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Summary

A. Objective

The objective of this manual is to present a detailed description of a set of tools and techniques that
can be used to design the most efficient and cost-effective withdrawal and injection systems for
groundwater pump-and-treat remedial action operations.

The recommended approach is based on a combination of simulation and optimization. Simulation is
carried out with the usual types of groundwater models for flow and transport. Optimization is based on
standard linear-programming techniques.

B. Background

With the issue of the Defense Environmental Quality Policy Memorandum (DEQPPM) 81-5 in
December 1981, the Department of Defense (DOD) officially recognized the need to address
environmental contamination associated with past waste handling and disposal practices at DOD
properties. DEQPPM 81-5 established the Installation Restoration Program (IRP) with the objectives of
identifying the locations and contents of past disposal sites and eliminating the related public health
hazards in a safe manner. In Air Force message Z11807Z, issued in January 1982, the U.S. Air Force
implemented DEQPPM 81-5 and the IRP for all Air Force properties.

Under this implementation, the Air Force Engineering and Services Center (AFESC) is responsible
for providing technical support to the various Air Force Commands in the execution of the IRP. The
Environics Division of the AFESC executes and sponsors research necessary to meet the basic objectives
of the IRP. The Environics Division recognizes that groundwater systems are one of the main resources
affected by past waste disposal practices and that remediation of these systems is both complex and
expensive. To ensure that maximum efficiency pump-and-treat systems are designed, the Environics
Division sponsored an effort to consolidate the current “on-the-shelf” technology on remedial well-field
design into a single manual. This manual is the outcome of that sponsorship. The material presented in
this manual will aid those seeking to design efficient but relatively small-scale remedial well fields for
minor contamination problems, as well as those seeking to design extensive remedial well fields in more
complex hydrogeologic environments.

C. Scope

To allow a detailed treatment of the topics most applicable to remedial action system design, the
scope of this manual is restricted to quantitative design strategies that have been fully developed and
tested by the research community. Specifically, the manual focuses on design issues associated with
hydrogeologic aspects of pump-and-treat remedial action systems, with an emphasis on optimization of
well-field designs (including location and pumping rates for withdrawal and injection wells). This
presentation will show bias towards remedial actions intended to achieve hydraulic control of contaminant
plumes, but the techniques are also applicable (albeit with considerable additional complexity) to remedial
actions predicated on contaminant removal and/or contaminant concentration reduction.

D. Text Description

The manual begins with reviews of the fundamental aspects of contaminant hydrogeology
(Section II) and the data requirements associated with remedial design problems (Section III).

ii




Section IV addresses the topic of aquifer remediation design by presenting a detailed discussion of
remedial design strategies. The five components common to any design strategy are (1) selection of the
appropriate remediation strategy; (2) defense of the selected remediation strategy before the appropriate
regulatory agencies; (3) design of the required monitoring network; (4) design of the component remedial
technologies—which, as a whole, constitute the remedial strategy; and (5) construction and operation of
the remedial systems.

The “pump-and-treat” remedial actions discussed in this manual represent one type of remedial
technology. As noted in Section I'V, one of two broad objectives is commonly used to focus the design
efforts for pump-and-treat remedial actions. These two objectives are “hot-spot” cleanup and containment
through migration control. Several variations of these two approaches to remedial action are presented in
detail in Sections V and VIII.

The design of a remedial system can be accomplished using one of three different methods:
simulation, simulation plus optimization, and simulation plus decision analysis. Simulation analysis is
presented as an option suitable for use in remediation design problems in simple hydrogeologic settings or
in preliminary design analysis prior to the application of a rigorous optimization scheme. Simulation
analysis techniques covered in Section IV include uniform-flow and nonuniform-flow capture-zone
analysis. Several computer codes that are suitable for capture-zone analysis (RESSQ, DREAM,
MODFLOW, GWPATH) are discussed. A brief introduction to the decision analysis method of remedial
design is also presented in Section IV and is continued in Appendix A. The topic of formal simulation
plus optimization is reserved for Section V.

