AD-A277 261

OFFICE OF NAVAL RESEARCH

GRANT: N00014-92-J-1374

TECHNICAL REPORT NO. 14

R&T CODE: 413x00

ISOMERIC POLY(BENZOPHENONE)S: SYNTHESIS OF HIGHLY CRYSTALLINE POLY(4,4'-BENZOPHENONE) AND AMORPHOUS POLY(2,5-BENZOPHENONE), A SOLUBLE POLY(p-PHENYLENE) DERIVATIVE

BY

R.W. PHILLIPS, V.V. SHEARES, E.T. SAMULSKI, J.M. DESIMONE*

DEPARTMENT OF CHEMISTRY CB #3290 VENABLE & KENAN LABS UNIVERSITY OF NORTH CAROLINA CHAPEL HILL, NC 27599-3290

SUBMITTED TO:

MACROMOLECULES

REPRODUCTION IN WHOLE OR IN PART IS PERMITTED FOR ANY PURPOSE OF THE UNITED STATES GOVERNMENT

THIS DOCUMENT HAS BEEN APPROVED FOR PUBLIC RELEASE AND SALE; ITS DISTRIBUTION IS UNLIMITED.

Interview of the start of	REPORT DOC	UMENTATION P	PAGE	Form Approved O MB No 0704-0188
Subment Latits adopting 17 minut and address the other Windowsking Bade Name (Bade Name) (1990) I AERCY View of Name (1994) I ASKAT VIEW (Serve of Name (1994) I AERCY View of Name (1994) I AERCY View of Name (1994) I AERCY View of Name (1994) I Status (1994) I AERCY View of Name (1994) I AERCY View of Name (1994) I AERCY View of Name (1994) Of Highly Crystalline Poly(4,4'-benzophenone) and Amporphous NO0014-92-J-1374 NO0014-92-J-1374 I AERCY NAME (1994) POLY(2,5-benzophenone), A Soluble Poly(p-phenylene) I AERCY NUMBER NO0014-92-J-1374 A ANDRYSI R. PERCOMMUC ORGANIZATION NAME (1994) NO0014-92-J-1374 Department of Chemistry NO0014-92-J-1374 NO0014-92-J-1374 Department of Chemistry Technical Report #14 NO0014-92-J-1374 Solubited to Maccowlescowl	Public reporting ourden for this chilection of informal gathering and maintaining the data needed, and com collection for information, including to subgestions for in	ition is estimated to average 1 hour be pleting and reviewing the collection of ducing this burden to washington Hi	r response, including the time for ri f information - Send comments rega addulaters Ser - Jes Directorate fo	E wiewing instructions, searching existing data sources rding this burden estimate or any other issue. I i this information uperations and Bedivity. 1255 withors
A GENCY USE ONLY (Law DURK) AFFORT DATE March 15, 1994 J. REPORT TYPE AND DATES COVERD Technical Report ## M PUM_AND SUBJIC (Law DURK) NEFORT TYPE AND DATES COVERD Technical Report ## M S. FUNONIG NUMBERS PUM_CAND SUBJIC (Law DURK) S. Synthesis S. FUNONIG NUMBERS OF Highly Crystalline Poly (4,4"-benzophenne) A Monority NO0014-92-J-1374 NUMBERS NO0014-92-J-1374 NO0014-92-J-1374 POLY (2,5-5-benzophenone), A Soluble Poly (p-phenylene) NO0014-92-J-1374 NUMBERS Report Monority Report Monority NUMBERS S. PERCENDING ORGANIZATION NAME(G) AND ADDRESS(S) B. PERCENDING ORGANIZATION NAME(G) AND ADDRESS(S) Department of Chemistry NO0014-92-J-1374 NO0014-92-J-1374 Department of Navyl Report Marking AREA NO0014-92-J-1374 SPENCOMENTONIC ACCOLORING AREACT NO0014-92-J-1374 NO0014-92-J-1374 SPENCOMENTONIC ACCOLORING AREACT NO0014-92-J-1374 NO0014-92-J-1374 SPENCOMENTONICAL ACTORING AREACT NO0014-92-J-1374 NO0014-92-J-1374 SPENCOMENTONICONG ACCOVENT NAME(S) AND ADDRESS(S) In Secons AND ANDRESS NO0014-92-J-1374 SPENCOMENTONICAL ACCONDINCOMENT AND ADDRESS(S)	24-15 Highwar, Suite 1204, Arlington, 74-22202-4302	and to the Office of Management an	d Budget, Paper Aork Reduction Pro	ect (0704-0188) Washington, 61 20503
March 15, 1994 Technical Report 40 M Isbard: Point (2) Function (2) Isbard: Point (2) Function (2) Point (2) Function (2) Point (2) Function (2) Authons) A Soluble Poly((2) R.W. Phillips, V.V. Sheares, E.T. Samulski, J.M. DéSimone NO0014-92-J-1374 AUMMONS) R.W. Phillips, V.V. Sheares, E.T. Samulski, J.M. DéSimone PREVENTION REAL REW Point (2) Chapel Hill, NC 27599-3290 Recommender Chapel Hill, NC 27599-3290 Technical Report #14 SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) NO0014-92-J-1374 C16 #3200 Venable & Kenan Labs NO0014-92-J-1374 SOUNTORING AGENCY NAME(S) AND ADDRESS(ES) NO0014-92-J-1374 SOUNTORING AGENCY NAME(S) AND ADDRESS(ES) NO0014-92-J-1374 SUBMITTER Of Naval Refearch SOUNTORING AGENCY NAME(S) AND ADDRESS(ES) SUBMITTER OF Naval Refearch SOUNTORING AGENCY NAME(S) AND ADDRESS(ES) Submitted to MACRONOLECULES SUBMITTER NOTES	1. AGENCY USE ONLY (Leave blank)	2. REPORT DATE	3. REPORT TYPE AN	D DATES COVERED
Initial Control (Initial Contect)))))))))))))))))))))))))))))))))))		March 15, 1994	Technical R	eport # N
