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1.0 INTRODUCTION

The overall aim of this work is to develop an understanding of the factors that control the
transverse strengths of high temperature MMCs, and thereby identify the microstructural
requirements to maximize this strength. Our approach is to identify the damage mechanisms that
lead to transvcerse failure using in situ observations and high resolution strain mapping and, on the
basis of these observations, develop analytical models that allow the roles of various
microstructural properties to be identified. Among the important properties are the strength and
sliding resistances of the interface, residual stresses, and fiber spacing. Some of the implications
for optimum interfacial properties and fiber spacing run counter to “conventional wisdom.”

Experimental work has involved titanium aluminide matrix composites with different fibers
to vary the residual stress, and with fiber coatings to modify the intertacial properties. Different
failure modes were observed in composites with large and small residual stresses.

In composites with large residual stresses several forms of damage preceded failure, vut ihe
damage that led to failure and thus limited the strength was transverse cracking. The analytical
stress field solutions indicate that the stresses driving transverse cracking are greatly increased if
circumferential sliding occurs, whereas this stress is reduced at closely spaced fibers provided
circumferential sliding does not occur. Therefore optimum strength is achieved with either
strongly bonded interfaces, or interfaces that debond easily but have large resistance to
circumferential sliding. The latter condition could also be compatible with the requirement of
debonding and relatively easy frictional sliding for maximum benefit from fiber reinforcement in
longitudinal properties (i.e., increased resistance to fatigue crack growth because of crack bridging
by the fibers). The results suggest a potential benefit from having anisotropic interfacial
properties, perhaps obtained through morphology, to allow easy sliding in the axial direction and
more strongly resisted sliding in the circumferential direction.

In composites with small residual stresses and strongly bonded interfaces, the transverse
strength is limited by cracks that initiate by splitting of the fibers, or cracks that form in the matrix
near the interface, where the analytical solutions indicate a large stress concentration occurs. These
cracks are far more detrimental than a debonded interface which, provided the interface is
sufficiently weak, becomes a hole which concentrates the applied load more weakly. Therefore the
optimum transverse properties are expected for a weakly bonded interface, again compatible with
the requirements for optimum longitudinal properties.

Because of the important role of interfacial sliding on transverse properties and the potential
benefit from tailoring anisotropic friction, studies of the effect of interfacial roughness on sliding
resistance were initiated. Previous analyses of the relation between the force and displacement
during fiber sliding (pushing or pulling) were extended to include effects of interfacial roughness.




Analytical solutions were obtained for a linear roughness protfile over the range ot displacements
that are smaller than the dominant half-wavelength of the roughness. With the equations expressed
in normalized torm, a convenient friction parameter, which defines the roles of the triction
coefficient and the roughness angle, was defined. For certain values of the friction parameter, the
effect of the roughness negates the Poisson’s contraction during fiber pulling, giving solutions that
are very close to the response of a system with a constant frictional stress at the interface.

Results of single fiber pulling experiments to measure frictional sliding in titanium
aluminide composites that had been subjected to cyclic loading at various temperatures were
interpreted in terms of these analytical solutions. The experiments involved measurement of relative
sliding displacements using high resolution displacement mapping, giving sutficient resolution 1o
distinguish various friction laws.

The results of the theoretical effort at ASU are presented in Sections 3.0 and 4.0. Section
3.0 includes the studies of fiber interaction, which was found to be essential in the analysis of the
composites' transverse behavior. Section 4.0 deals with the disturbance of the local stress field in
the vicinity of a free surface. A comprehensive discussion of the transverse strength and failure
mechanisms of the composites under study is presented in Section 5.0 which includes the
experimental observations and the relevant theoretical models. Section 6.0 presents the first stage
of our study involving the effects of frictional sliding.
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3.1 On the Elastic Interaction between Two Fibers in a Continuous Fiber

Composite under Thermal Loading
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On the elastic interaction between two fibers
in a continuous fiber composite under thermal loading

Demitris Kouns

Mechanical and Aerospace Engineering Depariment. Arizcna State University, Tempe, AZ 85287-6106. 'S4
and

Eiichiro Tsuchida

Mechanical Engineering Depariment, Sanama University, 255 Shimo-Okubo. Urawa 338, Japan

Received 31 October 1990 revised version received 15 Apni 1991

The problem of fiber interaction in unidirectional fiber composites under thermal loading is considered. A pair of fibers 1s
modeled by two inhomogenerties that sustain an eigenstrain loading. proportional to the difference of fiber/ matnx thermal
expansion coefficients. Utilizing the displac.ment potential approach, the plane strain problem is solved analyvucally. The
effect of incoherent interfaces is evaluated. in companison to the case of perfect bonding.

1. Introduction

The most commonly used approach for manufacturing titanium aluminide composites is consolidation
of the matrix in direct contact with the fibers. The matrix may begin as a rolled sheet or powder, or it may
be applied to the fiber by plasma deposition. In both cases, the final product in all “ bare-interface™ Ti, Al
composites contains some degree of microcracking both of the fiber/matrix interface and the matnx
between fibers (Cox. 1989).

Causes of the microcracking are, among others, the chemical reactivity of the matrix/ fiber system. the
brittleness of intermetallic matrices and the micromechanical damage due to the thermal loading of a
material with an inherent thermal mismatch between its constituents (Cox, 1989). In intermetallic matrix
composites, the local stress state is severely affected by residual thermal mismatch stresses.

The effects of the interfacial integrity ! on the mechanical properties of thermally loaded composites are
not, yet, well understood. A weak interface may enhance room temperature monotonic strength and
fatigue life for loading in the fiber direction, while degrading transverse modulus, strength, and high
temperature creep resistance (Cox et al., 1989). Nevertheless, the prerequisite to predicting microcracking
in any material is knowledge of the local stress state.

The overall properties of composites have been the subject of a number of investigations that are
primarily based on the self-consistent method (Kroner, 1958; Budiansky, 1965; Hill, 1965). An extensive
list of references is included in Mura (1987).

Based on a successive iteration method introduced by Mori and Wakashima (1990), the average values
of the elastic properties of a composite with randomly distributed fibers have been determined. in closed
form; this approach has been extended to account for the case of sliding fibers (Shibata et al., 1990).

' Thic work has been supported by the Air Force Office of Scientific Research, through the University Research Initiative Award
AFOSR 90-0235.

0167-6636 /91 ,/303.50 T 1991 - Elsevier Science Publishers B.V. All rights reserved
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When the fibers are periodically distnibuted. the Eshelby transformation strains can be accurately
estimated: consequently. the moduli of a composite can be determined. using energy considerations. An
extensive treatment of the subject has been presented by Nemat-Nasser et al. (1982), Iwahuma and
Nemat-Nasser (1983), and Accorsi and Nemat-Nasser (1986).

In the present study. an attempt was made to determine the local elastic field in the vicinity of two
identical fibers in a continuous fiber composite under thermal loading. The plain strain analysis followed.
1s based upon the observation that thermal mismatch can be modelled as an appropriate eigenstrain field.
sustained by the fiber cross sections.

Our primary interest is to determine how the fiber interaction relates to the local stress state of the
fiber/matrix interface, as well as the surrounding matrix itself. Such an analvtical investigation of the
interaction is useful. since most existing closed-form solutions involve single fibers.

The geometry of the boundary value problem is shown in Fig. 1. Two circular inhomogeneities (fiber
cross sections). with a central distance c¢. undergo an eigenstrain loading. Utilizing the di. ~lacement
potenuals approach. an analytical solution for the elastic field is obtained. in a series form.

2. Description of the boundary value problem

Consider two circular inhomogeneities 2, and 2, with centers at O,, O,, respectively. embedded in an
infinite elastic region. Let the centers coincide with the origins of the Cartesian coordinates (x,, 1,) and
(x3. »:). and x,. x;-axis be the center line (Fig. 1). If we assume that the central distance is equal to unity,
then

xp=x,+1, ¥ =1 (1

X2

G v
Fig. 1. Geometry of the problem.
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The polar coordinates (r. 8 ) are defined through the transformauon

X =r cosé@. yv=rsinf (+r=12).

The displacement vector & can be expressed as the sum of the vectors corresponding to the O, and O,
coordinate systems. Therefore

u=u ~u-. ()

According to the Papkovich-Neuber displacement formulation (Papkovich. 1932; Neuber, 1934). u, and
u, can be expressed as

2Gu, = grad[ ¢y, + X9y, + 390 ] — 41 = v) e O] (3)
2Gu; = grad[¢n: + 2012 + 329 ] — 41 = v)[ 612 O] (4)
where ¢, , are arbitrary harmonic functions and (¢, ,. ¢,,,] 1s equal 10 ¢,, for the x-component and ¢, for
the y-component of the displacement. G. v denote the shear modulus and Poisson’s rauo. respectively.
In order to satisfy any conditions along the boundary of the first inhomogeneity 2,(r;, = a)). it is
necessary to express (4) in terms of the (x,. ),) coordinate system. Such a transformation is readily
avatlable using (1) and is given by

2Gu;y = grad[ g, + (x, = 1) ¢y + yioz] = 4(1 = »)[$17. 62:]
or

2Gu; = grad(( o, = ¢12) + X112 + i$22] = 4(1 = #)[ 12, ¢22]. (5)
Similarly, for the second inhomogeneity Q.(r, = a,), we have {from (1), (3)

2Gu, = grad[ (9, + &11) + X1y + yadn] — 4(1 = ¥)[b11. 03] (6)

Due to the applied thermal loading. eigenstrains €7 and ¢’ are introduced in £, and £,. These
eigenstrains are proportional to the difference of the thermal expansion coefficients between the fibers and
the surrounding matrix. Consequently, the displacements corresponding to the transformation strains €7
and €. are given by

- -

ur=e€;x, uy=¢€ly,
or. in polar coordinates
ur=tr(er+er)+ir(ef —¢r)cos 26, ug =(er —€2)rsin 26. (7

If we assume that the fibers are perfectly bonded to the matrix, the boundary conditions along the circular
interfaces (r, = a,) are

u,=u,+ur, ug=1ly+1ug, o, =a,. T9=Tg. (8)

In the absence of any far field mechanical loading, all the components of the stress tensor vanish as
r — =¢. Therefore

limo, =0. 9)

r—x
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The unique solution of the problem can be obtained. if a set of harmonic displacement potenuals 15
determined in such a way, that the b..undary conditions (8) and (9) are satisfied.

3. Analytical solution

The displacement potentials chosen for the matrix (r, > a,) are

, - -
do,=po| Fy log p,+ 3 A,p "cosnb |, ¢,=p, 3 Bp " cosnb,. ¢, =0 (1)

n=] n=i

and for the two inhomogeneities (r, < a,)

®x® x
¢0:=p0 Z A’np7 cos n0,. ¢]:=p0 z B”lp:' €Os nal' ¢2!§0‘ (II)
n=] n=]
where p, =r/c and p, = 2G¢™.

Using the potential functions (I) and (II) we can derive stresses and displacements in the matrix and th:
inhomogeneities; it can be easily verified that the boundary conditions (9) at infinity are idenucally
satisfied. N _

What remain to be determined are the values of the coefficients F,, A, B., A!, and B,. This can be
accomplished by enforcing the boundary conditions along the interface of the inclusions, as described by
(8).

In order to proceed with the boundary of £2(r, =a,) we utilize (3), (5) and the following relations
between the harmonic functions:

- 1 - m 1 ,
log p== Y o7 cosmb, logp == ¥ (-1)"—p7 cos mé, (10)

mw] me]

and

- -]
p:"cos nby= Y (=1)"w.oT cos mé,, py " cos nf, = z (=1)"wpT cos mb,. (11)
m=0 m=0
where wi=(m+n—-1'/(n-1)m!.
Using (3), (5). x=3 —4y, and the transformations (10) and (11), we can express the boundary

conditions along the interface of £,(r, = a,) as follows

u=u,+u' =

- +
F},—l——zA,, ",cosnﬂl 1}:8},” cos né,

nwl aq n=2 1

n+1+x —-
-} Z B':”—a__ cos n8, — F2 Y. a7~" cos né,

n+l
n=0 1 nwl

0 o
+ Y ¥ (-1)7(A4%-B2)w na]"" cos né,

nu( m=1

52 Z( 1) Biwm a7~ (n =1 =x) cos nb,

n=1 mm=l
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++ Y T (-D7Bw ] T (n+ 1= x) cos nb,

@ n=0 m=]
| A 11 = 1
—T,EIA"Ml cos n0,—§T’§’B,,_, n—1-x)a/ " cos né,
' 11 & - :
-3 T Y Bl (n+1-=K)a; ' cos né,
. - n=0
=ta,(€* +€*)+ ta (e —¢€*) cos 26,. (12)
1 1

The requirement for continuity of the tangential displacements vields

[ ] nd n -1~
- z ,4},—"0—1‘ sin n0] z B,,_l "-l d sin nal
nwl A n=2 a,
x b =
n+1+x . N .
- Y B ————sinnb, + F’ Y a"! sin né,
n=1 1 n=]
e o x
n -~ —_ .
| - Y Y (-1)"(A4L-B.)w nal " sin né,
n=] mm]

0 x
-3 L XL (-1)7Biw,ai"'(n—1—«)sin né,

nel mm=]

x o
@ -1y ¥ (—I)"'B,,z,n;,"l‘al"ﬂ(n+ 1+ «) sin né,

n=1l me=l

1 o
2 y(n=1=&)a?"" sin né,

n-2

NI»-

Z vnay ! sin né, +

"1|

K0
Z n*l(n+ 1+k)al*! sin né,

L 3
Nl —

= ta,(er —€?) sin 286,. (13)

For the normal stresses along the interface we have

o’= r =
® N .
+ D(n+2
—+ ) A, n(n"zl) cos nf, +3 Y B,:_,——————( Z(n ) s né,
1 n=1 na?l 1
- + +1+ o )
+14 ZB:H(H 1)(:,*21 ) cos nb, = F} 3° (n—1)a;"* cos né,
n=0 al ne=1
‘ x 20 m
+ 3 X (=1)"(A4L-By)w"n(n~1)a]"? cos nb,

n=0 mw=]

z Z (—1) m n—]a] (""1)("—1-K) cos né,

n=]l m=l
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=< % «©
+4 Y Y (-D)™Biwmar(n+ 1) (n=2) cos nb, - Y d.n(n=1)yu " cos né,
nm) m=| n=
x —
-¥Y B _(n=1)(n-1=&)a] " cos nf, - ¢ Z Bl \(n+1)(n=2)al cos né,
=2 n=0
= Q. {14)
Finally, the shear stresses give
TIUS;IO =
=<
n(n+1) . 1=1) .
z AL’"‘T sin nf, + Z — l——:,—-—)— sin né,
n=] ay - a4
x x
(n+1)(n+1+x) ) - .
++Y B, — sin n6, + £ Y (n—1)a; "~ sin né,

n=i a, el

(—1)"'(A,“,,—B,:,) "n(n—1)ay™" sin né,

—1)mB,f,w,,’",,al’":(n ~1)(n—=1-x) sin né,

x<

<

-0
x
PL ]
x
Z

IM3 |M8 -!-Ms

-4 —l) 2w, atn(n+ 1) sin né,
*x e <] _

+ Y An(n-1)al *sinnb, +3 ¥ B_(n=1){n—1-&)al " sin nb,
n=1 ne=l

x
+4 Y B!, \a(n+1)a] sin né,

n=0

=0. (15)

where I' denotes the shear moduli ratio G/G and all the overbarred letters corresponds to quantities
relating to the inhomogeneities.

Using the same procedure, we can enforce the boundary conditions along the interface of the second
circular inhomogeneity 2,. However, since the fiber cross sections are identical and the thermal loading is
symmetric, we have to satisfy the boundary conditions along the interf e of 2, or £2,; the other one will
be satisfied automatically.

Utilizing the symmetry relations

Ay=(-1)"4=4,, B'=(-1)""'B?=B,,
Al=(-1)A}=4, B =(-1)"""B2=3, (16)

we can express the conditions (12)-(15) as follows

1 n : n—-1+x n+1+«x n=1{ sl
- — - —_— ————— - - -
FE’Z "a"‘l !B”"] afl-l zBﬂ‘l an‘l Foa (6" 1)

x e -
+ L (4, +B)wrna" (8 =1) =} L B wia" (n—1-x)(8" - 1)

mm] mwm]




and finally,

A,

where 8/

n
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x«
Ny B,,,n-,,"',,a""(n-rl—x)(ﬁ,‘,"‘-l)—-]-.ina"'l
m=l r
11-< 11
~37Bi(n-1-%)a" '—373".,(”1-;)(1""
=ta(er +e* )0 +da(e* —€¢*)8% (n=0,1,2....).
n n—-1- +1+
— A, :\.‘Bn—l -1 - _'I‘Bn.ln—?‘:f‘:‘*’f.oahl(a’:“‘l)

- Z (Am+8m)wnm”a"_l(8rih—1)*’% Z B,..W,,m_la"—‘(ﬂ‘I—K)(&:h—l)

m=] nre=]

1

+3 Y Bowii(n+1+x)a" "+ —}:,‘Tnna"'l +%T§n_l(n— 1-%)a""!

~Fse e, Mol g 2Dy Dl
a- a - a n+l
e =1
-F(n=1)a""?*+ ¥ (A, +B,)w'n(n—1)a""?
mm=]
x
-} Y Bwii(n-1)(n-1-x)a""?
mw=]
W —
-1 Y Bwl(n+1)(n-2)a"-A,n(n-1)a""?
m=1
~3B,_,(n-1)(n-1-&)a""?=B,, ,(n+1)(n-2)a"
=0 (n=0,1,2,...),
- + +
"_(lnf_lll+é8’l"ln—(%n—-ll+é n-bl(n l)(:+2l+x) +Fb(n_1)a"-2
a

~ % (A +B,)wrn(n~1)a""?

mel

ES £
+% Z Bmwnm—l(n—l)("-l_")a"-z+§ Z Bmwn’ll"("+l)an
mw=1 me]

+A4,n(n—1)a""*+4B, _(n=-1)(n=-1-&)a""*+}B,,,n(n+1)a"

=0 (n=1.2,3,...).

denotes Kronecker’s delta.

(R

(17)

(18)

(19)

(20)
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4. Incoherent interfaces

The analytical formulation followed above. 1s based upon the assumption that the fiber cross sections
(circular inhomogeneities) are perfectly bonded to the surrounding matrix. However. the presence of thin
fiber coatings or reaction zones along the fiber/ matrix interface, suggest that a third phase may need to
be considered. In order to study the effect of such a third zone. it 1s necessary 10 know 1n advance s
thermomechanical properties; unfortunately. these in situ properties are not ecasily obtained.

Such difficulties can be avoided by considering a spning-type thin laver, which also accounts for the
imperfect bond between the constituents of the composite. This model aliows for displacement disconunui-
ties along the fiber/ matrix interface. while tractions remain continuous, Such an approach has been
utilized by Lene and Leguillon (1982). Benveniste (1<84. 1985) and Jasiuk et al. (1989), among others. In a
comprehensive study. Hashin (1990) investigated the effect of such interfacial conditions on the thermo-
elastic properties of umdircctional fiber composites, using the generalized self-consistent scheme.

In the present study. as in Kouris and Mura (1989). we will assume that. along the interface. tractions
and normal displacement remain continuous. while the tangential displacement discontinuity s propor-
tional to the interfacial shear stress. i.e.

2G[ug) = rat, (21)

3
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i pertect bonding,a = 0.3°

; .

O
o

Cor

(@]
3

<y
w

n

a

i
)
|
i
T
a5 90 135 180

o

Fig. 2. Vanauon of the normal stress along the fiber interface. for different shear moduli ratios.
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where [ug} =uy— (dy+ g ). G and a denote the shear moduli of the matnx and the radius of the
inhomogeneity, respectively, and A is a proporuonality constant that describes the condition of the
interfacial bond and ..rresponds to the compliance of the thun interfacial layer.

When A is equal to zero, fibers and matrix are perfectly bonded: as A approaches infinit. the condition
of perfect sliding 1s obtained (no shear tractions along the interface).

In view of (21). the boundary condition (18) is transformed into

-1~ +1+
—4, "n" %B"—‘n——n_-—l—f_liBnoln a™! - -Y-Foa"_l(&‘.“—l)
x
T (A B)wman (80 - 1)
mw=]
nd =
+1 Y Bwlan-1-x)(8=1)+1 L Bwl(n+1+x)a""!
m=] el

+A_,,na"'1[% +A(n— l)] +4B,_(n-1 -E)a""[lT +A(n - l)]

+‘}§"0]an01[_11=(n+ 1 +I?) +)\n(n+l)]
=ta(e*—e*)8? (n=1,2,3,...), (22)

while (17), (19) and (20) remain unchanged.
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Fig. 3. Shear stress distribution along the interface for various I'.
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5. Results and discussion

The linear svstem (17)-(20) that was obtained by enforcing the interfacial conditions. was solved
numerically. In order 1o ensure matching of the boundary conditions up to three significant figures. no
more than 13 senies terms are required. The solution yields the coefficients £, A,. B,. 4,.and B,. and its
convergence Is numerically evident. After evaluating the series coefficients, stresses and displacements in
the matrix and the fiber cross sections can be determined. by utilizing th¢ displacement potenuals ¢I) and
(II). It has been assumed that the thermal load p, =2Ge* =2Ge*=1and v =» =0.3.

The purpose of the parametric study that follows, is to quanufy the effects of the fiber, matrix shear
moduli ratio and the fiber/ fiber distance, on the elastic field (stresses and displacements) in the vicinity of
the fibers.

As the fiber matenal becomes suffer (" = G/G increases). the absolute values of the matrix interfacial
stresses increase, as shown in Fig. 2-4. The distribution of the normal stress o, in the matnx. along the
centra! line, 1s illustrated in Fig. 5-7. When the effects of fiber interaction are neghgible (a = 0.1). the
values of o, along the interface are proportional to I', as expected from the single fiber solution. However,
as the fiber radius a increases (fibers approach each other(, the trend is reversed: o, becomes inversely
proportional to I'. In Fig. 7, the distnbution of o, based on superposition of the single fiber solution
(IF'=5*). a commonly used approximation. is compared with the results of the analytical solution. It can
be observed that for I' =5, the approximation overestimates the interfacial stress by a factor of 4: in
addition. the error is directly proportional to the shear moduli ratio I'.

As the radius of the fibers increases (and for constant I’ = 2), the values of the interfacial stresses
increase, as expected (Fig. 8).

perfect bonding,a = 0.3

1

0 45 90 135 180

9
Fig. 4. Distnbution of the hoop stress along the interface.
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Fig. 5. Effect of I on the distribution of o, along the central axis, for a = 0.1,

In order to investigate the behavior of the incoherent interface defined by (21), stresses and displace-
ments were evaluated for several values of A between zero (perfect bonding) and infinity (sliding). The
shear moduli ratio I' and the fiber radius a were kept equal to 2 and 0.35, respectively.

It was found that as A increases, the elastic field approaches rapidly the one corresponding to perfect
sliding: for any A > 50, stresses and displacements remain unchanged and identical to the condiuons of
perfect slip. As shown in Fig. 9, the shear stress along the interface tends to zero as A increases; however.
the values of the hoop stress o, increase as the condition of perfect slip prevails (Fig. 10). The small tensile
values observed in the case of perfect bonding (A = 0) become significant as the degree of interfacial
coherence decreases. Such high tensile values suggest the possibility of a mode I crack initiation at 8§ =0°.

Finally, the variations of o, and o, along the x and y axes, respectively, are illustrated in Fig. 11 and
12.

6. Conclusions

An analytical solution was presented, for the problem of fiber interaction in a continuous fiber
composite. under thermal loading. The fiber cross sections were modeled by two circular inhomogeneities
which undergo a uniform eigenstrain loading, proportional to the mismatch of the thermal expansion
coefficients.
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Fig. 6. Vanation of o, along the central axis. for a = 0.35.

It was found that the stresses in the vicinity of the fibers, strongly depend upon the fiber matrix moduli
ratio. The distance between fibers, has also a considerable effect on the elastic field: such an observation
suggests that superposition of the single fiber solution. may not be a valid approximation.

Finally, a spring-type interfacial model was investigated. It was concluded that the loss of interfacial
integnty. leads. very rapidly, to stress intensities that correspond to the conditions of perfect slip.
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Fig. 9. Effect of the interfacial parameter A on the shear stress distribution.
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Fig. 10. Hoop stress along the interface for various values of A.
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Stress Concentration due to the
Interaction Between Two Imperfectly
Bonded Fibers in a Continuous Fiber
Composite

D. Xouris'

1 Introduction

One of the common modes of failure of intermetallic com-
posites is attributed to th: presence of interfacial cracking.

The loss of interfacial integrity is a consequence of the in-
herent ditferences between the thermoelastic properties of the
matrix/fiber system as well as ite chemical reactivity.

In an effort to evaluate the local stress state due to thermal
residual strains, Kouris and Tsuchida (1991) obtained an an-
alytical solution for a pair of fibers, under plane-strain con-
ditions. The fiber cross-sections were modeled by circular
inhomogeneities :hat sustain uniform eigenstrains, propor-
tional to the mismatch of the coefficients of thermal expansion.
It was found that the relative distance between fibers (volume
fraction) has a considerablc =ffect on the stress concentration,
which cannot be accoun:e. /or by means of an ‘‘average’’
approach.

The problem of an infinii: thin plate with two circular in-
clusions, perfectly bonded to the plate, has been considered
by Shioya (1971). Under conditions of generalized plane stress,
the solution has been obtained on the basis of Airy’s stress
functions by utilizing bipolar coordinates and a perturbation
method.

In the present study, an analytical solution is obtained for
a pair of fibers embeeded in a linear elastic matrix under remote
tension. The plane-strain formulation is based upon a dis-
placement approach and the effects of he condition of the
interface are examined. The results focus on the stress state
of the matrix along the interface.

"Mechanical and Aerospace Engineering Department, Arizona State Univer-
sity, Tempe, AZ 85287-6106. Assoc. Mem. ASME.

Manuscript received by the ASME Applied Mechanics Division, Feb. 14, 1991;
Minal revision, Sept. 10, 1991. Associate Technical Editor: G. J. Dvorak.
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2 Analytical Approach

The geometry of the boundary value problem under con-
sideration is shown in Fig |. The cross-sections of the tw_
continuous fibers are inodeled by two circular inhomogeneities
(plane strain) and the transverse remote tension is indicated
by T, and T,.

In the absence of the fibers, the uniform stress field is de-
scribed by

1 !
ZGM,=Z (x—1) "(Tx"’ Ty)+i (T~ Tv) cos26,

20u,=% P(T, - Ter) sin28,
] |
or=3 (T.+T,) *3 (T, - T,) cos20,

1
o=y (T +T) +% (T,-T,) cos28, and

-r,,=%(T,—T,) sin26, ¢

in terms of polar coordinates, where x=3 - 4».

The centers Oy, O- of the fiber cross-sections coincide with
the origins of the Cartesian coordinates (x;, y|) and (x;, y1).
If we assume that the central distance is equal to unity then

x=x3+1, y1=m )
and
x;=r; cosl,, yi=r;sind; (i=1, 2).

The displacement vector u can be expressed as the sum of the
vectors corresponding to the O, and O, coordinate systems.
Therefore,

u=u +u,. 3)

Due to the applied mechanical loading, the far-field boundary
conditions require that the nonzero stresses o, and o,, at in-
ftnity, are equal to the externai load T, and T, respectively.

In order to account for the imperfect bond between the fibers
and the matrix, and spring-type thin layer along the interface
is considered. Such a model allows for displacement discon-
tinuities along the interface, while tractions remain continuous.
The thin layer provides a viable alternative to the ‘‘three phase™
approach and has been utilized by a number of researchers
(Lene and Leguillon, 1982; Benveniste, 1984; Jasiuk et al.,
1991; among others).
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Fig. 1

Based on the model described above, the boundary condi-
tions along the circular interfaces (r,=a,) are

N=—=74, 0,=0,, and 74=Tn @)

u,=1u,, [u0] 2G

where {ug) = ua—~u,. Here, the quantities with a bar refer to
the inhomogeneities; in addition, G and @ denote the shear
moduli of the matrix and the radius of the fiber cross-sectior.
respectively. The constant of proportionality A indicates the
degree of interfacial integrity; A — 0 corresponds to perfect
bonding, while when A — oo, conditions of perfect slip are
obtained (the interface does not sustain any shear tractions).

