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Abstract
This paper is the third in a series in which we study the superconvergence of i

finite element solutions by a computer-based approach. In [1] we studied classical
superconvergence and in [2] we introduced the new concept of V%-superconvergence and
showed that it can be employed to determine regions of least-error for the derivatives
of the finite element solution in the interior of any grid of triangular elements. Here
we use the same ideas to study the superconvergence of the derivatives of the finite
element solution in the interior of complex grids of quadrilaterals of the type used in
practical computations.
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1 Introduction

Classical superconvergence studies the exceptional rates of convergence of values
of quantities (derivatives of the displacement, strain, stress etc.) computed from the
approximate solution at certain special points in the mesh. These points are called
superconvergence points for the quantity and the corresponding values are called su-
perconvergent. We distinguish two types of superconvergence:

a) Direct superconvergence: The superconvergent values for the quantities are ob-
tained by direct evaluation from the approximate solution at the superconver-
gence points.

b) Superconwergence via post-processing: The superconvergent values are obtained
by some post-processing (local averaging) from the approximate solution.

In this paper we will study only direct superconvergence. A similar study of super-
convergence via post-processing is possible and will be the subject of a forthcoming
paper.

Classical superconvergence for meshes of quadrilateral elements has been studied
by several investigators; see for example [3-9] and the references therein. It should
be noted that all the mathematical studies of superconvergence for quadrilaterals el-
ements have addressed the superconvergence in meshes of squares or meshes which
can be mapped to a mesh of squares via a sufficiently smooth transformation (see
for example [4-5]). However, practical finite element meshes have to conform to com-
plex geometries (boundaries, material-interfaces) and have to be locally refined near
reentrant corners, fillets or other critical regions. In [1] we have demonstrated that the
superconvergence points are very sensitive to the geometry of the mesh, the solution-type
and the coefficients of the differential operator. Hence the superconvergence points,
in the classical sense, may not exist for the meshes used in engineering computations.
Thus classical studies of superconvergence do not result in concrete guidelines on how
to sample the various solution quantities in the practical grids.

In [1] we introduced the following new definition of superconvergence: Let {uh} be
a one parameter sequence of finite element solutions of a problem which are computed
using a sequence of meshes T = {Th} and let u denote the exact solution. Let us
assume that we are interested in the values of the solution or its derivatives or linear
combinations of these quantities i.e. in the linear functional F(u)(0). Let us assume
that for every element r of the mesh Th a special point i, which depends on the
geometry (but not the size) of the element, is given. Then denoting

@(1.1) (u - Uh) := max IF(u - Uh)(W)IWEe

we are interested in the values of relative error in F(u) at i,

3
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IF(,,.- ,,,,(Cv)l ifI( Uj9

(1.2) 0(f;F;u,uh,h,-):=- - u(_ ) , if,,(,-,)#0 I
0 , if'(U -Uh)= 0

If the point r is such that

(1.3) E(i;F;u,uh,h,r) _ iL as h-- 0
100

then C will be called a u-wq%-superconvergence point relative to the exact solution u
and the family of meshes T. Consider now a family of solutions U; the point f will be
a U-9%-superconvergence point if it is u-ii%-superconvergence point for every u E U.
Obviously 0(a;F;u,uh, h,r) < 1 and thus all points in every element r are 100%-
superconvergence points. Note that if there exists a point F in the element r for which
17 = 0 in (1.3), i.e. 3
(1.4) @(t;F; u,,uh, hr) - 0 as h -- 0 3
for a particular u (resp. for every u E U) then C is a u-superconvergence (resp. U-
superconvergence) point in the classical sense. 3

So far we have assumed that we are interested only in one scalar functional F. We
could also be interested in the points which axe superconvergent simultaneously for two
(or more) functionals e.g. the derivatives in the z, and 22 directions. We can formalize
this by assuming a vector functional; the meaning of the q%-superconvergence point
for the vector functional is obvious. Sometimes we will call it explicitly as simultaneous
superconvergence. I

Let us note that if q7 is very small (smaller than a tolerance) we can still practically
speak about a superconvergence point (with a given tolerance), which is the reason for
introducing the notion of the n%-superconvergence. For example in Section 5.1.1b we I
report the simultaneous superconvergence for the 2. and 22 derivative with tolerance
less than 0.001% (for a mesh of biquadratic elements with a mesh-interface).

Remark 1.1. In this paper we are interested in the pointwise superconvergence as

defined above. Of course the notion of superconvergence can also be understood in
different ways. For example we can be interested in the quantity 3

(1.5) 'Iq({'t,}; F, U, Uh, h, {T}) := - L

4I (E (,. o.).)'I



where {r} is a set of elements, {f,} is a set of points in each element. Then the
pointwise superconvergence is related to q = oo. Very often for locally refined meshes
the area-measure of nonregular mesh-structure is of order 0(h). If in addition, as it
often occurs (see Section 5.4), il -- 0 (at the points {f,}) exponentially with the

distance of the element r to the interface we get q ---+ 0 as h --- + 0 (in fact Iq • hI).
Various authors are calling this effect also as superconvergence (see e.g. [4, 5]). Another
similar example is to create an "improved" solution (see [10, 11]) and measure the
error of this "improved" solution (see [12]). Once more the notion of superconvergence
depends on its measure, e.g. if measured in L'-norm, q < oo, we get superconvergence
effects where for q = oo there is no superconvergence (see the example of a grid
with mesh-interface in Section 5.2 below). Hence the word superconvergence has to be
properly defined.