of Highly Crystalline Poly(4,4'-benzophenone) and Amporphous N00014-92-J-1374 Poly(2,5-benzophenone), A Soluble Poly(p-phenylene) N00014-92-J-1374 ANDMONNY R.W. Phillips, V.V. Sheares, E.T. Samulski, J.M. DeSimone E. PERCEMBING ORGANIZATION NAME(S) AND ADDRESS(ES) Department of Chemistry N00014-92-J-1374 Department of Chemistry N00014-92-J-1374 Department of Chemistry N00014-92-J-1374 Chapel Hill, NC 27599-3290 Technical Report #14 SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) Io. SPONSORIMC/MONITORING AGENCY NAME(S) AND ADDRESS(ES) Department of Naval Rebearch SOUNCH Quincy Street Arlington, VA 22217-5000 10. SPONSORIMC/MONITORING AGENCY NAME(S) AND ADDRESS(ES) Submitted to MACROMOLECULES 12. DISTRIBUTION/ANAUABURY STATEMENT Reproduction is unlimited. 12. DISTRIBUTION CODE 2. DISTRUUTION/ANAUABURY STATEMENT 12. DISTRIBUTION CODE Submitted to MACROMOLECULES 12. DISTRIBUTION (AMAUABURY STATEMENT Reproduction is unlimited. 12. DISTRIBUTION CODE 2. ASSTAACT (Maximum 200 words) Nickel-catalyzed polymerization which employs the coupling of isomeric dichlorobenzophenone (4,5-DCEP). The poly(4,4'-benzophenone) (a, 4,4'-DCEP) and 2,5-dichlorobenzophenone (4,5-dichlorobenzophenone) (4,4'-DCEP) and 2,5-dichlorobenzophenone (4,4'-DCEP	ISOMETIC POLY (benzophen	one)s: Synthesis		5. FUNDING NUMBERS
AUTHOR(S) R.W. Phillips, V.V. Sheares, E.T. Samulski, J.M. DeSimone R.W. Phillips, V.V. Sheares, E.T. Samulski, J.M. DeSimone R.W. Phillips, V.V. Sheares, E.T. Samulski, J.M. DeSimone Pervorman of Chemistry Department of Chemistry University of North Carolina Chapel Hill, NC 27599-3290 SPONSORMG/MONITORING AGENCY NAME(S) AND ADDRESS(ES) Department of Naval Rebearch SOO North Quincy Street Arlington, VA 22217-5000 Submitted to MACKOMOLECULES Submitted to MACKOMOLECULES Submitted to MACKOMOLECULES Submitted to MACKOMOLECULES SolstRigumon 200 wordd Nickel-catalyzed polymerization which employs the coupling of isomeric dichlorobenzophenones is described. The polymerization utilizes inexpensive readily available monomers, 4,4'-dichlorobenzophenone (4,4'-DCRP) and 2,5- dichlorobenzophenone (2,5-DCR). The poly(4,4'-benzophenone) can be derivatized to be soluble during the synthesis by the use of a ketimine precursor that: is subsequently hydrolyzed to give the target material. The polymerization of 2,5-DCR). The polymerizet condition during the synthesis by the use of a ketimine precursor that: Subsequently hydrolyzed to give the target material. The polymerization, makes, and thermal properties. The NI(0) catalyzed route proves to be facile and econamically feasible and opens the way to a large variety of heterocyclic and phenyl-based homo- and copolymers.	of Highly Crystalline P Poly(2,5-benzophenone), Derivative	oly(4,4'-benzophen A Soluble Poly(p-	one) and Amporpho phenylene)	us N00014-92-J-1374
A.W. FRITTIPS, V.V. SHEARES, E.T. SAMULERI, J.M. DESIMONE PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) Department of Chemistry University of North Carolina Chapel Hill, NC 27599-3290 SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) Department of Navy Office of Naval Rebearch 800 North Quincy Street Arlington, VA 22217-5000 1. SUPPLEMENTARY NOTES Submitted to MACROMOLECULES 22 DISTRIBUTION/AVAUABLITY STATEMENT Reproduction in whole or in part is permitted for any purpose of the United States Government. This document has been approved for public release and sale; its distribution is unlimited. 3. ABSTRACT (Meximum 200 words) Nickel-catalyzed polymerization which employs the coupling of isomeric dichlorobenzophenone (2,5-DCE). The poly(4,4'-DECB) and 2,5- dichlorobenzophenone (2,5-DCE). The poly(6,4'-DECB) and 2,5- dichlorobenzophenone (2,5-DCE). The poly(4,4'-DECB) and 2,5- dichlorobenzophenone (2,5-DCE). The poly(4,4'-DECB) and 2,5- dichlorobenzophenone (2,5-DCE). The poly(6,4'-DECB) and 2,5- dichlorobenzophenone (2,5-DCE). The poly(6,4'-DECB) and 2,5- dichlorobenzophenone (2,5-DCE). The poly(6,4'-DECB) and 2,5- dichlorobenzophenone, thydrolyzed to give the target material. The polymerization of 2,5-dichlorobenzophenone yields a soluble derivative of Poly(p-phenylene). The resulting polymers we	R W Rhilling V V Che			
PEFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 6. PEFCORMING ORGANIZATION Department of Chemistry Nonconstruction University of North Carolina NO0014-92-J-1374 Chapel Hill, NC 27599-3290 Technical Report #14 SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) Department of Navy Office of Naval Rebearch G00 North Quincy Street Arlington, VA 22217-5000 1. SUPPLEMENTARY NOTES Submitted to MACROMOLECULES 2. DISTRIGUTION/AVALABILITY STATEMENT Reproduction in whole or in part is permitted for any purpose of the United States Government. This document has been approved for public release and sale; its distribution is unlimited. 3. ABSTRACT (Maximum 200 words) Nickel-catalyzed polymerization which employs the coupling of isomeric dichlorobenzophenones (2,5-DCEP). The poly(4,4'-DEP2) and 2,5- dichlorobenzophenone (4,4'-CDEP) and 2,5- dichlorobenzophenone (2,5-DCEP). The poly(4,4'-DED2) and 2,5- dichlorobenzophenone (4,4'-DCEP) and 2,5- dichlorobenzophenone (2,5-DCEP). The poly(4,4'-DED2) and 2,5- di	K.w. Failips, V.V. Sae	ares, E.1. Samuisk	1, J.M. Desimone	