In order to account for the disturbance due to the presence
of the inhomogeneities, we utilize the Papkovich-Neuber dis-
placement formulation. Consequently, the displacement fields
u, and u, are

2Gll,= grad l¢0:+x1 Puty ‘pll]

_4(‘-”) [¢|:- \0:4]~ (i=l' 2) (5)

where ¢y, ¢1,, and ¢:, are arbitrary harmonic functions.
For the problem under consideration, the potentials chosen
are: for the matrix (r, > a,)

0. = Po [Fa log o, + Z Ay p" COS"oi]
ne|

- )

01.=P0 3, B " cosnd; ¢ym0

na)

and for the two inhomogeneities (r, < a,)

@0 = Po Z Al o cosnb;
" (in
1,= Do Z Bio! cosnb, om0

where p,=r/c and p; = T. The central distance c is tzken to
be equal to unity and T is equal to 7, or 7,.

204 / vol. 60, MARCH 1993

Y Y

Geometry of the probiem

Using the poiential functions [I] and [I1], we can derivs
stresses and displacements in the matrix and the mhomogene
ities; with the addition of the uniform field described in (1),
what remain to be determined are the values of the coefficien;s
Fs, A), B}, A} and B,. This can be accomplished by entorcing
the boundary conditions (4) along the interface of the inciy-
sions.

Using the transformation formulas that have been given in
Kouris and Tsuchida (1991), the recuirement for continuity of
the normal stress along the interface of the cross-section of
the first fiber (r) = a)) is expressed by:

n(n+1)
-—FB—H-Z '—,,—,2—-cosn0l
n=i a

1< (n—1)}n+2)
4= Z B, — cosné,

————— cosnf,
07 +2

+25 2, (=" (A5 -B%) W7 n(n-1)a"? cosnb,

A=l mal
i i - B, Wi a7t

nel me}

+

0O | =

(n=1)x(n-1-«) cosné,

+ Zo Z: (=1)" B W™, d} (n+1) (n-2) cosnd,

[ A

- Z Al n(n=1) a2 cosnd,

Awml]

—% Z E,'._. (n=1) (n=1-7%) a)~?* cosnb,
=2
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l &=
-i Z Bl., (»+1) (n=2)a? cosnd,
LEY]

1 l
-3 Q +1)-§ (1 —1) cos26,, (6)

where t=7T/T, (0<t<Dand W} = (m+n-1)1/im-1)!n'.

Similar expressions are obtained for the remaining boundary
conditions given in (4).

Using the same procedure, we can enforce the boundary
conditions along the intertace of the second circular inho-
mogeneity. However, since the fiber cross-sections are identical
and due to the symmetry of the problem, we only have to
satisfy the boundary conditions along one of the interfaces;
the other will be satisfied automatically.

Utilizing the symmetry relations

Ar=(-1) Ai=A,, Bi=(-1)""' Bi=8,, M
Ay=(-1)"A;=4,, By=(-1)""B =8B, a,=a,=a,

we can express the condition (6) as follows:

L n(n+1) 1 (n—1)n+2)

Foaz o +A, d,,.'_z +2B,,_,—-——a"
1 (n+(n+1+x)
+§Bnol'—d,':'i—_i

—Fo(n=1)a""%+ Y] (An+Bn) Wrn(n-1)a""?

—% > B Wiy (n=1)n~1-x) a""?

-% D B Wre: (n+ D= d"~A, n(n-1)d""?

mal]

-%E,-. n=-D(n-1-x)a"*<B,,, (n+1) (n-2) "
= -% (+0 aﬁ?’-% (1-08% (n=0,1,2,..) (8

where 64 denotes Kronecker’s delta.

3 Results and Discussion

The linear system of equations consisting of (8) and the
remaining boundary conditions is solved for the unknown coef-
ficients Fo, A,, B,, Aa., and B,. The series solution requires
no more than 1S terms to ensure matching of the boundary
conditions up to the three significant figures, and its conver-
gence is numerically evident. After evalulating the series coef-
ficients, stresses and displacements in the matrix and the fiber
cross-sections can be determined.

In order to illustrate the effects of the fiber/matrix shear
moduli ratio I'(T' = G/G) and the fiber/fiber distance on the
stress concentration, the external load has been taken as
Po=T,=T, (t=1).

In a number of studies that investigate effective properties
of composites, the *‘single fiber’’ solution is utilized in order
to obtained global properties, in an average sense. Such an
approach, however, may be quite inaccurate in predicting the
local stress field, which is essential from a fracture point of
view, Figure 2 indicates the variation of the matrix interfacial
stress o,/pg (at the central line) versus the normalized fiber
distance d/a; the shear moduli ratio is taken equal to 2, §, and
10 and v=%=0.].

If we denote with an asterisk (*) the values of a,/po that are
obtained from superposition of the single fiber solution, we
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can observe that they are in error; such an error becomes
significant with increasing ' (stiffer fibers) when the fibers
approach cach other (high volume fraction). It is expected,
however, that as the fiber distance increases, the differences
between the exact and approximate solutions tend towards
2zr10.

Another aspect of the problem relates to the effect of inco-
herent interfaces. As a example, we consider a Ti;Al/SiC (SCS6)
composite with the following properties: (a) Ti;Al (ma-
trix)-G=30GPa and »=0.25 (b) SCS6 (fibers)-G=
154GPa and 7=0.17.

The distribution of ¢,/py versus the fiber distance, is shown
in Fig. 3; here A = 0 corresponds to the condition of perfect
bond, while A = 100 indicates perfect sliding. As the fiber
distance decreases, a weak interfacial bond causes a consid-
erable relaxation of the matrix stress and, therefore, enhances
the fracture toughness. However, if the fibers are far apart,
the degree of the interfacial integrity has no effect on the stress
concentration.
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A Superposition Method for One-
Dimensional Axially Symmetric
Elastic Waves

Zhang Xiangzhou®

Introduction

Responses of an elastic, infinite medium containing a cylin-
drical, circular cavity to axially symmetric dynamic loading is
of fundamental interest in elastodynamics. The geometry,
loading, and mathematical formulation involved in the re-
sponses are simple. Nevertheless, this problem is very difficult
to solve analytically. As indicated in standard reference books,
the integral in the solution of the problem is ‘‘extremely dif-
ficult’ to evaluate, and there is ‘‘an essential difficulty’’ in-
herent in this kind of wave propagation (Eringen and Suhubi,
1975); the solution and it.. derivation are ‘‘not simple*’ (Mik-
lowitz, 1978); the problem is ‘‘much more difficult to analyze"’
(Achenbach, 1976); and so on. Therefore, an analytic solution
method, which can solve the problem effectively, still appears
to be desirable.

In this Note, a superposition method, based on Lamb’s
formal solution, is developed to treat the problem. Numerical
examples demonstrate that the method is able to solve the
axially symmetric wave propagation problem accurately and
neatly.

Basic Solutions for the Radial Motion Problem

A cross-section of a linearly elastic, infinite medium con-
taining a cylindrical, circular cavity is depicted in Fig. 1. The
medium is at rest initially and then undergoes a radial motion
due to an axially symmetric, normal traction g(r) suddenly
applied on its circumferential boundary. As is well known
(Achenbach, 1976), the radial displacement v and the normal
stresses a,, g, and o, developed in the medium should be sought
via the following basic equation and conditions:
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Xian, 710072, China.
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Fig. 1 Geomatry of the problem

ci<a, u=0, du/9r=0 (2a.h;
ci>a, r=a, o,=g(!) (3

r—o, u—0, oudt—0 (da.n
d¢ ou u au

=—, g=AN—+-)+2u— (Sa.p
ar ar r u&r a.

du u ! a
gy=A|—+~ +:I"_" o:=A —U’E 16a.0.
ar r r ar r

where \ and u stand for Lame constants and ¢, represents the
longitudinal wave speed of the material. Equations ($b) ang
(6a,b) are for plane-strain state. For plane stress, A\ in Eqs.
(5b), (6a) should be replaced by 2Au/(N + 2uyand 0. = Q.

Lamb provided a formal solution to Eq. (1). It reads (Eringen
and Suhubi, 1975; Lamb, 1902):

0, cu<r (7a)
e(rt)= Scosh' leyire

fleit=rcosh wldu, ci>r. by
0

Subsequent to Egs. (7a,b), the following expressions for
and du/dr can be obtained directly:

0, ci<r (8a)
f.cosh“‘ql‘r
u(rg)=¢ - \ cosh uf’ (¢ t—rcosh ul.u
—f(O)c,l/[r(cfl:—r:)' :]. ci>r. (8b)
0. ci<r (9a)
cmh"‘ql/r . 2,2
a_"= S cosh®uf " (¢, - rcosh u)du+—.—f=(—(L.:.
ar 0 re(eytt=ro)t
f(O)C,! 1 1
+ v 5 3 S . . . K
(- \r - cu>r (96)

where f' (x) = df(x)/dx.

The displacement and stresses in :he medium are developed
fort > a/c,. However, our main concern lies withia the prime
stage of the dynamic response, that is, within a certain interval
of 1, {a’/c,, T], with T being a sufficiently large number. Within
the interval, any continuous function f(c-r — r) in Eq. (7b)
can be expanded into the following form:

Slest=ry=ag+a,(cit=r) +ar(crt=r)?
+oo A=)+ - 0 (10)

Denoting ¢, ¥ and du/dr derived from the term a, (¢,7 -
r)" in the above formula with a, = 1 by a,, u, and (gu/ér),.
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Abstract

The paper analyzes the elastic field caused by the interaction of two
elliptical inhomogeneities subjected to residual strains. The thermally
induced residual field is modeled by uniform eigenstrains sustained by the
inhomogeneities. The boundary value problem is formulated in terms of
the Papkovich - Neuber displacement potentials. A number of numerical
examples illustrate the differences between the perfectly bonded and

slipping interfaces.

1. Introduction

Prerequisite to analyzing or predicting microcracking in any material
is knowledge of the local stress state. In the case of composites, whether
continuous fiber or laminated, the local stress state is severely affected by
residual thermal mismatch stresses. In addition, the thermo-mechanical
behavior of a composite is closely related to the properties of the fiber -
matrix interface. It has been shown that the tensile interfacial strength is
related to the transverse and compressive strength of the composite, while
the shear interfacial strength affects the transfer length and composite
fracture, as well as the deformation of the matrix.

In a recent study (1), the interaction of two continuous fibers, under
conditions of plane strain, has been investigated. The cross sections of the
fibers were modeled by two circular inhomogeneities with elastic constants

that are generally different from the ones of the surrounding matrix. The




presence of the residual field due to thermal loading was taken into
account via uniform eigenstrains (2)  that are sustained by the
inhomogeneities. It was found that the local elastic field is severely
influenced by the relative distance between fibers, the elastic properties of
the constituents and the integrity of the interface.

In the present paper, the study is generalized to account for the
interaction of elliptical inhomogeneities. The problem is formulated in
terms of displacement potentials (Refs. 3 and 4) and solutions are obtained
for perfectly bonded as well as slipping interfaces. Unlike Eshelby's result
for the single inclusion (3), the stress field inside the interacting
inhomogeneities is no longer uniform. The local elastic field is determined
in the form of infinite series and is dependant upon the relative distance,
the aspect ratio, and the elastic properties of the inhomogeneities. A

number of numerical calculations are presented to illustrate the results.

2. Displacement Formulation

Consider an infinite region with two elliptic inhomogeneities, Q| and
Q,, with centers at O, and O, respectively. Let the centers be at the
origins of the Cartesian coordinates (xj, y;) and (X3, y2), and Xx{, X - axis be

the center line as illustrated in Fig. 1. If the central distance OO0, = {, then

X1 =%+, y1=y2 (1)
The elliptic coordinates are obtained from the coordinate transformation
xj = C cosha; cosPj, y; = C sinha; sinf; (2)

where i = 1, 2 and C is the eccentricity of the inclusions.




For the two inclusion problem, the displacement vector u can be
represented as

=u) +uy (3)

where u; and uj; are the displacement vectors corresponding to the
origins, O; and O,, respectively.

A general solution of the displacement equations of equilibrium can
be described according to the Papkovich-Neuber displacement formulation.

The displacement fields, uy and u;, are given by

2Gu; = grad @o; + X1Q11 + Y1021] - (x + 1)[011.921] (4)

and
2Gu; = grad Qg + X2912 + Y2022) - (X + 1)[012.922] (5)

where G is the shear modulus, x = 3 - 4v for the plane strain, v is Poisson’s
ratio, 9j; are arbitrary harmonic functions, and [®ij#ms] corresponds to #;;
for the x-component and @, for the y-component of the displacement
field. In order to satisfy the boundary conditions along Q| (a; = ag), it is

necessary to express (5) in terms of the O; coordinate system. Substitution

of (1) into (5) yields,

2Gu; = Sfi“{%z +(x( - ¢) oz + YI(PZZ] -(x + 1)[@12.922]
or (6)
2Gu; = grac{(poz -Lon2 +x1912 + )'1(922] -(x + 1)[@12,:922]

According to a similar procedure for the boundary conditions along

Q, (ap = ), eqn (4) becomes,

2Gu, = gm{%l + 8011 + X201 + Y2<P21] -(x + 1)[@11.921)- (7)




The residual field due to the thermal loading is represented by a pamr
of uniform eigenstrains (er, & ). These eigenstrains (Mura. 1987) are
proportional to the temperature change and the mismatch of the
coefficients of thermal expansion. Consequently. inelastic displacements

are introduced in the inhomogeneities according to

Uy = €4X,
AR (%)

Their corresponding components in elliptical coordinates are

Uy = Céll sinh2a “1 +cos2B) e} + (1-cos2B)e; ] (9)

% 2 * *
ug = %ﬁ sin2f3 [ (1 + cosh2at) g5 +(1 - cosh2a) g, ]
where

h= l . (10)
C {coshza - coszﬁ)“2

When the inhomogeneities are perfectly bonded along the elliptical

interfaces (a; = o), the boundary conditions are represented by

u(lz—u(l+E(‘lqu=EB+ﬁé»da=6q,andtaﬁ=TaB. (11)

The quantities overscored are associated with the inclusions.

3. Solution of the Boundary Value Problem

If a set of harmonic displacement potentials can be determined such
that the boundary conditions along the interfaces (11) as well as the
requirement for vanishing tractions as o — oo are satisfied, then the unique

solution can be obtained. Based on symmetry considerations, the




Papkovich-Neuber displacement potentials for the matrix (oa; > o) are

chosen as
@oi = po| Fhotj + T Al en% cosnf;
n=1
@1i =Po T B e cosnf;
n=1 ( 1 2 )
?i=0
where Po =2Ge™ and e; =€y =¢” (13)

Similarly, the displacement potentials for the two inhomogeneities (a; < xq)

are chosen as

Boi =Po Y. Al coshnoy; cosnp;
n=|{

01 =Po Y. B/ coshnoy cosnp; (14)
{

n=

02i=0

The following relations between the elliptic harmonic functions will

be used to satisfy the boundary conditions at the interface of Q (o] = ap)

and Q,(ay = ag),

o] = ¥ @, coshnay cosnfy,
n=0

o

oy = Z, coshnoy cosnf3;,
2 n§0 n 1 Bl (15)

e cosnP; = ¥ (-1)" dn.n coshnaz cosnfs,
n=0




o0

en®2 cosnfr =(-1™ ¥ dm.a coshno cosnf,.
n=0

where the coefficients wp, Zn, and dm,n are given in Appendix A.

For the displacement potentials described above, the boundary
conditions (11) lead to the evaluation of the unknown coefficients (i.e..
Fi, AL, Bi, A, and By).

Using (9), (12), (14) and (15), eight equations are obtained for the
interfaces Q (o] = o) and Q,(ay = ag). However, since the inhomogeneities
are identical and a symmetric load is applied, only the boundary conditions
along one of the interfaces need to be considered. This can be
accomplished, provided that the following symmetry relations among the

coefficients are taken into account when o} =a); =ag:
Fo = Fo! =F¢?

An=Ag = 1P AL Ay = AL = 1) AL (16)

B, = Bll'l = (_l)n+1 B%, B_n= _B—nl = (_1)n+l §;2 .

Consequently, the condition ug =1y + Ug at a; = 0 corresponds  to

Fodn.0 - Z AnUay -%Z Bn1Us: -Q z Ba+1 Us2
n=2

n=1

+ %- i { FoZy + Z (Am + {Bm) dm, n} Uc - % Y Y Bumdma-1 Uca

n=2 m=0 n=2 m=0
.C Bundmnst Ucs - & _A_U_:\—r-c* B-l_f_s_l-—c— B, Us;
4,;350 e rg ‘WEE ! 4rr§> " (17)

= %2— sinh 20£o{ 8n.0+ 8n.2 ’ .




where '=G/G .

The condition ug =ug +Gl; atay =0 gives
2 AgVar + % 2 Bhi Ve + % z Bn+1 Va2
n=1 n=2 n=0

+i FoZ, + Z (Am+§Bm)dmn}V

m_

€3 ¥ Badna Ve

n=2 m=1
(18)

~

-%Z 2 Bmdm.n+l Vc3--ILn§1 EV_M-ffg Bn-lV—Bl':‘%z B, —\E

n=0 m= n=0

p—

-
~

=C
=C &

The condition 64 =0gato; =0 yields

- Fo smh22ao 8n0 z Apa Sap + i 2 Saz -+ 2 Aps2 Sas- Z Bn-3 Si
n=4

n=4 n=1 n_

Z n1532+§-2, B+ 533-156-2, Bun+3 Spa

n=0 n=-2

N

FoZya + 2 Am"'CBm)dng

=)
||M8
F-
™ —m——,

{ FoZn.o + Z (Am + cBm) dm.n+2 } Scs + < Z z Bndmn-3 Sca

m=1

1M

-

1

P

Y, 3 BudmaiScs- & ¥ Y Badman Scs+ {5 X X Bmdaaes Sc7

n=2 m=1 n=0 m=1 n=-2 m=1




+l2 AnZSAl"LZ aSaz +1 Y An+ZSA3*‘LZ B3 Spy
4 “ 4 & 4 “ 16
n=4 n=|{ n=-1 n=4
Lz Bnl-S—BZ-"C‘Z Bn*l§8—3+’c‘z Bn¢JS_B4-
16 = 16 = 16 =,
=0

The condition Tea=Tggatay =0 corresponds to

‘%‘Fosn.Z'i’Z An-ZTAl"“iZ AnTAZ'Zli‘Z An+2TA3‘%Z Bn.3 Ta:
n=4 n=l n=-

+ < Z By Tea + < Z Bns1 Ths - < z By+3 Ths
6 n=2 16 n=0 16 n=-2

+% Z ‘Fozn-Z + Z (Am + E{Bm) A2 } Tc: - % 2 \Fozn + Z (A + EBp) dan | Tez
m=1

n=4 n=1 m=1

oo

+ i‘ 2 {Fozn+2 + z (Ag + {By) dm.n+2 }Tc3 -C 2 Z Bmndm.n-3 Tcq

n=-1 m=1 16 n=

(20)

&
8
.l_l.

+ lg6— Z Z Bmdm.n-l TC5 - % 2 Z Bmdm,n.q TC6 - % z 2 Bmdm.n+3 TC7
n=-2

n=2 m=l n=0 m=1

where Si,j denotes the Kronecker's delta. Uij, Vij, Sij, and Tij are known

functions of n, ap, v and Vv .




After solving the system of equations (17) - (20) for the unknown
coefficients Fo, An, Bn, An. and Bp . stresses and displacements can be
evaluated.

The analytical formulation for the problem of perfectly bonded
inclusions has been demonstrated above. However, if there are no shear
tractions along the interfaces, the inclusions are free to slip. The

incoherent interfaces are then represented by
Uu=ﬁa+ﬁa, Gu=6a,taﬂ=0.andtaﬂ=0. (21)

Consequently, the method of solution is similar to the perfectly bonded

case.
4. Discussion

In order to illustrate the results, the linear system (17) - (20) was
solved. Matching the boundary conditions up to three significant figures
required no more than 15 series terms. With the values of the series
coefficients known, the stresses and displacements in the matrix and
inclusions can be obtained. Without loss of generality, Po =1andv =v=
0.3 has been assumed.

Since the main focus of the present study is to investigate the mutual
interaction between the inclusions, only variations in s, I', and A are

considered. The dimensionless parameters s and A are defined as

=4 A =
S b.l )

2b (22)




In analyzing the normal stress along the interfaces, variations of the
relative stiffness ' (G/G), and distance A between the inhomogeneities are
illustrated in Fig. 2 - 3. As the inclusions become stiffer relative to the
matrix (I" increases), the absolute values of the matrix interfacial stresses
increase. In both cases the normal stress Oo  assumes an absolute
maximum at f = 0. These values of the normal stress increase in the case
of sliding.

The effect of various shear moduli ratio T (relative stiffness). on the
hoop stress, 98, is more pronounced in the case of perfect bonding.
Nevertheless, higher stress concentrations are again obtained at B = O (Fig.
4 -5).

These results demonstrate that the interaction between the two
inclusions is greatly effected by the inclusion/matrix stiffness ratio. Thus,
the often used approximation that utilizes superposition of the single
inclusion is not generally valid. Only for the the special case where the
matrix and the inclusions have the same stiffness (I’ = 1) will the
superposition method give valid results, as expected.

In order to qualify the inhomogeneity of the local stress state along
the central axis, the distribution of the normal stresses Ox and Oy along
the x - axis were studied. For the case of perfect bonding, the distribution
of Oy for various I' is almost uniform inside the inclusions (Fig. 6(a)).
However, this is not the case when sliding occurs. It is noted that the
discontinuity along the interface (x = 2), is proportional to I' (Fig. 6). The
examination of the aspect ratio eff&et’ yields the stress distribution shown
in Fig. 7. When the inhomogeneities are free to slip, the stresses are almost
independent of s, except at the point of the interface (x = 2). As s

decreases the interfacial stresses in the matrix increase considerably,




indicating the possibility of crack initiation. When the parameter s — 0
(inclusions become thin inserts), the stresses in the matrix along the
central line become localized around the inclusions. The results for s = 0.99
(a > b = 2), correspond to the solution of two circular inclusions given by
Kouris and Tsuchida (1991).

Finally, the effects of various shear moduli and aspect ratios on the
interfacial matrix stresses is investigated. It is found that the normal
matrix stress Ox at the interface remains compressive for all values of the
relative distance A between the inclusions. This is not the case, however.
for the normal stress Oy (Fig. 8). It can be observed that the distributions of
oy for perfect bonding and sliding are drastically different. When the
effect of different aspect ratios is considered, a loss of the interfacial
bonding corresponds to very high tensile values of Oy. As the value of s
decreases, the differences between perfect bonding and sliding become

more pronounced.

§. Conclusions

The present study analyzes the problem of two interacting
inhomogeneities subjected to a uniform eigenstrain loading. An analytical
solution was obtained for a pair of elliptical inclusions with perfectly
bonded or slipping interfaces.

It was concluded that the local stress field is considerably effected
by the proximity of the two inserts. In addition, loss of the interfacial bond
yields high stress concentrations, particularly along the interface.

The influence of the relative stiffness and the inhomogeneity aspect

ratio were also investigated. It was observed that the approximation based




upon the superposition of two single inclusions leads to erroneous values

of the interfacial matrix stresses.
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Appendix A
The coefficients wn and Zp can be obtained utilizing the complex-
variable formulation. Let Zj = xj + iyj. The relations (1) can be written as
X1 +Yyp =Xy +iyy + €. (Al)
Using (2) and (Al), are relations between O} and O2 is given as

cosh (a, + iB1)=cosh (az + iB2)+é. (A2)

From the definitions of ®wp and Zp, the values of wp and Z, can be

obtained
Wo=Zp=04 + il—-,ln—)mdzm‘o
m=
and (A3)
where n = 1, 2, ... . The value of 04 is given by

04 = cosh"‘%) ; (A4)

The coefficients dm,n can be obtained by starting' with (Cooke 1956)

e-ma1 cos mP; = mj I, (Ac) A" 'eMicos Ay, dA (AS5)
0




and

e**2cos Ay; = 2 €n (-1)" I, (AC) cosh na; cos nfB; (A6)
n=0

where x>0, m=1, 2, .., and

e,,-_-: L, n=0

2, n=12,.. (AT)

From the relations (1), (AS) and (A6) can be transformed into

o

e'm® cos mP; =m Iy (AC) A A8 z €2 (-1 I, (AC) cosh not; cos nB; dA  (A8)

n=0

Using the definition of dm,n. the coefficients dm,n are obtained by

I I In (AC) I, AC) eMs A" di. . (A9)
0

Appendix B
The constants Uij, Vij, Sij, and Tij are the following.
Uaq = nena0
Ugi = (n-1+ k) e{2-220 + (n-1- k) e-0%0
Upz = (n+1+ )20 + (n+1- x)e{n+2)x0
Uct = n sinh nop

Uc; = (n-1+ x) sinh(n-2)0g + (n-1- x) sinhnoyg




Ucy =(n+1+ x)sinh noyp + (n+1- k) sinh (n+2)ag
Ua; = n sinh nag

Ug, = (n-1+ ®) sinh(n-2)a + (n-1- ®) sinh nag
Ug: = (n+1+ ®)sinh nog + (n+1- &) sinh (n+2)0g
Var=neh®

Vi =(n-1-x){ en2e0 + emo0 |

Vg = (n+1+x) | e0@0 4 g-(n+2)a0 |

Ve =n cosh noy

Vez =(n-1-x){ cosh(n-2)ag + cosh no)

Ve =(n+1+ x){ cosh nog + cosh (n+2) o)

Va1 = n cosh nag

Va1 =(n-1-x}{ cosh (n-2)a + cosh na)

Vg2 = (n+1+ ¥) cosh nog + cosh (n+2) 0t }

Sat = (n-2)(n-3) e-®-200

Saz =n{ (n+1) e @290 + (n-1)e-(1+2)20 }

Sa3 = (n+2)(n+3) e-(n+2)e0

Sg1 = (n-3) { (n-2) e@-H20 4 (n-3- ) e-(®-2)00 }

Sp2 = (n-1) | (n+2) e-(0-400 - 2(x-2) e-(0-2)20 + 4 000 + (n-1-K) e-+2)30 \




Sy =(n+1) { (n+1+ x) eM200 . 4000 4 2 (Kk-2) e 'R+ 4 (p-2) e-(n+diaxg |
Sps = (n+3) { (n+3+ ) e (1+2a0 4 (n+2) e-n+Hiag |

Sc1 = (n-2)(n-3) cosh (n-2)0g

Sc2 = n{(n+1) cosh (n-2) g + (n-1) cosh (n+2) o }

Sc3 = (n+2)(n+3) cosh (n+2) ap

Sca = (n-3) { (n-2) cosh (n-4) oy + (n-3- x) cosh (n-2) ap |

Scs = (n-1) { (n+2) cosh (n-4) o - 2 (x-2) cosh (n-2) oy
+ 4 cosh nap + (n-1- x) cosh (n+2) ayp }

Sce = (n+1) { (n+1+ K) cosh (n-2) o - 4 cosh noy
+ 2 (x-2) cosh (n+2)0g + (n-2) cosh (n+4) o |
Sc7 = (n+3) { (n+3+K) cosh (n+2) o + (n+2) cosh (n+4) ayp )

Sa1 = (n-2)(n-3) cosh (n-2)0
Saz =n{ (n+1) cosh (n-2)0p + (n-1) cosh (n+2)a }
Sa3 = (n+2) (n+3) cosh (n+2)0g

Sg1 = (n-3){ (n-2) cosh (n-4)ag + (n-3-x) cosh (n-2)0g }
Sp2 = (n-1){ (n+2) cosh (n-4) g - 2 (R-2) cosh (n-2) 0o+ 4 cosh notg + (n-1-%) cosh (n+2) ot |
Sg3 = (n+1){ (n+1+ %) cosh (n-2)aig - 4 cosh noyp - 2 (R-2) cosh (n+2) g + (n-2) cosh (n+4) ap }

Sga = (n+3){ (n+3+ ®) cosh (n+2)atg + (n+2) cosh n o }
TAl = (n~2)(n-3) efn-2)a0

Taz = nf (n+1) (290 + (n-1) e-(n+20 |




Ta3s = (n+2)(n+3) e-n+lng

Tgy = (n-3){ (n-4) e 04190 + (n-3-x) e-n-21xy |

Tgz = (n-1){ ne™3100 - 2 (K-2) g™ 4+ (n-1- k) en+21ag |

T3 = (n+1){ (n+1+ K) e ™0 + 2 (x-2) e0+2100 4 ( urhro |

Tga = (n+3){ (n+3+ K) e+ + (n+4) e-(n+Hap |

Tcy = (n-2)(n-3) sink (n-2)og

Tcz2 =n{ (n+1) sinh (n-2)ag + (n-1) sinh (n+2)0y |

T3 = (n+2)(n+3) sinh (n+2)0

Tcs = (n-3){ (n-4) sinh (n-4)ag + (n-3- X) sinh (n-2)a)

Tes = (n-1) { n sinh (n-4)ay - 2 (x-2) sinh (n-2)0 + (n-1-K) sinh (n+2) ap |
Tcs = (n+1) {(n+1+ x) sinh (n-2)0 + 2 (x-2) sinh (n+2) o + n sinh (n+4) o)
Tc7 = (n+3) {(n+3+ x) sinh (n+2) o + (n+4) sinh (n+4) oy )

Ta1= (n-2)(n-3) sinh (n-2)ao

Taz =n{ (n+1) sinh (n-2) oo + (n-1) sinh (n+2) oy )

Ta3 = (n+2)(n+3) sinh (n+2) o

Tgi = (n-3) {(n-4) sinh (n-4)0g + (n-3- ®) sinh (n-2)ct

Tg2 = (n-1) {n sinh (n-4)0y - 2 (R-2) sinh (n-2)0p + (n-1- %) sinh (n+2) o }

Tg3 = (n+1) {(n+1+ ®) sinh (n-2)0 + 2 (¥-2) sinh (n+2) &g + n sinh (n+4) g )




Tga = (n+3) {(n+3+ X) sinh (n+2) 0 + (n+4) sinh (n+4) g |

Appendix C

Using the symmetry equations (20) at the interface of the inclusion

Q,, the corresponding equations of (17) - (19) become,

Y AgVar+ 4‘2 Bn.1 VB + % 2 Bn+1 VB2
n=1 n=2 n=0

+ z FoZ, + Z (Am + C Bm) dmn ‘ Ve - %— Z Z Bmdm,n-l Ver
n=2 m=1 n=2 m=1 (Cl)

-%Z z Bmndm.n+1 Vc3--ILZ K”-VA_I-ZC]:[EZ Bn-lVB—l"ZCI:Z B VE

n=0 m=1 n=1 n=0

=C
=C 5

~

n,

- Fo ___smh22a0 Sn.0- i— Y Ap2Sar+ % Y AqSa % 2 Anz Saz- 156' 2 Bu3 Ssi
n=4 n=1 n=-1 n=4

+ _lc_ Y. By.1 Sp2 +£ Y Byt Sgs- < Y Bu.3 Saa
6 16 = 16

n=-2

FoZn. + z (Am + gBm) dm.n-2 } Sci +% Z FoZ, + Z (Am + CBm) dm.n } Sca2

4 m=1 n=1 m=1

M s

L
4

n

°4L Z { FoZn.2 + 2 (Am + CBm) dm.ne2 } Sc3 + '1C6' Z Z Bmdm,n-3 Sca

=-1 m=1 n=4 m=l

3




-l%z Z BmdmnlSCS“ngz z Bndm.ns SC()""I% z Z Bndm.as3 Sc7
n=2 m=1 n=0 m=1 n=-2 m=1
+%Z Anzsm-i-z Aq Sa2 +‘11- Y Anz SA3+IQ6-Z B3 Spi
n=4 n=1 n=-1 n=
Q‘Z Bnlg'g‘z Bn+l-s—g;“‘£L z Bn+3§;
16 ' 16 =5 16 =,
=0

o

gFobuz- g X A Targ 2 AT L A Ane2 Tas- 7= 2, Bo3 Ty
n=4 n=4

n=1 n=-

+C Y By To2+C Y Bowi Tos- & Y Boos Tae
6 n=2 16 n=0 16 n=-2

T - i‘ 2 \Fozn + z (Am + CBm) dmun ’ Tc:

n=1 m=1

+ i— Z {FOZ,,_Z + Z (Am + EBm) dma-2

m=1

+‘11_ Z {Fozn+2 + Z (Am + {Bm) dm.n+2 }TC3 '%z

m=1 n=4

Z Bmdm n- 3TC4
m=1

(C3)

+ c z Z Bndm.a-1 Tcs - -1C6- z Z Bmdm.n+1 Tce - -1c6- Z Z Bndma+3 Ter
m=1 n
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Figure Captions

Geometry of the problem.
Elliptical coordinate system.

