
AD-A277 387

Management Science Research Report Number *599

Perfect 0, ± Matrices

Michele Conforti**
G6rard Cornu6jols...

Carla De Francesco

October 1993

Dipartimento di Matematica Pura ed Applicata D T IC
Universiti di Padova

Via Belzoni 7, .m ELECTE35131 Padova, Italy L MAR2 5 1994

Graduate School of Industrial Administration B
Carnegie Mellon University
Scheneley Park
Pittsburgh, PA 15213

Dipartimento di Matematica Pura ed Applicata
Universitt di Padova \•& 94-09226
Via Belzoni 7, 9 - 9 235131 Padova, Italy 1111111111111|I

The research underlying this report was supported by the National Science
Foundation Grants Nos. DDM-9201340 and DDIM-9001705 and by the Office of
Naval Research grant N00014-89-J-1063.

Management Science Research Group
Graduate School of Industrial Administration

Carnegie Mellon University
Pittsburgh, PA 15213

I)T •2-4. 
.4

9-4 3 24 0 45



~Accesion For
NTIS CRA&I
Si'lC TAB
U dainoujiced 0
J ATication

Abstract By.......

Perfect graphs and perfect 0, 1 matrices are well studied in thý Dist ibution I

literature. Here we introduce perfect 0 ± 1 matrices. Our main result' Availability Codes
is a characterization of these matrices in terms of a family of perfectA0, 1 marices.Avail and or
0, 1 matrices. Dist Special

1 Introduction

Given a 0, ±1 row vector a, let v(a) denote the number of negative entries in
a. The inequality ax < 1 - v(a) is called a generalized set packing inequality.
Given a 0, ±1 matrix A, let '(A) denote the column vector whose ith compo-
nent is the number of -l's in the ith row of A. The generalized set packing
polytope is Q(A) = {x E R" Ax < 1 - si(A), 0 < x < 1). Note that the

inequalities xi < 1 and -xi < 0 are the generalized set packing inequalities
with exactly one nonzero element. Since these bounds appear explicitely in
the description of Q(A), we assume w.l.n.g. that every row of A contains
at least two nonzero entries. The generalized set packing problem consists of
finding a 0, 1 vector z E Q(A) which maximizes some linear objective func-
tion cx. The generalized set packing problem is equivalent to the following
logic problem: given a set of clauses (here, a clause is a set of literals and a
literal is an atomic proposition or its negation) and weights associated with
the atomic propositions, find an assignment of "true" or "false" to the atomic
propositions such that each clause contains at most one false literal and the
sum of the weights of the false atomic propositions is minimized.

A 0, ±1 matrix A is perfect if Q(A) has only 0, 1 vertices. When A is per-
fect, the generalized set packing problem can be solved as a linear program.
For 0, 1 matrices, the concept of perfection is well studied. It is well-known
that a 0, 1 matrix is perfect if and only if it is the clique-node matrix of a
perfect graph, a concept introduced by Berge [1]. Two books, several con-
ferences and well over a hundred papers have already been devoted to the
subject. Therefore it seems natural to relate the notion of perfection for
0, ±-1 matrices to that for 0, 1 matrices.

Given a 0, ±-1 matrix A, the matrix A' obtained from A by multiplying
by -1 all entries in a subset S of the columns is said to be obtained from
A by switching signs in the columns of S. Note that the transformation
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yj = x,, i , S and y, = I - x;, i E S maps Q(A) into Q(A'). In particular,
A is perfect if and only if A' is perfect.

W? say that a polytope Q contained in the unit hypercube [0, 11n is ir-
reducible if, for each j, both polytopes Q n {jx = 0} and Q n {xj = 11
are nonempty. Irreducibility of a polytope Q defined by a system of linear
inequalities can be checked using linear programming and it is a natural as-
sumption to make for the generalized set packing problem since, when Q(A)
is reducible, some variables can be fixed to 0 or 1, and the resulting problem
is still a generalized set packing problem, in a lower dimensional space.