Notestation Second	PERFORMING ORGANIZATION NAME	(S) AND ADDRESS(ES)		8. PERFORMING ORGANIZATION REPORT NUMBER
CB #3290 Venable & Kenan Labs noolf=92-0-13/4 Chapel Hill, NC 27599-3290 Technical Report #14 SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) Department of Navay Office of Naval Rebearch 800 North Quincy Street Alington, VA 22217-5000 1. SUPPLEMENTARY NOTES 10. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 3. DISTRIBUTION/AVAILABILTY STATEMENT 12b. DISTRIBUTION CODE 7. DISTRIBUTION/AVAILABILTY STATEMENT 12b. DISTRIBUTION CODE 7. DISTRIBUTION/AVAILABILTY STATEMENT 12b. DISTRIBUTION CODE 8. DISTRIBUTION/AVAILABILTY STATEMENT 12b. DISTRIBUTION CODE 7. DISTRIBUTION/AVAILABILTY STATEMENT 12b. DISTRIBUTION CODE 8. DISTRIBUTION/AVAILABILTY STATEMENT 12b. DISTRIBUTION CODE 9. DISTRIBUTION/AVAILABILTY STATEMENT 12b. DISTRIBUTION CODE 8. ABSTRACT (Meximum 200 words) 12b. DISTRIBUTION CODE Nickel-catalyzed polymerization which employs the coupling of isomeric dichlorobenzophenone (2, 5-DCBP). The poly(4, 4'-benzophenone) (2a, 5-dichlorobenzophenone (4, 4'-DCBP) and 2, 5-dichlorobenzophenone (2, 5-dichlorobenzophenone yields a solubil derivative of poly(y-phenylene). The resulting polymers wer	University of North Car	olina		N00014-92- T-1274
Chapel Hill, NC 27599-3290 Technical Report #14 SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) Department of Navy Office of Naval Rebearch S00 North Quincy Street AGENCY REPORT NUMBER Arlington, VA 22217-5000 10. SPONSORING/MONITORING AGENCY NUMBER 1. SUPPLEMENTARY NOTES Submitted to MACROMOLECULES 2. DISTRIBUTION/AVALABILITY STATEMENT This document has been approved for public release and sale; its 12b. DISTRIBUTION CODE distribution is unlimited. 12b. DISTRIBUTION CODE 3. ABSTRACT (Meximum 200 words) 12b. DISTRIBUTION (ALL PLANCE) Nickel-catalyzed polymerization which employs the coupling of isomeric dichlorobenzophenones is described. The poly(4,4'-benzophenone) can be derivatized to be soluble during the synthesis by the use of a ketimine precursor that: is subsequently hydrolyzed to give the target material. The poly(p-phenylene). The resulting polymers were characterized to confirm the composition, molar mass, and thermal properties. The Ni(0) catalyzed route proves to be facile and economically feasible and opens the way to a large variety of heterocyclic and phenyl-based homo- and copolymers. 4.4'-dichlorobenzophenone, hydrolyzed, molar mass, thermal. 15. NUMBER OF PAGES 4.4'-dichlorobenzop	CB #3290 Venable & Kena	n Labs		N00014-92-J-1374
SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) Department of Navy Office of Naval Rebrearch 800 North Quincy Street Arlington, VA 22217-5000 1. SUPPLEMENTARY NOTES 12. DISTRIBUTION/AVAILABILITY STATEMENT Reproduction in whole or in part is permitted for any purpose of the United States Government. This document has been approved for public release and sale; its distribution is unlimited. 12. DISTRIBUTION CODE 3. ABSTRACT (Maximum 200 words) Nickel-catalyzed polymerization which employs the coupling of isomeric dichlorobenzophenones is described. The poly(4/4'-benzophenone)' can be derivatized to be soluble during the synthesis by the use of a ketimine precursor that is subsequently hydrolyzed to give the target material. The poly(p-phenylene). The resulting polymers were characterized to confirm the composition, molar mass, and thermal properties. The NI(0) catalyzed route proves to be facile and economically feasible and opens the way to a large variety of heterocyclic and phenyl-based homo- and copolymers. 4. SUBJECT TERMS 15. NUMBER OF PAGES 4. 4'-dichlorobenzophenone, hydrolyzed, molar mass, thermal. 15. NUMBER OF PAGES 4. 4'-dichlorobenzophenone, hydrolyzed, molar mass, thermal. 10. PRICE CODE 5. SCURITY CLASSIFICATION 18. SECURITY CLASSIFICATION 20. UMITATION OF ABSTRACT	Chapel Hill, NC 27599-	3290	,	Technical Report #14
Department of Navy AGENCY REPORT NUMBER Office of Naval Refearch 800 North Quincy Street Arlington, VA 22217-5000 1. 1. SUPPLEMENTARY NOTES 12b. DISTRIBUTION / AVAILABILITY STATEMENT Submitted to MACROMOLECULES 12b. DISTRIBUTION / AVAILABILITY STATEMENT Reproduction in whole or in part is permitted for any purpose of the United States Government. This document has been approved for public release and sale; its distribution is unlimited. 