Normal stress along the interface for various I’

(a) perfect bonding (b) sliding.

Normal stress along the interface for various A

(a) perfect bonding (b) sliding.

Hoop stress distribution for various I’

(a) perfect bonding (b) sliding.

Variation of the interfacial hoop stress for different A

(a) perfect bonding (b) sliding.

Effect of the shear moduli ratio on oy

(a) perfect bonding (b) sliding.

Normal stress oy along the central axis for various s

(a) perfect bonding (b) sliding.

Distribution of the normal stress Oy at x= 2

(a) perfect bonding (b) sliding.
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An analytical solution

for the fiber indentation problem

D. KOURIS * and E. TSUCHIDA **

ABSTRACT. — An analytical solution is presented for the problem of fiber indentation. The fiber 1s modelled
by a semi-eilipsordal inhomogeneity embedded at the free surface of an elastic half space. Using Boussinesg's
displacement formulation, the local elasuc field 1s determined for the cases of perfectly bonded and shiding
interface.

1. Introduction

One of the important issues relating to the thermo-mechanical properties of composite
materials is the mechanism of load transfer along the fiber/matrix interface. Tk~ inherent
discontinuities of the material properties of the constituents, as well as the integnty of
the interface, have a significant effect on the local stress field and consequently influence
the performance of a composite.

Marshall [1984) proposed an experimental procedure for measuring the strength of the
interface in ceramic composites. His approach utilizes a microindenter and approximates
the interfacial stress by recording the fiber/matrix differential displacement and the
applied load. The local stress field may be evaluated using shear-lag analysis [Cox, 1952].

In an exact analytical formulation, the diffusion of load from a fiber into a three-
dimensional elastic medium presents significant difficulties. An approximate scheme, in
terms of a Fredholm integral equation, was studied by Muki & Sternberg {1970] for the
case of a finite rod, immersed in a semi-infinite solid. Other relevant studies of the fiber
pull-out problem include Aveston & Kelly [1973], Phan-Thien & Goh [1981], Budiansky
etal. [1986], Sigl & Evans [1989], and McCartney [1989].

In the present study, the fiber is modelled as an inhomogeneous semi-ellipsoidal
inclusion, under the influence of a concentrated indentation force. Utilizing a three-
dimensional displacement formulation, an analytical solution is obtained in a series form.

* Mechanical and Aerospace Engineering Department. Arizona State University. Tempe, AZ 85287-6106.
USA.
** Mechanical Engineering Department, Saitama University, 255 Shimo-Okubo. Urawa 338, Japan.

EUROPEAN JOURNAL OF MECHANICS. A/SOLIDS. voL. 11, N* 3, 1992
0997-7538/92/03 323 12/$ 3.20/ © Gauthier-Villars




324 D KOURIS AND E TSUCHIDA

In order to evaluate the influence of the interfacial integrity. the fiber is considered to
be either perfectly bonded or free to slip along the interface. These two extreme conditions
are then analyzed and compared.

2. The boundary value problem

The indented fiber is modelled as a semi-ellipsoidal inhomogeneity, loaded by a normal
concentrated force. The inhomogeneity is embedded at the free surface of an elastic half
space, as shown in Figure I. Both the fiber and the surrounding matrix are considered
linearly elastic and isotropic: their shear modulus and Poisson's ratio are denoted by
(G. V) for the fiber and (G. v) for the matrix.

0

P X
Y
¢ “4—— g =congt
B
y Y = const
\ a

B = const.

z

(a) (b)

Fig. . — Problem geometry and coordinate system.

The purpose of the analysis is to determine the local stress and displacement fields
around the fiber, under the influence of the indentation force.

Due tc the geometry of the fiber, the prolate spheroidal coordinates (. B,y) are
utilized; they are defined by the transformation:

x=csinhasinBcosy=cqpcosy
€)) y=csinhasinBsiny=cgpsiny
==ccoshacosB=cgp
where g=cosha, g=sinha, p=cos P, p=sinp, and ¢ indicates the half-distance between
foci.
The boundary conditions at the free surface (- =0) require:

Q) {(Up)a--/z=(1’.a)b-n/z=0
(a’p)a e (iu)p =2=0,
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ANALYTICAL SOLUTION FOR FIBER INDENTATION PROBLEM 325

where the overbar indicates quantities of the fiber.

In addition, due to the absence of a far field load. all stress components are expected
to decay away from the fiber.

When the fiber‘matrix system is perfectly bonded. the state of the interface (x=1x,) is
characterized by continuity of tractions and displacements, i.e.,

(3) { (uu)==:o=(gc):=:o° (uu):=:o=("75)c=co'

(0’,), =ag = (65)”’0‘ (110)1 =39 = (§:D)a=1o‘

with all the other stress components being identically zero due to symmetry.

When the interface cannot sustain any shear tractions, the conditions of perfect slip
require that:

(4) ( (uu)a =ap = (Ea)u =ag* (oa)u =ag = (aa)a =30
(Tapla=ao =0 and (Tapla=ag =0-

The mathematical formulation that follows is based upon a three dimensional displace-

ment formulation and the principal of superposition. Due to rotational symmetry the

Boussinesq’s {1885] displacement potentials, in prolate ellipsoidal coordinates, are given
by:

20u,=h¢7& +cluip{q-a——¢:1 —(3—4v)<b3}
cq og

5 - -
) 2Guy= —hp& —chpq{pit—’:1 —-(3—-4v)®,}
dp ép
2Gu,=0,
2 ~2
where V2=h2{q7£— -f-:’.qi +E£——2pf—}
éq? dq ap cp

Ehi=1)(¢*-p?H) and V2,=Vi0,=0.

The expressions for the stresses can be deduced using Hooke's law and are given in the
Appendix.

The choice of the displacement potentials ®, and ¢, ought to be such that both the
effect of the concentrated load and the disturbance due to the presence of the inhomogen-
eity are included in the formulation.

The elastic field due to the indentation force on the fiber can be expressed by:

) { ®o=~(1-2V)/2a’p, [Q, (9) P, (p) +log g (1 +p)]
= —(a*/2¢) po Qo (9) Po (p)
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326 D. KOURIS AND E TSUCHIDA

where P,(p) and Q,(q) are Legendre functions of the first and second kind. respectively
and p, =P na® The stresses and displacements due to (6) are:

2G4, =(a*2) po (NP2 -2Vp {7 Qo () +q | —(1-2V)g]
2Guy= —(a*2)po hp[(2=2V)q Qo (g1 + (1 = 2¥) p/(1 + p)]
M 0, = —(@* ) poh* [~ (1 -2V) g*/@* + 2~ 2V) pig* + p(4=2¥) ¢ 1 p?)]
o5= —(a*2py h* p*[— (1 =2%)(1 +p)~c* h* p)
0,= —(a*2)poh* [(1-2V) ¢*/g? = p(1=29) 2+ p)i(1 +p) = (2= 2V) p:¢*]
Tp= —(@*2) po R (g Q) pp [ = (1 =2V)/(1 + p)+c* h? p.

Due to equilibrium considerations, the matrix stresses ought to account for a force
equivalent to the applied load p,. Therefore, a set of displacement potentials. similar to
(6). is considered for the matrix region:

{00: —(1=-2v)12a*po Fo[Q, () P, (p) +logg (1 +p)]

(8)
¢,= - (a*/2 ) poFo Qo (@) Py (p)

with the unknown constant F, to be determined by the interfacial boundary conditions.

The presence of the inhomogeneity introduces a disturbance in the local elastic field.
The choice of potential functions to represent this disturbance, is based upon the
observation that the corresponding stresses must satisfy the free surface conditions and
decay away from the fiber. This, together with the fact that the selected functions ought
to be harmonic, lead to the choice of four potential sets.

For the matrix region (x> a,), these potentials are:

9) ®,=2(1-v)?p, Z An{QZ ne2@P2as2(P)~Q;, (@) P2 ()}
n=0

Dy=cpo 3. A,(4n+3)Qz0s1 (@ P304y (p)

1 a=0

and
\¢0=(1-2v)czp0 Z Bn{Q2n+3(q)P2n+3(p)-Q2u¢1(q)P2n+1(P)}
(10) n-OQ
] ©y=cp, ). B,(4n+5)Q;,.2(9)P2,4sz(p)
n=0

For the region occupied by the fiber (ax <a,), the selected potentials are:

\, ®,=2(1 -;’)CZPO Z An{P2n+2(q)P2n#Z(p)_PZn(q)PZn(p)}
< n=0

(1

, Q3=Cp0 Z An(4n+3)P2n¢l(q)P2n+l(p)
' a=0

EUROPEAN JOURNAL OF MECHANICS. A/SOLIDS. vOL. 11. N* 3, 1992




ANALYTICAL SOLUTION FOR FIBER INDENTATION PROBLEM 327

and
Oo=(1-2v)c?p, 3 Bu{Pz.»l(‘l)quﬂ(P)-P:n-l(Q)Pu—l(P)}
(12) .
Z ®y,=cp, Y B,@n+1)P,,(q)P;,(p)
n=0

The expressions described in (7), together with the stresses and displacements that follow
from (8)-(12), allow for the evaluation of the elastic field anywhere in the fiber and the
matrix, in terms of the undetermined coefficients of the series. These unknowns F,., A,
B,. A,, and B,, can be determined by enforcing the boundary conditions along the
fiber/matrix interface. Depending upon the interfacial requirements for perfect bonding
or slip, conditions (3) or (4) are utilized.

3. Solution technique

Substituting the corresponding quantities in the conditions of perfect bond as described
by (3), the continuity requirements yield a system of linear equations for the series
coefTicients. Specifically, the continuity of displacements yield:

(13)  [u/(Po €2 M)y mag = [a/(Po ¢ hDamag =

1

- (02/2 Cz) FO Z u, (QO) Pn (p)

a=0

®

+ Z {[UAlAn~l+UA2An]_(l/r)[0Al Au-l+UA2An]}P2n(p)

n=0

®©

+ Z {[UBI Bn-l+UBZ Bn]—(l/r)[oﬂl Bn-l+082 Bu] } P2n+l (P)

a=0

1
= —(1/T)(@*2¢?) ¥ u.(90) P, (p),

n=Q

where uo(g)=(1-2v)(40/q3) and u,(9)=—(2-2v)[Qo(g0) +(g0/93)}. The expressions
for u,(q,) are obtained from u,(g,) by replacing v with v. The coefficients U, ;, Ug,,
U,. and Uy, are known functions of »n and the geometry, and can be found in Kouris
etal. [1989).

The fiber/matrix shear moduli ratio is denoted by I' (' = G/G).
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The continuity of the tangential displacement along the interface s given by:

(14) [ub/(l’o Cz hl;)]uﬁ‘xo = [Ja/'(Po CZ /'p—)]usuo =

(@2 Fol2=2v) 4o Qo(g0) P (p)+ (1 =2V) pi(1 +p)]

+ Z {[VAIAn—l+vAZAn]_(I/'r)WAlAn—l+vA2An]} Plln(p)

n=]

+ Z {[VBI Bn-l +VBZ Bn]_(lr)[VBl Bn-l+VBZ Bn] } P’2n¢l(p)

n=0

== (@*2c*)[(2=2V) g5 Qo (g0) P () + (1 =2V) pi(1 + p)].

In addition to the displacements, tractions are continuous along the interface. These
two conditions yield:
(15) [04/(Po ¢* h*)]yag = [0a/(Po €* h*amay =

3

-(@*2c?) Fo Z 5, (q0) P, (p)

a=0
+ z {{SAI An-2+SA1 Au-l +SA3 An+SA6 An+ 1]
n=0Q

—Bar A2 +8GA L +5,GA,+5,A L ]} Pyl (P)

@©

+ Y {[Ss1B,-2+Sp; B, + 553 B, +55.B,,]

=0

—(8e;B,-;+852 B, +843B,+ 55, B, ]} P2,y (0)

3
= —(a*2c) Y 5,(q0) Pa (),

e
Where so=(1-2v)¢g*(1-34¢%)/(3¢%).
5i=1/5) (-1 @g*~3)-2vg* (5¢°-3)),
s;=(1-2v)2¢*/(34%)  and
se==2/5¢) [ +2-2v)¢’),
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for the normal stress, and:

( 1 6) [tuo:’(l’o C‘ h‘ ‘ﬁ)]c =agp = [Eua/(l’o C‘ h‘ E)]u =ag =
3

—(a@*2¢?) Fo[ Z LAgo) Pr(p) +(1 =2 v)qi(l +p):|

n=1

+ Z {[TM An-2+TA2 An—l +TA3An+TA4An+x]

n=1

—[TAIAH—Z+TA2An—1+TA3An+TA4An#1] } PI:..(P)

+ Z {[TBI Bn—2+T82 Bn-l +T83 Bn+T84 BnOl]

n=0

_[Tm Bn~2+TBZ Bn—1+T83 Bn+TB4 Bnn]} Piaei(p)
3

= '(02/202)[ L LGP (P +(1-2V)g/(l +P):I.

LD
for the shear stress, where

H=[2-2v/(5¢) - (1-2V)lg,
n=-(01-2v)¢*/(3¢),

1,=(2-2v)2q/(15¢%) and P;(p)=y.
P

In order to obtain a linear system of equations for the series coefficients, Legendre
functions of odd order that appear in (13)-(16) are expressed in terms of Legendre
functions of even order. Such a transformation is possible for 0<p<1, and is given by:

(17) Prier(p)= z wi P, , (p), Prie1 (@)= Z wi’ P53, (p)

a=0 n=]
where
wi'=@n+1)Qk+1)/(2k+1-2n)/2k+2+2n)P,,(0)P,,(0).

By employing this compiete expansion and equating the coefficients of P,,(p) and
P35 . (p), equations (13)-(16) yield the following system of linear equations:
(18) = (a?/2c?) Fo [ug (o) 85" + u, (g0) w§')

+[Ua Apo 1 + UL A)-(1/D) (O, A2+ 0,4, A

O

+ Y {[Up; By + U, BJ—(1/1)[Cg, By, + Up, Bl } wi”

k=0

= —(1/1)(@*/2¢}) [up (40} 8+ 1, (go)wE],  (n=0.1,2,...),
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330 D. KOURIS AND E. TSUCHIDA
(19 —(a*2c? Fo[{ (2-2v)90 Qo (go) + (1 =2v) ) wi

+(1=2v) {@n+1)/2ny2n+ 1)} - Y (4k+3)/(2k+l)/(2k+2)w‘:’]

k=0

+[VAIA1|-I +VAz A,,]—(l/r)[v“ An-l +VA2AR]

L]

+ Z {[Vm B,. + Vg, B,]-(1/1)[Vg, B.-1+VaszJ}"“f’

k=0

=—(a*2 Cz)(llr)[{ (2-2v) 9o Qo (go) +(1 =2V) } wi

+(1=2v){@n+1)/2n)/Q2n+1)- Z dk+3)/(2k+ I)/(2k+2)w2"’:|

k=0Q

(200 -—(a*2¢) Fols0(90) 85" +5, (90) WG+ 5, (90) 8" + 53 (qo) wi]
+[SAl An-Z+SA2 An-l+SA3An+SA4An#l]
—[SAlAn-2+SA2An—l+SA3AH+SA4A:'+L]

+ Y {[Se:1Bi-2+Sg: By + 553 B, +85,B,. ]

k=0
~(Sp; Bi-;+84, B, -, +553B,+5,, B, )] }wid
=—(a*/2¢?) [3—0(90) &3 +;1 (90) wo +5,(q0) 3 +55(g0) WM

(n=0,1,2,..

and

@) -(@*2¢})F, [11 (@0) WG" + 13 (90) 3"+ 13 (o) WY

k=0
+[TA1 Al-2+TA2 Al-l +TA3 Au+TA‘Au+l]
“MarA+TLA L +TGA+T A L]

+ z {[Tn Bk-2+Tl2 Bk-x+TBJ Bk+TB4 B&+l]

k=0

—[ToyBio 2+ Ty Bio ) + Ty But Toa Bis 1} wi?

+(1-2v)qo {(@n+1)/2n)/2n+ 1)}~ Y (4k+3)/Q2k+1)/(2k+2) w‘,,"’]

= —(a*/2¢%) [71 (90) W8" +13(g0) 87" + 13 (go) Wi

k»0

+(1-2v)go{@n+1)/2n)/2n+1)} - z (@k+3)/2k+1)/2k+2) w{"’]

(n=1,2,3,..
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After determining the coefficients F,. A,, B,. A, and B, from the svstem (18)-(21), the
elastic field can be evaluated at any point in the matrix or the fiber.

In the case of a sliding fiber, the problem is formulated similarly based on the boundary
conditions (4).

4. Results and discussion

According to the approach that was described in the preceding sections, the unknown
coefficients of the displacement potentials can be obtained by solving the linear system
of equations (18)-(21). In order to ensure that the interfacial boundary conditions match
up to three significant figures, no more than twenty series terms are required. Such a
truncation is justified due to the evident numerical convergence of the solution.

The purpose of the parametric study performed, was to identify the influence of two
basic parameters on the elastic field; namely the shear moduli ratio I'(I'=G/G) and the
inhomogeneity aspect ratio S(S=a/b). In order to determine the effects of the interfacial
bond, the fiber was initially assumed to be perfectly bonded to the matrix; consequently,
by relaxing the interfacial shear stress, the case of perfect sliding was considered, and
the results were compared. The comparison was focused on the interfacial stresses and
the distribution of the displacements along the free surface.

The distribution of the normal stress o, along the interface, for a fixed shear moduli
ratio (I'=5), is illustrated in Figure 2. The stress concentration at point A increases for
the case of sliding and is inversely proportional to the inhomogeneity aspect ratio. The
variation of the material properties has a significant effect on o,, when the inhomogeneity
is perfectly bonded to the matrix (Fig.3). This is not the case, however, when sliding
occurs.

4 e

2]

s =5
34

44

5 l —e— sS203(SL) ||
T/ —e—  $20.5(SL)

€ —o— S$=03(PB) [
,,{ —o— sz085(B) | |
ol L]

0 10 20 30 40 50 60 70 8o 90

Fig. 2. — Normal stress along the interface as a function of S (PB and SL).
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The fiber hoop stress o, along the interface s illustrated in Figure 4. Here. the geometry
of the insert appears to affect the stress concentration much more than the condition of
the interface. The significant tensile values of o, suggest the possibility of crack initiation
in the vicimity of point A,

1 18 I
S 2058 16 F=$—
] 14
/"' 2 —e— 5:0.3(SL)
" T 10 \ *— S=05(SL) [—
A —— =5 —(SL)— . —o— 5:03(PB)
-—e— T[=2 (SL) —o— S:0.5(PB)
-2 B e— | 6 3
—o— r=5 (PB) 3
—o— =2 -{PB)—] «d
34 2 ) Wg
°
-4 2 T T L4 T — 14 1
0 10 20 k14 49 50 60 70 80 80 -] 10 20 30 40 50 80 70 80 90
[ ] ¢
Fig. 3. — Normal stress along the interface Fig. 4. — Fiber hoop stress along
as a function of " (PB and SL). the interface as a function of S.
Another important aspect of the problem involves the distribution of displacements
along the free surface of the composite. If we denote by R the normalized distance from
1 1
—— =2 o8 —o— r=2| |
(X )
—— TI's=§ —— TI'=§
0s
04
0.4 ‘
S =03 S =03
02
02
)
0.0
0.0
02 02
0.0 0.5 1.0 1.5 2.0 2.5 3.0 0.0 0.5 1.0 1.8 2.0 2.8 3.0
R A

Fig. 6. — Normal displacement along
the free surface for =2, 5 (SL).

Fig. 5. — Normal dispiacement along
the free surface for I'=2, 5 (PB).
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(W3)
()
D)

the point of application of the load (R =r'a). the regions 0<R < | and R > | correspond
1o the free surface of the fiber and the matrix. respectively.

The condition of the interface has a significant effect on the normal displacement u..
as shown in Figures 5-6. When the inhomogeneity is relatively “soft™ (I"=2). the normal
displacement of the fiber does not exhibit significant differences between perfect bonding
(PB) and shding (SL). This is not true. however, for a “stiffer” fiber ([ =5). In the case
of SL. u. in the matrix decays rapidly and is almost independent of I'.

For a given material combination. the dependence of w. on the geometry of the
inhomogeneity is illustrated in Figure 7.

1.0 ] l
—o— $z205
083
\ ——= $=z03
0.8
0.4 4
=2
0.2
0.0
0.2
0.0 0.5 1.0 1.5 2.0 2.5 3.0

Fig. 7. — Normal displacement along the free surface for S=0.3, 0.5 (SL).

Finally, it should be noted that the normal displacement along the free surface of the
fiber, does not appear to be uniform; such a simplifying assumption that sometimes has
been made in the literature, may be misleading.

5. Conclusions

In an effort to evaluate the local elastic field in the vicinity of an indented fiber,
an analytical solution was presented based upon the three-dimensional displacement
formulation. The results suggest that the stress concentration along the interface depends
on the fiber aspect ratio and the given material combination. The influence of the
interfacial integrity was studied by considering the extreme conditions of perfect bonding
and sliding. It was found that the loss of bonding introduces high displacement disconti-
nuities along the interface. In addition, the distribution of the normal displacement aiong
the free surface of the fiber is not uniform.
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APPENDIX

The non-zero stress components that correspond to the displacement field describing
by (5) are:

30 . :
Al o,=h2{q2—.—_ 20 +(‘2thz(q& _pfs)}
oq og = op

puy 620 2 g - 4 2 2 —-.‘
+ch’[qq2p———23 +{c*h*g?p?-2(1 -~V)q2}pa—j’ii -(c‘thw—?_v)qp-(—‘& .
’q cq ép

-0 59— [ €D ol
(A2) °a=hz{Pz 3 1°+C'h‘42<‘1*?—°"P—:9)}
P ¢q cp

¢

- &0 . - - 3] - C
+Ch2[qp.p—_—ép23 —{c‘th2q+2(l—v)p2}quf +(c?h? 2—2V)pq'c¢,3].

D, i 2 o =2 CO . CO
(A3) 0,=h2(4‘5—° ‘P—.—°)+c/1’{(q'*2qu)}pt—’-(p‘+2VP2)q(—.—’}
q ip ép éq
2 -
(A9) nﬁh’«ﬁ{— =% +c2hz<qai‘! -pﬂﬂ)}
0q0p op 0q

75 o 28 30
_Chqu[qp‘_"q*{czh‘p’-(l—2v)}q-.—5 —{c2h2q2+(1-zv)}pa&]4
dq0p aq P
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Summary. The paper presents an analvtical solution for the clastic ficld in the vicimity of a semi-circular
inhomogeneny, embedded at the frec surface of an clastic haif-plane. This bi-material system s loaded by
uniform remote tenston or a constant eigenstrain sustained by the inhomogeneny.

1 Introduction

The thermomechanical response of multi-phase materials has been the subject of considerable
interest due to their importance in structural applications. Issues relating to the local elastic fields
and the integrity of the interfaces between the constitzents are essential in determining the overall
properties as well as the fracture behavior of composites.

In order to optimize the design of such complicated materials. one needs to understand the
mechanics of the microstructure. Such knowledge can be utilized in an effort to qualify possible
modes of failure. In addition, the micromechanical analysis of the matrix/inhomogeneity system
may serve as the basis for estimating the bulk properties.

The focus of the present study is the elastic behavior of a plane bi-material system which
consists of a semi-circular inhomogeneity, located at the free surface of an elastic half-plane
(Fig. 1). The analysis was motivated by experiments involving continuous fiber composites
{Kouris [1]). In this context, Kouris and Tsuchida [2] investigated the local interaction between
fibers, under thermal loading. In addition. a similar analysis was presented by Kouris [3] for the
case of mechanical loading and imperfectly bonded fibers.

However, some of the specimens tested in transverse tension contained fibers that were
located near or at the free surface. These fibers can be modeled by semi-circular inhomogeneities,
under conditions of plane strain. A related elasticity problem which involved the stress
distribution in a notched plate under tension was solved by Maunsell [4]. This solution was
generalized by Atsumi [5] for the case of a plate containing an infinite row of semi-circular
notches. under similar loading conditions.

The inhomogeneity problem is formulated in terms of displacement potentials. The loading
consists of uniaxial remote tension or a uniform eigenstrain sustained by the inhomogeneity.
Solutions are obtained for a perfectly bonded as well as a sliding interface and the results are
compared.
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2 Displacement formulation

A semu-airculdr inhomogeneity of radius x 1> embedded at the free surfuace of 4 semi-infinite plane.
as shown 1n Fig. L The surrounding matrix us well as the inhomogeneity are assumed to be
linearly elastic and isotropic.