For 0,±1 row vectors a = (all...,an) and d = (di,...,dn), the inequality
ax < I - v(a) dominates dx < 1 - v(d) if d, $ 0 implies aj = dj or,
equivalently, if {0 < x < 1 : ax < 1 - v(a)} 1 {0 < x < 1 : dx < 1 - v(d)}.
Given a 0, ±-1 matrix A, the completion of A is the matrix A* obtained by
adding to A all row vectors a, with at least two nonzero entries, that induce
a generalized set packing inequality ax < 1 - v(a) which is valid for Q(A)
and not dominated by any other inequality in A*. Obviously, Q(A*) = Q(A).
A 0, 1 matrix B obtained from A* by switching signs in some columns and
replacing all negative entries of the resulting matrix by 0 is called a monotone
completion of A.

The following theorem is inspired by a similar result due to Hooker [5]
for the generalized set covering polytope.

Theorem 1 Let A be a 0, ±1 matrix such that the generalized set packing
polytope Q(A) is irreducible. Then A is perfect if and only if all the monotone
completions of A are perfect 0, 1 matrices.

For a monotone completion B of A, obtained by switching signs in the
column set S of A* (and then setting the -l's to O's), let B* be the matrix
obtained from B by switching back the signs in the column set S. Let B" be
the family of all such matrices B'. Since Q(A) = Q(A*) = flB.*Eo. Q(B*),
the above theorem provides an interesting example of a polytope Q obtained
as the intersection of a family of polytopes Qk such that Q has 0, 1 vertices
if and only if each Q& has 0, 1 vertices.
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2 Proof of Theorem 1

The proof of the theorem uses some lemmas. A set S E I is the projection
of the set Q E R' into the subspace of variables xl,... , x, if S contains all
vectors (x;,...., x,) such that there exists a vector (x*,..., x,•.,,- x•) E

Q. A well-known procedure for computing the projection of a polyhedron
Q into the space of variables xl,..., x is the Fourier-Motzkin elimination
procedure, see [8].

Lemma 2 Let A be a 0, ±1 matrix such that the generalized set packing
polytope Q(A) is irreducible, and let ax < I - v(a) and dx < 1 - v(d) be two
generalized set packing inequalities which are valid for Q(A). If a, = -dl •t 0
for some j, then either akdk = 0 for every k 0 j, or a and d each have exactly
two nonzero entries and a = -d.

Proof: W.l.o.g. we assume that a, = -d, = 1, so the inequalities ax <
1 - v(a) and dx < 1 - v(d) can be written as

E Xj + E (1 - x,) + X, <

x, + E (1- xj) + (1- x,.) _ 1.
j;P 2  jEN 2

Adding up these two inequalities, we obtain a valid inequality for Q(A),
namely

Exj E j+E(_XA E 1-i)< 1. (1)
A JEP 2 jENj jEN 2

If j E P1 n P2, then xj < 1 for every X E Q(A), contradicting the assumption.
So P1 n3 P 2 = 0. Similarly, N, n N 2 = 0.

Now consider (P1 fl N2 ) U (P• fl N1 ). If this set has cardinality greater
than one, then inequality (1) is inconsistent, implying that Q(A) is empty,
a contradiction to the assumption that Q(A) is irreducible. If (P1 n N2) U
(P 2 fl N1 ) = 0, then n is the only index where aj = -d3 # 0 and we are
done. Finally, assume (P1 fl N2) U (P2 nl NI) has cardinality one. Then
inequality (1) implies that zx = 0 for i E P1 U P 2 \ N, U N2 and that x3 = 1
for j E N, U N2 \ P1 U P2 . Since Q(A) is irreducible, these two sets must be
empty. This implies that a and d each have exactly two nonzero entries and
a = -d. This proves the lemma. 03
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Lemma 3 Let A be a 0, ±1 matrix. If Q(A) is irreducible, then the projec-
tion of Q(A) into the subspace of variables x,.. , x,. is an irreducible gener-
alized set packing polytope Q(A') = {x E Rr : Arx < I - v(Ar), 0 < < 1X. <

