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The h-version of the finite element method with piecewise linear approximation has
been applied to solve a one-dimensional model problem for the Helmholtz equation.
The main practical purpose of the investigation is to lay theoretical ground for safe
"rules of the thumb” how to choose the meshwidth of the FE-model depending on the
wavenumber. In this context we present new results for stability and error estimation
of the FE-solution. Following the analysis, numerical results are discussed. In a second
paper we will study the h-p-method for Helmholtz problems.

1 Introduction

Boundary value problems for the Helmholtz equation arise in a number of physical ap-
plications [DL], in particular in problems of wave scattering and fluid-solid-interaction
[JF). If we analyze the scattering from an elastic body embedded in a fluid, analytical
solutions can be provided for regular shapes of the body (like, egs., a sphere or a cy
[JF]). Numerical methods need to be applied if the body is of general shape. Her
physically proper and numerically effective modeling of large exterior domains is the main
difficulty. Most numerical solutions have been given starting from the Helmholtz in
equation applying boundary element methods. However, several difficulties are reported
from practical applications and finite element techniques are used increasingly not only
for the solid but also in the fluid domain (cf. [HH2], [Bu]). In this context, the numerical
analysis of the finite element method applied to Helmholtz problems becomes of practical
interest.
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Analytical results for the finite element solution of two point value Helmholtz problems

in one dimension with Robin boundary conditions are contained in [AKS] and [DSSS].
Proofs of existence-uniqueness are given for the exact and the finite element so
(h-version) and asymptotic error estimates are proved under the assumption that the
stepwidth % is small s.t. the magnitude hk? (where k is the wavenumber) is small.
assumption is obviously a severe restriction for practical applications if the wavenumber is
high. ”"Rules of the thumb” usid in engincering analysis of acoustic problems are given in
the form hk = const (c[. [HH1, p.71]). Some initial experience from numerical experi
in fluid-structure-interaction had, however, shown that this rule failed in the very case of
high wavenumbers.
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Hence the following questions had been the starting point for the analysis presented
in this paper:
o Are the restrictions imposed on A and k in [AKS) and [DSSS] indeed necessary for
stability of the FE-solution (or due to technicalities in the proof)?

e What is the proper "rule of the thumb” for high wavenumbers?

o what are the numerical and "economical” effects of the h-p-version compared to the
h-version?

As in [DSSS] and [AKS]), we address these issues on a one dimensional model problem.
A two-point boundary value problem for the Helmholtz equation with Dirichlet and Robin
boundary conditions is considered. We start with a recollection of results for existence,
uniqueness and stability of the exact solution in the strong sense. We then introduce a
variational formulation for the problem, show existence-uniqueness for the weak solution
and compute the Babus§ka-Brezzi stability constant. These results form the prerequisite
for the main objective, the study of the finite element solution. The analytical results of
this study are contained in section 3. We first (3.1.) formulate and prove a statement of
existence-uniqueness for the FE-solution using the argument given by Douglas et al. in
[DSSS). The proof is outlined in detail in order to keep track of all restrictions that have to
be made for h and k. The essence of the argument is that the FE-solution is quasioptimal
(w.r. to k) provided the magnitude of hk? is sufficiently small. However, quasioptimality
is more than what is needed in practical application where (1) stability of the discrete
model and (2) error estimation at finite range are the main concern.

Of these two issues, we first address stability and show that on the finite-dimensional
level the B-B-constant is the same as in the original problem provided that the magnitude
of hk (!) is sufficiently small. We then turn to error estimation and show that the
error is bounded if hk and h?k® are appropriately constrained. Again this is proved by
using an assumption on hk only. This error estimate is the quantitative equivalent to the
observation (cf. [HH1]) that in general the error of the finite element solution is influenced
by a phase lag between the exact and the finite element models.

In the numerical evaluation we present results from various computational experiments,
applying and illustrating the main results of our study. We show, in particular, that the
restriction of hk? is indeed necessary for quasioptimality of the finite element solution.

2 The Reduced Wave Equation in One Dimension

In this section we prove existence-uniqueness of the solution to the one-dimensional re-
duced wave equation with Dirichlet and nonreflecting boundary conditions. We analyze
the cases u € H%(0,1)and u € H(0,1) separately and show that different stability condi-
tions apply for these two cases. The construction of the Green’s function to the problem
is essential to both proofs.

2.1 The boundary value problem
Let © = (0,1) and let on § the BVP Lu = —f be given:
u'(z) + Ku(z) = -f(z) (2.1)
©(0) = 0 (2.2)
w'(1) - iku(l) = 0 (2.3)
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where, for simplicity, f(z) € C'(0,1) and k = const.,k € R,k > 0.
Physically, if u is the variation of pressure in an acoustic medium at a fixed time, eq (2.1)
is the equation of a plane wave with (nondimensional) wave number

_wl
._C

k
where w is a given frequency, L is the measure of the domain and ¢ is the speed of sound
in the acoustic medium.

In z = 0 a Dirichlet boundary condition is given (prescribed pressure); the mixed bound-

ary condition in z = 1 is the one-dimensional Robin condition.

Notation: As usual, we will denote by L2(0,1) := H°(0,1) the space of all square-
integrable complex-valued functions equipped with the inner product

(v,w):= /l v(z)w(z)dx
0

el := \/(w, w).

By H?(0,1),s =1V 2 we denote the Sobolev space

and the norm

H’={u|u€L2A6u;eLz,i=1...s}

where Qu; are the derivatives of order i in the distribution sense. The norm of the space
H(0,1) is defined as

1
lully == (llul® + 10/17) .

Functions from H! with Dirichlet boundary data can be measured equivalently by the
H-seminorm
|uly = [|v'|].

Uniqueness of the solution in H?(0,1): The BVP (2.1-2.3) has unique solution in
the space H?(0,1).
Indeed, suppose there exist two solutions u, and u; to the BVP (2.1-2.3), then u(z) = u;(z)-
uz(z) # 0 is a solution of (2.1 = 2.3) with homogeneous data f(z) = 0. Then u(z)is a
solution in the classical sense and the general solution of eqs (1) and (2) is u(z) = Csin(z).
Substitution into (3) then gives

Ck(cosk —isink) = 0.
Since
|cosk —isink| =1

we have C = 0 and thus
uz)=0

which is a contradiction and uniqueﬁess is proved.
The existence of the solution is concluded from the following construction.
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Inverse Operator: The Green’s function of the BVP (2.1-2.3) is:
1 sinkze**; 0<zr<s
G(z,s) = i _ (2.4)
sinkset**; s<zr<1

The solution u(z) of (1)-(3) exists for all £ > 0 and can be written as
1
wz) = / G(z,3)f(s)ds
0

1 T
= 71:- (sin k:t/ cosksf(s)ds + cos kz/ sin ks f(s)ds
g 0

1
+ tsin kz/ sin ksf(s)ds) . (2.5)
0
Furthermore, integrating in eq (2.5) by parts we see that u € C?(0,1).

Using the Green’s function we now establish bounds of the exact solution and it’s
derivatives by the data f.

Lemma 1 Let v € H?(0,1) be the solution to the BVP (2.1-2.3) for given data f €
L?*(0,1) = H°(0,1). Then

el < 2 (2:6)
< (27)
el < 4RI (28)

Proof: Estimates (2.6) and (2.7) follow immediately from eq (2.5).
The estimate for the second derivative is obtained from

1 1 1
mn? _ "2 __ _ 12,122 2 _ 9.2 4 2
) '/o"‘) -/(f Ku) —/Of 2A/Ofu+k||un

SALSIZ 4+ 282 A0 Ml + K4 ll)?
where the Cauchy-Schwarz inequality has been applied. With eq (2.6) we then get
1
11> < ILAI2 + 2821 1) Zi/ih+ AP = 1+ R A2 (2.9)
which is the desired result.