In the absence of body forees. the equilibrium equanions in terms of displacements are

to

+

T u,, =0 tij=x1 (1)

where » = 3 — 4v for plane strain and »# = (3 — v) (1 + v) for plane stress.
According to Boussinesq [6] and for rotational symmetry. Eqs. (1) are sausfied idenucalls by

N (td)n ("d):
26u, = — + 1 —
X X
(2)
(“‘po (:(p:
ZGu, = - T+ V= — 7t
cy cy

¢, and &, are arbitrary harmonic functions. For a particular problem. these functions are
selected based on the geometry. the applied load and the appropriate boundary conditions.

In the present investigation, two types of loading have been considered. At first. a solution is
sought for the case of mechanical loading, represented by remote uniform tension p, along the
y-axis. Consequently, the specified tractions at infinity yield

(6)r~x =po and (0,),~x = (T5),.x = 0. (3)
The displacement potentials that correspond to the load p, are given by

{ 1
®o= -2 p3-x)(x" -y and &,= -3y,

which, in polar coordinates, yield

1
by = ~3 pol3 — ») r? cos 26
(4)

|
——=rsin26.
3

S
It

X Fig. 1. Geometry of the problem
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In addition. a non-elastic displacemen: 5 being introduced 1n the form of 4 uniform
eigenstrain ¢,*. sustained by the inclusion. 1e.

which leads to

—

2Ga,* = 3 (2Ge,*) ril — cos 26)

1 .
2Giay* = 5 (2Ge,*) rsin 20,

where G is the shear modulus of the matrix and the overbar is used to denote quantities that
correspond to te inhomogeneity.
Consequenti:, the boundary conditions at infinity ir the case of the eigenstrain loading are

(U»')’<t = (0',),_7_ = (txy)r—-t = O 16)
The requirement for zero tractions along the free surface yields
(a.x)x=0 = ‘rxy)x=0 = 0
7

(&x)xxo = (fxy)x=0 =0.

In order to complete the formulation of the boundary value problem. one necds to account
for the disturbance due to the presence of the inhomogeneity. This disturbance is represented by
four sets of displacement potentials, given by

x n+ 1+

— ? A"___ -2n 2
P, Do z y r~="cos 2né
(8)
®, = p, Z A B3 Ysin(2n + 1) 6.
a=0
3 4n+ 5+ =«
(p = — - T ,-t2atl) 2
o po";)B,. TR cosf2n+ 1) 8
()
®, = po Z B,r " Vsin(2n +2) 8
n=0
for the matrix (r > z), and
o i§4n+3—22"" , N g
0= [’o”’o " n +2) r cos (2n + 2)
(o
by =po Y A.r"ttsin(2n+ )0,
n =t
. _dn—-1-—-2 |
Co=p, ¥ B, —————r""'cos(2n+ 1) 0
Par Xn+ 1)

(y

®:=po 3 B,r*"sin2nd
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for the inhomogeneity (r < x). The variable Do represents the remote tension or the quanuty
2G.,® (cigenstrain case).

The elastic solution anywhere in the matrix or the inhomogeneity can be obtained by
superimposing the displacement potentials given by Eqs. (41. (8}, (91,110 ar;d {11). What remain to
be found are the values of the unknown coefficients A4,. B,. 4, and B, This can be accomplished
by utilizing the boundary conditions along the matrix inhomogeneity interface.

3 Interface boundary conditions

When the semi-circular inhomogeneity is perfectly bonded to the surrounding matrix. the
boundary conditions require continuity of tractions and displucements. i.e.

1G22 = (6,220 {Trdpey = {5g) =, (12)
and
W)= =G, =2, (Ug)y=y = (i), =,- (13)

In the case of the eigenstrain loading, Egs. (13) have to be modified in order to account for the
inelastic displacement. Consequently, Egs. (13) become

(u’)’=2 = (l]’)’=3 + (a,'),::,

(14)

(lla),:, = ('IB)’=2 + (ao‘)r=a-

Based on the stresses and displacements that are derived from the chosen displacement
potentials, Eqgs. {12) yield

(ncos2nb + (n + 2) cos (2n + 2) 8}

kd

+1
+ Y B, T 2n+3)cos(2n + 1) 0 + (20 + 5) cos (2n + 3) 6]
n=0 x°

+ Y AQ2n+ 1 a*{n—1)cos2n8 + (n + 1) cos (2n + 2) 6]

n=0

~ ¥ Bnx™ ' {(2n — 1) cos(2n + 1) § + (2n — 3) cos (2n — 1) 6)

n=0

(1 —cos 28) (15

19| —
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and
i 2n
Vo4, = nsin2nf + (n + 1)sint2n + 2) 0!
— 1-" -

4 n+ 1l ) .
+ YV B, —0Cn+3) sin2n+ 1) 0 + 35020 + 3 0)
n=0 X"

+ ¥ 4021+ D 2"{nsin 200 + (n + 1) sin (20 + 2) 0!

=0

— N B2n =D Ysin(2n + 1) ¢ +sin(2n — 1) 0!
=0

a

1

3

sin 20. 116)

The conditions of continuity of the displacements along the interface expressed by Eqgs. (13) or

(14) become

~

- 1
2 A, EPeIES {2ncos2n0 + (2n + 1 + ) cos 2n + 2) B!

a=0

—

B,

{Qn+3)cos2n+ 1) 0+ (2n+ 2 + ) cos (2n + 3) )

n+2

[3¥)

a

!
[ingl

+
ln—-
s

A" (20 + 1~ 2) cos 2n6 + (2n + 2) cos (2n + 2) O}

t9
=~
3

0o

Y Bux*"{(2n = 1) cos(2n + 1) 0 + (2n — 7) cos (2n — 1) 0!

n=0

+
| —

3

~

1 il ‘
(% — 1)1—5zc0s29+<\—5 g 1(1 —cos.?())\r (n

and

I3

Y o4

A, —
2yt

—

{2nsin 218 + (2n + 1 — ) sin (2n + 2) 0!

=0

< 1 .
-2 B.W{(ZIHS) sin(2n + 1) 0 + (2n + 2 — x) sin (2n + 3) 8}

A2 H{(2n+ 1 + 2) sin 200 + (2n + 2) sin (2n + 2) 0}
)

|
4~ 3
™M

3
)

B.x*"{(2n—=1)sin(2n+ 1) 0 + 2n + 2)sin(2n - 1) 0!

to
8-
[Angb

o A
xsin 20 + ¢ — 5 2&,* sin 29’3. (18)

ta| —

Here r denotes the inhomogeneity/matrix shear moduli ratio (I = G,G) and the quantities
Included in the brackets { ) correspond to the eigenstrain loading.
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The boundary conditions (15) — (18} form a system of equations for the unknown coefficients
of the series. In order to proceed with the solution. itis necessary to eliminate the dependence on
0. This can be accomplished if the odd arguments of the trigonometric functions are expressed in
terms of even. using the ~half-range™ expansion

s
S ou™ cos 2n8.
n=0

1| 4+

cos 2k + o=
(19

sin{2k+ U= 6" sin 2n0.

1

A
" [/]\

n

The coefficients of this complete expansion are given by

(=D "2k + D {(=1)*""2p
W= —————— and "= ————
, . {2k + 1) = a4n*

u'(UI _ '—l)k
‘ (2k + 1)° — an®

Tk + 1y

Utilizing the expansions (19) and equating the coefficients of cos 2n8 and sin 2nf in
Eqs. (15)—(18). one can deduce a linear system of equations for the coefficients 4,, Bn A,
and B,.

Therefore, Eq. (15) yields

4 n(2n + 1) A (n+ 1H2n -1

LT n-t 22"
k2 22 +2

+ E B p W {2k + 3) W™ + (2k + 5) Wy
k=0

2n-2

+ A+ )n=1 2"+ A, n2n — 1) x

ka? =12k — 1) W™ + (2k — 3) Wim,)

ENES

+3Y B

k=1

1
=5 {0"-0", (=012 (20)

Similarly, Eq. (16) becomes

n(2n + 1) 4 n(2n — 1)

A —gmr t A T w
7. 2K+ 2)(2k+ 3
- = == hd (
e a CAR A

A=0

A0+ et = 4, n(2n = 1) 2272

B, = ki2k — 1) 21 igg™ 4 1))

13 —
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The continuity of the normal and tangenual displacements given by Eqs. (17)—(18) are
transformed into

n 2n -1+ 2
—,-l,' z:"—" — A,y 31:"_1
£ 21
= Y Bi = 5 {2k + ) W+ 2k + 2+ 0 W)
K20 T
+ o i d2n+ L= 22+ A, 2nen
%‘ s 3 2k tm RTG) - (n)
+¢1_- > Bie— 22k - 1) W™ + 202k — 2 W]
Ar |, m
1 5 (ny 1 {n) ’/ l *( 5 tn) 3 ‘n”‘\ - 5
=K(z—lJ 1J¢ —;151 =7 2500" -0, (n=0.1L2 ), (22)
and
p n n—-1-—=1x)
- LVELEE n-1 341
z 2 1 ( N
- Y Be- 5 ik + )™+ 2k + 2 -9 4
k=0 T2

) -
~3F {A2n + 1 + 2) 2% 4 Ay 2ng?"t

1 g4 2k n 7)™
- ﬁ{kgo BkEI [(2’(— D™ + 212k + ) ti-y
/ \
=115 ‘"’+(—lze *,™), (n=123..). (23)
2 1 \ 5 y 1 /9 2 ey Jy -

v
\

For a sliding interface, the boundary conditions become

(Grar = {2 PO, (Tra)r=: =0
and (24)
(ur)r=x = (ar)r-: + (ar‘)r:zv (frd)r=x = 0

As in the case of perfect bonding, Eqs. (24) yield a linear system of equations for the expansion
coefficients.

4 Results and discussion

The solution of the linear system of Eqgs. (20)—(23) yields the coefficients A,, B8,, 1, and B,.
Consequently, stresses and displacements at any point of the matrix or the inhomogeneity can be
evaluated. The necessary series truncation requires no more than 15 terms so that the interfacial
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boundaries are met with an accuracy of threec sigmificant figures. No prool of absolute
convergence 1s offered since the numerical convergence of the stresses and displacements s
cvident.

Separate calculations are performed for the tensile and the eigenstrain loads. All the resultng
quanties are evaluated per unit load and the inhomogeneity radius is taken equal to umty. The
examples that follow illustrate the effects of the shear moduli ratio I and the integrity ol the
interface (perfect bond versus perfect slip).

In the case of remote tension, stresses and displacements were calculated for various values of
[ between I” = 10(~hard” inhomogeneity)and I = 0.1 (“soft” inhomogeneity). The eigenstrain
case is treated like an inclusion problem (£ = 1}. Both Poisson’s ratios for the inhomogeneity and
the matrix were taken equal to 0.3.

Perfect Bonding / Tensile Load

1 T v T ¥ T L Ll L L]
0 10 20 30 40 50 60 70 80 30
6 (degrees)
2
Perfect Slip / Tensile Load r=100
‘ r=20 \
1 l" = ]O
a2 r=0.50
~ 4
e
0 - /
r=0.10
1 ¥ v T T 1 o M T v L4 v T
0 10 20 30 40 50 60 70 80 90
0 (degrees)

Fig. 2. Effect of the shear moduli ratio I” on the normal stress along the interface for perfect bonding and
sliding
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4.1 Uniaxial tension

In the case of uniform tension at infinity, we have studied the effects of the shear moduli rutio on
the elastic field along the interface. as well as along the free surface.

Figure 2 illustrates the variation of the normal stress ¢, along the interface. In both the cases
of perfect bonding (PB) and sliding (SL). the magnitude of g, is proportional to . However. the
stress concentration is higher in the case of SL. particularly at the free surface (¢ = 90 ).

The matrix hoop stress ¢, exhibits high tensile values at the bottom of the inhomogenesty
(Fig. 3). These values of o, are inversely proportional to I'; as I — 0. ¢, approaches the value
s po = 3. as predicted in the paper by Maunsell [4]. Nevertheless, there are no significant
differences between PB and SL.

=010

Perfect Bonding / Tensile Load

(=]
<
3
0 -
1 1 L] A T t A 4 L o L A T
0 10 20 30 40 50 60 70 80 90
6 (degrees)

Perfect Slip / Tensile Load

Og/ Py

-1 d Y M T Y T T Y | EE— T T
0 10 20 30 40 50 60 70 80 90
6 (degrees)

Fig. 3. Effect of th.- shear moduli ratio I” on tae matrix hoop stress along the interface for perfect bonding and
sliding
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/ Pertact Bonding / Tensile Load

-1 M L4 M T ad T T T M ) AN S T v L 4 v
0 10 20 30 40 50 60 70 80 90
0 (degrees)
2
1 r=10.
11 r=2.0
Ac 1
> -0
10 r=1.
\ r=050 0
1 r=0.10
.14
1 Perfect Slip / Tensile Load
'2 M T v L v LI L] v L L3 L v L] v
0 10 20 30 40 50 60 70 80 90
6 (degrees)

Fig. 4. Hoop stress along the interface of the inhomogeneity versus I'. for PB and SL

This is not the case. however. for the inhomogeneity hoop stress 6, (Fig. 4). Even though
stress concentrations remain modest, the sliding case involves tension and compression along
parts of the interface.

Figure 5 illustrates the distribution of the matrix normal stress o, (equivalent o ¢,) along the
free surface. versus the relative distance R (R = rjx) from the center of the inhomogeneity. In the
case of a perfectly bonded inhomogeneity with I” > 1 (stiffer than the matrix}, o, exhibits
a maximum not at the interface, but at a distance r = 1.3x from the center of the inhomogeneity.
Therefore, crack initiation is more likely to occur at that point, instead of the interface. However,
this is not the case if perfect slip prevails. where for I’ > 1,0, has a maximum value at the interface
{R = 1). It is interesting that for a softer inhomogeneity (I < 1), the same point r = 1.3x
corresponds 1o a local minimum for both PB and SL.

I
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14
. {1 = 10.0\ Pertact Bonaing ! Tensile Load
‘_ -4
1 r=20
1.0 1
] r=10 /\/"”’f
= 9g4{ r=0s0—
o- <
064 =010
0.4 4
02 v T oy T g T T T v L -
0 1 2 3 4 > ®
R
3

Pertact Slip / Tansile Load
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Figures 6 and 7 represent the variation of the normal displacement u, along the free surface of
the inhomogeneity and the matrix. In the case of the inhomogeneity (Fig. 6). i, remains almost
constant for PBand I > 1. When sliding occurs. ii; decays as R approaches unity (interface). The
values of u along the free surface of the matrix (Fig. 7) tend towards zero as the distance from the
inhomogeneity increases.

4.2 Eigenstrain

This non-elastic, uniform load is represented by 2Ge¢,* = 1. The semi-circular insert is assumed to
be of the same material as the one of the matrix (I" = 1). Qur interest here is focused on the effects
of the interfacial integrity.




180 D A Kournunu ! P Nurolf

06
: Perfect Bonding ' Tensile Load r=010
0.4 4
’\: 7
\3 0 2 -
(p=]
N
=1
0.0 1 10
=20
r=100
'02 v T Y T A Y v T v
0.00 0.25 050 0.75 1.00
R
1
Perect Siip / Tensile Load
0
e
] =100
10
N r=20
r=1.0
1 r=0.50
r=0.10
-2 M T v T v T v T
0.00 0.25 0.50 0.75 1.00

R
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As shown in Fig. 8, conditions of perfect slip correspond to higher values of the normal
stress o,.

The two components of the displacement vector. along the free surface of the matrix and
the inclusion, are given in Figs. 9 —10. These distributions indicate that when the inclusion
is free to slip. it tends to force itself “up™ and “out™ of the pit. On the other hand,
conditions of perfect slip appear to decrease the values of u, and u, along the free surface of
the matrix.
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5 Conclusions

An elastic analysis was presented for the problem of a semi-circular inhomogeneity embedded at
the free surface of a half-plane.

[t was found that under the influence of uniaxial tension, local stresses and displacements are
strongly dependent upon the inhomogeneity/matrix stiffness ratio. Comparisons were made
between perfectly bonded and slipping interfaces which indicate that, in general, loss of the
interfacial bond corresponds to higher stress concentrations.

Similar comparisons were considered in the case of an inclusion under the influence of
eigenstrain loading.
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ABSTRACT
The paper discusses experimental observations and some related theoretical results
associated with the mechanical response of two TijAl matrix composites, subjected to
transverse loading. Both composites contain continuous unidirectional fibers; however,
there are considerable differences in the composition of the two interfaces. The
Ti3AV/SCS-6 system contains brittle reaction products around the fibers that degrade the
strength of the composite. The second composite consists of a Ti3Al matrix reinforced
by sapphire fibers that are strongly bonded to the matrix. Experimental observations
indicate that the damage mechanisms in the two composites are substantially different.
Utilizing elastic analyses of the local stress field, an attempt was made to explain the
dependence of the observed damage mechanisms on the residual field and the properties

of the interface.




1 Introduction

The next generation of advanced turbine engines requires high temperature
intermetallic and ceramic matrix composites. Because of their low density and high
strength at elevated temperatures , titanium aluminide alloys are the most likely materials
to advance the high temperature performance of aerospace structures. For highly stressed
components such as compressor disks in advanced gas turbine engines. reinforcement of
these alloys with high strength continuous fibers is necessary. The most suitable material
appears to be SiC, although fiber coatings are necessary in order to obtain optimum
interfacial properties and to control interfacial reactions under severe service and
fabrication conditions.

Most previous studies of titanium aluminide composites have involved either B-
stabilized titanium alloy matrices or matrices based on the oy Ti3Al phase. High
stiffness, strength and fatigue resistance have been achieved in both systems (Johnson et
al., 1990; Revelos and Smith, 1992). However, they are both limited in application; the
B-stabilized matrices by high temperature stability and the a3-based matrices by severe
degradation during thermal fatigue in air (Revelos and Smith, 1992).

The interfaces between the fibers and matrix in these composites play the
dominant role in determining the mechanical properties of the composite. Until now the
design and fabrication of the interface has been largely empirical, with the choice of
constituents being dictated by compatibility considerations and very little guidance being
available for the optimum choice of interfacial properties. Indeed, the composites that
have shown the most promising properties have all possessed serendipitous layers of
carbon at the interface, either formed by reaction with the matrix or deposited as a
protective coating on the fiber. The carbon layer provides a weak interface, which is
necessary to allow debonding and toughening by fiber bridging. The properties of the
interface between the fibers and matrix dictate the overall properties of ceramic and

intermetallic matrix composites (Marshall et al., 1991; Evans and Marshall, 1989).




Generally, weak intertaces that allow debonding are required in order to achieve optimum

longitudinal properties in unidirectionally reinforced composites. In brittle matrix
composites, matrix cracking is the first damage to develop. If the fiber/matrix interface is
sufficiently weak to deflect an incident crack into the intertace rather than allow it to
penetrate the tibers, and if the fibers are sufficiently strong relative to the sliding
resistance of the interface, then the strength of the composite is dictated by the fiber
strength and is insensitive to damage and notches. Moreover, the stress strain curve is
usually nonlinear prior to the peak stress. and noncatastrophic beyond the peak. On the
other hand, if the interface is strong enough for the first matrix crack to penetrate the
fiber, the composite behaves as a monolithic brittle material with linear stress strain curve
to failure, and with strength that is sensitive to pre-existing damage and notches.

Design and reliability analysis of intermetallic composites must be mechanism
based. This involves development of micromechanical models that relate damage to
mechanical properties of the individual constituents and their interfaces, and use of direct
in situ measurements of these properties in combination with the models to provide the
input to design codes. Therefore, the material properties needed to characterize these
composites differ from the properties, such as strength and toughness, used to
characterize monolithic structural materials: direct information about the mechanical
properties of the interface is essential. Moreover this information is needed over the full
range of service temperatures and environments. Substantial advances have been made in
developing techniques for obtaining these measurements coupled with parallel advances
in micromechanical modeling.

In unidirectionally reinforced intermetallic matrix composites, in which the matrix
exhibits limited ductility, fiber fracture can occur before failure of the matrix under
monotonic loading. Interfacial debonding then leads to improved strength by allowing
the damage in the matrix to be spread out rather than being concentrated near the fiber

cracks, thus delaying rupture (Marshall et al., 1991). However the largest potential




benefit from reinforcement of intermetallic matrix composites is in the improved
resistance to fatigue cracking. Under cyclic loading, fatigue cracks initiate in the matrix.
It interfacial debonding occurs, the reinforcing fibers remain intact, spanning the crack
faces and restricting the range of displacements that are transmitted to the crack tip.
thereby reducing the crack growth rate. With optimum interfacial properties this
reduction in growth rate due to crack bridging can be dramatic, either arresting a crack
that would otherwise accelerate indefinitely, or reducing its growth rate to a low constant
velocity.

The need to produce weak interfaces for optimum longitudinal properties contlicts
with the requirements for high transverse strength, where strong interfaces are beneficial.
Therefore a compromise is needed. either in the interface properties or in the design
requirements. This topic has received very little attention. For instance, very little is
known of the effect of interfacial friction on transverse strength.

The present study involves two composites with Ti; Al matrices, subjected to
transverse tensile loading. The first matrix is reinforced by "bare” SiC fibers (SCS-6) and
the second by sapphire fibers coated with a thin (~1um) Ta layer. The experimental
observations are coupled with analytical solutions of the local stress field, in an effort to

provide a better understanding of the relevant damage mechanisms.




2 Experiments
Transverse loading experiments were conducted at Rockwell (Marshall et al..

1993) involving two TijAl based composites (Table 1).

Table 1
Matrix Fibers Coating_ \3
Composite (a) super 0yt SiC None 37%
(SCS-6,
Textron)
Composite (b) super sapphire Ta 20%
(Saphikon) (PVD at NRL)

The specimens (~ 50 x 2 x 1 mm) were polished on the sides containing the fiber
ends and were loaded in tension, with the largest dimension perpendicular to the fibers.
The in situ optical micrographs were analyzed by utilizing a high resolution strain
mapping facility ( James et al., 1990). Micrographs from the two composites are shown
in Figs. | and 2. Composite (a) contained a thin reaction layer (~ 1 um thickness) around
the fibers, consisting of carbides and silicides. No such reaction products were found in
composite (b). However, there was a B depleted matrix layer around each fiber, with a
thickness of ~ 5 pm.

As expected, the failure stress and strain in transverse loading are considerably
lower when compared to the ones corresponding to longitudinal loading. Young's
modulus in the transverse direction was 150 MPa for composite (a) and 141 MPa for
composite (b). The initially linear stress-strain curves (Fig. 3) became nonlinear at

applied stresses above 150 MPa and 270 MPa for composites (a) and (b), respectively.

1 Two phase (a2 - B) Ti-25Al-10Nb-3V-1Mo alloy.




2.1  Evolution of Damage

2.1.1 SCS-6 Composite. The first observed damage was sliding of the fibers
relative to the matrix, in the direction perpendicular to the surface of the specimen. This
is caused by the difference in the axial residual stresses between the fibers and the matrix.
Sliding initiated at applied stresses of ~ 40 MPa and the corresponding displacement
increased with increasing applied loads. After unloading, the fibers remained protruding
from the surface of the specimen.

At higher loads (120 - 150 MPa), separation of the fiber/matrix interface was
observed. Most fibers (~ 70%) separated between the reaction matrix layer and the outer
layer of the fibers. The remaining fibers were also debonded along the carbon layer
between the outer layers of the fibers.

As the loading increased (150 MPa), cracks were formed between closely spaced
fibers, on planes parallel to the direction of the applied load. These parallel cracks
initiated next to the fibers and grew in a stable manner (Fig. 4).

At load levels above 160 MPa, transverse cracks initiated in the reaction layers
along the interface and grew stably with increasing load, across the regions between pairs
of fibers. Failure was caused by the linking of debonded interfaces with transverse

cracks, across the specimen.

2.1.2 Sapphire Composite. In this composite, the mechanisms of damage due to
transverse loading are quite different from the ones observed in the case of the SiC
composite. Here the interface strength is high (higher than that of the matrix). Interfacial
debonding and plasticity were not a factor in the failure process.

At a loading level consistent with the onset of nonlinearity of the stress-strain
curve, cracks were formed in the fibers. These cracks were oriented along planes

perpendicular to the direction of the applied load. With increasing load, cracks appeared
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in many tibers and grew into the surrounding matrix. In addinon, matrix cracks tormed
along the boundaries of the P - depleted zones around the fibers. Linkage of the cracks in
and near adjacent tibers led to composite tailure.

The high strength of the interfacial bond in the sapphire composite is
demonstrated by the two following observations. The matnix c.acks tformed at ~ 10 um
away from the interface, even though the maximum tensile stress did not occur there (the
tensile stress is maximum at the interface). In addition, no interfacial debonding was
observed. The second observation is that the fiber cracks grew into the matrix without

being deflected or offset by the interface.

3 Theoretical Modeling

An attempt was made to model the observed damage by utilizing some relatively
simple analytical solutions for the local elastic stress fields. The use of elastic solutions
is justified by the fact that the stress-strain curves for both composites are linear up to the
initiation of the damage being considered.

When the composite is loaded by a uniform remote stress, the elastic field consists
of the applied load, the disturbance due to the presence of the fibers (inhomogeneities),
and the residual field. The residual stresses are due to the misfit strains (eigenstrains)

caused by the different thermal expansion coefficients of the fibers and the matrix.

3.1 Residual Field. The presence of a residual stress field is dependent upon
the difference in thermal expansion coefficients (CTE's) between the fibers and the

surrounding matrix. Consequently, the residual stresses in the sapphire fiber composite

were neglected, since the CTE's of AlpO3 and super o are similar (Table 2).




Table 2
Young's Modulus | Poisson's Ratio | Coefficient of Thermal
(GPa) Expansion (x 10-6 /0C )
super 0., matrix 80 0.3 9.25
SCS-6 fiber 414 0.3 4.86
sapphire fiber 400 0.3 8.5

Based on measurements of the fiber relaxation after removing the matrix by
etching (Marshall et al., 1992a and 1992b), the misfit strain €* in the SiC composite was
found (e* = 0.0061). Assuming a uniform €* , the residual stresses were calculated
utilizing the concentric cylinder model. It was found that the normal and hoop siresses
along the interface were equal to -260 MPa and 565 MPa, respectively. A finite element
solution for a square array of fibers yielded very similar results (Fig. 5) Given the
isotropy of the eigenstrain €* , the concentric cylinder model provides an adequate
approximation of the local field. More elaborate models (Kouris and Tsuchida, 1991)
could be useful in cases of extreme inhomogeneity of the fiber distribution (closely
spaced fibers).

3.2 Remote Transverse Load. As a first approximation, the local stress
field due to remote tension can be determined by considering an isolated fiber that is
perfectly bonded to the matrix material. However, this approach leads to erroneous
results in the case of closely spaced fibers. Therefore, the interaction effects of
neighboring fibers as well as interfacial debonding and sliding require a more elaborate
model. In this context, an attempt was made to analytically determine the stress field in
the vicinity of a pair of fibers (Fig. 6), under plane conditions. The fiber cross sections

were modeled by circular inhomogeneities, surrounded by an infinitely extended matrix.




It seems reasonable to assume that the stresses along the central line of two Closely
spaced tibers are well approximated by considering a single pair of inhomogeneities.

The displacements u; and u, corresponding to the coordinate systems (xj, y)) and
(X5, y2). can be represented by:

2pu, =grad(®,, +x, @ +y &, )-4(1-v)[D .. ]. (i=12) (1)
where ®'s denote arbitrary harmonic tunctions. The disturbance due to the presence of

the fibers is expressed by:

®, /p, =F, logp, +ZA'n p,"cosnB,

n=l

d . /p, = ZB; p,"cosnB, (2)
n=l

¢2| =O

for the matrix region and:

®,, /p, = ZK; p, cosn,

o=l

@, /p, =, B,p!cosnd, (3)
=1
¢2| = 0
for the fibers, where ¢ is the central distance, pj =rj/ c, and po = Tx.

The boundary conditions along the fiber/matrix interface can be expressed by:
0,=0G,, To=Te, 2H[u,}1=Pacd,, and2pfuj=%aT, (4)

where B and A are proportionality constants, i is the shear modulus of the matrix. a is the
radius of the fibers, and [u]=u—1. According to (4), B . A -> O corresponds to perfect
bonding. while B, A -> e corresponds to maximum debonding and perfect slip. These
constants may represent a compliance measure associated with spring-type interfacial

layers of infinitesimal thickness (Lene and Leguillon, 1982).




By including the influence of the remote transverse load. the boundary value

problem as described by (2). (3). (4) can be solved analytically.

4 Analysis of Damage

The preceding analysis was utilized in an effort to provide some understanding of
the mechanisms of damage associated with the two composites under consideration.

