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Abstract

This is the second paper in a series to discuss the approximation efficacy
of polynomial interpolation of functions. In particular, the approximation ac-
curacy depends sensitively on the locations of the interpolation nodes. We
address the problem of finding the "optimal" symmetrical polynomial interpo-

lation schemes for the triangle. The table for the symmetrical mean minimal

interpolation sets for the triangle is given in this paper. An adaptive scheme

for determining the interpolation order is also presented.
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I. Introduction

In this paper, we continue our discussion of the approximation power of polyno-

mial interpolation of real functions. We shall discuss the approximation accuracy of

polynomial interpolation in a triangular domain and find the "optimal" polynomial

interpolation schemes for the triangle.

For reason of efficiency and aesthetics, among all possible interpolation schemes,

symmetrical polynomial interpolation schemes are of most interest. The distribution

of the interpolation nodes of a symmetrical interpolation obeys the symmetries of the

triangle symmetry group D3, i.e., for the standard triangle shown in Fig. 1, the nodal

distribution is invariant under the reflections of the 3 triangle symmetry axes.

The approach we have used in finding the optimal interpolation sets in the interval

[1] can be generalized to finding the optimal interpolation sets in the triangle. We

shall estimate the interpolation error of a function in terms of its least deviation from

the polynomial interpolation space and the norm of the interpolation operator. The

latter can be minimized by redistributing the interpolation nodes. The resulting sets

are called the minimal sets and they have good interpolation properties.

We shall restrict our attention to finding the symmetrical minimal sets. Unlike

polynomial interpolation in the interval where the minimal sets are symmetrical under

reflection, we don't know if the actual minimal sets of the interpolation operator are

indeed symmetrical under the triangle group D 3.

The main difficulty in finding the minimal sets is the complication due to the

exponential explosion in the number of local minima in the search space. We shall
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devise procedures to circumvent this.

In section II, we introduce the notation and review some known results for poly-

nomial interpolation in the triangle. In section III, we introduce the concept of the

minimal sets and find the mean minimal sets and discuss their properties. We show

some numerical interpolation examples in section IV. In section V. we give an adap-

tive procedure for determining the interpolation order and discuss the CO continuity

for functions approximated in a triangular mesh.

II. Formulation and Notations

Let D be the standard triangular domain shown in Fig. 1, 1,, 12, 13 be the 3

edges (3 closed intervals) of the standard triangle. We shall denote x = (xhx 2)

the Cartesian coordinates in the triangle. Let C(D) be the space of real continuous

functions on D, P,,(D) be the space of algebraic polynomials on D of degree < n.

i.e.. the space 1,,(D) consists of all linear combinations of monomials: P•(D) =

Span{x42, i > O,j O.i + j n}. The dimension of the space P,, (D) is N,1 =

(n + 1)(n + 2)/2.

Let I be a closed 1-dimensional interval, we shall denote C(I) the space of real

continuous functions on I. P,,(I) the space of algebraic polynomials on I of degree

<n.

For f E C(D), we can find a unique n-th order polynomial p,, E P,(I) which takes

the value of f at given A7, points in the triangle, provided some nondegenerate condi-

tions on these interpolation points are satisfied. These NV,, points will be called inter-

polation nodes, and denoted by T = (t 1 ,t 2, .... tN.), where t, E D. i = 1 .... .V,. The
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Figure 1: The standard triangle.

n-th order polynomial interpolant is given by p.(x)= .Tf (X) : I=o=I f(tk)Lk(x),

where Lv(x) E %P(D), k = 1 , are, under the nondegenerate condition, uniquely

determined by: Li(ti) = 6ii.

£T is a linear projection operator which maps a real continuous function to its

corresponding polynomial interpolant. n is called the order of the interpolation T.

We list some general results on polynomial approximation of functions.

Theorem 1 [31 (Weierstrass) Every continuous function in C(D) can be uniformly

approximated by polynomials on D to any degree of accuracy.

The least deviation d.(f) of a function f in C(D) is the distance between f and

"P.(D): d.(f) := inf{.supxEolq(x) - f(x)Jq(-) E P.(D)}. This least deviation is

always attained.