Remark 1: It can be ecasily seen that all aforementioned results are valid also for the
adjoint problem (2.1), (2.2} and

u'(1) + thu(1) = 0.
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2.2 Variational formulation and weak solution

A variational formulation of the BVP (2.1-2.3) can be obtained formally by multiplying
eq (1) with the complex conjugate of a suitably choosen testing function v. Then, after
partial integration and substitution of eqs (2,3) we arrive at the variational problem

B(u,v) = /0l (u'('z)t';'(z') - kzu(z)ﬁ(x)) dz — iku(1)9(1) = F(v) (2.10)
where
1
Flv) = / f(z)b(z)dz. (2.11)
0

If, in general, there are given Hilbert spaces V! and V2 and u € V! (the trial space),
v € V2 (the test space) then B is a sesquilinear form

B:VixVviL(,

F is a functional
F:Via
and a function u € V! is called a weak solution of (2.10) if

B(u,v) = F(v) (2.12)

for all v € V2.
In our case, the natural choices for the trial and test spaces are

Vi=v2=v={ve H'(0,1)Av(0)=0} (2.13)

For test functions v € I1'(0, 1), the problem (2.10) is well defined if the data f lies at least
in the dual space

1
HY0,1):= { f ‘|f|_1 = sup M < oo}.
vel' vl
Note that the variational problem (2.10) is equivalent to the BVP (2.1-2.3) in the sense
that for sufficiently smooth data any weak solution of (2.10) is a "strong” solution of (2.1-
2.3).

Continuity of the form B: Appiying Poincaré’s inequality we obtain elementarily

the continuity estimate
|B(u, v)] < Co(k)ulilvls

with C, = 1 + k + k2.

Existence-uniqueness of the weak solution: We first show uniqueness. Suppose
again that there exist two solutions uq,u; € U to the variational problem (2.10). Then
u = u; — up # 0 is a homogeneous solution; i.e. u € V' and eq (2.10) holds with F(v) = 0.
In particular we have for v = w:

B(u,u) = /1 (u'(w)ﬂ'(x) - kzu(x)ﬁ(:c)) dz - iku(1)u(1) = 0.
0
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Since the right-hand side is real this equation can be true only if
u(l) = 0.

Then it follows from eq (2.3) that

] 1
Vvel . / u'v'dr = k? / uvdz
0 i}

and hence for v = z:
1 1
0=u(l)-u0)= / u'dr = k2/ uzdz.
0 0

Assume now fol uz"dz = 0 for some natural n, then partial integration yields

0= ! /1 w'z"tldr = —kg—— /l uz™t%dz
="n+1lo Th+D)(n+2)Jo '

It follows by incuction that

1
0=/ ur®dr ,s=1,3,5,...
0

Since, as a consequence from Miintz’s theorem [A, p. 45], the set
span {z°|s = 1,3,5,...}

is dense in L?(0,1) we conclude that u = 0 . This is a contradiction to the assumption
and uniqueness is proved.
For the proof of existence we observe that for the form B a Gardings inequality

Re(B(u,u))+ C|lu|)® > ||ull} (2.14)

(where [|u]l; = ([ju]]® + lw')|?)"/? is the H'-norm) holds for C = C(k) = 1 + k2.

We then have (sec. e.g.. [J, p. 194]) the alternative statement: either there exists a non-
trivial solution of the homogeneous problem Lu = 0 with Dirichlet data 0 or a solution of
Lu = f with Dirichlet data 0 exists for every sufficiently regular f. Since uniqueness has
been proved cxistence follows. The proof is completed.

Remark 2: As in the strong case we remark that existence-uniqueness holds obviously
also for the adjoint form

1
B (u,v)= / (-u'(x)i»’(z) - kzu(x)z‘z(x)) dz + iku(1)9(1).
0

Remark 3: All statements made so far hold also for the Dirichlet condition u(0) = g.
In that case, the set of admissible functions u is given by

0={ien' ni=g},
this set is related to the trial space by the bijective map

t=u-+u"
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where u € V and u" is an arbitrarily fixed element in U (see, e.g., [SB, pp 16/17] for
further detail).

Stability in #'-norm and Babuska-Brezzi-constant: In Lemma 1, stability of
the exact solution has been proved for the "strong” case f € H°(0,1);u € H?(0,1).
However, recent computations [D] indicated that the stability estimates of Lemma 1 do
not hold for the weak case f € H=}(0,1);u € H'(0,1). Indeed we will show the following

Theorem 1 Let V C HY(0,1) be the Ililbert space defined in eq(2.13). Then for the
sesquilinear form B : V x V' — € defined in eq(2.10) the Babuska-DBrezzi stability constant

B(u,v
¥ := inf snpl—(—t——)—I
uel vev Julilvy

is of order i; more precisely, there exist positive constants Cy,C2 not depending on k s.t.

o C,
—_— < —, .

Proof: Let us first proof the left inequality of (2.15). We will show that for any given
u € V there exists an element v € V s.t.

C
1B(u, v}l 2 IVl (2.16)
Let u € V be given. Define v := u + z where z is a solution of the problem
Vwe V: B(w.z)=k}w,u). (2.17)

The solution z exists and is uniquely defined. Furthermore, z € H?(0, 1) and is a solution
of the BVP

k2 —k2u
50) = 0
) = ikz(1).

Then z is the Green's function transform of f(s) = k%u(s).
The proof proceeds as follows: With v = u + z we have

|B(u,v)] 2 ReB(u,v)
= Re (B(u,u)+ B(u, z))
= Re (B(‘u, u) + B(w, 2) + k3 (u,u) - k2 (u, u))
= Re B(u,u)+ K[lull? = |/|]%
Then, if we show that
Il 2 Sl (218)

we have proved ineq. (2.16) and the inf-sup-condition follows.
To obtain ineq. (2.18) we integrate by parts the function z:

1
z(x) kZ/(; G(x,s)u(s)ds

= &* (Il(a:.l)u(l)— /] H(x s)u’(s)(ls)
0
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where .
Hz,s):= / Gz, t)dt
0

and the integral on the r.h.s. is well defined since u € H'(0,1).
We now differentiate

H(z)= A2 (H,(J:. u(l) - /01 il,,(x,s)u'(s)ds)

where the function H, is readily computed as

i [ cos kze'*s 0<z<s
Hy(z,8)= ——
k coskse’** s<zr<1

Then

IA

] .
|2'(z)] k2 (|H,,(:::,l)||u(l)|+‘/0 |H,(:r.s)u'(s)|ds>

K (|Hz(z, D+ I 7D 1)} < 28]

IA

since obviously |H (z,1)| < 1, [|Hz|| < }.

Hence
o'l = o’ + 2l < /Il 4+ 1121 < (1 4 2k)]|))
or
1 C
i > ’ > et /
Il 2 Tl 2 il

for k > 1 and the first part of the proof is completed.

To proof the second inequality it is sufficient to find some function z,(z) € V for which

Vo : 1B(2;. )] < €|l,|l.
|.‘50|1 k

Consider the function )
sin kx

k
where ¢ € C°(0,1) does not depend on /& and is choosen s.t.

z(2) = p(z)

20(0) = %5(1) = 2,(0) = z(1) = 0 (2.19)
and that for some a > 0, not depending on & ,
lzoll 2 24

(take, e.g. w(z) = z(z — 1)?).
Then

B(z,, v 1
Bzl < 213z, 0)

YVveV:
lzall

and with eqs (2.19) we obtain by partial integration

1
YeeV: B(z.v)= —/ (= + k%z,)e.
0
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Direct computation shows that

no o2 n Sin kx
2, + k o=y -—-Z'—

+ 2¢'(z) coskz.
Define .
u(z) :=/ (.-':”(s)+ kzzo(s)) ds,
0

then
< (Ju(D)] + [lelDlvh-

' 1
1B(z,, v)| = |u(1)5(1) - /0 u(z)¥(z) dz

On the other hand, from the definition of u we obtain integrating by parts

t 4 H .
/ (ap”(s) 20 ksds + 2¢' cos ks) ds
)

a

l2v,(x)smkk1' _/(') <¢,,(s)smkks>ds!

lu(z)|

1]

Hence
)l < 2ol
el < 7 (19T + 200le)
so there exists a constant C' s.t.
(1)l + el < .