4.1 Sapphire Composite. In the absence of a residual field, the maximum
tensile stress is the radial stress at 8 = 0. Its distribution inside the fibers is almost
uniform while a local maximum occurs in the matrix. This is consistent with the
experimental observations in the strongly bonded sapphire-fiber composite. However,
matrix cracking is probobly affected by the presence of the B - depleted layer. The
interfacial stresses normalized by the applied tension are shown in Fig. 7. For a perfectly
bonded interface, the radial stress as a fuaction of fiber spacing varies between 1.7 Ty
and 2.6 Tx. Since crack initiation was observed at Tx ~ 280 MPa, the local radial stress
was estimated between 480 and 730 MPa.

Fiber splitting and matrix cracking occurred at similar stress levels; however,
these stress values are substantially lower when compared to the strength of the fibers.
This observation suggests that specimen preparation (cutting and polishing) was
responsible for the considerable degradation of the fiber strength. Such a conclusion is
supported by other experimental evidence (Marshall et al., 1993) and implies that fiber
splitting may not occur in composites with unsectioned fibers.

4.2 SiC Composite. Application of remote transverse tension generates tensile
stresses along most of the interface. These stresses tend to relax the pre-existing residual
field. As a consequence, sliding of the fibers relative to the matrix occurs, in a direction
normal to the surface of the specimen. A shear-lag analysis incorporating Coulomb
friction can provide an estimate of the sliding displacement (Marshall et al., 1993). Due

to Poisson’s effect, the in-plane stresses are altered with the occurrence of axial fiber




sliding. These changes can be taken into account via an adjustment of the ¢igenstrain
(misfit strain) that is responsible for the residual field. The relaxation of residual
compression in the tiber leads to an increase in the effective mismatch strain. Following
the analysis of Hutchinson and Jensen (1990), this increase is approximated to a level of
0.1¢".

At stress levels corresponding to the onset of nonlinearity in the stress-strain
curve, interfaces began to separate. Upon unloading and subsequent reloading, the curve
was linear over the same stress range and retained the same slope as the initial loading
curve. Since the stresses required to initiate interfacial separation during the first and
second loading were almost identical, it can be concluded that the tensile strength of the
interface is negligible. In addition. it seems that initial departure from linearity is due to
interfacial separation; this conclusion is consistent with observations related to other
metal-matrix composites (Johnson et al., 1990; Nimmer et al., 1991). Given the
negligible strength of the interface, separation is expected to occur when the tensile
stresses due to the remote load approach the values of the compressive residual stresses.
For the given fiber volume fraction (37%) of the SiC composite, the stresses due to the
applied tension range between 1.7 Ty (perfect bonding) and 2.0 Tx (perfect slip).
Therefore, the bounds of the applied stress required to initiate separation are estimated
by:

1.7Tx=260MPa  and 2.0 Tx =260 MPa (5)
which yield:

153 MPa2 Tx 2 130 MPa (6)
These estimates are consistent with the experimental observations (Section 2.1.1).

Parallel cracking in the matrix between fibers occurred when the fiber spacing
was less than a (d / a £ 1). According to Fig. 7. the corresponding local stress varies
between 0.6 Tx and 1.1 Tx. Based on the measured applied load required for cracking

(~150 MPa) and the residual hoop stress (565 MPa), the local stresses are bounded




between 655 and 730 MPa. The elastic solution due to the transverse load indicates that
the interfacial hoop stress in the matrix is higher at the position of longitudinal cracking
(8 = 0) than at the site of the transverse cracking (Fig. 8). Thus, it is not surprising that
parallel cracking preceded the formation of transverse cracks. For stress concentrations
due to the transverse load Ty ranging between -0.08 and 0.15 (Fig. 9). the local stresses
are estimated between 552 and 589 MPa. These values are considerably lower than the
ones corresponding to parallel cracking, thus suggesting that circumferential sliding
occurred. The hoop stresses in the case of a freely slipping interface would be ~760 to
895 MPa. The question is whether sliding along the interface is possible. At the applied
stress of 160 MPa (when transverse cracking takes place). interfacial shear stresses
exceed the sliding resistance Tg over a substantial part of the interface. The value of To.
measured by fiber pulling experiments, was ~70 MPa. Therefore. at least some sliding

ought to be expected at the stress levels required for transverse cracking.

5 Discussion

The experimental observations coupled with the analytical results presented above
provide some insight into the optimum composite properties and design. The two
composite systems examined are very useful in this regard, since they enable the parallel
examination of two different interfaces (weak for the SiC - super 5 and strong for the
sapphire - super &y composites). The question of what constitutes an optimal interfacial
strength is probably the most important; at the same time it is probably the least
understood aspect of design involving composites with intermetallic matrices.

In the case of unidirectional composites under longitudinal fatigue loading, it has
been well established that interfacial debonding is desirable; it maximizes the benefits of
fiber reinforcement since it increases the resistance to fatigue crack growth due to crack
bridging. However, when similar composites are loaded in the transverse direction,

intuition suggests that perfectly bonded interfaces ought to increase transverse strength.




Nevertheless, the composites of this study do not confirm such an expectation® . The
transverse strength of the sapphire/Ta/super oy composite was higher than that of the
SCS-6/super oy composite (300 versus 200 MPa). However, studies (Marshall et al..
1993) involving SCS-6/Ag-Ta/super > yield a transverse strength of 40X MPa for this
composite that includes a Ag-Ta coating around the carbon fibers. It seems. theretore.
that a strong interface does not necessarily yield higher values of the transverse strength
compared to a weak interface. In any case it should be possible to improve the measured
properties of the sapphire composite by avoiding the fiber damage which is probably
present due to the preparation of the transverse cross section. In addition, improvements
could be made in controlling oxygen diffusion and thus eliminating the relatively brittle.
B - depleted matrix layer around the fibers.

The failure mechanisms in the two composites studied are illustrated in Fig. 10.
In the case of the SCS-6 system, debonding of the interface relieves the radial stresses. In

addition, the residual field yields compressive radial stresses and tensile hoop stresses at

8 = 0. As a result, circumferential matrix cracking is suppressed, while the higher hoop
stresses cause radial cracking. Before the onset of debonding. the hoop stress g is
higher at ® = 0 than at @ =/ 2. This explains why parallel cracks are formed first.
Debonding results in an increase of og(n / 2) and a decrease of 6g(0). Consequently.

transverse cracks appear, leading to the composite failure.

6 Conclusions

The behavior of two intermetallic composites (SCS-6/super a5 and
sapphire/Ta/super a7) under transverse tension was examined. The experimental
observations were coupled with analytical solutions that provided a qualitative

understanding of the failure mechanisms.

2 The issue is more complicated than implied here since microstructural variations also affect relative
strength.




Damage in the sapphire composite consisted of fiber cracking as well as
circumferential matrix cracking prior to tailure. In the case of the SCS-6 fiber composite.
failure occurred after (a) fiber/matrix sliding in the axial direction, (b) matrix cracking in
the direction parallel to the applied tension, (c) debonding along the interface, and (d)
transverse matrix cracking. The differences in the behavior of the two material systems
were attributed to the condition of the interfaces and the residual field.

Improvement of the transverse strength in composites with perfectly bonded
interfaces may be accomplished by allowing for an intermediate mismatch in the thermal
expansion coefficients of the two constituents. The subsequent residual field would
decrease the radial stresses and increase the hoop stresses (in comparison with the case of
negligible residual stresses). Assuming that the transverse cracks responsible for the
composite failure initiate at the location of the maximum tensile stress, an optimum
residual field would correspond to equal radial (at 8 = 0) and hoop stress (8 = nt/2), at the
point of failure.

In composites with weak interfaces, the radial tensile stress at 8 = 0 is relaxed
upon debonding. If interfacial sliding accompanies debonding, the hoop stress at 8 = n/2
increases. This stress is responsible for the transverse cracks leading to failure. It seems
reasonable to assume that the overall transverse strength could be improved by allowing
debonding and, at the same time preventing sliding along the interface. Then, the hoop
stress at 8 = rt/2 would be lower. Consequently, an optimal interface ought to not only
debond easily, but also resist circumferential sliding (large frictional resistance). This

would be compatible with the requirements for improved longitudinal properties.
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Figure Captions

10.

Sections of the SCS-6/super a5 composite used in the study.

Sapphire/super a; composite with Ta coating.

Stress-strain curves of :(a) SCS-6 fiber composite, (b) sapphire fiber composite.

[llustration of the damage mechanisms in the SiC-fiber composite.

Calculations involving the residual field along the interface.

Geometry of the model used to determine fiber interaction of closely spaced

fibers.
Matrix stresses at the interface as a function of fiber spacing.
Comparison of the hoop stress at the locations of parallel and transverse cracks.

Matrix stresses at the interface as a function of fiber spacing for perfect bonding

and sliding.

Schematic diagram illustrating the damage mechanisms observed during

transverse loading.
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ABSTRACT

Transverse mechanical properties have been measured, and damage mechanisms identified,
in three Ti3Al matrix composites with different interface compositions and residual stress states.
Two of the composites contained SiC fibers with weak interfaces. Large improvements in
transverse strength and rupture strain were found in one of these composites, in which brittle
reaction products in the matrix around the fibers had been avoided by coating the fibers with Ag
and Ta before consolidation. The third composite contaired sapphire fibers that were strongly
bonded to the matrix. Different damage mechanisms were observed in the strongly and weakly
bonded composites. Insight into the damage mechanisms and their dependence on residual stress
fields and interface properties is gained from comparison of the observations with analytical
solutions of elastic stresses. The conditions for optimum transverse properties are discussed; the
results indicate that strong interfacial bonding does not necessarily lead to optimum transverse

strength of the composite.




1. INTRODUCTION

The reinforcement of titanium aluminides by unidirectionally aligned high strength SiC
fibers leads to improved mechanical properties under loading parailel to the fibers. However, this
gain is at the expense of properties in the transverse direction: the strength and strain to failure, as
well as resistance to fatigue crack growth, are generally much lower under loading normal to the
fibers than under loading parallel to them.1-5 Although certain components can be designed with
the fibers parallel to the maximum tension, complete avoidance of transverse loads is usually not

possible. Therefore an understanding of factors controlling transverse properties is needed.

This study identifies some of the factors that control transverse strength and rupture strain
under monotonic loading. In situ observations are used to reveal mechanisms of damage that
precede and lead to failure of several composites with various interfacial compositions and with
fibers of different thermal expansion properties. By relating the observed damage mechanisms to
relatively simple analytical stress fields, progress is made in understanding the influence of

interfacial strength and residual stresses on transverse properties.

2. EXPERIMENTS

Failure mechanisms under transverse loading were investigated in three composites with
nominally identical matrices, but different fibers and interfacial compositions. The matrix material
was a two-phase (ct2-B) Ti-25A1-10Nb-3V-1Mo alloy (super 2). Two of the composites
contained CVD SiC fibers (SCS-6, Textron Specialty Materials) with several carbon-rich outer
layers. Both were consolidated by Textron using a foil/fiber/foil method, one containing three rows
of fibers without any additional fiber coatings and the other containing four rows of fibers that had
been coated with Ag and Ta (several microns thickness) by a PVD method before consolidation.
The final volume fractions of fibers were 0.37 and 0.30, respectively.
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To allow investigation of interfacial bond strengths that are higher than those limited by the
weak carbon layers in the SCS-6 SiC fibers, a third composite containing sapphire fibers was
fabricated. A layer of tantalum was introduced at the interface to prevent reaction between the fibers
and matrix. The Ta coating was applied to the fibers' by PVD (at NRL) and the composite was
consolidated (at Rockwell) using the foil/fiber/foil method, with four layers of fibers giving a
volume fraction of 20%. Cross-weave material was not used during fabrication. Since the thermal
expansion coefficients of AloO3 and super-a are similar (~ 8 x 10-6 °C-1), residual stresses in
this composite are expected to be much smaller than in the SiC fiber composites, in which the

fibers have a lower thermal expansion coefficient (4.5 x 10-6) than the matrix.6

Beams with dimensions ~ 50 x 2 x 1 mm were cut from the composite sheets with the

longest dimension normal to the fibers. The beams were polished on the sides containing the fiber
ends and loaded in tension using a fixture attached to the stage of an optical microscope. High
magnification micrographs were obtained from the polished sides of the beams during loading. The
applied loads were measured with a load cell and the corresponding strains were measured using
strain gages attached to the sides of the specimens (in most cases, two strain gages on opposite

sides of the specimen).

Some of the in situ optical micrographs were analyzed using a high resolution strain
mapping technique.”-8 This involved comparing images taken before and during loading and
measuring relative displacements of corresponding image features. Measurements were obtained
either stereoscopically or using a computerized image analysis system (HASMAP - High Accuracy
Strain Mapping), both of which provide sensitivity of ~ 10 nm in differential displacement
measurements from optical micrographs. The image analysis was improved in some cases by

depositing MgO crystals on the surface of the specimen to provide additional sharp image detail.

 Manufactured by Saphikon.
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3. RESULTS

3.1 Composite Microstructures ®
Micrographs of the cross sections from the two SiC fiber composites are shown in

Figs. 1(a) and (b). The composite with uncoated fibers contained a thin reaction layer (~ 1 um Py
thickness) of carbides and silicides surrounding the fibers.% This reaction layer was not present in
the composite containing fibers that had been coated with Ag and Ta. However, the matrix in the

composite with Ag-Ta layers was enriched in the B-phase within a distance of ~10 um from each e

fiber.

An optical micrograph of a cross section of the sapphire fiber composite is shown in

Fig. 1(c). Movement of the fibers occurred during consolidation, although most fibers remained .
well spaced. Most fibers have a rounded hexagonal cross section. Observation of longitudinal
sections indicated that most fibers were broken during consolidation into two or three pieces within

the 50 mm lengths of composite. These breaks did not affect the transverse loading experiments ¢
described below. The typical transverse test specimen of ~ 2 mm thickness contained ~ 10 broken
fibers, which could be readily identified; and failure was never observed to initiate from the fiber

breaks. The broken fibers were identified by viewing the surface in reflected polarized light with an ¢
analyzing polarizer set at 90°. Fibers that were intact through the entire section appeared black,
whereas fibers that contained fractures appeared bright because of internal reflections which

changed polarization and allowed light to pass through the analyzer. ¢
In the sapphire fiber composite, the Ta coatings on most fibers were continuous with

uniform thicknesses of ~ 1 um (Fig. 2). Surrounding each fiber was a layer of matrix of ~ 5 um [
thickness in which the 8 phase was depleted. Otherwise, there was no evidence of reaction among
the matrix, coating, or fiber. However, there were occasional small regions where the coating was

missing (Fig. 3), typically on several fibers within a cross section containing approximately o
400 fibers. These bare patches may have been caused by spalling due to residual stress or fiber
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handling. In these regions, dissolution of the fiber into the matrix had begun during consolidation.
This observation demonstrates the importance of the Ta coatings in protecting the fibers. However,
the small regions of missing coating did not appear to act as initiation sites for damage in the

transverse tension experiments described below.

The uniformity of the B-depleted zone around each fiber suggests that the B-depletion is
associated with the fully coated fiber rather than being due to the occasional small region in which
the coating was missing. This is puzzling since any diffusion of Ta from the coating in:> the matrix
would lead to stabilization of the  phase. The only apparent source of B depietion is oxygen,
either from the Ta coating or from the Al2O3 fiber via diffusion through the Ta coating. The Ta
coating was deposited in a high-purity argon atmosphere (5 x 10-3 torr) that was introduced into
the deposition chamber after evacuating it to ~ 10-7 torr. Therefore, a large amount of oxygen
would not be expected in the coating. However, there is insufficient information about the amount

of oxygen needed to stabilize the oty phase in this region to distinguish these two possibilities.
3.2 Stress-Strain Response

The transverse stress-strain curves for the SiC fiber composites (obtained from strain gage
data and measured loads) are compared with the longitudinal stress-strain curve of the composite
with uncoated fibers (from Ref. 5) in Fig. 4(a). The stresses and strains at failure are much smaller
in transverse loading than in longitudinal loading. The SiC fiber composite that contained Ag-Ta
fiber coatings exhibited the better transverse properties, with failure stress and strain larger by
factors of 2 and 3, respectively, than for the composite containing uncoated SiC fibers (Fig. 4(b)).
The transverse failure stress and strain of the sapphire-fiber composite fell between those of the

two SiC fiber composites (Fig. 4(c)).

All of the stress-strain curves are linear at low loads but nonlinear at high loads. The low

load regions are elastic, as confirmed by unload-reload cycles. Young's modulus for the SiC

5
J12334H/bje




composite under longitudinal loading (from the low-load region) is 200 + 10 GPa. This value,

with the rule-of-mixtures expression
E=fEf+(1-f)Em (1

where f is the volume fraction of fibers, E, Em and E¢ are the Young’s moduli for the composite,
matrix and fibers, has been used to evaluate Ey; with independently measured values Ef = 414
GPa and f = 0.37, the result E, =80+ 7 GPa was obtained.6 There is, however, some
uncertainty in the Young’s modulus of the matrix, for large variations (up to 30%) with textural
anisotropy have been observed.6 Reported measurements in monolithic alloy fall in the range 90-
120 GPa.!0.I! The measured transverse Young’s moduli for all of the composites are compared
with the predicted upper and lower bounds of Hashin!2 in Fig. 4(d) with various assumed values
of Em (calculations for isotropic matrix and fibers). For both of the SiC fiber composites, the
results are consistent with E;m = 90 GPa, whereas the result for the sapphire fiber composite
suggests a higher value (Em = 110 GPa). This difference could be related to differences in texture

in the matrices, since the matrix foils originated from different lots of material.

The stress-strain curves became nonlinear at applied stresses above 180 MPa for both of
the SiC fiber composites and 270 MPa for the sapphire fiber composite. The extent of nonlinear
strain before failure was substantially larger in the composite containing Ag-Ta-coated SiC fibers
than in the other two composites. The response of this composite during an unload-reload cycle
that began from the nonlinear region is shown in Fig. 4(b)). The initial slope of the unloading
curve is lower (100 GPa) than that of the initial loading curve. However, the reloading curve is
approximately bi-linear with slope at stresses below ~ 180 MPa equal to the slope of the initial
loading curve. This response is similar to that reported by Johnson et al3 and Nimmer et al!3 for
several other titanium-aluminide/SCS-6 composites, and is consistent with their interpretation of
the change in slope at stress of 180 MPa during reloading being due to separation of the fiber-

matrix interface. Direct evidence supporting this hypothesis is presented below.
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3.3 In Situ Observations of Damage During Transverse Loading
SiC Fiber Composites

The types of damage observed prior to failure of the SiC-fiber composites during in situ
experiments are illustrated schematically in Fig. 5. The first damage to occur was sliding of the
fibers relative to the matrix in a direction normal to the specimen surface, driven by the residual
axial stresses in the fibers and matrix (compressive in the fibers, tensile in the matrix). Sliding was
first evident in conventional optical observations as phase contrast due to the height difference of
the fiber surface and the surrounding matrix, which gives rise to a dark fringe at the interface. The
sliding displacement increased with increasing applied stress, and at high stresses was detectable
from the difference in focus positions of the fiber and matrix. The occurrence of sliding was also
confirmed by optical interference microscopy and scanning electron microscopy. Sliding began at
applied stresses of 40 MPa in the composite with uncoated fibers and 60 MPa in the composite
with coated fibers. After unloading the composites, the fibers remained protruding from the
surface. Scanning electron micrographs of fibers in fractured test pieces are shown in Fig. 6: the
residual displacement is larger in the composite containing Ag-Ta coated fibers (~2 um) than in the

composite containing uncoated fibers (0.5 um) because of the higher failure stress of the former

(Fig. 2).

A map of in-plane surface distortions at an applied load of 160 MPa in the composite with
uncoated fibers is shown in Fig. 7. The arrows superimposed on the optical image are relative
displacement vectors for corresponding image features located at the beginnings of the arrows
within a reference micrograph at zero load and a second micrograph of the same area with the load
applied. (The magnitudes of the displacement vectors are magnified by a factor of 40 compared
with the dimensions on the micrograph.) The following deformations are evident: tensile strains

parallel to the applied load; Poisson’s contraction from top to bottorn of the micrograph; debonding
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and rotation of the right-hand fiber; and tensile strains in the matrix between the fibers in the

direction normal to the applied stress.

Tensile separation of the fiber-matrix interfaces was observed in the stress ranges of
120-170 MPa in the composite with uncoated fibers and 150-180 MPa in the composite with Ag-
Ta coated fibers. The locations of interfacial separation differed in the two composites: in the
composite containing uncoated fibers, most fibers (~ 70%) separated between the outer C/SiC
coating of the fiber and the reaction layer in the matrix; whereas in the composite with Ag-Ta-
coated fibers, most (~ 85%) separation took place at the carbon layer between the outer C/SiC
coatings of the fiber. The remaining fibers in both composites were debonded at both of these
locations. The stress at which separation occurred was determined more accurately than could be
done from single micrographs by making use of the differential strain mapping technique described
in Section 2. This was done by measuring the changes in separation of two image features on
either side of the interface in a series of micrographs obtained at increasing load. A plot of the
relative displacements as a function of appli~d load then revealed the separation stress by
extrapolation to zero displacement. The separation loads determined in this manner varied from
fiber to fiber over the ranges indicated above; a correlation between separation load and the

proximity of neighboring fibers was not found.

The first observable damage in the matrix was highly localized deformation in the regions
between closely spaced fibers within the same row (i.e., located along a line paralle] to the applied
stress and normal to the tensile strains observed in Fig. 7). This deformation was first observed at
an applied stress of 100 MPa in the composite with uncoated fibers and 128 MPa in the composite
with Ag-Ta-coated fibers. At higher loads (150 MPa and 180 MPa) cracks formed in some of
these regions on planes parallel to the applied load. These cracks, hereafter referred to as “load-axis
cracks,” initiated adjacent to the fibers and grew stably between the fibers with increasing load
(Figs. 8(a)-(d). At closely spaced fibers (separation < 20 um) a pair of load-axis cracks usually
formed (Fig. 8(d)), symmetrically displaced from the center line between the two fibers by about
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10° (relative to the centers of the fibers). By the time failure occurred, load-axis cracks had formed
at about 30% of the fibers in both composites, mostly at fibers that were relatively closely spaced

(S 70 pm).

In the composite containing uncoated fibers, transverse cracks (on radial planes normal to
the applied stress) formed at stresses abcve ~ 160 MPa. These cracks initiated in the reaction layers
adjacent to the fibers (Fig. 9) and grew stably with increasing load across the regions between
pairs of fibers. Such cracks eventually formed at approximately 20% of the fibers. Failure of the
composite occurred by the linking of transverse cracks and previously debonded interfaces across
the specimen; a sequence of in situ micrographs showing development of these cracks leading to

failure is shown in Fig. 10.

Stable transverse cracks were not observed prior to failure in the composite containing
fibers coated with Ag-Ta, even though the applied stress at fail'..e was more than double that of the
composite with uncoated fibers. Instead, failure occurred suddenly, leaving a fracture surface that
linked a series of debonded fibers across the specimen.

Sapphire Fiber Composite

In situ observations revealed the sequence of damage prior to failure as shown in Fig. 11,
in which the micrographs (a), (b) and (c) were taken at the lnads indicated in Fig. 4(c). The first
damage, which coincided approximately with the onset of nonlin=arity of the stress-strain curve,
was in the form of cracks in the fibers, oriented normal to the applied load "Vith continued
loading, similar cracks formed in larger numbers of fibers and extended into the matrix. Cracks
also formed within the matrix near the edges of the B-depleted zones surrounding the fibers
(Fig. 11(b)). Failure resulted from linkage of cracks in and near adjacent fibers, as shown in
Fig. 11(c). At the failure point, approximately 20% of the fibers within the test section contained

cracks, and another 20% had cracks in the adjacent regions of matrix.
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Several observations indicate that the strength of the fiber/matrix interface is high in this
composite and that interfacial debonding or plasticity was not a factor in the failure process under
tensile transverse loading. The first observation is that the cracks in the fibers penetrated into the
matrix without any sign of deflection or offset at the interface, even when the cracks were inclined
to the interface (Fig. 12). The absence of interaction between the crack and the interface is seen
also on the fracture surface (Fig. 13). The second observation is that circumferential matrix cracks
formed in the matrix parallel to, and about 10 m from, the interfacial regions that were subject to

the maximum tensile stress; while no debonding was observed at the interface.

4. DISCUSSION

The damage mechanisms that preceded failure in the three composites are summarized
schematically in Fig. 14. In the sapphire-fiber composite, in which residual stresses were small
and the fiber-matrix interfaces were strongly bonded, cracking of the fibers and circumferential
matrix cracking (both normal to the applied stress) occurred prior to failure. In the SiC-fiber
composites, which had large residual stresses and weakly bonded fiber-matrix interfaces, a
different sequence of damage development was observed: (1) sliding of the matrix and fibers
normal to the specimen surface that contained the exposed fiber ends (driven by the residual
stresses); (2) formation of radial cracks in the matrix parallel to the applied load (“load-axis
cracks™); (3) separation of the fiber-matrix interface; and (4) in the composite without Ag-Ta fiber
coatings, formation of transverse radial cracks in the matrix. Failure occurred by linking of

transverse radial cracks and debonded interfaces of adjacent fibers.
4.1 Stresses

Some qualitative and semi-quantitative insight into these damage mechanisms can be gained
from relatively simple analytical solutions fcr elastic stress fields. The elastic stress field within a
composite loaded transversely by uniform remote stress is given by the sum of the applied stress, a
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perturbation on the applied field due to the “elastic inhomogeneity” of the fibers and the residual
field due to the misfit strain, eT, between the fibers and matrix (difference in thermal contraction of
fibers and matrix). The use of elastic solutions is justified by the observed linearity of the stress-
strain curves, at least up to the initiation of the damage being considered. A significant amount of
nonlinearity was evident only in the composite containing Ag-Ta-coated SiC fibers, and this

occurred after the initiation of the load-axis cracks.
4.1.1 Residual Stresses

The residual hoop stresses near the fiber-matrix interface, where damage initiated in the SiC
fiber composites, are closely approximated by the concentric cylinder solution. Typical errors
involved in this solution are less than ~ 3% for a regular array of fibers, as exemplified by the
comparison in Fig. 15 of the concentric cylinder solution with a finite element solution for a square
array of ﬁbe{s (corresponding to the SiC-fiber composite with_gut Ag-Ta coatings, with volume
fraction of fibers = f = 0.37, Ef/Em =5, Vg = v = 0.3, and isotropic misfit strain, T). The
errors in the normal interfacial stresses are larger, although the average valﬁe from the finite

clement analysis is within ~ 0.5% of the concentric cylinder solution.

The magnitudes of the residual stresses in both of the SiC-fiber composites have been
deduced previously from measurements of the relaxation of the fibers following removal of the
matrix by etching.14:15 The residual stresses thus calculated using the concentric cylinder analysis
and assuming an isotropic misfit strain, T, are listed in Table 1. The presence of Ag-Ta layers did
not alter the residual stresses, as shown by the misfit strains being equal in the two composites: the
differences in residual stresses in Table 1 arise solely from the different volume fractions of fibers
in the two composites. The frictional stresses that resist interfacial sliding are also listed in
Table 1. These were evaluated from measured forces and displacements during single fiber pulling

experiments.14:15
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Residual Stresses and Frictional Sliding Resistance

Table 1

(fr.om refs. 14, 15)

Composite | Measured | Misfit Normal angenoal | Axial Intertace
Relaxation | Strain Interface | Interface | Fiber Sliding
ef el Stress Stress Stress Resistance

oR (MPa) | 6,R (MPa) | ofR (MPa) | 1, (MPa)

Super-a

Supet-02 | 0.00156 | 0.00610 | -260 565 -800 70

Super-ap/

Ag-To/ 0.00203 | 0.00611 -300 557 -1020 100

SCS6

4.1.2 Applied Stresses

Stresses in the vicinity of an isolated, strongly bonded fiber, due to a remotely applied
uniform stress, Gy, are shown in Fig. 16. The local perturbation of the applied stress due to the
fiber is dependent on the ratio of the elastic moduli of the fibers and matrix:16 the results in Fig. 16
correspond to E¢/Em = 5 and vf = vy = 0.3. The sign of the perturbation field for this combination
of properties (fiber stiffer than matrix) is opposite to that for a hole (or more generally, a fiber with
lower stiffness than the matrix); the tangential -<rturbation stress is tensile at 6 = 0 and
compressive at 8 = 90°. The strains associated with this tensile transverse stress at 8 = 0 are
evident in the measured displacement map of Fig. 7. The perturbation field is concentrated mainly
within an area about one fiber radius from the edge of the fiber. Therefore, the single fiber solution
would be expected to be a reasonable representation of the stress fields in a composite with fibers

spaced by more than double this value. For a square array of fibers, this corresponds to f = 0.2.