12b. DISTRIBUTION CODE 3. ABSTRACT (Maximum 200 words) Nickel-catalyzed polymerization which employs the coupling of isomeric dichlorobenzophenones is described. The poly(4,4'-benzophenone)' can be derivatized to be soluble during the synthesis by the use of a ketimine precursor that is subsequently hydrolyzed to give the target material. The polymerization of 2,5-dCBP). The poly(4,4'-benzophenone)' can be derivatized to be soluble during the synthesis by the use of a ketimine precursor that: is subsequently hydrolyzed to give the target material. The polymerization of 2,5-dCBP). The resulting polymers were characterized to confirm the composition, molar mass, and thermal properties. The NI(0) catalyzed route proves to be facile and economically feasible and opens the way to a large variety of heterocyclic and phenyl-based homo- and copolymers. 4. SUBJECT TERMS 15. NUMBER OF PAGES 10 Polargified 4. SUBJECT TERMS 15. NUMBER OF PAGES 10 Polargified	SPONSORING / MONITORING AGENCY	NAME(S) AND ADDRESS(E	S)	10. SPONSORING / MONITORING
ULTICE OF MAYAL RESEARCH BOD NOTH Quincy Street Arlington, VA 22217-5000 1. SUPPLEMENTARY NOTES Submitted to MACROMOLECULES 22. DISTRIBUTIÓN/AVAILABILITY STATEMENT Reproduction in whole or in part is permitted for any purpose of the United States Government. This document has been approved for public release and sale; its distribution is unlimited. 12b. DISTRIBUTIÓN CODE 3. ABSTRACT (Maximum 200 words) Nickel-catalyzed polymerization which employs the coupling of isomeric dichlorobenzophenones is described. The polymerization utilizes inexpensive readily available monomers, 4,4'-dichlorobenzophenone (4,4'-DCEP) and 2,5- dichlorobenzophenone (2,5-DCBP). The poly(4,4'-benzophenone) ⁺ can be derivatized to be soluble during the synthesis by the use of a ketimine precursor that: is subsequently hydrolyzed to give the target material. The poly(p-phenylene). The resulting polymers were characterized to confirm the composition, molar mass, and thermal properties. The NI(0) catalysed route proves to be facile and economically feasible and opens the way to a large variety of heterocyclic and phenyl-based homo- and copolymers. 4. SUBJECT TERMS 15. NUMBER OF PAGES 14. 4'-dichlorobenzophenone, hydrolyzed, molar mass, thermal. 4. SUBJECT TERMS 4. 4'-dichlorobenzophenone, hydrolyzed, molar mass, thermal. 12. LIMITATION OF ABSTRACT 100 FARESTRACT	Department of Navy	L.		AGENCY REPORT NUMBER
BUD NOTILI QUINCY STREET Arlington, VA 22217-5000 1. SUPPLEMENTARY NOTES Submitted to MACROMOLECULES 2a DISTRIBUTION / AVAILABILITY STATEMENT Reproduction in whole or in part is permitted for any purpose of the United States Government. This document has been approved for public release and sale; its distribution is unlimited. 3. ABSTRACT (Maximum 200 words) Nickel-catalyzed polymerization which employs the coupling of isomeric dichlorobenzophenones is described. The polymerization utilizes inexpensive readily available monomers, 4,4'-dichlorobenzophenone (4,4'-DCBP) and 2,5 dichlorobenzophenone (2,5-DCBP). The poly(4,4'-benzophenoe) can be derivatized to be soluble during the synthesis by the use of a ketimine precursor that is subsequently hydrolyzed to give the target material. The polymerization of 2,5-dichlorobenzophenone yields a soluble derivative of poly(p-phenylene). The resulting polymerties. The N1(0) catalyzed route proves to be facile and economically feasible and opens the way to a large variety of heterocyclic and phenyl-based homo- and copolymers. 1. SUBJECT TERMS 15. NUMBER OF PAGES 14. 4'-dichlorobenzophenone, hydrolyzed, molar mass, thermal. 1. SUBJECT TERMS 4,4'-dichlorobenzophenone, hydrolyzed, molar mass, thermal. 12. UMITATION OF ABSTRACT 10. DOT MERSTRACT	900 North Order Charles	n		
1. SUPPLEMENTARY NOTES Submitted to MACROMOLECULES 2a. DISTRIBUTION/AVAILABILITY STATEMENT Reproduction in whole or in part is permitted for any purpose of the United States Government. This document has been approved for public release and sale; its distribution is unlimited. 2. ABSTRACT (Maximum 200 words) Nickel-catalyzed polymerization which employs the coupling of isomeric dichlorobenzophenones is described. The polymerization utilizes inexpensive readily available monomers, 4,4'-dichlorobenzophenone (4,4'-DCBP) and 2,5- dichlorobenzophenone (2,5-DCBP). The poly(4,4'-benzophenome)' can be derivatized to be soluble during the synthesis by the use of a ketimine precursor that: is subsequently hydrolyzed to give the target material. The poly(p-phenylene). The resulting polymers were characterized to confirm the composition, molar mass, and thermal properties. The NI(0) catalyzed route proves to be facile and economically feasible and opens the way to a large variety of heterocyclic and phenyl-based homo- and copolymers. 1. SUBJECT TERMS 15. NUMBER OF PAGES 4,4'-dichlorobenzophenone, hydrolyzed, molar mass, thermal. 15. NUMBER OF PAGES 1. SUBJECT TERMS 15. NUMBER OF PAGES 4,4'-dichlorobenzophenone, hydrolyzed, molar mass, thermal. 15. NUMBER OF PAGES 1. SUBJECT TERMS 15. NUMBER OF PAGES 4,4'-dichlorobenzophenone, hydrolyzed, molar mass, thermal. 16. PRICE CODE	Arlington VN 22217 50	00		