Theorem 2 [2] Given f(.) E C(D), there exists w,(.) E P.(D), such that for all
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qn() E P.(D). 11f - w.l1. _< 11f - q.11., where I1 is the L' norm in C(D)

Il 1 -0 SUPXE DIf(x)I.

Jackson type results concerning the behaviors of d,,(f) and its relation to the

analyticity of the function f are lacking for functions defined in the triangular domain.

Since £T is a linear projection operator from C(D) to P.(D), we define the

LP norm of 4T as flCTIIp := SUPf#O,EC(D) I•][, where 1 < p _< o and 'Ifil, =

fD(If(x)lPdx)"/P.

The L' norm of £T is called the Lebesgue constant of LT and is denoted by

A(T). It is given by: A,(T) = I[CTIk. = SUPXED EkN. ILk(x)l. Let 1T be the inter-

polation nodes restricted to the edge I,, £fT be the interpolation operator in I, with

interpolation nodes IT. Obviously, ll£TIlo. ->IITIoo.

We also have IILThIp -- ICTIp := (fD(Z1- ILk(x)D)Pdx)"P, where fD dx denotes

integration in the standard triangle. We shall call £CTIp the LP pseudonorm or the

ILIP norm of the interpolation operator £T. We define the "mean norm" of LT as

1l(f-T)ll := (fDE1 Z•lLk(x)I2dx)/2

Theorem 3 For all f(.) E C(D), II - CT i1, <- (3' + hICTIlp)d.(f)-

Note that the n-th order interpolant of the best approximant w,, in Theorem 2 is

itself, hence

II - 4!rflip = II - W. + £T(w. - f)1ip < 11 - w.ll, + IL[T(Wn -. f)I)1 < 11 -

w,1.l(32 + UIT11p) = (32 + hICTlp)d,(f).

Note for a given interpolation T. the bound [LCT11pd.(f) for II4(Tw(-f)Il, is sharp.
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Figure 2: The mean norm (cross) and the L00 norm (diamond) for the n-th order
uniform interpolation operator as a function of n. The asterisks are the LOO norms
for the uniform interpolation operator on the standard interval I: I[C£TH1O

i.e., there exists a nonpolynomial continuous function f such that IICrIpdW(f) =

11£T(W. - f)lp. In this sense, we say the inequality in Theorem 3 is optimal.

In order to insure CO continuity on the interelement boundaries, we shall con-

sider the following type of interpolation schemes. For n-th order interpolation, the

interpolation set includes exactly n + 1 points on each edge Ii of the triangle. There-

fore the polynomial space Pn(D) restricted to the edge Ii reduces to P,(Ij), and

the polynomial interpolant in the triangle restricted to Ii is the same as the polyno-

mial interpolant in the interval Ii. For such an interpolation scheme, one can design

proper procedure to guarantee the CO continuity of the interpolating function on the

edges of the triangle when the function is approximated using piecewise polynomial

interpolation in a triangle mesh. (See section V for more details).
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The simplest and widely used interpolation scheme in the triangle is the uni-

form interpolation scheme. The n-th order uniform interpolation set is given by

Tun,! = 2i• ," i.0 < j,0 < i +j <n}. Indeed, the isoparametric formula-

tion of Finite Element Method uses the uniform interpolation scheme to approximate

functions in the triangle. Since 1[CTfll _ I[>ITIk > Cexp(n/2), the norm for the

n-th order uniform interpolation operator grows at least exponentially with the inter-

polation order n. This behavior is illustrated in Fig. 2 for the L' norm as well as the

mean norm. Therefore as interpolation order increases, the isoparametric formulation

may lead to spurious results in high order calculations if the least deviation of the

fanction to be approximated does not decrease fast enough.

III. Symmetrical Minimal Interpolation Sets

Theorem 3 gives the upper bound for the interpolation error of a function f in

L' norm as (1 + JjTjlj)d,(f). We can minimize this optimal error upper bound

by minimizing the Lebesgue constant of the interpolation operator 1141[ 0 through

the redistribution of the interpolation nodes (the least deviation d,(f) by definition is

already the smallest possible error). Similarly, since 1[14 Ti, _• [CT Ip, (32 + 1CT p)d. (f)

also gives an upper bound for the interpolation error of a function in LP norm. We

can also minimize iIf£p to minimize the interpolation error bound in LP norm. We

shall say that an interpolation set is minimal in ILIP or L' if it minimizes ILrIp or

i[Cr~lI. We shall also say an interpolation set is minimal in the mean if it minimizes

II (CT)II.

