) ao)

VA = n cosh iia0

VB-j= (n-I - ) ( cosh (n -2)cxo + cosh nczo)

V-B2 = (n+ I+ iKX cosh nao + cosh (n+2) zo)

SAI = (n-2)(n-3) e-(n-2)(io

SA2 = n ( (n+l1) en-2n)ao + (n- 1) e-(fl+ 2)~o)

S3= (n+2)(n+3) e-(f+ 2)ao

SB I = (n-3) {(n-2) e-(fl-4)ao + (n-3- Kc) e-(fl2)ao)

SB2 = (n-i1) (n+2) e-(fl-4ao - 2(ic-2) e-(n-2 )aXo + 4 e-naO + (n- i-K) e~fl+2W'o



SB3 = (n+1) { (n+l+ K) e-In-2)aO - 4 e-0 o + 2 ( K-2) e-in÷2 )co + (n-2) e-in 4'jo }

SB4 = (n+3) { (n+3+ K) e-ln+2 )ao + (n+2) e'(n+4 )aO }

Scl = (n-2)(n-3) cosh (n-2)ao

Sc2 = n ((n+1) cosh (n-2) ao + (n-l) cosh (n+2) ao}

SC3 = (n+2)(n+3) cosh (n+2) ao

SC4 = (n-3) { (n-2) cosh (n-4) ao + (n-3- i) cosh (n-2) ao}

Sc5 = (n-I) { (n+2) cosh (n-4) ao - 2 (K-2) cosh (n-2) czo

+ 4 cosh noao + (n- 1- Kc) cosh (n+2) to)

SC6 = (n+1) (n+1+ ic) cosh (n-2) co - 4 cosh nao

+ 2 (K:-2) cosh (n+2)ao + (n-2) cosh (n+4) Cao)

SC7 = (n+3) (n+3+ i-) cosh (n+2) ao + (n+2) cosh (n+4) otoa}

SAI = (n-2)(n-3) cosh (n-2)ao

SA2 = n ( (n+l1) cosh (n-2)ao + (n-I) cosh (n+2)a0o }

SA3 = (n+2) (n+3) cosh (n+2)ao

SB • = (n-3) I (n-2) cosh (n-4)ao + (n-3-i) cosh (n-2)ao 0

SB2 = (n-1){ (n+2) cosh (n-4) ao - 2 (R-2) cosh (n-2) aco+ 4 cosh n mo + (n-l-R) cosh (n+2) cto)

SB3 = (n+l)( (n+I+R) cosh (n-2)ao - 4 cosh noao - 2 (9-2) cosh (n+2)ao + (n-2) cosh (n+4) ao0

SB4 = (n+3)( (n+3+ X) cosh (n+2)ao0 + (n+2) cosh n ao)

TAI = (n-2)(n-3) eCn 2)ao

TA = n( (n+i-) e'(n- 2)ao + (n-i) e-(n+2)0 }

0



T3= (n+-.-)(n+3) e-,n 2 'o.

TBI = (n-3.)ý (n-4) e-in-4i + (n-3-K) efl-llo

TB2 = (n- I)( n em4"- 2 (K-2) e-1naOc4 + (n-1- K) e-(ný 2 iao

TB3 = (n+1)( (n+1+ K) e-ýn 2 0O + 2 (K-2) e-in+2)aoO + n ,ki4l

TB4 = (n±3)( (n+3+ K) e-(n+2)alO + (n+4) e-(n+ 4 )ao

T,= (n-2")(n-3) sinh (n-2)cco

T2= n ((n+ I) sinh (n- 2)cto + (n-i1) sinh (n+2)cx 0

TO= (n+2)(n+3) sinh (n+2)aot

T4= (n-3)( (n-4) sinh (n-4)cxo + (n-3- K) sinh (n-2)ao)

TO5 = (n-I1) ( n sinh (n-4)czo - 2 (ic-2) sinh (n- 2)ao + (n- I -K) sinh (n+2) ao

TC6 = (n+1) ((n+1+ K) sinh (n-2)cx0 + 2 (K-2) sinh (n+2) cx0 + n sinh (n+4) ao)

T7= (n+3) I(n+3+ Kc) sinh (n+2) cc0 + (n+4) sinh (n+4) cc0 )

TAI= (n-2)(n-3) sinh (n-2)ao

T2= n ( (n+ 1) sinh (n-2) cc0 + (n-i1) sinh (n+2) co)

T3= (n+2)(n+3) sinh (n+2) ct0

TBI = (n-3) {(n-4) sinh (n-4)cc0 + (n-3- K) sinh (n-2)zo)

T2= (n-i1) (n sinh (n-4)cco - 2 (19-2) sinh (n-2)ao + (n- I- I) sinh (n+2) a 0 )

TB3 = (n+1) ((n+1+ -W) sinh (n-2)ao + 2 (9-2) sinh (n+2) a0 + n sinh (n+4) ao



m0

TB4 = (n+3) ((n+3+ K) sinh (n+2)cxo + (n+4) sinh (n+4) ao

Appendix C

Using the symmetry equations (20) at the interface of the inclusion

Q1, the corresponding equations of (17) - (19) become,

0O 0
SAn V AI + Bn-i VBI + Bn+I VB2

n=1 4n=2 n=O

FoZn+ dm.n Vci mn-IVC2

n=2 m-I n=2 m=1
(Cl)

"4 Z Bmdmn+i VC3-•X AnVA - FBn-IVBI-4 Bn+I VB24n=O m=I n=l 4 n=2 4Fn=o

_C' Sn,2
2

-Fo sinh2czo 8n.0 An.2SA1+IX AnSA2"1 • An+2 SA3- - Bn-3 SBi
2n=4 n=1 n=-1 n=4

+t Bn-1 SB2++ -C-6 Bn+ SB 16" -- C' Bn+3 
S B4

on=2 n=O n=-2

"4 FoZn-2 + + (Am+ Bm) dm'n' 2  4 S n FoZn+ (Am+ Bm dm'n j Sc2-=

. FoZn+2 + Z (Am + ;Sm)dm n+ 2 SO3 + 16 Bmdmn-3 SC4
n=-• m=) n=4 m=I



- '- ' Bmdm.n.1 SC5" , Bmd.n SC6 + C Bmdm.n+ 3 SC7
16 16 Bdn*is 6 +16__m

n=2 m=l n=0 m=l n=2 m=l

-.. A. (C2)
+ X An-2A- AnSA +n n+2SA3+'6X Bn- 3 SBI

n=4 n=l n=-1 n=4
Sm* - X BnS,, -XB.., + X-

16 n=2 16 n=O 16 n=-2

=0

"Uo 8n.2"0  Z An-2 TAAT" ' B+-3TBI
n=4 n=l n=.1 n=4

+ 6 - TB2 + 6 Bn+l TB3- -F Bn+3 TB4
n=2 n=O n=-2

+ FoZn-2 + (Am + ýBm) din,n-2 Tcl - FoZn + (Am + ýBm) dm.n Tc 2
n=4 =. n= m=l

+ i (FoZn+2 + (Am + ýBm) dm.n+2 TC3 - Bmdm.n-3TC4
=- m=l n=4 m=l

+ Y, Bmdm.n-i T 5 - -- Bdmn+ TC6" Bmdm.n+3 T- 7
16 n=2 m=l 16 n=O m=l 16 n=-2 m=l

4 n=4 n=4 n=-I n=4

+16- n I2 B nlT3 C i+
n=2 n=O n=-2

=0.



Figure Captions

Fig. 1(a) Geometry of the problem. 0

Fig. 1(b) Elliptical coordinate system.

Fig. 2 Normal stress along the interface for various r

(a) perfect bonding (b) sliding.

Fig. 3 Normal stress along the interface for various X

(a) perfect bonding (b) sliding.

Fig. 4 Hoop stress distribution for various r

(a) perfect bonding (b) sliding.

Fig. 5 Variation of the interfacial hoop stress for different X

(a) perfect bonding (b) sliding.

Fig. 6 Effect of the shear moduli ratio on ay

(a) perfect bonding (b) sliding.

Fig. 7 Normal stress ry along the central axis for various s

(a) perfect bonding (b) sliding.

Fig. 8 Distribution of the normal stress ay at x= 2

(a) perfect bonding (b) sliding.
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An analytical solution

for the fiber indentation problem

D. KOURIS * and E. TSUCHIDA **

ABSTRACT. - An analytical solution is presented for the problem of fiber indentation. The fiber is modelled

bý a semi.eilipsoidal inhomogeneit, embedded at the free surface of an elastic half space. Using Boussinesq's
displacement formulation, the local elastic field is determined for the cases of perfectl. bonded ano sliding

interface.

1. Introduction

One of the important issues relating to the thermo-mechanical properties of composite
materials is the mechanism of load transfer along the fiber/matrix interface. Tl,- inherent
discontinuities of the material properties of the constituents, as well as the integrity of
the interface, have a significant effect on the local stress field and consequently influence
the performance of a composite.

Marshall [1984] proposed an experimental procedure for measuring the strength of the
interface in ceramic composites. His approach utilizes a microindenter and approximates
the interfacial stress by recording the fiber/matrix differential displacement and the
applied load. The local stress field may be evaluated using shear-lag analysis [Cox, 19521.

In an exact analytical formulation, the diffusion of load from a fiber into a three-
dimensional elastic medium presents significant difficulties. An approximate scheme, in
terms of a Fredholm integral equation, was studied by Muki & Sternberg [1970] for the
case of a finite rod, immersed in a semi-infinite solid. Other relevant studies of the fiber
pull-out problem include Aveston & Kelly [1973], Phan-Thien & Goh [1981], Budiansky
etal. [1986], Sigl & Evans [1989], and McCartney [19891.

In the present study, the fiber is modelled as an inhomogeneous semi-ellipsoidal
inclusion, under the influence of a concentrated indentation force. Utilizing a three-

dimensional displacement formulation, an analytical solution is obtained in a series form.

* Mechanical and Aerospace Engineering Department. Arizona State University. Tempe, AZ 85287-6106.
USA.

"- Mechanical Engineering Department. Saitama University, 255 Shimo-Okubo. Urawa 338, Japan.
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324 D KOLRIS AND E TSUCHIDA

In order to evaluate the influence of the interfacial integrity, the fiber is considered to
be either perfectly bonded or free to slip along the interface. These two extreme conditions
are then analyzed and compared.

2. The boundary value problem

The indented fiber is modelled as a semi-ellipsoidal inhomogeneity, loaded by a normal

concentrated force. The inhomogeneity is embedded at the free surface of an elastic half
space, as shown in Figure 1. Both the fiber and the surrounding matrix are considered
linearly elastic and isotropic: their shear modulus and Poisson's ratio are denoted by
(G. v) for the fiber and (G. v) for the matrix.

0

a =const.
P

P B

b

• . ,.

A const.

(a) (b)

Fig. I. - Problem geometry and coordinate system.

The purpose of the analysis is to determine the local stress and displacement fields
around the fiber, under the influence of the indentation force.

Due te the geometry of the fiber, the prolate spheroidal coordinates (t. 3,, y) are
utilized; they are defined by the transformation:

x = c sin h a sin 1 cos y = c4cpcos y

(I) y= c sin h t sin 3sin y = cqp sin y

:=c cos h a cos [3cqp

where q cos h a, q =_ sin h a, p -cos p3, _ sin 1, and c indicates the half-distance between

foci.

The boundary conditions at the free surface (:=0) require:

(2) (Cp)D -. 02 = (%t0)P -t/2 = 0

ERE JOURNAL2O. (E.0)V - O2 =S0N
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ANALYTICAL SOLUTION FOR FIBER INDENTATION PROBLEM 325

where the overbar indicates quantities of the fiber.

In addition, due to the absence of a far field load. all stress components are expected
to decay away from the fiber.

When the fiber~matrix system is perfectly bonded, the state of the interface (2 = -1,) is
characterized by continuity of tractions and displacements, i.e..

., = (U0) 2., (uP) 2 =,20 = (Uo), -,o,(3)

with all the other stress components being identically zero due to symmetry.

When the interface cannot sustain any shear tractions, the conditions of perfect slip
require that:

( (u,),.,o = (U'm),=o" (a,), =,o = °)'o

(' (T.,). =. = 0, and ( ., = 0.

The mathematical formulation that follows is based upon a three dimensional displace-
ment formulation and the principal of superposition. Due to rotational symmetry the
Boussinesq's (1885] displacement potentials, in prolate ellipsoidal coordinates, are given
by: 2 G u.= htj-2 + chip { q-3 -(3-4v)1

3 }
(G -h •° - chpq 3 -(3-4v)0 3 }

(5 2 G Up = F ' -nP~ p, " 3 - 3 -4P)()

2Gu• =0,

where V2=h2 {--+2q- +F 2p_aq 2 aq p2 ap

c2 h2 = l/(q2 -p 2 ) and V2 40= V2 D3 =0.

The expressions for the stresses can be deduced using Hooke's law and are given in the
Appendix.

The choice of the displacement potentials 00 and 4>3 ought to be such that both the
effect of the concentrated load and the disturbance due to the presence of the inhomogen-
city are included in the formulation.

The elastic field due to the indentation force on the fiber can be expressed by:

(6) (o0= -(I -2)/2a 2 p0 (Q1 (q)P1 (p)+logq(l +p)]
(63 = -(a 2/2 c)po Q0 (q) Po (p)

EUROPEAN JOURNAL OF MECHANICS. ASOLIDS. VOL. II. N- 3. 1992



326 D KOERIS AND E TSLCHIDA

where P.(p) and Q.(q) are Legendre functions of the first and second kind. respectively
and p, = i it a2 . The stresses and displacements due to (6) are:

2 GU2 = (a2/-) po (hiq-) [(2 - 2 v) p ( q Qo(q) + q -(I - 2v) q]
2 Gu= -(a-;:2)poho h[(2-2v)qQo(q)+(I -2 v)p!(I +p)]

(7) (a -i_)Poh " [- ( -2 )q'/,F +(2-2 )pi•F *p(4-2•) -~ ~ 3

COa -(ai2;')Po h'p [-(I - 2 -Hl:( +p)- - ' ]

8,=-(a 2/21) Po h' [(I1 - 2 -V) q 2/,F _ p ( - 2 v) G2 ÷ pYi + p) - (2 - 2 v) p, qF]

• =-(a2/2) Po h2 (q,•-) p[_(1-2),(i+ p) + C2 h 2 p1,

Due to equilibrium considerations, the matrix stresses ought to account for a force
equivalent to the applied load Po- Therefore, a set of displacement potentials. similar to
(6), is considered for the matrix region:

(8) 00I° (1 - 2 v)/2 aa 2Po Fo [Q I (q) P, (p) + log q(l + p))

I (D3 = - (a2 /12 c) po Fo Qo (q) Po (p)

with the unknown constant Fo to be determined by the interfacial boundary conditions.

The presence of the inhomogeneity introduces a disturbance in the local elastic field.
The choice of potential functions to represent this disturbance, is based upon the
observation that the corresponding stresses must satisfy the free surface conditions and
decay away from the fiber. This, together with the fact that the selected functions ought
to be harmonic, lead to the choice of four potential sets.

For the matrix region (a > ,o), these potentials are:

(9) = 2 (1 - v) c2 Po F A.{Q 2 .+ 2 (q)P 2 .+ 2(p)-Q 2 .(q)P 2 . (P)}

n0

and

(Do = (I - 2 v) C2 Po 7- B. { Q2. + 3 (q) P2. + 3 (P) - Q2. +1 (q) P2,,+, (p)}

D3 = CPO B.(4n+5)Q2.+ 2 (q)P 2 ÷+2 (p)

For the region occupied by the fiber (o < ,), the selected potentials are:

(DOo =2 (1 - V) C2 po P2 ,{ •+ 2 (q) P2, + (P) - P2. (q) P2 . (P)}

'03 / CPO (4 n + 3) P2. +1p (q) P20 +1 (P)
R-*O

EUROPEAN JOURNAL OF MECHANICS. A:SOLIDS. VOL. I . N, 3. 1992
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ANALYTICAL SOLUTION FOR FIBER INDENTATION PROBLEM 327

and

0o=(1 -2 v)0c'p o  .{P2. (q)P2. (P)-P.-,(q)P2.-.(P)nw=O

4'3 =CPo R. (4 n+ 1) P2.(q)P,. (P)
n0O

The expressions described in (7), together with the stresses and displacements that follow
from (8)-(12). allow for the evaluation of the elastic field anywhere in the fiber and the
matrix, in terms of the undetermined coefficients of the series. These unknowns Fo. A,,
B,. •A, and R1., can be determined by enforcing the boundary conditions along the
fiber/matrix interface. Depending upon the interfacial requirements for perfect bonding
or slip, conditions (3) or (4) are utilized.

3. Solution technique

Substituting the corresponding quantities in the conditions of perfect bond as described
by (3), the continuity requirements yield a system of linear equations for the series
coefficients. Specifically, the continuity of displacements yield:

(13) [u./(p0 c
2 hq-)]. -- o = [J'/(po c2 h-)]. ...

- (a2 /2 c2 ) Fo • u. (qo) P. (p)

11=00

ODl

+ Y {[UABA._1 +UABA,]--(l/r)[0 8 ,, 1 . 1_+OA2AJ]}P 2 .(p)

R-0

= -(l/r)(a 2 /2c 2) . (qo) P. (p),
R-0

where uo (q)-- (I - 2 v) (q0 /jo) and uI (q) -(2- 2 v) [Q0 (qo) + (qo/1o)]. The expressions
for U-. (qo) are obtained from u. (qo) by replacing v with v. The coefficients UA i, UR,,
CA and C. , are known functions of n and the geometry, and can be found in Kouris
etal. [1989].

The fiber/matrix shear moduli ratio is denoted by (F= G/G).

EUROPEAN JOURNAL OF MECHANICS. A/SOLIDS. VOL. 11. N- 3, 1992



328 D KOURIS AND E. TSUCHIDA

The continuity of the tangential displacement along the interface is given by:

(14) [uo,'(po c2 h)] 2. . = [u-0j(Po C2 h/F)]IG -2o =,

-(a 2 -,'2 c2) F0 [(2 - 2 v) q0 Q0 (q0) P'ý (p) + ( I - 2 v)p,.( I +p)]

+ It IVAA.-, +VA2A.]-('IiF)['V A, A.-, + VA.A.]I' P".(p)

+ I VZ., B.] I (1 I + V.B P.1 k (p)

n=O

= - (a'/2 c2 ) [(2 - 2 v) q0 Q0 (q0 ) P' (p) + (I - 2 _)pi( + p)].

In addition to the displacements, tractions are continuous along the interface. These
two conditions yield:

(15) [cr/!(po oc"/')], =,o =[&,/(Ppoc h')] ., -

3

- (a 2/2 c 2 ) F0 Y s. (q0) P. (p)
A-0

gog

+ Z {[SAIAM.- 2 +SA 2 A..-+SA3 A.+SA4 AM+I]

-[sAlAn-.+_A 2 A+ -l+gA3A.+SgA4 A.+ } P2 .(P)

+ . {[S 8 B3B.- 2+SB 2 B.-I+SB3 B3 +S. 4 B3 +1 ]
X.0

-[ISB 1 B.- 2+S* 2 ._+S 3B3 .+SB.+l]} P2.+, (i')

3

= - (a2/2 C2) E i- (qo) P. (p),
R-0

where so=(1 -2v)q 2 (1 - 3 q2 )/(3 j).

s, 1 /(5 j2) [(5 q2-_ 1) (4 q 2 - 3) - 2 v q 2 (5 q2 - 3)],

s 3=(1-2v)2q2 /(3j) and

s. = - 2/(5 j2) [j + (2- 2 v) q21,

EUROPEAN JOURNAL OF MECHANICS. A/SOLIDS. VOL. 1I. N" 3. 1992
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for the norma! stress, and:
(16) [tcp.(p 0 c' h-- , = T,/(?o c' h" 12 o0

- (a 2 /2 cz) F0  i~(q0) P.' (p) ~-(I - 2 v) q, (I + p)]

+ Y {[TAIAM-2 +TA 2 A.-,+TA3 A.+TA4 A..,.

- TAI ,• R-. + TA2 A n- 1+ TA3 A•. + TA,. A.. ,1 1 P (P)

00

+ Y {[TBIBA-,+TBB-I+T 3 B,,+T 4 B,,B.,]
n.0

-[TI3 I .- 2 + TB2 B•._•+T838.+ T84 an+ 1]} P"-,.÷11(
3

L4. 1. q)P'p I v 1l+p

for the shear stress, where

tj = [(2 - 2 v)/(5 q: 1-2 v)] q,

t2 -(I - 2 v) q21(3),

t3 = (2-2v) 2q1(1 5j2) and P.(P) = P (Pm--)

In order to obtain a linear system of equations for the series coefficients, Legendre
functions of odd order that appear in (13)-(16) are expressed in terms of Legendre
functions of even order. Such a transformation is possible for 0 <p < 1, and is given by:

(17) P2 k+,I ( ) Y W R w " P 2. a(P),. P ,k+ (P)= Y - 14 7' P (P)

where

win) = (4 n + 1) (2 k + 1)/(2 k + I - 2 n)1(2 k + 2 + 2 n) P2 . (0) P2, (0).

By employing this complete expansion and equating the coefficients of P2 .(p) and
P,.(p), equations (13)-(16) yield the following system of linear equations:

(18) - (a 2/2 c2) F0 [uo (qo) SIR) + uI (qo) w(gR]

+ [UAI A.- I + UA2 AJ - ( I/r) [OA, I.-, + CA2 AJ

+ 7 { [u,, B_, + U8 2 BI-(11r)[Os, B,_ + ,0, 8J } I.H
k-0

- -(ilr/)(a 2/2 c2) [Uo (qo) 8'" + U1 (qo) 14.R], (n.0, 1,2,...),

EUROPEAN JOURNAL OF MECHANICS. AiSOLIDS. VOL. 11. N° 3. 1992
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(19) (a,2c)F 2-2v oQ q)+I-2v ,ý

000

+ Y f rvBI Bk- 1+V112 Bk] -(o/n [v., k-I+1B 1%] jta 1'17)
k.0

- (a2!2c')(1/r)[ ý(2-.2V)q0 Q0 (q0 )+(i -2v))} (IJ

+(1 -2v){(4n+ 1)/(2n)/(2n+ 1)- Z (4 k +3)/(2 k+ 10( k+2

(n 1,2, 3....
(20) - (a12/2c')F0 [s0 (q0) 8f" + s(q 0 ) w.( +S2 (q0)' 1 '+s 3 (q0) w1;"

+[ISAI A.- 2 + SA2A. -,4.SA 3 An +SA4 An +1]

-[ISAI AR -2+ SA2 An- I + SA3 An +SA4 Aso + 1

+ E I Sill Bk_..+SR2 Bk& 1 +SB3Bk+SBBk+l]
k-0

-[SRI, Bk-2+SmB2Bl-+S.1 3Bk+Sl~B +llw)*iI
= -(212 2) [ (q0) 61n, + Yi (q0) %,*I + 2 ()& +i () f

(n 0,1, 2,.

and

(21) - a/2 c2) F0  (qo) wo + 12 (q0) 8~~+ t3 (q0) tv~'

+ (I - 2v) qo {(4 n+ 1)/(2 n)/(2 n+ 1)} y (4 k +3)/(2 k+ 1/2k+2 A'

+ [TA I An- 2 + TA2 An... + TA3 An +TA4 A. + 1

[lAI An-..2 + TA2 An- +TA3 An+ TA4 An+ 1

+ E {FrDIBh.. 2 +T,2Bk-..+TB3 Bh+TS.Bk,l]
k-0

- (a 2/2 c 2) [7; (q0) *'n + T2 (q0) 81n) +T 3 (q0 ) *,a

+ (1 -2 _) qo (4 n+ I)/(2 n)/(2 n+ 1)} (4 k +3)/(2 k + /2k+2
kwo

(n =1, 2,3,. ..
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After determining the coefficients F0, A., B.. A. and 8. from the system (18)-(21). the
elastic field can be evaluated at any point in the matrix or the fiber.