Proof: The fact that the projection of Q(A) is irreducible follows immedi-
ately from the definition. Hence, to prove the lemma, it suffices to establish
that any nontrivial inequality obtained by the Fourier-Motzkin elimination
of one variable from two inequalities of Q(A) is a generalized set packing
inequality. Then the result follows by induction. Consider any inequality
obtained from two inequalities ax 5 1 - v(a) and dx < 1 - v(d) of Q(A)
by the Fourier-Motzkin elimination of x,. It follows from Lemma 2 that the
resulting inequality is either the trivial inequality 0 < 0 or it is of the form
bx < 1 - v(b) where b is a 0, ±-1 vector, proving the result. 0

Theorem 4 Let A be a 0, ±-1 matrix such that the generalized set packing
polytope Q(A) is irreducible. Every row of A* is either a row of A or it is

generated from the inequalities of Q(A) by the Fourier-Motzkin elimination
procedure.

Proof. Let a be a row of A* but not A and suppose that ax < 1 - v(a)
is not generated from Q(A) by the Fourier-Motzkin elimination procedure.
By switching signs in some columns of A* if necessary, we can assume that,
for some2 < r < n, a, =... =a, = landa , +, =... =a,n =0. Since
the inequality ax < 1 is valid for Q(A), it is also valid for Q(Ar), so it must
be a positive combination of the inequalities defining Q(A 7 ). By Lemma 3,
the polytope Q(Ar) is an irreducible generalized set packing polytope. By
Lemma 2, any inequality dx < 1 - v(d) defining Q(AF) which has a negative
coefficient is either a bound inequality -xi _< 0 or, in the case where r = 2,
the inequality -xI - x2 _< -1. All other inequalities defining Q(Ar) are
strictly dominated by ax < 1, i.e. they are of the form dx < 1 where d= 0
or 1 for allij = 1,...,r and d =0 for at least one . = 1,...,r.

When r = 2, Q(Ar) is defined by the bound constraints 0 < x1 ,x 2 < 1
and possibly -XI - X2 <_ -1. It is easy to check that ax < 1 is not a positive
combination of these inequalities, a contradiction.

When r > 3, Q(AT ) is defined by the bound constraints and inequalities
dx < 1 which are strictly dominated by ax < 1. Again, it follows that
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ax < I cannot be obtained as a positive combination of these inequalities, a
contradiction. 03

Lemma 5 Let " = (x*,. ,) be a vector in Q(A) such that xn = 0 or 1.
Then x* is a vertex of Q(A) if and only if(x,...,x•,_) is a vertex of the
projection of Q(A) into the subspace of variables l,.... ,x,,_.

Proof: Let P be this projection.
=, Let A'x = 1 - v(A'), xi = 0 for j E K, xj = 1 for j E L be a

subsystem of Ax = 1 - v(A), x = 0, x = 1 which has x" as its unique
solution. If x; = 1, we assume w.l.o.g. that L contains equation x, = I and
if x! = 0, we assume w.l.o.g. that K contains equation xj = 0. Let A' be the
matrix obtained from A' by removing the last column. Then A'x < 1 - v(A')
is a system of valid inequalities for P. Furthermore, since A'x" = 1 - V(A'),
then if x, = 0, the n" 'olumn of A' is a 0, 1 vector, and if x•, = 1, the n th

column of A' is a 0,-1 vector. This shows that (x, . . . , x.,_) is the unique
solution of the system A'x = I - v(A'), xj = 0 for j E K \ {n}, xj = 1 for
j E L \ {n}. Hence, (x*,... ,x-,_.) is a vertex of P.

4-- Assume not. Then x" is the convex combination of vectors XI,..., xk E
Q(A) \ {x'}. Since x' = ... = xk = x•,, then the vectors (xJ, x.

j = 1,..., k, belong to P and are distinct from (x*,..., x,' ), contradicting
the assumption that (x,. . . ,xoI) is a vertex of P. 0

Proof of Theorem 1: =• Assume not and let A be a 0, ±1 matrix with the
smallest number of columns such that the generalized set packing polytope
Q(A) has 0, 1 vertices but, for some monotone completion B, the polytope
Q(B) has a fractional vertex x*.