We are not aware of any computationally feasible way to determine an arbitrary



order L' symmetrical minimal set. Therefore, we shall concentrate on finding the

mean minimal sets. Notice the integrand for the mean norm of the interpolation

operator is a polynomial, hence, can be integrated exactly using numerical quadrature.

The symmetrical n-th order LO and mean minimal sets will be denoted by T7L. and

T•L) respectively.

One key result from our study of polynomial interpolation in the interval is that

n-th order symmetrical mimimal sets are close to each other and their interpolation

properties are quite similar. All minimal sets are good for interpolation purpose.

Similarly, for symmetrical interpolation in the triangle, numerical evidence indicates

that the norm of the interpolation operator for the n-th order mean minimal set is

close to that of the n-th order ILl' minimal set. Therefore, we believe this norm is

also close to the norm of the n-th order L- minimal sets.

To find the interpolation nodes on the edges of the standard triangle, we note

that for a good interpolation set, the interpolation error of a function on the 3 edges

of the triangle must be small. For n-th order interpolation, by mapping linearly

the standard interval I = [-1, 1] to the 3 edges of the standard triangle, we shall

place the n-th order mean minimal set in the interval (which is also symmetrical) as

the interpolation nodes on the edges. These nodes automatically satisfy the triangle

symmetries. The n-th order minimal set under the above constraint is in fact close

to the actual n-th order mean minimal set. We have verified that the difference in

the mean norm as well as the L' norm between these two sets are quite small.

Now we consider the distribution of interpolation nodes inside the triangle. There
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Figure 3: The positions of the interpolation nodes of two local minima for the mean
norm. Case 1 (the left graph) corresponds to the global minimum of the mean norm;
while for case 2 (the right graph), the mean norm is of order 4.9 x 10'".

Appendix for interpolation order n = 1 to n - 12.

The minimum of the mean norm is found by using a minimization procedure.

All minimization procedures only find local minimum, hence good initial guess of the

actual locations of the minimal sets is essential for the success of the search algorithm.

The landscape for the mean norm is extremely complicated. A rule for constructing

good initial guess from the one dimensional minimal sets has also been successfully

devised and is used to find the symmetrical minimal sets up to order 20.

In the appendix. we also list the approximate minimal sets in the triangle barycen-

tric coordinates: b, = (1 - X - X2/v'3)/2, 52 = (1 + x, - x2/v'3)/2. b3 = X.2/v' .

We note that these sets have the smallest mean norms from our computation. and

may not correspond to the actual global minimal sets. However. we believe that these
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are many possible symmetrical patterns for such a distribution. A node can be at the

center of the standard triangle, or on one of the symmetrical axes (the meridians) of

the triangle or neither (this node is located inside one of the 6 subtriangles bounded

by the symmetry axes). By symmetry, this node corresponds a point of a singlet. a

triplet, or a sextuplet respectively. We shall denote the number of singlets, triplets,

sextuplets by nl(n1 = 0 or 1), n3, n6. Since the total number of singlets, triplets,

sextuplets equals the number of interpolating nodes inside the triangle, we have nj +

3n3 + 6n6 = (n - 1)(n - 2)/2.

The integer solution for the above equation is nonunique when n > 5. Different

integer pairs of (ni, n3 , n6) correspond to different symmetry patterns of the nodal

set. Each symmetry pattern has a mean norm minimum, we want to find the small-

est mean norm (the global minimum) among these minima. Not all minima are good

interpolation sets, and minima of distinct symmetry patterns may exhibit drastically

different interpolation properties. For example. Fig. 3 shows in the case of interpola-

tion order 5. the symmetry patterns of the two local minima for the mean norm. For

pattern 1 (n, = 0,n 3 = 2,n 6 = 0), which in fact is the global minimum, the mean

norm is 1.24: while for pattern 2 (n, = 0, n3 = 0. n6 = 1). the approximate minimum

of the mean norm is so huge (i-, 4.9 x 10"4, this number is computed from a double

precision algorithm) that interpolation using this set becomes meaningless.

