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STUDY ON THE DISCRIMINATION OF EXPLOSIONS AND EARTHQUAKES
AT REGIONAL DISTANCE BY USING CODA QC' METHOD

Xiaofei Chen and Keiiti Aki

Department of Geological Sciences, University of
Southern California, Los Angeles, CA 90089-740

Contract Number: F49620-93-1-0016

OBJECTIVE

The objective of this study is to discriminate the explosions and earthquakes at regional
distance by using the coda wave method. In an earlier study, Su and Aki (1991) found a
significant difference in coda attenuation, Qc-I for quarry blasts and earthquakes at frequencies
of 1.5 and 3 Hz for lapse time less than 30 seconds (see Fig. 1), and they suggested that such a
significant difference in Qc- 1 may be attributed to the seismic surface wave's contributions. To
interpret the observed seismic coda waves we need to consider the seismic surface wave
scattering processes. Wu (1985) and Zeng et al. (1991, 1993) have shown that the energy
transfer theory can successfully describe the seismic body waves scattering processes in a
random scattering and absorption full-space medium. In this study, we shall first use the energy
transfer equations to study the seismic surface waves scattering processes and the surface wave
with body waves scattering processes in order to interpret the Su and Aid's observed results. We
shall then extend this method to study the explosions and earthquakes at regional distance.

RESEARCH ACCOMPLISHED

1. Energy transfer theory for Rayleigh wave

In this section, we shall consider a simple case in which the background medium is a
homogeneous half-space. The only surface wave in this case is the Rayleigh wave. In this
section, we neglect the conversions between the body waves and the Rayleigh wave, and
consider only energy distribution of Rayleigh wave in an absorptive and scattering medium.
The energy density at x, and co, due to a point steady source at x, can be written as

ER(x,0o) = G(x,xs)exp['-iR Ir--rs]j(x8 ,o)+ • a(XJ)G(X,Xs)exp[-1]R Ir--rj]ER(xj.ow), (1)

where,r= x-ez(x4z) is a horizontal vector, and i1R is the attenuation coefficient that includes the

intrinsic (Tl ) and scattering attenuation (TIa), i.e., TIR = TIf + T)R. In eq.(l), Et(x,wo) is the seismic
energy per unit volume carried by Rayleigh wave at point x and frequency co. The first term in
the right-hand-side of (1) represents the direct Rayleigh wave energy radiated from source, and
the second term in the right-hand-side of (1) describes the total scattering energy from all
scatterers (xj). Where a is the scattering cross-section, G(x,xj) and exp[-Ti3 r-rjI] describes the
geometrical spreading and attenuation, respectively. It should be noted that the attenuation is
caused only by the horizontal propagation, since we only consider surface wave in this section.



For weak scattering cases, the scattering cross-section a can be analytically derived by using
Born approximation (Aki and Richards, 1980). Here, for simplicity, we assume that a is a con-
stant. The geometrical spreading function G(x,x'), however, can be determined by the consid-
eration of energy conservation.

Geometrical Spreading Function of Rayleigh Wave:

The direct Rayleigh wave (Rayleigh wave in the background medium) has the following
form (Aki and Richards, 1980),

UR(X,W) = PR(x)[PR(xs)F(xs)] exp(i[kRIr-rsI+x/4]). (2)

8(CR) 2j1 (,t/2)kRjr-rSj
Where,

PR(X) = ri(z,w) e'r + ir2(z,c Q) z, (2a)

with er = (r-rs)Ar-rsI. The corresponding energy density is

EP0°2  IPRz)12 IPgxs).F(xs)I 2 . (3)
2 [8(CR) 211]2tkR Ir--rs

For steady state, the energy rate should be a constant for any closed-surface that encloses the
source, namely,

R{ E(x,0)v) }* dS = constant, for x, inside S. (4)

Where, i is the normal vector of the surface element dS, and VR is the velocity vector of the
Rayleigh wave. Since the surface wave propagates along the horizontal direction, we consider a
cylindrical surface that leads to a simple surface integration,

(ERo(X,Cw)VR }'idS = J dzj RdO E4o(X,)vR.

