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ABSTRACT

Predictions of propagation loss made by the computer programs Radio Physical Optics (RPO)
Computer Software Configuration Item (CSCI) and M-Layer are compared. The results of the high
frequency parabolic equation approximation. as formulated in RPO, agree almost always with
those derived from the low frequency modal computation as formulated in M-Layer. But at low
altitudes in the neighborhood of the radar horizon, deviations between RPO and M-Layer become
significant for some cases. RPO appears not to be able to properly account for the effects of a
high altitude surface-based duct at a short range. Since the discrepancies fall in regions of
importance to naval operations, a definitive resolution is an urgent task to be undertaken in the
immediate future.
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I. INTRODUCTION

A. THEORETICAL BACKGROUND

The importance of environmental effects on communication links and radar systems

has been recognized for well over two decades. The proliferation of computer programs

such as the Integrated Refraction Effects Prediction System (IREPS) [Ref. 1] and the

gngineer's Refractive Effects Prediction System (EREPS) [Ref. 2] within the Navy for

the prediction of propagation loss of radio waves, together with the general availability

of computing power brought along by the personal computer (PC) revolution, has greatly

increased the Navy's awareness of such effects.

EREPS essentially is a PC version of IREPS, with provisions for greater flexibility

in setting input parameters. It employs a combination of different methodologies to

deduce the propagation factor: my-optics within line-of-sight; curve-fitting, together with

frequency scaling based on the assumption that a single mode contributes to the complete

field strength (Ref. 31, output from M-Layer [Ref. 4, 5] in the over-the-horizon region,

and linear interpolation of the results from my-optics and M-Layer in the region in

between. Through such curve-fitting techniques, EREPS (and IREPS) gains speed at the

expense of accuracy.

The M-Layer program, though time-consuming to run, provides results beyond the

crude approximation of EREPS, especially in the penumbra region where hundreds of

modes are required to give an accurate reading. As can be seen in Chapter III, M-Layer
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works well at low altitudes, even in the illuminated region. The theory of M-Layer is

formulated in terms of the excitation and propagation of electromagnetic waves in the

earth-atmospheric waveguide. The earth, in fact, is treated as a flat, lossy, homogeneous

half-space. Its curvature is compensated for by postulating the existence of a linearly

increasing component of the index of refraction in the atmosphere, in addition to the

slight natural variation of the index of refraction of real air. The rate of increase of the

linear component is set to the inverse of the effective earth radius. This new index of

refraction is called the modified index of refraction, and this method of simplifying the

problem constitutes the earth-flattening approximation [Ref. 6]. Combined with the

piecewise-linear approximation to the modified index of refraction, the eigenfunctions of

the flattened earth-atmospheric waveguide are Airy functions of different variables over

different regions of the atmosphere of linearly varying modified refractive indices. The

waveguide modes are found numerically, which is the process taking up most of the

computation time.

Recently, the RDT&E Division of the Naval Command, Control and Ocean

Surveillance Center (NRaD), which previously produced IREPS, EREPS and M-Layer

when it was known as Naval Ocean Systems Center (NOSC), came out with a Radio

Physical Optic (RPO) program [Ref. 7]. It is structumr in the same spirit as EREPS:

different approximations are used over different regions of space. The part in EREPS

which relies on curve-fitting of M-Layer predictions is replaced with direct computation

based on the parabolic equation approximation (PE) (Ref. 8, 9]. This makes RPO far

superior to EREPS. Computational expediency precludes extensive application of PE.
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Instead, PE computations are launched at a range of 2.5 kim, unless the incident ray to the

earth gets near the diffraction limit first. A split-step, outward advancing scheme for

solving the parabolic equation is utilized. At each step, a fast Fourier transform (FFT) is

performed. The FFT size is set between 7 to 10 powers of 2, while the separation between

FFT data points is limited to within 2 to 49 wavelengths. Hence, PE computations will

never be done above a height of 50,176 wavelengths. At 10 GHz, this represents a height

of no more than 1.50528 kIn. To avoid aliasing, the FF1 coefficients computed from 3/4

of the height to the top of the region where the FF1 is carried out are filtered with a

factor which decreases from 1 to 3/4 following a sine-squared variation. Furthermore, the

initial field strength at the range where PE computations start is weighted by a Gaussian

factor which decays to -70 dB over the same altitudes. Thus, only the lowest 3/4 of the

FFT results are actually used as PE solutions.

To fill the remainder of the space, RPO relies on ray-optics until the incident ray

to the earth approaches the diffraction limit. Beyond this limit, PE results are utilized

where they are available. This is called the PE region. Above the PE region, if the space

is not covered by ray-optics, an extended optic (XO) region is defined. The PE solutions

at the greatest height are treated as rays emanating from below, their interferences with

the direct rays, if present, are taken as the fields in this region.

Even within the ray-optics region, RPO subdivides this region into flat-earth (FE)

and ray-optics (RO) regions. The earth is considered as flat and all refraction effects are

ignored in the FE region, which is limited to 2.5 km in range unless the antenna is

elevated beyond 5P.
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B. HIGH-FREQUENCY VERSUS LOW-FREQUENCY APPROXIMATION

Beyotid regions where ray-optics is applicable, RPO relies on PE. The parabolic

equation approximation to the Maxwell wave equations is developed under the optical

assumption that the operating frequency is so high that a main direction of wave

propagation in terms of a plane wave can be specified. Hence, only the variation of the

"envelope" which modulates the magnitude and phase of the plane wave has to be

considered, instead of the fast variation of the complete wave to the order of the

wavelength. On the other hand, M-Layer has its theoretical basis in an eigenfunction

expansion. This is an appro•:h most suitable for low frequency applications because more

and more modes will be needed as the size of the geometrical structure becomes large

compared to the wavelength. Even though M-Layer removes the earth radius as the

dominating length scale through the adoption of a flattened earth, the thickness of the

overall atmospheric layers specified is still far greater than the wavelength in all

applications. The comparison of the predictions of PE against M-Layer is one between

two theories which approach a problem from two extremes. The fact that the results of

the high frequency PE computations as formulated in RPO agree almost always with those

derived from the low frequency modal computation as formulated in M-Layer represents

a significant engineering achievement by NRaD. However, there are disagreements at low

altitudes in the neighborhood of the radar horizon under some ducting conditions. These

are regions of importance to naval operations. A definitive resolution of these

discrepancies is an urgent task to be undertaken in the immediate future.
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C. SCOPE OF THE WORK