From all symmetry patterns of the interpolation nodes, we have extracted a unique

symmetry which appears to be the correct symmetry for the global minimum. The

symmetry patterns (n j , n.3, n6 ) for our predicted global minimal sets are shown in the

9



3.01

2.5

2.0

1.5

1.0

0.5

0.0 a . , .
0 2 4 6 8 10 12

Figure 4: Square of the mean norm for the n-th order mean minimal set as a function
of n.

sets are close to the actual minimal sets. Interpolation properties for these sets are

illustrated in the following.

The mean minimal sets are close to the actual LO' minimal sets. For example, for

order 3 minimal sets, the minimum for the L' norm is 2.10845. while the L' norm

for the order 3 mean minimal set is 2.11162.

In Fig. 4. we show the mean norm for the mean minimal sets. In Fig. 3. we show

the approximate ILlI and the L' norms for the mean minimal sets. The approximate

ILI' norm is found by overintegration in the numerical quadrature. The L' norm is

found by navigating the landscape of the function vk=1 ILk(x)I.

Since ILTIlo, _Ž lILTII,,o, the norm of the interpolation operator increases at least

logarithmically. It appears that the norm of interpolation operator for the minimal

sets in the triangle increases much faster than that.

11
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Figure 5: The approximate ILl' norm (cross) and the L- (diamond) norm for the
n-th order mean minimal set as a function of n. The asterisks are the bound for the
Li'nt norm for the rectangular minimal sets

V. Examples

In Fig. 6, we interpolate the following rational function g = (4 +(2b1 - I)2)( 1+(262- j ,2)( 1 +(2b3 - I)2),

where b1,b2 ,b3 are the barvcentric coordinates b, = (1 -X - x2/v/'3)/2, b2 =

(1 + x1 - x2/v'3)/2, b3 = x2/V'3. The error g - CTg is illustrated for the order

9 approximation. We also show in Fig. 7 the L2 norm for the interpolation error as a

function of interpolation order. The error decreases exponentially in accordance with

the fact that g is infinitely differentiable.

To see the efficiency of the triangle interpolation. In Fig. 8, we plot the L2 norm

of the interpolation error for the function f(x, y) =(+ 2 )(+ 2) in the rectangular do-

main [-1, 1] x [-1, 1] using the the direct product of 2 one-dimensional minimal sets

(henceforth referred as product interpolation). WVe also plot the L2 norm of interpo-

12
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Figure 6: The errot g - LTg for order 9 interpolation, g is defined in the text.

lation error in the same graph using interpolations in 2 diagonally meshed triangles.

We see that the error is of similar order. The rectangular product interpolation ap-

pears to be more efficient. This is expected since the dimension of the n-th order

polynomial product interpolation space is almost twice that of P,,(D).

V. Adaptive Determination of Approximation Order

Suppose we want to approximate a function in a general 2 dimensional domain.

we can mesh this domain with triangles and approximate the function in each triangle

by polynomial interpolation. However, it is usually inefficient to use the same order

polynomial interpolation for the function in the whole triangle meshed domain. For

example. in Fig. 9. we plot the function h(x. y) = I in the rectangular

domain [0, 4] x [0, 4]. The triangle mesh for the rectangular domain is shown in Fig.

10. If we use order 5 interpolation to approximate the function in all triangles.

13
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Figure 7: The L2 norm of the error g - -T9

100
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10,
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Figure 8: The L2 norm of the error f - -Tf for rectangle (squares) and triangle

interpolation (triangles)
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Figure 9: The function h in [0, 41 x [0. 41

the interpolation error has quite different order of magnitude (Fig. 11). Except in

triangles 1 2, 3, 5, errors in other triangles are almost negligible. In fact, in these

triangles, we can use much lower order approximation to achieve the same accuracy.

In Fig. 12. we show the error using approximation order 5.4,4,3,4.3.3.3 for triangles

1 through 8. The error has the similar order of magnitude in all triangles( 10-l).

