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We have conducted research on the modeling and control of nonlinear systems. Our efforts have

been directed toward understanding the control of truly nonlinear behavior as well as the synthesis
of control laws for systems that can be nearly trandormed into linear systems (via approximate
feedback linearization).

We have introduced a new framework for understanding and analyzing the stability and control
of nonlinear maneuvering systema. This approach is based on the concept of reasverse dynamics.
We have demonstrated the usefulness of this approach in the control of the swinging energy of
the pendulum for an ezperimeutal cart and pendulum system. On the theoretical side, we have
provided a new method for the construction of converse Lyapunov functions for exponentially
stable periodic orbits.

New techniques for the approximate feedback linearization of nonlinear systems have been
developed. In order to construct a feedback linearizing coordinate transormation, a clams of
optimization problems has been formulated for finding approximate solutions to an appropriate
system of partial differential equations. In contrast to previous results, this approach does not
require differentiation of the data describing the system and is therefore applicable to systems
with, for example, tabular data.

14. SUILSICT TERMS IL. HUMSU. Of PAGIS

Nonlinear control. I C

17. SWIUr"--v ', I L_ . Sl I UT @ASSICAT I L SO ....... 2L MUMTATION OF AS TRACTof aUs OF ThIs PAG OF ASSTh•AT
Unclassified Unclassified Unclassified UL

-I• DIC I~'- I
Amd no 

-tne



hp 2o7 d for PubIle release I
diastrbution Uhalhalted.

Modeling and Control of Nonlinear System ......Acceyioa:; ruo . ..
AFOSR-91-0255 Final Report

1 May 91 - 31 August 93 NTIS c ,

John E. Hauser U
Dept. of Electrical and Computer Engineering ..... .....

University of Colorado
Boulder, CO 80309-0425 Dist'bYtio' .

(303) 492-6496 [fax 492-2758] . ......-

hauser@boulder.colorado.edu Ailataty "_s

work performed at Oist S,:.,cial

Department of EE-Systems

University of Southern California •. I
Los Angeles, CA 90089-2563

We have conducted research on the modeling and control of nonlinear systems. Our efforts have been di-
rected toward understanding the control of t.ruly nonlinear behavior as well as the synthesis of control laws
for systems that can be nearly transformed into linear systems (via approzimate feedback linearization).

Numerical Approximate Feedback Linearization
We have studied the approximate feedback linearization of nonlinear systems of the form

i = f(c) + g(z)u

where f and g are system vector fields that may be available only as numerical data. The problem is to find
coordinate functions 0i&(.), i = 1,..., n, so that the transformed system (4 = 4a•(z))

•._• = •.+ 10_ (X) + #I _ (X)u

+n- On= O-1W
4n = d(z)+ a(z)u + On(z)+On(z)u

is close to a linear system over some (compact) region 0I of the state space. That is, we wish to make
Oi(x) :-- LfO,(x) - Oj+&(:) and G,(x) := L,~j(x) small over 0.

We have developed and implemented algorithms [2, 3] to construct the necessary coordinate functions by
solving an unconstrained weighted least squares problem of the form

mi j {~I { t4(z) (# )� - Lj',(z))2 +w(z)(LOi z))2}}

where 7 is a suitable finite dimensional function space. In particular, we have selected a space of tensor
product B-splines defined over 11 with useful boundary conditions (e.g., 01 (z) = zj and 0&(z) = 0, i = 2,..., n
on the equilibrium manifold C). Noting that Oj(z) - •'Bj (z)ae with basis functions B1 (.) this problem
then becomes

mineT a +pTa + r



which can be solved by solving the linear system

2Qa = -p.

The dimenbion of the coefficient vector a can become somewhat large depending on the dimension of the
space as we'l as the dimension of the function space. Fortunately, due to the finite support property of B-
splines, the matrix Q is sparse. The elements of Q and p are computed by estimating the above integral over
the small cubes associated to each basis function. By fitting the components of f and g with polynomials
over each of these cubes, we have developed an efficient quadrature-like technique for estimating the elements
of Q and p.

