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Acce- tor.

Finite Element Solution to the Helmholtz NTIS @.

Equation with High Wave Number UL,.,

Part I: The h-version of the FEM ..

Frank Ihlenburg Ivo Babuka Dt",A:t;c2 I

Institute for Physical Science and Technology, Dist . ,
University of Maryland at College Park, College Park MD 20742

P -1
The h-version of the finite element method with piecewise linear approximation has
been applied to solve a one-dimensional model problem for the Helmholtz equation.
The main practical purpose of the investigation is to lay theoretical ground for safe
"rules of the thumb" how to choose the meshwidth of the FE-model depending on the
wavenumber. In this context we present new results for stability and error estimation
of the FE-solution. Following the analysis, numerical results are discussed. In a second
paper we will study the h-p-method for Helmholtz problems.

1 Introduction

Boundary value problems for the Helmholtz equation arise in a number of physical ap-
plications [DLI, in particular in problems of wave scattering and fluid-solid-interaction
[JF]. If we analyze the scattering from an elastic body embedded in a fluid, analytical
solutions can be provided for regular shapes of the body (like, egs., a sphere or a cylinder
[JF]). Numerical methods need to be applied if the body is of general shape. Here, the
physically proper and numerically effective modeling of large exterior domains is the main
difficulty. Most numerical solutions have been given starting from the Helmholtz integral
equation applying boundary element methods. However, several difficulties are reported
from practical applications and finite element techniques are used increasingly not only
for the solid but also in the fluid domain (cf. [H112], [Bu]). In this context, the numerical
analysis of the finite element method applied to Helmholtz problems becomes of practical
interest.

Analytical results for the finite element solution of two point value Helmholtz problems
in one dimension with Robin boundary conditions are contained in [AKS] and [DSSS].
Proofs of existence-uniqueness are given for the exact and the finite element solution
(h-version) and asymptotic error estimates are proved under the assumption that the
stepwidth h is small s.t. the magnitude hk 2 (where k is the wavenumber) is small. This
assumption is obviously a severe restriction for practical applications if the wavenumber is
high. "Rules of the thumb" usid in engineering analysis of acoustic problems are given in
the form hk -const (cf. [11H 1, p.71]). Some initial experience from numerical experiments
in fluid-structure-interaction had, however, shown that this rule failed in the very case of
high wavenumbers.
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Hence the following questions had been the starting point for the analysis presented
in this paper:

* Are the restrictions imposed on h and k in [AKS] and [DSSS] indeed necessary for
stability of the FE-solution (or due to technicalities in the proof)?

* What is the proper "rule of the thumb" for high wavenumbers?

* what are the numerical and "economical" effects of the h-p-version compared to the
h-version?

As in [DSSS] and [AKS], we address these issues on a one dimensional model problem.
A two-point boundary value problem for the Helmholtz equation with Dirichlet and Robin
boundary conditions is considered. We start with a recollection of results for existence,
uniqueness and stability of the exact solution in the strong sense. We then introduce a
variational formulation for the problem, show existence-uniqueness for the weak solution
and compute the Babuska-Brezzi stability constant. These results form the prerequisite
for the main objective, the study of the finite element solution. The analytical results of
this study are contained in section 3. We first (3.1.) formulate and prove a statement of
existence-uniqueness for the FE-solution using the argument given by Douglas et al. in
[DSSS]. The proof is outlined in detail in order to keep track of all restrictions that have to
be made for h and k. The essence of the argument is that the FE-solution is quasioptimal
(w.r. to k) provided the magnitude of hk 2 is sufficiently small. However, quasioptimality
is more than what is needed in practical application where (1) stability of the discrete
model and (2) error estimation at finite range are the main concern.

Of these two issues, we first address stability and show that on the finite-dimensional
level the B-B-constant is the same as in the original problem provided that the magnitude
of hk (!) is sufficiently small. We then turn to error estimation and show that the
error is bounded if hk and h2ks are appropriately constrained. Again this is proved by
using an assumption on hk only. This error estimate is the quantitative equivalent to the
observation (cf. [HH1]) that in general the error of the finite element solution is influenced
by a phase lag between the exact and the finite element models.

In the numerical evaluation we present results from various computational experiments,
applying and illustrating the main results of our study. We show, in particular, that the
restriction of h/k2 is indeed necessary for quasioptimality of the finite element solution.

2 The Reduced Wave Equation in One Dimension

In this section we prove existence-uniqueness of the solution to the one-dimensional re-
duced wave equation with Dirichlet and nonreflecting boundary conditions. We analyze
the cases u E H 2(0, 1) and u E H1(0, 1) separately and show that different stability condi-
tions apply for these two cases. The construction of the Green's function to the problem
is essential to both proofs.

2.1 The boundary value problem

Let ft = (0, 1) and let on U the BVP Lu = -f be given:

u"(x) + k'u(x) = -f(x) (2.1)

u(O) = 0 (2.2)
u'(1)-iku(1) = 0 (2.3)
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where, for simplicity, f(z) E C'(0, 1) and k =_ const.,k E R, k > 0.
Physically, if u is the variation of pressure in an acoustic medium at a fixed time, eq (2.1)
is the equation of a plane wave with (nondimensional) wave number

wL

C

where w is a given frequency, L is the measure of the domain and c is the speed of sound
in the acoustic medium.
In z = 0 a Dirichlet boundary condition is given (prescribed pressure); the mixed bound-
ary condition in x = 1 is the one-dimensional Robin condition.

Notation: As usual, we will denote by L2(O, 1) := H'(0, 1) the space of all square-
integrable complex-valued functions equipped with the inner product

(v, w) := v(z)fvC )dx

and the norm
Ilu'l := O(w, w).

By H"(0, 1),s = I V 2 we denote the Sobolev space

HS = {ulu E L2 A &ui E L2 , i = 1...s}

where Oui are the derivatives of order i in the distribution sense. The norm of the space
H 1(0, 1) is defined as

Iluvli := (11ul12 + 11Ul 2)

Functions from H/ with Dirichlet boundary data can be measured equivalently by the
Hl-seminorm

lull "= [[u'[[.

Uniqueness of the solution in H 2(O, 1): The BVP (2.1-2.3) has unique solution in
the space H2(0, 1).
Indeed, suppose there exist twosolutions ut and u2 to the BVP (2.1- 2.3), then u(x) = ul(x)-
u2(x) 9 0 is a solution of (2.1 - 2.3) with homogeneous data f(x) - 0. Then u(x) is a
solution in the classical sense and the general solution of eqs (1) and (2) is u(z) = C sin(x).
Substitution into (3) then gives

Ck(cos k - isink) = 0.

Since
jcos k - i sin kl = I

we have C = 0 and thus
u(X) = 0

which is a contradiction and uniqueness is proved.
The existence of the solution is concluded from the following construction.
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Inverse Operator: The Green's function of the BVP (2.1-2.3) is:

1 sin kxeikS; 0 < X < s
G(x,s) = k sin kseikx; s < X < (2.4)

The solution u(x) of (1)-(3) exists for all k > 0 and can be written as

U(x) - G(x,s)f(s)ds

= • sin kx cos ksf(s)ds + cos kx sin ksf(s)ds

+ i sin kx j sin ksf(s)ds). (2.5)

Furthermore, integrating in eq (2.5) by parts we see that u E C2 (0, 1).

Using the Green's function we now establish bounds of the exact solution and it's
derivatives by the data f.

Lemma 1 Let u E H2(0,1) be the solution to the BIP (2.1-2.3) for given data f E
L2 (0, 1) = H1(0, 1). Then

Iiu2t < .lf l (2.6)

Hu'll < Ilfl (2.7)

I0u"1I 1 (1 + k)jjfI1. (2.8)

Proof: Estimates (2.6) and (2.7) follow immediately from eq (2.5).
The estimate for the second derivative is obtained fromI Io I'

IIu"1 2 = ]0(u") 2 = (f - k2u) 2 =0 P - 2k2 ] fu + k'1Iul12

_ 11f112 + 2k211f11 1lull + k'lluI12

where the Cauchy-Schwarz inequality ha-s been applied. With eq (2.6) we then get

11112 < lf 112 + 2k2 11flI llIfhf + k211f112 - (1 + k)211flj2 (2.9)

which is the desired result.