In the case of a sliding fiber, the problem is formulated similarly based on the boundary
conditions (4).

41 4. Results and discussion

According to the appro:ich that was described in the preceding sections, the unknown
coefficients of the displacement potentials can be obtained by solving the linear system
of equations (18)-(21). In order to ensure that the interfacial boundary conditions match
up to three significant figures, no more than twenty series terms are required. Such a
truncation is justified due to the evident numerical convergence of the solution.

The purpose of the parametric study performed, was to identify the influence of two
basic parameters on the elastic field; namely the shear moduli ratio I(r=G,'G) and the
inhomogeneity aspect ratio S (S = a/b). In order to determine the effects of the interfacial
bond, the fiber was initially assumed to be perfectly bonded to the matrix; consequently,
by relaxing the interfacial shear stress, the case of perfect sliding was considered, and
the results were compared. The comparison was focused on the interfacial stresses and
the distribution of the displacements along the free surface.

The distribution of the normal stress cr. along the interface, for a fixed shear moduli
ratio (r"= 5), is illustrated in Figure 2. The stress concentration at point A increases for
the case of sliding and is inversely proportional to the inhomogeneity aspect ratio. The
variation of the material properties has a significant effect on CF., when the inhomogeneity
is perfectly bonded to the matrix (Fig. 3). This is not the case, however, when sliding
occurs.

3 
11 -

7-1

4

- - - SzO.3 (SL)

- SzO.S (SL)
-4 - SO0.3 (PS)

.7 - S-0. S(Pe)

0 10 20 30 40 50 60 70 80 90

Fig. 2. - Normal stress along the interface as a function of S (PB and SL).
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The fiber hoop stress o, along the interface Is illustrated in Figure 4. Here. the geometry
of the insert appears to affect the stress concentration much more than the condition of
the interface. The significant tensile values of oy suggest the possibility of crack initiation
in the vicinity of point A.

-- 0. - O 6 - ~ .(L
.0 1

____ ~S:O.3 (SL)

r5 -(SL)-- S=O.3 (PB)
/ / • r=2 (S L) SaO5(S

" (') "-0---r=5 (P 6) :

- -r=2 -(PIB) ,-

-49---.,

0 10 20 30 40 50 60 70 80 90 0 10 20 30 40 50 60 70 s0 90

$ 4

Fig. 3. - Normal stress along the interface Fig. 4.- Fiber hoop stress along
as a function of r (PB and SL). the interface as a function of S.

Another important aspect of the problem involves the distribution of displacements
along the free surface of the composite. If we denote by R the normalized distance from

Os 1- 1.0- - -

r-2 r. - r-2
O. -- - H-- r-s --- r-s

0.6
0.4

3 0.3 S .0.3

0.00.0 
-

02 -0.2
0.0 o.s 1.0 1.5 2.0 2.5 3.0 0.0 0.5 1.0 I.s 2.0 2.5 3.0

R 4

Fig. 5. - Normal displacement along Fig. 6. - Normal displacement along
the free surface for r-2, 5 (PB). the free surface for r-2. 5 (SL).
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the point of application of the load (R =r'a). the regions 0 < R < I and R > I correspond
to the free surface of the fiber and the matrix, respectively.

The condition of the interface has a significant effect on the normal displacement u.
as shown in Figures 5-6. When the inhomogeneity is relatively "'soft" (r= 2). the normal
displacement of the fiber does not exhibit significant differences between perfect bonding
(PB) and sliding (SL). This is not true. however, for a "'stiffer" fiber (F= 5). In the case
of SL. u- in the matrix decays rapidly and is almost independent of r.

For a given material combination, the dependence of u. on the geometry of the
inhomogeneity is illustr-ated in Figure 7.

1.0 - -[

0120.5

0.60. 1 •I

0.2 - :".

0.0 - - - -

"0.2
0.0 0.5 1.0 1.5 2.0 2.5 3.0

R

Fig. 7. - Normal displacement along the free surface for S,0.3, 0.5 (SL).

Finally, it should be noted that the normal displacement along the free surface of the
fiber, does not appear to be uniform; such a simplifying assumption that sometimes has
been made in the literature, may be misleading.

5. Conclusions

In an effort to evaluate the local elastic field in the vicinity of an indented fiber,
an analytical solution was presented based upon the three-dimensional displacement
formulation. The results suggest that the stress concentration along the interface depends
on the fiber aspect ratio and the given material combination. The influence of the
interfacial integrity was studied by considering the extreme conditions of perfect bonding
and sliding. It was found that the loss of bonding introduces high displacement disconti-
nuities along the interface. In addition, the distribution of the normal displacement along
the free surface of the fiber is not uniform.
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APPENDIX

The non-zero stress components that correspond to the dirplacement field describing
by (5) are:

(AI) .:h2{ -2 (D"o+C2/h2 q 0o- -p 0

+ch2q pv 3 2 h2•q 2  -2(l-v) 2
1p-- -q (cjh2p2-2v (qD:P

(A2) = h +IC - - h- q V) q -P'-(--p 2v

p cq cp I
+c 2[q2 40 2 2-

(A2) ar=h2 p q q__-_? ' 0 __ +2_)q

(A4) r~p=h~qp{- 02*---0 c2h2(q.*° p.°aq p t aq }

(A4) h r a2, + C 2* P•ýý -pa'o

-ch2 qp~qpý -• + {c h2 p-( - 2 v), t---q ý _t-{ c 2 h2 q 2+(i-2v) lip-" j"
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Elastic analysis of the half plane
inhomogeneity problem

D. A. Kouris and j. P. Nuxoli, Tempe. Arizona
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Summary. The paper presents an analytical solution for the elastic field in the %icinit, of a semi-circular
inhomogeneity, embedded at the frec surface of an clastic half-plane. This bi-material ssstcin is loaded b%
uniform remote tension or a constant cigenstrain sustained b% the inhomogeneity.

1 Introduction

The thermomechanical response of multi-phase materials has been the subject of considerable
interest due to their importance in structural applications. Issues relating to the local elastic fields
and the integrity of the interfaces between the constitu..ents are essential in determining the overall
properties as well as the fracture behavior of composites.

In order to optimize the design of such complicated materials, one needs to understand the
mechanics of the microstructure. Such knowledge can be utilized in an effort to qualify possible
modes of failure. In addition, the micromechanical analysis of the matrix/inhomogeneity system
may serve as the basis for estimating the bulk properties.

The focus of the present study is the elastic behavior of a plane bi-material system which
consists of a semi-circular inhomogeneity, located at the free surface of an elastic half-plane
(Fig. 1). The analysis was motivated by experiments involving continuous fiber composites
(Kouris [1]). In this context, Kouris and Tsuchida [2] investigated the local interaction between
fibers, under thermal loading. In addition. a similar analysis was presented by Kouris [3] for the
case of mechanical loading and imperfectly bonded fibers.

However, some of the specimens tested in transverse tension contained fibers that were
located near or at the free surface. These fibers can be modeled by semi-circular inhomogeneities,
under conditions of plane strain. A related elasticity problem which involved the stress
distribution in a notched plate under tension was solved by Maunsell [4]: This solution was
generalized by Atsumi [5] for the case of a plate containing an infinite row of semi-circular
notches, under similar loading conditions.

The inhomogeneity problem is formulated in terms of displacement potentials. The loading
consists of uniaxial remote tension or a uniform eigenstrain sustained by the inhomogeneity.
Solutions are obtained for a perfectly bonded as well as a sliding interface and the results are
compared.
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2 Displacement formulation

A semi-circular nhomogeneit', of radius I h embedded at the free surface ofa semi-infinite plane.
as shown in Fig. I. The surrounding matrix o; \,ell as the inhomopeneit, are assumed to be
linearly elastic and isotropic.

In the absence of body forces. the equilibrium equations in terms of displacements are

u, 1j + 14- , 0 (i.j = x, Vi.- 1 Il

where z = 3 - 4. for plane strain and I = 3 - v --, v) for plane stress.

According to Boussinesq [6] and for ro'ational symmetry. Eqs. 11 are satisfied identicall bh

"2Gu, = -t-V

(2)
di•o i'O:

2Gu, = --j-- -,- --- - .

Oi and 0, are arbitrary harmonic functions. For a particular problem, these functions are
selected based on the geometry, the applied load and the appropriate boundary conditions.

In the present investigation, two types of loading have been considered. At first, a solution is
sought for the case of mechanical loading, represented by remote uniform tension Po along the
y-axis. Consequently, the specified tractions at infinity yield

(O-Y. = po and ( = (Zxy),z = 0. (3)

The displacement potentials that coriespond to the load Po are given by

1 1
-Po= -Ipo(3- )(x -y 2 ) and P0= -- Y,

which, in polar coordinates, yield

"Po = - I po( 3 - Y) r2 cos 20

(4)

(, = - r sin 20.2

o -

X Fig. 1. Geometry of the problem
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In addition, a non-elastic displacemen: is being introduced in the form of a uniform

eigenstrain E, ., sustained by the inclusion. i.e.

C, Y* = E'*Y'

which leads to

1
-2GL,* = - 12Gc,*) r(l - cos 20)

2Gi,,* = - 2CG. *) r sin 20,

where G is the shear modulus of the matrix and the overbar is used to denote quantities that

correspond to te, inhomogeneity.

Consequeni., the boundary conditions at infinity in the case of the eigenstrain loading are

((7rx), 1 - = (o',), - = ( r X, = 0. t6)

The requirement for zero tractions along the free surface yields

17)
( ) =o = ( •x y ) • =o = O .

In order to complete the formulation of the boundary value problem. one necds to account

for the disturbance due to the presence of the inhomogeneity. This disturbance is represented by

four sets of displacement potentials, given by

C .4n + 1 + -,,
Po = -Po A, r cos 2nOnO 4nl

'*2 = PO .4,rAj- sin (2n + 1) 0,

S4n + 5 +
PO= -Po B -, r- 2 +"+cos(2n + 1)0

-- 2(2n + I)

-'2 = Po Z B.r-'"+"2 ) sin (2n + 2) 0

for the matrix (r > )0, and

X 4n + 3-
(Po=PO Z A. - r2  cos(2n +-2) 0

A 0 2(2n + 2)

IP, = Po T ,qr' sin 12n + 1) 0,
n=

(PO = PO B" /•- l-r,_ cos (2n - 1) 0

= 2(-11n + 1)
* Ill)

0 2 = Po 0 1,r2" sin 2nO
-0=
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for the inhomogeneit\ ýr < Y). The variable p., represents the remote tension or the quantit,.

2G,:," cigenstrain casel.
The elastic solution anyv here in the matrix or the inhomogeneity can be obtained b%

superimposing the displacement potentials given b% Eqs. (4). (8),(9) t 101 and 111). What remain to
be found are the values of the unknown coefficients A,,. B,,.,4, and a,. This can be accomplished
b\ utih!ing the boundary conditions along the matrix inhomogeneit. interface.

3 Interface boundary conditions

"When the semi-circular inhomogeneity is perfectly bonded to the surrounding matrix, the
boundary conditions require continuity of tractions and displacements. i.e.

,, = (,... r,,,,= = 2 V) (12)

and

= (a',).,. LW0),= = U',),'=. (13)

In the case of the eigenstrain loading, Eqs. (13) have to be modified in order to account for the
inelastic displacement. Consequently, Eqs. (13) become

(14)

uo),= (a0),=, + (Cle*),=,.

Based on the stresses and displacements that are derived from the chosen displacement
potentials, Eqs. (12) yield

',A, n, n cos 2n + (n + 2) cos (2n + 2) O}
.=O

M-0
n+ (•2n +3) cos(2n + l)6-0+(2n +5)cos(2n+3)0]

+ i.(2n + I72m'(n - 1) cos 2nO + (n + 1) cos (2n + 2) 0}

-- V n2`( 2n 1) cos (2n + 1) 0 + (2n - 3) cos (2n - 1) 0,
.- =0

(I - cos 26) (15) •

2I
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and

.2n 1 ,nsin2n0+(n + 1)sinI2n +2)0

+ _ B,, (2n + 3) 'sin(2n +-1) 0 + sin(2n + 3) 0
n0

+ V A4(2n + 1) ,"2n'n sin 2nO + (n + 1) sin (2n + 2) 0:

- " B, i2n - 1) 2 sIn(2n-1)0 + sin (2n - 1) 01

= - sin 20. 16)

The conditions of continuity of the displacements along the interface expressed by Eqs. (13) or
(14) become

- A 2 {On cos 2n6 + (2n + 1 + ;) cos (2n + 2) 0;.

-c7 B,2 {(2n +3) cos(2n+ 1)0+ (2n +2+ x) cos(2n +3) 0,

1 -7 4,+i( ,
+ 22A + 'o (2n + I - 4c) cos 2nO + (2n + 2) cos (2n + 2) 0(

+ -- Ba.22"[(2n - 1) cos (2n + 1)0 + (2n - ) cos (2n - 1) 0
n=O

1 1 28 , 1
(0 - x -1 2- zCos 20+ ; -".*( - C0os 20)• (17)

4 2

and

- .A, - {2n sin 2n0 + (2n + 1 - x) sin (2n + 2) 0
=0 2

- 0 B, 222- +2 {(2n + 3) sin (2n + 1) 0 +(2n + 2- x) sin (2n + 3) 0W

I . 4 (-"÷{(2n + I + 9.) sin 2n0 + (2n + 2) sin (2n + 2) 0'
4-0

2r2" ( .'-(2n - 1) sin (2n + 1) 1) + (2n + •) sin (2n - 1) 0)

I / I
=- xsin 20 - 2--E; sin 20',. (18)

Here r denotes the inhomogeneityimatrix shear moduli ratio (r = 6,G) and the quantities

included in the brackets < ) correspond to the eigenstrain loading.
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The boundary conditions 15) - 181 form a sý stem of equations for the unknown coefficients

of the series. In order to proceed with the solution. it is necessary to eliminate the dependence on
0. This can be accomplished if the odd arguments of the trigonometric functions are expressed in
terms )f e~en. usine the "half-range" expansion

cos 2k + 1 1 0= - "' , 14,€cos 2nO.
7 0=

(191

sin (2k-- 1 =0 t,'" sin 2n0.

The coefficients of this complete expansion are given by

-l (-l)k'"(2k + 1) (-lK•'"2n
14ý,' '= (-1" . W1,h".1= (- ) " 2k+ 1 and t••n• =)- 2?

_1(2k + 1) (2k + -: - 4n d - 12k + 112 - 4n1

Utilizing the expansions (19) and equating the coefficients of cos 2n0 and sin 2nO in

Eqs. (15)-(18), one can deduce a linear system of equations for the coefficients A., B,., A,

and B,.
Therefore, Eq. (15) yields

n(2n + 1) (n + 1) (2n - 1)A . 2n- + A .- , 0C 2 M

I 1k + I k,
BL B- :- 3 i(2k + 3) Wk'l + (2k + 5) W,1i}

k=O

+ .4,(2n + 1) (n - 1) 2 + .ii,- i2n - 1) :2-r 2

+ 7 9k - k.,2_•(2k 1) W,-` + (2k - 3) W,"2n}
k= i

= 6 o) - , 0, 1,2. ). (20)

Similarly, Eq. (16) becomes

n(2n + 1) n(2n - 1)
Aft 2 m-+2 + Af- 1  22

2 (2k + 2) (2k + 3) IB,' [k*x {k,", + t•÷+I
+ r 2 ~ 2 &k+3 (k +

.4,t(2n + 1) nl2"- .n2 ,, -n(2n - 1) "t2n-2

_ V A4 kI2k - 1) k 1  +

1 Oi, . (n = 1.2. 3. .. (21)
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The continuity of the normal and tangential displacements given by Eqs. (17)-i.sl are
transformed into

,1 (2n - I + z
. 4_1 2,-1

* - B- .---' ý(2k + 3) Wk" + (2k ++ 2

+ r4 (_n + I - ;: +

+ - {k -- : -'*[(2k -1) ;,V,"' + 2(2k - ;) W•2,]

1 z 1) .76o" - 161 /" + Xzy*r ,o - it'), (n =O, 1, 2 , (22)

4 22 -

and

n (2n - 1 -)A .•, - - A ,- ._,_

- ~ 2 1Bo r,- - f (2k +3) t,`•+ (2k +2 -) tk"' i)

1 {A,4(2n + I + .) 2n+,,, + A-2n• -

S{ -- "[(2k 1) tk.' + 2(2k + 9) t•-I t]

2 )6 "O + 2. - '-l*6 in' )I (n = 1, 2 ,... ). (23)

For a sliding interface, the boundary conditions become

= , (r,0),., = 0

and (24)

(u,),=. = (a,),.. + (a,*) (•,e),.z = 0.

As in the case of perfect bonding, Eqs. (24) yield a linear system of equations for the expansion
coefficients.

4 Results and discussion

The solution of the linear system of Eqs. (20)-(23) yields the coefficients A,. B,, .-i and 8,,.
Consequently, stresses and displacements at any point of the matrix or the inhomogeneity can be
evaluated. The necessary series truncation requires no more than I5 terms so that the interfacial



176 D A Kour;,, and J P Nuoll

boundaries are met with an accuracy of three significant figures. No proof of absolute

convergence is offered since the numerical convergence of the stresses and displacements is

c, ident.

Separate calculations are performed for the tensile and the eigenstrain loads. All the resulting

quantities are evaluated per unit load and the inhomogeneity radius is taken equal to unity. The

exatmples that fl~low illustrate the effects of the shear moduli ratio r and the integrit, ol the

interface iperfect bond versus perfect slip).

In the case of remote tension, stresses and displacements were calculated for various values of

F between F = 10 l(hard" inhomogeneity) and - = 0.1 [-soft- inhomogeneitvy. The eigenstrain

case is treated like an inclusion problem 1F = I). Both Poisson's ratios for the inhomogeneitv and

the matrix were taken equal to 0.3.

2

Perlect Bonding Tensile Load

r 2 0 .
.. .. ... ..

0 r i - . 0
r- 0.50 ,,

F=0.10

0 10 20 30 40 50 60 70 80 90

8 (degrees)

SPerfect Slip /Tensile Load r = 10.0-

1 0
0

0=i.

0-0

0 10 20 30 40 50 60 70 80 90

8 (degrees) 0

Fig. 2. Effect of the shear moduli ratio r on the normal stress along the interface for perfect bonding and

sliding
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* 4.1 L'iaxial tension

In the case of uniform tension at infinity, we have studied the effects of the shear modult ratio on

the elastic field along the interface, as well as along the free surface.

Figure 2 illustrates the variation of the normal stress a, along the interface. In both the cases

of perfect bonding (PB) and sliding (SL). the magnitude of a, is proportional to -. However. the

stress concentration is higher in the case of SL, particularly at the free surface (0 = 90
The matrix hoop stress ao exhibits high tensile values at the bottom of the inhomogene~t

(Fig. 3). These values of a, are inversely proportional to F: as F - 0. cro approaches the \alue
a, po = 3. as predicted in the paper by Maunsell [4]. Nevertheless, there are no significant

differences between PB and SL.

0.0Perfect Bonding /Tensile Load

2-1

2.1

0 (degrees)

r= 0. i0 Perfect Slip /Tensile Load

r=i.
1

0-= 2.000

0 10 20 30 40 50 60 70 80 90

0 (degrees)

Fig. 3. Effect of th., shear moduli ratio F on thie matrix hoop stress along the interface for perfect bonding and
sliding
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2
r=2.o S.0 Periect Bonding' Tensile Load

O.1.

I- = 0.50F00.10

0 10 20 30 40 50 60 70 80 90

@ (degrees)

1= 2.0.0

r = 0.50
r= 0.10

.-1

Perfect Slip I Tensile Load

0 10 20 30 40 50 60 70 80 90

0 (degrees)

Fig. 4. Hoop stress along the interface of the inhomogeneity versus F. for PB and SL

This is not the case. however. for the inhomogeneity hoop stress ao (Fig. 4). Even though
stress concentrations remain modest, the sliding case involves tension and compression along
parts of the interface.

Figure 5 illustrates the distribution of the matrix normal stress a, (equi% alent to arj along the
free surface, versus the relative distance R (R = r/2) from the center of the inhomogeneity. In the
case of a perfectly bonded inhomogeneity with F > I (stiffer than the matrix), a, exhibits
a maximum not at the interface, but at a distance r : 1.32 from the center of the inhomogeneity.
Therefore, crack initiation is more likely to occur at that point, instead of the interface. However,
this is not the case if perfect slip prevails, where for F > 1. a, has a maximum value at the interface
(R = 1). It is interesting that for a softer inhomogeneity (F < 1), the same point r •z 1.32
corresponds to a local minimum for both PB and SL.
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14
1 1-= 0.0• Periect Bon dig i Tens oie Loa a0I

1.2 =

1.0

0.6 F = 0. 10

0.4

0.2
0 1 2 3 4 5 6

R

Perfect Slip / Tensile Load

2 r= 1o.

1 r= t.o

F= 0.50

0 .io
0

0 1 2 3 46

R
Fig. 5. Effect of F on the distribution of the axial stress along the free surface of the matrix. for PB and SL

Figures 6 and 7 represent the variation of the normal displacement u,, along the free surface of
the inhomogeneity and the matrix. In the case of the inhomogeneity (Fig. 6), ii, remains almost
constant for PB and F > 1. When sliding occurs. ij decays as R approaches unity (interface). The
values of us along the free surface of the matrix (Fig. 7) tend towards zero as the distance from the
inhomogeneity increases.

4.2 Eigenstrain

This non-elastic, uniform load is represented by 2GE,* = 1. The semi-circular insert is assumed to
be of the same material as the one of the matrix (F = 1). Our interest here is focused on the effects
of the interfacial integrity.
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06

Perfect Bonding Tensile Load r 0. 0o

04

1: 0.2
rF - 0.50

0.0 r = i.o

= 2.0
F= 10.0

-0.2
0.00 0.25 0.50 0.75 1.00

R

Perfect Slip I Tensile Load

-00

10

SF= 10.0
-1 .- F= 2.o

r = I.sO
r = 0.50
r=0.10

-2

0.00 0.25 0.50 0.75 1.00

R

Fig. 6. Normal displacement along the free surface of the inhomogcneity

As shown in Fig. 8, conditions of perfect slip correspond to higher values of the normal
stress -7.