The adaptive procedure for the determination of interpolation order is described

as follows. Let { Ti - (t(), to) 1. , n, ...} be the interpolation scheme in

the triangle D. f be the function to be approximated. The approximation error

at level i can be estimated from lower level interpolation. At order n. define the

estimated interpolation error at order n by e,(f) = maxj=l .. ... N,:i=l ... .. - 1If(t")) -

(rCT- f) (t 0')I. For a prescribed error p(f), calculate the estimated interpolation error

e,(f). If e.(f) < p(f), stop; otherwise, continue to go to higher order polynomial

15
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Figure 10: The triangle mesh

Figure 11: The error in the triangle mesh using uniform order 5 interpolation in all
the triangles.
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Figure 12: The error in the traingle mesh using adaptive approximation

interpolations till e.(f) < p(f ). Fig. 9 is generated using the above procedure.

Note that if we interpolate a function with different order in different triangles in

a simple minded way, the C' continuity of the interpolating function can be violated

on the edges shared by triangles with different interpolation order. This is shown

in Fig. 12 on those triangle edges shared by different approximation order triangles.

most visible on the edges between triangles 3,4 and 5.6. The reason is that the

interpolation nodes on a shared edge -are different for different triangle interpolations.

hence the resulting polynomial interpolant restricted to the edge are also different.

To achieve the continuity of the polynomial interpolant on a shared edge. since we are

only interested in approximating the function. we can interpolate first in the lower

interpolation order triangle, then use the lower order interpolant values on the shared

edge as the interpolation values for the higher order interpolation. Notice the higher

order interpolant on the edge reduces to the same polynomial as the lower order

17



interpolant. therefore guaranteeing the CO continuity of the interpolating function on

the shared edge.
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Appendix

The barycentric coordinates of the Symmetrical Mean Minimal Sets.