Section V introduces the embedding and response matrix approaches to optimization of groundwater
management problems. In the embedding method, the governing groundwater flow equation is discretized
using finite elements or finite differences, and the discretized equations are “embedded” in the constraint
set for the optimization problem. Optimization problems involving large flow models result in enormous
constraint sets when using the embedding approach. For this reason, the emphasis of Section V is devoted
to the response matrix approach. This technique provides less information to the user, but the optimization
problems formulated using the response matrix approach are much more compact than those associated
with the embedding technique.

After reviewing the fundamental concepts of the response matrix method, the computer code
AQMAN is introduced for use in generating response matrices for aquifer remediation problems. Coupled
with a standard MPS optimization package such as Stanford University’s MINOS, AQMAN is suitable
for use with optimization problems involving deterministic models of advective contaminant transport.
Objectives can be either linear or quadratic functions of the total pumping rate or pumping cost. Possible
constraints include those associated with (1) point values for hydraulic heads, (2) hydraulic gradients
between control pairs, (3) velocities between control pairs, and (4) pumping and recharge rates at
individual wells and groups of wells.

After discussing the mechanics of using AQMAN and MINOS in aquifer remediation design,
several illustrative examples are presented. These include the following specific remediation design
strategies: hydraulic gradient control, flow reversal and contaminant removal, screening plus removal, and
generalized capture-zone design with velocity restrictions.

Recognizing that all aquifer remediation problems do not meet the assumptions necessary for the use
of formal optimization, additional design considerations for more complicated hydrogeologic settings are
discussed in Section VI. Special remediation design concerns addressed include those presented by (1) the
unsaturated zone, (2) water-table conditions, (3) leaky-confined aquifers, (4) low-permeability zones,

(5) fractured rock and karst aquifers, (6) immiscible plumes, and (7) facilitated transport.
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The instructional material regarding remediation design concludes with Section VII, a review of
performance evaluation strategies, methods, and protocols. Performance evaluations are the tool used by
operators and regulators to assess the relative success or failure of a remediation system. Operators rely on
performance evaluations to determine if modifications must be made to improve the operation of the
remedial system. Regulators rely on performance evaluations to determine if public health and
environmental quality criteria and standards are being met. Three common methods used by operators and

regulators for conducting performance evaluations—computational, statistical, and graphical
methods—are introduced in Section VII.

To demonstrate the application of linear optimization using the AQMAN and MINOS codes
introduced in Section V, a complete remediation design analysis for an actual field site is presented in
Section VIII. A brief description of the numerical flow model is followed by formal optimization
problems for six different pumping strategies. Optimal solutions were obtained for five of the six
strategies. The most attractive of the five optimal solutions required one pumping well near the center of
the plume, five downgradient injection wells, and a total pumping rate of 23.2 gallons per minute. It is
likely that this design would not have been obtained without the use of an optimization technique because
the small aquifer thickness and low conductivity tended to indicate a large number of pumping wells
would be needed at the downgradient plume boundary. This demonstration of the optimization
methodology completes the manual by providing a detailed illustration of the application of linear
optimization to a realistic site and the type of results that can be obtained.

As noted in Sections IV and V, the quantitative analysis tools presented in these sections are limited
to what is referred to as “on-the-shelf” technology. These analysis tools are those that have been tested
and published and are, therefore, readily available for use by practicing hydrogeologists. Two remediation
design techniques that are not on-the-shelf and are still in the developmental stages are decision analysis
and nonlinear optimization. For readers seeking information on these two state-of-the-science design
methods, detailed introductions to these topics with extensive literature citations are provided in
Appendices A and B.

Appendix C provides complete examples of AQMAN and MINOS input and output files for a
sample aquifer remediation problem. These examples can serve as a guide to new users applying
AQMAN to actual remedial design problems.

An introduction to water-quality standards and the National Primary Drinking Water Regulations
under the Clean Water Act is provided in Appendix D. This material includes a table of maximum
contaminant levels (MCLs) and maximum contaminant level goals (MCLGs) that may be used in defining
plume boundaries and remedial action objectives.