1. SUPPLEMENTARY NOTES Submitted to MACROMOLECULES 2a. DISTRIBUTION/AVAILABILITY STATEMENT Reproduction in whole or in part is permitted for any purpose of the United States Covernment. This document has been approved for public release and sale; its distribution is unlimited. 12b. DISTRIBUTION CODE 3. ABSTRACT (Maximum 200 words) In the polymerization which employs the coupling of isomeric dichlorobenzophenones is described. The polymerization utilizes inexpensive readily available monomers, 4,4'-dichlorobenzophenone (4,4'-DCDF) and 2,5- dichlorobenzophenone (2,5-DCBP). The poly(4,4'-benzophenone) can be derivatized to be soluble during the synthesis by the use of a ketimine precursor that:is subsequently hydrolyzed to give the target material. The polymerization of 2,5-dichlorobenzophenone yields a soluble derivative of poly(p-phenylene). The resulting polymers were characterized to confirm the composition, molar mass, and thermal properties. The NI(O) catalyzed route proves to be facile and economically feasible and opens the way to a large variety of heterocyclic and phenyl-based homo- and copolymers. 1. SUBJECT TERMS 15. NUMBER OF PAGES 14,4'-dichlorobenzophenone, hydrolyzed, molar mass, thermal. 1. SUBJECT TERMS 15. NUMBER OF PAGES 16. PRICE CODE 2. SUBJECT TERMS 15. NUMBER OF PAGES 16. PRICE CODE	ALTINGTON, VA 2221/-50	00		
Submitted to MACROMOLECULES Ta DISTRIBUTION/AVAILABILITY STATEMENT Reproduction in whole or in part is permitted for any purpose of the United States Government. This document has been approved for public release and sale; its distribution is unlimited. ABSTRACT (Maximum 200 words) Nickel-catalyzed polymerization which employs the coupling of isomeric dichlorobenzophenones is described. The polymerization utilizes inexpensive readily available monomers, 4,4'-dichlorobenzophenone (4,4'-DCBP) and 2,5- dichlorobenzophenone (2,5-DCBP). The poly(4,4'-benzophenone) can be derivatized to be soluble during the synthesis by the use of a ketimine precursor that is subsequently hydrolyzed to give the target material. The polymerization of 2,5-dichlorobenzophenone yields a soluble derivative of poly(p-phenylene). The resulting polymers were characterized to confirm the composition, molar mass, and thermal properties. The NI(0) catalyzed route proves to be facile and ecomomically feasible and opens the way to a large variety of heterocyclic and phenyl-based homo- and copolymers. SUBJECT TERMS 4,4'-dichlorobenzophenone, hydrolyzed, molar mass, thermal. SUBJECT TERMS 4,4'-dichlorobenzophenone, hydrolyzed, molar mass, thermal. SUBJECT TERMS 4,4'-dichlorobenzophenone, hydrolyzed, molar mass, thermal. 16. PRICE CODE SECURITY CLASSIFICATION OF ABSTRACT Unclassified Unclassified Unclassified Unclassified Unclassified Unclassified Unclassified Note approved SECURITY CLASSIFICATION 0 F MIS PAGE Unclassified Unclassified Unclassified Descripted SUBJECT TERMS 4.4'-dichlorobenzophenone, hydrolyzed, molar mass, thermal. 15. NUMBER OF PAGES 16. PRICE CODE	1. SUPPLEMENTARY NOTES			
22. DISTRIBUTION/AVAILABILITY STATEMENT Reproduction in whole or in part is permitted for any purpose of the United States Government. This document has been approved for public release and sale; its distribution is unlimited. 12b. DISTRIBUTION CODE 32. ABSTRACT (Maximum 200 words) Image: States Covernment is described. The polymerization utilizes inexpensive readily available monomers, 4,4'-dichlorobenzophenone (4,4'-DCBP) and 2,5- dichlorobenzophenone (2,5-DCBP). The poly(4,4'-benzophenone)' can be derivatized to be soluble during the synthesis by the use of a ketimine precursor that: is subsequently hydrolyzed to give the target material. The polymerization of 2,5-dichlorobenzophenone yields a soluble derivative of poly(p-phenylene). The resulting polymers were characterized to confirm the composition, molar mass, and thermal properties. The Ni(O) catalyzed route proves to be facile and economically feasible and opens the way to a large variety of heterocyclic and phenyl-based homo- and copolymers. 15. NUMBER OF PAGES 4,4'-dichlorobenzophenone, hydrolyzed, molar mass, thermal. 15. NUMBER OF PAGES 16. PRICE CODE 16. SECURITY CLASSIFICATION OF REPORT 18. SECURITY CLASSIFICATION OF HE PAGE Unclassified 20. LIMITATION OF ABSTRACT	Submitted to MACROMOLEC	JLES		
ABSTRACT TERMS ABSTRACT TERMS A SUBJECT TERM	2a. DISTRIBUTION / AVAILABILITY STAT	TEMENT		12b. DISTRIBUTION CODE
A SUBJECT TERMS A SUBJECT TE	Reproduction in whole of	r in part is permi	tted for any	
Additional and the set of the set	bas been annaged for	cates Government.	inis document	