Remark 1: It can be easily seen that all aforementioned results are valid also for the
adjoint problem (2.1), (2.2) and

u'(1) + iku(1) = 0.
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2.2 Variational formulation and weak solution

A variational formulation of the BVP (2.1-2.3) can be obtained formally by multiplying
eq (1) with the complex conjugate of a suitably choosen testing function v. Then, after
partial integration and substitution of eqs (2,3) we arrive at the variational problem

5(7,V) = j ( U'(x)b'(x) - k2u(xW(x)) dx - iku(1)(1) = F(v) (2.10)

where

(v) = f(x)i)(x)dx. (2.11)

If, in general, there are given Hilbert spaces V1 and W2 and u E VW (the trial space),
V E V2 (the test space) then B is a sesquilinear form

B: V1 x V2 - C,

Y" is a functional
.T: V2 .

and a function u E V' is called a weak solution of (2.10) if

B(u, v) = .(v) (2.12)

for all v E V2.
In our case, the natural choices for the trial and test spaces are

v1 = 2= 1 = {t E HI'(0,1)Av(O)= 0} (2.13)

For test functions v E II(0, 1), the problem (2.10) is well defined if the data f lies at least
in the dual space

H-1(0, 1) := { f Ifl-, := sup Ifofvl<01.<0

Note that the variational problem (2.10) is equivalent to the BVP (2.1-2.3) in the sense
that for sufficiently smooth data any weak solution of (2.10) is a "strong" solution of (2.1-
2.3).

Continuity of the form B: Applying Poincar•'s inequality we obtain elementarily
the continuity estimate

IB(u, v)j - Co(k)luI:lvlj

with C, = 1 + k + k2 .

Existence-uniqueness of the weak solution: We first show uniqueness. Suppose
again that there exist two solutions ui, it2 E 0 to the variational problem (2.10). Then
u = U1 - U2 $ 0 is a homogeneous solution; i.e. it E V" and eq (2.10) holds with .F(v) = 0.
In particular we have for v = it:

Su) = (u'(x)ii'(x) - k2uIx)ft(x)) dx - iku(1)ii(1) = 0.B~u, O
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Since the right-hand side is real this equation can be true only if

u(1) = 0.

Then it follows from eq (2.3) that

Vv E V1 : u'P'dx = k2 j ufydx

and hence for v = x:

0 = u(1) - u(O) = u'dx = k' j uxdx.

Assume now fol uxndx = 0 for some natural n, then partial integration yields

0 = -" u X +1dx = (n + 1)(n + 2 )o uxdZ

It follows by incuction that

0= 10uxsdx ,s = 1,3,5,...

Since, as a consequence from Miintz's theorem [A, p. 45], the set

span {x Iss= 1,3,5,...}

is dense in L2(0, 1) we conclude that u = 0 . This is a contradiction to the assumption
and uniqueness is proved.

For the proof of existence we observe that for the form B a G~rdings inequality

Re(B(u, u)) + CIIuil 2 > IIuI12 (2.14)

(where Ijull- = (11u112 + 111,112)I/ 2 is the nJ-norm) holds for C = C(k) = 1 + k2 .
We then have (see. e.g., [J, p. 194]) the alternative statement: either there exists a non-
trivial solution of the homogeneous problem Lu = 0 with Dirichlet data 0 or a solution of
Lu = f with Dirichlet data 0 exists for every sufficiently regular f. Since uniqueness has
been proved existence follows. The proof is completed.

Remark 2: As in the strong case we remark that existence-uniqueness holds obviously
also for the adjoint form

o ] (u'(x)V'(x) k2u(x)fi(x)) dx + iku(1)f(1).

Remark 3: All statements made so far hold also for the Dirichlet condition u(O) = g.
In that case, the set of admissible functions u is given by

0 = {J E 1i' Aft= =},

this set is related to the trial space by the bijective map

= u + ui
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where u E V and u" is an arbitrarily fixed element in & (see, e.g., [SB, pp 16/17] for

further detail).

Stability in HI-norm and Babu~ka-Brezzi-constant: In Lemma 1, stability of

the exact solution has been proved for the "strong" case f E HO(O, 1); u E H2 (0, 1).

However, recent computations [D] indicated that the stability estimates of Lemma I do

not hold for the weak case f E 1-1(0, 1); u E 11(0, 1 ). Indeed we will show the following

Theorem 1 Let V C HI(O, 1) be the llilbert space defined in eq(2.13). Then for the

sesquilinear form B : V x V - C defined in eq(2.10) the Babutka-Brezzi stability constant

IB(u, v)I
"- := inf" sup

tiE1 vEV MIMIi~

is of order f; more precisely, there exist positive constants C1, C2 not depending on k s.t.

C < 2(2.15)

Proof: Let us first proof the left inequality of (2.15). We will show that for any given

u E V there exists an element v E V s.t.
C

IB(u, v)I _> j:Iu'1 Iiv'11 . (2.16)

Let u E V be given. Define v := u + z where z is a solution of the problem

Vw E V : B(w.z) = k2(w,u). (2.17)

The solution z exists and is uniquely defined. Furthermore, z E H 2(0, 1) and is a solution

of the BVP
z 2 - k2u

z = 0

z'(1) = ikz(l).

Then z is the Green's function transform of f(s) = k2u(s).
The proof proceeds as follows: With v = u + z we have

15(u,r)l > Re B(u,v)

= Re (B(u, u)+ B(u,z))

= Re (B(u,u)+B(u,z)+k2(u,u)-k2(u,u))

= Re 5i(u, u) + k211uI12 = Ilu'll2 .

Then, if we show that

I1u'll _ Th!y11V1 (2.18)

we have proved ineq. (2.16) and the inf-sup-condition follows.

To obtain ineq. (2.18) we integrate by parts the function z:

z(x) = k2 G(xs)u(s)ds

= k 2 (l(x, l)II(l)- j ll(.rs)u'(s)ds)
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where
Hkx, 3) := 10G(x, t)dt

and the integral on the r.h.s. is well defined since u E II'(O, 1).
We now differentiate

4x() = k2 (H,(x, 1)u(1) - 101 flx(xs)u'(s)ds)

where the function H,. is readily computed as

i cos kzeik 0 < X <s
Hr(x,s) = -k j coskseikz s < x <1

Then

Iz'(x)I 5 k2 (IH .(x,1 )lu(1)1 + I0 1H .(x, s)u'(s)Ids)

< k2 (IH.(x, 1)1 + IIH/11) Ilu'll _< 2kjIu'II

since obviously IH,(x, 1)1 _< -1 IIHIi < 1
Hence

IIv'I0 = IIu'+ z'11 _< Ilu'll + 11z'11 -5 (1 + 2k)IIu'II

or
flu'lJ _> 1 + C-- -,lvll- I"I

I +2kOVI TII
for k > 1 and the first part of the proof is completed.

To proof the second inequality it is sufficient to find some function zo(x) E V for which

VV. It(o,< C I'l

Consider the function

sin kx

where p E C'(0, 1) does not depend on k and is choosen s.t.

zO(0) = Zo(1) =z(0) =z(1) = 0 (2.19)

and that for some a > 0, not depending on k,

I-o1i > a

(take, e.g. V(x) = x(x - 1)2).
Then

Vv : IB(z,,, v)I < 'IB(Zo,v)IIzolb -

and with eqs (2.19) we obtain l)y partial integration

Vv E V L3(--..v) = - j(z + k2 Zo)f.
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Direct computation shows that

z + k 2 ,0  sin x + 2,p'(x)coskz.