The two components of the displacement vector, along the free surface of the matrix and
the inclusion, are given in Figs. 9-10. These distributions indicate that when the inclusion
is free to slip, it tends to force itself "up" and -out- of the pit. On the other hand,
conditions of perfect slip appear to decrease the values of u, and uo along the free surface of
the matrix.
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06
0 0. 10 Perfect Bonding / Tensile Load

0.4

0.2
r =0.50

3 o.o F= I.O
F=2.0

-0.2 F = iO.0

* -0A4
0 1 2 3 4 5 6

R

0.8-
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. r= 0.50

S0.4- r = 1.0

0

r F=2.0
0.2-

SF= 10.0
0.01

• 0 1 2 3 4 5 6
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Fig. 7. Normal displacement along the free surface of the matrix

5 Conclusions

An elastic analysis was presented for the problem of a semi-circular inhomogeneity embedded at
the free surface of a half-plane.

It was found that under the influence of uniaxial tension, local stresses and displacements are
strongly dependent upon the inhomogeneity/matrix stiffness ratio. Comparisons were made
between perfectly bonded and slipping interfaces which indicate that, in general, loss of the
interfacial bond corresponds to higher stress concentrations.

Similar comparisons were considered in the case of an inclusion under the influence of
eigenstrain loading.
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0.4

Eigenstram Load

0.3

S•, • Perfect Bondn
0.2- Perfect Bonding

0.1
=,p

Perfect Slip
0.0 ~ , ,,

0 12 3 4 6

R

0.8

SEigenstrain Load

0.6

0.4 Perfect Slip

0 C10

" 0.4

0.2

Perfect Bonding

0.0 ... b

0.00 0,25 0.50 0.75 1.00

R

Fig. 10. Normal displacement along the free surface of a the matrix and b the inclusion, for PB and SL
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Demitris Kouris

Department of Mechanical and Aerospace Engineering

Arizona State University

Tempe, AZ 85287-6106

David Marshall

Rockwell International Science Center

1049 Camino Dos Rios

Thousand Oaks, CA 91360

ABSTRACT

The paper discusses experimental observations and some related theoretical results

associated with the mechanical response of two Ti 3A1 matrix composites, subjected to

transverse loading. Both composites contain continuous unidirectional fibers; however,

there are considerable differences in the composition of the two interfaces. The

Ti 3AI/SCS-6 system contains brittle reaction products around the fibers that degrade the

strength of the composite. The second composite consists of a Ti3AI matrix reinforced

by sapphire fibers that are strongly bonded to the matrix. Experimental observations

indicate that the damage mechanisms in the two composites are substantially different.

Utilizing elastic analyses of the local stress field, an attempt was made to explain the

dependence of the observed damage mechanisms on the residual field and the properties

of the interface.



1 Introduction

The next generation of advanced turbine engines requires high temperature

intermetallic and ceramic matrix composites. Because of their low density and high

strength at elevated temperatures , titanium aluminide alloys are the most likely materials

to advance the high temperature performance of aerospace structures. For highly stressed

components such as compressor disks in advanced gas turbine engines, reinforcement of

these alloys with high strength continuous fibers is necessary. The most suitable material

appears to be SiC, although fiber coatings are necessary in order to obtain optimum

interfacial properties and to control interfacial reactions under severe service and

fabrication conditions.

Most previous studies of titanium aluminide composites have involved either J3-

stabilized titanium alloy matrices or matrices based on the ct2 Ti3AI phase. High

stiffness, strength and fatigue resistance have been achieved in both systems (Johnson et

al., 1990; Revelos and Smith, 1992). However, they are both limited in application; the

P3-stabilized matrices by high temperature stability and the ca2-based matrices by severe

degradation during thermal fatigue in air (Revelos and Smith, 1992).

The interfaces between the fibers and matrix in these composites play the

dominant role in determining the mechanical properties of the composite. Until now the

design and fabrication of the interface has been largely empirical, with the choice of

constituents being dictated by compatibility considerations and very little guidance being

available for the optimum choice of interfacial properties. Indeed, the composites that

have shown the most promising properties have all possessed serendipitous layers of

carbon at the interface, either formed by reaction with the matrix or deposited as a

protective coating on the fiber. The carbon layer provides a weak interface, which is

necessary to allow debonding and toughening by fiber bridging. The properties of the

interface between the fibers and matrix dictate the overall properties of ceramic and

intermetallic matrix composites (Marshall et al., 1991; Evans and Marshall, 1989).



Generally, weak interfaces that allow debonding are required in order to achieve optimum

longitudinal properties in unidirectionally reinforced composites. In brittle matrix

composites, matrix cracking is the first damage to develop. If the fiber/matrix interface is

sufficiently weak to deflect an incident crack into the interface rather than allow it to

penetrate the fibers, and if the fibers are sufficiently strong relative to the sliding

resistance of the interface, then the strength of the composite is dictated by the fiber

strength and is insensitive to damage and notches. Moreover, the stress strain curve is

usually nonlinear prior to the peak stress, and noncatastrophic beyond the peak. On the

other hand, if the interface is strong enough for the first matrix crack to penetrate the

fiber, the composite behaves as a monolithic brittle material with linear stress strain curve

to failure, and with strength that is sensitive to pre-existing damage and notches.

Design and reliability analysis of intermetallic composites must be mechanism

based. This involves development of micromechanical models that relate damage to

mechanical properties of the individual constituents and their interfaces, and use of direct

in situ measurements of these properties in combination with the models to provide the

input to design codes. Therefore, the material properties needed to characterize these

composites differ from the properties, such as strength and toughness, used to

characterize monolithic structural materials: direct information about the mechanical

properties of the interface is essential. Moreover this information is needed over the full

range of service temperatures and environments. Substantial advances have been made in

developing techniques for obtaining these measurements coupled with parallel advances

in micromechanical modeling.

In unidirectionally reinforced intermetallic matrix composites, in which the matrix

exhibits limited ductility, fiber fracture can occur before failure of the matrix under

monotonic loading. Interfacial debonding then leads to improved strength by allowing

the damage in the matrix to be spread out rather than being concentrated near the fiber

cracks, thus delaying rupture (Marshall et al., 1991). However the largest potential

i0 ,



benefit from reinforcement of intermetallic matrix composites is in the improved

resistance to fatigue cracking. Under cyclic loading, fatigue cracks initiate in the matrix.

If interfacial debonding occurs, the reinforcing fibers remain intact, spanning the crack

faces and restricting the range of displacements that are transmitted to the crack tip,

thereby reducing the crack growth rate. With optimum interfacial properties this

reduction in growth rate due to crack bridging can be dramatic, either arresting a crack

that would otherwise accelerate indefinitely, or reducing its growth rate to a low constant

velocity.

The need to produce weak interfaces for optimum longitudinal properties conflicts

with the requirements for high transverse strength, where strong interfaces are beneficial.

Therefore a compromise is needed, either in the interface properties or in the design

requirements. This topic has received very little aatention. For instance, very little is

known of the effect of interfacial friction on transverse strength.

The present study involves two composites with Ti 3AI matrices, subjected to

transverse tensile loading. The first matrix is reinforced by "bare" SiC fibers (SCS-6) and

the second by sapphire fibers coated with a thin (-~lgm) Ta layer. The experimental

observations are coupled with analytical solutions of the local stress field, in an effort to

provide a better understanding of the relevant damage mechanisms.

0



2 Experiments

Transverse loading experiments were conducted at Rockwell (Marshall et al..

1993) involving two Ti3AI based composites (Table 1).

Table 1

Matrix Fibers Coating Vf

Composite (a) super ot2 SiC None 37%

(SCS-6,

Textron)

Composite (b) super a 2  sapphire Ta 20%

(Saphikon) (PVD at NRL)

The specimens (- 50 x 2 x 1 mm) were polished on the sides containing the fiber

ends and were loaded in tension, with the largest dimension perpendicular to the fibers.

The in situ optical micrographs were analyzed by utilizing a high resolution strain

mapping facility ( James et al., 1990). Micrographs from the two composites are shown

in Figs. I and 2. Composite (a) contained a thin reaction layer (- I gm thickness) around

the fibers, consisting of carbides and silicides. No such reaction products were found in

composite (b). However, there was a f3 depleted matrix layer around each fiber, with a

thickness of - 5 pim.

As expected, the failure stress and strain in transverse loading are considerably

lower when compared to the ones corresponding to longitudinal loading. Young's

modulus in the transverse direction was 150 MPa for composite (a) and 141 MPa for

composite (b). The initially linear stress-strain curves (Fig. 3) became nonlinear at

applied stresses above 150 MPa and 270 MPa for composites (a) and (b), respectively.

Two phase (a2 - 0) Ti-25AI-1ONb-3V-lMo alloy.



2.1 Evolution of Damage

2.1.1 SCS-6 Composite. The first observed damage was sliding of the fibers

relative to the matrix, in the direction perpendicular to the surface of the specimen. This

is caused by the difference in the axial residual stresses between the fibers and the matrix. •

Sliding initiated at applied stresses of - 40 MPa and the corresponding displacement

increased with increasing applied loads. After unloading, the fibers remained protruding

from the surface of the specimen. •

At higher loads (120 - 150 MPa), separation of the fiber/matrix interface was

observed. Most fibers (- 70%) separated between the reaction matrix layer and the outer

layer of the fibers. The remaining fibers were also debonded along the carbon layer

between the outer layers of the fibers.

As the loading increased (150 MPa), cracks were formed between closely spaced

fibers, on planes parallel to the direction of the applied load. These parallel cracks 0

initiated next to the fibers and grew in a stable manner (Fig. 4).

At load levels above 160 MPa, transverse cracks initiated in the reaction layers

along the interface and grew stably with increasing load, across the regions between pairs 0

of fibers. Failure was caused by the linking of debonded interfaces with transverse

cracks, across the specimen.

2.1.2 Sapphire Composite. In this composite, the mechanisms of damage due to

transverse loading are quite different from the ones observed in the case of the SiC

composite. Here the interface strength is high (higher than that of the matrix). Interfacial S

debonding and plasticity were not a factor in the failure process.

At a loading level consistent with the onset of nonlinearity of the stress-strain

curve, cracks were formed in the fibers. These cracks were oriented along planes 0

perpendicular to the direction of the applied load. With increasing load, cracks appeared



in many fibers and grew into the surrounding matrix. In addition, matrix cracks formed

along the boundaries of the 1 - depleted zones around the fibers. Linkage of the cracks in
0

and near adjacent fibers led to composite failure.

The high strength of the interfacial bond in the sapphire composite is

demonstrated by the two following observations. The matrix .,acks formed at - 10 Pim

away from the interface, even though the maximum tensile stress did not occur there (the

tensile stress is maximum at the interface). In addition, no interfacial debonding was

observed. The second observation is that the fiber cracks grew into the matrix without

being deflected or offset by the interface.

3 Theoretical Modeling

An attempt was made to model the observed damage by utilizing some relatively

simple analytical solutions for the local elastic stress fields. The use of elastic solutions

is justified by the fact that the stress-strain curves for both composites are linear up to the

initiation of the damage being considered.

When the composite is loaded by a uniform remote stress, the elastic field consists

of the applied load, the disturbance due to the presence of the fibers (inhomogeneities),

and the residual field. The residual stresses are due to the misfit strains (eigenstrains)

caused by the different thermal expansion coefficients of the fibers and the matrix.

3.1 Residual Field. The presence of a residual stress field is dependent upon

the difference in thermal expansion coefficients (CTE's) between the fibers and the

surrounding matrix. Consequently, the residual stresses in the sapphire fiber composite

were neglected, since the CTE's of A12 0 3 and super at2 are similar (Table 2).
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Table 2

Young's Modulus Poisson's Ratio Coefficient of Thermal

(GPa) Expansion (x 10-6 / o)

super oX2 matrix 80 0.3 9.25

SCS-6 fiber 414 0.3 4.86

sapphire fiber 400 0.3 8.5

Based on measurements of the fiber relaxation after removing the matrix by

etching (Marshall et al., 1992a and 1992b), the misfit strain E* in the SiC composite was

found (e"* = 0.0061). Assuming a uniform F.* , the residual stresses were calculated

utilizing the concentric cylinder model. It was found that the normal and hoop stresses

along the interface were equal to -260 MPa and 565 MPa, respectively. A finite element

solution for a square array of fibers yielded very similar results (Fig. 5) Given the

isotropy of the eigenstrain E* , the concentric cylinder model provides an adequate

approximation of the local field. More elaborate models (Kouris and Tsuchida, 1991)

could be useful in cases of extreme inhomogeneity of the fiber distribution (closely

spaced fibers).

3.2 Remote Transverse Load. As a first approximation, the local stress

field due to remote tension can be determined by considering an isolated fiber that is

perfectly bonded to the matrix material. However, this approach leads to erroneous

results in the case of closely spaced fibers. Therefore, the interaction effects of

neighboring fibers as well as interfacial debonding and sliding require a more elaborate

model. In this context, an attempt was made to analytically determine the stress field in

the vicinity of a pair of fibers (Fig. 6), under plane conditions. The fiber cross sections

were modeled by circular inhomogeneities, surrounded by an infinitely extended matrix.



It seems reasonable to assume that the stresses along the central line ot t"() ,.,cl,

spaced fibers are well approximated by considering a single pair of inhomogeneities.

0 The displacements uI and u2 corresponding to the coordinate systems (X I, Yl) and

(x2, Y2), can be represented by:

2p u, =grad(4,,, + x, , + y, ,,) - 4(1 -v)[ ., (= 1.2) 1)

where 4Vs denote arbitrary harmonic functions. The disturbance due to the presence ct

the fibers is expressed by:

b, / p, = F', logp, + • A, pi cosno,
n=1

11, / P = B,',• p• cosn0, (2)
0=1

*D, =0

for the matrix region and:

*00 / P0 = iA'o PO cosn0,
n=1

(D / P0 = jB'o p,' cosno, (3)
D=l

0', = 0

for the fibers, where c is the central distance, pi = ri / c, and po = Tx.

The boundary conditions along the fiber/matrix interface can be expressed by:

ar = a, I =Ye , 2g[ut = 13ai, and 21i[u 9 I = XaT (4)

where 13 and X are proportionality constants, pt is the shear modulus of the matrix, a is the

radius of the fibers, and [u] = u - Ui. According to (4), 13 , X -> 0 corresponds to perfect

bonding, while 13 , X -> - corresponds to maximum debonding and perfect slip. These

constants may represent a compliance measure associated with spring-type interfacial

layers of infinitesimal thickness (Lene and Leguillon, 1982).



0

By including the influence of the remote transverse load. the boundary value

problem as described by (2), (3). (4) can be solved analytically.

4 Analysis of Damage

The preceding analysis was utilized in an effort to provide some understanding of

the mechanisms of damage associated with the two composites under consideration.

4.1 Sapphire Composite. In the absence of a residual field, the maximum

tensile stress is the radial stress at 0 = 0. Its distribution inside the fibers is almost

uniform while a local maximum occurs in the matrix. This is consistent with the

experimental observations in the strongly bonded sapphire-fiber composite, However,

matrix cracking is prob?"5ly affected by the presence of the J3 - depleted layer. The

interfacial stresses normalized by the applied tension are shown in Fig. 7. For a perfectly

bonded interface, the radial stress as a function of fiber spacing varies between 1.7 Tx

and 2.6 Tx. Since crack initiation was observed at Tx - 280 MPa, the local radial stress

was estimated between 480 and 730 MPa.

Fiber splitting and matrix cracking occurred at similar stress levels; however,

these stress values are substantially lower when compared to the strength of the fibers.

This observation suggests that specimen preparation (cutting and polishing) was

responsible for the considerable degradation of the fiber strength. Such a conclusion is

supported by other experimental evidence (Marshall et al., 1993) and implies that fber

splitting may not occur in composites with unsectioned fibers.

4.2 SiC Composite. Application of remote transverse tension generates tensile

stresses along most of the interface. These stresses tend to relax the pre-existing residual

field. As a consequence, sliding of the fibers relative to the matrix occurs, in a direction

normal to the surface of the specimen. A shear-lag analysis incorporating Coulomb

friction can provide an estimate of the sliding displacement (Marshall et al., 1993). Due

to Poisson's effect, the in-plane stresses are altered with the occurrence of axial fiber



sliding. These changes can be taken into account via an adjustment of the eigenstrain

(misfit strain) that is responsible for the residual field. The relaxation of residual

compression in the fiber leads to an increase in the effective mismatch strain. Following

the analysis of Hutchinson and Jensen (1990), this increase is approximated to a level of

0.1 E*.

At stress levels corresponding to the onset of nonlinearity in the stress-strain

curve, interfaces began to separate. Upon unloading and subsequent reloading, the curve

was linear over the same stress range and retained the same slope as the initial loading

curve. Since the stresses required to initiate interfacial separation during the first and

second loading were almost identical, it can be concluded that the tensile strength of the

interface is negligible. In addition, it seems that initial departure from linearity is due to

interfacial separation; this conclusion is consistent with observations related to other

metal-matrix composites (Johnson et al., 1990; Nimmer et al., 1991). Given the

negligible strength of the interface, separation is expected to occur when the tensile

stresses due to the remote load approach the values of the compressive residual stresses.

For the given fiber volume fraction (37%) of the SiC composite, the stresses due to the

applied tension range between 1.7 Tx (perfect bonding) and 2.0 Tx (perfect slip).

Therefore, the bounds of the applied stress required to initiate separation are estimated

by:

1.7 Tx = 260 MPa and 2.0 Tx = 260 MPa (5)

which yield:

153 MPa > Tx > 130 MPa (6)

These estimates are consistent with the experimental observations (Section 2.1.1).

Parallel cracking in the matrix between fibers occurred when the fiber spacing

was less than a (d / a 5 1). According to Fig. 7. the corresponding local stress varies

between 0.6 Tx and 1.1 Tx. Based on the measured applied load required for cracking

(-150 MPa) and the residual hoop stress (565 MPa), the local stresses are bounded



0

between 655 and 730 MPa. The elastic solution due to the transverse load indicates that

the interfacial hoop stress in the matrix is higher at the position of longitudinal cracking

(0 = 0) than at the site of the transverse cracking (Fig. 8). Thus, it is not surprising that

parallel cracking preceded the formation of transverse cracks. For stress concentrations

due to the transverse load Tx ranging between -0.08 and 0. 15 (Fig. 9), the local stresses

are estimated between 552 and 589 MPa. These values are considerably lower than the

ones corresponding to parallel cracking, thus suggesting that circumferential sliding

occurred. The hoop stresses in the case of a freely slipping interface would be -760 to
S

895 MPa. The question is whether sliding along the interface is possible. At the applied

stress of 160 MPa (when transverse cracking takes place), interfacial shear stresses

exceed the sliding resistance -to over a substantial part of the interface. The value of to.

measured by fiber pulling experiments, was -70 MPa. Therefore. at least some sliding

ought to be expected at the stress levels required for transverse cracking.

5 Discussion

The experimental observations coupled with the analytical results presented above

provide some insight into the optimum composite properties and design. The two

composite systems examined are very useful in this regard, since they enable the parallel

examination of two different interfaces (weak for the SiC - super a 2 and strong for the

sapphire - super a 2 composites). The question of what constitutes an optimal interfacial

strength is probably the most important; at the same time it is probably the least

understood aspect of design involving composites with intermetallic matrices.

In the case of unidirectional composites under longitudinal fatigue loading, it has

been well established that interfacial debonding is desirable; it maximizes the benefits of

fiber reinforcement since it increases the resistance to fatigue crack growth due to crack

bridging. However, when similar composites are loaded in the transverse direction,

intuition suggests that perfectly bonded interfaces ought to increase transverse strength.



Nevertheless, the composites of this study do not confirm such an expectation 2 . The

transverse strength of the sapphire/Ta/super a-2 composite was higher than that of the

SCS-6/super a2 composite (300 versus 200 MPa). However, studies (Marshall et al..

1993) involving SCS-6/Ag-Ta/super a-2 yield a transverse strength of 400 MPa for this

composite that includes a Ag-Ta coating around the carbon fibers. It seems, therefore.

that a strong interface does not necessarily yield higher values of the transverse strength

compared to a weak interface. In any case it should be possible to improve the measured

properties of the sapphire composite by avoiding the fiber damage which is probably

present due to the preparation of the transverse cross section. In addition, improvements

could be made in controlling oxygen diffusion and thus eliminating the relatively brittle.

- depleted matrix layer around the fibers.

The failure mechanisms in the two composites studied are illustrated in Fig. 10.

In the case of the SCS-6 system, debonding of the interface relieves the radial stresses. In

addition, the residual field yields compressive radial stresses and tensile hoop stresses at

0 = 0. As a result, circumferential matrix cracking is suppressed, while the higher hoop

stresses cause radial cracking. Before the onset of debonding, the hoop stress a0 is

higher at 0 = 0 than at 0 = ir / 2. This explains why parallel cracks are formed first.

Debonding results in an increase of a0(n / 2) and a decrease of a0(0). Consequently,

transverse cracks appear, leading to the composite failure.

6 Conclusions

The behavior of two intermetallic composites (SCS-6/super a 2 and

sapphire/Ta/super a 2) under transverse tension was examined. The experimental

observations were coupled with analytical solutions that provided a qualitative

understanding of the failure mechanisms.

2 The issue is more complicated than implied here since microstructural variations also affect relative
strength.



Damage in the sapphire composite consisted of fiber cracking as well as

circumferential matrix cracking prior to failure. In the case of the SCS-6 fiber composite.

failure occurred after (a) fiber/matrix sliding in the axial direction, (b) matrix cracking in

the direction parallel to the applied tension, (c) debonding along the interface, and (d)

transverse matrix cracking. The differences in the behavior of the two material systems

were attributed to the condition of the interfaces and the residual field.

Improvement of the transverse strength in composites with perfectly bonded

interfaces may be accomplished by allowing for an intermediate mismatch in the thermal

expansion coefficients of the two constituents. The subsequent residual field would

decrease the radial stresses and increase the hoop stresses (in comparison with the case of

negligible residual stresses). Assuming that the transverse cracks responsible for the

composite failure initiate at the location of the maximum tensile stress, an optimum

residual field would correspond to equal radial (at 0 = 0) and hoop stress (0 = IrI2), at the

point of failure.