Several features of the superimposed residual and applied fields for the isolated fiber may
be correlated in a preliminary way with the observed damage. In a composite with small residual
stresses and strongly bonded interfaces, the largest tunsile stress is the radial component at 6 =0
(i.e., o¢(0) in Fig. 16(b)), consistent with the observed circumferential matrix cracking in the

sapphire fiber composite. It is noteworthy, but perhaps coincidental, that 6,(0) is maximum at a
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position ~ 0.2R (R = fiber radius) away from the interface, where the matrix cracking occurred.
In composites with residual stresses due to thermal misfit strains, compressive radial and tensile
hoop stresses are superimposed onto the stresses of Fig. 16, thus favoring a change in damage
mechanism from circumferential to radial cracking, as observed in the SiC fiber composites. In this
case, the tangential stress is larger at 8 = O than at 8 = /2 (Fig. 17(b)) consistent with the
observation of load-axis cracking before transverse cracking in these composites. However, the

difference in stresses at these two locations is not large for the isolated fiber.

A more detailed correlation with experimental observations requires account to be taken of
interfacial debonding and sliding as well as the interaction effects of near-neighbor fibers that are
closer together than average. When the separation of a pair of fibers is smaller than ~ R, the elastic
inhomogeneity fields overlap. In this case, the resultant field is not a linear superposition of the
two fields for isolated fibers. Analytical solutions to this problem for pairs of fibers with the lines
joining their centers aligned parallel and normal to the applied stress have been obtained recently by -
Kouris.17 These solutions include various interfacial bond conditions, ranging from fully bonded
interfaces to interfaces that can slide without restriction. This was achieved by allowing
discontinuities in shear displacements but not in normal displacements at tﬁe interface, with the
shear-displacement discontinuity being restricted by springs of various stiffnesses. The stresses
relevant to the observed damage, with either of the two limiting cases of completely bonded or
freely sliding interfaces, are compared with single fiber solutions in Apﬁendix A. The results
indicate that, for fibers separated by 0.85 R (corresponding to f = 0.39 for a square array), the
additional perturbation on the interfacial stresses due to the second fiber is maximum along the line
joining the pair of fibers as expected, but that it becomes small at angles larger than ~ 45° from this
line. Therefore, the solutions for pairs of fibers provide reasonable approximations for the

interfacial stresses around a fiber surrounded by four others in a square array.

The effect of varying the separations of the pertinent pairs of fibers is shown in Fig. 17. As

the pairs of fully bonded fibers move closer together, the stress 6¢(0) that causes interfacial
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separation and circumferential matrix cracking at 8 = 0 increases (Fig. 17(a)), the stress Gg that
causes load-axis radial cracks at 8 = O increases (Fig. 17(a)), and the stress Gg that causes
transverse radial cracks at 8 = n/2 decreases (Fig. 17(b)). Therefore, the propensity for load-axis
radial cracks in preference to transverse radial cracks increases as the fiber spacings decrease. In
fact, for d/R < 0.3, the stress driving transverse cracking becomes negative, suggesting that
transverse cracking would never occur tetween such closely spaced fibers during loading if the
interfaces were to remain fully bonded. However, large changes occur in all of these stresses if
circumferential sliding occurs. The stress driving load-axis radial cracks decreases and becomes
compressive for a freely sliding interface, whereas the stress driving transverse radial cracks

increases. Therefore, the preference for load-axis cracks over transverse cracks reverses.
4.2 Damage in SiC-Fiber Composites
4.2.1 Axial Fiber Sliding

The observed sliding of fibers relative to the matrix in the direction normal to the specimen
surface is driven by the residual axial stresses in the fibers and matrix and is restrained by friction.
The frictional stresses are dependent upon the normal stress at the fiber-matrix interface. The
applied transverse load generates tensile stress over most of the interface, with only a small region
of compression near 6 = nt/2 (Fig. 16(b)). Since the average normal stress is tensile, the resistance

to frictional sliding is reduced, thus allowing the residual axial stresses to relax by sliding.

An estimate of the degree of sliding can be obtained by assuming that the sliding resistance,
as given by the Coulomb friction law, is proportional to the normal interfacial stress. An
approximate shear-lag analysis of fiber sliding (Appendix B) gives an upper bound for the sliding

displacement

14
J12334H/bje




-

R(1-DEp <0>/0OR
41, E(E 1 - <6>/0oR

u = o¢( (2)

where R is the fiber radius, 1, is the frictional stress at the interface in the absence of applied
transverse stresses, O is the axial residual stress in the fiber, OR is the residual stress normal to the
interface, and <> is the average normal tensile stress component at the interface due to the applied
load. For isolated fibers in these composites, <6> = 0.65 03 (Appendix 1). With the parameters
given in Table 1, the elastic properties given in Section 3, and R = 70 pm, the sliding
displacements at failure given by Eq. (2) are 0.1 um for the composite containing uncoated fibers
and 0.8 um for the composite containing fibers coated with Ag-Ta. These values are reasonably
close to the observed values (0.2 and 2 um), given that the analysis used to calculate <> holds for
an isolated fiber with a bonded interface (see Appendix B). Fiber interaction effects (especially

with fibers preferentially aligned in rows parallel to the applied stress) and circumferential sliding
would both increass <o> and thus increase the slxﬁngduplwemus - A

4.2.2 Interfacial ‘Separation

C L . R
3L F oLl e L - S e . -

Interfacial 1sepura‘tim-: began at the same stage dunng loading as the initial departure from
linearity of the stress strain curves (cf. Table 2 and Fig. 4), a correlation that has also been
observed in other titanium matrix composites.3:13 Moreover, the reloading portion of an
unload/reload cycle for the composite with Ag-Ta layers (Fig. 4(b)) is linear over the same stress
range and with the same slope as the initial loading curve. This suggests that the tensile strength of
the interface is negligibly small (since the stresses for interface separation during the first and

subsequent loadings were approximately the same).

A small or zero tensile strength is also inferred from comparisdn of the loads required for
interfacial separation and the residual compressive stresses normal to the interface (Table 2). The
residual radial stresses in Table 2 are given as ranges of values that approximately account for fiber
interactions: residual radial stresses are more sensitive than the tangential stresses to the proximity
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of near-neighbor fibers (Fig. 15). Although the average radial stress is very close to the value
calculated from the concentric cylinder model (listed in Table 1), the local stress deviates by up to +
30% from the average value. At the location of interest (0 = 0 in Fig. 15) for the SiC fiber
composites (in which the fibers are aligned in rows) the compressive interfacial stress is ~ 30%
larger than the average value. For different fiber arrangements, such as those obtained by distorting
the square array used for the FEM calculation of Fig. 15 to parallelograms (which might more
accurately describe the distributions in Fig. 1) this difference would be expected to be smaller. On
the other hand, for fibers that are closer together than average it would be larger. Therefore a
reasonable estimate for the range of residual stresses that must be overcome to allow interfacial
separation would be from the concentric cylinder values given in Table 1 to values ~ 30% larger.
The applied load contributes interfacial stresses that are approximately double the applied stress
(Fig. 17). At the observed separation loads from Section 3.3, these values are close in magnitude
to the estimated residual stresses (Table 2), thus implying negligible tensile strengths of the

interfaces.

Separation of the interfaces under transverse loading occurred at different locations in the
two composites: between the outer layer of the fiber and the reaction products in the matrix of the
composite containing uncoated fibers, and within the carbon layer beneath the outermost SCS-6
layers of the fibers in the composite containing Ag-Ta coated fibers. The same failure locations
were observed previously for single fiber pullout experiments,!4 which involve Mode II loading
rather than tension. These results indicate that the Ag-Ta layers adhere to the outer surface of the
fibers more strongly than do the reaction products in the composite without Ag-Ta coatings.
However, the overall response of the interfacial region to shear or tensile loading is not greatly
affected by the Ag-Ta layers because of the availability of alternative weak interfaces within the

SCS-6 layers of the fibers.
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4.2.3 Radial Cracking

The local stresses at which load-axis radial cracking initiated can be estimated from the
results in Figs. 16 and 17. For fibers with bonded interfaces and spacings smaller than ~ R
(corresponding to the range of spacings for which such cracking was observed), the pertinent local
stress due to the applied load lies between about 0.6 6, and 1.1 &, (Fig. 17(a)). With the measured
applied loads for cracking and the residual stresses ogR from Table 1, the following local initiation
stresses are calculated: 655-730 MPa for the composite without fiber coating and 670-750 MPa

for the composite with Ag-Ta fiber coatings “"1ble 2).

A similar estimate for the local stress responsible for transverse radial cracking in the
composite containing bare fibers (recall that wransverse cracking was not observed before failure in

the other composite) gives values in the range 550 to 600 MPa for a bonded interface (stresses due

=

10 applicd lond range frem -1 0 1 0.2 G, from Fig. 17(b)). Thus; ewen thoogh mansvenc - -

cracking initiated at a higher applied load than did load-axis cracking, the calculated local stress,
assuming a bonded interface, was smialler-for the transverse cracks. Since both.types of radial
cracks would be expected to initiate at the same value of local stress, these calculations sugécst that
circumferential sliding may have occurred after the onset of load-axis cracking, thereby increasing
the local stress that causes transverse cracking. For a freely sliding interface t_his stress would be
~ 750 to 880 MPa (Table 2).

The mechanics of circumferential sliding is complex because of the variation in interfacial
shear stress around the interface (see Fig. Al(c)). Nevertheless, the following crude estimate
confirms that some sliding would be expected at the applied load that caused transverse cracking.
In the bare-fiber composite, the interfacial sliding resistance measured by fiber pulling experiments
is To = 70 MPa (Table 1). At the applied stress of 160 MPa, where transverse cracking initiated,
the interfacial shear stress exceeds T, over a substantial fraction of the interface: between the angles
of 20° and 70° (Fig. A3). In the composite with Ag-Ta fiber coatings, T, is larger (~ 100 MPa)
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implying that the applied stress required for the interfacial shear stress to exceed t, over the same

angular range and thus cause equivalent sliding is correspondingly larger (240 MPa).
4.2.4  The Role of the Ag-Ta Fiber Coating

The presence of Ag-Ta coatings on the fibers had a large effect on the transverse properties
of the composite: the failure stress was increased by a factor of 2 (from 200 to 400 MPa) and the
failure strain was increased by a factor of 3.7 (from 0.0013 to 0.0048). In the composite without
Ag-Ta layers, failure was caused by growth of transverse cracks, which initiated within the
reaction layers adjacent to the fiber-matrix interface at stresses below the failure stress. In the
composite with Ag-Ta coatings, the reaction products were eliminated and transverse cracks were

not observed prior to failure, even though the applied loads were much higher.

Several factors may have contributed to these differences. One is that the layers of brittle
reaction products degraded the strength of the composite without Ag-Ta coatings by providing
initiation sites for transverse cracks, whereas the Ag-Ta coatings eliminated this source of
degradation. Crack initiation would also be suppressed both by the zone around the Ag-Ta-coated
fibers that was found to be enriched in the more ductile B phase and by the higher frictional sliding
resistance (Table 1) in the composite with Ag-Ta layers, which would delay the onset of
circumferential sliding and thus maintain lower tensile stresses at the location of transverse

cracking.

The role of brittle reaction layers in degrading transverse properties is further illustrated in
Fig. 18. This shows a composite with a different TizAl based matrix (Ti-24Al-11Nb) that was also
fabricated with Ag-Ta layers on the fibers, but with foils that were contaminated on their surfaces,
leading to formation of large zones containing carbides (dark rings) surrounding the fibers.
Extensive transverse cracking, as shown in Fig. 18, initiated at very low loads and caused low

transverse strength.
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4.3 Damage in Sapphire-Fiber Composites

In composites with small or zero residual stresses, the largest tensile stress under
transverse loading is the radial stress at 8 = 0, which tends to cause splitting of the fibers,
debonding of the interface, and circumferential matrix cracking (Figs. 16 and 17). This is
consistent with the damage mechanisms observed in the strongly bonded sapphire-fiber composite
in which fiber splitting and circumferential matrix cracking occurred. Indeed, a weak maximum in
this stress component occurs at a distance ~ R/10 away from the interface in the matrix, coinciding
with the observed position of crack initiation. However, the location of this matrix cracking is
more likely to be dictated by the variation of microstructural properties near the fibers: the region of

matrix around the fiber that is depleted in B phase would be expected to be more brittle than the

matrix elsewhere.

The local stress for initiation of circumferential cracking can be estimated from Fig. 17(a)
(assuming that residual stresses in this composite are negligibly small). For a fully bonded
interface, the radial stress at the interface for fiber spacing between 0.1R and R is between about
2 G, and 2.8 G,. Crack initiation was observed at 0, ~ 280 MPa, implying a local stress of 600 to
800 MPa. The variation of the radial stress within the fiber and in the nearby matrix is small, so

this stress range applies to both the splitting of the fibers and the circumferential matrix cracking.

The stress at which fiber splitting occurred is substantially lower (by a factor of 4 to 5) than
the longitudinal strength of the fibers. Although the transverse strengths of the fibers has not been
measured, it would be expected to be similar to the longitudinal strength. These results suggest that
the fiber strength was degraded by cutting and polishing during specimen preparation. The
measured strength is indeed typical of the strength of polished bulk sapphire. Moreover, failure
origins at the polished ends of some fibers could be identified on the separated fracture surfaces
(Fig. 13(a)). Therefore, the fiber splitting observed in these experiments may not be representative
of the behavior of composites without sectioned fibers. On the other hand, since circumferential
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matrix cracking occurs at a similar stress level, the presence of fiber splitting may not have greatly

affected the strength of the composite.

5. IMPLICATIONS FOR MATERIAL DESIGN

The different damage mechanisms observed in the composites of this study, combined with
a qualitative correlation with the analytically calculated elastic stress fields, provide some insight
into the material properties required for optimum transverse properties of the composite. The
results suggest that the transverse strength is strongly affected by residual stresses and the ductility
of the matrix in the critical regions immediately adjacent to the fibers, while strong interfacial

bonding does not always lead to optimum transverse strength.

In composites with small residual stresses and strongly bonded interfaces (the
sapphire/Ta/super-o; composite of the present study), the transverse strength is limited by cracks
that initiate by splitting of the fibers, or by cracks that form in the matrix near the interface, where
analytical solutions indicate a large stress concentration (0¢(0) in Fig. 17(a)). If, in a weakly
bonded composite, the interface were to debond completely before the formation of these cracks,
the stress ¢,(0) would be relieved and the cracks would not form with further load increase. The
resultant hole would lead instead to transverse radial cracking driven by the stress Gg(n/2) in
Fig. 17(b), as observed in the SiC-fiber composites. For a freely sliding interface, this stress is
similar in magnitude to the stress 0,(0) that is responsible for the cracking observed in the strongly
bonded composite, implying that the strengths of strongly and weakly bonded composites in this
case would be similar. However, if the debonded interface was restricted from sliding
circumferentially (e.g., by friction), the stress 6g(n/2) would decrease substantially and the
strength of the weakly bonded composite would be higher than that of the composite with strong

interfaces.
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In composites with large residual stresses (fibers in compression, as in the SiC fiber
composites of this study), the residual hoop stress promotes radial cracking, whereas the radial
compression inhibits the type of cracking observed in the stress-free sapphire fiber composite.
Although radial cracks first form parallel to the load axis, transverse radial cracks eventually cause
failure and limit the strength. The analytical stress solutions indicate that the stress driving
transverse cracking is greatly increased if circumferential sliding occurs, whereas this stress is
reduced next to closely spaced fibers if sliding does not occur. Therefore, the optimum strength
would be expected with either strongly bonded interfaces or interfaces that debond easily but

experience large resistance to circumferential sliding.

The optimum transverse strength in composites with strongly bonded interfaces may be
achieved with an intermediate mismatch in thermal expansion coefficients of the fibers and matrix.
In the absence of residual strains, the maximum tensile stress during transverse loading is the radial
stress that causes circumferential cracking of the interface or nearby matrix. The presence of
residual thermal strains (fibers of lower thermal expansion coefficient than that of the matrix)
causes the radial stress to decrease and the hoop stresses to increase. Therefore, if transverse
failure is dictated by crack initiation at the site of the largest tensile stress, then the optimum
residual strain would be that for which the radial stress at 8 = 0 and the hoop stress at 8 = r/2 are
equal at the point of failure. More rigorous analysis of this problem, including the effects of
plasticity,!3 partial interfacial debonding and sliding, multiple fiber interactions,1720.21 and
modeling of crack initiation would seem to be a fruitful avenue for further defining optimum

COmposite properties.

The longitudinal properties of intermetallic matrix composites benefit from fiber
reinforcement because of crack bridging effects, which lead to increased resistance to fatigue crack
growth. This requires a weakly bonded interface and relatively easy frictional sliding. Therefore,
the requirements for optimizing both the transverse and the longitudinal properties (regardless of
residual stresses) might be satisfied by weakly bonded interfaces with anisotropic frictional

21
J12334H/bje




properties (perhaps achieved through control of the surface morphology of the fibers) to allow easy

sliding in the axial direction and more strongly resisted sliding in the circumferential direction.

6. SUMMARY AND CONCLUSIONS

In situ observations during transverse loading of several Ti3Al matrix (super-o2)
composites revealed the damage mechanisms, depending on residual stress states and interfacial
bond strength, summarized in Fig. 14. The various forms of cracking coincided with locations of
maximum tensile stress predicted from analytical solutions for elastic stress fields (which included
effects of fiber-pair interactions and interfacial sliding). The results indicate that the transverse
strengths of such composites are strongly influenced by residual thermal strains and matrix
ductility in the critical regions near the fiber-matrix interfaces. They also suggest that, contrary to
common perception, a strongly bonded interface between the fiber and matrix does not always lead
to optimum transverse properties: the optimum interface appears to be one that allows tensile
debonding (which relieves a stress concentration due to elastic mismatch), but restricts

circumferential sliding (and thereby minimizes the stresses that drive transverse radial cracking).
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APPENDIX A: ELASTIC STRESSES YN TRANSVERSELY LOADED
COMPOSITES

Isolated Fiber

The elastic stress field around an isolated strongly bonded fiber is given by16

g—:= 172 {[1 - yr2 + [1 - 48/r2 - 38/14] cos 20} (Al)
o)
—=1/2 (1 + /2 - [1 - 38/r4] cos 28) (A2)
Ca

where r is the radial distance normalized by the fiber radius and y and § are functions of the elastic

mismatch
(x¢-1) - (xm-1)T
= A3
Y 27 + (x¢-1) (A3)
O =T-1)/(1 + xmI") (A4)

where x = 3-4v (for plane strain), I' = {g/im, Y is the shear modulus, and v is Poisson’s ratio. In

the composites of interest here, the Poisson’s ratios of the fibers and matrix are approximately

equal (v = 0.3), so that I' = E(/fEy = 5. The stresses from Eqs. (Al) and (A2) are plotted in

Fig. 16. The average normal interfacial stress is (from Eq. Al):

<Or>

=1-v2=0.65 (AS)

Pairs of Fibers

Two-fiber solutions!7 for the interfacial stresses due to a remotely applied field are
compared with the single-fiber solution in Fig. Al. Tke fiber spacing in this case is d/R = 0.85,

corresponding to f = 0.37 for a square array of fibers. The elastic properties are the same as for
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Figs. 14-17. Results are shown for two orientations of the pair of fibers (parallel and normal to
the applied stress) and for fully bonded and freely sliding interfaces for each orientation. For fully
bonded interfaces, the additional perturbation due to the second fiber is maximum along the line
joining the fiber centers and becomes small at angles larger than ~ 45° from this line. Therefore, a
simple combination of these results would provide a close approximation for the interfacial stresses
at a fiber surrounded by four other fibers in these orientations. The ratio of the tangential stress at
6 =0 to that at © = nt/2 is larger for both fiber-pair orientations with strongly bonded interfaces
than for the single fiber solution. Therefore, the preference for parallel cracking rather than
tangential cracking is made stronger by the fiber interaction effects. For fibers in a square array, the
ratio of these stresses would be 6g(0)/0g(n/2) = S. However, if circumferential sliding occurs,
these stresses change dramatically: the stress at 8 = 0 becomes compressive and the tensile stress at

8 = n/2 increases by a factor of 5 to 10. Therefore, the onset of sliding prevents parallel cracking

and promotes transverse cracking.

The radial tension at 6 = 0, which is responsible for interfacial debonding and
circumferential matrix cracking, is increased by the interaction effect of a fiber in the parallel

orientation. This stress enhancement is further increased if circumferential sliding occurs.
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APPENDIX B: FIBER SLIDING NORMAL TO FREE SURFACE

The preparation of a cross section of a composite that contains residual stresses due to
mismatch of fiber and matrix can cause spontaneous debonding and sliding of the fiber relative 10
the matrix if the interfacial debond energy is smaller than a critical value.!5 Since the degree of
sliding is dependent upon the interfacial frictional forces that resist sliding, any subsequent change
in these frictional forces (due for example to transverse loading) causes further sliding. Detailed

analysis of the closely related phenomenon of sliding during thermal cycling is given in Ref. (22 ).

Fiber pulling experiments with the SiC fiber composites of this study indicate that
spontaneous debonding occurs and that frictional forces are approximately uniform along the
debonded section of interface.” In this case, a shear lag analysis indicates that the displacement is
equivalent to that produced by pulling on the fibers in a stress-free composite with a stress equal to

the residual axial stress, Of, in the fibers. This displacement is given by23

_GER(I-) En
o= —4t.EE (BI)

where T, is the frictional stress at the interface. If the frictional stress is proportional to the normal
interfacial stress, then transverse loading, which decreases the average normal stress by <o>

(Eq. (AS)), causes the frictional stress to change to
T=1 (1 - <o>/0R) , (B2)

where OR is the residual stress normal to the interface. The corresponding change in displacement

is

u=uo(

T _o%R(l-t)Em[ <o>/og
T l)‘ 4t EE 1-<0'>/O’R] ®3)

* Detailed analysis of fiber pullout experiments!S has indicated that surfacc morphology plays an important role in
the constrained sliding of fibers: the surface roughness of the fibers causes an increase in the normal interfacial stress
when the fibers slide, and this increase cancels the effect of Poisson's contraction of the fiber to give an
approximately uniform normal stress (and thus friction) along the section of fiber that undergoes sliding.
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With the onset of fiber sliding normal to the specimen surfaces, changes occur in the
in-plane stresses because of Poisson’s effects. These changes can be accounted for (within the
concentric cylinder solutions) by a change in the effective radial mismatch strain that is responsible
for residual stresses. With the elastic constants given in Section 3.2, the relaxation of residual
axial compression in the fiber leads to an increase in the effective mismatch strain. The magnitude

of this increase is calculated to be approximately 10%, a result that can be obtained

straightforwardly from the analyses in Hutchinson and Jensen.18
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FIGURE CAPTIONS

Composites used for transverse property evaluation (super-o titanium aluminide matrix).
(a) SCS-6 SiC fibers without additional coatings,(b) SCS-6 SiC fibers with Ag-Ta coating,
(c) Sapphire fibers with Ta coating.

Scanning electron micrographs showing sapphire fiber in super-ay matrix. Bright line
surrounding fiber is Ta coating. Bright regions of matrix are B phase; dark regions are o

phase.

Scanning electron micrograph from sapphire fiber composite showing region of fiber-

matrix interface in which Ta layer was missing.

Stress-strain curves: (a) SiC fiber composites, comparison of responses under transverse
and longitudinal loading, (b) SiC-fiber composites, transverse loading. (c) Sapphire fiber
composite, transverse loading (labels a, b and c indicate loads at which in situ micrographs
of Fig. 11 were obtained). (d) Comparison of measured transverse Young’s moduli with
predicted bounds from Hashin!2 for several assumed values of Ep. Full curves lower

bounds from Hashin; broken curves upper bounds.
Schematic diagram illustrating observed damage mechanisms in SiC-fiber composites.

Scanning electron micrographs of (a) SiC-fiber composite with Ag-Ta coated fibers, and

(b) composite with uncoated fibers, after loading to failure in transverse tension.

HASMARP analysis showing in-plane surface displacements caused by applied transverse

load, 6, = 160 MPa, in composite containing uncoated SiC fibers. Reference arrow at

bottom left represents displacement of 0.23 um.
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10.

11

12.

13.

14.

15.

Parallel cracks in transversely loaded SiC-fiber composites (scanning electron
micrographs): (a) (c) (d) composite containing uncoated fibers, (b) composite containing

fibers coated with Ag-Ta. Loading direction is horizontal.

Transverse cracks in SiC-fiber composite containing uncoated fibers (scanning electron

micrographs).

Series of in situ optical micrographs showing development of transverse cracks leading to
failure in SiC-fiber composite containing uncoated fibers. Loading direction is vertical.

Applied streses: (a) 160 MPa; (b) 190 MPa; (c) 198 MPa.

Sequence of in situ optical micrographs taken from one area of sapphire fiber composite at
loads of (a) 0.9, (b) 0.95, (c) 0.99 of the failure load, corresponding to the positions
labeled (a), (b) and (c) in Fig. 15. Failure occurred by linking of the cracks in (c). Applied
load horizontal.

Scanning electron micrographs showing crack path across the fiber-matrix interfacial region

of sapphire-fiber composite.

Scanning electron micrograph showing fracture surface resulting from transverse tensile
loading of sapphire/Ta/super-a; composite. Smooth region is axial split within the sapphire

fiber; rough region is the super-a; matrix.
Schematic diagram summarizing damage mechanisms observed in transverse loading.

Comparison of elastic residual stresses in matrix at interface, calculated using concentric
cylinder model (broken lines) and finite element analysis of square fiber array (solid

curves).
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16.

17.

18.

Al.

(a) Elastic stresses in matrix around isolated fiber (E¢/Eq = 5, v = 0.3). Uniform remote

stress.
(b) Interface stresses from (a).

(c) Radial and tangential stresses in matrix corresponding to (a).
(a) and (b) Interfacial stresses (elastic) for pairs of fibers.

Transverse cracks in composite containing large layer of carbides (dark region)

surrounding fibers.

Comparison of interfacial stresses for an isolated fiber and pairs of fibers under uniform
remotely applied stress (E(/Em = 5, v = 0.3). Fiber separation is d/R = 0.85 corresponding
to f = 0.35 in a square fiber array. (a) tangential stress, (b) radial stress, and (c) shear

stress.
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1. INTRODUCTION

Recent theoretical and experimental studies have suggested that circumferential
sliding at debonded fiber-matrix interfaces is detrimental to the transverse strength of the
composite.!-3 In contrast, debonding and sliding is a prerequisite for enhanced
longitudinal properties such as toughness in ceramic matrix composites+-5 and resistance
to fatigue crack growth in intermetallic matrix composites.5-7 Therefore it has been
suggested that optimal composite properties could be obtained with interfaces that
debond readily and have low frictional sliding resistance longitudinally but large sliding
resistance in the circumferential direction.

Circumferential sliding during transverse loading causes increased tensile hoop
stress in the matrix adjacent to the fiber, at the location where cracking is induced normal
to the applied load (Fig. 1). In composites containing fibers that are stiffer than the
matrix, the stress at this location, Gg (%/2), is smaller than the applied stress if the
interface does not slide: i.e., the stress perturbation due to the fiber is compressive thus
tending to inhibit the formation of strength-degrading transverse cracks. On the other
hand, the hoop stress at 8 = 0 is tensile, thus tending to induce cracking parallel to the
applied load. Such cracks have been observed in Ti3AV/SiC composites. However,
because of their orientation they do not lead to failure in unidirectional loading. If the
interface is allowed to debond with unrestricted sliding, these stresses change: the stress
og(m/2) Hecomes larger than the applied stress thus favoring the formation of transverse
cracks, which lead to failure, while the stress 0g(0) becomes compressive. The
magnitudes of these changes in stress increase as the spacing of nearest neighbor fibers
decreases (Fig. 2).

Analytical solutions have been obtained recently for the stress fields surrounding
pairs of fibers, with the possibility of limited interfacial sliding being permitted by
incorporating springs of various stiffness at the interface. The results indicate a
continuous trans‘tion between the stress states mentioned above for bonded and freely
sliding interfaces and could be used for guidance in designing interfaces that debond, yet
have sufficient frictional sliding resistance to avoid transverse cracking. In this
communication we present experimental measurements of circumferential sliding
(obtained by high resolution strain mapping) and preliminary comparison with analysis.