Define
u(X): (z(s) + k22z(S)) ds,

then

IB(zo,v)l 0 u(1)(1) -] u(x)i'(x)d <_ (Iu(1)I + IIuII)IvII.

On the other hand, from the definition of u we obtain integrating by parts

Iu(x)I = IJx ( I"(s)sinksn--- ds+ 2p'cosks) ds[

= 2 ýo'(x) !s kxi V1("(s) Sink ds

Hence

Iu,(1)l _<•'/'1>

Ilull _• (h•"l + 211h '11.)

so there exists a constant C s.t.

(lu(1)I + CI'ul) < C

Consequently,
CVv E V: l8(Z., v)0I -- Ivii

and the proof is conqileted.

From general thmery [l1A. p.112] now follows

Corollary 1 LI it E II '(0. 1) bc a solution of the variational problem (2.10) with given
data f. Then 1hr stablity estitnatc

luI l< (!klfl-I

holds wherc C is a generic constant not depcnding on k.
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3 Finite Element Analysis of the Wave Equation

Following preliminary definitions we state approximability of the exact solution as a direct
conclusion from the approximation properties of the finite element space and stability of
the exact solution (3.1). We apply an asymptotic approach ([AKS], [DSSS]) to obtain
statements of stability and quasiol)timal error estimates for the model problem (3.2).
In the second part of our analysis we study the properties of the finite element solution in
the preasymptotic range. In a preliminary subsection (3.3) we analyze the discrete model
on uniform mesh and construct a discrete Green's function. We then show the inf-sup
condition (3.4) and state a preasymptotic error estimate (3.5). The section is conclude d
with some comments (3.6).

3.1 Approximability of the exact solution in the finite element space

Preliminaries: To solve the problem numerically with a finite element method, the
interal U = [0, 1] is divided into n finite elements [zXji, x1]

nS=U[Xj-I, Xj] , 0= X,,<X I <..< Xn = 1. (3.1)

j=1

By (3.1) a discrete subset

.j = {xjj = 0. 1....n} C [0.1] (3.2)

(finite e!ement mcslh) is given on . Any functioni defined on Xh is called a mesh function
and will be referred to by subscript It.
We will denote by hj = (x, -xx_) the size of the finite element # j and define the stepsize
h of the mesh Xh by

h = max hj. (3.3)
J

In the following we will seek approximate solutions of the variational problem (2.10) using
the Galerkin finite element method with piecewise linear test functions.

More precisely, we define the subspace

Sh(O, 1) C H'(0, 1)

as the set of all functions u E H1 (0, 1) such that the restriction of u to any element
[xi-:, xi] is a linear function. On each finite element [xj-l, xj], a, function v E Sh(O, 1) is

written by means of the nodal shape functions [SB, p.38] Nlj)(x), Nj)(x) as

v(x) = vj_1. .) + vj T A(j)

N1 (x , 2 (X)
where vj-,. v' are the nodal vales of v iii V.c. .', respectively.

An admnissil)le function ufy(x.-h) E Il1(Q) will be called a finite element solution to
the variational problem (2.10) if

1. u?, E Sh(O, 1)

2. ufe(O) = g;
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3. ufj is a solution to the variational problem (2.10) for all test functions v E Vh

where

Vh := Sh[O, 1[= {v E Sh(O, 1) A v(O) = 01.

Remark 4: As in the continuous (cf. Remark 2) case, test and trial spaze are identical
in the discrete case:

11, = 1,2 = Sh[O, 1[.

Approximation properties of Sh[0, 1[: It is a well known fact that, for any function
u E H'(SI), in one dimension the best approximation on given mesh Xh is obtained by
the linear interpolant ut of u. Furthermore, if u E 112(fl), the following statements hold:

Lemma 2 Let u E H2(0, 1) and uj E Sn(0, 1) be the piecewise linear interpolant of u.
Then

inf I1, - vii < Ilu - u11 < (3.4)yE Sh --

inif lit - VII= III - U111 :5 ( I) u"lj (3.5)
VESh

hII - u1hh < hL) h - VII (3.6)

Proof. see, e.g., [SF, p. 451.

A statement of approximability is now immediately obtained:

Theorem 2 Let u E H2(fQ) be the solution of the variational problem (2.10) - or, equaiva-
lently, of the BVP (2.1-2.3) - for given data f E L2 (Qj).

Then the for the error of the best approximation in H '-seminorm there holds

it - U11 _• h-(1 + k)llfI1.r,

Proof: The statement follows directly from Lemmas 1 and 2.

Remark 5: 1he practical conclusion from this theorem is that, for any given f, we can
control the approximation error by bounding appropriately the magnitude of hk. More
precisely, for any given data f E L2(0, 1) and error bound E > 0 there exists b > 0 s.t. for
hk < 6

iaf I'u - vii = I. - ?II,, < S.
vESh

Since the wave number k is related to the (nondimensional) wavelength A by

27r
A

the product kh is a measure of the number of elements per wavelength.Hence the "rules
of the thumb" recommending a certain number of mesh points per wave length do apply
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effectively for approximability (of the exact solution) by piecewise linears.

The essential question is, however, if this rule does also apply for the finite element so-
lution. Since the approximation property has been established, the answer to this question
would now be given by an stability estimate of the form

Iv - Ufeii < C. inf Iu - vii
-vESh

where the stability constant C,, in general, depends on k. Before turning to this estimate
we verify that the variational problem (2.10) is well-defined also an the finite level.

3.2 Asymptotic stability and quasioptimal error estimates

A proof of existence-uniqueness in terms of asymptotic error estimates of the FE-solution
for the one-dimensional Hlelmholtz equation with non-reflecting boundary conditions has
recently been given by Douglas et al. [DSSS]. Since we are interested in the dependence of
error estimates on h and k, specifically in the case of large k, we outline here the argument
from [DSSS] (slightly modified to account for the Dirichlet condition at x = 0) in detail
to keep close track of the constants involved in the estimates.

Theorem 3 Let u E H12(0, 1) be tI exact and uf e E Sh(0, 1) be the finite element solu-
tions of the BVP (2.1-2.3), respectively.
The finite element solution is then uniquely determind by any data f E L2(0, 1) and,
furthermore, the following error estimates hold

Ilu- u.0I1 _ C1 C2 (1 + k)2 h 2 lIfI (3.7)

Ilu- 1fIi < C2 (1 +k)hllll (3.8)

with 2
C 1  -

(1-2(1 + k)-) 7r

and

2 (i+ (hk)2 
)

C72 ;-" -

7r - C.'2 k0h 2(1 + k)2)
provided that the s1cpwidth h and the wuacnumbcr k are such that the denominators of the
conshints are positive.

Proof: Denote e := u - ufe. Then e lies in the Hilbert space V C HI(0, 1) and,
consequently (cf. remark 3), there exists z E V s.t.

Vv E V B(v,z) = (v,e).

In particular, B(e,z) = (e,e) for v = e.
Further the error is B-orthogonal to the discrete test space Vh := Sh[0, 1[:

Vw E Vh : B(e, w) = 0.
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Then, for all w E Vh,

Ilell2 = (e,e) = 8(c. z - w)

e Je(z u)'-PIk2 e (,z ))-ike(1) (z(1) -w(l))

< II (Z - w,)'1 Ile'll + k21jz - wll Ilell + klz(1) - w(1)lle(1)l

Apply the inequality Iv(1)i _< V2jllvjlllv'll½ which is true for all v E V to obtain

1 11
kiz(1) - w(1)jle(1)l !5 2kll (z - u)'112 le'lI2 1z - WI211ell½2

< k211z - whl 1lell + II (z - u')'jl Ile'll (3.9)

where the inequality 2ab < a2 + b2 has been applied.
This gives, for all u, E 1,h,

11,i2 _< 2 (2i(z- u1 )'Ii he'll + kiz- w11 1eil)

In particular we maxv apply Lemmas I and 2 for it = z E 1h (the piecewise linear
interpolant of z) to obtain

Ilcr12 < (1iiz- IlYlle'll + k•21z - zill Vell)
< 2 ((1 + k).lle'll Ilell + k2h2( + k) Iiehl2

Divide both sides of the inequality above by the common factor h1ell, then

1kll -< C1 (1 + k) h Ile'll (3.10)

holds with c 2
(1 - 2(1 + k~,-' =7 "

under the assumption that k, h are such that the denominator of C1 is positive.