First note that every component of x* is fractional. For if not, say xn = 0
or 1, then Lemma 3 shows that the projection of Q(A) into the space of
variables x 1,... , x,n- 1 is an irreducible generalized set packing polytope Q (A).
Since B is a 0, 1 matrix, the projection of Q(B) is Q(R), where D is the
submatrix of B obtained by removing the last column. It follows from the
Fourier-Motzkin elimination procedure that P is a monotone completion of
A. Furthermore, Lemma 5 shows that (x,,.. . , xý,_J) is a vertex of Q(B). This
contradicts our choice of the matrix A with smallest number of columns.

By changing variables yj = 1 -xj if necessary in Q(A), we assume w.l.o.g.
that the 0, 1 matrix B is obtained from A* without any switching of signs in
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the columns. Let ax < 1 - v(a) be a row of Ax < 1 - v(A) which is violated
by x'. Since B is a monotone completion of A, there exists at least one index
t such that at 1 -1.

Case 1: There exist fix = 1 (among the equations from Bx = 1 which
define x*), and columns t and t' such that at = at, = -1 and 3t = Ot, = 1.

By Lemma 2, Ox < 1 is the inequality xt + xt, 1 and ax < 1 - ti(a) is
the inequality (1 - xt) + (I - xt') ! 1. Using the fact that Ox° = 1, it now
follows that ax" = 1 - v(a), contradicting the assumption.

Case 2: For every equality 3x = 1 from the equations Bx = 1 which
define x*, there exists at most one t such that 3t = I and at = -1.

We write ax < 1 - v(a) as

k n

S- xa)x+ E a x <1 (2)
j---I j=k+l

with a. = 0 or 1. For each t = 1,... k, there is an inequality defining x° in
Bx < I such that

nX; + E_ = jx (3)
j=k+l

with bt2 = 0 or 1. Adding up, we get that EýJ-k+l(aj + E-k=I bt.)x 1 -< 1 is
valid for Q(A). Since Q(A) is irreducible, the coefficients a. + E k bt are
equal to 0 or 1 for all j = k + 1,.. . , n. Since B is a monotone completion of
A, the above inequality is dominated by an inequality in Bx < 1, 0 < x < 1.
Therefore, Ij,+l (a. + E= bti)x •• 1 holds. Now using (3) it follows that
ax <1 - v(a) holds, a contradiction.

€= Assume not and let A be 0, ±1 matrix with the smallest number of
columns such that the generalized set packing polytope Q(A) has a fractional
vertex x" but, for every monotone completion B, the polytope Q(B) has 0, 1
vertices.

First note that every component of x* is fractional. For if not, say x• = 0
or 1, then Lemma 3 shows that the projection of Q(A) into the space of
variables xl,..., x,,- is an irreducible generalized set packing polytope Q(A).
Also the projection of Q(B) into the space of variables x 1,... , X,, is a
monotone completion of A. Furthermore, Lemma 5 shows that (x•,..., x*,)
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is a vertex of Q(A). This contradicts our choice of the matrix A with smallest
number of columns.

Since x* is a vertex of Q(A), there is a subset A'x = I - v(A') of n
equations from Ax = 1 - v(A) which has x* as its unique solution. We will
construct such a subset of n equations with the property that, in each column
of A', all the nonzero entries have the same sign (when this is the case, we say
that A'x = 1 - v(A') is monotone). Note that the existence of a monotone
system immediately implies the existence of a monotone completion with a
nonintegral vertex, namely let B be the monotone completion of A obtained
by switching signs in the columns of A' for which A' has nonpositive entries
and let y; = 1 - x; for all such columns, whereas y; = x' for the columns
that have not changed sign. Then y' is a vertex of Q(B) since y' E Q(B)
and y* is the unique solution of n equations from the inequalities defining
Q(B).