In this.thesis, the radiation of a vertically polarized transmitting antenna located at

a height of 15 meters is investigated. Three modified refractive index proflies, with the

first two given in Ref. 7, are utilized: a 300 m surface-based duct, a 14 m evaporation

duct, and the combination of these two profiles with one sitting on top of the other. Three

frequencies at 3 GHz, 6 GHZ and 12 GHz are chosen which give an approximate

coverage of the radar bands. Since only low altitude, near the horizon propagation is of

interest, propagation loss for altitudes up to 100 meters within the range of 15 to 110 km

are evaluated by both RPO and M-Layer for comparison.
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IL PROGRAM SETUP

A. TEST CONSIDERATIONS

Of interest to this thesis research are the propagation loss predictions made by the

parabolic equation approximation method and by waveguide mode computations. The

NPS version of M-Layer is a waveguide mode computation program which has been

greatly enhanced in its accuracy and efficiency [Ref. 51 from its original incarnation

assembled by NOSC (Ref. 4]. As explained in Chapter I, the RPO program, completed

by NRaD and available to NPS only recently, includes several methods of computation

applied to different regions of space. To ensure that only predictions made under the

parabolic equation approximation are included in the comparison, the RPO FORTRAN

source code (Ref. 7] is used. This source code consists of a set of subroutines. The output

for each region comes from a distinct subroutine. By instructing every RPO subroutine

which computes the propagation loss to associate a code number to its output, the

predictions made with the parabolic equation approximation are easily identified.

The RPO FORTRAN source code comes without a main program. Nor does it

contain input routines and files. Thus, the first task of this research was to write a main

program for RPO which will call the relevant subroutines to compute the desired output.

Next, data files had to be created to provide the program with refractive index profiles

and other necessary parameters. An input subroutine had to be written to feed these data

to the main program and the RPO subroutines. Furthermore, to ensure that both RPO and

6



M-Layer use the same environmental data and compatible input parameters, a new M-

Layer input subroutine was created which replaces the subroutine of the same name in

the NPS version of M-Layer. Finally, the output data are presented graphically using a

plotting routine written in MATLAB, version 3. Specific considerations put into these

subroutines are discussed in the following sections, with the RPO main program

"RPOmain," the RPO input routine "RPOstdin," the substituting M-Layer input routine

"MLstdin," listed respectively in Sections 1 through 4 of Appendix A.

B. RPO MAIN PROGRAM

In RPO, the parabolic equations are solved with the split-step algorithm. As a

prerequisite, RPO has to estimate the electric field at an initial range. It then proceeds.

at a pre-deternined step size, toward the range where a propagation loss prediction is

called for, computing the electric field at every step along the way. Hence the subroutines

of RPO can be separated into two types: those providing other subroutines with initial

values and defining their boundaries of application, and those handling the PE

computation at each step. After the tedious but necessary bookkeeping of declaring global

variables and setting up common blocks to pass along values, the main program first

reads in data by calling the input subroutine "RPOstdin" and initializes the subroutines

by calling "RPOini" before entering into a loop to step the computation through the

desired range and write the propagation loss predictions within the selected region to an

output file. A flow chart for the main program, RPOmain, is shown in Figure 1. A listing

of the program is included in Appendix A.

7
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Data input

(RPOstdin)

Initialize

RPO subroutines
(RPOini)

Step field computation
to current range

(RPOstp)

[ Inceent range current ranesut
N No

Mxmum rangetofl
reached ?tofe

Yes,

Figure 1. Program Flow of RPOmain
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C. INPUT FILES AND SUBROUTINES

RPO and M-Layer have different capabilities and require different types of input.

For example, RPO needs a presumed radiation pattern to set up its initial electric field to

begin computation; it cannot compute electromagnetic (EM) radiation directly from a

specified current distribution. On the other hand, M-Layer computes the radiation from

a dipole source; it thus can not simulate antennas arbitrarily. RPO is able to handle

multiple refractivity profiles at different ranges due to further approximations made in the

theory beyond the reduction of the wave equation to a parabolic equation while M-Layer

is restricted to deal with a single profile. Nevertheless, they use many parameters in

common. Since the purpose of this work is to compare the predictions of these two

programs, it is desirable to have them read in exactly the same files whenever possible.

This is especially true for the refractivity profiles.

For this thesis, three ASCII files are set up: one contains the parameters common

to both RPO and M-Layer, including the modified refractivity profile; another contains

RPO specific parameters such as the antenna pattern; the third contains parameters used

only by M-Layer such as the parameter aloss, which specifies the greatest range

attenuation rate of the modes to be searched, in dB per kilometer. The parameters which

are common to both RPO and M-Layer are listed in Table ILL. Those specific to RPO

are listed in Table 112. The M-Layer specific parameters are listed in Table 11.3. Two

batch files are written to combine automatically the two proper files for input into RPO

and M-Layer respectively.

9



Table 11.1. Input parameters common to RPO and M-Layer.

RPO M-Layer Description

nlevis nzlayr number of profile levels(a)b)

wind wind surface wind speed

fimhz fqmzin operating frequency

ipolar mpol antenna polarizationtiXc)

ztran ztinit transmitter height

m/Xout nx number of receiver ranges

xinit xinit initial range of the receiver

deLX deLX receiver range increment

nzout nzr number of receiver heights

zrinit zrinit initial height of the receiver

delzr delzr receiver height increment

zprof zi heights at which profile data

are specified (an array)

capm zim profile data (modified index of

refraction; an array)

(a) RPO: from I to n/evs; M-Layer from 0 to nzlayr.

(b) follows M-Layer definition, adjust RPO during input.

(c) RPO: l=horizontal; 2--vertical; M-Layer O=horizontal; 1--vertical.

10



Table U1.2. RPO-specific input parameters.

RPO Description Remarks

nXout number of output ranges computed calculated by Xmax/deLx

where

Xmax=Xinit+delx*mlxout

selx minimum range to output data

xprof ranges at which index of refraction set to 0.0

profiles are specified

nprofs number of profiles specified set to I

ipatrn antenna pattern use 1 or 3 only

1: omni-direction 2: sin(x)/x

3: Gaussian 4: cosecant-squared

5: height-finder 6: user defined

beamw antenna elevation beamwidth

elang antenna elevation angle set to 0.0

nfacs number of height-finder data set to 0 (not used)

iscaat includes troposcatter set to 0 (not used)

0: no 1: yes
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Table [U.3. M-Layer-specific parameters.