Next, from B-orthogonality of the error to elements from Vh we have

B(c. C)= 8((,. 1 - •11f) = 1(e, 1)

and hence
Vr E V1 :, (c.) = t?(('.u-

Thus, for all v E IE

I C'e- V* I c•- ikle(1 )12 f c'(7T)' - k 2 c(ti'-v) - ike(1)(fl(1)- i(1))

and therefore

Ile'll2 -< k~lleIl + @'( 1)12 + Ie'l1 I1(u - v)'l1 + ki, lu - vii + kle(1)l iu(1) - v(1)l
< k21IC112 + 2k1le'11 11ll + 211'll' 1(-u - v)'11 + 2k 2 lell Iu - vii
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where the terms in x = 1 have been estimated as in (3.9). We now use the e-inequality to
get the estimates

1

2k le'll iMIl -• 1e1112 + 4k211e11 2

4

2 Ile'll I1(it - I?)'hl I j• c'ill + 411(u - v)'ll

2k2 Ilell Ilu - vii _ k2 IleI12 + l2hlu - v112.

Introducing these estimates into the inequality leads to

Vv E :' Ile'1I2 < 6k21Iehl 2 + 1 Ile'll2 + 411(u - v)'II 2 + k21U _ V1II. (3.11)

Then, using the intermediary result (3.10) and the approximation results from Lemma 2
for v = uj, we get

Ile' < 6k2(1 + k)2Ch 2 1el 2 +44 (I + k)211f 11' + k2(1 + k)2 ( l-)
2 7 17

and hence

(2-62(l+ k)2C2112)2) h(l( + ' llf + 1

and the statement of the theorem follows . The proof is completed.

Remark 6: For the denominator of ('2 to be positive, the magnitudes of (hk) 2, h 2k3

and h2k4 need to be small. The term (hk/2r )2 in the numerator can then be omitted.

Let us state as a corollary:

Corollary 2 With the assumptions of the theorem, the estimate

luex - Uffl, < C. inf Iuex - v1i (3.12)- vEV'h

holds for 2 (1
2 (1+ hk

it- 6C2k2h2(1 + k)2)2

with

C 1  := -1h 2
(I - 2(1 + k •"-77') •

Proof: Introduce eq (3.6) from Lemma 2 to (3.11).

Remark 7: Note that, except for the final estimates in terms of Ifll, the proof of
the theorem is valid also with the weaker assumptions u E H'(0, 1), f E H-1 (0, 1). In
particular we obtain the statement of quasioptimality from the corollary. However, the
assumption that k2h be small is essential.
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Hence if h and k fulfill the assumptions of the theorem, the finite element solution
behaves effectively like the best approximation (i.e. C, can be replaced by some absolute
constant not depending on h) and the "rules of the thumb" apply for the FE-solution.

The assumptions of the theorem imply, however, that the magnitudes of hk, hk2 and
hk 2 have to be bounded by sufficiently small magnitudes (cf. also assumptions in [DSSS,
p. 177]). The theorem (and the corallary as well) then states that, with these restrictions
to h and k, the error of the fe-so'ution is quasioptimal. While this is the desired result it
is achieved at high cost if k is large and the stepsize h must be choosen s.t. the magnitude
hk 2 is small.

At this state of our investigation, it is not clear whether the assumptions of the theorem
are due to technicalities of the proof or really inherent to the problem considered.

The second and more important question is whether the assumptions of the theorem
are indeed necessary to bound the discretization error by some finite magnitude (like, egs.,
a given tolerance for the relative error). The following simple computation indicates that
this is not the case for high k. Indeed, let

hk 2 <_

for some a > 0. Then h < a/k 2 and

1f- UeI1 < C 2(1 + k) 11fI1

hence the error estimates of the theorem tend towards 0 (while they have only to be
bounded for practical purposes) as k is increased.

We will state stability under weaker assumptions and give more appropriate error esti-
mates in a preasymptotic analysis using a discrete Green's function approach on uniform
mesh.

3.3 Preasymptotic analysis: Preliminaries

Global FE-equations and discrete fundamental system: Let in the following the
FE-mesh be uniform with h = 1 After assembling the local equations (2.10) and mul-

n
tiplying the whole set by h. we arrive at a set of linear equations for the mesh-function
Uh = UflXh :

LhUh = rh (3.13)

where the discrete operator Lh can be written as a n x n-tridiagonal matrix

2S(t) R(l)

Lh= (3.14)

I?(/) 2,5(t) R(t)
l?(I) S(t) - it

with

1-3

and
h=hk.
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The right hand side rh is a mesh function obtained from

Vj rj = h (j f(x) Nj)(x)dx + j f(x) N)(x) dx). (3.15)
V-1 2 4

Remark 8: As noted before, the product I = kh is a measure of the number of elements
per wavelength (of the exact solution). In particular, if the stepwidth is such that t = -T
for integer I then exactly I elements are placed one one half-wave of the exact solution.

For later use we introduce difference notation as follows: Given a mesh function u = ul
defined on Xh we will denote left and right differences, respectively, by

diu := u(Xi) - u(i-I). D'u := u(.i+l)- u(Xi)
hi hi+ I

In the linear space of mesh functions, an inner product in L 2-analogy is defined by

n

(fh.-mh)h = hE f 1ý
J~1

We will denote the discrete 2-norm defined by this inner product by II II. The discrete
analogon to the II'-seminorm is given by

1Ith12 = hE dýU

Note that for any piecewise linear function u with nodal points on Xh

lull = llu1112 = lUhhl,

i.e. the discrete and exact H'-norms are identical. We will use the discrete Dirac symbol
defined as 6i =f1 if i= j

10 if i 54j

Discrete wavenumber and Green's function: The fundamental system of eq
(3.13) is

F,, = {f-•"•k'.r ik'xIx. E {j/n:j = O, ... ,n}) (3.16)

where k' is a parameter to be yet delermined.

To this end, we solve any of the "interior- equations in the point x3 = j/n, 1 < j < n:

R(I)Cik'(j-])h + 2 S(t)eil'Jh + R(I)eik'(j+l)h = 0. (3.17)

With
A = eik'h
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eq (3.17) has the solutions

. ()) complex conjugate ifIs < 1

A 1,2 --- ' I (3.18)
I( R2 (I) real if I Ž-O > 1

From the definition of A we see that the discreie wave number k' is either real (in case (*))
or pure complex (case (**)). Physically, case (*) describes a propagating wave whereas
case (**) describes a decaying wave [1111 1]. For sufficiently small h (more precisely, for
h < v'-2/k) one obtains always the complex conjugate solution of case (*).

The discrete wavenumber k' can be formally computed in terms of t: From eq (3.18),
case (*), we get

cos(k'h) = -S( t)(319)
R(t)

and hence
= 1 rco ( •)) " (3.20)

Consider the Taylor expansion

k'h = arccos R- t-))

= - (i) + h +5  ((kh)
2.1 + 6,-10 + (

Hence, for fixed k.
kah2

= k - k + 0(k5h4 ) (3.21)24

Once the discrete wavenumber has been computed, a discrete Green's function
Gh(x, s); x = xh, s = sh can be constructed. We give next a brief outline of this construc-
tion referring to [Sa] for details.

Similarly to the continuous case, we require that the r.h.s. of the linear system (3.13)
is mappped to the discrete solution of this system by

Uh(X) = (Gh(X, S). Ir,())h.