2. EXPERIMENTS

Transverse loads were applied to a titanium aluminide matrix composite as
described in more detail elsewhere. The composite, which was fabricated by Textron
Specialty Materials, contained three rows of SiC fibers (SCS-6) in a two phase (c2—p)
matrix of Ti-25A1-10Nb-3V-1Mo (Super o3). Beams with dimensions approximately 50
x 2 x | mm were cut from a sheet of the composite with the longest dimension normal to
the fibers. The beams were polished on the sides containing the fiber ends and loaded in
tension using a fixture attached to the stage of an optical microscope. High magnification
micrographs were obtained from the polished sides of the beams during loading. The
applied loads were measured with a load cell and the corresponding strains were
measured using strain gages attached to the sides of the specimens.

The in situ optical micrographs were analyzed using a high resolution strain
mapping technique.’8 This involved comparing images taken before and during loading
and measuring relative displacements of corresponding image features. Measurements
were obtained both stereoscopically and using a computerized image analysis system
(HASMAP-High Accuracy Strain Mapping), both of which provide sensitivity of ~ 10
am in differential displacement measurements from optical micrographs. The image
analysis was improved by depositing MgO crystals on the surface of the specimen to
provide additional sharp image detail.

3. RESULTS AND ANALYSIS
31 Damage

The details of damage leading to failure are discussed in detail elsewhere. The
pertinent features are: (1) at applied stress, 0,, within the range 120-170 MPa separation
of the fiber-matrix interface initiated at the position 8 = 0, corresponding with the onset
of non linearity in the stress-strain curve, (2) formation of “load-axis” radial cracks
between some fibers (Fig. 1) at 6, = 150 MPa, (3) formation of transverse radial cracks
adjacent to some fibers at 6, = 160 MPa, and (4) stable growth and linking of transverse
cracks and debonded interfaces to failure at g, = 200 MPa. Comparison of these results
with stress field solutions for fully bonded and freeiy sliding interfaces suggested that
significant circumferential sliding occurred between the onset of load-axis and transverse
cracking at 6, ~ 150-160 MPa.




3.2 In-Plane Surface Displacements

A map of in-plane surface distortions at an applied load of 160 MPa is shown if
Fig. 3. The arrows superimposed on the optical image are relative displacement vectors
for corresponding image features located at the beginnings of the arrows within a
reference micrograph at zero load and a second micrograph of the same area with the load
applied. (The magnitudes of the displacement vectors are magnified by a factor of 40
compared with the dimensions on the micrograph.) The following deformations are
readily discerned: tensile strains paralle! to the applied load; Poisson’s contraction from
top to bottom of the micrograph; debonding and rotation of the right-hand fiber; and
tensile strains in the matrix between the fibers in the direction normal to the applied

stress.

At sufficiently high applied loads the opening and sliding displacement
discontinuities at the fiber-matrix interfaces can be readily measured using stereoscopic
analysis. Results for the fiber shown in Fig. 4(a) at various stages of loading are shown
in Figs. 4(b) and (c).

Sliding displacements were first detected at a lower applied load (~ 100 MPa)
than were normal opening displacements (120 MPa). Sliding began at the location 6 =
30° and spread continuously in both directions with increasing load. This result is
consistent with the calculated location of the maximum shear stress from the analysis of
Ref. 2 (Fig. 5). The opening displacements occurred first at 8 = 0 as expected and spread

to higher angles with increasing load.

The calculated interfacial shear stresses and radial stresses for a pair of fibers with
the separation shown in Fig. 4(a) and with strongly bonded inte1 faces are shown in Fig. 5.
Results for the normal stress at an interface that is free to slide but constrained to have
zero normal displacement are also shown in Fig. 5(b) for comparison. The radial stress at
8 = 0 from Fig. 5(b) is ~ 26,, giving a value of ~ 240 MPa when interfacial separation
began. This is very close in magnitude to the residual compressive stress normal to the
interface (which has been estimated from relaxation experiments to be ~ 260 MPa), thus
indicating that bonding at the interface is negligible and that the resistance to sliding is
due entirely to friction. The largest shear stress occurs at 8 = 35° and is equal to ~ 0.70,.
At the onset of sliding (6, = 100 MPa) this shear stress is approximately 70 MPa. This




—

value is the same as the frictional stress that has been evaluated independently from fiber
pulling experiments in this composite.

Transverse cracking before failure of the composite did not occur at the fibers that
were analyzed here (such cracks were only observed at ~ 20% of the fibers within the test

region. Nevertheless, the results in Fig. 4(a) indicate that circumferential sliding occurs
over almost all of the interface at the stage where transverse radial cracking begins (o, =

160 MPa).
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FIGURE CAPTIONS

tv

Stresses and cracking around a fiber subject to transverse loading.

Hoop stresses in matrix adjacent to fiber: dependence on fiber spacing and
interfacial sliding.

In-plane surface displacements (obtained by high resolution differential image
analysis) caused by applied transverse stress of 160 MPa. Reference arrow at
bottom left represents displacement of 0.23 um.

(a) Optical micrograph showing fiber used for measurements of (b).
(b) Normal and shear displacements at interface indicted in (a) measured by
stereoscopic analysis of pairs micrographs obtained before and during loading.

Interfacial stresses due to applied load for pair of fibers with spacing of Fig. 4(a):
(a) normal stresses for fully bonded and freely sliding interface, (b) shear stresses.
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The interfacial properties that control fracture in continuous-fiber-reinforced brittle matrix composites are discussed
Various methods of determining these properties are reviewed, including both experiments on mdividual fibers in specially
prepared specimens and experiments based on observations of crack propagation. Because the information that can be
acquired in any expertment is limited, deducing interfacial properties requires modeling based on prior assumptions about
the underlying micromechanics. The validity of some of the more popular and convenient of these assumptions is appraised.

1. Introduction

Considerable progress has been made in the
last twenty years in enhancing the damage toler-
ance or toughness of brittle materials by reinforc-
ing them with strong, continuous fibers. In partic-
ular, when aligned fibers are coupled to a brittle
matrix by weak interfaces, damage tolerance un-
der axial loading can be quite remarkable:
strength can become asymptotically independent
of matrix flaw size as the flaw size increases
[1-4]; and the overall strength of the composite is
not far from the bundle strength of the reinforc-
ing fibers [5,6].

Most of this paper will deal with the microme-
chanics of composite strength in just this configu-
ration: axial loading for aligned fibers. This is in
keeping with the vast majority of experimental
and theoretical work in the field to date. Great
emphasis has been laid on optimizing axial prop-
erties, to the exclusion and indeed detriment of
properties under nonaxial loading. Some com-
ments on how this historical omission will dictate

future developments appear at th. end of the
paper.

2. Failure of aligned-fiber composites under axial
loading

For axial loading of aligned-fiber composites,
the best damage tolerance is usually achieved if
the matrix fails before the fibers, the fibers re-
main intact in the wake of any matrix crack, and
such intact fibers supply significant shielding of
the matrix crack tip by crack bridging. Under
monotonic loading, the requirement that the ma-
trix should fail first generally requires fibers of
high strength, typical composites being SiC fibers
in ceramics and glasses. For the fibers to remain
intact in the crack wake, the interfaces must be
weak, so that fiber strain can be relieved by
interfacial sliding. In the recently popular Tex-
tron SCS6 SiC fiber, this condition is provided by
the presence of a layer of turbostratic carbon in
the carbon-rich fiber coating [7]. This layer is

0304-3991/92/505.00 © 1992 - Elsevier Science Publishers B.V. All rights reserved
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essentially debonded at the outset of testing, sup-
plving only frictional resistance to interfacial shd-
ing. The degree to which the .ubers then shield
the matrix crack tip from (he applied load s
determined by the crit: .. interfacial shear stress.
r, above which frictional sliding occurs {2]: the
larger r. the greater the shielding, with the pro-
viso that if = is too large, insufticient interfacial
sliding will occur to protect the bridging fibers
fror. tailure, and most of the bridging effect will
be lost altogether [8).

When ductile materials are reinforced by
strong fibers (e.g.. internctallic alloys reinforced
by the same SCS6 SiC fibers). matrix failure can
still be the first tailure, but under cyclic rather
than monotonic loading [9-13]. The mechanics of
the ensuing fatigue crack growth of the matrix
crack are then very closely related to those of
crack growth in brittle matrix composites under
monotonic loading [11.12]. Greatly enhanced fa-
tigue resistance is achieved if the interfaces are
weak and the frictional sliding sticss r has a
value that favors crack tip shielding by fiber
bridging. Under monotonic loading, on the other
hand, the first failure in such fibrous intermetallic
composites is fiber failure. But once again the
highest strengths are achieved if the interfaces
are weak and slide easily. for then the matrix
abutting each fiber break is protected from se-
vere stress intensification and composite failure
does not occur until the load is well above the
fiber strength [9].

For aligned-fiber composites under axial load-
ing. the requirements of interfacial properties are
thus quite simply stated: interfacial roughness (the
work of fracture for propagating an interfacial
debond) should be low; while the resistance to
interfacial sliding following debonding should be
high enough to support shielding but not so high
as to cause premature failure of the bridging
fibers. Since the interfacial toughness should be
low (ideally zero), there is little incentive for
measuring it in these materials. It is enough to
know from fracture experiments that it is not too
high to cause trouble. In contrast, there is much
to be gained from being able to measure the
critical sliding stress. 7, since its magnitude is the
prime controllable material parameter that deter-

Moewsuremoents of inlertucidi propertes

mines the efficacy of bridging. The next sections
describe methods of measuning -

3. Measuring the critical stress for frictional slid-
ing

Methods for determining the frictional stress
fall into two categories: experiments in which the
response of an individual fiber in a composite 1s
measured during some carefully controlled load-
ing, and measurements of the properties of
bridged cracks. All of these experiments have one
veny important charactenisuc: - (or any other
interface property) 1s never measured directly.
The experiments vield only some kind of dis-
placement as a function of some kind of load:
and the data are never so rich as to define the
underlying mechanmisms of deformation wniquely.
Values for r (or some other property) can only be
inferred when the data are interpreted according
to some a priori model. The quality of the meas-
urement ends up depending largely on the quality
of the model.

3.1. Experiments on individual fibers

The most common experiments on individual
fibers consist of either pushing or pulling a single
fiber that has been exposed by sectioning or
etching the composite and measuring its axial
displacement [16-19). When the fiber /matrix in-
terface is strong, analyzing such an experiment is
very complicated. The stress fields in the fiber
and the matrix are difficult to calculate, involving
some degree of interfacial debonding. singulari-
ties associated with the debond crack tip and any
other flaws, plasticity, friction between debonded
surfaces, statistical variance in interfacial proper-
ties. and all the complications associated with
having an elastically inhomogeneous body (com-
prising fiber, matrix, and complex fiber coatings
and reaction layers) subjected to nonuniform
loads with axial symmetry disrupted by the pres-
ence of one or more free surfaces. Because of
this complexity, there has not yet been a convinc-
ing demonstration of the measurement of debond
energies by pushing or pulling experiments.
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Fortunatelv, when the intertace is weak. there
15 considerable accumulated evidence that the
situation 15 much simpler {16.19]. With weuk 1n-
terfaces and moderate or low values of =, interty-
cial sliding occurs over lengths much greater than
the fiber radius. and the resistance to further
shding 1s dominated by triction along the shding
region and only weakly intluenced by the energy
required 1o propagate the debond crack. In fuct.
tor many cases. including the SCS6 SiC fiber, the
debond energy 1s neghgible: the intertace can be
modeled as entirely debonded betore the experi-
ment begins. Furthermore. since shiding lengths
are large. 1t has been snown by various experi-
ments and theoreucal calculations that the shear
lag approximation {16.17.20] is verv reasonable
tor this ssstem  In other words. in the cviindrical
coordinates of the fiber. the only nonzero shear
stresses are those acting across the shiding inter-
face 1tself. Fairly consistent values for = are now
available for experiments modefed using these
assumptions. Nevertheless, there remain some in-
triguing and important problems.

One very important question is that of the
interplay ot Poisson’s rativ and interface rough-
ness. The usual depiction of frictional sliding is
that Coulomb’s law prevails: the friction stress
1s the product of the coefficient of friction and
the normal stress og at the interface. The normal
stress IS primarily a residual stress arising from
thermal mismatch between fibers and matrix. The
matrix usually has the higher coefficient of ther-
mal expansion and shrinks down around the fiber
during cool-down following processing. When a
fiber is pushed or pulled, Poisson’s effect tends to
alter its radius and oy changes. This can have a
substantial influence on the force/displacement
relation for the loaded fiber and therefore on the
inferred value of 7 [20,21,23].

The role of interfacial roughness was recently
iluminated by Jero and Kerans [24]. In their
experiment. an SCS6 SiC fiber was pushed first
one way through a glass matrix and then the
other. The motion was resisted by friction. When
the fiber returned to its initial position, there was
a large drop in the load, which could be corre-
lated with irregular features on the two sliding
surfaces reseating in their original, matched posi-

Yoavremen s ot angertacids Propertey

tons. One inters that the fricton siress rses
significantly when the mtertace v unscated be-
cause rough features, when moved out of registn.
torce the sliding surtaces apart, rasing o, For
the SCS6 SIC fiber. the spatial scale of the ob-
served irregulanities s ~ 10 um. Since this 1s the
same order as crack-opening displacements tor
matrix cracks mn typical composite specimens., it
must be concluded that the correct value of - o
be used in anabvzing such cracks most retlect
both the etfects of Poissons contraction and of
intertacial roughness.

This guestion has been further lum:nated by
unusuallv precise fiber pull-out experiments con-
ducted by Marshall. Shaw and Morns {25] using
T1-23A1-10Nb-3Mo-1V - SCS6  specimens. In
their experiments, a single fiber is exposed and
isolated by etching away a section of matrix in the
middle of the specimen and cutting away all other
fibers in the etched section. The two intact ends
of the specimen. now joined by the single fiber,
are gripped and loaded. The relative displace-
ment of thee fiber and the matrix 1s measured to
within 100 A at the point where the fiber enters
the matrix using a computer-based image-match-
ing technique [26). The fiber is loaded in tension
and unloaded at various stages during pull-out.
When models are fitted to the load~displacement
histories, it is found that the best model assumes
that the friction stress 7 is wniform along the
sliding length of the interface. Thus. in this com-
posite, Poisson’s effect and surface roughness ef-
fects coincide in magnitude, canceling one an-
other out in tensile loading to a good approxima-
tion. For other composites, one should not expect
the same resuit.

The situation under cvcling loading, as with
fatigue crack growth in fibrous intermetallic ma-
trix composites such as Ti,ZAl/SCS6. is likely to
be even more complicated. While shear {ag mod-
els continue to predict force /displacement rela-
tions of simple form [11,16], repeated cycling in
the fiber puli-out experiments [25] showed that
the friction stress 7 is affected by attrition. Un-
fortunately. the results of such tests on individual
fibers do not necessarily reflect conditions in a
composite near a matrix crack. There are large
and potentially significant differences in the local
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stress state. the degree of fiber bending, the
range of the sliding displacement, etc. Therefore.
it 18 desirable to develop wavs of determining r
for cracks bv measuring and modeling certain
fracture characteristics. This is taken up in the
next section.

3.2. Experiments on cracks

Analyzing a bridged crack requires a further
level of modeling: not only must the sliding of
individual fibers be modeled. but also the frac-
ture mechanics of a crack with possibly large and
dominant bridging tractions acting on or adjacent
to the fracture surfaces. If the contribution of
each bridging fiber is to be treated separately in
detail and the details of the stress distributions
around all fibers and near the crack tip are to be
calculated in full, the fracture mechanics problem
is a daunting one. Fortunately, when there are
many bridging fibers. comparison with experi-
ment shows that the problem can be greatly sim-
plified by averaging the effect of the discretc
fibers [2] to obtain a continuous bridging traction
acting on an anisotropic but homogeneous
medium without losing any essential aspect of the
fracture or fatigue process. There then remain
many interesting and unusual effects of specimen
geometry and load configuration, especially when
the bridging zone is large compared to specimen
or crack dimensions, but these can all be dealt
with conveniently and accurately [27-29]. Under
the spatial averaging, the relationship between
the load on an individual fiber and its displace-
ment is replaced by a relationship p(u) between
the continuous bridging traction p and the
crack-opening displacement u [2]. Knowledge of
one is tantamount to knowledge of the other.

The relation p(u) can be determined experi-
mentally in several ways. For cyclic loading prob-
lems, they reduce to two general methods: analyz-
ing fatigue-crack-growth data and analyzing
measured crack-opening profiles. Crack-growth
data are analyzed by specifying a parametric law
for p(u) (e.g., the predictions of shear lag theory
with ¢ as the sole parameter), calculating the
range of the crack tip stress intensity factor,

AK,,. and invoking some law (e.g., the Paris law)

to relate AKX o to the crack-growth rate. Values
of = encouragingly consistent with those from
experiments on individual fibers have been ob-
tained in this way {15].

Information about p(u) is obtained more di-
rectly from crack-opening profiles because the
step of relating growth rates to AK,,, Is obviated:
p(u) can be obtained from the profile at a single
value of crack length [30). The method is based
on the relation (an integral equation) between
the applied load. the specimen gecmetry, the
bridging tractions. and the crack-opening dis-
placement profile. This integral equation is most
commonly solved for the crack-opening profile
when evervthing else 1s known, with pl(u) taking
specified form and values. Once the profile is
known. AK  (or K ) can be calculated and all
fracture properties predicted. To determine p(u),
the problem is simply turned around: the profile
and load are measured and p{u) is determined by
the same integral equation.

Of course, if 7 is degraded by attrition during
fatigue, then there will not exist a unique relation
pu) correct for the entire crack. In this case, p
must be regarded simply as a function p(x) of
distance x from the crack front. But this func-
tion, too, is deducible from crack-opening profiles
by the same method [30). The full hysteresis loop
for p and u at each position x can then be
deduced from functions p(x) inferred from pro-
files measured at successive points on a complete
loading cycle for the cracked specimen. Examples
of this procedure will be available at the comple-
tion of work now in progress.

4. Outlook

The fracture mechanics of mode-I cracks grow-
ing normal to unidirectional fibers are now well
understood. For fatigue cracks in metal and inter-
metallic alloys reinforced by SCS6 fibers, the
connection of engineering crack-growth data to
interfacial properties measured by high-resolu-
tion microscopy is singularly complete. Interfacial
sliding 1s known to occur in turbostratic carbon
layers; experiments on single fibers have tested
the validity of mechanical models of the sliding
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and yielded values for the friction stress, = mod-
els of bridged cracks have dealt with the unusual
effects of specimen shape and loading configura-
tion when the bridging zone is large: and, after all
this, a simple law between AA,, and crack-
growth rate is sufficient to reproduce with gratify-
ing accuracy the dramatic effects of bridging. This
is certainly one of the best understood. most
accurately modeled shielding mechanisms ever
studied in either monotonic fracture or fatigue.
However, the future remains full of challenge.
Engireering applications of brittle matrix fibrous
composites remain restricted by their failure un-
de: nonaxial loading. The most urgent current
need is for composites with through-thickness
strength and resistance to delamination or split-
ting unde- shear loading, compression, or impact.
In answ.. to this need and in analogy to the case
of polvmer composites. brittle matrix composites
with three-dimensional reinforcement (woven,
knitted. braided, and stitched composites) are
being developed. With their development entirely
new research fields are being born. including
studies of both composite mechanical properties
(fracture. fatigue, etc.) and interfacial properties.
The ideal interface for 3D brittle matrix compos-
ites may well be different from that for unidirec-
tional composites. although it is intuitively ap-
pealing that damage tolerance will still be favored
by relativelv weak interfaces. However, interfacial
sliding and other localized interfacial damage oc-
curring during loading will be strongly influenced
by the inevitably high curvature associated with
3D reinforcement. What the relevant interfacial
properties are and how they are to be measured
remain challenging problems for the future.
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ABSTRACT

Previous analyses of the relation between the force and displacement during fiber sliding
(pushing or pulling) are extended to include effects of interfacial roughness. Analytical solutions
are obtained for a linear roughness profile over the range of displacements that are smaller than
the dominant half-wavelength of the roughness. With the equations expressed in normalized
form, a convenient friction parameter, which defines the roles of the friction coefficient and the
roughness angle, has been defined. For certain values of the friction parameter, the effect of the
roughness negates the Poisson’s contraction during fiber pulling, giving solutions that are very

close to the response of a system with a constant frictional stress at the interface.
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1.0 INTRODUCTION

In ceramic and intermetallic matrix composites, much of the benefit of fiber
reinforcement derives from the effects of debonding and sliding at or near the interface between
the fibers and the matrix.1-3 Several recent studies have shown that the morphology of this
debonded surface strongly influences the constrained sliding of the fibers and hence the
properties of the composite. In composites with residual compression in the fibers, interfacial
roughness is expected to increase the sliding resistance, while in composites with residual

tension in the fibers, the coupling of the fibers and matrix may be due entirely to roughness.

Direct evidence for the influence of interfacial roughness comes from measurements of a
reseating phenomenon in fiber pushout experiments, first observed by Jero and Kerans4 in glass
matrix composites and confirmed by several other groups,3-7 in both pushout and pullout
experiments in ceramic and titanium aluminide matrix composites. Other evidence includes:
observations of stress birefringence caused by roughness mismatch after fiber sliding in
glass/SiC composites;8 direct measurement of surface roughness in various fibers by laser
interferometry and atomic force microscopy;9v1° the analysis of high resolution force-
displacement measurements during single fiber pulling experiments in several titanium
aluminide composites,!1 which suggested that interfacial roughness canceled the effect cf
Poisson’s contraction of the fibers; and the observation of load oscillations during fiber pushc

from composites containing sapphire fibers with periodic surface corrugations.12

Several analyses of fiber sliding have sought to include the effect of surface roughness.
Kerans and Parthasarathy!3 modeled the effect as a constant additional radial misfit strain
between the fiber and matrix, which increased the normal stress and thus the sliding resistance
(with the Coulomb friction law). This model is expected to be appropriate for a composite with
nonperiodic roughness when the sliding displacements are larger than the dominant half-
wavelength of the roughness, so that the asperities have slid over their nearest neighbors.

2
J12410H/bje

I |




However, in many crack bridging problems, the sliding displacements are small, falling within
the domain where the roughness does not become completely unseated. In that case, the misfit is
related to the local sliding displacement and thus varies along the debonded region of interface.
Bhihe and Evans!4 obtained numerical self-consistent solutions for this problem for several glass
matrix composites. Carter et al.5:15 analyzed the sliding of hemispherical asperities over each
other and pointed out that for small displacements, the increased sliding resistance has two
components; one due to the increased friction associated with the extra misfit and the other, an
elastic component, due to the axial component of the normal contact force. However, the analysis
focused on the large slip region where the elastic component averages to zero, although reference
was made to unpublished numerical solutions for the small slip region. The purpose of this paper
is to present analytical solutions for the small slip region, which allow the role of roughness to be
easily identified as well as provide a means for analyzing fiber sliding experiments to extract the

interfacial properties.
2.0 DESCRIPTION OF MODEL

As in previous analyses of fiber sliding with smooth interfaces, the composite with
volume fraction f = R¢/R of aligned continuous fibers is represented by a concentric cylinder
model (Fig. 1). The analysis is restricted to composites with residual compressive stress acting
across the fiber/matrix interface, as is usually the case with intermetallic matrix composites and
sometimes the case with ceramic matrix composites. Pulling or pushing on the fiber at the end of
the cylinder (which corresponds to a sectioned surface or a crack surface of the composite)
causes a crack to grow along the fiber/matrix interface. The length of the debonded region is
dictated by a fracture energy, Ge, at the crack tip and frictional sliding over the debonded

surfaces.
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21 Interfacial Morphology and Friction

The microscopic roughness over the debonded region is taken to have a linear sawtooth
shape as depicted in Fig. 1, with amplitude, h, much smaller than the radius of the fiber. This
roughness could arise from the debond crack following either pre-existing roughness on the
surface of the fiber or an irregular path adjacent to the fiber (within the matrix or within a third
phase at the fiber-matrix interface). The analysis will be restricted to cases where the local
relative displacements of the fiber and matrix (i.c., sliding displacements) are everywhere smaller
than the characteristic half-wavelength, d, of the roughness. In many crack bridging situations in
ceramic and intermetallic matrix composites, the displacements are small enough to satisfy this
condition. In this case, the actual values of h and d do not enter the analysis; the roughness is
characterized by the angle 8 (Fig. 1) and there is no assumption of periodicity in the roughness or

uniformity in its amplitude, in either the axial or the circumferential directions.

The debond energy G will be affected by the roughness, because of local deflections of
the crack front away from the Mode II orientation of the average fracture path. By analogy with
analyses of the effect of crack-tip deflection on the Mode I fracture energy, !5 G is also expected
to be affected only by the angle 6 and not by the amplitude and period of the roughness.

This model of roughness is an id~ alization, not only in the linear shape chosen, but also
because surface roughness of real solids exists over size scales that span many orders of
magnitude, from the atomic scale up to microscopic or macroscopic dimensions. Indeed, recent
studies have demonstrated the fractal nature of surface roughness at size scales below some
characteristic dimension, which may be determined by the method of surface preparation or by
some microstructural feature such as grain size.10.17.18 Microscopic theories of friction invoke

the presence of submicroscopic roughness to derive the friction law (e.g., Coulomb friction).17-20

4
J12410H/bje




It is the dominant roughness at the upper size scale limit that is modeled here by the

sawtooth shape. The influence of finer scale roughness is subsumed in the frictional stress, T, that

resists sliding, given by the Coulomb friction law applied on a local scale as indicated in Fig. 1:
T=U0p (1

where Gy, is the compressive stress normal to the interface (G, is negative) and the direction of 1

is tangential to the interface.

The rough surfaces are assumed to slide over each other without locally distorting the
surfaces. This has the important implication that as soon as sliding begins in say the positive
direction, the facets oriented at the angle -0 (Fig. 1) lose contact, even when residual
compressive residual stresses are present. At the same time, the radial misfit strain (and therefore

the contact stress) increases at the facet oriented at the angle +8, by an amount gg that is

proportional to the magnitude of the local sliding displacement u(z):

u(z)l Tan6
ee=u(z) an .

R, @)

The neglect of local elastic distortions due to the increased contact stress will be a reasonable

approximation provided the asperity height and period are small compared with the fiber radius.
22 Sliding Displacements

The frictional sliding causes relative displacements of the fiber and matrix at the end of
the cylinder (z = ¢). These displacements are measured in push/pull experiments and are related
to the opening displacements of a bridged crack in the composite. The relative sliding
displacement at position z is given by an integral of the axial strains in the fiber and matrix,

which can be written (Appendix A)

u(z) =(-EI;) j Ac; dz 3)
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where Ey is an elastic modulus defined in Eq. (A11), and AG¢is the difference between the axial
stresses in the fiber at position z and at a location far ahead of the debond tip. The opening
displacements of a bridged crack are given by Eq. (3) with z = ¢ and Ey, replaced by Eb of
Eq. (A13).

The analysis of stresses and strains is summarized in Appendix A. The analysis is taken
from the work of Hutchinson and Jensen2! who used the Lamé solution to evaluate stresses and
strains in sections normal to the z-axis. This approximation is valid if the axial stresses vary
slowly over distances comparable to the fiber radius, a condition that is satisfied if © is small

compared with the axial fiber stress, 6¢. The matrix is elastic and isotropic, while the fibers are

transversely isotropic.

As far as possible, the notation here will follow that of Hutchinson and Jensen2! and a
subsequent analysis of fiber sliding by Marshall,22 although some new normalizing parameters
will be defined. Relations will also be given between these parameters and those used by Kerans

and Parthasarathy !3 in a related analysis.

There is a jump in the axial fiber stress, O, from just behind to well ahead of the debond
crack tip, which is dependent upon the fracture energy, Ge. This relation is given approximately

by2!

12
y=o;-of =2 (83" @

where the superscripts (+) and (-) denote quantities far ahead of, and just behind the crack tip.
Comparison with full numerical solutions in Ref. 21 shows that Eq. (4) is a good approximation
if the sliding distance exceeds 2 to 3 times the fiber radius. The error is shown to be ~ t/of, and

thus becomes less significant as the applied load increases.