M-Layer Description Remarks

mfile 0: read input and compute eigenvalues

1: read eigenvalues as input

deyfq frequency increment set to 0.0 (not used)

nfreq number of frequencies to be used set to 1

aloss maximum range attenuation rate in set to 2.0 or 5.0

dB/km of modes to be found

delzt height increment of transmitter set to 0.0 (not used)

nzt number of transmitter heights set to 1

refz reference height at which refin and set to 0.0

refgab are given

refm modified refractivity at the set to 339.0

reference height

refgab modified gas absorption at the set to 0.0 (not used)

reference height

12



In RPO, special formulas for the dielectric constant and conductivity of sea water

as a function of frequency are used. Sea surface roughness is also given in terms of a

function of wind speed. To incorporate this into M-Layer, the input subroutine "MLstdin"

for M-Layer is modified to carry out these computations using the same formulas before

providing these parameters to the program, even though surface roughness is not

considered in this comparison.

D. VALIDATION

Before proceeding with the comparison, a few RPO test cases are run using this

newly written main program and the input subroutine. Specifically, the tests listed in

Ref. 7 under the names LOBW (low beam width limit), SBDUCT (surface-based duct)

and EDUCE (evaporation duct) are carried OUL The tabulated results in Ref. 7 are

reproduced exactly as long as the range increment deix and height increment delz are the

same as those specified therein. Otherwise, variations of up to 4% are observed.

13



"M. RESULTS

Propagation of waves through several refractivity profiles at many frequencies has

been investigated. A clear trend has emerged which shows disagreement between the

results from RPO and M-Layer at ranges near the horizon when surface based ducts are

involved. In this thesis, results from three profiles are presented: a 300 m surface-based

duct which is specified and used in Ref. 7 under the test name SBDUCT; a 14 meter

evaporation duct which is also specified and used in Ref. 7, under the test name EDUCT;

and a combination of these two ducts by merging the profile of the evaporation duct with

that of the surface-based duct. The modified refractivity profile of the 300 m surface-

based duct is given in Table M1. 1. The profile for the 14 m evaporation duct is given in

Table 11.2. The profile for the combination Table 11.1. A 300 m surface-based duct

is given in Table 111.3. For each of the

three profiles, three frequencies at 3 GHz, meters

6 GHz and 12 GHz are selected. With the 0 0.000 339.0

transmitter fixed at a height of 15 m, the 1 250.0 368.5
2 300.0 319.0

propagation loss of up to 100 m at ranges

3 1000.0 401.6

of 15, 20, 30, 40, 50, 60, 70, 80, 90, 100 -

and 110 km is plotted. Since the results at different frequencies show similar features,

only those at 6 GHz are included in this chapter. Those at 3 GHz and 12 GHz are

collected in Appendices B through D.

14



Table 01.2. A 14 m evaporation duct. Table I1.3. A 300 m surface-based
duct over a 14 m evaporation duct.

i " Zi Mi i 7-1 Mi

meters
meters

0 0.000 339.00 0 0.000 339.00

1 0.040 335.10 1 0.040 335.10

2 0.100 333.66 2 0.100 333.66

3 0.200 332.60 3 0.200 332.60

4 0.398 331.54 4 0.398 331.54

5 0.794 330.51 5 0.794 330.51

6 1.585 329.53 6 1.585 329.53

7 3.162 328.65 7 3.162 328.65

8 6.310 327.96 8 6.310 327.96

9 12.589 327.68 9 12.589 327.68

10 14.000 327.67 10 14.000 327.67

11 25.119 328.13 11 25.119 328.13

12 39.811 329.25 12 39.811 329.25

13 50.119 330.18 13 50.119 330.18

14 63.096 331.44 14 63.096 331.44

15 79.433 333.12 15 79.433 333.12

16 100.000 335.33 16 100.000 335.33

17 125.893 338.20 17 125.893 338.20

18 158.489 341.92 18 158.489 341.92

19 199.526 346.69 19 199.526 346.69

20 209.526 347.87 20 209.526 347.87
21 250.0 368.5

22 300.0 319.0
23 1000.0 401.6

15



For all the cases, the polarization is chosen to be vertical. The receiver height

increment delzr is set at 0.5 m. The receiver range increment de/k is set at 2500 m. For

RPO computations, the maximum height zmax is set at 100 m; the maximum range xmax

is set at 115 km. The Gaussian beam pattern with a beamwidth of 50 is chosen for the

antenna. Within the altitudes and ranges considered, there is no perceivable difference

when the omni-directional pattern is used instead. For M-Layer computation, the

parameter aloss is set to 2 dB/km. In all the figures, results from M-Layer are drawn as

a solid line. Results from RPO are marked with asterisks if they are in the PE region and

with dots if they are in the RO region. For easy reference, the height of the transmitter

horizon at each distance, based on the four-thirds effective earth radius, is indicated with

a horizontal line drawn across the figure on which it is present. It starts to appear in the

figure for the 20 km range. Figures beyond 50 km lie below the horizon completely and

this horizontal line cannot be seen.

In what follows, results of RPO and M-Layer computations at 6 GHz are presented.

Their analysis and discussions are given in Chapter IV.

A. 300 METER SURFACE-BASED DUCT

Figures 2 through 12 show the propagation loss at various ranges from 15 through

110 km when a 300 m surface-based duct is present. This is the profile in which most

significant deviations between RPO and M-Layer are observed, especially at 50 and 60

km ranges. Even at 40 kn, the two differ by 10 to 30 dB at low altitudes. On the other

hand, the two agree well within line-of-sight and deep shadow regions.

16
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B. 14 METER EVAPORATION DUCT

Figures 13 through 23 show the propagation loss in the presence of a 14 m

evaporation duct. RPO and M-Layer agree well over the entire range. From the figures

in Appendix C, it can be seen that this is true for all the frequencies investigated, with

only a less than 1.5 dB difference around where the loss is maximum for the 12 GHz case

in the over-the-horizon region.
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C. SURFACE-BASED DUCT OVER EVAPORATION DUCT

The agreement in one case and the disagreement in another between RPO and M-

Layer prompted an investigation into a combined profile consisting of these two ducts.

Figures 24 through 34 show the propagation loss under such a refractivity profile. At

6 GHz, ROO and M-Layer agree well over the entire range except between 50 and 60 km

when M-Layer displays an increase in field strength toward the surface over the lowest

few meters while RPO continues to decrease. This leads to more than 10 dB deviations

in propagation loss at these ranges. At 12 GHz, the two programs agree even better when

M-Layer does not show the increase toward surface level within the last few meters. At

3 GHz, this difference is more pronounced. Below 10 to 20 m, this divergence starts to

appear and leads to deviations in propagation loss of up to 40 dB.
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IV. ANALYSIS AND CONCLUSIONS

A. ANALYSIS

Since RPO is a high frequency approximation while M-Layer is based on a low

frequency technique, and the vertical extent within which the index of refraction of the

atmosphere is specified is much larger than the wavelength under consideration, RPO is

expected to be more accurate at short ranges. The fact that M-Layer matches the results

of ray-optics computations in Fig. 13 at 15 kIn from the transmitter for heights over 90

m above ground confirms the reliability of M-Layer. RPO and M-Layer agree well also

in the region far beyond the radar horizon. What happens then over the region in-between

when a 300 m surface-based duct is present?