n = 1,NI = 3,rn = 0,n 3 = 0,nt = 0

1.000000000000000 0.0000000000000000E+00 0.OOOOOOOOOOOOOOOOE+00

n = 2, N" = 6. n6 = 0, n3 = 0, n, = 0

1.000000000000000 0.OOOOOOOOOOOOOOOOE+00 0.OOOOOOOOOOOOOOOOE+00

0.5000000000000000 0.5000000000000000 0.OOOOOOOOOOOOOOOOE+00

n = 3, Nn = 10, n6 = 0, n3 = 0,nj = 1

1.000000000000000 0.OOOOOOOOOOOOOOOOE+00 O.OOOOOOOOOOOOOOOOE+00

0.7153323836874790 0.2846676163125210 0.OOOOOOOOOOOOOOOOE+00

0.3333333333333333 0.3333333333333333 0.3333333333333333

n = 4, AN = 15, n6 = 0, n3 = 1,n = 0

1.000000000000000 0.0000000000000000E+00 0.0000000000000000E+00

0.8181632611352384 0.1818367388647614 0.OOOOOOOOOOOOOOOOE+00

0.5000000000000000 0.5000000000000000 0.OOOOOOOOOOOOOOOOE+00

0.2211896848879315 0.2211896848879315 0.5576206302241369

n = 5,N•, = 21.n 6 = 0,n 3 = 2.n1 = 0

1.000000000000000 0.OOOOOOOOOOOOOOOOE+00 0.OOOOOOOOOOOOOOOOE+00

0.8742875052784925 0.1257124947215076 O.OOOOOOOOOOOOOOOOE+00

0.6382594790542118 0.3617405209457882 0.OOOOOOOOOOOOOOOOE+00

0.1528511668833901 0.1528511668833901 0.6942976662332199

0.4168253271522609 0.4168253271522609 0.1663493456954783

19



n = 6.N,1 = 28, ns = 1,n.3 = 1.n1 = 1

1.00000000000000 0.0000000000000000E+00 0.0000000000000000E+00

0.9080633118611157 9.1936688138884221E-02 0.0000000000000000E+00

0.7284330183910422 0.2715669816089578 0.00000000000OOOE+00

0.5000000000000000 0.5000000000000000 0.0000000000000000E+00

0.3158942320998219 0.5585416574112235 0.1255641104889546

0.1101683475818847 0.1101683475818847 0.7796633048362307

0.3333333333333333 0.3333333333333333 0.3333333333333333

n = 7, V, = 36,n 6 = l,n 3 = 3,nh = 0

1.000000000000000 0.0000000000000000E+00 0.0000000000000000E+00

0.9299034955372345 7.0096504462765443E-02 0.OOOOOOOOOOOOOOOOE+00

0.7895072582937859 0.2104927417062141 0.0000000000000000E+00

0.6020311487196381 0.3979688512803619 O.OOOOOOOOOOOOOOOOE+00

0.2451281044713800 0.6579558759858357 9.6916019542784290E-02

8.2115803104864539E-02 8.2115803104864539E-02 0.8357683937902710

0.4493450658674361 0.4493450658674361 0.1013098682651278

0.2664181073381445 0.2664181073381445 0.4671637853237110

n = 8-N. = 45, n6 = 2. n 3 = 3. n, = 0

1.000000000000000 0.0000000000000000E+00 0.OOOOOOOOOOOOOOOOE+00

0.9448163437150148 5.5183656284985111E-02 0.OOOOOOOOOOOOOOOOE+00

0.8324512446943281 0.1675487553056718 0.OOOOOOOOOOOOOOOOE+00

0.6775748866685667 0.3224251133314333 0.OOOOOOOOOOOOOOOOE+00

0:5000000000000000 0.5000000000000000 0.OOOOOOOOOOOOOOOOE+00
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0.3657785030915281 0.5523065120741060 8.1914982834365943E-02

0.1945715568399863 0.7289768787515726 7.6451564408441141E-02

6.2956298271008348E-02 6.2956298271008348E-02 0.8740874034579832

0.2153423770756083 0.2153423770756083 0.5693152458487836

0.3891308342783755 0.3891308342783755 0.2217383314432491

n = 9 ,N, = 55,n 6 = 3,n 3 = 3,nl = 1

1.0000000W0000 0.0OOO OOOOOOOOOOOOWOE+00 0.0000000000000000E+00

0.9554420839457645 4.4557916054235588E-02 0.0000000000000000E+00

0.8636610675074426 0.1363389324925574 0.0000000000000000E+00

0.7343658010099048 0.2656341989900952 0.0000000000000000E+00

0.5809026723382413 0.4190973276617587 0.OOOOOOOOOOOOOOOOE+00

0.3022979698394158 0.6305941125733549 6.7107917587229337E-02

0.1580235132291699 0.7802178829384695 6.1758603832360652E-02

0.3259838750983894 0.4887151048567661 0.1853010200448444

4.9667258949604278E-02 4.9667258949604278E-02 0.9006654821007913

0.4657791245700742 0.4657791245700742 6.8441750859851602E-,02

0.1769224725585725 0.1769224725585725 0.6461550548828550

0.3333333333333333 0.3333333333333333 0.3333333333333333

n = 10, N.; = 66, n6 = 4. n.3 = 4. n, = 0

1.000000000000000 0.OOOOOOOOOOOOOOOOE+00 0.OOOOOOOOOOOOOOOOE+00

0.9632760027314051 3.6723997268594987E-02 0.OOOOOOOOOOOOOOOOE+00

0.8869952049270331 0.1130047950729669 0.OOOOOOOOOOOOOOOOE+00

0.7778351605810001 0.2221648394189999 0.OOOOOOOOOOOOOOOOE+00
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0.6450778849507119 0.3549221150492881 0.0000000000000000E+00