In composites with weak interfaces, the radial tensile stress at 0 = 0 is relaxed

upon debonding. If interfacial sliding accompanies debonding, the hoop stress at 0 = Id2

increases. This stress is responsible for the transverse cracks leading to failure. It seems

reasonable to assume that the overall transverse strength could be improved by allowing

debonding and, at the same time preventing sliding along the interface. Then, the hoop

stress at 0 = rc/2 would be lower. Consequently, an optimal interface ought to not only

debond easily, but also resist circumferential sliding (large frictional resistance). This

would be compatible with the requirements for improved longitudinal properties.
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Figure Captions

1. Sections of the SCS-6/super a-, composite used in the study.

2. Sapphire/super oX2 composite with Ta coating.

3. Stress-strain curves of :(a) SCS-6 fiber composite, (b) sapphire fiber composite.

4. Illustration of the damage mechanisms in the SiC-fiber composite.

5. Calculations involving the residual field along the interface.

6. Geometry of the model used to determine fiber interaction of closely spaced

fibers.

7. Matrix stresses at the interface as a function of fiber spacing.

8. Comparison of the hoop stress at the locations of parallel and transverse cracks.

9. Matrix stresses at the interface as a function of fiber spacing for perfect bonding

and sliding.

10. Schematic diagram illustrating the damage mechanisms observed during

transverse loading.
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5.2 Transverse Strengths and Failure Mechanisms in Ti3AI Matrix Composites
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ABSTRACT

Transverse mechanical properties have been measured, and damage mechanisms identified,

• in three Ti3AI matrix composites with different interface compositions and residual stress states.

Two of the composites contained SiC fibers with weak interfaces. Large improvements in

transverse strength and rupture strain were found in one of these composites, in which brittle

reaction products in the matrix around the fibers had been avoided by coating the fibers with Ag

and Ta before consolidation. The third composite contained sapphire fibers that were strongly

bonded to the matrix. Different damage mechanisms were observed in the strongly and weakly

bonded composites. Insight into the damage mechanisms and their dependence on residual stress

fields and interface properties is gained from comparison of the observations with analytical

solutions of elastic stresses. The conditions for optimum transverse properties are discussed; the

results indicate that strong interfacial bonding does not necessarily lead to optimum transverse

strength of the composite.
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1. INTRODUCTION

The reinforcement of titanium aluminides by unidirectionally aligned high strength SiC

fibers leads to improved mechanical properties under loading parallel to the fibers. However, this

gain is at the expense of properties in the transverse direction: the strength and strain to failure, as

well as resistance to fatigue crack growth, are generally much lower under loading normal to the

fibers than under loading parallel to them. 1-5 Although certain components can be designed with

the fibers parallel to the maximum tension, complete avoidance of transverse loads is usually not

possible. Therefore an understanding of factors controlling transverse properties is needed.

This study identifies some of the factors that control transverse strength and rupture strain

under monotonic loading. In situ observations are used to reveal mechanisms of damage that •

precede and lead to failure of several composites with various interfacial compositions and with

fibers of different thermal expansion properties. By relating the observed damage mechanisms to

relatively simple analytical stress fields, progress is made in understanding the influence of

interfacial strength and residual stresses on transverse properties.

2. EXPERIMENTS

Failure mechanisms under transverse loading were investigated in three composites with

nominally identical matrices, but different fibers and interfacial compositions. The matrix material

was a two-phase (a2-0) Ti-25AI-l0Nb-3V-lMo alloy (super a2). Two of the composites

contained CVD SiC fibers (SCS-6, Textron Specialty Materials) with several carbon-rich outer

layers. Both were consolidated by Textron using a foil/fiber/foil method, one containing three rows

of fibers without any additional fiber coatings and the other containing four rows of fibers that had

been coated with Ag and Ta (several microns thickness) by a PVD method before consolidation.

The final volume fractions of fibers were 0.37 and 0.30, respectively. S
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To allow investigation of interfacial bond strengths that are higher than those limited by the

weak carbon layers in the SCS-6 SiC fibers, a third composite containing sapphire fibers was

fabricated. A layer of tantalum was introduced at the interface to prevent reaction between the fibers

and matrix. The Ta coating was applied to the fiberst by PVD (at NRL) and the composite was

consolidated (at Rockwell) using the foil/fiber/foil method, with four layers of fibers giving a

volume fraction of 20%. Cross-weave material was not used during fabrication. Since the thermal

expansion coefficients of A120 3 and super-a2 are similar (- 8 x 10-6 'C-1), residual stresses in

this composite are expected to be much smaller than in the SiC fiber composites, in which the

fibers have a lower thermal expansion coefficient (4.5 x 10.6) than the matrix. 6

Beams with dimensions - 50 x 2 x 1 mm were cut from the composite sheets with the

longest dimension normal to the fibers. The beams were polished on the sides containing the fiber

ends and loaded in tension using a fixture attached to the stage of an optical microscope. High

magnification micrographs were obtained from the polished sides of the beams during loading. The

applied loads were measured with a load cell and the corresponding strains were measured using

strain gages attached to the sides of the specimens (in most cases, two strain gages on opposite

sides of the specimen).

Some of the in situ optical micrographs were analyzed using a high resolution strain

mapping technique. 7,8 This involved comparing images taken before and during loading and

measuring relative displacements of corresponding image features. Measurements were obtained

either stereoscopically or using a computerized image analysis system (HASMAP - High Accuracy

Strain Mapping), both of which provide sensitivity of - 10 nm in differential displacement

measurements from optical micrographs. The image analysis was improved in some cases by

depositing MgO crystals on the surface of the specimen to provide additional sharp image detail.

t Manufactured by Saphikon.
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3. RESULTS

3.1 Composite Microstructures

Micrographs of the cross sections from the two SiC fiber composites are shown in

Figs. 1(a) and (b). The composite with uncoated fibers contained a thin reaction layer (- 1 Am

thickness) of carbides and silicides surrounding the fibers.9 This reaction layer was not present in

the composite containing fibers that had been coated with Ag and Ta. However, the matrix in the

composite with Ag-Ta layers was enriched in the [3-phase within a distance of -10 A.m from each

fiber.

An optical micrograph of a cross section of the sapphire fiber composite is shown in

Fig. 1(c). Movement of the fibers occurred during consolidation, although most fibers remained

well spaced. Most fibers have a rounded hexagonal cross section. Observation of longitudinal

sections indicated that most fibers were broken during consolidation into two or three pieces within

the 50 mm lengths of composite. These breaks did not affect the transverse loading experiments

described below. The typical transverse test specimen of - 2 mm thickness contained - 10 broken

fibers, which could be readily identified; and failure was never observed to initiate from the fiber

breaks. The broken fibers were identified by viewing the surface in reflected polarized light with an

analyzing polarizer set at 900. Fibers that were intact through the entire section appeared black,

whereas fibers that contained fractures appeared bright because of internal reflections which

changed polarization and allowed light to pass through the analyzer.

In the sapphire fiber composite, the Ta coatings on most fibers were continuous with

uniform thicknesses of - 1 A±m (Fig. 2). Surrounding each fiber was a layer of matrix of - 5 Am

thickness in which the 03 phase was depleted. Otherwise, there was no evidence of reaction among

the matrix, coating, or fiber. However, there were occasional small regions where the coating was

missing (Fig. 3), typically on several fibers within a cross section containing approximately

400 fibers. These bare patches may have been caused by spalling due to residual stress or fiber
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handling. In these regions, dissolution of the fiber into the matrix had begun during consolidation.

This observation demonstrates the importance of the Ta coatings in protecting the fibers. However,

the small regions of missing coating did not appear to act as initiation sites for damage in the

transverse tension experiments described below.

The uniformity of the P-depleted zone around each fiber suggests that the P-depletion is

associated with the fully coated fiber rather than being due to the occasional small region in which

the coating was missing. This is puzzling since any diffusion of Ta from the coating inl the matrix

would lead to stabilization of the ( phase. The only apparent source of 5 depietion is oxygen,

either from the Ta coating or from the A1203 fiber via diffusion through the Ta coating. The Ta

coating was deposited in a high-purity argon atmosphere (5 x 10-3 torr) that was introduced into

the deposition chamber after evacuating it to - 10-7 torr. Therefore, a large amount of oxygen

would not be expected in the coating. However, there is insufficient information about the amount

of oxygen needed to stabilize the a2 phase in this region to distinguish these two possibilities.

3.2 Stress-Strain Response

The transverse stress-strain curves for the SiC fiber composites (obtained from strain gage

data and measured loads) are compared with the longitudinal stress-strain curve of the composite

with uncoated fibers (from Ref. 5) in Fig. 4(a). The stresses and strains at failure are much smaller

in transverse loading than in longitudinal loading. The SiC fiber composite that contained Ag-Ta

fiber coatings exhibited the better transverse properties, with failure stress and strain larger by

factors of 2 and 3, respectively, than for the composite containing uncoated SiC fibers (Fig. 4(b)).

The transverse failure stress and strain of the sapphire-fiber composite fell between those of the

two SiC fiber composites (Fig. 4(c)).

All of the stress-strain curves are linear at low loads but nonlinear at high loads. The low

load regions are elastic, as confirmed by unload-reload cycles. Young's modulus for the SiC
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composite under longitudinal loading (from the low-load region) is 200 ± 10 GPa. This value,

with the rule-of-mixtures expression

E fEf+(l - f) Em (1)

where f is the volume fraction of fibers, E, Em and Ef are the Young's moduli for the composite,

matrix and fibers, has been used to evaluate Em; with independently measured values Ef = 414

GPa and f = 0.37, the result Em = 80 ± 7 GPa was obtained.6 There is, however, some

uncertainty in the Young's modulus of the matrix, for large variations (up to 30%) with textural

anisotropy have been observed.6 Reported measurements in monolithic alloy fall in the range 90-

120 GPa.1 0, 11 The measured transverse Young's moduli for all of the composites are compared

with the predicted upper and lower bounds of Hashin1 2 in Fig. 4(d) with various assumed values

of Em (calculations for isotropic matrix and fibers). For both of the SiC fiber composites, the

results are consistent with Em = 90 GPa, whereas the result for the sapphire fiber composite

suggests a higher value (Em - 110 GPa). This difference could be related to differences in texture

in the matrices, since the matrix foils originated from different lots of material.

The stress-strain curves became nonlinear at applied stresses above 180 MPa for both of

the SiC fiber composites and 270 MPa for the sapphire fiber composite. The extent of nonlinear •

strain before failure was substantially larger in the composite containing Ag-Ta-coated SiC fibers

than in the other two composites. The response of this composite during an unload-reload cycle

that began from the nonlinear region is shown in Fig. 4(b)). The initial slope of the unloading 0

curve is lower (100 GPa) than that of the initial loading curve. However, the reloading curve is

approximately bi-linear with slope at stresses below - 180 MPa equal to the slope of the initial

loading curve. This response is similar to that reported by Johnson et a13 and Nimmer et a113 for

several other titanium-aluminide/SCS-6 composites, and is consistent with their interpretation of

the change in slope at stress of 180 MPa during reloading being due to separation of the fiber-

matrix interface. Direct evidence supporting this hypothesis is presented below. S
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3.3 In Situ Observations of Damage During Transverse Loading

SiC Fiber Composites

The types of damage observed prior to failure of the SiC-fiber composites during in situ

experiments are illustrated schematically in Fig. 5. The first damage to occur was sliding of the

fibers relative to the matrix in a direction normal to the specimen surface, driven by the residual

axial stresses in the fibers and matrix (compressive in the fibers, tensile in the matrix). Sliding was

first evident in conventional optical observations as phase contrast due to the height difference of

the fiber surface and the surrounding matrix, which gives rise to a dark fringe at the interface. The

sliding displacement increased with increasing applied stress, and at high stresses was detectable

from the difference in focus positions of the fiber and matrix. The occurrence of sliding was also

confirmed by optical interference microscopy and scanning electron microscopy. Sliding began at

applied stresses of 40 MPa in the composite with uncoated fibers and 60 MPa in the composite

with coated fibers. After unloading the composites, the fibers remained protruding from the

surface. Scanning electron micrographs of fibers in fractured test pieces are shown in Fig. 6: the

residual displacement is larger in the composite containing Ag-Ta coated fibers (-2 pim) than in the

composite containing uncoated fibers (0.5 p±m) because of the higher failure stress of the former

(Fig. 2).

A map of in-plane surface distortions at an applied load of 160 MPa in the composite with

uncoated fibers is shown in Fig. 7. The arrows superimposed on the optical image are relative

displacement vectors for corresponding image features located at the beginnings of the arrows

within a reference micrograph at zero load and a second micrograph of the same area with the load

applied. (The magnitudes of the displacement vectors are magnified by a factor of 40 compared

with the dimensions on the micrograph.) The following deformations are evident: tensile strains

parallel to the applied load, Poisson's contraction from top to bottom of the micrograph; debonding
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and rotation of the right-hand fiber; and tensile strains in the matrix between the fibers in the

direction normal to the applied stress.

Tensile separation of the fiber-matrix interfaces was observed in the stress ranges of

120-170 MPa in the composite with uncoated fibers and 150-180 MPa in the composite with Ag-

Ta coated fibers. The locations of interfacial separation differed in the two composites: in the

composite containing uncoated fibers, most fibers (- 70%) separated between the outer C/SiC

coating of the fiber and the reaction layer in the matrix; whereas in the composite with Ag-Ta-

coated fibers, most (- 85%) separation took place at the carbon layer between the outer C/SiC 0

coatings of the fiber. The remaining fibers in both composites were debonded at both of these

locations. The stress at which separation occurred was determined more accurately than could be

done from single micrographs by making use of the differential strain mapping technique described •

in Section 2. This was done by measuring the changes in separation of two image features on

either side of the interface in a series of micrographs obtained at increasing load. A plot of the

relative displacements as a function of appli-'" load then revealed the separation stress by 0

extrapolation to zero displacement. The separation loads determined in this manner varied from

fiber to fiber over the ranges indicated above; a correlation between separation load and the

proximity of neighboring fibers was not found. 0

The first observable damage in the matrix was highly localized deformation in the regions

between closely spaced fibers within the same row (i.e., located along a line parle to the applied

stress and normal to the tensile strains observed in Fig. 7). This deformation was first observed at

an applied stress of 100 MPa in the composite with uncoated fibers and 128 MPa in the composite

with Ag-Ta-coated fibers. At higher loads (150 MPa and 180 MPa) cracks formed in some of

these regions on planes parallel to the applied load. These cracks, hereafter referred to as "load-axis

cracks," initiated adjacent to the fibers and grew stably between the fibers with increasing load

(Figs. 8(a)-(d). At closely spaced fibers (separation S 20 g.m) a pair of load-axis cracks usually

formed (Fig. 8(d)), symmetrically displaced from the center line between the two fibers by about
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10R (relative to the centers of the fibers). By the time failure occurred, load-axis cracks had formed

at about 30% of the fibers in both composites, mostly at fibers that were relatively closely spaced

(< 70 g±m).

In the composite containing uncoated fibers, transverse cracks (on radial planes normal to

the applied stress) formed at stresses abcxve - 160 MPa. These cracks initiated in the reaction layers

adjacent to the fibers (Fig. 9) and grew stably with increasing load across the regions between

pairs of fibers. Such cracks eventually formed at approximately 20% of the fibers. Failure of the

composite occurred by the linking of transverse cracks and previously debonded interfaces across

the specimen; a sequence of in situ micrographs showing development of these cracks leading to

failure is shown in Fig. 10.

Stable transverse cracks were not observed prior to failure in the composite containing

fibers coated with Ag-Ta, even though the applied stress at fail-, e was more than double that of the

composite with uncoated fibers. Instead, failure occurred suddenly, leaving a fracture surface that

linked a series of debonded fibers across the specimen.

Sapphire Fiber Composite

In situ observations revealed the sequence of damage prior to failure as shown in Fig. 11,

in which the micrographs (a), (b) and (c) were taken at the loads indicated in Fig. 4(c). The first

damage, which coincided approximately with the onset of nonlinearity of the stress-strain curve,

was in the form of cracks in the fibers, oriented normal to the applied load- With continued

loading, similar cracks formed in larger numbers of fibers and extended into the matrix. Cracks

also formed within the matrix near the edges of the D-depleted zones surrounding the fibers

(Fig. 1 l(b)). Failure resulted from linkage of cracks in and near adjacent fibers, as shown in

Fig. 11 (c). At the failure point, approximately 20% of the fibers within the test section contained

cracks, and another 20% had cracks in the adjacent regions of matrix.
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Several observations indicate that the strength of the fiber/matrix interface is high in this

composite and that interfacial debonding or plasticity was not a factor in the failure process under

tensile transverse loading. The first observation is that the cracks in the fibers penetrated into the

matrix without any sign of deflection or offset at the interface, even when the cracks were inclined

to the interface (Fig. 12). The absence of interaction between the crack and the interface is seen

also on the fracture surface (Fig. 13). The second observation is that circumferential matrix cracks

formed in the matrix parallel to, and about 10 gm from, the interfacial regions that were subject to

the maximum tensile stress; while no debonding was observed at the interface.

4. DISCUSSION

The damage mechanisms that preceded failure in the three composites are summarized

schematically in Fig. 14. In the sapphire-fiber composite, in which residual stresses were small

and the fiber-matrix interfaces were strongly bonded, cracking of the fibers and circumferential

matrix cracking (both normal to the applied stress) occurred prior to failure. In the SiC-fiber

composites, which had large residual stresses and weakly bonded fiber-matrix interfaces, a

different sequence of damage development was observed: (1) sliding of the matrix and fibers 0

normal to the specimen surface that contained the exposed fiber ends (driven by the residual

stresses); (2) formation of radial cracks in the matrix parallel to the applied load ("load-axis

cracks"); (3) separation of the fiber-matrix interface; and (4) in the composite without Ag-Ta fiber 0

coatings, formation of transverse radial cracks in the matrix. Failure occurred by linking of

transverse radial cracks and debonded interfaces of adjacent fibers.

4.1 Stresses

Some qualitative and semi-quantitative insight into these damage mechanisms can be gained

from relatively simple analytical solutions for elastic stress fields. The elastic stress field within a

composite loaded transversely by uniform remote stress is given by the sum of the applied stress, a
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perturbation on the applied field due to the "elastic inhomogeneity" of the fibers and the residual

field due to the misfit strain, eT, between the fibers and matrix (difference in thermal contraction of

fibers and matrix). The use of elastic solutions is justified by the observed linearity of the stress-

strain curves, at least up to the initiation of the damage being considered. A significant amount of

nonlinearity was evident only in the composite containing Ag-Ta-coated SiC fibers, and this

occurred after the initiation of the load-axis cracks.

4.1.1 Residual Stresses

The residual hoop stresses near the fiber-matrix interface, where damage initiated in the SiC

fiber composites, are closely approximated by the concentric cylinder solution. Typical errors

involved in this solution are less than - 3% for a regular array of fibers, as exemplified by the

comparison in Fig. 15 of the concentric cylinder solution with a finite element solution for a square

array of fibers (corresponding to the SiC-fiber composite without Ag-Ta coatings, with volume

fraction of fibers = f = 0.37, Ef/Em =.5, Vf Vm = 0.3, and isotropic misfit strain, CT). The

errors in the normal interfacial stresses are larger, although the average value from the finite

element analysis is within - 0.5% of the concentric cylinder solution.

The magnitudes of the residual stresses in both of the SiC-fiber composites have been

deduced previously from measurements of the relaxation of the fibers following removal of the

matrix by etching. 14 ,15 The residual stresses thus calculated using the concentric cylinder analysis

and assuming an isotropic misfit strain, eT, are listed in Table 1. The presence of Ag-Ta layers did

not alter the residual stresses, as shown by the misfit strains being equal in the two composites: the

differences in residual stresses in Table I arise solely from the different volume fractions of fibers

in the two composites. The frictional stresses that resist interfacial sliding are also listed in

Table 1. These were evaluated from measured forces and displacements during single fiber pulling

experiments. 14,15
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Table I
Residual Stresses and Frictional Slidina Resistance (from refs. 14, 15)

Composite Measured Misfit Normal Tangential Axial Interface
Relaxation Strain Interface Interface Fiber Sliding 0
ef eT Stress Stress Stress Resistance

orR (MPa) otR (MPa) ofR (MPa) to (MPa)

Super-a2/ 0.00156 0.00610 -260 565 -800 70

Super-a2/
Ag-Ta/ 0.00203 0.00611 -300 557 -1020 100
SCS6 •

4.1.2 Applied Stresses

Stresses in the vicinity of an isolated, strongly bonded fiber, due to a remotely applied

uniform stress, aa, are shown in Fig. 16. The local perturbation of the applied stress due to the

fiber is dependent on the ratio of the elastic moduli of the fibers and matrix: 16 the results in Fig. 16

correspond to Ef/Em = 5 and vf = Vm = 0.3. The sign of the perturbation field for this combination

of properties (fiber stiffer than matrix) is opposite to that for a hole (or more generally, a fiber with

lower stiffness than the matrix); the tangential -',7rturbation stress is tensile at 0 = 0 and

compressive at 0 = 900. The strains associated with this tensile transverse stress at 0 = 0 are

evident in the measured displacement map of Fig. 7. The perturbation field is concentrated mainly

within an area about one fiber radius from the edge of the fiber. Therefore, the single fiber solution

would be expected to be a reasonable representation of the stress fields in a composite with fibers 0

spaced by more than double this value. For a square array of fibers, this corresponds to f = 0.2.

Several features of the superimposed residual and applied fields for the isolated fiber may

be correlated in a preliminary way with the observed damage. In a composite with small residual

stresses and strongly bonded interfaces, the largest trnsile stress is the radial component at 0 = 0

(i.e., ar(O) in Fig. 16(b)), consistent with the observed circumferential matrix cracking in the

sapphire fiber composite. It is noteworthy, but perhaps coincidental, that ar(O) is maximum at a
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position - 0.2R (R = fiber radius) away from the interface, where the matrix cracking occurred.

In composites with residual stresses due to thermal misfit strains, compressive radial and tensile

hoop stresses are superimposed onto the stresses of Fig. 16, thus favoring a change in damage

mechanism from circumferential to radial cracking, as observed in the SiC fiber composites. In this

case, the tangential stress is larger at 0 = 0 than at 0 = n/2 (Fig. 17(b)) consistent with the

observation of load-axis cracking before transverse cracking in these composites. However, the

difference in stresses at these two locations is not large for the isolated fiber.

A more detailed correlation with experimental observations requires account to be taken of

interfacial debonding and sliding as well as the interaction effects of near-neighbor fibers that are

closer together than average. When the separation of a pair of fibers is smaller than - R, the elastic

inhomogeneity fields overlap. In this case, the resultant field is n= a linear superposition of the

two fields for isolated fibers. Analytical solutions to this problem for pairs of fibers with the lines

joining their centrs aligned parallel and normal to the applied stress have been obtained ecen=ly by

Kouris. 17 These solutions include various interfacial bond conditions, ranging from fully bonded

interfaces to interfaces that can slide without restriction. This was achieved by allowing

discontinuities in shear displacements but not in normal displacements at the interface, with the

shear displacement discontinuity being restricted by springs of various stiffnesses. The stresses

relevant to the observed damage, with either of the two limiting cases of completely bonded or

freely sliding interfaces, are compared with single fiber solutions in Appendix A. The results

indicate that, for fibers separated by 0.85 R (corresponding to f = 0.39 for a square array), the

additional perturbation on the interfacial stresses due to the second fiber is maximum along the line

joining the pair of fibers as expected, but that it becomes small at angles larger than - 450 from this

line. Therefore, the solutions for pairs of fibers provide reasonable approximations for the

interfacial stresses around a fiber surrounded by four others in a square array.