Consequently, C
VeeV: |Blz,v) < T loly

and the proof is completed.

From gencral theory [BA. p.112] now follows
Corollary 1 Lct u € 11'(0.1) be a solution of the variational problem (2.10) with given
data f. Then the stability cstimatc

luly < CKIS]-

holds where C' is a gencric constant not depcnding on k.
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3 Finite Element Analysis of the Wave Equation

Following preliminary definitions we state approximability of the exact solution as a direct
conclusion from the approximation properties of the finite element space and stability of
the exact solution (3.1). We apply an asymptotic approach (|AKS}], [DSSS]) to obtain
statements of stability and quasioptimal error estimates for the model problem (3.2).

In the second part of our analysis we study the properties of the finite element solution in
the preasymptotic range. In a preliminary subsection (3.3) we analyze the discrete model
on uniform mesh and construct a discrete Green’s function. We then show the inf-sup
condition (3.4) and state a preasymptotic error estimate (3.5). The section is concluded
with some comments (3.6).

3.1 Approximability of the exact solution in the finite element space

Preliminaries: To solve the problem numerically with a finite element method, the
interval Q = [0, 1] is divided into n finite elements [z;_1, ;]

Q= U[a;j_l,wj] , 0=z, <1<... <2, = 1. (3.1)
=1

By (3.1) a discrete subset
Xy ={z,,j=0.1.....n} C[0.1] (3.2)

(finite element mcsh) is given on . Any [unction defined on X, is called a mesh function
and will be referred to by subscript A.
We will denote by h; = (x;—x,_1) the sizc of the finite element # j and define the stepsize
h of the mesh X', by

h = maxh;. (3.3)

J

In the following we will seek approximate solutions of the variational problem (2.10) using
the Galerkin finite clement method with piecewise linear test functions.
More precisely, we define the subspace

Sx(0,1)C H'(0,1)

as the set of all functions v € H!(0,1) such that the restriction of u to any element
[zi—1,2;] is a linear function. On each finite element {z;_;,z;], a function v € §4(0,1) is

written by means of the nodal shape functions [SB, p.38] Nl(j)(:r), N;‘j)(l‘) as
s —_ . /\Y(J) . AT(J) .
v(r) = v; Ny (x) + ;N (2)

where vj_1.v; are the nodal valves of vin a;_;. 2, respectively.
An admissible function uy. (x.h) € I1'(Q) will be called a finite element solution to
the variational problem (2.10) il

1. wuge € Sp(0,1) ;

2. uf(0) = g:
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3. ug, is a colution to the variational problem (2.10) for all test functions v € Vi

where
Vi := 840, 1[= {v € Sa(0,1) A v(0) = 0} .

Remark 4: As in the continuous (cf. Remark 2) case, test and trial space are identical

in the discrete case:
Vi=v?=540,1]

Approximation properties of 53[0, 1[: It is a well known fact that, for any function
u € H}(Q), in one dimension the best approximation on given mesh X} is obtained by
the linear interpolant u; of u. Furthermore, if « € H?(Q), the following statements hold:

Lemma 2 Let v € H*0,1) and u; € Si(0,1) be the piecewise linear interpolant of wu.
Then

h\?
inf [Ju-vf < |ju- < |- " .
inf el < Ju-wll < (3) 1) (3.4)
inf lu-v|y = lu—-ufly < (E) ="l (3.5)
vESH - T
h
lu =il < (3) I ol (36)

Proof: see, e.g., [SF, p. 45).
A statement of approximability is now immediately obtained:

Theorem 2 Let u € H%(R) be the solution of the variational problem (2.10) - or, equaiva-
lently, of the BVP (2.1-2.3) - for given data f € L*(Q).
Then the for the error of the best approzimation in H'-seminorm there holds

h
fu = 1wy < ;(1 + B/

Proof: The statement follows directly from Lemmas 1 and 2.

Remark 5: The practical conclusion from this theorem is that, for any given f, we can
control the approximation error by bounding appropriately the magnitude of hk. More
precisely, for any given data f € L%(0,1) and error bound £ > 0 there exists § > 0 s.t. for
hk < 6

inf fu—-v|; = Ju—-uyl; <.
vES
Since the wave number k is related to the (nondimensional) wavelength A by

2r

k=
A

the product k) is a measure of the number of elements per wavelength.Hence the "rules
of the thumb” recommending a certain number of mesh points per wave length do apply
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effectively for approzimability (of the exact solution) by piecewise linears.

The essential question is, however, if this rule does also apply for the finite element so-
lution. Since the approximation property has been established, the answer to this question
would now be given by an stability estimate of the form

- < ; -
v UJelx_C..ulensfhlu v)y

where the stability constant C,, in general, depends on k. Before turning to this estimate
we verify that the variational problem (2.10) is well-defined also an the finite level.

3.2 Asymptotic stability and quasioptimal error estimates

A proof of existence-uniqueness in terms of asymptotic error estimates of the FE-solution
for the one-dimensional Helmholtz equation with non-reflecting boundary conditions has
recently been given by Douglas et al. [DSSS]. Since we are interested in the dependence of
error estimates on h and k, specifically in the case of large k, we outline here the argument
from [DSSS] (slightly modified to account for the Dirichlet condition at z = 0) in detail
to keep close track of the constants involved in the estimates.

Theorem 3 Let u € H?(0,1) be ! czact and us. € Sh(0,1) be the finite element solu-
tions of the BVP (2.1-2.3), respectively.

The finite element solution is then uniquely determind by any data f € L?(0,1) and,
furthermore, the following error estimates hold

lu — ugell < Ci1C2(1 4+ k)2R?||f]| 3.7

lu' = wpell < Ca(1+k)RIIAI (3.8)
with 5

Ci:=
T (21 + )y g
and l
J))
CQ =

1
7 (3 - 6CHR2R2(1 + £)2)?

provided that the stepwidth I and the wavenumber k are such that the denominators of the
conslants are posilive.

Proof: Denote e := u — us.. Then e lies in the Hilbert space V C H!(0,1) and,
consequently (cf. remark 3), there exists z € V' s.t.

YveV: B(v,z)=(v,e).

In particular, B(e,z) = (e,¢) for v = e.
Further the error is B-orthogonal to the discrete test space Vi, := S3[0,1[:

YVweV,: Ble,w)=0.
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Then, for all w € V,,

Ble.: - w)

[e @y - 8 [em=w) - ike() G - w(D)
Iz = w)ll el + &%llz — wil [lel] + Flz(1) — w(1)]le(1)]

"6"2 = (e,e)

IA

Apply the inequality |v(1)] < \/§||v||§||v’||% which is true for all v € V' to obtain

klz(1) = w(1)|le(1)] < 2k (z = w)|IFle')F ]}z - wliflell?
< Kz = wllllell + 11 (z = w)]l €'l (3.9)

where the inequality 2ab < a? + b? has been applied.
This gives, for all w € 1},

lel? < 2 (€= = w)llle'll + K2z = wll llel))

In particular we mav apply Lemmas 1 and 2 for v = z; € Vj (the piecewise linear
interpolant of :) to obtain

llell®

IA

(I1¢z = 2 1e + B2z = 2l fel)

2L+ B)—flefl llell + &5 =5 (1 + B) [lel® ) -

IA

Divide both sides of the inequality above by the common factor ||e||, then
flell € Ci(1+ k)R |le) (3.10)

holds with

o 2
YT -2+ hER)

under the assumption that &, h are such that the denominator of C; is positive.

Next, from B-orthogonality of the error to elements from Vj, we have
Ble.c)=B(r.u—uyp )= B(e,u)

and hence
Verely: Ble.c)=Ble.u—-v).