The physics of the situation is revealed if the earth-flattening approximation as

prescribed in Ref. 6 is re-examined. In fact, both RPO and M-Layer are treating the

propagation problem as one involving only a flat "earth" surface. The waves are traveling

in a fiat, layered dielectric waveguide. There is no blockage of rays due to the earth to

create a shadow; instead, the rays are bent away from the "shadow" region by the linearly

increasing component of the modified refractivity. The ducting structure bends the wave

back towards the surface. Properly implemented, these two programs should provide

identical prei;ctions over ranges of common validity.

Above a flat surface, the concept of interference between a direct ray and a reflected

ray, even though bent by the atmosphere, remains valid. The bending shifts the locations
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of constructive and destructive interferences, but their separations are less affected. From

Figs. 2 and. 13, it is clear that at 15 kin, the separations between two neighboring nulls

above ground are about 28 m, independent of the particular environment and close to a

free-space, parallel-ray estimate of 25 m. The separations of nulls are expected to increase

as the range is increased. This is observed in Figs. 13 through 23 for the propagation in

the presence of the 14 m evaporation duct. But when the 300 m surface-based duct is

present, both RPO and M-Layer predict, for ranges greater than 90 kin, similar field

strength variations which oscillate much faster than those observed within the line-of-

sight region. It is clear that this is a phenomenon due to the presence of the surface-based

duct. In terms of high frequency ray-optics terminology, this fast oscillation is due to

additional rays which are bent back by the duct. In terms of waveguide mode theory, it

is due to the propagation of waves in many modes established in the surface-based duct,

each at a distinct phase velocity, thus interfering severely.

The deviations between RPO and M-Layer at ranges from 30 through 70 kin which

show up in Figs. 4 to 12 can now be explained. RPO fails to fully take into account the

effects of a high surface-based duct. This argument is further supported by investigating

the effects of lowering the duct height. At all frequencies, the fast oscillation

characteristic of the presence of a surface based duct sets in at a shorter range with a

lower duct height Agreement between RPO and M-Layer gets better as the duct height

is lowered. These can be observed from the results presented in Appendix E for

propagation in a 150 m surface-based duct and in Appendix F for propagation in a 100 m

duct.
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B. CONCLUSIONS

At low altitudes in the neighborhood of the radar horizon, deviations between RPO

and M-Layer can be significant. RPO appears not to be able to properly include the

effects of a high surface-based duct at a short range. It is recommended that parabolic

equation computations should start at a closer range than currently prescribed in RPO.

The altitude at which the filtering of field strength starts should always be much higher

than the duct height.
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APPENDIX A: PROGRAM SOURCE CODES

This Appendix contains listings of the RPO main program RPOmain, the RPO input

subroutine RPOstdin, the M-Layer input subroutine MLstdin and the MATLAB M-file

RPOMLA.M for plotting the propagation loss computed with RPO and M-Layer.

1. Subroutine RPOmain

program RPOmain
c
c PURPOSE: Main program for RPO.
c
c
c input:
c Argument List: None
c Common: fmhz, ztran, ipolar. ipatrn, beamw, elang, hfang, hffac, nfacs
c capm, zprof, nprofs, nlevls, xprof, wind
c iscatt, maxlev, maxnx, nxout, maxnz, nzout, maxpro, xmax, zmax
c
c
"c output:
"c Argument list: None
"c Common: losscb, srng
c
c
"c subroutines calling RPOmain: None.
"c subroutines called by RPOmain: rpostdin, rpoini, rpostp,
c
c
c common block
c /system/
c fmhz : EN system frequency
c ztran : antenna height
c ipolar: antenna polarization
c ipatrn: antenna pattern
c beamw : antenna vertical beam width
c elang : antenna elevation angle
c hfang : height-finder angles array in degrees (0. to 99)
c hffac : height-finder power reduction factor array (0. to 1.0
c nfacs : number of power reduction angles/factors for user-defined
c height-finder radar
c
c /enviro/
c capm : (*) profile modified refractivity array
c zprof : (*) profile heights in meters (.GE. 0.)
c nprofs: number of profile levels
c nlevls: number of refractivity profile levels (1 to maxlev)
c xprof : (*) range to each profile in meter (.GE. 0.)
c wind : wind speed at range zero in meter/sec (.GE. 0.)
c
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c /init/
c iscatt: flag to include troposcatter
c maxlev: maximum number of profile level above zero height
c maxnx : maximum number of output range points
c nkout : number of output range points (1 to maxnx)
c maxnz : maximum number of output height points
c nzout : number of output height points (1 to maxnz)
c maxpro: maximun number of profiles beyond zero range
c xmax : maximum range for output in meter
c zmax : maximum height for output in meter
c Declares the types of parameters

character*8 filein

integer*4 ipolar, ipatrn, nfacs, nprofs, nlevls, iscatt,
+ nxout, nzout, maxlev, maxnx, maxnz, maxpro

integer*2 losscb, srng

real fmhz, ztran, beamw, slang, hfang, hffac,
+ xprof, wind, capm, zprof, xmax, zmax

c The following include file contains a PARAMETER statement to
c dqfine maximun array sizes maxpro, maxlev, maxnz

INCLUDE 'RPOSIZE. INC'

c
c The following PARAMETER statement defines maximum array
c dimensions used throughout RPO. Generally, these constants
c will have to be changed for each implementation of RPO.
c GLOSSARY:
c maxlev: maximum number of profile levels above zero height.
c maxnx : maximum number of output range points.
c maxnz : maximum number of output height points.
c maxpro: maximum number of profiles beyond zero range.
c

PARAMETER (maxnx = 440, maxnz = 280, maxlev = 50, maxpro =32)
C

dimension losscb(maxnz),srng(maxnz)

COMMON /system/ fmhz, ztran, ipolar, ipatrn, beamw, slang,
+ hfang(10), hffac(10), nfacs

COMMON /enviro/ nlevls, nprofs, wind, zprof(0:maxlev, 0:maxpro),
+ capm(0:maxlev, 0:maxpro), xprof(0:maxpro)

COMMON /init/ iscatt, nxout, nzout, xmax, zmax
COMMON /misc/ jminFE, nx, xstep, zstep, wl, rk, fterm, pi
COMMON /inout/ filein, selx, mlxout