We have seen that this approach is effective in constructing feedback linearizable nonlinear system ap-
proximations to a given nonlinear system. Unlike most traditional feedback linearization approaches, this
new technique does not require the differentiation of system vector fields and is thus applicable to systems
where the vector fields are only available numerically. Such approximations can be used to develop nonlinear
control systems.

Several important questions remain. For example, what is a fair way to compare the performance of
various nonlinear control schemes? In many cases, it is difficult to characterize what behavior we would like
(or should expect) the nonlinear system to exhibit. This is in marked constrast to current state of afrairs for
linear systems.

Unfortunately, most control objectives continue to be specified from a linear point of view. This, in many
cases, leads to quite acceptable results but may be unnectssarily limiting our possibilities. In order to break
free from this line of attack, we feel that it is crucial that a number of nonlinear benchmark problems be
developed. Furthermore, it is essential that these benchmark problems involve a significant experimental
component. Without an experimental component, many important nonlinear effects will not be uncovered
(we will be merely stretching our linear ideas).

Nonlinear Control about a Periodic Orbit

Much of the research in nonlinear control has focused on extending linear system theory and results to
nonlinear systems. However, since linear systems are a strict subset of class of nonlinear systems, this
approach will certainly miss many important possibilities. With this in mind, we've been investigating the
control of nonlinear systems around period orbits-the simplest truly nonlinear phenomenon. Furthermore,
to reduce the prevalence of artificial assumptions, we have included a substantial experimental component
in our investigation.

M

Figure 1: A cart and pendulum system

Our research has been motivated by the common cart and pendulum system shown in Figure 1. Rather
than the usual objective of balancing the inverted pendulum, we chose to make regulation of the swinging
energy of the pendulum the control objective. The results of this research were presented at the 31st CDC
and have been accepted for publication (1].

The (normalized) dynamics of this system have the simple form

= -sin-coseuS= . (1)
zc= U
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where the input u is taken as the cart acceleration. The objective was to regulate the swing energy H(O, w)
• 2/2+( 1-cos 8) (where w = 9) to a desired swing energy H. Defining the energy error E(9, w) := H(O, w)-H
we chose the control law

u = aw coso E - (2(w+v, + we x) (2)

where a, C, and wc are design parameters and vc = ie. This control law (structure) was selected on the
following grounds. If the cart dynamics is completely ignored (in the control and the dynamics), the closed
loop error dynamics

S= -aW2 cos2 OE

can be shown, using the theory of Poincari maps, to be exponentially stable (for almost all initial conditions).
The remaining portion of the control law was added to stabilize the cart position without destroying the
stability of the periodic orbit.

The stability and robustness characteristics of the closed loop system are best understood by looking at
the dynamics transverse to the desired periodic orbit. For this system, E, zx, v, provide suitable transverse
coordinates. By showing that the (periodic) time varying linearization of the transverse dynamics about the
periodic orbit was asymptoLically stable, we were able to conclude that the orbit was itself exponentially
stable. Furthermore, since we analyzed the (time-varying) linear system using a small gain approach, the
overall system possessed additional robustness properties. These characteristics were further confirmed
experimentally. The experimental component also led to interesting insights concerning the use of state
estimators for nonlinear control [1].

In general, the local dynamics about a periodic orbit can be described by

i = -+f1(, p) (3)

0 = A(O)p+f 2 (0,p)

where f, and f 2 are first and second order, respectively, in the transverse coordinates p. Many powerful
analysis and synthesis tools can be contructed by noting that the periodic orbit is exponentially stable if
and only if the transverse linearization

dp
T = A(8)p (4)

is asymptotically stable.

Figure 2: A domain of attraction estimate for a periodic orbit.

We have, for example, used this fact to provide a means for constructing converse Lyapunov functions
for exponentially stable periodic orbits [4]. Such functions can be used to estimate the domain of attraction
of the stable periodic orbit. Figure 2 illustrates the domain of attraction of the periodic orbit of a simplified
three dimensional version of the closed loop cart and pendulum dynamics (obtained by replacing the second
order cart dynamics with a first order dynamics). We are also currently applying the ideas to the nonlinear
Ho, control of systems with periodic orbits.
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