Thus, for all v € 1}
/e'?’ - k?/ez ~ ikle() = /c'(T——F)’ - Aﬂ/c(m) — ike(1)(&(1) - (1))
and therefore

lleli? Ellell? + kle(D)? + el ICa = )'lf + K2 llell llu = ol + kle(1)] (1) = »(1)]

K2 llell® + 2kll€'ll llell + 2lle'l 11w = v)'I] + 2k2|lell [lu ~ o

IA A
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where the terms in z = 1 have been estimated as in (3.9). We now use the ¢-inequality to
get the estimates

1
2kflellllell < 5 llell® + ak%lel?
]
2l =)l < Sl + 4ll(e - )|
26% flefl lu = ol} < K% flell® + k?|lu ~ off*.

Introducing these estimates into the inequality leads to
1
YoeVi: |l€l? < 6k%llell” + Sllell” + 4ll(w - o)1 + K¥[lu - o>.  (3.11)

Then, using the intermediary result (3.10) and the approximation results from Lemma 2
for v = uy, we get

1 h\? h\*4
SR < R+ RPCHAE 44 (3) (KPP + R+ R () 1A

and hence
. ;
1 _ 2 .12 221> ' (3) (fﬁ?
(3-swasmrcit)ien < (3) (1+(5) ) wa+ou

and the statement of the theorem follows . The proof is completed.

Remark 6: For the denominator of (', to be positive, the magnitudes of (hk)?, h%k3
and h%k* need to be small. The term (hk/27)? in the numerator can then be omitted.

Let us state as a corollary:

Corollary 2 With the assumplions of the theorem. the estimate

lter = usels < Cs inf ez — vy (3.12)
veV,
holds for
1
i
2 (1 + () )?
C, = T
(3 - 6CHR2R2(1 + £)2)?
with

2
(1-2(1+ )EE)r’

1:=

Proof: Introduce eq (3.6) from Lemma 2 to (3.11).

Remark 7: Note that, except for the final estimates in terms of || f||, the proof of
the theorem is valid also with the weaker assumptions v € H'(0,1), f € H™!(0,1). In
particular we obtain the statement of quasioptimality from the corollary. However, the
assumption that k?h be small is essential.
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Hence if A and &k fulfill the assumptions of the theorem, the finite element solution
behaves effectively like the best approximation (i.e. 'y can be replaced by some absolute
constant not depending on k) and the "rules of the thumb™ apply for the FE-solution.

The assumptions of the theorem imply, however, that the magnitudes of hk, hk? and
hk? have to be bounded by sufficiently small magnitudes (cf. also assumptions in [DSSS,
p. 177]). The theorem (and the corallary as well) then statcs that, with these restrictions
to h and £, the error of the fe-so'ution is quasioptimal. While this is the desired result it
is achieved at high cost if & is large and the stepsize h must be choosen s.t. the magnitude
hk? is small.

At this state of our investigation, it is not clear whether the assumptions of the theorem
are due to technicalities of the proof or really inherent to the problem considered.

The second and more important question is whether the assumptions of the theorem
are indeed necessary to bound the discretization error by some finite magnitude (like, egs.,
a given tolerance for the relative error). The following simple computation indicates that
this is not the casc for high &. Indeed, let

hi? < a

for some a > 0. Then i < a/k? and
1
[u = ugels < C21 + E) IS

hence the error estimates of the theorem lend lowards 0 (while they have only to be
bounded for practical purposes) as k is increased.

We will state stability under weaker assumptions and give more appropriate error esti-
mates in a preasymptotic analysis using a discrete Green’s function approach on uniform
mesh.

3.3 Preasymptotic analysis: Preliminaries

Global FE-equations and discrete fundamental system: Let in the following the
FE-mesh be uniform with £ = 1. After assembling the local equations (2.10) and mul-
tiplying the whole set by h. we arrive at a set of linear equations for the mesh-function

Up = “Jelx,.=

Lyun =1y (3.13)
where the discrete operator L, can be written as a n X n-tridiagonal matrix
25(t) R(1)
R(1) 28(1) R(1)
L, = ' (3.14)

R(Y 25(0)  R(1)
R(t) S(t)—it

with
2 2

2 osiy=1-l
kit)y= -1~ re S()y=1 3

and
| = hk.
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The right hand side rj is a mesh function obtained from

Vi or =h( i f(z)t\’;fj)(r)d.t+/rm f(z)Nlm(z)dz). (3.15)

x,-1

Remark 8: As noted before, the product ¢ = kh is a measure of the number of elements
per wavelength (of the exact solution). In particular, if the stepwidth is such that t = ¥
for integer I then exactly / elements are placed one one half-wave of the exact solution.

For later use we introduce difference notation as follows: Given a mesh function u = u,
defined on X we will denote left and right differences, respectively, by

giy = ME)— @) i w(zie1) = w(zi)

" h; ' his1

In the linear space of mesh functions, an inner product in L?-analogy is defined by
(fargn)y = b fi3;-
J=1

We will denote the discrete L%-norm defined by this inner product by || - ||. The discrete
analogon to the H'-seminorm is given by

n
. ; 2
bl =R id‘uhi .
=1
Note that for any piecewise linear function u with nodal points on X
luly = [|¢/I1* = lusks,

i.e. the discrete and exact H!-norms are identical. We will use the discrete Dirac symbol
defined as
1 if i=3
6,']' =

0 if i#j

Discrete wavenumber and Green’s function: The fundamental system of eq
(3.13)is
Fi = {e=%7, c¥2)r € {j/n:j = 0.1, n}} (3.16)

where k' is a parameter to be yet determined.
To this end, we solve any of the "interior™ equations in the point z; = j/n, 1 < j < n:

R(1)eM U=k 4 95(1)etkI" 4 R(1)e™'U+1R = ¢, (3.17)

With
)\ = eik'h
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eq (3.17) has the solutions

. . S(t
x complex conjugate if <1
siy . [sy) (+) P Jug lﬁjuﬂ
M=t mr -1 = (3.18)
R(1) R*(1) . S(t
(*x) real if I-Rl(-‘%l >1

From the definition of A we see that the discrete wave number k' is either real (in case (*))
or pure complex (case {(**)). Physically, case (*) describes a propagating wave whereas
case (**) describes a decaying wave [HH1). For sufficiently small A (more precisely, for
h < V12/k) one obtains always the complex conjugate solution of case (*).

The discrete wavenumber &’ can be formally computed in terms of t: From eq (3.18),
case (*), we get

S(t)
h) = -t .
cos(k'h) 0 (3.19)
and hence 1 s)
o — — ———
k= : arccos( R(t)) . (3.20)
Consider the Taylor expansion
S(t))
" — — e ———
E'h = arccos ( i)
o (k)Y 3(kR)® T
= kh- e+ S 40 ((kR)7).
Hence, for fixed k.
k302
M=k- 2—4 + 0(’65,24) (3.21)

Once the discrete wavenumber has been computed, a discrete Green’s function
Gh(z,s); ¢ = zx,s = 8, can be constructed. We give next a brief outline of this construc-
tion referring to [Sa] for details.