"c read data from input files
write (*,*) 'Begin with rpostdin'
call rpostdin

"c initialize RPO
write (*,*) 'Begin with rpoini'
call rpoini(nsteps)

"c call rpostp to compute propagation loss
"c and write the result to a file on disk



open(16, file=filein//'.out')
do iul, nxout

call rpostp(x, losscb, srng)
x.kmzx*.001
write(*,*) 'Begin with rpostp',i,xkm
if (x.ge.selx) then

do j=l,nzout
write (16,1102) xkm, j*zstep, .l*losscb(j), srng(j)

end do
end if

end do
1102 format(f9.2, 6x, f6.1, 5x. f6.2, 5x, i2)

end

2. Subroutine RPOstdin

"c Subroutine RPOstdin reads in data from a file concocted from two
"c files: one contains parameters specific to RPO, the other contains
"c and parameters used by both RPO arndM-Layer, including the modified *
"c refractivity, the transmitter height, and the output points. *

subroutine RPOstdin

"c The following include file contains a PARAMETER statement to
"c define maximun array sizes maxpro, maxlev

INCLUDE 'RPOSIZE.INC'
c
c The following PARAMETER statement defines maximum array
c dimensions used throughout RPO. Generally, these constants
c will have to be changed for each implementation of RPO.
c GLOSSARY:
c maxlev: maximum number of profile levels above zero height.
c maxnx : maximum number of output range points.
c maxnz : maximum number of output height points.
c maxpro: maximum number of profiles beyond zero range.
c

PARAMETER (maxnx = 440, maxnz = 280, maxlev = 50, maxpro =32)
c

character*8 filein, fileb

COMMON /system/ fmhz, ztran, ipolar, ipatrn, beamw, clang,
+ hfang(10), hffac(10), nfacs

COMMON /enviro/ nlevls, nprofs, wind, zprof(0:maxlev, 0:maxpro),
+ capm(0:maxlev, 0:maxpro), xprof(0:maxpro)

COMMON /init/ iscatt, nxout, nzout, xwax, zmax
COMMON /inout/ filein, selx, mlxout

c* ---- read the RPO parameter ---------
read(*,'(a)') filein
read(*,*) nxout
read(*,*) selx
read(*,*) xprof(0)
read(*,*) nprofs

c RPO starts its array index with 0. It adopts Microsoft BASIC
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"c convention in its coding of this FORTRAN program. In the documentation
"c and the input file, "nprofs* is the total number of profiles. Thus
"c nprofs* as the array index as used in RPO has to be adjusted by
"c substracting Onprofs° by 1.

nprofsanprofs-1
read(*,*) ipatrn
read(*,*) beamw

"c For omnidirectional pattern, the parameter "beamw* is ignored in the
"c program. On the other hand, the upper limit for 8beamw° is 45 degrees.

if (ipatrn.eq.1) then
beamw=45.0

end if
read(*,*) slang
read(*,*) nfacs
read(*,*) iscatt

"---- read parameters common to RPO and M-Layer
read(*,'(a)') fileb
read(*,*) nlevls
read(*,*) wind
read(*,*) fmhz
read(*,*) ipolar

"c The definition of ipolar in RPO is 1 plus that in M-LAYER.
ipolar=ipolar+l
read(*,*) ztran
read(*,*) nzout
read(*,*) delzr
read(*,*) zrinit
zmax=nzout*delzrezrinit
read(*,*) mlxout
read(*,*) delx
read(*,*) xinit
delx=delx*1000
xinit=xinit*1000
xmax=mlxout*delx+xinit
do i=0,nlevls

read(*,*) zprof(i0O)
read(*,*) capm(i,0)
capm(i,0)=capm(i,0)+339.0

end do
open(17,file=filein//'.in')
write(17,*)D.... parameters common to RPO and M-Layer ----
write(17,*)filein, ' :RPO file'
write(17,*)nlevls, ' :nlevls (count from 0)'
write(17,190)wind

190 format(flS.2, ' :wind')
write(17,192)fmhz

192 format(fl5.2, ' :fmhz')write(17,*)ipolar-1, ' :ipolar (0:horizontal 1:vertical )P
write(17,194)ztran

194 format(f15.2, ' :ztran')
write(17,*)nzout, ' :nzout'
write(17,201)delzr

201 format(flS.2, ' :delzr')
write(17,202)zrinit

202 format(f15.2, ' :zrinit')
write(17,*)mlxout , :mlxout (max number of range output)
write(17,203)delx

203 format(f15.2, ' :delx')
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write(17, 204)xinit
204 foruiat(f15.2, ':xinit)

write(17,*) ------------- RPO parameters-------------
writ.(17,205)zmax

205 forMat(f15.2, ' :zmax (nzout~delzr~calculated by program),
write(17,206)xmax

206 format(f 15.2, I :xmax (xinit4.delx*mlxout,calculatod by program)')
writ.(17,*)nxout,' :nxout (xanax / delx, read from input)
writo(17,207)selx

207 format(fl5.2, ' :selx (selected range x >= seix)'
write(17, 208)xprof(0)

208 format(f15.2, ' :xprof')
write(17,*)nprofs+l, ':nprofs'

write(17,*)ipatrn, ':ipatrn'

write(17, 209)beamw
209 format(f15.2, ' :beaznw')

write(17,210)elang
210 format(f15.2, ':elang')

write(17,*) 'N/A :hfang (not used)'
write(17,*) 'N/A :hffac (not used),
write(17,*)nfacs, ':nfacs'

write(17,*)jscatt, ':iscatt'

wrt(1,) H---profile ---- value on surface: 339.0---

do i=0,nlevls
write(17, 211) zprof(i, 0)

211 format(f15.2, ' :zprof')
wvrite(17, 212)capm(i, 0)

212 format(f15.2, ':capm ')
end do
return
end

3. Subroutine MLstdin

"c Subroutine MLstdin reads data from a file concocted from two files:
"c one contains parameters specific to H-Layer, the other contains
"c parameters used by both RPO and H-Layer, including the modified
"c refractivity, the transmitter height, and the output points.