Now we prove the existence of a monotone system. If A'x = 1 - v(A') is
not monotone, there is some t such that for two rows, say ki and k2, we have
ak,1 = 1 and ak2t = -1.

Note that t is the only column where ak1 j = -a~j • 0 since, otherwise,
by Lemma 2, the rows k, and k2 are linearly dependent, a contradiction.

In fact, it follows from Lemma 2 that the rows k, and k2 can be written
as

X; + £,EPi x* + "jEN, (1 - X;) = 1
(1 - x;) + IEjiE x + ZieN2 (1 - x*) = 1 (4)

where the sets P 1, P2 , N 1 and N2 are pairwise disjoint. By adding the two
inequalities of Ax < 1 - v(A) which correspond to rows k, and k2 , we obtain
that

F, Xj + E X. + (- + (- <(5)
AA, jEP2 AMN N2

is valid for Q(A). Therefore, the inequality (5) is dominated by an inequality
of A'x < 1 - v(AO). In fact, since x* has only fractional components and
satisfies (5) at equality, it follows that (5) is one of the inequalities in A'x <
1 - v(A*). We claim that the equation obtained from (5) can be used to
replace either of the two equations (4) in the system A'x = 1 - v(A') whose

unique solution is x*. This is because either of the equations in (4) is a linear
combination of the other equation in (4) and the equation resulting from (5).
Consider the new linear system resulting from this interchange. In column
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t, the number of pairs i, k where ait = -ak, 0 0 is strictly smaller than in
the original linear system. By repeating this procedure, we can remove all
such pairs in column t, thus making column t monotone. Then, applying the
procedure to another column with pairs i, k such that aii = -ak, 0 0, we
note that the monotonicity in column t is not destroyed. So, by induction,
we can construct a monotone linear system whose unique solution is x'. 0

3 Extensions

Note that the "if" part of Theorem 1 does not hold if the irreducibility

assumption is dropped, as shown by the exampleA= ( In this

case (], ½) is a vertex of Q(A) but every monotone completion of A is perfect
since all two-column 0, 1 matrices are. However, the irreducibility assumption
can be dropped for the "only if" part of the theorem. This is so because
when A is a perfect 0,±1 matrix and, say Q(A) n {x, = 1} = 0, then
Q(A) C {x,, = 0) is identical to the projection of Q(A) into the space of
variables xl,..., x,,-1 . Using an argument similar to that used in the proof of
Lemma 3, one shows that the projection can be described only by generalized
set packing inequalities. By repeating this projection argument if necessary,
the polytope Q(A) can be assumed to be irreducible.

A submatrix B of A* is called a row monotone completion of A if B is a
row submatrix of A* such that, in each column, all the nonzero entries have
the same sign. The matrix B is a maximal row monotone completion if it
is not properly contained in any other row monotone completion of A. Note
that there are at most 2n maximal row monotone completions of A. When
A is irreducible, it would be interesting to know whether a sharper bound is
possible.

Theorem 6 Let A be a 0, ±1 matrix such that the generalized set packing
polytope Q(A) is irreducible. Then A is perfect if and only if all the maximal
row monotone completions of A are perfect.

Proof: The proof is the same as for Theorem 1 except for the following
three statements.
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1) = "Every component of x" is fractional."

2) =€ Case 2 "Since B is a monotone completion of A, the inequality

£=fik+1(a, + E Il bt)x, S 1 is dominated by an inequality in Bx <
1, 0< 1."

3) 4= "Every component of x* is fractional."

1) and 3) "Every component of x" is fractional."
We assume w.l.o.g. that B is a 0, 1 matrix. We need to show that the
projection of Q(B) in the space of variables x1,..., x,,-I is a maximal row
monotone completion of A. Assume not. Then there exists a row ax <
1 - v(a) of A such that (a,,... ,a,,-,) is a 0, 1 vector, a,, = -1, and no row
of B dominates (a,,... ,a,,-,). Since B is maximal, there exists a 0, 1 row
b of B where b, = 1 and b is not a unit row. Eliminating variable x,, from
ax < 1 - v(a) and bx < 1, we get either a contradiction to the irreducibility
assumption or a 0, 1 row dominating (aI,..., a,-1).