Similarly to the continuous case, we require that the r.h.s. of the linear system (3.13)
is mappped to the discrete solution of this system by

up(x) = (Galx, 8). 7h($))n.
We accordingly seek the discrete Green’s function in the form

Cisink'z z<s
Gu(z,s) = (3.22)
Co(Asin k' + cosk'x) s<z2<1

where C,, C'; are functions of s and the constant A is determined from the discrete
equation in the nodal point x,, = 1 as

_ sin b’ cos I R(1)Zsin? Mh = 12) = it R(1)sin k'h
B R(1)2 cos? [’ sin® Mh + 12 sin? ! '
Since a(x) := sin A'x and 3(x) := Asink’z 4 cos K’z are fundamental solutions of eq.
(3.13). we can prove by discrete Green’s formula ([Sa, pp. 120/121]) that
sin k'h
h

Azxj) = (Fa)3 - a(d?3) = const =
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Using this formula we find from the condition

if g bij
D (dG;) = -2
the unknown coefficients C,,C; to be
ae = £
Co(s) = 2((2;

Introducing these results into eq (3.22) the discrete Green’s function is
1 sink'z (Asink's + cosk’s) z<s

hsink'h (3.23)

Gi(z,8) =
sink’s(Asink’'z + cosk'z) s<z<l1

and the discrete solution up(zs) = h }:_’,-‘=1 Ghn(zh, 8;)Th(s;) becomes

{

__1__ J 44 . XK . A z . L . ¥ i . 1y
up(z) = hen h (cosk hl,; rijsink'hj +sink hljg;H rjcosk’hj + Asink hlj;r, cosk h]) .

(3.24)
for0<!<n.

Remark 9: A straightforward asymptotic analysis of the discrete solution shows that,
for h — 0 the coefficient A converges to i and u,(z;) converges to the exact solution u(z)
as given in the previous section.

Remark 10: Using eq (3.19) the constant A in the Green’s functions (eq 3.22) can be
simplified to

2 sin k' cos k' + ivV/12V12 - 12

12 - 12 cos? k'

Obviously |A| is bounded independently of k for & = hk < a < V12.

A= (3.25)

3.4 The inf-sup-Stability Condition for the Finite Element Solution

In this subsection, we will compute the Babuska-Brezzi stability constant of finite element
solutions on uniform mesh using the discrete Green’s function. Existence-uniqueness of
the FE-solution then follows under weaker (compared to the proof outlined in the previous
subsection) assumptions on h and k.

Stability of the finite element solution and discrete B-B-constant: The sta-
bility investigation of the form B on the finite level is proceeded in close analogy to the
infinite-dimensional case as considered in section 2. Namely, we will prove
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Theorem 4 Lct Vj, := §i[0,1[€ 11'(0.1) and B : V), x V,, — € be the sesquilinear form
defined by equation (2.10).

Then, if the stepwidth h < { (or, respectively, hk < 1), the Babuska-Brezzi stability
condition

: |B(u, v)]

inf sup ——"=4,>0 3.26
weVaoevy [ehlol, (3.26)

holds and there ezxist positive constants C'y and C3, not depending on k or h s.t.

G
2,

Cy
_—< <
2 Snwms

Proof: The line of proof is similar to the infinite-dimensional case: we will show that for
any given u € V), there exists some v € V), s.t,

C
1B, )] 2 'l 121

Let hence u € V}, be given and define v := u+: where z € V/}, is a solution of the variational
problem

VYw € Vy:  B(w.z) = k*(w,u). (3.27)
Since V}, is a Hilbert space, the solution of (3.27) exists and is uniquely defined.
As in the continuous case, we will now prove that
juhy > Zlel
using the Green’s function representation of z:
. n
zi=zp(2) = hz Gijr; (3.28)
i=1

where
Gi; := Gh(xi,s);  rj = ri(s;).

Summation by parts in eq. (3.28) yields
n .
% = Hinta = Har, — h Y Hid'r (3.29)
=1

with
D = (1’.‘]'. j=1...n—-1. (3.30)

Since the mesh function H is defined by eq (3.30) up to a constant we are free to choose
ll,‘] = 0

Let us now take the left differences of z; in some fixed point i = I:

dz=dllur, -y d'Hjdr. (3.31)

j=1
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Then, applying the Schwarz inequality, we obtain the estimate
|d'z] |d' Hooliral + I H =7l

<
< (Id" Hal + B Il

The right hand side of the variational problem is by direct computation
1 .
rj=§k2h2(uj-1+4uj+uj+1), J=1...n-1
hence
Irh € Ch?k?july

where C is a constant of order 1.
We now turn to estimation of the magnitude |d'H .| + ||H.|l.
From eq (3.30) we obtain after summation over j:

J=~1 1-1
”,‘j - H,'| = /IZ Dl”,‘. = hZG,‘[
I=1 =1
and consequently, since H;; = 0.
i-1

Hi=hY Gq .
=1

Taking left diflerences we obtain

‘ it
dH;=h) &G,

I=1

The derivatives (as left differences) of the discrete Greens function are

disin k'z), (Asink's; + cosk’s;) z < 8

d'G, = ,—-lﬂ ) :
s sin k's; (Ad* sink'zp + d' cosk'zy) zp > 8

We substitude

d' sin ey,

y Lkh k'
2 cos (A h(‘Zi— 1)) sin --2—’

h P}

2 h h

"‘o\',.’.' = — =5 —_— (2] - N —

d' cos klay, 7 sm( 3 (2 1)) sin 3

to obtain
k'hio: \ N N :
cos (T(Qa- l,)(AsmL s+ cosk’s;) 1 <1

&G = ;
= h? cos &b

2 sin k's (A cos ("—';ﬁ(?i - 1‘)) — sin (%"(2{ - 1))) 121 .

20

(3.32)

(3.33)

(3.34)

(3.35)

(3.36)

(3.37)
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Then
-1 1 Eh jvi jvi
gd'c:., il pooy (cos (-5-(2;— 1)) (A§sin K'hl+ Zl:cosk’hl)
jvi "
+ Zsm Ehl (A cos (-—(21 - l)) - sin (f——(‘h - l))))
=

(j + DEh

I3 . . 7 N . ’ Y]
= —-—‘!,-‘—‘,—h (cos (-k?—h('Zi- l)) (Asin (v ik hsin (iVj+ kA +sianhcos

h2cos 35* sin =52 2 2 2
4 / : . X 7 . ’
+ sin('v'))k hsin ivj+ Dk h-sinﬁsin—-———(l-*’l)kh\
2 2 2 2
t ./
x (A cos (%ﬁ(?i— 1)) —sin (‘—2,'—(21'—- 1))))

Dy
< h2sink'h

since |A| and hence the expression in the brackets are bounded.
With the assumption that kh and hence &’k is small there exists D; > 0 s.t.

kl2 h2

sink’h = k'h (1 - +.. ) > Dak’h,

. 2 %
(1*11.,~| )

-1

= Z d'G.

=t

then

1 H |

|
T
M-

L
]
-

<1
2\ ?

ul»

E (gd’G )2 2

and with the previous inequalities we obtain

2 D\D;? Dah% Dj
17zl < A2 (,; g% ) S o Sww

By similar computation we can show that for any [,1 <!/ <n

i = 103 Gyl < 2L
= A ¥TY

i=1

hence D
W4+ max [, < eI

2

)
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where D = D3 + D,.
Returning now to egs (3.31) and (3.33),

" 3
(h Z Idlzlz)

|3|1 =
=1
gl
< ((max 10l + 1) Iy
D _ 5.2
S gap ChF b
< kCD (Z’:;) |uf,.

From the Taylor series expansion (3.21) we see that

K + k2h?  3kipd

_ kT 6 640
is bounded for sufficiently small kh. Hence there exists a constant E not depending on A
and £ s.t.

x..

Izl £ Eklu)r. (3.38)

We then have
lvh = Ju+ zh £ (1+ Ek)|ufy,

hence there exists, for sufficiently large &, a constant F s.t.
F
fuly 2 =—|vh

and left inequality of the statement follows from the definition of = and the Gardings-type
inequality (2.14).