subroutine I4Lstdin
c
"c MLstdin is the revised input program of H-Layer, NPS version, to
"c read in data files. The common block /inpt9/ has been removed from
"c all subroutines.
c

implicit real*8 (a-h,o-z)
complex*16 qeigen
integer iflgab,mpol,nzt,nzr,nx,nzlayr,nrmode,mfile,i
character*40 filein, fileb

c
c use include file for parameters of
c mxlayr max # layers
c mxanode max # modes
c

include 'miaparm. mc'
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c
c

c include file to define the
c maximum # of layers (mxlayr)
c maximum # of modes (marode)
c

parameter (mxlayr=35
parameter (mxmode=390)

dimension zi(mxlayr~l),zim(mxlayr~l),zigab(mxlayr+l),
$ qeigen(mxmode)

c
common /inptO/fileinmfileofqmzin,mpol,alossdielcg,sigmag,

+ ztinit,delzt,nztzrinit,delzr,nzr,xinit,delxnx,
+ refz,refm, refgab, zim, zigab
+ /inptl/nzlayr
+ /inpt2/zi
+ /inpt4/rmsbht
+ /modes/nrmode,qeigen

c
c
"c read M-LAYER specific parameters

read(*,'(a)') filein
read(*,*) mfile
read(*,*) delfq
read(*,*) nfreq
read(*,*) aloss
read(*,*) iflgab
read(*,*) delzt
read(*,*) nzt
read(*,*) zref
read(*,*) refz
read(*,*) refm
read(*,*) refgab

"c read parameters common to RPO and M-Layer
read(*,'(a)') fileb
read(*,*) nzlayr
read(*,*) wind
read(*,*) fqmzin
read(*,*) mpol
read(*,*) ztinit
read(*,*) nzr
read(*,*) delzr
read(*,*) zrinit
read(*,*) nx
read(*,*) delx
read(*,*) xinit

c
"c The profile must contain at least three levels. The M gradients
"c in adjacent layers must not be equal.
c

do i=l,nzlayr+l
read(*,*) zi(i)
read(*,*) zim(i)

end do

if (mfile.ne.0) then
c mfile<>0 indicates input file contains eigenvalues

read(*,*)nrmode
do i=l,nrmode
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read(*,*) qeigen(i)
end do

endif

c CalcUlate the root mean square bump height of sea surface.
C

rmsbht=0 .00514 *wind**2
c
c Calculate the dielectric constant and conductivity of sea water.

if (fqmzin .LE. 1500.) then
dielcg= S0.
sigma = 4.3

else if (fqmzin .LE. 3000.) then
dielcg= 80. - .00733 * (fqmzin-1500.)
sigma = 4.3 + .00148 * (fqmzin-1500.)

else if (fqmzin .LE. 10000.) then
dielcg= 69. - .00243 * (fqmzin-3000.)
sigma a6.52 + .001314 * (fqmzin-3000.)

else
dielcg= 51.99
sigma = 15.718

end if

c----write input data to a file on the disk---

open(27,file=filein//' .in')
write(27,*) I'---- parameters common to RPO and H-Layer----
write(27.' (2(A13)))filein, ':ML file'
write(27,*)nzlayr, ':nzlayr'

write(27, 190)wind
190 format(flS.2, ' :wind')

write(21,192) fqmzin
192 forznat(f15.2, ' :fqmzin')

write(27,*)mpol, I :mpol (0:horizontal 1:vertical )

write(27, 194) :tinit
194 format(flS.2, I :ztinit')

write(27,*)nzr, I :nzr'
write (27, 201)delzr

201 format(f15.2, I :delzr')
write(27, 202) zrinit

202 format(fl5.2, :zrinit')
write(27,*)nx, ':nx'

write(27,203)delx
203 format(f15.2, I :delx in kmn')

write(27, 204)xinit
204 format(fl5.2, ' :xinit in 1cm')

write(27,*) I'-------HM-Layer specific parameters ------
write(27,*) mfile,' :mtile=0:read input and compute e.v.'
write(27, 205)delfq

205 format(flS.2, I :delfq')
write(27,*)nfreqF :nfreq'
write(27, 207)aloss

207 format(fl5.2, I :&loss')
write(27,*)iflgab, ' :iflgab'
write(27, 208)delzt

208 format(f15.2, I :delzt')
write(27,*)nzt, ' :nzt'
write(27, 209) zref

209 format(f15.2, I :zref')
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writo(27,210)refz
210 forinat(fl5.2, ' :refz')

writ*(27. 211)rofin
211 format(flS.2, ' :refin')

vrit.(27,212) refgab
212 format(flS.2, ' :refgab')

write(27, *)---------HM-profile ---------
do i=l~nzlayre~l

write(27,214) zi~i),i
214 forinat(f15.2, I :zi(' .12, ')'

write(27,215) ziin(i),i
215 format(t15.2, :ziin(' .12, )

end do
return
end

4. MATLAB Plottng M-file

% file name:'RPOMLA.14
c ig
clear
fno=input(' input the no. of test file: .s)

% delete the old miet file
xdelm('dolete r~l, fno, '.met'];
eval(xdel);

% load the data
tl=('load d:\inatlab\wu\dat\'. 'rpol, tno, '.dat']
t2=['load d:\inatlab\wu\dat\',,'ml', fno, '.dat');
eval(tl);
eval(t2);

% read the data
rpfrz('rpo', fnoj;
inlfrs('ml', ff01;
rl=(rpfr, '(:,l)'j; r2=trpfr,'(:,2)'];

r3=[rpfr, '(:,3)'j; r4.frpfr. ':,)]
inl=(inlfr, '(,l)' I; in2(mlfr, '(:,3)'1]; in3=(mlfr, '(:,6)' 1;
rpoxzeval(rl); rpoz=eval(r2); rpos=eval(r3); rpor=eval(r4);
inlx=eval(ml); inlz~eval(in2); mls=eval(mu3);

% set up initial conditoin for while loop
ansl;
profainput('The name for profile: 1,1s');
frq=input('Tho frequency (in MIz): ');
anh=input('Tho antenna height (mn): ');

%a loop for range increment
while an>0

,crga input,' The x rang. I
%a calculate the receiver antenna height of horizontal distance

ae=637 1000;
anh2m ( xrg*l000-sqrt(2*ae~anh) )A2 /(2*ae);
klal; k2ml; k.3=1; k4ml; pml;

% xl, xc2... is used to decide which region should be plotted in plot.
,cl=0; X2=0; X3=0; x4=0;

%a find the index of rpo loss for x range equal to xrg
tinpxrguxrg+. 05;
xindex=find( Crpox>m=xrg) & (rpox<ztmpqxrg) )
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strizxindex(l); endi=xindex( length(xindex) )

% find the min. and max. of rpo loss for x range equal to xrg
xrp~znin=min(rpos(xindex));
xrpomaxzmax(rpos(xindex));

% get rpo loss, receiver height, according to the method of computation
% (fe, ro, xo & p.)