The effect of varying the separations of the pertinent pairs of fibers is shown in Fig. 17. As

the pairs of fully bonded fibers move closer together, the stress or(O) that causes interfacial
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separation and circumferential matrix cracking at 0 = 0 increases (Fig. 17(a)), the stress Ye that

causes load-axis radial cracks at 0 = 0 increases (Fig. 17(a)), and the stress o0 that causes

transverse radial cracks at 0 = x/2 decreases (Fig. 17(b)). Therefore, the propensity for load-axis

radial cracks in preference to transverse radial cracks increases as the fiber spacings decrease. In

fact, for d/R < 0.3, the stress driving transverse cracking becomes negative, suggesting that

transverse cracking would never occur between such closely spaced fibers during loading if the

interfaces were to remain fully bonded. However, large changes occur in all of these stresses if

circumferential sliding occurs. The stress driving load-axis radial cracks decreases and becomes

compressive for a freely sliding interface, whereas the stress driving transverse radial cracks

increases. Therefore, the preference for load-axis cracks over transverse cracks reverses.

4.2 Damage in SiC-Fiber Composites

4.2.1 Axial Fiber Sliding

The observed sliding of fibers relative to the matrix in the direction normal to the specimen

surface is driven by the residual axial stresses in the fibers and matrix and is restrained by friction.

The frictional stresses are dependent upon the normal stress at the fiber-matrix interface. The

applied transverse load generates tensile stress over most of the interface, with only a small region

of compression near 0 = nt/2 (Fig. 16(b)). Since the average normal stress is tensile, the resistance

to frictional sliding is reduced, thus allowing the residual axial stresses to relax by sliding.

An estimate of the degree of sliding can be obtained by assuming that the sliding resistance,

as given by the Coulomb friction law, is proportional to the normal interfacial stress. An

approximate shear-lag analysis of fiber sliding (Appendix B) gives an upper bound for the sliding 0

displacement
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u =c 2 (R(-f)Em)[ <0'>/GR (2)
41o EfE 1 - <0>/OR

where R is the fiber radius, to is the frictional stress at the interface in the absence of applied

transverse stresses, Of is the axial residual stress in the fiber, OR is the residual stress normal to the

0 interface, and <o> is the average normal tensile stress component at the interface due to the applied

load. For isolated fibers in these composites, <a> = 0.65 aa (Appendix 1). With the parameters

given in Table 1, the elastic properties given in Section 3, and R = 70 I, m, the sliding

* displacements at failure given by Eq. (2) are 0.1 pim for the composite containing uncoated fibers

and 0.8 mim for the composite containing fibers coated with Ag-Ta. These values are reasonably

close to the observed values (0.2 and 2 jtm), given that the analysis used to calculate <oa> holds for

* an isolated fiber with a bonded interface (see Appendix B). Fiber interaction effects (especially

with fibers preferentially aligned in rows parallel to the applied stress) and circumferential sliding

would both increa. a> ad-m incmp the Oidngi

4.2.2 Interfacial Separation

Interfacial separation began at the same stage during loading as the initial departui from

linearity of the stess strain curves (cf. Table 2 and Fig. 4), a correlation that has also been

observed in other titanium matrix composites. 3,13 Moreover, the reloading portion of an

unload/reload cycle for the composite with Ag-Ta layers (Fig. 4(b)) is linear over the same stress

range and with the same slope as the initial loading curve. This suggests that the tensile strength of

the interface is negligibly small (since the stresses for interface separation during the first and

subsequent loadings were approximately the same).

A small or zero tensile strength is also inferred from comparison of the loads required for

interfacial separation and the residual compressive stresses normal to the interface (Table 2). The

residual radial stresses in Table 2 are given as ranges of values that approximately account for fiber

interactions: residual radial stresses are more sensitive than the tangential stresses to the proximity
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of near-neighbor fibers (Fig. 15). Although the average radial stress is very close to the value

calculated from the concentric cylinder model (listed in Table 1), the local stress deviates by up to ±_

30% from the average value. At the location of interest (0 = 0 in Fig. 15) for the SiC fiber

composites (in which the fibers are aligned in rows) the compressive interfacial stress is - 30%

larger than the average value. For different fiber arrangements, such as those obtained by distorting

the square array used for the FEM calculation of Fig. 15 to parallelograms (which might more

accurately describe the distributions in Fig. 1) this difference would be expected to be smaller. On

the other hand, for fibers that are closer together than average it would be larger. Therefore a

reasonable estimate for the range of residual stresses that must be overcome to allow interfacial

separation would be from the concentric cylinder values given in Table I to values - 30% larger.

The applied load contributes interfacial stresses that are approximately double the applied stress

(Fig. 17). At the observed separation loads from Section 3.3, these values are close in magnitude

to the estimated residual stresses (Table 2). thus implying negligible tensile strengths of the

interfaces.

Separation of the interfaces under transverse loading occurred at different locations in the

two composites: between the outer layer of the fiber and the reaction products in the matrix of the

composite containing uncoated fibers, and within the carbon layer beneath the outermost SCS-6

layers of the fibers in the composite containing Ag-Ta coated fibers. The same failure locations

were observed previously for single fiber pullout experiments, 14 which involve Mode II loading

rather than tension. These results indicate that the Ag-Ta layers adhere to the outer surface of the

fibers more strongly than do the reaction products in the composite without Ag-Ta coatings.

However, the overall response of the interfacial region to shear or tensile loading is not greatly

affected by the Ag-Ta layers because of the availability of alternative weak interfaces within the

SCS-6 layers of the fibers.
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4.2.3 Radial Cracking

The local stresses at which load-axis radial cracking initiated can be estimated from the

results in Figs. 16 and 17. For fibers with bonded interfaces and spacings smaller than - R

(corresponding to the range of spacings for which such cracking was observed), the pertinent local

stress due to the applied load lies between about 0.6 0 a and 1.1 a (Fig. 17(a)). With the measured

applied loads for cracking and the residual stresses a0R from Table 1, the following local initiation

stresses are calculated: 655-730 MPa for the composite without fiber coating and 670-750 MPa

for the composite with Ag-Ta fiber coatings <-ible 2).

A similar estimate for the local stress responsible for transverse radial cracking in the

composite containing bare fibers (recall that transverse cracking was not observed before failure in

the other composite) gives values in the range 550 to 600 MPa for a bonded interface (stresses due

-to aplieC.load range from 41 as to 0.2 q& from Fig. 17(b)-. 'Thu&;..e~a, hogqh Y .

cracking initiated at a higher applied load than did load-axis cracking, the calculated local smavs,

assuming a bonded iwerfacer, was smanller-for the transverse cracks. Si= t.t-ypes of radial

cracks would be expected to initiate at the same value of local stress, thse calculations suggest that

circumferential sliding may have occurred after the onset of load-axis cracking, thereby increasing

the local stress that causes transverse cracking. For a freely sliding interface this stress would be

- 750 to 880 MPa (Table 2).

The mechanics of circumferential sliding is complex because of the variation in interfacial

shear stress around the interface (see Fig. Al(c)). Nevertheless, the following crude estimate

confirms that some sliding would be expected at the applied load that caused transverse cracking.

In the bare-fiber composite, the interfacial sliding resistance measured by fiber pulling experiments

is To - 70 MPa (Table 1). At the applied stress of 160 MPa, where transverse cracking initiated,

the interfacial shear stress exceeds To over a substantial fraction of the interface: between the angles

of 200 and 700 (Fig. A3). In the composite with Ag-Ta fiber coatings, To is larger (- 100 MPa)
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implying that the applied stress required for the interfacial shear stress to exceed to over the same

angular range and thus cause equivalent sliding is correspondingly larger (240 MPa).

4.2.4 The Role of the Ag-Ta Fiber Coating

The presence of Ag-Ta coatings on the fibers had a large effect on the transverse properties

of the composite: the failure stress was increased by a factor of 2 (from 200 to 400 MPa) and the

failure strain was increased by a factor of 3.7 (from 0.0013 to 0.0048). In the composite without

Ag-Ta layers, failure was caused by growth of transverse cracks, which initiated within the

reaction layers adjacent to the fiber-matrix interface at stresses below the failure stress. In the

composite with Ag-Ta coatings, the reaction products were eliminated and transverse cracks were

not observed prior to failure, even though the applied loads were much higher.

Several factors may have contributed to these differences. One is that the layers of brittle

reaction products degraded the strength of the composite without Ag-Ta coatings by providing

initiation sites for transverse cracks, whereas the Ag-Ta coatings eliminated this source of

degradation. Crack initiation would also be suppressed both by the zone around the Ag-Ta-coated

fibers that was found to be enriched in the more ductile 0 phase and by the higher frictional sliding

resistance (Table 1) in the composite with Ag-Ta layers, which would delay the onset of

circumferential sliding and thus maintain lower tensile stresses at the location of transverse

cracking.

The role of brittle reaction layers in degrading transverse properties is further illustrated in

Fig. 18. This shows a composite with a different Ti3AI based matrix (Ti-24AI- I 1Nb) that was also

fabricated with Ag-Ta layers on the fibers, but with foils that were contaminated on their surfaces,

leading to formation of large zones containing carbides (dark rings) surrounding the fibers.

Extensive transverse cracking, as shown in Fig. 18, initiated at very low loads and caused low

transverse strength. S
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4.3 Damage in Sapphire.Fiber Composites

In composites with small or zero residual stresses, the largest tensile stress under

transverse loading is the radial stress at 0 = 0, which tends to cause splitting of the fibers,

debonding of the interface, and circumferential matrix cracking (Figs. 16 and 17). This is

consistent with the damage mechanisms observed in the strongly bonded sapphire-fiber composite

in which fiber splitting and circumferential matrix cracking occurred. Indeed, a weak maximum in

this stress component occurs at a distance - R/10 away from the interface in the matrix, coinciding

with the observed position of crack initiation. However, the location of this matrix cracking is

more likely to be dictated by the variation of microstructural properties near the fibers: the region of

matrix around the fiber that is depleted in 03 phase would be expected to be more brittle than the

matrix elsewhere.

The local stress for initiation of circumferential cracking can be estimated from Fig. 17(a)

(assuming that residual stresses in this composite are negligibly small). For a fully bonded

interface, the radial stress at the interface for fiber spacing between 0.1 R and R is between about

2 0 a and 2.8 Ga. Crack initiation was observed at 0ya - 280 MPa, implying a local stress of 600 to

800 MPa. The variation of the radial stress within the fiber and in the nearby matrix is small, so

this stress range applies to both the splitting of the fibers and the circumferential matrix cracking.

The stress at which fiber splitting occurred is substantially lower (by a factor of 4 to 5) than

the longitudinal strength of the fibers. Although the transverse strengths of the fibers has not been

measured, it would be expected to be similar to the longitudinal strength. These results suggest that

the fiber strength was degraded by cutting and polishing during specimen preparation. The

measured strength is indeed typical of the strength of polished bulk sapphire. Moreover, failure

origins at the polished ends of some fibers could be identified on the separated fracture surfaces

(Fig. 13(a)). Therefore, the fiber splitting observed in these experiments may not be representative

of the behavior of composites without sectioned fibers. On the other hand, since circumferential
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matrix cracking occurs at a similar stress level, the presence of fiber splitting may not have greatly

affected the strength of the composite.

S. IMPLICATIONS FOR MATERIAL DESIGN

The different damage mechanisms observed in the composites of this study, combined with

a qualitative correlation with the analytically calculated elastic stress fields, provide some insight

into the material properties required for optimum transverse properties of the composite. The

results suggest that the transverse strength is strongly affected by residual stresses and the ductility

of the matrix in the critical regions immediately adjacent to the fibers, while strong interfacial

bonding does not always lead to optimum transverse strength.

In composites with small residual stresses and strongly bonded interfaces (the

sapphire/Ta/super-a2 composite of the present study), the transverse strength is limited by cracks

that initiate by splitting of the fibers, or by cracks that form in the matrix near the interface, where

analytical solutions indicate a large stress concentration (0r(0) in Fig. 17(a)). If, in a weakly

bonded composite, the interface were to debond completely before the formation of these cracks,

the stress Or(O) would be relieved and the cracks would not form with further load increase. The

resultant hole would lead instead to transverse radial cracking driven by the stress ao(x/2) in

Fig. 17(b), as observed in the SiC-fiber composites. For a freely sliding interface, this stress is 0

similar in magnitude to the stress qr(0) that is responsible for the cracking observed in the strongly

bonded composite, implying that the strengths of strongly and weakly bonded composites in this

case would be similar. However, if the debonded interface was restricted from sliding 0

circumferentially (e.g., by friction), the stress ao8 (/2) would decrease substantially and the

strength of the weakly bonded composite would be higher than that of the composite with strong

interfaces. 0
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In composites with large residual stresses (fibers in compression, as in the SiC fiber

composites of this study), the residual hoop stress promotes radial cracking, whereas the radial

compression inhibits the type of cracking observed in the stress-free sapphire fiber composite.

Although radial cracks first form parallel to the load axis, transverse radial cracks eventually cause

failure and limit the strength. The analytical stress solutions indicate that the stress driving

transverse cracking is greatly increased if circumferential sliding occurs, whereas this stress is

reduced next to closely spaced fibers if sliding does not occur. Therefore, the optimum strength

would be expected with either strongly bonded interfaces or interfaces that debond easily but

experience large resistance to circumferential sliding.

The optimum transverse strength in composites with strongly bonded interfaces may be

achieved with an intermediate mismatch in thermal expansion coefficients of the fibers and matrix.

In the absence of residual strains, the maximum tensile stress during transverse loading is the radial

stress that causes circumferential cracking of the interface or nearby matrix. The presence of

residual thermal strains (fibers of lower thermal expansion coefficient than that of the matrix)

causes the radial stress to decrease and the hoop stresses to increase. Therefore, if transverse

failure is dictated by crack initiation at the site of the largest tensile stress, then the optimum

residual strain would be that for which the radial stress at 0 = 0 and the hoop stress at 0 = i/2 are

equal at the point of failure. More rigorous analysis of this problem, including the effects of

plasticity, 13 partial interfacial debonding and sliding, multiple fiber interactions, 17,20 ,2 1 and

modeling of crack initiation would seem to be a fruitful avenue for further defining optimum

composite properties.

The longitudinal properties of intermetallic matrix composites benefit from fiber

reinforcement because of crack bridging effects, which lead to increased resistance to fatigue crack

growth. This requires a weakly bonded interface and relatively easy frictional sliding. Therefore,

the requirements for optimizing both the transverse and the longitudinal properties (regardless of

residual stresses) might be satisfied by weakly bonded interfaces with anisotropic frictional
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properties (perhaps achieved through control of the surface morphology of the fibers) to allow easy

sliding in the axial direction and more strongly resisted sliding in the circumferential direction.

6. SUMMARY AND CONCLUSIONS

In situ observations during transverse loading of several Ti3 AI matrix (super-cX2)

composites revealed the damage mechanisms, depending on residual stress states and interfacial

bond strength, summarized in Fig. 14. The various forms of cracking coincided with locations of

maximum tensile stress predicted from analytical solutions for elastic stress fields (which included

effects of fiber-pair interactions and interfacial sliding). The results indicate that the transverse

strengths of such composites are strongly influenced by residual thermal strains and matrix

ductility in the critical regions near the fiber-matrix interfaces. They also suggest that, contrary to

common perception, a strongly bonded interface between the fiber and matrix does not always lead

to optimum transverse properties: the optimum interface appears to be one that allows tensile

debonding (which relieves a stress concentration due to elastic mismatch), but restricts

circumferential sliding (and thereby minimizes the stresses that drive transverse radial cracking).
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APPENDIX A: ELASTIC STRESSES Uh,4 TRANSVERSELY LOADED

COMPOSITES

Isolated Fiber

The elastic stress field around an isolated strongly bonded fiber is given by 16

Or = 1/2 ([1 - y/r2 + [I - 48/r2 - 3&r4 ] cos 20} (Al)

c0 = 1/2 {( + y/r2-[I- 3/r 4 ] cos 20) (A2)
Gaa

where r is the radial distance normalized by the fiber radius and y and 8 are functions of the elastic

mismatch

(K~f- 1) - (K~m-)r
y - (A3)2r + (iof- I )

8=(17-l)/(0 + KCmF) (A4)

where K = 3-4v (for plane strain), F = g/.t/m, g± is the shear modulus, and v is Poisson's ratio. In

the composites of interest here, the Poisson's ratios of the fibers and matrix are approximately

equal (v = 0.3), so that r = Ef/Em = 5. The stresses from Eqs. (AI) and (A2) are plotted in

Fig. 16. The average normal interfacial stress is (from Eq. At):

< -r> I -y/ 2 = 0.65 (A5)
0a

Pairs of Fibers

Two-fiber solutions 17 for the interfacial stresses due to a remotely applied field are

compared with the single-fiber solution in Fig. Al. The fiber spacing in this case is d/R = 0.85,

corresponding to f = 0.37 for a square array of fibers. The elastic properties are the same as for
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Figs. 14-17. Results are shown for two orientations of the pair of fibers (parallel and normal to

the applied stress) and for fully bonded and freely sliding interfaces for each orientation. For fully

bonded interfaces, the additional perturbation due to the second fiber is maximum along the line

joining the fiber centers and becomes small at angles larger than - 450 from this line. Therefore, a

simple combination of these results would provide a close approximation for the interfacial stresses

at a fiber surrounded by four other fibers in these orientations. The ratio of the tangential stress at

0 = 0 to that at 0 = x/2 is larger for both fiber-pair orientations with strongly bonded interfaces

than for the single fiber solution. Therefore, the preference for parallel cracking rather than

tangential cracking is made stronger by the fiber interaction effects. For fibers in a square array, the

ratio of these stresses would be a0(0)/o0(f/2) - 5. However, if circumferential sliding occurs,

these stresses change dramatically: the stress at 0 = 0 becomes compressive and the tensile stress at

o = nt/2 increases by a factor of 5 to 10. Therefore, the onset of sliding prevents parallel cracking

and promotes transverse cracking.

The radial tension at 0 = 0, which is responsible for interfacial debonding and

circumferential matrix cracking, is increased by the interaction effect of a fiber in the parallel

orientation. This stress enhancement is further increased if circumferential sliding occurs.
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APPENDIX B: FIBER SLIDING NORMAL TO FREE SURFACE

The preparation of a cross section of a composite that contains residual stresses due to

mismatch of fiber and matrix can cause spontaneous debonding and sliding of the fiber relative to

the matrix if the interfacial debond energy is smaller than a critical value. 15 Since the degree of

sliding is dependent upon the interfacial frictional forces that resist sliding, any subsequent change

in these frictional forces (due for example to transverse loading) causes further sliding. Detailed

analysis of the closely related phenomenon of sliding during thermal cycling is given in Ref. (22).

Fiber pulling experiments with the SiC fiber composites of this study indicate that

spontaneous debonding occurs and that frictional forces are approximately uniform along the

debonded section of interface.* In this case, a shear lag analysis indicates that the displacement is

equivalent to that produced by pulling on the fibers in a stress-free composite with a stress equal to

the residual axial stress, af, in the fibers. This displacement is given by23

Uo = f R(1- Er (B 1)4t 0 ~EfE

where to is the frictional stress at the interface. If the frictional stress is proportional to the normal

interfacial stress, then transverse loading, which decreases the average normal stress by <'a>

(Eq. (A5)), causes the frictional stress to change to

T = To (1 - <O'>/aR) , (B2)

where aR is the residual stress normal to the interface. The corresponding change in displacement

is 0

u=u0 Lo i)O R(I-f)Em [ <1F>/R] (B3)ý T4,%EfE I - <o">/CYRJ

Detailed analysis of fiber pullout experiments1 5 has indicated that surface morphology plays an important role in
the constrained sliding of fibers: the surface roughness of the fibers causes an increase in the normal interfacial stress
when the fibers slide, and this increase cancels the effect of Poisson's contraction of the fiber to give an
approximately uniform normal stress (and thus friction) along the section of fiber that undergoes sliding.

26
J1123341-1/bje



With the onset of fiber sliding normal to the specimen surfaces, changes occur in the

in-plane stresses because of Poisson's effects. These changes can be accounted for (within the

concentric cylinder solutions) by a change in the effective radial mismatch strain that is responsible

for residual stresses. With the elastic constants given in Section 3.2, the relaxation of residual

axial compression in the fiber leads to an increase in the effective mismatch strain. The magnitude

of this increase is calculated to be approximately 10%, a result that can be obtained

straightforwardly from the analyses in Hutchinson and Jensen. 18

0I

27
J12334H/bje

/ 0



REFERENCES

J.M. Larsen, W.C. Revelos and M.L. Gambone, "An Overview of Potential Titanium

Aluminide Composites in Aerospace Applications," in Intermetallic Matrix Composites HI,

Ed. D.B. Miracle, D.L. Anton and J.A. Graves. M.R.S. Symposium Proceedings V273,

113-16 (1992).

2. J.M. Larsen, K.A. William, S.J. Balsone and M.A. Stuke, "Titanium Aluminides for

Aerospace Applications," p. 363, Proc. Titanium Aluminide Composites Workshop,

Orlando, FL, 1990, Eds. P.R. Smith, S.J. Balsone and T. Nicholas, U.S. Air Force

publication WL-TR-91-4020.

3. S.W. Johnson, S.J. Lubowinski and A.L. Highsmith, "Mechanical Characterization of

SCS-6/Ti-15-3 Metal Matrix Composites at Room Temperature," in Thermal and

Mechanical Behavior of Metal Matrix and Ceramic Matrix Composites, ASTM STP 1080,

Eds. J.M. Kennedy, H.M. Moeller and W.S. Johnson, American Society for Testing and

Materials, Philadelphia, 1990, pp. 193-218.

4. R.A. Naik and W.S. Johnson, "Observations of Fatigue Crack Initiation and Damage

Growth in Notched Titanium Matrix Composites," NASA Technical Memorandum

101688, Dec. 1989.

5. D.B. Marshall, B.N. Cox, W.L. Morris and M.C. Shaw, Mechanical Properties of

Ceramic and Intermetallic Matrix Composites" in Advanced Comosite Materials, pp. 503-

512, Ed. M. Sacks, The American Ceramic Society, 1991.

6. B.N. Cox, M.R. James, D.B. Marshall and R.C. Addison, Jr., "Determination of

Residual Stresses in Thin Sheet Titanium Aluminide Composites," Met. Trans. 21A, 2701-

07(1990).

28
J12334H/bje



7. D.R. Williams, D.L. Davidson and J. Lankford, Expt. Mech. 2D, 134-149 (1980).

8. M.R. James, W.L. Morris and B.N. Cox, "A High Accuracy Automated Strain Field

Mapper," Exp. Mech. 30, 60-68 (1990).