To prove the right inequality we construct, in analogy to section 2, a function 2, for
which continuity holds with C'A~!.
Consider the function ‘
Z(x) = plx)w(x)
where o(zx) € C™(0.1) and
sin k'

k
. is a fundamental solution of the discrete system eq (3.13). Let z,(z) € Vi be the piecewise
linear interpolant of Z(z)on X},. Again we assume that ¢ does not depend on the paramter
k and is selected such that

w(r) =

@(0)=¢(1)=¢'(1) =0
and there exists a > 0 s.t.
Izo'l 2«

independently on k. Then

. 3(z,, v 1
veevy: BEenl g o

|za|l «
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Turn to the estimation of |B(z,,v)| (we omit the subscript o from now on}):

1 1
B(z.v) = /:'v’—kQ/ v
0 0
n

n ) k2
= th’zd’v—- —é-hZ(z,-_l +4z; + z;41) V5

1=1 1=1

(let formally 2,4y := 2n—1).
Summation by parts then yields

Z - k? _ 1 _ -
B(z,v) = -h Z (DJ(sz) + 5 (zj-1 +42; + zj4 )) b; + E(::,,.lvﬂ — 2,0,)

=1

The term outside the sum is O(h). Indeed, =, = 0 and
h2
Puot = 9(1) = he'(1) 4 ¢"(1) + O(h°).

Consequently. since (1) = /(1) = 0, we have h™'z,_; = A~ p,_ywa-1 = O(h). Hence,
omitting the terms O(h),

n . . k2
B(z.v) = =h z (DJ(sz) + 3 (2j-1 +42; + z_,‘.H)) v;.

J=1
For arbitrarily fixed j we write the second differences as

Di(dz) = Di(d(pw))= D’ (((lj(,o)wj_l + (dej‘lU)
= DI(do)wj-y + 2D pd’w + ;D (dw)

and the weighted sum as

ziar+4zj+ 541 = (¢w)jo H4(ew)j+ (pw)ja
’ = w,ni(@j — bl + O(h%)) + dwjg; + win(pj + ho; + O(h?))
= ¢, (i + 4w+ wig) + ‘2/124,9;20; + O(h?)).

Then, neglecting 21l terms that are O(h) we can write

I\.!
D(d'z) + T (-1 + 0z, + z50) =

.2

¢ [D’((I’ )+ - (wj—g +duw; + w_,-.,,l)] + D p)wj_ + 2D pd’w.
)
Since w has been selected as a fundamental solution of the discrete system, the expression
in square brackets vanishes.
We now define the piccewise linear function  as the linear interpolant of the meshfunction
uy, defined by
un(zi):=hY_ | DI(dz) + T (zj-1 +4z; + z,-+1)) .

i=1
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Then. on the one hand.

1B(z.v)| = < (Ju(1) + {Julleh

1
u(l)e(l) - / u(2)i'(r)dr
0

and on the other hand

2\ 3
1—1
fHull Z (h (D-’ (Po)w,_y + 2D’<p(1’ur))

=1 =

Making use of the smoothness of the function ¢ we have for all j

—
=~

2\ 2
1 (—D’((lj«,o)qu +2 (D"’lgow,'_l - qu"tp)))

1

D’ (o) @"(jh) + O(h?)
D7¢ = (- D)+ O(h)

and we obtain

Tt

1
el < 537 (hilel (Ul + Ul + 2060100 + O(R)?)?

=1
where the function w = £~ sin #r can be estimated by

1

| < —

ol € 1.
and the term O(h) does not depend on 4.

By similar estimates for |u(1)| we conclude that for sufficiently small h there exists a

constant C' with

C
(Il + lu()) < 7
It then follows that c
Yo e Vi  |B(z,v)] < T lvlx

and the proof is completed.

Remark 11: We recapitulate that. for f € L*(0,1). both approximability (theorem 2)
and the discrete stability condition hold under the assumption the hk is sufficiently small.
It then follows from a fundamental theorem [BA. p.187] that the FE-solution exists and
is uniquely determined. We emphasize that the latter stability result is thus obtained by
restricting the magnitude of ik ouly (compare to the more severe restriction of hk? in
Theorem 3!).

3.5 A preasymptotic error estimate

In this subsection. an error estimate will be given that is suited to bound the error at ﬁmte
range also for Ligh wavenumbers k. First we have to prove:
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Lemma 3 Let uy, € Vi bc the finite elcment solution to the variational problem (2.10)
for given data f € L3(0,1).
Then, if h is small s.t. hk < 1, there exists a constant C not depending on h and k s.t.

luyell < CIS-

Proof: Since uy, is piecewise linear, we have

)]l = (h 5 (¢'u ,,)2) 2

=1

Write uy, := “Ifl,\',. in terms of the discrete Green’s function as

U = h z G,-J-r,-
J=1

then .
du=nh Z (I‘G.jrj
=1
and
|d'u| < || Gl[I])- (3.39)
with

lla*)

(hjz:; (¢c. ,-)2) %

n 5
h Z 712) .
=1

The mesh function 7, is related to the function f € L?(0,1) by eq (3.15) from which it is
easy to see thal there exists a constant ('} s.t.

i~

vl < CiR?(I£]).

The derivatives of the Green’s function are - cf. eqs (3.36, 3.37) -

€Oos (1‘;—"(’21'— 1)) (Asink's; + cos k'sy) 1<
. 1
PO R |
T | sink'sy (Acos (&;ﬁ(m— 1))—sin (&;ﬁ(mﬁ-l))) i>1

Obiously h?|d'G,| is bounded provided that hk’ < a < 7/2. From the Taylor series

expansion of hk'. eq (3.21). we conclude that such « exists for sufficiently (say, hk < 1)
small hk.
Hence there is a constant (Y5 s.t.,
('l

Viji |dGy| < -
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Then also C
. 1 ‘2
Vi: [['G|l £ W

and the statement follows from eq (3.39) with C = CC;. The proof is completed.

We proceed to the proof of the error estimate:

Theorem 5 Let u € H2(0,1) be the ezact solution of the variaiional problem (2.10) with
data f € L*(0,1) and let us. € Sp[0, 1] be the finite element solution of (2.10).
Then if the stepsize h is such that hk < 1 the error estimate

hk hi:\?
w-uhhs(;+6(;ﬁ(1+m)um (3.40)
holds with constant C not depending on h and k.

Proof: Let u; € V;, = §,[0, 1] be the interpolart of « and define z € V}, by

2= Upe — Uy

From
VeeV,: Blu.r)= Bluge,v)

and since B is sesquilincar we have
B(u - uy,v) = B(z,v).

On the other hand, for v € V!
x

T s
Vi: / (v=—wugYv' = [(1).—-2!1)1"]:_:_1 —/ (u—up)v" =0

LT Ty=1

since (v —uy)ly, =0and v|, . ,=0 and therefore

B(u—-us,v)= k2/01 (u—us)v.
Hence z is a solution of
YoeVy: B(zv)=kY(u—-uv)
and from Lemma 3 we have the estimate

11l < CR2lu = ]l

Then
leli = Ju—upli=lu—up+up—upels
< Ju—wh 415
< Ju=ughy + CElu~ uy

We now invoke the approximation properties of the space ¥, from Lemma 2 to obtain

h k2h?
lely < (; + CT) ”u/I”

The statement of the theorem now follows from Lemma 1.
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3.6 Comments

In this section we have given different proofs of existence-uniqueness for the FE-solution.
The main results are that

¢ the discrete problem is stable provided that proper restrictions are made for the
magnitudes of hl: only (theorem 4) and

¢ theerror of thie finite element solution can be controlled by restricting the magnitudes
of hk and hk? {(theorem 5).

It had been shown that the error bounds of subsection 1 tend towards 0 as k is increased.
This is not the case for the estimates of theorem 5 since only boundedness of hk is assumed.
There is, however, a close relation between both estimates. Namely, the corollary 1 from

theorem 3:
[u=upely SClu—uy|y SCh (14 k)| fll

follows also from theorem 5 if the magnitude of k*h is bounded. In other words, both error
estimates lead to the same conclusion that the stability constant C, does not depend on
k if k2h is bounded.

We will show by numerical experiment that this condition is also necessary, i.e. the
constant C, grows with & if £/ is not restricted.

The assumption of uniform mesh is due to technical necessities of the proofs for theo-
rems 4 and 5. All statements of this section should hold for nonuniform mesh as well.