2) =o Case 2 We show that "Since B is a maximal row monotone com-
pletion of A, the inequality E' k+l(aj + Ek=, b,,)x, _< 1 is dominated by an
inequality in Bx <_ 1, 0 < x < 1."
Assume that aj + E= btj = 1 for j = k + 1,.. ., l and ai + Ek I bj -" 0 for

Sl+1,..., n. Let cx < 1- v(c) be an inequality of A'x < 1- v(A*) which
is not in Bx < 1 that dominates E7 k+I (a, + Ek=I b/j)x, : 1 and has the
smallest number of -l's. Now ct = 0, 1 for all t < 1, for if ct = -1 for some
t < k, by applying Fourier-Motzkin to cx < 1 - v(c) and (3) to eliminate xt
we get a contradiction to the irreducibility assumption.

Since c does not belong to B, there exists a row d in B such that, for
some t > I + 1, we have ct = -l and dt = 1. Since d is a 0, 1 vector with at
least two l's, by applying Fourier-Motzkin to dx < 1 and cx < 1 - v(c) to
eliminate xi, we get either a contradiction to the irreducibility assumption
or to the assumption that c has tht smallest number of -1's. 0

Remark The following example shows that, even if A is irreducible, the
number of rows of A* may grow exponentially with the number of rows and

of columns of A. Consider the (n+1) x2n matrixA= ( e ' where
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e is th," ,-dimensional row vector whose components are all equal to +1, u
is the n-dimensional row vector whose components are all equal to 0 and I,,
is the n x n identity matrix; the generalized set packing polytope Q(A) is
irreducible and the matrix A* is obtained by adding 2" nonnegative rows to
A. Note that A is totally unimodular. Moreover this example shows that
the number of maximal row monotone completions of A may be exponential
in the number of rows or columns of A.

4 A Conjecture

We know of two important classes of perfect 0, ±1 matrices:

"* the matrices obtained from perfect 0, 1 matrices by switching signs in
a subset of columns, and

" the balanced 0, ±1 matrices, namely those for which, in every submatrix
with two nonzeros per row and column, the sum of the entries is a

multiple of four. Balanced 0, ± 1 matrices were introduced by Truemper

[9). They are shown to be perfect in [2] and their structure is well
understood, see [4] for a survey.

Using the above matrices as building blocks, it is easy to construct perfect
0, ± 1 matrices that belong to neither class. But we do not know how to
construct all perfect 0, ±-1 matrices. A 0, ±41 matrix A is minimally imperfect
if it is not perfect but, for every J, the polytopes Q(A) n {x, = 01 and
Q(A) nf {xi = 1} have only 0, 1 vertices. The famous strong perfect graph
conjecture of Berge [1] proposes a characterization of the minimally imperfect
0, 1 matrices. See Lovisz (61 and Padberg [7] for some properties that must
be satisfied by minimally imperfect 0,1 matrices. We make the following
conjecture.

Conjecture 7 Let A be a 0, ±-1 matrix such that the generalized set packing
polytope Q(A) is irreducible. The matrix A is minimally imperfect if and

only if it is either

* obtained from a minimally imperfect 0, 1 matrix by switching signs in
a subset of columns, or
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* a matrix with two nonzeros per row and column where the sum of entries
is equal to 2 mod 4.

Partial evidence to support this conjecture can be found in the following
result: if A is square and the pattern of nonzeros is circulant, i.e. for some
positive integer k, aj 6 0 for j = i,..., i + k (where indices are taken modulo
n, the order of A) and aij = 0 otherwise, then the conjecture holds. The proof
of this and other results on perfect and ideal 0, ±1 matrices can be found in
[3].
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