9. C. Rhodes, "Characterization of Fiber/Matrix Interfaces by Transmission Electron

Microscopy in Titanium Aluminide/SiC Composites," in Intermetallic Composites II, Ed.

D.B. Miracle, D.L. Anton and J.A. Graves, MRS Symposium Proceedings, V273, 17-24

(1992).

10. Titanium Aluminide Composites, Contract No. F33657-86-C-2136 with USAF, Interim

Report No. 2, G.E. Aircraft Engines, Cincinnati, OH, Sept. 1987.

11. P. Bania, Timet Corporation, Henderson, NV, private communication (1989).

12. Z. Hashin, "Analysis of Properties of Fiber Composites with Anisotropic Constituents,"

J. Appl. Mech. 4&, 543-550 (1979).

13. R.P. Nimmer, R.J. Baukert, E.S. Russell, G.A. Smith, and P.K. Wright,

"Micromechanical Modeling of Fiber-Matrix Interface Effects in Transversely Loaded

SiC/Ti-6-4 Metal Matrix Composites," ASTM J. Composites Technology and Research,

13[1], 3-13 (1991).

14. D.B. Marshall, M.C. Shaw, W.L. Morris and 1. Graves "Interfacial Properties and

Residual Stresses in Titanium and Titanium Aluminide Matrix Composites," pp. 329-347

in Titanium Matrix Composites, Ed. W. Revelos and P.R. Smith, Wright Patterson Air

Force Base, WL-TR-92-4035, 1992.

15. D.B. Marshall, M.C. Shaw and W.L. Morris, "Measurement of Debonding and Sliding

Resistance in Fiber Reinforced Intermetallics," Acta Metall., _Q [31 443-454 (1992).

29
J12334H/bje



16. N.J. Muskhelishvili, "Some Basic Problems of the Mathematical Theory of Elasticity,"

P. Noordhoff Ltd, The Netherlands, 1963.

17. D. Kouris, "Stress Concentration Due to the Interaction Between Two Imperfectly Bonded

Fibers in a Continuous Fiber Composite," J. Appl. Mech., 6Q[ l] 203-206 (1993).

18. J.W. Hutchinson and H.M. Jensen, Mech. Mater. 2. 139 (1990).

19. J.R. Porter, "Reinforcements for Ceramic-Matrix Composites for Elevated Temperature

Applications," Mat. Sci. Eng. A 166, 179-184 (1993).

20. D. Kouris and E. Tsuchida, "On the Elastic Interaction Between Two Fibers in a

Continuous Fiber Composite under Thermal Loading," Mechanics of Materials 1., 131-

146 (1991).

21. R.P. Nimmer, "Fiber-Matrix Interface Effects in the Presence of Thermally Induced

Residual Stresses," ASTM J. Composite Technology and Research 12[2], 65-75 (1990).

22. B.N. Cox, Acta. Metall. Mater. U, 2411 (1990).

23. D.B. Marshall, B.N. Cox and A.G. Evans, "The Mechanics of Matrix Cracking in Brittle- 0

Matrix Fiber Composites," Acta. Metall. U[ 11], 2013-21 (1985).

0

300
J1 2334H-/bje



FIGURE CAPTIONS

1. Composites used for transverse property evaluation (super-c2 titanium aluminide matrix).

(a) SCS-6 SiC fibers without additional coatings,(b) SCS-6 SiC fibers with Ag-Ta coating,

(c) Sapphire fibers with Ta coating.

2. Scanning electron micrographs showing sapphire fiber in super-a2 matrix. Bright line

surrounding fiber is Ta coating. Bright regions of matrix are 03 phase; dark regions are a2

phase.

3. Scanning electron micrograph from sapphire fiber composite showing region of fiber-

matrix interface in which Ta layer was missing.

4. Stress-strain curves: (a) SiC fiber composites, comparison of responses under transverse

and longitudinal loading, (b) SiC-fiber composites, transverse loading. (c) Sapphire fiber

composite, transverse loading (labels a, b and c indicate loads at which in situ micrographs

of Fig. 11 were obtained). (d) Comparison of measured transverse Young's moduli with

predicted bounds from Hashin 12 for several assumed values of Em. Full curves lower

bounds from Hashin; broken curves upper bounds.

5. Schematic diagram illustrating observed damage mechanisms in SiC-fiber composites.

6. Scanning electron micrographs of (a) SiC-fiber composite with Ag-Ta coated fibers, and

(b) composite with uncoated fibers, after loading to failure in transverse tension.

7. HASMAP analysis showing in-plane surface displacements caused by applied transverse

load, aa = 160 MPa, in composite containing uncoated SiC fibers. Reference arrow at

bottom left represents displacement of 0.23 g±m.
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8. Parallel cracks in transversely loaded SiC-fiber composites (scanning electron

micrographs): (a) (c) (d) composite containing uncoated fibers, (b) composite containing

fibers coated with Ag-Ta. Loading direction is horizontal.

9. Transverse cracks in SiC-fiber composite containing uncoated fibers (scanning electron

micrographs).

10. Series of in situ optical micrographs 9howing development of transverse cracks leading to

failure in SiC-fiber composite containing uncoated fibers. Loading direction is vertical.

Applied streses: (a) 160 MPa; (b) 190 MPa; (c) 198 MPa.

11. Sequence of in situ optical micrographs taken from one area of sapphire fiber composite at

loads of (a) 0.9, (b) 0.95, (c) 0.99 of the failure load, corresponding to the positions

labeled (a), (b) and (c) in Fig. 15. Failure occurred by linking of the cracks in (c). Applied

load horizontal.

12. Scanning electron micrographs showing crack path across the fiber-matrix interfacial region

of sapphire-fiber composite.

13. Scanning electron micrograph showing fracture surface resulting from transverse tensile

loading of sapphire/Ta/super-a2 composite. Smooth region is axial split within the sapphire

fiber, rough region is the super-a2 matrix.

14. Schematic diagram summarizing damage mechanisms observed in transverse loading.

15. Comparison of elastic residual stresses in matrix at interface, calculated using concentric

cylinder model (broken lines) and finite element analysis of square fiber array (solid

curves).
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16. (a) Elastic stresses in matrix around isolated fiber (Et/Em = 5, v = 0.3). Uniform remote

stress.

(b) Interface stresses from (a).

(c) Radial and tangential stresses in matrix corresponding to (a).

17. (a) and (b) Interfacial stresses (elastic) for pairs of fibers.

18. Transverse cracks in composite containing large layer of carbides (dark region)

surrounding fibers.

A 1. Comparison of interfacial stresses for an isolated fiber and pairs of fibers under uniform

remotely applied stress (Ef/Em = 5, v = 0.3). Fiber separation is d/R = 0.85 corresponding

to f = 0.35 in a square fiber array. (a) tangential stress, (b) radial stress, and (c) shear

stress.

33
J12334H/bje



fA

00 0

00 00

00

-- 00

00 00

Cn. S 8 OR 0

-- Q

CR 0

II I I
CRrz 

rIIIW 00 <



I

I

I

I

I

I

1 r
I

I

I

I



-- ________________________ ..-.. SCP-.0285-A

20 u

*f





8'



0

1500 SiC /SUPER -a•2

"*E=200 GPa

LONGITUDINAL

1000

C,,cl NO COATING

w
S50 TRANSVERSE0• 50

Ag/Ta COATING

0 1 1
0.000 0.005 0.010

STRAIN

Fig 4a



Sic/ SUPER - a•2

400S E- .125 GPa *.
E=125 GPa j

300- E=158 GPa .tI~

200 '•*•0'
I. 

NO C07IN,.. 200 -.. ............

20 Ag/Ta COATING

ILI

100-
UNLOAD/RELOAD

OL I

0 0.002 0.004

STRAIN 0

0

0

Fig. 4 b



00

eI

0I

*I

Sapphire/Ta/super-a2
300-

200 b
E =141 GPa a

(0 100

0
0.0 0.001 0.002

*1 STRAIN

Fig. 4c



200.

(L SAPPHIRE-Ta 0

•) 100 "• - • '-UNCOATED

-J 0
:D 100 iFIES

0
0 Ag-Ta COATED

z
0
>- 0 j

0 0.5FIBER VOLUME FRACTION (f)

Fig. 4(d)



LOAD-AXIS INTERFACIAL
TRANSVERSE CRACKS SERATION
CRACKSSEPARATION

INTERFACIAL
SLIDING

Fig. 5



AS-



* 17



S

6

.1-

J

0

S

S

III

S

S



z
0

C-,w
0
0
4
0
-J



bAM



0-
co

C',

.0

o o,



0

0

1,-.,-

0

0

0

S

0

0

0

0

S
"Ti,



LL

ALV'4_•_



Large residual stress Small residual stress
Weak interface Strong interface

Transvese
mtatrix cracKc

S[Interfaci 
al

Fiber crack

SCS6/super-c2 Sapphlre:Tasucer-u5z
SCS6/Ag-Taisuper-ct 2

Fig. 14



i TANGENTIAL.STRESS

0)•: ~~CONCENTRIC CYLINDER .T

00

1-10. FEM (SQUARE ARRAY)

0) 0
0.

-"- I4RADIALI..

0 30 60 90
(DEG)

FIG. 15



0.75

0.0

R/I X/

3

30.2

00

Fig. 16 (a)



1.5 ItraeSTRESSES AT INTERFACE

a0.5 Crackin Transverse

0ý< Cracking

0

(b) -0.5
0 0 irI i/2

0 1.5STRESSES IN MATRIX

1

*a 0. a R T

(C) 1 2 3 4

Fig. 16



4 .=0

(a2 oons

Bonded (Intertace Separation)

(0 0.5 1.0

FIBER SPACING, dIR

2 • e=90
2

Cu S

C/J" • (Transverse Cracks)

W 0

Cl) B~onled ~ r
-1 'Sliding

(b)r
0 0.5 1.0

FIBER SPACING, d/R

Fig. 17



r SGPO39OA 091,4930

0

0h



Tangential interface stress

Bonded0

& Single Fiber
Ul) 0
w *Bonded

Sli~diflO

(a) -
0 30 60 90

ANGLE, 0 (DEG)

Radial interface stress
2 k-Sliding

* Ef/Em=5
*B6nided d/R=0.85

w Single Fiber

00

(b) -
0 30 60 90

ANGLE, 0(DEG)

Single _ __Fiber_ _ Shear__stress

0

CuY

C)Ef/EM=5 -
d/R=O0.85.

0 30 60 90 FgA
ANGLE,O0(DEG) FgA



5.3 The Role of Frictional Sliding in Transverse Failure of Composites

in preparation

1"7



THE ROLE OF FRICTIONAL SLIDING IN TRANSVERSE
FAILURE OF COMPOSITES

D. B. Marshall, W. L. Morris and B. N. Cox
Rockwell International Science Center

1049 Camino Dos Rios
Thousand Oaks, CA 91360

D. Kouris
Department of Mechanical and Aerospace Engineering

Arizona State University
Tempe, AZ 85287-6106



0-

1. INTRODUCTION

Recent theoretical and experimental studies have suggested that circumferential 0
sliding at debonded fiber-matrix interfaces is detrimental to the transverse strength of the

composite. 1-3 In contrast, debonding and sliding is a prerequisite for enhanced

longitudinal properties such as toughness in ceramic matrix composites 4 -5 and resistance
to fatigue crack growth in intermetallic matrix composites. 6,7 Therefore it has been 0
suggested that optimal composite properties could be obtained with interfaces that

debond readily and have low frictional sliding resistance longitudinally but large sliding

resistance in the circumferential direction.

0
Circumferential sliding during transverse loading causes increased tensile hoop

stress in the matrix adjacent to the fiber, at the location where cracking is induced normal

to the applied load (Fig. 1). In composites containing fibers that are stiffer than the
matrix, the stress at this location, 7e (7t/2), is smaller than the applied stress if the 0
interface does not slide: i.e., the stress perturbation due to the fiber is compressive thus

tending to inhibit the formation of strength-degrading transverse cracks. On the other
hand, the hoop stress at 0 = 0 is tensile, thus tending to induce cracking parallel to the

applied load. Such cracks have been observed in Ti3AI/SiC composites. However, 0

because of their orientation they do not lead to failure in unidirectional loading. If the
interface is allowed to debond with unrestricted sliding, these stresses change: the stress
a0(nt/2) Fecomes larger than the applied stress thus favoring the formation of transverse

cracks, which lead to failure, while the stress a((0) becomes compressive. The 0
magnitudes of these changes in stress increase as the spacing of nearest neighbor fibers

decreases (Fig. 2).

Analytical solutions have been obtained recently for the stress fields surrounding 0

pairs of fibers, with the possibility of limited interfacial sliding being permitted by
incorporating springs of various stiffness at the interface. The results indicate a

continuous trans~tion between the stress states mentioned above for bonded and freely
sliding interfaces and could be used for guidance in designing interfaces that debond, yet 0

have sufficient frictional sliding resistance to avoid transverse cracking. In this

communication we present experimental measurements of circumferential sliding
(obtained by high resolution strain mapping) and preliminary comparison with analysis.

0
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2. EXPERIMENTS

Transverse loads were applied to a titanium aluminide matrix composite as

described in more detail elsewhere. The composite, which was fabricated by Textron
Specialty Materials, contained three rows of SiC fibers (SCS-6) in a two phase (ox2-[3)

matrix of Ti-25A1-lONb-3V-lMo (Super cc2). Beams with dimensions approximately 50

x 2 x 1 mm were cut from a sheet of the composite with the longest dimension normal to

the fibers. The beams were polished on the sides containing the fiber ends and loaded in

tension using a fixture attached to the stage of an optical microscope. High magnification

micrographs were obtained from the polished sides of the beams during loading. The

applied loads were measured with a load cell and the corresponding strains were

measured using strain gages attached to the sides of the specimens.

The in situ optical micrographs were analyzed using a high resolution strain

mapping technique. 7.8 This involved comparing images taken before and during loading

and measuring relative displacements of corresponding image features. Measurements

were obtained both stereoscopically and using a computerized image analysis system

(HASMAP-High Accuracy Strain Mapping), both of which provide sensitivity of - 10

nm in differential displacement measurements from optical micrographs. The image

analysis was improved by depositing MgO crystals on the surface of the specimen to

provide additional sharp image detail.

3. RESULTS AND ANALYSIS

3.1 Damage

The details of damage leading to failure are discussed in detail elsewhere. The
pertinent features are: (1) at applied stress, aa, within the range 120-170 MPa separation

of the fiber-matrix interface initiated at the position 0 = 0, corresponding with the onset

of non linearity in the stress-strain curve, (2) formation of "load-axis" radial cracks

between some fibers (Fig. 1) at (a = 150 MPa, (3) formation of transverse radial cracks

adjacent to some fibers at aa = 160 MPa, and (4) stable growth and linking of transverse

cracks and debonded interfaces to failure at 0 a = 200 MPa. Comparison of these results

with stress field solutions for fully bonded and freely sliding interfaces suggested that

significant circumferential sliding occurred between the onset of load-axis and transverse

cracking at Ga - 150-160 MPa.

3



3.2 In-Plane Surface Displacements

A map of in-plane surface distortions at an applied load of 160 MPa is shown if

Fig. 3. The arrows superimposed on the optical image are relative displacement vectors

for corresponding image features located at the beginnings of the arrows within a

reference micrograph at zero load and a second micrograph of the same area with the load 0
applied. (The magnitudes of the displacement vectors are magnified by a factor of 40

compared with the dimensions on the micrograph.) The following deformations are

readily discerned: tensile strains parallel to the applied load; Poisson's contraction from

top to bottom of the micrograph; debonding and rotation of the right-hand fiber; and 0
tensile strains in the matrix between the fibers in the direction normal to the applied

stress.

At sufficiently high applied loads the opening and sliding displacement 0
discontinuities at the fiber-matrix interfaces can be readily measured using stereoscopic

analysis. Results for the fiber shown in Fig. 4(a) at various stages of loading are shown

in Figs. 4(b) and (c).

Sliding displacements were first detected at a lower applied load (- 100 MPa)

than were normal opening displacements (120 MPa). Sliding began at the location 0 =

300 and spread continuously in both directions with increasing load. This result is

consistent with the calculated location of the maximum shear stress from the analysis of 0
Ref. 2 (Fig. 5). The opening displacements occurred first at 0 = 0 as expected and spread

to higher angles with increasing load.

The calculated interfacial shear stresses and radial stresses for a pair of fibers with 0
the separation shown in Fig. 4(a) and with strongly bonded inter Faces are shown in Fig. 5.

Results for the normal stress at an interface that is free to slide but constrained to have

zero normal displacement are also shown in Fig. 5(b) for comparison. The radial stress at

0 = 0 from Fig. 5(b) is - 2aa, giving a value of - 240 MPa when interfacial separation 0
began. This is very close in magnitude to the residual compressive stress normal to the

interface (which has been estimated from relaxation experiments to be - 260 MPa), thus

indicating that bonding at the interface is negligible and that the resistance to sliding is

due entirely to friction. The largest shear stress occurs at 0 = 35' and is equal to - 0.7 7a. 0
At the onset of sliding (Oa = 100 MPa) this shear stress is approximately 70 MPa. This

4
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value is the same as the frictional stress that has been evaluated independently from fiber

pulling experiments in this composite.

Transverse cracking before failure of the composite did not occur at the fibers that

were analyzed here (such cracks were only observed at - 20% of the fibers within the test

region. Nevertheless, the results in Fig. 4(a) indicate that circumferential sliding occurs

over almost all of the interface at the stage where transverse radial cracking begins (Oa =

160 MPa).
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FIGURE CAPTIONS

1. Stresses and cracking around a fiber subject to transverse loading.

2. Hoop stresses in matrix adjacent to fiber: dependence on fiber spacing and

interfacial sliding.

3. In-plane surface displacements (obtained by high resolution differential image

analysis) caused by applied transverse stress of 160 MPa. Reference arrow at

bottom left represents displacement of 0.23 p.m.

4. (a) Optical micrograph showing fiber used for measurements of (b).

(b) Normal and shear displacements at interface indicted in (a) measured by

stereoscopic analysis of pairs micrographs obtained before and during loading.

5. Interfacial stresses due to applied load for pair of fibers with spacing of Fig. 4(a):

(a) normal stresses for fully bonded and freely sliding interface, (b) shear stresses.
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6.0 THE ROLE OF THE INTERFACE
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6.1 Experimental Measurements of Interfacial Properties in Brittle Fibrous

Composites
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The interfacial properties that control fracture in continuous-fiber-reinforced brittle matrix composites are discussed
Various methods of determining these properties are reviewed, including both experiments on individual fibcrs itn speciall.
prepared specimens and experiments based on observations of crack propagation. Because the information that can be
acquired in any experiment is limited, deducing interfacial properties requires modeling based on prior assumptions about
the underlying micromechanics. The validity of some of the more popular and convenient of these assumptions is appraised.

1. Introduction future developments appear at th. end of the
paper.

Considerable progress has been made in the
last twenty years in enhancing the damage toler-
ance or toughness of brittle materials by reinforc- 2. Failure of aligned-fiber composites under axial
ing them with strong, continuous fibers. In partic- loading
ular. when aligned fibers are coupled to a brittle
matrix by weak interfaces, damage tolerance un- For axial loading of aligned-fiber composites,
der axial loading can be quite remarkable: the best damage tolerance is usually achieved if
strength can become asymptotically independent the matrix fails before the fibers, the fibers re-
of matrix flaw size as the flaw size increases main intact in the wake of any matrix crack, and
[1-4]; and the overall strength of the composite is such intact fibers supply significant shielding of
not far from the bundle strength of the reinforc- the matrix crack tip by crack bridging. Under
ing fibers [5,61. monotonic loading, the requirement that the ma-

Most of this paper will deal with the microme- trix should fail first generally requires fibers of
chanics of composite strength in just this configu- high strength, typical composites being SiC fibers
ration: axial loading for aligned fibers. This is in in ceramics and glasses. For the fibers to remain
keeping with the vast majority of experimental intact in the crack wake, the interfaces must be
and theoretical work in the field to date. Great weak, so that fiber strain can be relieved by
emphasis has been laid on optimizing axial prop- interfacial sliding. In the recently popular Tex-
erties, to the exclusion and indeed detriment of tron SCS6 SiC fiber, this condition is provided by
properties under nonaxial loading. Some com- the presence of a layer of turbostratic carbon in
ments on how this historical omission will dictate the carbon-rich fiber coating [7]. This layer is

0304-3991/92/S05.00 © 1992 - Elsevier Science Publishers B.V. All rights reserved
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essentially debonded at the outset of testing, sup- mines the efficac\ of bridging The next ,ectiof,
plying only frictional resistance to interfacial slid- describe methods of measuring .
ing. The degree to which the. ,ibers then shield 0
the matrix crack tip from Lhe applied load is
determined by the crit: - interfacial shear stress. 3. Measuring the critical stress for frictional slid-
7, above which frictional sliding occurs [2]: the ing
larger -,. the greater the shielding, with the pro-
viso that if - is too large, insufticient interfacial Methods for determining the frictional stress 7
sliding w'ill occur to protect the bridging fibers fall into two categories: experiments in which the 0
fror-. tailure, and most of the bridging effect will response of an individual fiber in a composite is
be lost altogether [8]. measured during some carefully controlled load-

When ductile materials are reinforced by ing, and measurements of the properties of
strong fibers (e.g.. inter-netallic alloys reinforced bridged cracks. All of these experiments have one
by the same SCS6 SiC fibers), matrix failure can ser\ important characteristic: 7 (or an\ other
still be the first failure, but under cyclic rather interface property) is never measured directI\.
than monotonic loading [9-151. The mechanics of The experiments yield onl% some kind of Jis-
the ensuing fatigue crack growth of the matrix placement as a function of some kind of load:
crack are then very closely related to those of and the data are never so rich as to define the
crack growth in brittle matrix composites under underlying mechanisms of deformation uniquely.
monotonic loading [11.121. Greatly enhanced fa- Values for -. (or some other property) can onb be
tigue resistance is achieved if the interfaces are inferred when the data are interpreted according 0
weak and the frictional sliding sticss r has a to some a priori model. The quality of the meas-
value that favors crack tip shielding by fiber urement ends up depending largely on the quality
bridging. Under monotonic loading, on the other of the model.
hand, the first failure in such fibrous intermetallic
composites is fiber failure. But once again the 3.1. Experiments on indicidual fibers
highest strengths are achieved if the interfaces 0
are weak and slide easily, for then the matrix The most common experiments on individual
abutting each fiber break is protected from se- fibers consist of either pushing or pulling a single
vere stress intensification and composite failure fiber that has been exposed by sectioning or
does not occur until the load is well above the etching the composite and measuring its axial
fiber strength [9]. displacement [16-191. When the fiber/matrix in-

For aligned-fiber composites under axial load- terface is strong, analyzing such an experiment is
ing. the requirements of interfacial properties are very complicated. The stress fields in the fiber
thus quite simply stated: interfacial toughness (the and the matrix are difficult to calculate, involving
work of fracture for propagating an interfacial some degree of interfacial debonding, singulari-
debond) should be low; while the resistance to ties associated with the debond crack tip and any
interfacial sliding following debonding should be other flaws, plasticity, friction between debonded
high enough to support shielding but not so high surfaces, statistical variance in interfacial proper-
as to cause premature failure of the bridging ties. and all the complications associated with
fibers. Since the interfacial toughness should be having an elastically inhomogeneous body (coin-
low (ideally zero), there is little incentive for prising fiber, matrix, and complex fiber coatings
measuring it in these materials. It is enough to and reaction layers) subjected to nonuniform
know from fracture experiments that it is not too loads with axial symmetry disrupted by the pres-
high to cause trouble. In contrast, there is much ence of one or more free surfaces. Because of S
to be gained from being able to measure the this complexity, there has not yet been a convinc-
critical sliding stress, -_ since its magnitude is the ing demonstration of the measurement of debond
prime controllable material parameter that deter- energies by pushing or pulling experiments.