4 Numerical Evaluation

The first and obvious purpose of the numerical evaluation lies in the illustration and
application of the theoretical results by computational experiment. Beyond this, we will
draw a qualitative conclusion concerning the assumptions of some propositions of the
previous section.

Throughout this section, we will present FE-solutions to the variational problem (2.10)
with constant right hand side f(2) = —1 on uniform mesh.

4.1 Error of the best approximation

Consider in Fig. 1 the errors e, of the best approximation (interpolant) computed for
different & and h such that 0.2 < hk < 2, plotted in log-log-scale.

As predicted by theorem 2, all error curves decrease with constant slope of —1 in the
log-log-plot (the theoretical rate of convergence being O(h)).

The inequality of the theorem gives. however, a crude upper bound for the relative
error

s fa
T el

in the case that & is large and [|«’|] is not bounded [rom below independently on k. For
u € H2(0. 1), an estimale is obtained from Lemma 2 as
fe]l

. I ||
e < = .
“ < ) (1)
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In our example the relation

flu")l ; (3—2cosk-5—'ﬂ3,:&"l)*
el 3 — 2cos k 4 Hnkl2-cosk)

is easily computed, hence for sufficiently large k we can by

1 k
-2
h_

n, = —.
€ Té,

predict the meshsize needed for approximation with a given tolerance ¢ = é,.
Let, for example, £ = 0.1 be a maximal tolerance. then

n> = (4.2)

is the "rule of the thuinh” for the number of elements. As table 1 shows, this rule works
well for large k.

Table 1: Number of elements needed for a relative error of interpolation less than 0.1:
number obtained from numerical experiment compared to bound computed from eq (4.2).

k 2 10 40 100
n, computed fromeq (4.2) | 6 31 127 310
n, measured from Fig. 1 8 30 120 300

Consider now the results plotted in Fig. 2. Clearly the relative error of interpolation
cannot exceed 100%. From the plots we observe that for each wavenumber k the error
stays at 100% on coarse mesh and starts to decrcase at a certain meshsize. We are inter-
ested in the point where the descend starts. More precisely, we seek the critical number
of degrees of freedom according to the following definition:

Define - for any fixed k and [ - the critical number of degrees of freedom (DOF) N, (k)
as the minimal number N (k. f) of DOF for which
1. é(n.k) < 1 and

2. é(n.k) is monotone decreasing w.r. to n

for all n > N (k. [).

For the best approximation, the critical number of DOF is determined by the rule that
the stepwidth of interpolation by piecewise linears should be smaller than one half of the
wavelength of the exact solution:

hk < .

In Fig. 3, the critical point n, computed from

n, = [L] (4.3)

L
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is plotted for different k. The predicted eritical number of DOF is close to the actual one
in all cases.

Finally we whish to see experimentally that the error of the best approximation is
controlled by bounding the magnitude hk. To this end, consider the fat line plotted
in Fig. 3. In the error curves for the different k, this line connects the points that are
computed from hk = const. = 0.2 . As we see. this line does neither increase nor decrease
significantly with the change of k. For more detailed observation, the relative error of the
best approximation., computed for all integer & from 1 to 500 and for hk = 0.1, is plotted
in Fig. 4. The error oscillates with decaying amplitude around the horizontal line

|aly = 0.02887.
The upper estimate from eq (4.1) is

1
TARRS %— = 0.03183.

The figure can be further analyzed as follows: we find for the relative error the expression
(t = hk):
el = { | 2 sin 2k — 4sin k 2
ol = V12 kG- 1cosh — sil\2k;45ink
under the assumption that {2 and higher terms of { can be neglected. For the case t = 0.1,
plotted in Fig. 3. this expansion predicts for high k& the value

ol = 2L = 0.02886751.

V12
Remark 12: In the one-dimensional case one can by means of a Galerkin least squares
method ([H111]) obtain a modified finite clement solution that is identical with the inter-
polant of the exact solution. Therefore the conclusions drawn above for the minimal error
in H'-seminorm hold for this solution as well.

4.2 Error of the finite element solution

Discrete wavenumber: Unlike the best approximation, the FE-solution is, in general,
not in phase with the exact solution. On uniform mesh this numerical effect is highlighted
by the notation of a "discrete wave number” &’ that governs the periodicity of the finite
solution. In other words, we observe a phase lag ([HH1, p.71], cf. Fig. 4) between the
exact solution and it’s best approximation on the one and the FE-solution on the other
hand.

The determining equation for th~ di=ciete solution on uniform mesh had been found
in subsection 3.2. as

S(1)
g —_— e —
cos ' h 0
where t = hil and the r.hs. is a rational function of 1.
In Fig. 5 the functions y, = =S(1)/R(!). yo = cost and |y3] = 1 are plotted. We

observe that:

e at{, = V12 the function y; reaches ahsolute value ; the numerical solution switches
from the propagating case to the decaving case;
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o for fixed k, the convergence k' — k is vizualized by cosk’h — cost = coskh as
h — 0. The curves begin to deviate signilicantly at about hk = 1.

Rate of convergence: In Fig. 6 the relative errors of the FE-solutions for different
k are plotted. The meshes are such that the magnitude of kh is in the same range as in
the error plot for the best approximation in Fig. 1. We observe the following:

1. The relative error of the FE-solution exceeds (for higher k on relatively coarse mesh)

100%.

2. For low k (represented by A = 3 in the figure) the rate of convergence is nearly
constant throughout the region considered, i.e. the fe-solution behaves essentially
like the best approximation.

3. For high &, the relative error oscillates above 100% before it starts to descend after
a critical value N, of meshpoints has been reached. The decrease first occurs with a
rate greater than —1 in the log-log-scale but becomes —1 for small A.

4, Unlike the error of the best approximation. the error of the FE-solution cannot be
controlled by bounding the magnitude of k. The relative error clearly grows with
k on all lines hl = const,

The last observation is further emphasized by the results plotted in Fig. 7, together with
table 2. The "rule of the thumb™ to place a certain number of elements per wavelength
does obviously not hold for high &.

Asymptotic stability and quasioptimality: Consider now in Fig. 8 the plots of the
relative errors of the FE-solution together with the relative errors of the best approxima-
tion. This figure is well suited to enhance the quasioptimal stability estimate in corollary
2, section 3.2. To this end. lines are plotied connecting h and £ s.t.

hk? = « = const (4.4)

for a = 2,a = 1 and a = 0.5. The corollary states that on these lines, if a is sufficiently
small, the ratio of the errors of the best approximation and the FE-solution does not
depend on k, i.e. the distances between both curves in the log-log-plot do not grow along
the lines (4.4).

The statement is vizualized in the plot; even more: we see that {or the example con-
sidered the stahility constant is close 1o 1 for sufliciently small .

In Fig. 9 the stability constant 'y from corollary 2. computed with the restriction
hk? = 1, is plotted for all integer k from 1 to 200. Obviously, the constant computed with
constrained hk? does neither decrease nor grow with increasing & (except for small k, then
hk is the leading member in the estimate of theorem 5 - cf. comments to Fig. 13).

On the other hand, it is casy to verify from Fig. 8 that the error ratio does depend on k
on all lines hk® = o with 3 < 2. In particular. (s is increasing with & on the line defined
by ht = 1 (Fig. 10) and hi? = 1 (Fig. 11).

Preasymptotic stability and error estimate: We have thus shown experimentally
that the assumptions of theorem 3 and corollary 2 are indecd inherent to the problem: for
the ratio of the FE-solution error and the best approximation to be bounded it is necessary
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to restrict the magnitude of 1k?. Ilowever, it is not necessary (though sufficient) to bound
this ratio for the practical purpose of limiting the error of the FE-solution at finite range.
Indeed C, grows with & on the line of constant (relative) error of the FE-solution (Fig. 12).