E. Recommendations

The material presented in this manual will be useful in designing pump-and-treat systems for
contaminant plume control and contaminant mass reduction. Current research intended to address
complexities such as uncertainty, dispersion, and physiochemical reactions should be continued as it will
provide the capability to design cost-effective treatment systems for the most challenging groundwater
contamination problems.
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Section I
Introduction

This manual summarizes a set of techniques that can be used to design efficient and cost-effective
pump-and-treat systems for groundwater remediation. The impetus for the report is the increasing
nationwide concern by both the U.S. Air Force and the public regarding groundwater contamination at
Air Force installations.

The contaminants found in groundwaters at U.S. Air Force sites are representative of virtually all
major industrial by-products. Although the characteristics of groundwater contamination and the
hydrogeologic conditions may be unique to each site, the design techniques presented in this manual are
quite general and should be applicable to a large number of these sites.

A. Objective

The objective of this manual is to present a detailed description of a set of tools and techniques that
can be used to design the most efficient and cost-effective withdrawal and injection systems for ground-
water pump-and-treat remedial action operations.

A large number of remedial action alternatives are available for application to groundwater-
contamination problems. Systems based on a pump-and-treat approach are an essential alternative of
choice for many groundwater-contamination problems.

Unfortunately, a widely applicable and rigorous approach to the hydrologic design of efficient
pump-and-treat systems has not been adopted by groundwater hydrologists. In many instances,
professional engineering judgment is the basis for the design of a remedial action well field. The
locations and estimates of pumping rates for a well or set of wells are determined on the basis of the
available data and the experience of the design engineer. Subsequently, a numerical or analytical model is
used to predict the impacts of proposed remedial action on the contaminant plume. The hydrologist
modifies the well system and repeats the process until an acceptable plume response is achieved. This
approach lacks mathematically formalized checks and balances that might be used to ensure that the
hydraulic design is optimal, both with respect to cost and with respect to physical control of the
contaminant plume. Because pump-and-treat systems often evolve into long-term operations, the
potentially high costs dictate the need to attempt to maximize their efficiency.

The recommended approach is based on a combination of simulation and optimization. Simulation
is carried out with the usual types of groundwater models for flow and transport. Optimization is based
on standard linear-programming techniques. The mechanics of the suggested approach are presented
in Section V. Section IV sets the framework for the problem and places the simulation-optimization
technique into the context of other available solution technologies. There are limitations on the applica-
tion of the simulation-optimization methodology and these are recognized throughout the manual.
Section VI provides more qualitative guidelines for cases that are not easily amenable to the simulation-
optimization approach.

B. Background

1. Groundwater Contamination at U.S. Air Force Installations

As part of its overall mission, the United States Air Force operates 137 installations in the United
States and in foreign countries. The Air Force also owns 13 contractor-operated plants, which support




these installations. Many of these bases and plants are nearly self-sufficient complexes that provide
on-site industrial capabilities. Typical industrial operations at these sites include metal casting, metal
fabrication, metal plating, solvent handling, fuel storage and handling, fire fighting, electronics
manufacturing, food processing, and waste disposal.

During the last decade, both the Air Force and the public have expressed increasing concern about
environmental contamination resulting from past and present activities at Air Force-owned sites. Because
of its potential to affect public health and the environment, groundwater contamination is a major subject
of this concern.

Although the characteristics of the groundwater contamination and the nature of the hydrogeologic
conditions are unique to each Air Force site where contamination exists, several generalizations apply.
The typical contaminated hydrogeologic system occurs in a relatively shallow water-table aquifer in
unconsolidated sedimentary deposits. Other types of affected hydrogeologic flow systems include
near-surface fractured-rock aquifers contaminated by infiltration from the surface and confined or
semiconfined aquifers threatened by contaminant leakage through confining beds. Because water-table
aquifers are usually close to the surface and have no protective confining layer, they represent the most
frequently affected groundwater flow systems at Air Force installations.