We accordingly seek the discrete Green's function in the form

f C, sin k'x X < s
Gh(x, S) = (3.22)

C2(A sin k'x + cos k'x) s < x < 1

where C1 , C2 are functions of s and the constant A is determined from the discrete
equation in the nodal point.x, = I as

sin k' cos k,"( I?(l })2sin 2 k'h - 12) - itR(tI) sin k'hA =
I?( 1)2 cos 2 k' sin 2 k'h + 12 sin 2 k'

Since a(x) := sin k'x anl 3(x) := A sin k'x + cos k'x are fundamental solutions of eq.
(3.13). we can prove by discrete Green's formula, ([Sa., pp. 120/121]) that

sin k'hA(aj) = ((JQa);3 - rr(dj/3) = const = -hh
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Using this formula we find from the condition

D' (d'G.j) - hh

the unknown coefficients C1, C2 to be

C1(s) = ()

C205) a($)
A(S)

Introducing these results into eq (3.22) the discrete Green's function is

1 ( sin k'x (A sin k's + cosk's) X <_ sGAZ )=h. I4 (3.23)
hhxs = sinlk'h sin k's(A sin k'x + coskVx) 8 < X < 1

and the discrete solution uh(xh) = h = Gh(xh, s)rh(sj) becomes
1z

uth(X)= hsink'h cos k'hl rj sin k'hj + sin k'hl rjcos k'hj + A sin k'hl rj cos k'hji
j==+1 j=1

(3.24)
for 0 < I < n.

Remark 9: A straightforward asymptotic analysis of the discrete solution shows that,
for h -+ 0 the coefficient A converges to i and Uh(Xh) converges to the exact solution u(z)
as given in the previous section.

Remark 10: Using eq (3.19) the constant A in the Green's functions (eq 3.22) can be
simplified to

A 2 sin kcos k + ivf/7V - t2(
A - 12 - t2 cos 2 k' (3.25)

Obviously IAI is bounded independently of k for t = hk < a <VI-.

3.4 The inf-sup-Stability Condition for the Finite Element Solution

In this subsection, we will compute the Babu~ka-Ilrezzi stability constant of finite element
solutions on uniform mesh using the discrete Green's function. Existence-uniqueness of
the FE-solution then follows under weaker (compared to the proof outlined in the previous
subsection) assumptions on h and k.

Stability of the finite element solution and discrete B-B-constant: The sta-
bility investigation of the form B on the finite level is proceeded in close analogy to the
infinite-dimensional case as considered in section 2. Namely, we will prove
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Theorem 4 Lct Vh := Sh[0,1[E HII(0.1) and 8 : Vh x Vh, - C be the sesquilinearforrn
defined by equation (2.10).
Then, if the stepwidth h < '- (or, resp.ctively, hk < 1), the Babugka-Brezzi stability
condition nfspIB(u,v)j

inf sup luh iv• i = -h > 0 (3.26)

holds and there exist positive constants C. and C2, not depending on k or h s.t.

C, < 1h :5C
T- k-

Proof: The line of proof is similar to the infinite-dimensional case: we will show that for
any given u E Vh there exists some v E V1h s.t.

IB(u, v)I ýŽ Ilu'll IIv'II.

Let hence u E Vh be given and define t:= u + z where z E Vh is a solution of the variational
problem

Vil E Vh : B(u. z) = k2(u,, u). (3.27)

Since Vh is a Ililbert space, the solution of (3.27) exists and is uniquely defined.
As in the continuous case, we will now prove that.

It'll ý! C Ivlz

using the Green's function representation of z:

n
zi -= zh(xi)"= h E Giari (3.28)

j-=1

where
Gij := Gh(Xi Sj); rj := rh(si).

Summation by parts in eq. (3.28) yields
n

zi = Hilrn - Hi - h H tl33dir (3.29)
j=1

with
D1 Hi. = Gij. j = 1... n -1. (3.30)

Since the mesh function t- is defined by eq (3.30) up to a constant we are free to choose

lil = 0.

Let us now take the left differences of zh in some fixed point i = 1:

n

d'z = d1I.,,rn - h E dtH.jd'r. (3.31)
j=l
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Then, applying the Schwarz inequality, we obtain the estimate

Id'zI < Idk' ..!lrnI + IIH.IIlril
:< (Id'11..I + II;H.11) Irli. (3.32)

The right hand side of the variational problem is by direct computation

r = k2h2 + 4uj + uj+), j= ... n-1

hence
Irli < Ch2 k 2 1II (3.33)

where C is a constant of order 1.
We now turn to estimation of the magnitude Id'II..l + 11IlJjI.
From eq (3.30) we obtain after summation over j:

i-i j-1
Ili. - il = i • D'Il,. = h Gil

1=1 !----

and consequently, since Hil = 0.

j-1

Hj = h Gil (3.34)
I=1

Taking left differences we obtain

i-1

d'I..j = h d'G.i (3.35)
/=1

The derivatives (as left differences) of the discrete Greens function are

h = l I d'sin k'xh (A sin k's + cos k'si) Xh • $1 (3.36)
It= sil Ph sin k'si (Ad sin k'xh + dt cos k'xh) Xh > Sl

We substitude

2 k'hillPh
d' (siu L".rh 2 h- k

(1 , i ll= I t C O S ( 2 ( 2 i - 1 ) s in 2
2 1I" Pitk'd' ,.,. k':,., = - -,Sill .- (2i,- 1)_ sin

to obtain

S= 1 2cos ( (2i- 1)) (Asink'si + cosk'sj) i < 1
V.sin Psi (A cos (LA( 2 i - 1)) - sin (Lh( 2i - 1))) i > 3
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ThenJ-_ , , cs(P
- h2 cos (-1 0 c7 ( (2i- 1)) (A i sillnk'l+= + cosk'hl)

+ Zsink'hl AAcos -(2i - I) -sill 2 (2i -1)1=1 , ()
. COS (2ih - -1) A sil (iv j)k'h si (iV j+ l)k'h + sin 'h Cos (J -)k'h

=' h . C 2 2 2 2 2
sin(iVj)k'h h • (iV j +S )h - sin- / sin

2 2 22 2

x ACos el -•(2i - 1) sin Ph(i-1

DI

h2 sin k'h

since JAI and hence the expression in the brackets are bounded.
With the assumption that kh and hence k'h is small there exists D2 > 0 s.t.

sin k'h = k'h 1 6 k2 ... ) > D2k'h,

then

II -1 = ( hn Id ' G.j

EI

j==

= h n h j - diG .t 2

j=l

and with the previous inequalities we obtain

S(l DID <2 __ ) D3h <h•k' Oki•: - h'•k"

By similar computation we can show that for any 1, 1 < 1 < n

Idttl-nl = 1/1i dVG.j3  < D4

j=l 71
2k'

hence
11II1111 + ,mn . Id, //.,,I < D

I - h21kI
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where D = D3 + D 4 .

Returning now to eqs (3.31) and (3.33),

2

lIzb It( Id'zIl )

< max Id'tl.nI + 1IH.11)Itr, 11
1-•<1<n

D Ch2k21uII
h2k'

SkCD (k) Itil.

From the Taylor series expansion (3.21) we see that

k' k2h2  3khh4

k 6 640

is bounded for sufficiently small kh. Hence there exists a constant E not depending on h
and k s.t.

IzIl _< Ekluli. (3.38)

We then have
Ivl = lu + z1i -< (1 + Ek)llu,

hence there exists, for sufficiently large k, a constant F s.t.

Iti11 >- F lVtI

and left inequality of the statement follows from the definition of z and the Girdings-type
inequality (2.14).

To prove the right inequality we construct, in analogy to section 2, a function z, for
which continuity holds with Ck-'.

Consider the function
Z(.r) = V(X) w(X)

where (P(x) E C'(0, 1) and
si i V'xw(.x) =~f k'

is a fundamental solution of the discrete system eq (3.13). Let z,(x) E Vh be the piecewise
linear interpolaht of Z(x) on Xh. Again we assume that V does not depend on the paramter
k and is selected such that

V(0) = O(1) = 'P'(1) = 0

and there exists a > 0 s.t.
I:oh > a

independently on k. Then

Vv E 1, :/1 <_ B(z. -1)1.Izol•
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Turn to the estimation of IB(z 0, v)I (we omit the subscript o from now on):

B(Z'o 10 ko0B(z", v) = -'' -vIksjzv

n d) kjV . n

= hE' dJzdt,-- hE(zj-l +4zj + z,+I)vj
j=I=

(let formally z,,+, := Zn-1).