Where, R = Ir-rs1. Substituting (3) in (4), we find

4(xs ) =-L • F_(x,0)WR) *s dS = 0p2 [-IPR(z)12dz IPR(xs)oF(xs)12

yR kR

- 02 IF(xs)I2 {Irl(zs)nrl2 + Ir2(zs)nz12 } (5)
8(cU)4rlkt

Using the above result, eq. (3) can be rewritten as
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ER(x,w) =P g(z') (6)

Where,

gR(z,O)) = IPR(Z)12  [r1(z,'O) 2 + r2(z,') 21 (6a)

IP(z')12dzi [r1 (zi,co) 2 + r2(z' co)2]dz

Thus, we obtain the geometrical spreading function of Rayleigh wave energy propagation as

G(x,x') = gR(z,wO) (7)
2x1r-r'l

From equation(6a), we can verify the following identity,

"j gR(z,wo)dz = 1. (7a)

Integral equation of scattering Rayleigh wave in random medium:

We are now ready to set up the basic integral equation for Rayleigh wave scattering in
random medium. Substituting eq.(7) in (1), and assuming that the random scatterers are
uniformly distributed and can be described by a continuous distribution n0(density of scatterers),
we obtain the following integral equation,

ER(xG)) = g.(z,)e-n~r--r"1 d(x,co) + TR gR(z'o) e11a•._Rr4ER(x,w)dV(x.) (8)2icir-rslfv, 2nlr-rl

Where, sR = no. Eq.(8) is similar to the energy transfer equation for body wave (Wu, 1985;
Zeng et al., 1991), but with different geometrical spreading functions and the attenuation factors
that are due to the characterizations of surface wave propagation. The dependence on Ir-r'
indicates the horizontal propagation property of the surface wave, whereas, the ga(z,co) expresses
the depth distribution of surface wave energy. Integral equation (8) can be solved by using
spatial domain Fourier transform method. First, we note that equation (8) can be rewritten as

ER(x,cO) = gR(z,o)E?(r,co). (9)

Inserting equation (9) into (8) and using the identity (7a), we obtain

-(ro _ _ •(X , + R e-nr-r R I
= :I(x,,) + E!(r ,(o) d(r'). (10)S2xcr-r.1 f 2nir-r'l
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Where, 1(r) = ((x,y)I-o*<x<+c*, -o*<y<+c}) . The corresponding Fourier transform is

r(k,co) = G2(k)E:(xs,o) + ijsRG2(k)E2(ko). (11)
•R

Where, we assumed r. = 0, and G2(k,c) is given by

G(k,co) dxdy exp(ik.r) Jo(kr)e-nLrdr (Ik2 (1 la)fI 1,x -1k0 + Tk
Substituting this result in eq.(1 1), then taking the inverse Fourier transform over k, we finally

obtain

ER(x,co) = gR(z,ow)PR(r,ijR,Tl) eo(xS,Co)• (12)

Where PR(r,TlRlsR) is the inverse Fourier transform of G6(k,wo),

PR(r,TIRs2) = o(kr)/k2 + (12a)
k + (¶IR)2 -TIS

Solution (12) has a clear physical meaning. The term E:(x 5,wo), as defined earlier, contains the
seismic source information. Function ga(z,0) represents the depth dependence of Rayleigh wave
energy, whereas the function PR(r,TIR,T1ls) describes the propagation and attenuation processes of
the Rayleigh wave energy. PR(rT1,T1) can be obtained by evaluating integral (12a). For a pure
absorption medium (rS--0), we find PR(r,TIR,O) = e'YfR/2,r. This is consistent with our direct
Rayleigh wave (solution in background medium). For general absorption and scattering media,
we can numerically evaluate the propagation and attenuation function Pi(r,11RTr).

It is noted that equation (8) describes a stationary energy transfer process, i.e., ER(x,co)
represents the amplitude of the spectrum of scattered Rayleigh wave. To obtain the time-history
of the scattered Rayleigh energy for a given frequency w and the observational point x, we
introduce a time-delay phase factor of "exp(-iK2Ir-r'I/cDj", then take inverse Fourier transform
over frequency 12. During the inverse Fourier transformation, the frequency co is kept as a
constant which is defined as center frequency. Thus we can obtain the time-history of scattered
energy for a given center frequency co. Fig. 2 shows the energy distributions for the case of
T=i--0.01, il---0.02 and co=lHz. As we expected the scattered energy arrived at time of t=Ir-rSI/cR.

2. Energy transfer theory for S and Rayleigh waves' scattering processes

In the preceding section, we have considered only the scattering processes of Rayleigh
wave, and neglected the body waves' conversions. In this section, we shall consider the coupling



effect of body waves with surface wave. For simplicity, we consider only the coupling process
between the S wave and Rayleigh wave. The energy transfer equation described such an coupled
scattering process can be written as follows,

ER(X,O)) = GR(X,Xs)e'nIlr'r•eoR(X,'O) (1 3a)

+ fv GR(xx')e',Rir'rl (,sRRER(x",) + 1sSRES(xw,) ))dV(x')

ES(x,o) = Gs (x,xs)e'13sr'r-les (xmo) (13b)

+ J Gs(x'x')eC71"x' I{ ¶s RSER(x',(o) + lIssES(x',o)) dV(x')