for i=stri:endi
if rpor(i)==1

rpzl(kl)= rpoz(i); rpsl(kl)= rpos(i); rprl(kl)= rpor(i);
kl=kl+l;

end
if -.)or(i)==2

rpz2(k2)= rpoz(i); rps2(k2)= rpos(i);
k2=k2+l;
x2=2;

end
if rpor(i)==3

rpz3(k3)= rpoz(i); rps3C4k3)= rpos(i);
k3=k3.1;
x3=3;

end
if rpor(i)==4

rpz4(k4).= rpoz(i); rps4Ck4)= rpos(i);
k4=k4.a1;
x4=4;

end
end

% find the index of inlayer loss for the x range equal to xrg
xindex=find( (mlx>=xrg) & (mlxc=tmpxrg) );
stri=xindex(l); endizxindex( length(xindex) )

% find the min. and max. of ml loss for x range is equal to xrg
xmlmin=min(mls(xindex));
xmuliax=max(mls (xindex));

% get the data which satisfy x=xrng
for i=stri:endi

mx(p)= mlx(i); mz(p)= nilz(i); ins(p)= inls(i);
p=Pi~l;

end

% set the axis of plot
inaxz=max(inz);
znaxoc=iax (xalmax, xrpomax);
minx=mnin(,wmlmin.xrpoinin);
axis( ( minx ina.xx 0 inaxz
plot(ins,mz, '-g')
hold on

% plot the horizontal line
hrs=[] ;hrz4Jl;
hrs=minx:l1:inaxc;
for i=l:length(hrs)

hrz(i) =anh2;
end
plot (hrs. hrz)
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%plot: rpo
if xlz=l

plot (rpsl, rpzl, 'eb')
end.
if X2==2

plot(rps2,rpz2, '.w')
end
if X3==3

plot( rps3.rpz3,'xb')
end
if X4==4

plot( rps4,rpz4, 1*rI)
end
xlabel(' Propagation Loss (dB)')
ylabel(' Height (in) ');
gtext( (num2str(prof) 1);
gtextU['< ---- RPOIJ);
gtextU('< -----MLAYER']);
gtextp[range : ,nurn2str(xrg),'kzn']);
gtextU'tfrequency: '.num2str(frq),'lMizW];
gtext(('TX height: ',nurn2str(anh),'m']l;
if xl==l
gtext(('FE region: )

end
if X2==2
gtextU[RO region: -'])

end
if X3==3
gtext(('XO region: x'])

end
if X4==4
gtext(U'PE regiont ~I

end
grid
pause
csav=input(' save the plot ?' (yin) ','s');
if (csav=='Y) I(csav=='Y')

t3=['meta ', 'rl',,fno];
eval(t3);

end
ans=input(' enter N to Exit i')
if (ans=='N'fl( ans=='ns)

an=O;
end
clear mz mns;
clear rpsl rps2 rps3 rps4
clear rpzl rpz2 rpz3 rpz4
clg
hold off

end
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APPENDIX B: PROPAGATION LOSS UNDER THE INFLUENCE OF A 300 M

SURFACE-BASED DUCT

This Appendix displays the propagation loss computed by RPO and M-Layer under

the influence of a 300 m surface-based duct at 3 GHz and 12 GHz at ranges of 15, 20,

30, 40, 50, 60, 70, 80, 90, 100 and 110 km.

1. Propagation loss at 3 GHz

Figures B.1 through B. 1I displays the propagation loss at 3 GHz computed by

RPO and M-Layer.
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Figure B.1. Propagation loss at 15 kn.

300m Surface-Based Duct

90 O range : 20km

go- frequency: 3000MHz

70- TX height: 15m
<-RPO

60 PE region:'

._ 50<-i_'
<-MLAYE-R

• 40

30 .

20.

10•

125 130 135 140 145 150 155 160

Propagation Loss (dB)

Figure B.2. Propagaton loss at 20 km.
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300m Surface-Based Duct

Srange 30km

80- -frequency: 3000MHz
70 <-MLAYER . .

<-M YE" 
X heilght- 15m

PE region:

.~50

403

30-
20 •

10.

130 140 150 160 170 180

Propagation Loss (dB)

Figure B.3. Propagation loss at 30 km.
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Figure B.4. Propagation loss at 40 km.
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300mn Surface-Based Duct
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Figure B-5. Propagation loss at 50 1km.
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Figure B.6. Propagation loss at 60 km.
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300m Surface-Based Duct
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Figure B.7. Propagation loss at 70 kim.
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Figure B.A Propagation loss at 80 km.
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300m Surface-BaedI Duct
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Figure B.9. Propagation loss at 90 km.
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300m Surface-Based Duct
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Figure B.11. Propagation loss at 110 km.

2. Propagation loss at 12 GHz

Figures B.12 through B.22 displays the propagation loss at 12 GHz computed

by RPO and M-Layer.
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Figure B.12. Propagation loss at 20 km.
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Figure B.14. Propagation loss at 30 km.
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Figure B.15. Propagation loss at 40 kmn.
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Figure B.17. Propagation loss at 60 kmn.
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Figure B.19. Propagation loss at 70 kr.
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300m Surface-Based Duct
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Figure B.22. Propagation loss at 110 kmn.
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APPENDIX C: PROPAGATION LOSS UNDER THE INFLUENCE OF A 14 M

EVAPORATION DUCT

This Appendix displays the propagation loss computed by RPO and M-Layer under

the influence of a 14 m evaporation duct at 3 GHz and 12 GHz at ranges of 15, 20, 30,

40, 50, 60, 70, 80, 90, 100 and 110 km.

1. Propagation loss at 3 GHz

Figures C. 1 through C. 11 displays the propagation loss at 3 GHz computed by

RPO and M-Layer.
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Figure C.1. Propagation loss at 15 kn.
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Figure C.2. Propagation loss at 20 km.
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14m Evaporation Duct
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Figure C.3. Propagation loss at 30 km.
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Figure C.4. Propagation loss at 40 kin.
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14m Evaporation Duct
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Figure C.S. Propagation loss at 50 km.
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Figure C.6. Propagation loss at 60 km.
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14m Evaporation Duct
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Figure C.7. Propagation loss at 70 kIn.
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Figure CA. Propagation loss at 80 km.
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14m Evaporation Duct
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Figure'C.9. Propagation loss at 90 kin.
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Figure C.10. Propagation loss at 100 km.L
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14m Evaporation Duct
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Figure C.11. Propagation loss at 110 km.