0
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Fortunateh. \,%hen the interface is Aeak. there tion, One inters that the frictmon ,,res r,,.'

is considerable accumulated euidence that the significantl. Ahcn the intertace is uncated be-
situation is much simpler [1c.191]. With weak in- cause rough teatures, \&hen mosed out of regitrN.
terfaces and moderate or lo, ,alues of 7. interfa- torce the sliding ýurtaces apart, raising cuR For

cial sliding occurs oser lengths much greater than the SCSb SiC fiber. the spatial scale of the or-
the fiber radius, and the resistance to further scred irregularities is - l1 Am. Since this is the
sliding is dominated b\ friction along the sliding same order as crack-opening displacements tor
region and onl, weakly influenced b. the energy matrix cracks in tpical composite specimens. it
required to propagate the debond crack. In fact, must be concluded that the correct %aluc of - to
tor man., cases, including the SCS6 SiC fiber, the be used in analyzing such cracks mist retlect
debond energ% is negligible: the interface can be both the effects of Poissornvs contraction and of
modeled as entirel, debonded before the experi- interfacial roughness.
ment begins. Furthermore. since sliding lengths This question has been further illuminated b%
are large. it has been sowAn by various experi- unusually precise fiber pull-out experiments con-
ments and theoretical calculations that the shear ducted b\ Marshall. Shaw. and Morris [25] using
lag approximation [1o.17,201 is ver\ reasonable Ti-25AI-l0Nb-3.Mo-lV SCS6 specimens. In
tor this s;stem In other words. in the clindrical their experiments, a single fiber is exposed and
coordinates of the fiber, the onl nonzero shear isolated b, etching away a section of matrLx in the
stresses are those acting across the sliding inter- middle of the specimen and cutting away all other
face itself. Fairly consistent values for 7 are now fibers in the etched section. The two intact ends
available for experiments modeled using these of the specimen, now joined by the single fiber,
assumptions. Nevertheless, there remain some in- are gripped and loaded. The relative displace-
triguing and important problems. ment of the fiber and the matrix is measured to

One very important question is that of the within 100 A at the point where the fiber enters
interplay ot Poisson's ratio and interface rough- the matrix using a computer-based image-match-
ness. The usual depiction of frictional sliding is ing technique [26]. The fiber is loaded in tension
that Coulomb's law prevails: the friction stress i- and unloaded at various stages during pull-out.
is the product of the coefficient of friction and When models are fitted to the load-displacement
the normal stress o'R at the interface. The normal histories, it is found that the best model assumes
stress is primarily a residual stress arising from that the friction stress - is uniform along the
thermal mismatch between fibers and matrix. The sliding length of the interface. Thus, in this coin-
matrix usually has the higher coefficient of ther- posite, Poisson's effect and surface roughness ef-
mal expansion and shrinks down around the fiber fects coincide in magnitude, canceling one an-
during cool-down following processing. When a other out in tensile loading to a good approxima-
fiber is pushed or pulled, Poisson's effect tends to tion. For other composites, one should not expect
alter its radius and 0 `1 changes. This can have a the same result.
substantial influence on the force/displacement The situation under cycling loading, as with
relation for the loaded fiber and therefore on the fatigue crack growth in fibrous intermetallic ma-
inferred value of r [20,21,23]. trix composites such as TiAI/SCS6, is likely to

The role of interfacial roughness was recently be even more complicated. While shear lag mod-
illuminated by Jero and Kerans [24]. In their els continue to predict force/displacement rela-
experiment, an SCS6 SiC fiber was pushed first tions of simple form [11,16], repeated cycling in
one way through a glass matrix and then the the fiber puli-out experiments [251 showed that
other. The motion was resisted by friction. When the friction stress T is affected by attrition. Un-
the fiber returned to its initial position, there was fortunately, the results of such tests on individual
a large drop in the load, which could be corre- fibers do not necessarily reflect conditions in a
lated with irregular features on the two sliding composite near a matrix crack. There are large
surfaces reseating in their original, matched posi- and potentially significant differences in the local
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stress state, the degree of fiber bending, the to relate AIK,,p to the crack-grow,.th rate. Values
range of the sliding displacement, etc. Therefore. of 7 encouragingly consistent with those from 0
it is desirable to develop ways of determining experiments on individual fibers have been ob-
for cracks by measuring and modeling certain tained in this way [15].
fracture characteristic,. This is taken up in the Information about p(u) is obtained more di-
next section. rectly from crack-opening profiles because the

step of relating growth rates to A1K,, is obviated:
3.2. Experiments on cracks p(u) can be obtained from the profile at a single 0

value of crack length [30]. The method is based
Analyzing a bridged crack requires a further on the relation (an integral equation) between

level of modeling: not only must the sliding of the applied load, the specimen geometry, the
individual fibers be modeled, but also the frac- bridging tractions. and the crack-opening dis-
ture mechanics of a crack with possibly large and placement profile. This integral equation is most
dominant bridging tractions acting on or adjacent commonly solved for the crack-opening profile
to the fracture surfaces. If the contribution of when everything else is known, with p(u) taking
each bridging fiber is to be treated separately in specified form and values. Once the profile is
detail and the details of the stress distributions known, gK, ,p (or K,,p) can be calculated and all
around all fibers and near the crack tip are to be fracture properties predicted. To determine p(u).
calculated in full, the fracture mechanics problem the problem is simply turned around: the profile
is a daunting one. Fortunately, when there are and load are measured and p(u) is determined by 0
many bridging fibers, comparison with experi- the same integral equation.
ment shows that the problem can be greatly sim- Of course, if - is degraded by attrition during
plified by averaging the effect of the discretc fatigue, then there will not exist a unique relation
fibers [2] to obtain a continuous bridging traction p(u) correct for the entire crack. In this case, p
acting on an anisotropic but homogeneous must be regarded simply as a function p(x) of
medium without losing any essential aspect of the distance x from the crack front. But this func-
fracture or fatigue process. There then remain tion, too, is deducible from crack-opening profiles
many interesting and unusual effects of specimen by the same method [30]. The full hysteresis loop
geometry and load configuration, especially when for p and u at each position x can then be
the bridging zone is large compared to specimen deduced from functions p(x) inferred from pro-
or crack dimensions, but these can all be dealt files measured at successive points on a complete
with conveniently and accurately [27-29]. Under loading cycle for the cracked specimen. Examples
the spatial averaging, the relationship between of this procedure will be available at the comple-
the load on an individual fiber and its displace- tion of work now in progress.
ment is replaced by a relationship p(u) between
the continuous bridging traction p and the
crack-opening displacement u [2]. Knowledge of 4. Outlook
one is tantamount to knowledge of the other. 0

The relation p(u) can be determined experi- The fracture mechanics of mode-I cracks grow-
mentally in several ways. For cyclic loading prob- ing normal to unidirectional fibers are now well
lems. they reduce to two general methods: analyz- understood. For fatigue cracks in metal and inter-
ing fatigue-crack-growth data and analyzing metallic alloys reinforced by SCS6 fibers, the
measured crack-opening profiles. Crack-growth connection of engineering crack-growth data to
data are analyzed by specifying a parametric law interfacial properties measured by high-resolu- S
for p(u) (e.g., the predictions of shear lag theory tion microscopy is singularly complete. Interfacial
with 7 as the sole parameter), calculating the sliding is known to occur in turbostratic carbon
range of the crack tip stress intensity factor, layers; experiments on single fibers have tested
AKp, and invoking some law (e.g., the Paris law) the validity of mechanical models of the sliding

0
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ABSTRACT

Previous analyses of the relation between the force and displacement during fiber sliding

(pushing or pulling) are extended to include effects of interfacial roughness. Analytical solutions

are obtained for a linear roughness profile over the range of displacements that are smaller than

the dominant half-wavelength of the roughness. With the equations expressed in normalized

form, a convenient friction parameter, which defines the roles of the friction coefficient and the

roughness angle, has been defined. For certain values of the friction parameter, the effect of the

roughness negates the Poisson's contraction during fiber pulling, giving solutions that are very

close to the response of a system with a constant frictional stress at the interface.
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1.0 INTRODUCTION

In ceramic and intermetallic matrix composites, much of the benefit of fiber

reinforcement derives from the effects of debonding and sliding at or near the interface between

the fibers and the matrix. 1-3 Several recent studies have shown that the morphology of this

debonded surface strongly influences the constrained sliding of the fibers and hence the

properties of the composite. In composites with residual compression in the fibers, interfacial

roughness is expected to increase the sliding resistance, while in composites with residual

tension in the fibers, the coupling of the fibers and matrix may be due entirely to roLghness.

Direct evidence for the influence of interfacial roughness comes from measurements of a

reseating phenomenon in fiber pushout experiments, first observed by Jero and Kerans4 in glass

matrix composites and confirmed by several other groups, 5-7 in both pushout and pullout

experiments in ceramic and titanium aluminide matrix composites. Other evidence includes:

observations of stress birefringence caused by roughness mismatch after fiber sliding in

glass/SiC composites; 8 direct measurement of surface roughness in various fibers by laser

interferometry and atomic force microscopy;9' 10 the analysis of high resolution force-

displacement measurements during single fiber pulling experiments in seve-rl titanium

aluminide composites, 1 1 which suggested that interfacial roughness canceled the effect cf

Poisson's contraction of the fibers; and the observation of load oscillations during fiber pushc

from composites containing sapphire fibers with periodic surface corrugations. 12

Several analyses of fiber sliding have sought to include the effect of surface roughness.

Kerans and Parthasarathy 13 modeled the effect as a constant additional radial misfit strain

between the fiber and matrix, which increased the normal stress and thus the sliding resistance

(with the Coulomb friction law). This model is expected to be appropriate for a composite with

nonperiodic roughness when the sliding displacements are larger than the dominant half-

wavelength of the roughness, so that the asperities have slid over their nearest neighbors.

2
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However, in many crack bridging problems, the sliding displacements are small, falling within

the domain where the roughness does not become completely unseated. In that case, the misfit is

related to the local sliding displacement and thus varies along the debonded region of interface.

Bhihe and Evans 14 obtained numerical self-consistent solutions for this problem for several glass

matrix composites. Carter et al. 5.15 analyzed the sliding of hemispherical asperities over each

other and pointed out that for small displacements, the increased sliding resistance has two

components; one due to the increased friction associated with the extra misfit and the other, an

elastic component, due to the axial component of the normal contact force. However, the analysis

focused on the large slip region where the elastic component averages to zero, although reference

was made to unpublished numerical solutions for the small slip region. The purpose of this paper

is to present analytical solutions for the small slip region, which allow the role of roughness to be

easily identified as well as provide a means for analyzing fiber sliding experiments to extract the

interfacial properties.

2.0 DESCRIPTION OF MODEL

As in previous analyses of fiber sliding with smooth interfaces, the composite with

volume fraction f = Rf/R of aligned continuous fibers is represented by a concentric cylinder

model (Fig. 1). The analysis is restricted to composites with residual compressive stress acting

across the fiber/matrix interface, as is usually the case with intermetalic matrix composites and

sometimes the case with ceramic matrix composites. Pulling or pushing on the fiber at the end of

the cylinder (which corresponds to a sectioned surface or a crack surface of the composite)

causes a crack to grow along the fiber/matrix interface. The length of the debonded region is

dictated by a fracture energy, Gc, at the crack tip and frictional sliding over the debonded

surfaces.

3
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2.1 Interfaclal Morphology and Friction

The microscopic roughness over the debonded region is taken to have a linear sawtooth

shape as depicted in Fig. 1, with amplitude, h, much smaller than the radius of the fiber. This

roughness could arise from the debond crack following either pre-existing roughness on the

surface of the fiber or an irregular path adjacent to the fiber (within the matrix or within a third

phase at the fiber-matrix interface). The analysis will be restricted to cases where the local

relative displacements of the fiber and matrix (i.e., sliding displacements) are everywhere smaller

than the characteristic half-wavelength, d, of the roughness. In many crack bridging situations in

ceramic and intermetallic matrix composites, the displacements are small enough to satisfy this

condition. In this case, the actual values of h and d do not enter the analysis; the roughness is

characterized by the angle 0 (Fig. 1) and there is no assumption of periodicity in the roughness or

uniformity in its amplitude, in either the axial or the circumferential directions.

The debond energy Gc will be affected by the roughness, because of local deflections of

the crack front away from the Mode 11 orientation of the average fracture path. By analogy with

analyses of the effect of crack-tip deflection on the Mode I fracture energy,15 Gc is also expected

to be affected only by the angle 0 and not by the amplitude and period of the roughness.

This model of roughness is an id:alization, not only in the linear shape chosen, but also

because surface roughness of real solids exists over size scales that span many orders of

magnitude, from the atomic scale up to microscopic or macroscopic dimensions. Indeed, recent

studies have demonstrated the fractal nature of surface roughness at size scales below some

characteristic dimension, which may be determined by the method of surface preparation or by

some microstructural feature such as grain size. 10,17,18 Microscopic theories of friction invoke

the presence of submicroscopic roughness to derive the friction law (e.g., Coulomb friction). 17 "20

4
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It is the dominant roughness at the upper size scale limit that is modeled here by the

sawtooth shape. The influence of finer scale roughness is subsumed in the frictional stress, 't, that

resists sliding, given by the Coulomb friction law applied on a local scale as indicated in Fig. 1:

T =-z (1)

where On is the compressive stress normal to the interface (Un is negative) and the direction of r

is tangential to the interface.

The rough surfaces are assumed to slide over each other without locally distorting the

surfaces. This has the important implication that as soon as sliding begins in say the positive

direction, the facets oriented at the angle -0 (Fig. 1) lose contact, even when residual

compressive residual stresses are present. At the same time, the radial misfit strain (and therefore

the contact stress) increases at the facet oriented at the angle +-0, by an amount F0 that is

proportional to the magnitude of the local sliding displacement u(z):

lu(z)l TanO (2)
S= Rf(2

"The neglect of local elastic distortions due to the increased contact stress will be a reasonable

approximation provided the asperity height and period are small compared with the fiber radius.

2.2 Sliding Displacements

The frictional sliding causes relative displacements of the fiber and matrix at the end of

the cylinder (z = t). These displacements ame measured in push/pull experiments and are related

to the opening displacements of a bridged crack in the composite. The relative sliding

displacement at position z is given by an integral of the axial strains in the fiber and matrix,

which can be written (Appendix A)

u(z) = (E)f Ar dz (3)
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where Eb is an elastic modulus defined in Eq. (A11), and Aof is the difference between the axial

stresses in the fiber at position z and at a location far ahead of the debond tip. The opening

displacements of a bridged crack are given by Eq. (3) with z = t and Eb replaced by Eb of

Eq. (A13).

The analysis of stresses and strains is summarized in Appendix A. The analysis is taken

from the work of Hutchinson and Jensen 21 who used the Lam6 solution to evaluate stresses and

strains in sections normal to the z-axis. This approximation is valid if the axial stresses vary

slowly over distances comparable to the fiber radius, a condition that is satisfied if r is small

compared with the axial fiber stress, of. The matrix is elastic and isotropic, while the fibers are

transversely isotropic.

As far as possible, the notation here will follow that of Hutchinson and Jensen21 and a

subsequent analysis of fiber sliding by Marshall, 22 although some new normalizing parameters

will be defined. Relations will also be given between these parameters and those used by Kerans

and Parthasarathy 13 in a related analysis.

There is a jump in the axial fiber stress, of, from just behind to well ahead of the debond

crack tip, which is dependent upon the fracture energy, Gc. This relation is given approximately

by2 1

- o. = 2,(EGc (4)

where the superscripts (+) and (-) denote quantities far ahead of, and just behind the crack tip.

Comparison with full numerical solutions in Ref. 21 shows that Eq. (4) is a good approximation

if the sliding distance exceeds 2 to 3 times the fiber radius. The error is shown to be - V/af, and

thus becomes less significant as the applied load increases.

Several other parameters defined in Ref.22, which will be convenient to use later, are as

follows:

6
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r = + a• (5a)

ORo = oA/(A- 1) (5b)

aL = ORe + F (5c)

where 4•" is the residual axial stress in the fiber and A is a dimensionless elastic constant defined

in Appendix A. Note that d4o and at" differ when the applied load and volume fraction are non-

zero (Eq. (Ala)). For single fiber testing with f -+ 0, the parameter F is equal to the applied

stress needed to initiate debonding. For non-zero values of f, F is related to this initiation stress

by a•a= T41-faj), where al is an elastic constant defined in Eq. (Al). The residual stress

parameter cp.e is equal to the applied stress at which the Poisson's contraction of the fiber

cancels the residual radial stress at the fiber-matrix interface.

3.0 DISPLACEMENTS DURING FIBER PULLING

In this section, the relative displacements of the fiber and matrix at z = t are evaluated as

the stress aa applied to the end of the fiber is increased continuously from zero to a peak value

a€p (initial loading), decreased to a minimum value amin, and then increased again to a1p. During

initial loading, debonding and sliding progress stably along the fiber/matrix interface, whereas

during unloading reverse sliding occurs. The unload/reload cycle exhibits hysteresis due to the

frictional response of the interface. The fiber strength is assumed to be larger than ap, so that

failure of the fiber does not occur.

3.1 Initial Loading

The equation governing the changes in axial fiber stresses can be derived from analysis of

the equilibrium of forces acting on an element dz of fiber as shown in Fig. 2. Force resolution

gives

d 24I (+-AnTan 0) (6)
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in the direction parallel to z, and

or =(a.- ( Tan 0)7/2 (7)

normal to z (Or is the average radial stress at the interface). Elimination of ¶ and On from Eq. (6)

using Eqs. (2) and (7) gives
dof= 2ut'or (8)

dz Rf

where

, ±+TanO (9)

1 -igTanO

Two distinct effects of the interfacial roughness enter these equations: the increased S

friction due to the additional misfit strain of Eq. (1), which enters the analysis via the first term of

Eq. (6) as well as the radial stress, or; and the direct effect of the axial component of the normal

contact force at the inclined interface (second term of Eq. (6)). The second contribution can be 0

evaluated alternatively from an energy balance argument, in which it is the rate of change in

strain energy associated with the radial compression needed to accommodate the misfit strain. It

is the axial force that would exist for a frictionless interface, thus giving a non-zero value for the

right-hand side of Eq. (8) for p. = 0, and 0 * 0. If, on the other hand, 0 is zero, then Eq. (8)

reduces to the familiar result for a smooth interface

do_ 2pat (O
If= - 2p~(10)

dz Rf

The radial stress, or, differs from the stress for the smooth interface because of the

additional misfit strain due to the roughness. From the analysis in Appendix B, the radial stress is

given by

or-- = ÷r kz blAaf~z), 11

8
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where e,. is the radial residual stress ahead of the debond, 0 Iu(z)i is the contribution due to the

roughness misfit, bl is a dimensionless elastic constant defined in Eqs. (A2) and (Cl), and

bI Aof(z) is the change in radial stress due to the change in axial stress (Poisson effect). The

parameter 0 that characterizes the roughness misfit is given by

(BR-•E TanO (12)

where Em is the Young's modulus of the matrix and B is a dimensionless elastic constant

(negative) defined in Eq. (B4).

The changes in axial fiber stresses can also be written in terms of the displacements by

differentiating Eq. (3)

du(z) (13)f dz

After further differentiating Eq. (13) and combining the result with Eqs. (8), (11) and (13), the

following diferential equation is obtained

du + 11 da + ' + 30 (14)
dz2  

(1

where i1 = 2p.'bl/Rf , (15a)

ad= ( ) 2,a (15b)

and 01=2i' I -= n (a- (15c)VEbRfj E

(The relation ar. = b, (a - y) from Eq. (AM) was used in Eq. (15c).) The boundary conditions are

specified by conditions at the tip of the debonded region (z = 0):

u(0) = 0 (16a)

and

9
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0

du(0) = -= / Eb (16b)

dz

the second of these being given by Eqs. (4) and (13). With these boundary conditions, Eq. (14)

provides the solution for u(z), i.e., the sliding displacements as a function of distance from the

debond front. Once u(z) is known, Eq. (13) provides the axial fiber stresses as a function of

position. Then, with z equal to the debond length, t, so that of = 0 a, we have a pair of parametric

equations from which the displacement u(e) may be plotted as a function of the applied stress,

with t as the parametric variable.

The solution to Eq. (14) can be simplified by defining the following dimensionless

parameters

U = ý-_ u (17a)

:e = Tiz (17b)

x = (1 - 4€,/r 2) (17c)

g = Y/a (17d)

Then Eq. (14) becomes

d~iu' + .du!-.+ (J.2• + _1-g)=0 (g
dz,2 dz' k74!

and the boundary conditions at z' = 0 become u'(0) = 0 and du'(0) g.e solution of Eq. (18)
dz-

for u' > 0 (i.e., fiber pulling) is

U'Z)=+ exp I- I I
l-x 2  x(l+x) 2 I"x(1-x) 2

a fl(g,x,z') (19)

In terms of the same dimensionless parameters, Eq. (13) becomes

10
J12410H/bje 0



a +-du= ggx -2)e~ d0z 2"(+x)z')ý+(g+gx' 2)exp("(ý~ ' 41 •- xz'z,
a d~z' 2x 2 1k 2x 2

- f2(g,x,z') (20)

Solution of Eqs. (19) and (20) at z' = t provides the relation between the normalized

sliding distance (TjEtca)u and stress difference (aa f ) which involves only two other material

parameters, x and g. With Eqs. (5) and (17d), the parameter g can be written as

"r-(A-1)ORo r f+(A-1) (21)
r + OR, r, - I

where F = - F/aI,. Therefore, g is a function only of the elastic constant A and the ratio of the

debond energy to the residual stress. The range of g is from (I-A) for zero debond energy to

unity for zero residual stress. The dependence of A on the properties of the fibers and matrix has

been evaluated in Ref. 22; values typical of ceramic and intermetallic matrix composites fall

between 1.0 and - 1.5 for single fiber sliding and between - 0.5 and - 1.5 for multiple fiber

sliding. The parameter x contains the influence of the interfacial roughness, and is dependent on

the elastic properties, the angle e, and the coefficient of friction g± (Eqs. (11), (15a), (15b) and

(17c)):

x = (I - 44b/n2)I/ (22a)

where ,1 = Tan
2b•Eb It

-B' (I- gTanO) TanO (22b)
g (1 + TanO)

B'= BEM (22c)
2b2Eb

The dimensionless elastic contant B' in Eq. (22c) is sensitive to the ratios of the elastic properties

of the fibers and matrix (see Appendix C); for ceramic and intermetallic matrix composites its

11
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value could range from approximately -5 to -25. Representative values for are: -13 for glass/SiC

composites (Ef = 200 GPa, Em = 80 GPa, vf = Vm = 0.3, f = 0.4) and -25 for titanium-

aluminideiSiC composites (Ef = 415 GPa, Em = 80 GPa, vf = vm = 0.3, f = 0.4). The variation of

x with 0 for B' = -25 is shown in Fig. 3 for several values of friction coefficient 4i. For most

reasonable roughness angles and friction coefficients, x lies between - I and 8; x = 1 for a

smooth interface, while x increases with increasing roughness angle or decreasing friction

coefficient.