Where,
ES(x,wo): seismic energy carried by S wave per unit volume at x;
rR : total attenuation coefficient for Rayleigh wave, ilR
rlRR: Rayleigh to Rayleigh waves scattering coefficient;
is- S to Rayleigh waves scattering coefficient;

TI total attenuation coefficient for S wave, rl = 1 + s +. s;
eis absorption coefficient for S wave;

its :Rayleigh to S waves scattering coefficient;
Mlss: S to S waves scattering coefficient;

eg(x5 ,co): total S wave energy rate radiated from source divided by the velocity of S wave;
GR(x,x') the geometrical spreading function for Rayleigh wave given by equation (7);
GS(x,x'): the geometrical spreading function for S wave in a half-space medium, and it can

be approximated by

GS(x,x' ) = I +
4nix-x'l 4nlx-(x')*i

Where, (x')* is the image point of x' with respect to the free surface z=O, i.e., (x')*=(x', y',-z').

Equations (13a) and (13b) can be further simplified. Making a two-dimensional Fourier
transform over the horizontal variable (x,y), equation can be reduced to,

= -R(K,z;zs;o)e:(xso)) (14a)

+ fO R(K,z;z';o))({1sRE (K,z,co) + nsRi(Kzcq))dz'

E(Kz,=) = GS(K,z;z,;o)4(xs,O) (14b)
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+ G (K,z;z';o)('rl, E(K,z;z';co) + rtSSE(K,z',to))dz'

Where, K is the horizontal wave-number and

Gs(Kz;zi;(o)-- G(rz;z';w)exp(-T1ls/r2+(z-z') 2 )Jo(Kr)rdr,

and

dR (K,z;(o)=g(z,co)f exp(-TilRr)Jo(Kr)dr.

Solving the coupled equations (14a) and (14b), we can obtain the solution of energy transfer
processes of S and Rayleigh waves. The time-history of total scattering energy can bL
determined by introducing proper time-delay phase factors to these coupled equations. Figure.
(3) show the time history of total scattering energy of S and Rayleigh waves, for the case of

s---0.01 (km)"1, lRS---O.0l(km)-1, TjsS=0.02(km)-1, iRF=0.03(km)"1, 3 RR=)0 2 (m)"1 and 1 sR
0.01(km)-1 for various source depths and center frequencies. Our results indicate that the
shallower the source depth and the lower the frequency is, the contribution of scattered Rayleigh
waves is larger. This is .consistent with the observed results of Su and Aki (1991) as shown in
Fig. 1, where earthquakes have an average focal depth of 8 kIn, whereas the average focal depth
of quarry blasts is about 10m. Therefore, the latter contains much Rayleigh waves' contributions
while the former dominated by S waves only. We also found that the contribution of Rayleigh
waves decreases as the center frequency increasing. The suppressing of surface wave
contribution, however, is not strong enough to directly fit the observed results shown in Fig. 1.
This indicates strong attenuation of surface waves at higher frequencies due to absorption.

CONCLUSIONS AND FUTURE STUDIES

To date, we have developed the energy transfer theory for Rayleigh and S wave
propagation in a random scattering and attenuation half-space medium. The solutions of our
energy transfer equations can qualitatively explain the Su and Aki's observed results about the
local earthquakes and quarry blasts (1991). Our study indicates that the surface wave scattering
become important for the events with shallower focal depth, for instance, the quarry blasts and
nuclear explosions. For the explosions at a regional distance, we expect similar conclusions. To
solve such scattering problem at a regional distance we shall extend our energy transfer equations
to more general cases. At the same time we shall calculate the coda Qc1 of the Chinese nuclear
explosion and the nearby earthquakes by using the CDSN data. We expect that a similar
discrimination between explosions and earthquakes as observed by Su and Aki for local events
(1991) can be found in the events at regional distance, and our energy transfer theory can offer a
physical basis.
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Figure 1. Coda Q-1 vs. lapse time obtained using the local earthquakes and
quarry blasts in the south central Mojave Desert aream each open circle on the plot
represents one measurement for a particular seismogram on a time window of 34 sec
for frequency 1.5 Hz, 25Hz for 3 Hz, and 20sec for 6-z and 12Hz. The solid line
connects the mean points (solid circles) calculated by averaging the individual
measurements in each 8 sec time interval with 4 sec overlapping at the adjacent mean
points. The standard error of the mean is also shown for each mean point (from Su
and Aki, 1991).



10.2 Scattered Rayleigh Wave Energy
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Figure 2. Scattered Rayleigh energy for the case of 'li'0.03(kmY)",
ii=O.O2(im)'- and •3=IHz. Where r-30km and cw-2.Skn/sce.
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