According to theorem 5, the relative error is bounded at any range by the magnitudes
of h%k3 and hk. This statement is vizualized by the results plotted in Fig. 13. Here,
the relative error has been computed for all integer & from 1 to 1000 on meshes with

h= (kg)-l. We observe the following:

1. For low &k (1 < k < 30) the relative error decreases rapidly with k. In this range,
the FE-solution is still close to the best approximation (hk? = 5.48 for k£ = 30) and
hence the term hk is the significant member in the estimate (3.40).

2. For large k (k > 100) the error is bounded by é = 0.05. The term h%k3 is leading in
estimate (3.40).

Let us consider how these effects might influence the results of applied computations.
To this end, we write the estimate of theorem 5 in the form

lch < (o + CL+ k)a?) 1] (4.5)
with the "rule of the thumb” "
= =a.
T

In most practical computations with low (A < 10) wavenumbers, intuitively a good reso-
lution (like @ = 0.1, i.c. 20 elements per wavelength) is choosen. In this case, a® = 0.01
and ka? = 0.1: both terms in the estimate (4.5) are of the same magnitude and hence the
phase lag does not aflect the error significantly. In other words, no negative effects will
be observed in benchmark tests. However, for high wavenumber (say, k = 100) the second
member equals 1 for the same resolution & = 0.1 and hence is prevalent in the estimate.

These effects become much more visible if, for cost reduction of the computations, there
are choosen lower resolutions like a = 0.2 or « = 0.5 (cited as "acceptable resolution” or
"limit of resolution”, respectively, in [HI[1}). For k = 10, the magnitudes & = 0.2 and
ka? = 0.4 are still of the same order for acceptable resolution but differ considerably for
the limit of resolution ( a = 0.5 and ka? = 2.5). For the latter resolution, both magnitudes
are roughly of the same order up to k= 1.

For high wavenumber (K = 100) the second member of the estimate is clearly domi-
nating for both resolutions: we have a = 0.2 vs. ka? = 1 and. for the limit of resolution,
a = 0.5 and ka? = 25,

Finally. we demonstrate that also the critical number of DOF for the FE-solution error
is governed by the magnitude of #1243, Consider in Fig. 11 the curves of the relative error
computed for different & from I = 10 to & = 1000 and the predicted critical number of
DOF where the latter has been computed from the formula

L3

N, =
24

(4.6)

(a physical argument for this formula will be given below). Again, the predicted critical
number of DOT" is close to the actual one.
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4.3 Summary

We are now in a position to comment on the behavior of both approximation and FE-
solution error throughout the whole range of existence of a propagating numerical solution
(i.e. for hk < V12 in the case of piecewisc linear approximation).

Consider the case k = 100 in Fig. 15. We have marked on the abscissa three significant
points for the meshsize n = h~!. By thesc points the range of degrees of freedom is divided
into four regions, namely:

1. 1< n<n,
The mesh is too coarse to allow for neither approximation nor FE-solution of the
Helmholtz equation with given wavenumber k. The number

g
n, = |—
T

is the critical number of DOF ("limit of resolution™ [HH1]) for approximability.

2. n, <n< N
The relative error of approximation is smaller than 100 % but the relative error
of the FE-solution is still above this range. Though we have approximability and
stability, the stability constant is too large to bound the error.

3. N,<n<N,:
Both the FE-solution error and the approximation error are in the range of con-
vergence. In the error estimate (3.40) the magnitude h2k3 is the leading member.
A considerable phase lag is present between the exact and the FE-solution. The
stability constant
- |u = ugels
T inf |u = v,

depends still on & but is "under control” since the magnitude of A£%/2 is bounded.
With the leading member of the estimate being Q(h?) (for any fixed k), the rate
of convergence of the FE-solution is higher than the rate of convergence of the best
approximation. The I'E-error curve descends towards the line of the optimal error.

4. n > N,
The critical number Ny has been computed from the relation hk? = 1 (cf. eq (4.4)
and related comments). The stability constant 'y does not depend on h and k, the
magnitude hk is leading in estimate (3.40). Both the FE-solution error and the error
of best approximation have the same rate of convergence O(h), i.e. the statement of
quasioptimality (corollary 2) holds.

Concluding this subsection we give the argument for the computation of the critical
number of DOF for the FIL-solution eq (4.6). Assume that the solutions are given by
v = sinkz and wp = uyg|x, = sink’z, and consider the error in the Lo-norm.
Then, if the phase lag £ — £’ is smaller than , the maximal difference of amplitudes
| sin kzp, — sin &'z, occurs at the end of the interval [0, 1]. Since || sin k2|l = 1 we require
for ||éllec < |l sin ka2 lu = wsel|oo:

k4N

[sin k= sin k'] = 2|cos

e
smA - '51.
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This inequality certainly holds if

sin !
2

l;«—k’l

<
2 =

or, equivalently,
=< 1; ~ L.

With this, eq. (4.6) follows from the Taylor expansion eq (3.21).

5 Conclusions

The numerical solutlion of the llelmholiz equation with the h-version of the FEM is studied
on a one-dimensional model problem. Following the proof of new analytical statements,
the investigation is completed with the results of computational experiments.

While it is evident from the oscillatory character of the exact solution that the meshsize
h has to be adapted to the magnitude of the wavenumber £ it is not obvious how exactly
this adaption should be properly designed. This question is the starting point and the
practical motivation of the present investigation.

On the one hand, “rules of the thumb" restricting the product hk had reportedly failed
for high k. On the other hand, the restriction of k2/: assumed in existing proofs of asymp-
totic stability and convergence in the analytical literature are practically inapplicable in
the very case of high wavenumbers.

The results of the present study - confined to the case of uniform mesh - reveal that:

o the finite element solution is stable given only restrictions on the magnitude of kk;

e in the preasymptotic range. the error of the finite element solution is governed by
the term h2k3 and hence can be controlied restricting this magnitude;

o the Babuika-Brezzi stability constant is of order A~! both in the infinite-dimensional
and the finite-dimensional level;

o the restriction of hk? is indeed necessary for quasioptimality of the finite element
solution w. r. to k.

In physical terms, if hk? is small, then the FE-solution is in the asymptotic range
of convergence where it is close to the interpolant of the exact solution and hence is
quasioptimal, i.e. the FE-error is proportinal (independently of k) to the interpolation
error.

In the preasymptotic range, the difference between the FE-solution and the interpolant
(the phase lag of the FE-solution) is the prevalent part of the FE-error. To bound this
error it is both necessary and sufficient to restrict the magnitude h2k3.

Referring to the originally posed question we see that the answer for the proper choice
of the meshwidth lies "in the middle” (between hk and hk?). Consequently, for large k
there still has to be chosen a quite fine mesh (egs.. A = 1072 for £ = 100) if the h-version
of the FEM is applied.

In part II of this paper. results will be presented for the h-p-version. Following these
conclusions we have to investigate what can be gained on the global level (in terms of the
number of DOT') by investing locally (in terms of the order of elemental approximation).
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Further research will be directed to the generalization of the results presented herein
to higher-dimensional cases and to applicd problems of fluid-structure interaction.
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Figure 6: Relative error in Hl-seminorm: Finite clement solutions for & = 3,k = 10,k = 50
and & = 100
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Figure 7: Relative error in JI'-seminorm: Tinite element solutions for k
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Table 2: Number of elements per wavelength necessary for accuracy »f 10% in H!-seminorm

k 100 200 300 400 600 800 1000
#olclemems | 33 57 63 32 91 107 120
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Relative error in 111-geminonn: FE-solution vs. best spproxisnation for k=10, k=50, k=100, k=200
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Figure 8: Relative error in Tl1-seminorm: Finite element solutions versus best approxima-
tions for & = 10.k = 50.4 = 100 and & = 200 with lines of constraint hk? =

1.012 - ' ' -
1.0 F 4
ﬁ
1.008 - 4
1.006 f -
|
1.004 i . 1 I . I ' ' ] | |
0 5‘0 160 1%0 260

Figure 9: Stability constant Cy in //'-seminorm computed with constraint hk? = 1 for
k=1,200.1.
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