Several other parameters defined in Ref.22, which will be convenient to use later, are as

follows:
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C=y+o0f, (52)
ORo = Opo/(A-1) (3b)
o= Gro+I (5¢)

where O, is the residual axial stress in the fiber and A is a dimensionless elastic constant defined
in Appendix A. Note that ¢, and of differ when the applied load and volume fraction are non-
zero (Eq. (Ala)). For single fiber testing with f — 0, the parameter I” is equal to the applied
stress needed to initiate debonding. For non-zero values of f, I' is related to this initiation stress

by o, =T/1-fa;), where aj is an elastic constant defined in Eq. (Al). The residual stress

parameter OR, is equal to the applied stress at which the Poisson’s contraction of the fiber

cancels the residual radial stress at the fiber-matrix interface.
3.0 DISPLACEMENTS DURING FIBER PULLING

In this section, the relative displacements of the fiber and matrix at z = £ are evaluated as
the stress G, applied to the end of the fiber is increased continuously from zero to a peak value
Op (initial loading), decreased to a minimum value Gmin, and then increased again to Op. During
initial loading, debonding and sliding progress stably along the fiber/matrix interface, whereas

during unloading reverse sliding occurs. The unload/reload cycle exhibits hysteresis due to the

frictional response of the interface. The fiber strength is assumed to be larger than Gp, so that

failure of the fiber does not occur.
3.1 |Initial Loading

The equation governing the changes in axial fiber stresses can be derived from analysis of
the equilibrium of forces acting on an element dz of fiber as shown in Fig. 2. Force resolution

gives

--(—T-+—B-Tan9) ©)

.
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in the direction parallel to z, and
o, =(0, - 1 Tan 6)/2 )

normal to z (Gy is the average radial stress at the interface). Elimination of T and o, from Eq. (6)

using Egs. (2) and (7) gives

2u'c

where
. +Tan 0
1-uTan

Two distinct effects of the interfacial roughness enter these equations: the increased
friction due to the additional misfit strain of Eq. (1), which enters the analysis via the first term of
Eq. (6) as well as the radial stress, or; and the direct effect of the axial component of the normal
contact force at the inclined interface (second term of Eq. (6)). The second contribution can be
evaluated alternatively from an energy balance argument, in which it is the rate of change in
strain energy associated with the radial compression needed to accommodate the misfit strain. It
is the axial force that would exist for a frictionless interface, thus giving a non-zero value for the
right-hand side of Eq. (8) for p = 0, and 6 # Q. If, on the other hand, 6 is zero, then Eq. (8)

reduces to the familiar result for a smooth interface

dog _ 2u0: (10)

The radial stress, G, differs from the stress for the smooth interface because of the
additional misfit strain due to the roughness. From the analysis in Appendix B, the radial stress is

given by

Gr = Of + ¢ [u(z) + b1ACKz) , (11)
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where o7, is the radial residual stress ahead of the debond, ¢ |u(z)i is the contribution due to the

roughness misfit, by is a dimensionless elastic constant defined in Eqs. (A2) and (C1), and
b; Acg(z) is the change in radial stress due to the change in axial stress (Poisson effect). The

parameter ¢ that characterizes the roughness misfit is given by

:4%§que (12)

where E, is the Young’s modulus of the matrix and B is a dimensionless elastic constant

(negative) defined in Eq. (B4).

The changes in axial fiber stresses can also be written in terms of the displacements by
differentiating Eq. (3)

du(z)
Z

Acg=0¢- of =Ep (13)

After further differentiating Eq. (13) and combining the result with Eqs. (8), (11) and (13), the

following diferential equation is obtained

Pu i+ gli+p=0 (14)
where n=2uby/Rs , (152)
¢= 2:; 0. (15b)
and B= ( (a Y) (15¢)

(The relation 6% = by (« - ¥) from Eq. (A5) was used in Eq. (15c).) The boundary conditions are
specified by conditions at the tip of the debonded region (z = 0):

u0=0 (16a)

and
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du(O)

e =(of- 6fVEs = V/Es . (16b)

the second of these being given by Eqs. (4) and (13). With these boundary conditions, Eq. (14)
provides the solution for u(z), i.e., the sliding displacements as a function of distance from the
debond front. Once u(z) is known, Eq. (13) provides the axial fiber stresses as a function of
position. Then, with z equal to the debond length, ¢, so that 6f = G,, we have a pair of parametric
equations from which the displacement u(¢) may be plotted as a function of the applied stress,

with ¢ as the parametric variable.

The solution to Eq. (14) can be simplified by defining the following dimensionless

parameters
- 1), -
Z=nz (17b)
x=(1-4¢m? (17¢)
g= 7y | a7d)
Then Eq. (14) becomes
%5;2. d.u_+( )|u|+(1 -g)=0 (18)
du'(0)

and the boundary conditions at z' = 0 become u'(0) = 0 and = g. The solution of Eq. (18)

dz'
for u' 2 0 (i.e., fiber pulling) is

4(g-1) A 2 ((1+x)z g+gx-2 xp(-(l-x)z’)
1-x2 X(1+X) x(1 - x)

u(z) =
= f1(g.x,2) (19)

In terms of the same dimensionless parameters, Eq. (13) becomes

10
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OO o du [ 8x- 2, (UENT ) (grgx-2) e, (ALK,
@«  dz 2 exp | 2 1T 1P T2 7]

=fo(g,x,z) (20)

Solution of Egs. (19) and (20) at z' = £ provides the relation berween the normalized

+
sliding distance (NEw/a)u and stress difference (o—';—cf-). which involves only two other matenial

parameters, x and g. With Eqs. (§) and (17d), the parameter g can be written as

g=I‘-(A-1)oR0=I"+(A-1)
I" + Oro r-i

@n

where I" = - [/oR,. Therefore, g is a function only of the elastic constant A and the ratio of the
debond energy to the residual stress. The range of g is from (1-A) for zero debond energy to
unity for zero residual stress. The dependence of A on the properties of the fibers and matrix has
been evaluated in Ref. 22; values typical of ceramic and intermetallic matrix composites fall
between 1.0 and ~ 1.5 for single fiber sliding and between ~ 0.5 and ~ 1.5 for multiple fiber
sliding. The parameter x contains the influence of the interfacial roughness, and is dependent on

the elastic properties, the angle 6, and the coefficient of friction p (Egs. (11), (15a), (15b) and

(17¢)):
x=(1-4¢Mm212 (22a)
where om? = BEn,_ Iaq_e_
2b%E, M
_p (1 - pTan6) Tand (22b)
w(1 + Tan6)
B'= BEm (22¢)
2b%Ey

The dimensionless elastic contant B' in Eq. (22¢) is sensitive to the ratios of the elastic properties

of the fibers and matrix (see Appendix C); for ceramic and intermetallic matrix composites its
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value could range from approximately -5 to -25. Representative values for are: -13 for glass/SiC
composites (Ef = 200 GPa, E;, = 80 GPa, vf = v, = 0.3, f = 0.4) and -25 for titanium-
aluminide/SiC composites (Ef = 415 GPa, E, = 80 GPa, v = vy, = 0.3, f = 0.4). The variation of
x with @ for B' = -25 is shown in Fig. 3 for several values of friction coefficient . For most
reasonable roughness angles and friction coefficients, x lies between ~ 1 and 8; x = 1 for a
smooth interface, while x increases with increasing roughness angle or decreasing friction

coefficient.

Before plotting the solutions to Eqs. (19) and (20), it is convenient to rewrite them as

u*s("E")u=(r-1)f1(g,x,e') 23)
- ORO
and
5,29 0-3F) 1 Ay s T 6) 24)
- ORO

The normalized displacements u* during initial loading are shown in Fig. 4 for a composite with
elastic properties typical of the titanium aluminide/SiC composites mentioned earlier
(A = 1.141). In Fig. 4(a), curves Sa(u*) are plotted for various values of x with ' =0,
corresponding to ¥ = O, (i.c. the stress required to initiate debonding being zero). In Fig. 4(b),
curves are plotted for three values of I': (1) T =-(A-1) corresponding to ¥ = 0 (i.¢., an unbonded
interface), (2) I' =0, and (3) T" = (A-1), corresponding to Y= 20%,. For each value of ', curves
are plotted for both smooth (x = 1) and rough (x = 5) interfaces.

While trends in the normalized displacement u* can be evaluated in terms of the single
roughness parameter x, which combines the effects of the friction coefficient p and roughness
angle 0, calculation of the absolute displacements requires that p and 6 be defined separately.”

Since u* is proportional to W' (through the dependence of N on y' in Eq. (15(a)), which increases

* More specifically, the parameter ' is requried. However, defining both x and ' is equivalent to defining p1and 6.
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with increasing 6, the relative decrease in absolute displacement with increasing 6 (at given p) is

larger than the corresponding decrease in the normalized displacements in Fig. 4.

Spontaneous debonding and sliding can occur during formation of the free surface at
z = ¢, if I’ £0. The spontaneous sliding displacement, ug, is given by the intercept on the u-axis
in Fig. 4(b). In the modeling of bridged cracks, this displacement is part of the crack opening
displacement. However, in fiber pulling experiments, the displacement measurements usually

begin after formation of the free surface, so the curves should be shifted along the u-axis by -uy,.
3.2 Alternative Notation In Terms of Single Fiber Loads

In an earlier analysis of single fiber pushing experiments by Kerans and Parthasarathy, 13
which is equivalent to the analyses of Refs. 21 and 22 in the limit f = 0, the applied loads were
expressed in terms of the force, P, applied to the end of the fiber. An equivalent set of parameters
were defined: P*, the load at which the Poisson’s contraction of the fiber cancels the residual
normal stress; Pr, the residual axial stress in the fiber; and Py, the load to initiate debonding.

These parameters are related to those in this paper by

P* = tR?0Ro (25a)
Pr=nR?0f, = (A - 1)P* (25b)
and Py=nRHy (25¢)

Conversely, the parameters in Egs. (19) and (20) are related to these forces by

o = (P* + Py + PRYnR? (26a)
G, - 6f =( P- PrynR? (for f =0) (26b)
= P4 2
E=pry P4 + Pr (26c)
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With these substitutions, Eqs. (19) and (20) become

RIE
("ﬁ“’) =(1+BetPr) g, (g, x, 2) @
and £ = PR+(1+ELR-)f2(g x, ) 28)

3.3 Unload/Reload Cycle

The axial fiber stresses during unloading, after loading initially to a peak load Op, are
shown schematically in Fig. 5(a). Reverse sliding occurs within a distance (£p-s) of the end of the
cylinder. The sliding distance, ¢p, during the initial loading to o is defined by Eq. (20) with
Of = Op at z' = ¢,

Within the region of reverse sliding, the direction of the frictional stress < in Fig. 2 is
reversed. With the appropriate sign changes in Egs. (6) and (7), the counterpart of Eq. (8)
becomes

f
%‘;1 = *2?{{"' (29)
where
t = u- Tan 6 (30)
1+puTan®©

Then, following the same steps as those leading to Eq. (18), the normalized differential equation
defining the displacements becomes

-%%4.(%’@)&,11”1-@% : 31)

which differs from Eq. (18) only in the sign of the leading term and in the replacement of p' by
ut in the definitions of all quantities with the superscript (1), i.c.,

uf=u (utn) (32)
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uf =u (utp) (32)

2t =2 () (32b)
and

1-(xH2=(1-x?) (w/uh? (32)

The boundary conditions are defined by matching u and du/dz at z = s to the values at the peak

load condition defined by
u'(s") =f; (g, x,s") (33a)
B =6 @ x.s) (33b)

where s' = 1s. The solution of Eq. (31) has the form

ut(zh) =f3 (g, x, st, zP) (34a)
or-of _du _ t gt
= iz fs (g, x, 87, 27) (34b)

with 6 = G, at z = £p. The solutions f3 and f4 are very lengthy and are not reproduced here.

However, they are readily obtained using the symbolic mathematical program Mathematica.23
To plot u( 6¢) during unloading from G = 6p t0 Oa = Omin, S in the parametric Egs. (34) is varied
between s = £p and § = Smin, With Smin defined by Eq. (34b) with Of= Omin at s = Smin and z = {p.
To plot the displacements with the same normalization as for the initial loading, it is necessary to

multiply the solutions to Eq. (34) by (w/ut)

During reloading (Fig. 5(b)), the differential equation for the displacements is the same as

Eq. (18), and the boundary conditions, defined by matching u and du/dz at z = t to the values at

the minimum load, Opin, are
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u'®) = (/uh £3 (8, X, sTmin, t1) (352)

d 1] ]
and l;g) =4 (g X, Stmin, tH . (35b)

The soluton of Eq. (18) with these boundary conditions has the form

u'(z) =fs5 (g, x, S'min, t', Z') (36a)
+
PO = £ g X, Smine 14 2) (36b)

with 0 = Oy atz = {p. Again, the functions f5 and fg are not reproduced but are straightforward to
obtain. To plot u(c,) {or reloading from Omin back to Op, the range of the . -ameter t in

Egs. (32a) and (32b) is the same as during unloading (Smin < t < ¢p).

The effect of roughness on the displacements during a load-unload-reload cycle is
illustrated by the comparison in Fig. 6(a) for a smooth (x = 1) and a rough (x = 5) interface in a
composite with A = 1.14, "' =0, and 6 = 11 degrees. The roughness causes a reduction in the
displacement during initial loading, and an increase in the relative amount of recovery and
hysteresis during the unload-reload cycle. For a given value of x, the relative recovery and

hysteresis increase with increasing roughness angle as shown in Fig. 6(b) (different values of 6

give different unload-reload curves, but the same initial loading curve).

If the interfacial debond energy is sufficiently large ("' > 0), unloading from small values

of op can allow reverse slip over the entire debonded region (i.e., s = 0 in Fig. 5(a)). Then, for

further unloading different boundary conditions are required. The equations are the same as

discussed in the following section when spontaneous debonding occurs.
4.0 DISPLACEMENTS DURING FIBER PUSHING

The displacements caused by fiber pushing follow from an analysis that is similar to that

for fiber pulling. With the applied stresses and the displacements being negative for pushing, the
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differential equations defining the displacements are given by the corresponding equations for

fiber pulling (Egs. (18) and (31) with the signs of the first terms changed:

_dA L du | {1-x2) Sy =
d(z')2+d2'+( 2211+ (1) =0 (37
for initial loading and
diut . dut (1 -(X'f)z) o=
+ e + o 1 ut+(1-g)=0 (38)
for unloading.

The boundary conditions are dependent upon whether or not spontaneous debonding
occurs. In the absznce of spontaneous debonding, or for sufficiently high pushing forces, the sign

of the stress jump at the debond is reversed (Fig. 7(a)), i.c., v in all of the equations is replaced by
Ye=-Y 39

With this sign change in ¥, the parameters g and I take different values, gc and I, given by

substituting Y for ¥ in Eqgs. (5), (17d) and (21). Thus, the stress-displacement relation during

initial loading is given by Eq. (37) with the boundary conditions u'(0) = 0 and d‘;g)) =g

If spontancous debonding occurs (" < 0), the axial fiber stresses are altered, as shown
schematically in Fig. 7(b) and analysis is somewhat more convoluted. The initial displacements
are positive and are given by the equations for fiber pulling (Eqgs. (19) and (20)) with peak load
op = 0. The displacements at low pushing forces (16,4l < loyl) in Fig. 7(b)) are equivalent to those
occurring during unloading in pulling (Eqgs. (31) and (33)) from a peak load of op = 0. However,
with continued pushing, at stresses between 61 and G2, the boundary conditions change. Within

this stress interval, the stress jump at the debond tip varies from ¥ to Yc as the applied load
changes from G to 6. The boundary conditions become u'(0) = 0 and dl;(f)

=%, where v’ is

the stress jump at the debond tip. If we define g’ from Eq. (21) by substituting ¥’ for v, the second
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du (0)

boundary condition is ——= = g'. Then with the debond length fixed at ¢ = ¢, (the solution of

Eq. (20) at o = 0), the solution to Eq. (31) provides a pair of parametric equations for stress and
displacement with g' as the parametric variable (g; < g’ < g). This solution holds as long as the
displacements are positive. At some stress between G; and G2, the displacement at z = ¢,
becomes zero and, with further load increase up to 67, a zone over which the displacements are
negative spreads along the debonded region from z = ¢, to z = 0. Within this stress range, it is
necessary to solve for the position z = z, at which u(z) is zero, calculate the displacements over
the interval 0 € z < z, using the solution for positive displacements (Eq. (31)), and then calculate
the displacements over the interval zo < z < ¢, using Eq. (37) with the boundary conditions
defined by matching the solutions for u and %‘zl at z = z,. At stresses between 62 and 03, the
displacements are negative over the entire debonded region and the displacements are given by
Eq. (37) with the abovementioned boundary conditions with ¥' varying from Q to Y. At stresses
larger in magnitude than o3, the solutions are the same as for no spontaneous debonding, as

described in the previous paragraph.

Stress-displacement curves for fiber pushing are plotted in Figs. 4 and 6 for the same
range of parameters as used for the fiber pulling curves. Similar trends are evident, although the
displacements, both with and without roughness, are smaller in fiber pushing; and the effect of a
given roughness (i.e., given x) is larger in pulling than in pushing. In addition, the relative

recovery of displacement during unloading is larger in fiber pushing than in pulling.
5.0 DISCUSSION

During fiber pullout the additional misfit strain £¢ due to interfacial roughness tends to
cancel the transverse Poisson’s contraction of the fiber. The degree to which these effects can

cancel may be seen by comparing the curves of Fig. 4(a) with the stress-displacement relation for

a smooth interface with a constant frictional stress, o, over the debonded region.22 In terms of

the normalized parameters defined here, this relation is
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u* =(El§£)[szfz +(A-1)S, -T2 -(A-DT"] (34)

The result for To = U'Gyo is plotted in Fig. 8. Since Oy is the normal interfacial stess when the
axial stress in the fiber is zero, this value of 1, is the corresponding frictional stress given by the
Coulomb friction law with friction coefficient 1'. For applied stresses in the range 0 < 0, <ORg
the constant friction results are very close to those of the rough interface with x = 3. At higher
applied stresses some deviation towards lower values of x is evident. For a friction coefficient of
0.4 the value x = 3 corresponds to 8 = 2°, a reasonable value for typical interfaces in composites

containing SiC fibers produced by CVD.9

Measurements of stress-displacement relations in titanium-aluminide/SiC composites
have been reported with very close fit to the constant friction model up to applied stresses as high
as ~2Gpo.11 Such response, which deviates from the linear roughness results in Fig. 8, could be
produced by a non-linear roughness profile that would more closely model the asperities
typically observed on SiC fibers. The analysis of a nonlinear roughness profile would begin with
the same formulation developed here, but would require some local elastic distortion of the
asperities (to avoid point contacts that would result from sliding of nondistorting surfaces with
nonlinear profiles), and would lead to a different functional dependence on u(z) in Eq. (2) and
hence in the third term of the differential equations (e.g., Eq. (14)).
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APPENDIX A: STRESS-STRAIN RELATIONS

The analysis of stresses and strains is based on the work of Hutchinson and Jensen.2! The
matrix is taken as elastic and isotropic with Young's modulus Eq. The fiber is taken to be
transersely isotropic with Young’s moduli Ef and E; in the axial and transverse directions; and
Poisson’s ratios vf and vy governing transverse Poisson’s strains due to axial and transverse

loading, respectively.® The properties v, and E; enter the analysis via the parameter
gfs(l_'.‘it) Et. for isotropic fibers &¢ = 1.
1-velE

There are two contributions to the elastic misfit strain between the fibers and matrix. One
arises from the difference in thermal contraction of the fibers and matrix during cooling from the
fabrication temperature, with components and €T, and €T, in the radial and axial directions
(defined alternatively by the parameters €T = €1, and A = €T/ T,). If the residual stresses cause
yielding of the matrix during cooling from the fabrication temperature, both €T and A may differ
from values calculated for a purely elastic response during cooling. The other contribution is a
radial misfit strain associated with the sliding displacements of the rough interface. This
contribution is proportional to the magnitude of the local sliding displacement, u(z), and is

therefore dependent on the applied load and position along the fiber, as defined in Eq. (1).

Stresses and strains in any section transverse to the z axis were evaluated on the basis of
the Lamé solution, an approximation that is valid if the axial stresses vary slowly over distances
comparable to the fiber radius. This condition is satisified if 1 is small compared with the axial
stress in the fiber, 0. Two types of boundary conditions on the outer cylindrical surface were
considered: Type I has zero normal and shear tractions, whereas Type II also has zero shear

tractions, but has radial displacement, uy, constrained to be the same as its value far ahead of the

* For a transversely isotropic material loaded in the axial or tranverse directions there are three Poisson’s ratios vg,
vz and Vg, where v;j refers to strain in direction i due to stress in direction j. However, since vy and vy are related
by vz = Vg E(/E¢, only two of the Poisson's ralLios, vrz = vf and Vg = Vy, in addition to the Young's moduli Ef and
E;, are needed to specify the elastic response.
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debond crack. Type I conditions are appropriate for single fiber pulling or pushing experiments
and in general at positions well ahead of the debond crack. Type II conditions are appropriate
over the debonded region of a composite in which all fibers are pulled equally (such as bridging
fibers within a crack), provided the slip length is small compared with the specimen width.
Type II conditions were also used by Cox24 in analyzing sliding of fibers near a free surface
during thermal cycling, whereas earlier analyses used only Type I boundary conditions. Large

differences in load-displacement relations can result from these different boundary conditions. 22

The axial stresses, o, in the fiber during initial loading are shown schematically in
Fig. 1(b). Well ahead of the debonded region the stresses and strains are constant and given by
the Lamé problem with Type 1 boundary conditions, as well as the conditions that the axial
strains £¢ and €, in the fiber and matrix be equal and the normal stresses and displacements at the
fiber/matrix interface be continuous. With the superscript (+) denoting positions well ahead of
the debond crack, the subscript (r) denoting radial stresses, strains and displacements at the
interface, and the subscripts (f) and (m) denoting axial quantities in the fiber and matrix, the

stresses and strains® in the absence of roughness effects are given by:

Of = 21fG, - agEm€ET (Ala)
oF = 231G, - &4Em€E" (Alb)
€f = € = asfOu/Em + aE" (Alc)

where the a’s are nondimensional functions of f, E¢/Em, Vf, Vi/Vm, &g, and A, given in Ref. 21, and
O, is the axial stress in the loaded end of the fiber. The residual stresses in the fibers, in the
absence of debonding and sliding, given by Eq. (A1) with 6, = 0, will be denoted of, and o%,. To

maintain analytical tractability, the analysis will be restricted to cases where the radial stresses

* Strains in both the fibers, €7, and matrix €, are measured relative 10 the unstressed state of the matrix.
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ahead of the debond crack are independent of the applied load, i.c., 6f = o7,. This is satsified for

either f = 0 or v¢ = v (which gives a3 =0).

Behind the debond crack tip the changes in stresses and strains reladve to their values far
ahead of the crack (i.e., AGf = O¢ - Of, AEf = €f - €, €1c.) are given by the Lamé problem without
mismatch strain and, since there is relative sliding, with Agf # Aeq. With condnuity of Aoy and

Auy across the interface, and the equilibrium requirement fAd¢ + (1-f) Aoy = 0, the stresses and

strains may be written as

AGm = (1_ff') Aoy (A2a)
AG; = by Aot (A2b)
Agg = by AGHE (AZ)
AEm = -b3 AGYEn (A2d)

where the b’s are another set of nondimensional functions of the same parameters as the a’s (with

the oxception of A) given in Ref. 21. There are two sets of b’s corresponding to Type I and

Type II boundary conditions.

The radial stresses just behind the crack tip, o, and well ahead of the crack tip, o7, are
related by

o; = of +b; Aot . (A3)

With vy defined in Eq. (4) and o defined as

a=0;i/b; , (A4)
Eq. (A3) becomes
a=%+ Y . (A3)
b
25
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Then with the approximation o7 = 07, , as discussed above, and with the relation o7, = (a4/a2) o},

from Egs. (Ala) and (A1b), Eq. (AS) can be written as

a=Cro+ I , (A6)
where

=y+0f . (A7)

ORo = GCf /(A-1) , (A8)
and

A=(1- ila‘:—l)'l . (A9)

Two displacements are of interest. The relative displacement of the fiber and matrix at
z = £ (which comresponds to the measurements obtained in fiber pulling/pushing experiments) is

given by

= 17
5= L(Gf‘ﬁm)dz—-E;LACde : (A10)

where
Ep=En /(b2 +b3) (A1l)

and is, therefore, proportional to the shaded area in Fig. 1(b). The displacement that is used as the

crack opening in continuum models of crack bridging is the additional fiber displacement due

directly to debonding and sliding, given by

A={ler-ef)dz= -é—[:AO'fdz . (A12)
b

where
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Ep = En/b; (A13)
The displacements 0 and A are related simply by

A=

(bztbe ) 5 . (Al4)

Equation (A14) relates the displacements measured in a multiple fiber pulling experiment
directly to the crack opening in bridging models for given fiber stress, 6. However, the relation
is less direct for single fiber pulling experiments, because in that case 8 is evaluated using Type I
boundary conditions, whereas 8 for the multiple fiber pulling (and crack opening) is evaluated

with Type II boundary conditions over the debonded region.
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APPENDIX B: RADIAL INTERFACIAL STRESS IN SLIP REGION
The radial stress over the debonded region of interface is given by (Eq. (A2b)):
O, =07 + b1 AGt
=07 +bjos-by of . B1)
In the absence of interfacial roughness, Eq. (B1) can be written (with Egs. (Ala) and (A1b)) as
Or = (a3 - b1a;) O + (b 122 -a4) Em€T + by of . (B2)

The second term in Eq. (B2) represents the contribution to o from the radial component of the
misfit strain (AeT). Therefore, the additional radial misfit strain €g due to interfacial roughness

results in superposition of the following radial stress

of =B Emég B3)
where
p=(biaz-2) _-as B4)
A AA

The dimensionless elastic parameter B is negative and independent of A. The resultant radial

stress over the debonded region of a rough intcrfacé is (Egs. (B1), (B3) and (1))

G, =07 + ¢ lu(z)l + b, Aoy BS5)
where
= (BEm
6 ( L ) Tan®. (B6)
28
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APPENDIX C: ELASTIC CONSTANTS

The elastic constants aj and b; that appear in Appendix A can be evaluated from
expressions given in Hutchinson and Jensen2! or are available on a computer file from the
authors. For the case f = 0, with isotropic mismatch strain, and an isotropic fiber, the elastic

constants that appear explicitly in the body of this paper are given by the following expressions:

_ Emv
= BT V) + Bl V0 b
bhaz-ay _ -E¢
By B v+EAT V) <
A=(1-biz ) (Lt VOLE(L+ Vo) + Exf1 - vi] -
% Ef(1 + Vi) + En(1 - v¢- 2v3)
Em __ Et[Ef(1 + Vi) + En(1 - v{)]
Ep = = C4
*~ (b2 +b3) Ef(l+vm)+Em(l°Vf-2V%) 4
E, =Ep (CS)
p'= BEn _Ec(l+Vm)+En(1-v-2}) 6
2b} Ep -2En V}

These results would apply for a single fiber in an infinite matrix. For the more common testing
configuration involving pushing or pulling of a single fiber within a composite containing many
fibers, the constants aj should be evaluated using the value of f corresponding to the composite,
whereas the constants b; should be evaluated using f = 0. For the pulling or pushing or muldple
fibers, all of the constants aj and b; are evaluated using the value of f for the composite, with b;

being evaluated using type II boundary conditions.
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Fig. 1

Fig. 2
Fig.3

Fig. 4

Fig. 5

Fig. 6

Fig. 7

Fig. 8

Figure Captions

(a) Composite cylinder model used for analysis. (b) Axial stresses in fiber during

initial loading (shown for case f = 0).
Stresses acting on an element dz of fiber.

Variation of mughness parameter x with |t and 6 for B' = 25.

Stress-displacement relations for single fiber sliding in pushing and pulling: (a) effect

of roughness parameter x for I" = 0; (b) results for several values of I" and x.

Axial stresses in fiber subjected to pulling force: (a) unloading and (b) reloading after
loading initially to peak local Gp (shown for case f = 0).

Stress-displacement curves with an unload/reload cycle for a composite with A = 1.14
and I" = 0, corresponding to Ti3Al/SiC composites. (a) Comparison of fiber pulling
responses for smooth and rough interfaces (8 = 0.2 rad for unload/reload curves of
rough interface). (b) Influence of roughness angle on unload/reload curves for rough
interface (x = 5). (¢) Comparison of fiber pushing responses (0, and u both negative)

for smooth and rough interfaces ‘(9 = 0.2 rad).

Axial fiber stresses during pushing: (a) system that does not spontaneously debond at
free surface (y>lot)); (b) system that undergoes spontaneous debonding (y < lo).
Lightly shaded area represents positive contributions to the displacement; darker areas

represent negative contributions.

Comparison of stress-displacement response for an interface that has constant sliding
resistance over the debonded region with the responses for rough interfaces with

Coulomb friction.
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6.3 The Determination of Interfacial Properties from Fiber Sliding Experiments

in preparation
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