ABSTRACT (Maximum 200 words) Nickel-catalyzed polymerization which employs the coupling of isomeric dichlorobenzophenones is described. The polymerization utilizes inexpensive readily available monomers, 4,4'-dichlorobenzophenone (4,4'-DCBP) and 2,5- dichlorobenzophenone (2,5-DCBP). The poly(4,4'-benzophenone) can be derivatized to be soluble during the synthesis by the use of a ketimine precursor that is subsequently hydrolyzed to give the target material. The polymerization of 2,5-dichlorobenzophenone yields a soluble derivative of poly(p-phenylene). The resulting polymers were characterized to confirm the composition, molar mass, and thermal properties. The N1(0) catalyzed route proves to be facile and economically feasible and opens the way to a large variety of heterocyclic and phenyl-based homo- and copolymers. SUBJECT TERMS 4,4'-dichlorobenzophenone, hydrolyzed, molar mass, thermal. SUBJECT TERMS 4,4'-dichlorobenzophenone, hydrolyzed, molar mass, thermal.	distribution is unlimit	public refease and	sale; its	
ABSTRACT (Maximum 200 words) Nickel-catalyzed polymerization which employs the coupling of isomeric dichlorobenzophenones is described. The polymerization utilizes inexpensive readily available monomers, 4,4'-dichlorobenzophenone (4,4'-DCBP) and 2,5-dichlorobenzophenone (2,5-DCBP). The poly(4,4'-benzophenone) can be deriwatized to be soluble during the synthesis by the use of a ketimine precursor that is subsequently hydrolyzed to give the target material. The poly(poly(polymerization of 2,5-dichlorobenzophenone yields a soluble derivative of poly(p-phenylene). The resulting polymers were characterized to confirm the composition, molar mass, and thermal properties. The Ni(O) catalyzed route proves to be facile and economically feasible and opens the way to a large variety of heterocyclic and phenyl-based homo- and copolymers. I. SUBJECT TERMS 15. NUMBER OF PAGES 4,4'-dichlorobenzophenone, hydrolyzed, molar mass, thermal. 15. NUMBER OF PAGES 1. SUBJECT TERMS 19. SECURITY CLASSIFICATION OF ABSTRACT Unclassified 0. SECURITY CLASSIFICATION OF THIS PAGE 19. SECURITY CLASSIFICATION OF ABSTRACT Unclassified		54.		
Nickel-catalyzed polymerization which employs the coupling of isomeric dichlorobenzophenones is described. The polymerization utilizes inexpensive readily available monomers, 4,4'-dichlorobenzophenone (4,4'-DCBP) and 2,5-dichlorobenzophenone (2,5-DCBP). The poly(4,4'-benzophenone) can be derivatized to be soluble during the synthesis by the use of a ketimine precursor that is subsequently hydrolyzed to give the target material. The polymerization of 2,5-dichlorobenzophenone yields a soluble derivative of poly(p-phenylene). The resulting polymers were characterized to confirm the composition, molar mass, and thermal properties. The Ni(O) catalyzed route proves to be facile and economically feasible and opens the way to a large variety of heterocyclic and phenyl-based homo- and copolymers. 15. NUMBER OF PAGES 4,4'-dichlorobenzophenone, hydrolyzed, molar mass, thermal. 16. PRICE CODE SECURITY CLASSIFICATION OF ABSTRACT Unclassified	3. ABSTRACT (Maximum 200 words)			
 4. SUBJECT TERMS 4.4'-dichlorobenzophenone, hydrolyzed, molar mass, thermal. 7. SECURITY CLASSIFICATION OF THIS PAGE 7. SECURITY CLASSIFICATION OF ABSTRACT 8. Unclassified 9. SECURITY CLASSIFICATION 20. LIMITATION OF ABSTRACT 9. SECURITY CLASSIFICATION OF ABSTRACT 	Nickel-catalyzed po dichlorobenzophenones is readily available monome dichlorobenzophenone (2 derivatized to be solubi precursor that is subset polymerization of 2,5-di	olymerization which s described. The ers, 4,4'-dichlorod ,5-DCBP). The poly le during the synth quently hydrolyzed ichlorobenzophenon resulting polymer	h employs the cou polymerization ut benzophenone (4,4 y(4,4'-benzopheno hesis by the use to give the targ e yields a soluble s were characteri	pling of isomeric ilizes inexpensive '-DCBP) and 2,5- ne} can be of a ketimine et material. The e derivative of zed to confirm the
7. SECURITY CLASSIFICATION 18. SECURITY CLASSIFICATION 19. SECURITY CLASSIFICATION 20. LIMITATION OF ABSTRA OF REPORT OF THIS PAGE OF ABSTRACT	poly(p-phenylene). The composition, molar mass proves to be facile and variety of heterocyclic	economically feas: and phenyl-based l	erties. The N1(O ible and opens the homo- and copolyme) cata lys éd route e way to a large ers.
	 poly(p-phenylene). The composition, molar mass proves to be facile and variety of heterocyclic 4. SUBJECT TERMS 4.4'-dichlorobenzophenom 	, and thermal prop economically feas: and phenyl-based b me, hydrolyzed, mo	erties. The Ni(O ible and opens the homo- and copolyme lar mass, thermal) catalysed route e way to a large ers. 15. NUMBER OF PAGES 16. PRICE CODE