The contaminants found in groundwater beneath U.S. Air Force installations are representative of
virtually all major industrial by-products, including metals, volatile and semivolatile organics, petroleum
hydrocarbons, pesticides, polychlorinated biphenyls (PCBs), asbestos, radionuclides, and other select
inorganics. However, in terms of the total volume of groundwater affected by a particular contaminant or
group of contaminants and the magnitude of the contaminant concentration, the bulk of Air Force
contamination problems are limited to a relatively small number of compounds.

The most common contaminants at Air Force sites comprise three major contaminant groups.
Petroleum hydrocarbon contaminants are the most common and usually include benzene, ethyl benzene,
toluene, and xylene. Trichloroethylene (TCE) and related solvents are the second most common
contaminants. These solvent compounds originate from degreasing, paint handling, metal plating, and
other similar operations at Air Force installations. Toxic metals and other inorganic contaminants
represent the third most common contaminant type. Specific constituents from this group found in
contaminated groundwater include lead, cadmium, chromium, and cyanide. There are, of course, other
contaminants found at Air Force sites, but these three groups are by far the most common.

In terms of demographics, typical Air Force installations do not vary significantly from average
urban communities. In fact, most Air Force installations are located near urban centers, and can be
considered as extensions of them. Land uses are both industrial and residential, but agricultural land use
is essentially nonexistent. Potable and industrial water sources at Air Force installations consist of both
surface water and groundwater, while some base-operated water-supply systems receive water from
off-site municipal sources. To the extent that these conditions are similar to those of an average urban
community, unique demographics are not usually a concern when evaluating groundwater contamination
problems at Air Force sites.

2. Groundwater Contamination at Other Sites

Although every contaminant hydrogeology problem is unique, many of them share common
features. While this manual addresses the design of pump-and-treat remedial actions for groundwater
contamination problems at U.S. Air Force sites, the methods described also apply to groundwater
contamination problems at other publicly or privately owned sites. The features common to many
contamination problems that lead to wider applicability include (1) type of contaminant (dissolved fuels,




solvents, and metals), (2) type of porous media (unconsolidated sedimentary deposits), and (3) type of
aquifer (shallow, unconfined).

3. Groundwater Remedial Action Under the Air Force Installation Restoration Program

The U.S. Air Force initiated the Installation Restoration Program (IRP) in response to growing
public concern about the quality of the environment and health risks associated with past Air Force waste
disposal and handling practices. The Defense Environmental Quality Program Policy Memorandum
81-5, issued on 11 December 1981, set forth the policy for the program. The IRP (U.S. Air Force, 1985)
is a process that provides a general framework for characterizing and remediating groundwater
contamination and other types of environmental contamination such as that associated with soils, surface
waters, or the atmosphere.

With respect to the groundwater component of its environmental remediation activities, the Air
Force has adopted the protocols of the U.S. Environmental Protection Agency’s (EPA’s) Comprehensive
Environmental Response, Compensation, and Liability Act (CERCLA) in conducting its IRP (U.S. EPA,
1987a, 1987b, 1987c, 1988a, 1988b). Figure 1 shows the sequential framework for a standard CERCLA
investigation conducted at a potential National Priorities List (NPL) site according to EPA guidelines
(U.S. EPA, 1986). The Air Force follows similar preliminary-assessment, site-inspection, and hazard-
ranking steps prior to developing a Remedial Investigation/Feasibility Study (RI/FS) plan. Figure 2
outlines the components of the RI/FS process used at NPL sites (U.S. EPA, 1988a); a similar process is
carried out at Air Force sites. In fact, some Air Force sites are NPL sites, and at these sites the CERCLA
process and the IRP process formally converge.

All NPL sites (non-Air Force and Air Force) and all Air Force sites that are not candidates for No
Further Action (Figure 1) require an RI/FS. Under the new EPA guidance document for the conduct of an
RI/FS (U.S. EPA, 1988a), this stage comprises the bulk of the site investigation work. During an RI/FS,
investigators conduct detailed studies of the contaminant transport aspects of the hydrogeologic system.