Summation by parts then yields

B(z,v) = -h f(DJ( diz) +'T (J-zl + 4-j + zj+])) h3 + (Zn - Zof0 o)

The term outside the sum is O(h). Indeed, :o = 0 and

2

Consequently. since ý(1) = i'(1) = 0, we have h-'z,,_l = h-' n-IwnI = O(h). Hence,
omitting the terms O(h),

B(z. v) = -h t (D'(diz) +-(z,1 + 4z; + zj+l) •i.
j=1

For arbitrarily fixed j %e write the second differences as

Di(djz) = D)(dJ(ýptv)) = Di ((d'i½)wj.. + .,d'w)

= Dj(d'ip)u',, 1i. + 2Dj'd'w + poiD'(djw)

and the weighted sum as

zj-1 + 4z. + :j+i = (¢ub.i + 4(Vw)j + (w)jw l

= ,,,_(Vj - hcp' + 0(h,2 )) + 4,,j'j + wj+,(j + hyj + O(h 2))2 V1 U7.2t

= ;, (u'i + 4wj + wuj+1 ) + 2hlz~cwu + O(h 2)).

Then, neglechiig il Iernis. that are O(h) we can write

D'(d-':) + - (z.-. + .I1j + zj+') =

SDi(d ) + -2 (wj- + 41vi + ivj+l) + Dj(djp)wj- 1 + 2Dj-pdjw.

Since w has been selected as a fundamental solution of the discrete system, the expression
in square brackets vanishes.
We now define the piecewise linear function u as the linear interpolant of the meshfunction
uh defined by

(D•(lj-) + T (z,_. + 4z: + zj+i)
j=--1
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Then. on the one hand,

18(Z' v)l u= I( )P(1) - u(x)F'(.r)dr < (lu(1f+ - lul).L'1-

and on the other hand

lull - h h h (D](d;½) w_ + 2D ;dJ) 2)w)

= (h (hd (-DJ ,d wj + 2 - wi-ow))) 2) ;
tl j=l

Making use of the smoothness of the function p we have for all j

D'(d'Jy) = p"(jh) + Q(h 2 )
lJ-•: = p'((j- 1)h)+O(h)

and we obtain

1l , S h (1j i ( u, I (I ( I"1I1 + (11'11., + 211 V'lIc, +. Q(1h)))2)
1'=1

where the function w = k- 1 sin kx can be estimated by

lwl _< 1.

and the term O(h) (toes not depend on k.
By similar estimantes for lu( 1)1 we conclude that for sufficiently small h there exists a

constant C with

(lull + lu(1)) _< C

It then follows that

v E Vi,: IB(-, v)l - Ivii

and the proof is completed.

Remark 11: We recapitulate that. for f E L2(0, 1). both approximability (theorem 2)
and the discrete stabilit v conldition hold tinuder the assumption the hk is sufficiently small.
It then follows froi a findamenial theoreni [1A. p. I) 7] that the FE-solution exists and
is uniquely]( delermined. \e em phasize that, the latter stability result, is thus obtained by
restricting the magnitude of hI only (compare to the more severe restriction of hk2 in
Theorem 3!).

3.5 A preasymptotic error estimate

In this subsection. an error estimate will be given that is suited to bound the error at finite
range also for high wavenumbers k. First we have to prove:
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Lemma 3 Let up, E .'h Ix the finite elcment solution to the variational problem (2.10)
for given data f E L2(O, 1).
Then, if h is small s.t. hk < 1 , there e2xists a constant C not depending on h and k s.t.

Proof: Since itp, is Iiecewise linear. we have

lilt/u l- (I 1 (d life)

Write uA ufIdX in terms of the discrete Green's function as

u = hZ Girj
--1

then
n

dui h d'G.j rj
j=1

and
Idiu1 <_ IId'GIIIlIrIl. (3.39)

with

IIid'C1 = ( d' (rc))
j=1

The mesh function rh is related to the function f E L2(0, 1) by eq (3.15) from which it is
easy to see that there exists a constant C, s.t.

Ilrll < Clh 2 I1fll.

The derivatives of the Green's function are - cf. eqs (3.36, 3.37) -{ cos( k' A (2i-1))(Asink's,+cosk's,) i<l

' h ' sink'sj (A cos (--•h(2i - 1)) - sin (LA (2 i - 1))) i > I

Obiously h 2 Id'G.1l is bounded provided that hk' < a < r/2. From the Taylor series
expansion of hk'. eq (3.21), we conclude that such a exists for sufficiently (say, hk < 1)
small hk.

Hence there is a coiisiant (C2 s.t.

Vi.j: Idzc; <.-2
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Then also
Vi: Id'GII 7-

and the statement follows from eq (3.39) with C = CIC 2 . The proof is completed.

We proceed to the proof of the error estimate:

Theorem 5 Let u E H2(0, 1) be the exact solution of the variational problem ('2.10) with

data f E L 2(0, 1) and let ufe E Sh[0, 1[ be the finite element solution of (2.10).

Then if the stepsize h is such that hk < 1 the error estimate

Iu - uf. _< +: - " (1 + k)) Ifl1 (3.40)

holds with constant C not depending on h and k.

Proof: Let uII E I"i, = S,[0, 1[ be the interpolarnt of u and define z E Vh by

Ufe - ?It.

From
Vv E V1, 8(u, v') = B(uf, v)

and since L is sesquilinear we have

B'(u - it, v) = t(Z, -v).

On the other hand, for v E V11: (U -Iv
Vi: (u- u•' ' = It. - u•) t")] - L. 1(u - u!) v" =0

since (u - uI)I). = 0 and VI(z,) = 0 and therefore

B(u - Iu,v) = k2 (u - uI)v.

Hence z is a solution of

Vv E V1h : 8(z, v) = k2 (11 - u11, v7)

and from Lemma 3 we have the estimate

1IIZ'1 !5 Ck'211u - ?Iii.

Then

IC, = ll - If, It = I" - Ill + it/ - Ufel,

SIv.- u.1t+ 41-h

< ju - • 1• +-i- l -/ llt1

We now invoke the approximation properties of the space Vh from Lemma 2 to obtain

Ir- , /I + C I2h2

The statement of the theorem now follows from Lemma 1.
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3.6 Comments

In this section we have given different proofs of existence-uniqueness for the FE-solution.
The main results are that

"* the discrete problem is stable provided that proper restrictions are made for the
magnitudes of hk only (theorem 4) and

"* the error of the finite element solution can be controlled by restricting the magnitudes
of hk and hk2 (theorem 5).

It had been shown that the error bounds of subsection I tend towards 0 as k is increased.
This is not the case for the estimates of theorem 5 since only boundedness of hk is assumed.
There is, however, a close relation between both estimates. Namely, the corollary 1 from
theorem 3:

lU -UfeIll _ Clu - u1h l C h (1 + k) IjfII
follows also from theorem 5 if the magnitude of k 2 h is bounded. In other words, both error
estimates lead to the same conclusion that the stability constant C8 does not depend on
k if k2h is bounded.

We will show by numerical experiment that this condition is also necessary, i.e. the
constant C, grows with k if k2h is not restricted.

The assumption of uniform mesh is due to technical necessities of the proofs for theo-
rems 4 and 5. All statements of this section should hold for nonuniform mesh as well.

4 Numerical Evaluation

The first and obvious purpose of the numerical evaluation lies in the illustration and
application of the theoretical results by computational experiment. Beyond this, we will
draw a qualitative conclusion concerning the assumptions of some propositions of the
previous section.