•

.

Isomeric Poly(benzophenone)s: Synthesis of Highly Crystalline Poly(4,4'benzophenone) and Amorphous Poly(2,5-benzophenone), A Soluble Poly(p-phenylene) Derivative

R.W. Phillips, V.V. Sheares, E.T. Samulski, J.M. DeSimone*

Department of Chemistry University of North Carolina at Chapel Hill Kenan and Venable Laboratories Chapel Hill, N.C. 27599-3290

Abstract.

Nickel-catalyzed polymerization which employs the coupling of isomeric dichlorobenzophenones is described. The polymerization utilizes inexpensive readily available monomers, 4,4'-dichlorobenzophenone (4,4'-DCBP) and 2,5-dichlorobenzophenone (2,5-DCBP). The poly(4,4'-benzophenone) can be derivatized to be soluble during the synthesis by the use of a ketimine precursor that is subsequently hydrolyzed to give the target material. The polymerization of 2,5-dichlorobenzophenone yields a soluble derivative of poly(p-phenylene). The resulting polymers were characterized to confirm the composition, molar mass, and thermal properties. The Ni(0) catalyzed route proves to be facile and economically feasible and opens the way to a large variety of heterocyclic and phenyl-based homo- and copolymers.

Acces	ion For	• •
NTIS	CRASI N	
DTIC	TAB m	
Unanr	ounced []	
Justifi	cation	
By Dist.ib	ution /	
Dist	Avail and for Special	
A-1	ļ	
CTED		

DTIC QUALTRY TOON

94 3 21 028

Herein we describe a nickel-catalyzed polymerization which employs the coupling of bis(arylhalide)s as the polymer-forming reaction in a step growth polymerization of isomeric dichlorobenzophenones. The reaction utilized has general applicability to the synthesis of new processable engineering resins of superior thermal stability. The synthetic approach was first demonstrated by Colon et. al.¹ in the synthesis of biphenvl. They found that a Ni(0)-catalyzed system would quantitatively convert chlorobenzene to biphenyl in short times at mild temperatures. It was thought that since the coupling of aryl chlorides could be achieved in high yields, the possibility existed for the use of this catalyst as a route to high polymer by coupling difunctional monomers. Poly(ether ether sulfone)s² were chosen by Colon as the first system to be studied because they are generally amorphous and soluble in dipolar aprotic solvents such as N,N-dimethylacetamide (DMAc) and 1-methyl-2-pyrrolidinone (NMP) at the relatively low temperatures (70 °C) required to produce high polymer. Further studies of this system,³ in addition to a variety of poly(arylene ether ketone)s, have been investigated by Ueda et al.⁴ Ueda utilized Ni(0) coupling of aromatic dichlorides containing ether-ketone structures to prepare high molecular weight poly(arylene ether ketone)s. This method proved advantageous compared with conventional methods because of the high rates and the mild conditions of the reaction.

Recently, Percec extended the use of this catalyst system in an attempt to synthesize soluble poly(phenylene)s.⁵ Percec's efforts in the design of soluble materials were focused on the polymerization of "crankshaft" type monomers. Specifically, they reported the synthesis of Ni(0)-catalyzed oligomerization of 4,4"'-dichloroquaterphenyls. In spite of the fact that the kink was introduced, molecular weight was still limited due to poor solubility ($<Mn > = 9.0 \times 10^2 g/mol$).

As is well known, poly(*p*-phenylene) (PPP) exhibits remarkable thermal stabilities. They have been considered for use in numerous thermally robust organic materials including composites, lubricant additives and thermoset precursors for high performance aerospace materials applications. The improvement of the solubility of poly(phenylene) has been attempted by attaching lateral substituents.^{6,7} Appropriately substituted materials should be soluble and yet exhibit thermal properties comparable to that of PPP. Several researchers have examined the substitution of PPP via polymerization techniques other than Ni(0) catalysis to vary polymer properties. Schluter *et.al.*^{8,9} have described the palladium-catalyzed polymerization of alkyl-substituted poly(*p*-phenylene) derivatives. In some cases, degrees of polymerization of 30 to 50 could be achieved and solubility be maintained. Tour has also investigated the substitution of a PPP backbone, but with the goal of making thermoset precursors.¹⁰ Specifically, they reported the functionalization of

2

.

۱,

brominated PPP with several alkynes. A tetrahydrofuran promoted polymerization of bromo-lithiobenzene gave the polymer and subsequent replacement of the bromines with alkynes led to the target materials. Novak has focused on the synthesis of water soluble poly(*p*-quaterphenylene 2,2'-dicarboxylate) via the palladium-mediated cross-coupling of aryl halides and arylboronic acids.¹¹ The resulting polymers¹² are rodlike polyelectrolytes that have the unusual properties of water solubility, conformational rigidity, and charged character similar to biopolymers. More recently, Morrocco reported the physical properties of soluble poly(*p*-phenylene) derivatives.¹³ The synthetic details were not disclosed, but it was suggested that the "route involves relatively inexpensive materials". These substituted poly(*p*-phenylene)s were reported to be soluble in common organic solvents and exhibit numerous interesting properties which make them candidates for high performance applications. Herein, we report the synthesis of isomeric poly(benzophenone)s using Ni(0) catalysts for the polymerization of inexpensive, readily available monomers, 4,4'dichlorobenzophenone (4,4'-DCBP) and 2,5-dichlorobenzophenone (2,5-DCBP).

The first polymerization was attempted using 4,4'-dichlorobenzophenone in N,Ndimethylacetamide (DMAc). Realizing that the 4.4'-DCBP would give a rigid, insoluble material, polymerization was accomplished through a ketimine derivative — a methodology derived by McGrath et. al.¹⁴ for the synthesis of amorphous poly(arylene ether ketone)s. For our purposes, the required ketimine functional dichloride monomer (I) was synthesized by the treatment of 4,4'-DCBP with aniline in the presence of molecular sieves to give a bright yellow product in 50 % yield. After two recrystallizations from toluene, the purity of I was >99.9% by gas chromatography. The polymerization was then performed using the Ni(0) catalyst prepared from NiCl₂ (0.3125 moles), triphenylphosphine (0.0093 moles), bipyridine (0.3886 moles) and zinc dust (0.0495 moles) in DMAc. The monomer was dissolved in DMAc, added to the active catalyst (as evidenced by the deep red color) and stirred at 80 °C for 24 h. The resulting polymer (II)¹⁵ was soluble in DMAc and gave an inherent viscosity of 0.25 dL/g (NMP, 30 °C). When this polymerization was repeated in 1-methyl-2-pyrrolidinone (NMP), an increase in inherent viscosity was seen (0.36 dL/g; NMP at 30 °C) presumably due to the increased solubility in NMP. The amorphous polymer had a glass transition temperature of 225 °C with a 5% weight loss temperature in nitrogen at 558 °C. The amorphous prepolymer was hydrolyzed in 10% hydrochloric acid solution to generate poly(4,4'-benzophenone) (III) which is completely insoluble presumably due to high levels of crystallinity.¹⁶ The 5% weight loss temperatures in air and nitrogen were 510 °C and 560 °C, respectively (Figure 1).