Before plotting the solutions to Eqs. (19) and (20), it is convenient to rewrite them as

u uiEbj ( i) fl (g, x, ') (23)

and
(Ya (I1- alF)

Sa 1 - alF)( 1- A) +(F- 1) f2 (g, x, ') (24)"-GRO

The normalized displacements u* during initial loading are shown in Fig. 4 for a composite with

elastic properties typical of the titanium aluminide/SiC composites mentioned earlier

(A = 1.141). In Fig. 4(a), curves Sa(u*) are plotted for various values of x with F = 0,

corresponding to y = er. (i.e. the stress required to initiate debonding being zero). In Fig. 4(b),

curves are plotted for three values of F': (1) 1" = -(A-i) corresponding to y = 0 (i.e., an unbonded

interface), (2) I' = 0, and (3) F' = (A-i), corresponding to y = 20'o. For each value of F', curves

are plotted for both smooth (x = 1) and rough (x = 5) interfaces.

While trends in the normalized displacement u* can be evaluated in terms of the single

roughness parameter x, which combines the effects of the friction coefficient I. and roughness

angle 0, calculation of the absolute displacements requires that g. and 0 be defined separately.*

Since u* is proportional to It' (through the dependence of 1 on gt' in Eq. (15(a)), which increases

"More specifically, the parameter WI' is requried. However, defining both x and gI' is equivalent to defining g± and 0.
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with increasing 0, the relative decrease in absolute displacement with increasing 0 (at given gt) is

larger than the corresponding decrease in the normalized displacements in Fig. 4.

Spontaneous debonding and sliding can occur during formation of the free surface at

z = t, if r" < 0. The spontaneous sliding displacement, uo, is given by the intercept on the u-axis

in Fig. 4(b). In the modeling of bridged cracks, this displacement is part of the crack opening

displacement. However, in fiber pulling experiments, the displacement measurements usually

begin after formation of the free surface, so the curves should be shifted along the u-axis by -uo.

3.2 Alternative Notation In Terms of Single Fiber Loads

In an earlier analysis of single fiber pushing experiments by Kerans and Parthasarathy, 13

which is equivalent to the analyses of Refs. 21 and 22 in the limit f = 0, the applied loads were

expressed in terms of the force, P, applied to the end of the fiber. An equivalent set of parameters

were defined: P*, the load at which the Poisson's contraction of the fiber cancels the residual

normal stress; PR, the residual axial stress in the fiber, and Pd, the load to initiate debonding.

These parameters are related to those in this paper by

p* = 7R 2fOR (25a)

PR = nRfo2 =(A- 1)P* (25b)

and Pd = 7tRy (25c)

Conversely, the parameters in Eqs. (19) and (20) are related to these forces by

* .=(P* + Pd + PRY)/R2 (26a)

a- Of =( P- PRY)/R? (for f = 0) (26b)

g Pd (26c)g=P* + Pd + PR

13
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With these substitutions, Eqs. (19) and (20) become

(Rp, )u p* ) l(g, x, z') (27)
P PRP

andp . - -- PR + ( + P -PR )f2 c g,x,z ') (28)

and ~~P* =P* P*Iýf 9 ,Z)(8

3.3 Unload/Reload Cycle 0

The axial fiber stresses during unloading, after loading initially to a peak load cyp, are

shown schematically in Fig. 5(a). Reverse sliding occurs within a distance (ep-s) of the end of the

cylinder. The sliding distance, ep, during the initial loading to ap is defined by Eq. (20) with

of= 0p at z'= illp.

Within the region of reverse sliding, the direction of the frictional stress c in Fig. 2 is

reversed. With the appropriate sign changes in Eqs. (6) and (7), the counterpart of Eq. (8)

becomes

doI = +20 qr (29)
dz Rf

where

.t= g-TanO (30)

1 + g Tane

Then, following the same steps as those leading to Eq. (18), the normalized differential equation 0

defining the displacements becomes

-4&dLu A [ii-+ +I "xt)2)ý l+(1 -g)=o 0 (31)
ci(zty zt 4 10

which differs from Eq. (18) only in the sign of the leading term and in the replacement of gt' by

ptt in the definitions of all quantities with the superscript (t), i.e.,

ut = u' (Wt/o') (32)

14
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ut = U' (4 t/,) (32)

zt = z' (W/toL') (32b)

and

1 (xt)2 =(1- x2) (Wt'4) 2  (32c)

The boundary conditions are defined by matching u and du/dz at z = s to the values at the peak

load condition defined by

u'(s') = f1 (g, x, s') (33a)

du'(s') = f2 (g, x, s') (33b)
* dz'

where s' = Tls. The solution of Eq. (31) has the form

ut(zt) = f3 (g, x, st, zt) (34a)

af + dL f4 (g, X, St, z) (34b)
cc dze

with af = Oa at z = tp. The solutions f3 and f4 are very lengthy and are not reproduced here.

However, they are readily obtained using the symbolic mathematical program Mathematica. 2 3

To plot u(af) during unloading from (Ya = ap to cya = amin, s in the parametric Eqs. (34) is varied

between s = t p and s = smin, with s min defined by Eq. (34b) with af = amin at s = smin and z = tp.

To plot the displacements with the same normalization as for the initial loading, it is necessary to

multiply the solutions to Eq. (34) by (Q'/gL)

During reloading (Fig. 5(b)), the differential equation for the displacements is the same as

Eq. (18), and the boundary conditions, defined by matching u and du/dz at z = t to the values at

the minimum load, rmin, are

15
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u'(t') = (V1.'/ t) f3 (g, X, St"min, t0 (35a)

and du'(t')
andd = f4 (g, x, strmi, t)) (35b)

The solution of Eq. (18) with these boundary conditions has the form

u'(z) = f5 (g, x, S'min, t', z') (36a)

-2 = f6 (g, X, S'min, t', z')(3b

with a = aa at z = ep. Again, the functions f5 and f6 are not reproduced but are straightforward to

obtain. To plot u(aa) f3or reloading from amin back to up, the range of the .ameter t in

Eqs. (32a) and (32b) is the same as during unloading (stain < t < tp).

The effect of roughness on the displacements during a load-unload-reload cycle is

illustrated by the comparison in Fig. 6(a) for a smooth (x = 1) and a rough (x = 5) interface in a

composite with A = 1.14, r" = 0, and 0 = 11 degrees. The roughness causes a reduction in the

displacement during initial loading, and an increase in the relative amount of recovery and

hysteresis during the unload-reload cycle. For a given value of x, the relative recovery and

hysteresis increase with increasing roughness angle as shown in Fig. 6(b) (different values of 9

give different unload-reload curves, but the same initial loading curve).

If the interfacial debond energy is sufficiently large (r > 0), unloading from small values

of op can allow reverse slip over the entire debonded region (i.e., s = 0 in Fig. 5(a)). Then, for

further unloading different boundary conditions am required. The equations are the same as

discussed in the following section when spontaneous debonding occurs.

4.0 DISPLACEMENTS DURING FIBER PUSHING

The displacements caused by fiber pushing follow from an analysis that is similar to that

for fiber pulling. With the applied stresses and the displacements being negative for pushing, the

16
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differential equations defining the displacements are given by the corresponding equations for

fiber pulling (Eqs. (18) and (31) with the signs of the first terms changed:

-dz'? +d ,, +( - lu'l + (1-g) =0 (37)

for initial loading and

+ d2ut + duit1+(l xt)-.lutl+ (l-g)=0 (38)
d4zty zt 4i

for unloading.

The boundary conditions are dependent upon whether or not spontaneous debonding

occurs. In the absence of spontaneous debonding, or for sufficiently high pushing forces, the sign

of the stress jump at the debond is reversed (Fig. 7(a)), i.e., y in all of the equations is replaced by

T6 = -y (39)

With this sign change in yc, the parameters g and I" take different values, gc and rl, given by

substituting yc for y in Eqs. (5), (17d) and (21). Thus, the stress-displacement relation during

initial loading is given by Eq. (37) with the boundary conditions u'(0) = 0 and du'(0) =
dze

If spontaneous debonding occurs (17 < 0), the axial fiber stresses are altered, as shown

schematically in Fig. 7(b) and analysis is somewhat more convoluted. The initial displacements

are positive and are given by the equations for fiber pulling (Eqs. (19) and (20)) with peak load

op = 0. The displacements at low pushing forces (Iaal < loll) in Fig. 7(b)) are equivalent to those

occurring during unloading in pulling (Eqs. (31) and (33)) from a peak load of ap = 0. However,

with continued pushing, at stresses between al and a2, the boundary conditions change. Within

this stress interval, the stress jump at the debond tip varies from y to yc as the applied load

changes from al to Y2. The boundary conditions become u'(0) = 0 and du(0) = Y,, where y' is
dz

the stress jump at the debond tip. If we define g' from Eq. (21) by substituting y' for y, the second
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boundary condition is du'(0) = g'. Then with the debond length fixed at t = to (the solution of
dz'

Eq. (20) at cyf = 0), the solution to Eq. (31) provides a pair of parametric equations for stress and

displacement with g' as the parametric variable (gc < g' < g). This solution holds as long as the

displacements are positive. At some stress between al and 02, the displacement at z = to

becomes zero and, with further load increase up to (2, a zone over which the displacements are

negative spreads along the debonded region from z = to to z = 0. Within this stress range, it is

necessary to solve for the position z = zo at which u(zo) is zero, calculate the displacements over

the interval 0 < z < zo using the solution for positive displacements (Eq. (31)), and then calculate 0

the displacements over the interval zo < z < to using Eq. (37) with the boundary conditions

defined by matching the solutions for u and d- at z = zo. At stresses between a2 and 0Y3, the
dz

displacements are negative over the entire debonded region and the displacements are given by

Eq. (37) with the abovementioned boundary conditions with y' varying from 0 to yc. At stresses

larger in magnitude than 03, the solutions are the same as for no spontaneous debonding, as

described in the previous paragraph.

Stress-displacement curves for fiber pushing are plotted in Figs. 4 and 6 for the same

range of parameters as used for the fiber pulling curves. Similar trends are evident, although the

displacements, both with and without roughness, are smaller in fiber pushing; and the effect of a

given roughness (i.e., given x) is larger in pulling than in pushing. In addition, the relative

recovery of displacement during unloading is larger in fiber pushing than in pulling.

5.0 DISCUSSION

During fiber pullout the additional misfit strain Eq due to interfacial roughness tends to

cancel the transverse Poisson's contraction of the fiber. The degree to which these effects can

cancel may be seen by comparing the curves of Fig. 4(a) with the stress-displacement relation for

a smooth interface with a constant frictional stress, z, over the debonded region. 2 2 In terms of

the normalized parameters defined here, this relation is
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U_ I•'to ).524 +(A -1)S r-/2 (A-l)1'] (34)

"The result for 'to = JL'Oro is plotted in Fig. 8. Since aro is the normal interfacial stress when the

axial stress in the fiber is zero, this value of 'to is the corresponding frictional stress given by the

Coulomb friction law with friction coefficient g'. For applied stresses in the range 0 < ca <aRo

the constant friction results are very close to those of the rough interface with x = 3. At higher

applied stresses some deviation towards lower values of x is evident. For a friction coefficient of

0.4 the value x = 3 corresponds to 0 = 20, a reasonable value for typical interfaces in composites

containing SiC fibers produced by CVD. 9

Measurements of stress-displacement relations in titanium-aluminide/SiC composites

have been reported with very close fit to the constant friction model up to applied stresses as high

as -2aro. 1I Such response, which deviates from the linear roughness results in Fig. 8, could be

produced by a non-linear roughness profile that would more closely model the asperities

typically observed on SiC fibers. The analysis of a nonlinear roughness profile would begin with

the same formulation developed here, but would require some local elastic distortion of the

asperities (to avoid point contacts that would result from sliding of nondistorting surfaces with

nonlinear profiles), and would lead to a different functional dependence on u(z) in Eq. (2) and

hence in the third term of the differential equations (e.g., Eq. (14)).
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APPENDIX A: STRESS-STRAIN RELATIONS

The analysis of stresses and strains is based on the work of Hutchinson and Jensen.21 The

matrix is taken as elastic and isotropic with Young's modulus Em. The fiber is taken to be

transersely isotropic with Young's moduli Ef and Er in the axial and transverse directions; and

Poisson's ratios vf and Vr governing transverse Poisson's strains due to axial and transverse

loading, respectively.* The properties Vr and Er enter the analysis via the pardmeter
4f [1-Yi v.1 for isotropic fibers 4f = I.

There are two contributions to the elastic misfit strain between the fibers and matrix. One

arises from the difference in thermal contraction of the fibers and matrix during cooling from the

fabrication temperature, with components and CTr and ETz in the radial and axial directions

(defined alternatively by the parameters FT e Tr and X = JTr/eTz). If the residual stresses cause

yielding of the matrix during cooling from the fabrication temperature, both ET and X may differ

from values calculated for a purely elastic response during cooling. The other contribution is a

radial misfit strain associated with the sliding displacements of the rough interface. This

contribution is proportional to the magnitude of the local sliding displacement, u(z), and is

therefore dependent on the applied load and position along the fiber, as defined in Eq. (1).

Stresses and strains in any section transverse to the z axis were evaluated on the basis of

the Lami solution, an approximation that is valid if the axial stresses vary slowly over distances

comparable to the fiber radius. This condition is satisified if c is small compared with the axial

stress in the fiber, af. Two types of boundary conditions on the outer cylindrical surface were

considered: Type I has zero normal and shear tractions, whereas Type II also has zero shear

tractions, but has radial displacement, ur, constrained to be the same as its value far ahead of the

* For a transversely isotropic material loaded in the axial or tranverse directions there are three Poisson's ratios Viz,

vz and vtr. where vij refers to strain in direction i due to stress in direction j. However, since v , and vz are related
by vz = v-,ErEf, only two of the Poisson's ratios, Vrz a vf and vjr a Vr, in addition to the Young's moduli Ef and
Er. are needed to specify the elastic response.
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0

debond crack. Type I conditions are appropriate for single fiber pulling or pushing experiments

and in general at positions well ahead of the debond crack. Type I1 conditions are appropriate

over the debonded region of a composite in which all fibers are pulled equally (such as bridging

fibers within a crack), provided the slip length is small compared with the specimen width.

Type II conditions were also used by Cox 24 in analyzing sliding of fibers near a free surface

during thermal cycling, whereas earlier analyses used only Type I boundary conditions. Large

differences in load-displacement relations can result from these different boundary conditions. 22

The axial stresses, ajf, in the fiber during initial loading are shown schematically in

Fig. 1(b). Well ahead of the debonded region the stresses and strains are constant and given by

the Lamd problem with Type 1 boundary conditions, as well as the conditions that the axial

strains ef and Em in the fiber and matrix be equal and the normal stresses and displacements at the 0

fiber/matrix interface be continuous. With the superscript (+) denoting positions well ahead of

the debond crack, the subscript (r) denoting radial stresses, strains and displacements at the

interface, and the subscripts (f) and (m) denoting axial quantities in the fiber and matrix, the

stresses and strains* in the absence of roughness effects are given by:

of" = alfo, - a2EmeT (Ala)

ci" = a3fo, - a-Emir (Alb)

t = e = asfcyEm + a6r (A ic)

where the a's are nondimensional functions off, Ef/Em, vf, vf/Vm, 4f, and X, given in Ref. 21, and

Oa is the axial stress in the loaded end of the fiber. The residual stresses in the fibers, in the

absence of debonding and sliding, given by Eq. (Al) with Ga = 0, will be denoted of"o and e. To

maintain analytical tractability, the analysis will be restricted to cases where the radial stresses

"Strains in both the fibers, Et, and matrix E are measured relative to the unstressed state of the matrix.
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ahead of the debond crack are independent of the applied load, i.e., 07 = ovo. This is satisified for

either f = 0 or vf = Vm (which gives a3 = 0).

Behind the debond crack tip the changes in stresses and strains relative to their values far

ahead of the crack (i.e., Aaf = of - oa, AEf = Ef - E÷, etc.) are given by the Lam6 problem without

mismatch strain and, since there is relative sliding, with AEf # Aem. With continuity of Aar and

Aur across the interface, and the equilibrium requirement fAaf + (1-f)AOm = 0, the stresses and

strains may be written as

ACMm =(1ff) AOf (A2a)

Ar = b, Aaf (A2b)

Aef = b2 Atf/Em (A2c)

S= -b3 AMtEm (A2d)

where the b's are another set of nondimensional functions of the same parameters as the a's (with

the cxception of X) given in Ref. 21. There are two sets of b's corresponding to Type I and

Type II boundary conditions.

The radial stresses just behind the crack tip, a, and well ahead of the crack tip, et, are

related by

a= + bi Aa . (A3)

With y defined in Eq. (4) and a defined as

a =a;/b, (A4)

Eq. (A3) becomes

az =!Oýr + (A5)

b1
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Then with the approximation aý = ao, as discussed above, and with the relation oY0 = (a.ia2) oa"o

from Eqs. (Ala) and (A1b), Eq. (AM) can be written as

a = R+r , (A6)

where

"=y+ +o , (A7)

q~o a+f' / (A - 1) (AM)

and

Two displacements are of interest. The relative displacemcnt of the fiber and matrix at

Z = t (which corresponds to the measurements obtained in fiber pulling/pushing experiments) is

given by •

e= m-e)dz= fAafd , (AlO)

where

Eb = Em / (b2 + b3 ) (All)

and is, therefore, proportional to the shaded a.,a in Fig. 1(b). The displacement that is used as the

crack opening in continuum models of crack bridging is the additional fiber displacement due

directly to debonding and sliding, given by

A=~r-tdz kJL Yordz .(A12)

Eb

where
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E'b=E/b 2  (A13)

The displacements 8 and A are related simply by

A +1,3 ) (A14)

Equation (A14) relates the displacements measured in a multiple fiber pulling experiment

directly to the crack opening in bridging models for given fiber stress, aa. However, the relation

is less direct for single fiber pulling experiments, because in that case 8 is evaluated using Type I

boundary conditions, whereas 5 for the multiple fiber pulling (and crack opening) is evaluated

with Type II boundary conditions over the debonded region.
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APPENDIX B: RADIAL INTERFACIAL STRESS IN SLIP REGION

The radial stress over the debonded region of interface is given by (Eq. (A2b)):

or= Oer + bi Aof

= cyr+ + bjuf - b ;f (B$)

In the absence of interfacial roughness, Eq. (B1) can be written (with Eqs. (Ala) and (AIb)) as

er = (a3 - b lal) f a + (b la2 -a4) Em eT + b I cf . (B2)

The second term in Eq. (B2) represents the contribution to ar from the radial component of the

misfit strain (XET). Therefore, the additional radial misfit strain ce due to interfacial roughness

results in superposition of the following radial stress

of = BEe (3)

where

B _ (ba2- a4) = -a4 (B4)
SAX0

The dimensionless elastic parameter B is negative and independent of X. The resultant radial

stress over the debonded region of a rough interface is (Eqs. (B 1), (B3) and (1))

or = or + 0 lu(z)l + b, Aaf (B5)

where

(BF'Mj Tan 0
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APPENDIX C: ELASTIC CONSTANTS

The elastic constants ai and bi that appear in Appendix A can be evaluated from

expressions given in Hutchinson and Jensen 2 1 or are available on a computer file from the

authors. For the case f = 0, with isotropic mismatch strain, and an isotropic fiber, the elastic

constants that appear explicitly in the body of this paper are given by the following expressions:

b_ , EmVf (Cl)
Ef (1 + Vm) + m(l- vf)

B = bia2 - a4 = -Ef (C2)
X. Ef(I + n dI- vf)

A-=(I la_-bla = (I 1+ vf) [Ef (1 + vn)+ Eni- vf)](0a4 ( Ef.(1 + vm)+ Em(l- vf 2V) (C3)

Eb = E Ef[Ef(1 +Vm)+Em(l-vf)]
Eb= +b3) Ef(I +Vm)+Em(l-v(C4)

SEb = Eb (C5)

V2 _f(C6)
2b?2 Eb -2Emv•f

These results would apply for a single fiber in an infinite matrix. For the more common testing

configuration involving pushing or pulling of a single fiber within a composite containing many

fibers, the constants ai should be evaluated using the value of f corresponding to the composite,

whereas the constants bi should be evaluated using f = 0. For the pulling or pushing or multiple

fibers, all of the constants ai and bi are evaluated using the value of f for the composite, with bi

being evaluated using type II boundary conditions.
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Figure Captions

Fig. 1 (a) Composite cylinder model used for analysis. (b) Axial stresses in fiber during

initial loading (shown for case f = 0).

Fig. 2 Stresses acting on an element dz of fiber.

Fig. 3 Variation of roughness parameter x with g and 0 for B' = 25.

Fig. 4 Stress-displacement relations for single fiber sliding in pushing and pulling: (a) effect

of roughness parameter x for F = 0; (b) results for several values of F and x.

Fig. 5 Axial stresses in fiber subjected to pulling force: (a) unloading and (b) reloading after

loading initially to peak local ap (shown for case f = 0).

Fig. 6 Stress-displacement curves with an unload/reload cycle for a composite with A = 1.14

and F = 0, corresponding to Ti3AI/SiC composites. (a) Comparison of fiber pulling

responses for smooth and rough interfaces (6 = 0.2 rad for unload/reload curves of

rough interface). (b) Influence of roughness angle on unload/reload curves for rough

interface (x = 5). (c) Comparison of fiber pushing responses (Oa and u both negative)

for smooth and rough interfaces (9 = 0.2 rad).

Fig. 7 Axial fiber stresses during pushing: (a) system that does not spontaneously debond at

free surface (y> If'o•, (b) system that undergoes spontaneous debonding (7 < 14J).

Lightly shaded area represents positive contributions to the displacement; darker areas

represent negative contributions.

Fig. 8 Comparison of stress-displacement response for an interface that has constant sliding

resistance over the debonded region with the responses for rough interfaces with

Coulomb friction.
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6.3 The Determination of Interfacial Properties from Fiber Sliding Experiments

in preparation
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