Throughout this section, we will present FE-solutions to the variational problem (2.10)
with constant right hand side f(x)= -1 on uniform mesh.

4.1 Error of the best approximation

Consider in Fig. 1 the errors e, of the best approximation (interpolant) computed for
different k and h such that 0.2 < hk < 2, plotted in log-log-scale.

As predicted by theorem 2, all error curves decrease with constant slope of -1 in the
log-log-plot (the theoretical rate of convergence being 0(h)).

The inequality of the theorem gives, however, a crude upper bound for the relative
error

in the case that k is large and 11i '1 is not bounded from below independently on k. For
u E H2(0. 1), an estiniale is obtained from Lemma 2 as

" < -/1 1 . (4.1)
-r 111lu'l
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In our example the relation

I 1u"I k ( -2cosk -kink(2 c ook)
110 ~~ 3O - ]¢ + ' Ir-

is easily computed, hence for sufficiently large k we can by

1 k

predict the meshsize needed for approximation with a given tolerance c= ..
Let, for example, r = 0.1 be a maximal tolerance, then

V 0 > 1k (4.2)
7r

is the "rule of tlie thumb" for the number of elements. As table 1 shows, this rule works
well for large k.

Table 1: Number of elements needed for a relative error of interpolation less than 0.1:
number obtained from numerical experiment compared to bound computed from eq (4.2).

k 2 10 40 100
n, computied from eq (4.2) 6 31 127 310
n, measured from Fig. 1 8 30 120 300

Consider now the results plotted in Fig. 2. Clearly the relative error of interpolation
cannot exceed 100%. From the plots we observe that for each wavenumber k the error
stays at 100% on coarse mesh and starts to decrease at a certain meshsize. We are inter-
ested in the point where the descend starts. More precisely, we seek the critical number
of degrees of freedom according to the following definition:

Define - for any fixed k and f - the critictal niumbcr of degrees of freedom (DOF) No(k)
as the minimal number N(k. f) of DOF for which

1. i(1.k) < I and

2. E(-n. k) is monotone decreasing w.r. to n

for all n > N(k.f).

For the best approximation, the critical number of DOF is determined by the rule that
the stepwidth of interpolation by piecewise linears should be smaller than one half of the
wavelength of the exact solution:

hk < 7r.

In Fig. 3, the critical point no, computed from

2,= [k] (4.3)
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is plotted for different k. The predicted critical niumnber of I)OF is close to the actual one
in all cases.

Finally we whish to see experinientally that the error of the best approximation is
controlled by bounding the inagnitude hk. To this end, consider the fat fine plotted
in Fig. 3. In the error curves for the different k, this line connects the points that are
computed from hk =_ const. = 0.2 . As we see. this line does neither increase nor decrease
significantly with the change of k. For more detailed observation, the relative error of the
best approximation, computed for all integer k from 1 to 500 and for hk =_ 0.1, is plotted
in Fig. 4. The error oscillates with decaying amplitude around the horizontal line

1V7I1 = 0.02887.

The upper estimate from eq (4.1) is

ol<. 0" = 0.03183.

The figure can be further analyzed as follows: we find for the relative error the expression
(t = hk):

2 sin2k-4sin k

7 =i k= 6 - - _1cos " - in2k-4siMk

under the assunmption that t2 and higher terms of t can he neglected. For the case t = 0.1,
plotted in Fig. 3. Ithis expansion predicts for high k the valne

IZ, = 2- = 0.02886751.

Remark 12: In the one-dimensional case one can by means of a Galerkin least squares
method ([H1111]) obtain a modified finite element solution that is identical with the inter-
polant of the exact solution. Therefore the conclusions drawn above for the minimal error
in H'-seminorm hold for this solution as well.

4.2 Error of the finite element solution

Discrete wavenumber: Unlike the best approximation, the FE-solution is, in general,
not in phase with the exact solution. On uniform mesh this numerical effect is highlighted
by the notation of a "discrete wave number" V" that governs the periodicity of the finite
solution. In other words, we observe a phase lag ([IIH1, p.71], cf. Fig. 4) between the
exact solution and it's best approximnation on the one and the FE-solution on the other
hand.

The determining equation for ti. &ielt solution on uniform mesh had been found
in subsection 3.2. as

(OSI'h = .S'( I)
11(t)

where t = hi." and the r.h.s. is a rational function of t.
In Fig. 5 the functions yi = -S(t)/I(t). y., = cost and 1Y31 = I are plotted. We

observe that:

* at 1, = V--2 the function Y, reaches absolute value 1; the numerical solution switches
from the propagating case to the decaying case;
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Sfor fixed k, the convergence k' - k is vizualized by cosk'h - cost = coskh as
h - 0. The curves begin to deviate significantly at about hk = 1.

Rate of convergence: In Fig. 6 the relative errors of the FE-solutions for different
k are plotted. The meshes arc such that the magnitude of kh is in the same range as in
the error plot for the best approximation in Fig. 1. We observe the following:

1. The relative error of the FE-solution exceeds (for higher k on relatively coarse mesh)
100%.

2. For low k (represented by k = 3 in the figure) the rate of convergence is nearly
constant throughout the region considered, i.e. the fe-solution behaves essentially
like the best approximation.

3. For high k, the relative error oscillates above 100% before it starts to descend after
a critical value N, of meshpoints has been reached. The decrease first occurs with a
rate greater than -1 in the log-log-scale but becomes -1 for small h.

4. Unlike the error of the best aJpproxirnation. the error of the FE-solution cannot be
controlled by bounding the magnit uide of hk. The relative error clearly grows with
k on all lines hk - const.

The last observation is further emphasized by the results plotted in Fig. 7, together with
table 2. The "rule of the thunmb" to place a certain number of elements per wavelength
does obviously not hold for high k.

Asymptotic stability and quasioptimality: Consider now in Fig. 8 the plots of the
relative errors of the FE-solution together with the relative errors of the best approxima-
tion. This figure is well suited to enhance the quasioptimal stability estimate in corollary
2, section 3.2. To this end, lines are plotted connecting h and k s.t.

hk 2 = a E const (4.4)

for a = 2,a = 1 and a = 0.5. The corollary states that on these lines, if a is sufficiently
small, the ratio of the errors of the best approximation and the FE-solution does not
depend on k, i.e. the distances between both curves in the log-log-plot do not grow along
the lines (4.4).

The statement is vizualized in the plot; even more: we see that for the example con-
sidered the stabilit v constant is close to I for sufliciently small a.

In Fig. 9 tile stability constant! C, firon corollary 2. comiputed with the restriction
hk 2 = 1, is plotted for all integer k from I to 200. Obviously, the constant computed with
constrainetl hk 2 (oes neither decrease nor grow with increasing k (except for small k, then
hk is the leading inemlber in the estimate of theorein 5 - cf. comments to Fig. 13).

On the other hand, it is easy to verify frolil Fig. A that the error ratio does dependon k
on all lines hk'3 = a with 13 < 2. In particular. C, is increasing with k on the line defined
by hk = 1 (Fig. 10) and hk2 = 1 (Fig. 1 I).

Preasymptotic stability and error estimate: We have thus shown experimentally
that the assumptions of theorem 3 and corollar'y 2 are indeed inherent to the problem: for
the ratio of the FE-solution error and the best approximation to be bounded it is necessary
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to restrict the magnitude of hk 2 . llowever, it is not necessary (though sufficient) to bound
this ratio for the practical purpose of limiting the error of the FE-solution at finite range.
Indeed C, grows with k on the line of constant (relative) error of the FE-solution (Fig. 12).

According to theorem 5, the relative error is bounded at any range by the magnitudes
of h2k3 and hk. This statement is vizualized by the results plotted in Fig. 13. Here,
the relative error has been computed for all integer k from 1 to 1000 on meshes with

h = (k0)-l. We observe the following:

1. For low k (1 < k < 30) the relative error decreases rapidly with k. In this range,
the FE-solution is still close to the best approximation (hk 2 = 5.48 for k = 30) and
hence the term hk is the significant member in the estimate (3.40).