2. Propagation loss at 12 GHz

Figures C. 12 through C.22 displays the propagation loss at 12 GHz computed

by RJPO and M-Layer.
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Figure C.12. Propagation loss at 15 kIn.
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Figure C.13. Propagation loss at 20 kin.
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Figure C.15. Propagation loss at 40 km.
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Figure C.16. Propagation loss at 60 km.
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Figure C.18. Propagation loss at 70 km.
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Figure C.19. Propagation loss at 80 kn.
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Figure C.20. Propagation loss at 90 kan.
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Figure C.21. Propagation loss at 100 km.
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Figure C.22. Propagation loss at 110 ki.
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APPENDIX D: PROPAGATION LOSS UNDER THE INFLUENCE OF A 300 M

SURFACE-BASED DUCT OVER A 14 M EVAPORATION DUCT

This Appendix displays the propagation loss computed by RPO and M-Layer under

the influence of a 300 m surface-based duct over a 14 m evaporation duct at 3 GHz and

12 GHz at ranges of 15, 20, 30, 40, 50, 60, 70, 80, 90, 100 and 110 km.

1. Propagation loss at 3 GHz

Figures D. 1 through D. 11 displays the propagation lois at 3 GHz computed by

RPO and M-Layer.
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Figure D.1. Propagation loss at 15 km.
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Figure D.2. Propagation loss at 20 km.
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Figure D.3. Propagation loss at 30 kn.
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Figure D.4. Propagation loss at 40 km.
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Figure D.S. Propagation loss at 50 km.
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Figure D.6. Propagation loss at 60 kIn.
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Figure D.7. Propagation loss at 70 km.
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Figure D.S. Propagation loss at 80 km.
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Figure D.9. Propagation loss at 90 Ian.
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Figure D.10. Propagation loss at 100 km.
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Figure D.11. Propagation loss at 110 kIn.

2. Propagation loss at 12 GHz

Figures D. 12 through D.22 displays the propagation loss at 12 GHz computed

by RPO and M-Layer.
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Figure D.12. Propagation loss at 15 kin.
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Figure D.13. Propagation loss at 20 km.
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Figure D.17. Propagation loss at 60 Icm.
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Figure D.19. Propagation loss at 80 km.
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Figure D.20. Propagation loss at 90 km.
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Figure D22. Propagation loss at 110 km.
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APPENDIX E: PROPAGATION LOSS UNDER THE INFLUENCE OF A 150 M

SURFACE-BASED DUCT

This Appendix displays the propagation loss computed by RPO and M-Layer under

the influence of a 150 m surface-based duct at 3 GHz, 6 GHz and 12 GHz at ranges of

15, 20, 25, 30, 35, 40, 50, 60, 70, 80, 90, 100 and 110 km. The modified refractivity

profile is given in Table E. 1.

Table E. 1. A 150 m surface-based duct.

i Z, Mi

meters

0 0.0 339.0

1 100.0 350.8

2 150.0 301.3

3 1,000 401.6

1. Propagation loss at 3 GHz

Figures E. 1 through E. 13 displays the propagation loss at 3 GHz computed by

RPO and M-Layer.

87



150m Surtace-Based Duct

90 range 15km

80L --- frequency: 3000ME~z

705

Proaguo PEs regon:

70 -

01 130 140 .3000M 0

_______ Propagatio Lm (dB) iin Lm

90i

101

1263035 10 15 15 5 6

50pgao Loss (e)gr1m

Figure ~ ~1tpaato E2 PrpgaindosB)201m

88



15Gmn Surface-Based Duct
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Figure ES9. Propagation loss at 70 km.
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Figure EdO. Propagation loss at 80 kmn.
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Figure E.11. Propagation loss at 90 km.
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Figure E.13. Propagation loss at 110 kmn.

2. Propagation loss at 6 GHz

Figures E. 14 through E.26 displays the propagation loss at 6 GHz computed

by RPO and M-Layer.
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Figure E.16. Propagation loss at 25 kmn.
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!Figure L.17. Propagation loss at 30 km.
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Figure E.18. Propagation loss at 35 km.
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Figure L19. Propagation loss at 40 km.
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Figure E.20. Propagation loss at 60 km.
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Figure E.22. Propagation loss at 70 km.
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Figure E.26. Propagation loss at 110 kIn.

3. Propagation loss at 12 GHz

Figures E.27 through E.39 displays the propagation loss at 12 GHz computed

by RPO and M-Layer.
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Figure E.27. Propagation loss at 20 km.
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Figure E.29. Propagation loss at 30 kim.
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Figure E.33. Propagation loss at 50 kn.
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Figure E.34. Propagation loss at 60 kmn.
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Figure E.39. Propaganon loss at 110 kmi.
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APPENDIX F: PROPAGATION LOSS UNDER THE INFLUENCE OF A 100 NI

SURFACE-BASED DUCT

This Appendix displays the propagation loss computed by RPO and M-Layer under

the influence of a 100 m surface-based duct at 3 GHz, 6 GHz and 12 GHz at ranges of

15, 20, 25, 30, 35, 40, 50, 60, 70, 80, 90, 100 and 110 km. The modified refractivity

profile is given in Table F. 1.

Table F.1. A 100 m surface-based duct.

i

meters

0 0.0 339.0

1 50.0 344.9

2 100.0 295.4

3 1000.0 401.6

1. Propagation loss at 3 GHz

Figures F.1 through F.13 displays the propagation loss at 3 GHz computed by

RPO and M-Layer.
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Figure F.9. Propagation loss at 70 km.
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Figure F.1O. Propagation loss at 80 km.
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Figure F.11. Propagation loss at 90 km.

100w Surface-Based Duct
* . .. *

90 *.*** range :100kmK- ��***;-;. - frequency- 3000MHz

�
Txbei ti5m

70'
FE region.

� 60- *'. _I
'-V� so
•40� ___________

Propapuon Lou (dB)
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Figure F.D3. Propagation loss at 110 kmn.

2. Propagation loss at 6 GHz

Figures F. 14 through F.26 displays the propagation loss at 6 GHz computed

by RPO and M-Layer.
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Figure F.1S. Propagation loss at 20 km.
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Figure F-16. Propagation loss at 25 km.
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Figure F.20. Propagation loss at 50 km.
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Figure F.21. Propagation loss at 60 km.
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Figure F.22. Propagation loss at 70 km.
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Figure F.23. Propagation loss at 80 kmn.
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Figure F.24. Propagation loss at 90 km.
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Figure F.26. Propagation loss at 110 km.

3. Propagation loss at 12 GHz

Figures F.27 through F.39 displays the propagation loss at 12 GHz computed

by RPO and M-Layer.
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Figure F.35. Propagation loss at 70 k~m.
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Figure F.36. Propagation loss at 80 km.
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Figure F.37. Propagation loss at 900 km.
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