During the Feasibility Study portion of an RI/FS, a set of candidate remedial technologies must be
identified. The candidate technologies identified in the IRP guidance document (U.S. Air Force, 1985)
include (1) impermeable caps, (2) groundwater pumping systems, (3) impermeable barriers,

(4) subsurface collection drains, (5) surface-water diversion and collection systems, (6) permeable
treatment beds, (7) grading activities, (8) revegetation activities, and (9) bioreclamation systems. The
design team is expected to develop remedial action alternatives using combinations of those remedial
technologies that show promise during the screening process. A detailed evaluation of the alternatives is
then carried out on the basis of (1) engineering feasibility, (2) cost analysis, (3) environmental impact,
(4) public health risk analysis, and (5) an assessment of regulatory compliance against all Applicable or
Relevant and Appropriate Requirements (ARARs). The No Further Action alternative is usually included
in the evaluation step in order to provide a baseline for comparison.

Once an alternative remedial action is selected, the design and construction phase ensues. This
includes the development of (1) engineering plans, (2) a health and safety plan, (3) a site security plan,
(4) quality-assurance/quality-control (QA/QC) plans, (5) operational monitoring plans, and (6)
postclosure monitoring plans.

The discussion of engineering design in the following sections presumes a generic approach to the
hydrogeologically controlled aspects of the remediation process. We do not further discuss CERCLA or
IRP protocols, public health risk analysis, or QA/QC issues.
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Figure 2. Components of the RUFS Investigation Process for NPL Sites (after U.S. EPA, 1988a).




4. Engineering Design Approaches for Groundwater Remedial Action Systems

Six general classes of groundwater remedial action are available for sites involving contamination
problems that must be remediated. They include

e  Plume stabilization through hydraulic control to minimize spreading.

¢ Diversion of flow or redirection of contaminant plume to protect a well or other resource.
e Contaminant removal to clean up an aquifer.

¢ Insitu biological treatment to reduce contaminant levels in the groundwater.

e Wellhead treatment to clean up groundwater withdrawn for a specific use.

e Monitoring of contaminant levels until need for one of the above remedial actions is confirmed, or until
natural attenuation reduces contaminant levels.

Plume stabilization through hydraulic control is a mitigation measure only. The intent of this
remedial action is to minimize the spread of contaminants and protect the surrounding uncontaminated
groundwater resources. Because the goals of this remedial action are relatively modest in comparison to
some of the other techniques, it has been one of the most successful methods used in practical
applications. This technique uses withdrawal and injection wells, drains, interceptor trenches, and/or
cutoff walls to manipulate the hydraulic gradient and create a no-flow boundary surrounding the
downgradient edge of the contaminant plume. To meet regulatory constraints, the groundwater
withdrawn from the aquifer is usually treated prior to reinjection or discharge.

Flow diversion and plume redirection are similar in practice to plume stabilization. The objective of
this remedial action is to protect specific groundwater resources that could be affected by the influx of
contaminated groundwater. Such resources might take the form of a well field for municipal water
supply, or a surface-water supply reservoir that is recharged by groundwater flow. As with plume
stabilization, flow diversion/plume redirection is accomplished through hydraulic-gradient control.

The third category of remedial action, contaminant removal, is the one most typically sought by
members of the public who are affected by a groundwater contamination problem. The objective of this
remedial action is to remove as much contamination as possible and return the groundwater to its original
quality. Contaminant-removal systems consist of withdrawal wells, trenches and drains, and above-
ground treatment or disposal facilities. These systems have been relatively unsuccessful due to the
difficulty associated with fully describing the contaminant transport process in “real world” aquifers and
the persistence of sorbed chemicals on and in the solid matrix of the geologic media. In most cases,
complete contaminant removal, even if feasible, is prohibitively expensive. However, in many cases it
may be desirable (and/or required) to reduce contaminant concentrations to specific target levels that are
protective of human health and environmental quality.

In situ biological treatment is a remedial approach that is currently under investigation. To date, the
U.S. Air Force has had little success with biological treatment and it cannot yet be considered a proven
technology. However, in situ biological treatment is receiving increasing attention from regulatory
agencies because it involves the actual destruction of contaminants rather than a transfer of contaminants
from one medium or phase to another. Some encouraging research results are emerging, especially with
respect to remediation of fuel-based hydrocarbons. F