2. For large k (k > 100) the error is bounded by e = 0.05. The term h 2 k3 is leading in
estimate (3.40).

Let us consider how these effects might influence the results of applied computations.
To this end, we write the estimate of theorem 5 in the form

Il _< (a + C( I + /,.)n2) (4.5)

with the "rule of the thuimib"
l1k ="-0.
7r

In most practical computations with low (k < 10) wavenumbers, intuitively a good reso-
lution (like a = 0.1, i.e. 20 elements per wavelength) is choosen. In this case, a 2 = 0.01
and ka 2 = 0.1: both terms in the estimate (4.5) are of the same magnitude and hence the
phase lag does not affect the error significantly. In other words, no negative effects will
be observed in benchmark tests. However. for high wavenumber (say, k = 100) the second
member equals 1 for the same resolution a = 0.1 and hence is prevalent in the estimate.

These effects become much more visible if, for cost reduction of the computations, there
are choosen lower resolutions like a = 0.2 or a = 0.5 (cited as "acceptable resolution" or
"limit of resolution", respectively, in [Hi1l1). For k = 10, the magnitudes a = 0.2 and
ka 2 = 0.4 are still of the same order for acceptable resolution but differ considerably for
the limit of resolution ( a = 0.5 and ka 2 = 2.5). For the latter resolution, both magnitudes
are roughly of the same order up to k = -1.

For high wavenuinber (k = 100) the second member of the estimate is clearly domi-
nating for both resolutions: we have n& = 0.2 vs. ka 2 = -1 and. for the limit of resolution,
a = 0.5 and Io' = 25.

Finally. we demonstrate that also the critical nuniber of DOF for the FE-solution error
is governed by the magnitude of h112Iý. Consider in Fig. 1-1 the curves of the relative error
computed for difrerent k from I." = 10 to k = 1000 and the predicted critical number of
DOF where the latter has been ('ont)uted from the formula

No : (4.6)
242

(a physical argument for this formnula will be given below). Again, the predicted critical
number of DOF is close to the actual one.
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4.3 Summary

We are now in a position to comment on the behavior of both approximation and FE-
solution error throughout the whole range of existence of a propagating numerical solution
(i.e. for hk < v12 in the case of piecewise linear approximation).

Consider the case k = 100 in Fig. 15. We have marked on the abscissa three significant
points for the meshsize n = h-'. By these points the range of degrees of freedom is divided
into four regions, namely:

1. 1<n no:
The mesh is too coarse to allow for neither approximation nor FE-solution of the
Helnholtz equation with given waveinuibher k. The number

71, = [.]
is the critical numlber of DOF ("limit of resolution" [Hill]) for approximability.

2. n, < n. < N0 :
The relative error of approximation is smaller than 100 % but the relative error
of the FE-solution is still above this range. Though we have approximability and
stability, the stability constant is too large to bound the error.

3. N, < n < N,:
Both the FE-solution error and the approximation error are in the range of con-
vergence. In the error estimate (3.40) the magnitude h2k3 is the leading member.
A considerable phase lag is present between the exact and the FE-solution. The
stability constant

C' = lIu - ufelI
inf IU - vhI

depends still on k but. is "under control" since the magnitude of hk 3/2 is bounded.
With the leading member of the estimate being 0(h2 ) (for any fixed k), the rate
of convergence of the FE-solution is higher than the rate of convergence of the best
approximation. The FE-error curve descenids towards the line of the optimal error.

4. 71 > N,:
The critical number A', has been cotlpulted from the relation hk' = 1 (cf. eq (4.4)
and related comments). The stability constant C, does not depend on h and k, the
magnitude hk is leading in estimate (3.10). Both the FE-solution error and the error
of best approximation have the same rate of convergence O(h), i.e. the statement of
quasioptimality (corollary 2) holds.

Concluding this subsection we give the argument for the computation of the critical
number of DOF for the FE-solution eq (4.6). Assume that the solutions are given by
u = sin kx and uh = t1f, I•,, = sin k'xh and consider the error in the Leo-norm.
Then, if the plhase lag k - k' is smaller than , the maximal difference of amplitudes
sin kXh - sin k'XhI occurs at the end of the interval [0, 1]. Since I sin kxllI = 1 we require

for :I1 1 II sin kxII Inl - itfll ,:

sink - si VI = 2 Cos k sink <1.
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This inequality certainly holds if

sil k- k' 1
Sw 2 2

or, equivalently, I,-I,.' < _ --. I.
- 3

With this. eq. (4.6) follows from the Taylor expansion eq (3.21).

5 Conclusions

The numerical solmuion of the llelmholLz equation with the h-version of the FEM is studied
on a one-dimensional model problem. Following the proof of new analytical statements,
the investigation is completed with the results of computational experiments.

While it is evident from the oscillatoryv character of the exact solution that the meshsize
h has to be adapted to the magnitude of the wavenumber k it is not obvious how exactly
this adaption should be properly designed. This question is the starting point and the
practical motivation of the present investigation.

On the one hand, "rules of the thumb" restricting the product hk had reportedly failed
for high k. On the other hand, the restriction of k2h assumed in existing proofs of asymp-
totic stability and convergence in the analytical literature are practically inapplicable in
the very case of high wavenumbers.

The results of the present study - confined to the case of uniform mesh - reveal that:

* the finite element solution is stable given only restrictions on the magnitude of hk;

in the i)reasymptotic range. the error of the finite element solution is governed by
the term h 2k3 and hence can he controlled restricting this magnitude;

the Babusika-Brezzi stability constant is of order k-1 both in the infinite-dimensional
and the finite-dimensional level;

* the restriction of hk 2 is indeed necessary for quasioptimality of the finite element
solution w. r. to k.

In physical terms, if hk' is small, then the FE-solution is in the asymptotic range
of convergence where it is close to the interl)olant of the exact solution and hence is
quasioptimal, i.e. the FE-error is proportinal (independently of k) to the interpolation
error.

In the preasymptotic range, the difference between the FE-solution and the interpolant
(the phase lag of the FE-solution) is the prevalent part of the FE-error. To bound this
error it is both necessary and sufficient to restrict the magnitude h2 k3 .

Referring to the originally posed question we see that the answer for the proper choice
of the meshwidth lies "in the middle" (between hk and hk 2 ). Consequently, for large k
there still has to be chosen a quite fine mesh (egs.. h = 10-3 for k = 100) if the h-version
of the FEM is applied.

In part II of this paper. results will be presented for the h-p-version. Following these
conclusions we have to investigale what can he gained on the global level (in terms of the
number of I)OF) by investing locally (in terms of the order of elemental approximation).
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Further research will be directed to the generalization of the results presented herein

to higher-dimensional cases and to applied problemns of fluid-structure interaction.
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Table 2: Nuimblr or elements per wavelength necessary for accuracy -f 10% in H 1-seminorm

A. 100 200 :300 100 600 800 1000 I
#or, 'll[s 57 63 82 9,1 107 120
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linear and nonlinear differential equations and problems in linear and nonlinear algebra.

"* To help bridge gaps between computational directions in engineering, physics, etc., and
those in the mathematical community.

"* To provide a limited consulting service in all areas of numerical mathematics to the
University as a whole, and also to government agencies and industries in the State of
Maryland and the Washington Metropolitan area.

"* To assist with the education of numerical analysts, especially at the postdoctoral level,
in conjunction with the Interdisciplinary Applied Mathematics Program and the
programs of the Mathematics and Computer Science Departments. This includes active
collaboration with government agencies such as the National Institute of Standards and
Technology.

"* To be an international center of study and research for foreign students in numerical
mathematics who are supported by foreign governments or exchange agencies
(Fulbright, etc.).

Further information may be obtained from Professor I. BabuikaChairman, Laboratory for
Numerical Analysis, Institute for Physical Science and Technology, University of Maryland, College
Park, Maryland 20742-2431.