0.5000000000000000 0.5000000000000000 0.0000000000000000E+00

0.3965838101116214 0.5458726289486318 5.7543560939746889E-02

0.2541104747843801 0.6900362701651686 5.5853255050451355E-02

0.1308892070469940 0.8184976546269006 5.0613138326105477E-02

0.2759079443724909 0.5680265320840427 0.1560655235434665

3.9979823654525127E-02 3.9979823654525127E-02 0.9200403526909497

0.1477652510341296 0.1477652510341296 0.7044694979317407

0.4210302589291588 0.4210302589291588 0.1579394821416825

0.2860831530706470 0.2860831530706470 0.4278336938587060

n = 11," 78,n 6 = 5,n 3 = 5,hn = 0

1.000000000000000 0.0000000000000000E+00 0.0000000000000000E+00

0.9692151231856643 3.0784876814335779E-02 0.0000000000000000E+00

0.9048685364533428 9.5131463546657197E-02 0.0000000000000000E+00

0.8117034716938857 0.1882965283061142 0.0000000000000000E+00

0.6963587134442253 0.3036412865557747 0.0000000000000000E+00

0.5670428520428707 0.4329571479571293 0.0000000000000000E+00

0.3410061867540533 0.6100223949943824 4.8971418251564262E-02

0.2154463537311060 0.7371142274976481 4.7439418771245911E-02

0.1103911543297726 0.8474540426980305 4.2154802972196865E-02

0.3650161428097270 0.4995720679420922 0.1354117892481808

0.2363693386602579 0.6303683591358489 0.1332623022038932

3.2896313862711745E-02 3.2896313862711745E-02 0.9342073722745765
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0.4754253185346134 0.4754253185346134 4.9149362930773268E-02

0.1254000862291636 0.1254000862291636 0.7491998275416729

0.2469463409895583 0.2469463409895583 0.5061073180208833

0.3752280933777087 0.3752280933777087 0.2495438132445825

n = 12,,N?, = 91,ns = 7,n 3 = 4,n, = 1

1.00 0 0.OOOOOOOOOOOOOOOOE+00 0.OOOOOOOOOOOOOOOOE+00

0.9738238285434289 2.6176171456571193E-02 0.OOOOOOOOOOOOOOOOE+00

0.9188463030484114 8.1153696951588631E-02 0.OOOOOOOOOOOOOOOOE+00

0.8385306712170824 0.1614693287829176 0.OOOOOOOOOOOOOOOOE+00

0.7377419334160070 0.2622580665839930 0.OOOOOOOOOOOOOOOOE+00

0.6225769896251392 0.3774230103748608 0.OOOOOOOOOOOOOOOOE+00

0.500000000000000 0.50000000000000 0.O000000000000000E+00

0.4168281198422784 0.5408750717713540 4.2296808386367512E-02

0.2958645927885613 0.6620944951096916 4.2040912101747096E-02

0.1856877557735782 0.7736786953598021 4.0633548866619744E-02

9.4029154634774769E-02 0.8702379847289224 3.5732860636302765E-02

0.3187473818918873 0.5641272963702495 0.1171253217378632

0.2046743882806896 0.6799965980733892 0.1153290136459212

0.3305908816516884 0.4510620156781378 0.2183471026701738

2.7522667878192077E-02 2.7522667878192077E-02 0.9449546642436157

0.1076261576526970 0.1076261576526970 0.7847476846946060

0.4415231635034078 0.4415231635034078 0.1169536729931844

0.2153826974384240 0.2153826974384240 0.5692346051231521
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0.3333333333333333 0.3333333333333333 0.3333333333333333
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The Laboratory for Numerila Analysis is an integral part of the Institute for Physical
Science and Technology of the University of Maryland, under the general administration of the
Director, Institute for Physical Science and Technology. It has the following goals:

"* To conduct research in the mathematical theory and computational implementation of
numerical analysis and related topics, with emphasis on the numerical treatment of
linear and nonlinear differential equations and problems in linear and nonlinear algebra.

"* To help bridge gaps between computational directions in engineering, physics, etc., and
those in the mathematical community.

"* To provide a limited consulting service in all areas of numerical mathematics to the
University as a whole, and also to government agencies and industries in the State of
Maryland and the Washington Metropolitan area.

"• To assist with the education of numerical analysts, especially at the postdoctoral level,
in conjunction with the Interdisciplinary Applied Mathematics Program and the
programs of the Mathematics and Computer Science Departments. This includes active
collaboration with government agencies such as the National Institute of Standards and
Technology.

"* To be an international center of study and research for foreign students in numerical
mathematics who are supported by foreign governments or exchange agencies
(Fulbright, etc.).

Further information may be obtained from Professor I. Babudka,Chairman, Laboratory for
Numerical Analysis, Institute for Physical Science and Technology, University of Maryland, College
Park, Maryland 20742-2431.