.

Synthesis of poly(2,5-benzophenone) not only increases the solubility of the polymer compared with the poly(4,4'-benzophenone), but also changes the polymer

,

.

backbone to a substituted poly(p-phenylene). Synthesis of the monomer (IV) was accomplished by an aluminum chloride catalyzed acylation of benzoyl chloride and pdichlorobenzene in a 1:1 ratio. The reaction was followed by TLC and complete conversion was seen after 3 h. Recrystallization from ethanol gave polymer grade monomer¹⁷ (>99.9% purity by GC) that was analyzed extensively by a series of 2D NMR experiments to verify the correct isomer and rule out the possibility of halogen exchange during acylation. Once 2D NMR experiments confirmed the structure, the ¹³C could be utilized to identify subsequent reaction products.¹⁸ For this polymerization, we referred to Colon's original paper in which he described the quantitative synthesis of biphenyl from chlorobenzene. It was noted that the addition of an alkali metal salt to the reaction in one to three equivalents decreased the total reaction time from 2 h to 20 minutes. Upon addition of one equivalent of sodium bromide to the polymerization and the use of an overhead stirrer, high molar mass polymer was obtained (V).

The resulting light yellow material was characterized by a number of techniques in order to confirm composition and molar mass. The molar mass was analyzed by GPC giving a $\langle Mn \rangle = 12.4 \times 10^3 \text{ g/mol}^{19}$ (Figure 2). Poly(2,5-benzophenone) has a Tg = 219 °C and

5% weight loss temperatures in air and in nitrogen of 496 °C and 495 °C, respectively (Figure 3).

In conclusion, it is apparent that use of the Ni(0) catalysts in polymerization of bis(aryl chloride)s leads to high molar mass polymers. In the case of poly(4,4'-benzophenone), the ketimine derivatized monomer gave increased solubilities resulting in higher molar mass. The successful polymerization of 2,5-DCBP yields a soluble derivative of poly(p-phenylene). Further work to increase the conversion, and therefore the molecular weight of the polymer in addition to more in-depth thermal analysis is underway. This Ni(0)-catalyzed polymerization is a facile and economically feasible synthetic route and opens the way to a low temperature, mild reaction for a large variety of heterocyclic and phenyl-based homopolymers. Moreover, the ability to make a wide range of copolymers enables one to tailor make polymers that will be generally applicable for utilization as advanced materials.

Acknowledgements.

We would like to thank the National Science Foundation for a Young Investigator Award (JMD: 1992-1993) and a Presidential Faculty Fellowship (JMD: 1993-1997). In addition, we thank DuPont, Hoechst-Celanese, The Office of Naval Research for financial support. VVS also gratefully acknowledges financial support through a Kodak Corporate Research Fellowship.

References.

- 1) Colon, I.; Kelsey, D.R. J. Org. Chem. 1986, 51, 2627.
- 2) Colon, I.; Kwiatkowski, G.T. J. Polym. Sci. Pt. A. 1990, 28, 367.
- 3) Ueda, M.; Ito, T. Polym. J. 1991, 23, 297.
- 4) Ueda, M.; Ichikawa, F. *Macromolecules*, **1990**, 23, 926.
- 5) Percec, V.; Okita, S. J. Polym. Sci. Pt. A. 1993, 31, 877.
- 6) Kern, W.; Gruber, W.; Wirth, H.D. Makromol. Chem. 1960, 37, 198.
- 7) Krigbaum, W.R.; Krause, K.J. J. Polym. Sci. Polym. Chem. Ed. 1978, 16, 315.
- 8) Rehahn, M.; Schluter, A.D.; Wegner, G.; Feast, W.J. Polymer 1989, 30, 1060.
- 9) Rehahn, M.; Schluter, A.D.; Wegner, G. Makromol. Chem 1990, 191, 1991.
- 10) Stephens, E.B.; Tour, J.M. Macromolecules 1993, 25, 2420.

- 11) Wallow, T.I.; Novak, B.M. J. Am. Chem. Soc. 1991, 113, 7411.
- 12) Wallow, T.I.; Novak, B.M. Polym. Prepr. (Am. Chem. Soc. Div. Polym. Chem.) 1992, 33, 1218.
- 13) Baum, R. Chem. and Eng. News 1993, 30.
- 14) Mohanty, D.K.; Lowery, R.C.; Lyle, G.D; McGrath, J.E. Int. SAMPE Symp. Exp. 1987, 32, 408.
- 15) The polymer was isolated by hot filtration to remove the zinc and precipitation into acetone to remove other remaining catalyst components.
- 16) WAXS analysis of polymer (III) is currently underway.
- 17) M.p. = $88.9 \,^{\circ}$ C; MS, M⁺ = $251 \,$ g/mol.
- ¹³C NMR of 2,5-DCBP: ∂140(C-1); ∂133(C-2); ∂131.1(C-3); ∂128.9(C-4);
 ∂129.2(C-5); ∂131.3(C-6); ∂136.2(C-1'); ∂130.1(C-2'); ∂128.8(C-3'); ∂134.1(C-4'); ∂128.8(C-5'); ∂130.1(C-6'); ∂190(C-carbonyl).
- 19) Determined by using a Water 717 GPC in methylene chloride using polystyrene standards.

Figure Captions

Figure 1. Thermal gravimetric analysis (TGA) thermograms of poly(4,4' benzophenone) (III) using a heating rate of 10 °C/min.

Figure 2. Size exclusion chromatogram of poly(2,5-benzophenone) (V) in CH₂Cl₂ (1 mL/min.) using a refractive index detector at 30 °C.

Figure 3. Thermal gravimetric analysis (TGA) thermograms of poly(2,5-benzophenone) (V) using a heating rate of 10 °C/min. Figure 1.

.

Figure 3.