The goals of the paper are the following:

1. To show that the q%-superconvergence points in an element depend on the local
neighborhood topology of the mesh.

2. To address in detail the superconvergence for concrete topologies in meshes of
square elements with refinements. These results can be practically used for the
meshes which have locally this character. (The meshes used in various codes
have only a finite number of local topologies.)

3. To show that if we ask only for improved accuracies in an element there are
areas where they can be achieved. These areas are robust with respect to the
mesh-topologies outside the immediate neighborhood of the element.

4. To demonstrate that the increased accuracy can be achieved only if the meshes
are such that the effect of the pollution is under the control.

5. To develop a general procedure to address the superconvergence problem for grids
with general topologies.

Following this Introduction we outline the model elliptic problem (Poisson's equa-
tion) and we describe the classes of meshes of quadrilaterals for which the study of
superconvergence is given. We then describe a computer-based approach which can
be employed to find the points of least-error for the derivatives of the solution in any
interior element of any mesh. We give examples of application of this approach to
study classical and q%-superconvergence for complex meshes of quadrilaterals with
local refinements.

I I5
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2 Preliminaries

2.1 The model problem I

In this paper we will study the superconvergence of the derivatives of finite element
solutions of Poisson's equation. Let 0 C R2 be a bounded polygonal domain and let
its boundary 80 be split into two parts rD and rN (rD has positive length). Let u be
the solution of the problem 3
(2.1a) -AU -- ( + =u) , in 3,

(2.1b) u=O, ontD, I
I

(2.1c) OU .=_- 2 , Lq j, o,, r..

Here n, I = 1, 2 are the components of the unit outer normal of 80f; E E L2(fl),
E E L2(rv) are given data. If r -- 0 it is assumed that the compatibility condition

fan =0 is satisfied.

Let HrD(fl) := {u E H 1(Q) I u = 0 on rD}. Then the above problem may be put I
in the variational form: Find u E Hr,. (0) such that

(2.2) Bo(u,v) = Ln(v) V v E HrDfl)I

where

(2.3) Bn (u, V): VUVV, LO(v) :=fn1 i+f4v.

Let T := {Th} be a regldar-family of meshes of quadrilaterals with straight edges.
(It is assumed that for any quadrilaterals T', T'j E Th, the intersection T' n 7j is either
empty, a vertex or a common edge, and that the regularity conditions (37.40) in [13]
hold. For the regularity-conditions for grids of quadrilaterals with refinements see 114].)
The meshes Th are not assumed to be quasiuniform. We introduce the conforming
finite-element spaces

65



(2.as) Shp := fu E Co(O) I U1, E gh(-), 19 = 1.,M(Th),

(2.4b) S'Vr(T) = {W E C¶('rk) ID ot 0P, E P)fI

where -f := (-I,1)2 is the master-element and P, is the bilinear mapping of * onto
Tr; M(Th) is the number of elements in T, and

(2.5) aid {i 4'Pi,2

'.O ij~s

By our assumption the mapping FP, is a bilinear map of ý onto 7-k. Hence

1 1

Let P(z, z 2 ) = x c,,, zr' be a polynomial of degree p; then
O<m+n<p

1 1 ""

(2.7) P(I : 1 2) = i( j 'i ) :2 1 2
O<vn+n5p ij=0 kL=O o<t<p

Hence any polynomial of degree p belongs to the span of the shape-functions Shp(,r) on
every physical element 7-.

Below we will consider meshes which are obtained from a h-refinement procedure
which include elements with irregular connections. We say that an element has n-
irregular connection on one of its sides if it is connected to (n+ 1)-neighboring elements
on that side. Here we consider only elements with 1-irregular connections and we will
refer to the meshes as 1-irregular meshes (see [14]). The precise mathematical develop-
ment of interpolation spaces for 1-irregular meshes of bilinear elements is given in [14]
(see [15] for the biquadratic elements). A systematic approach for the construction of
hierarchic variable-p interpolation spaces for 1-irregular meshes is given in [16]. In this
paper we will restrict ourselves to bilinear (p = 1) and biquadratic (p = 2) elements of
the Lagrangian family. In meshes of Lagrangian elements with 1-irregular connections
there are two types of nodes, the proper (or active) nodes and the improper (or con-
strained) nodes. For bilinear elements a proper node is a vertex for all the elements

7
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which share the node as shown in Fig. la (see also [14]). For biquadratic elements a
proper node is either a vertex for all the elements which share the node or a midside
node for an element and a corner node for other two elements which are connected to
the first element through that side as shown in Fig. lb (see [15]). The details about
the implementation of the constrained approximation are discussed in [17]. The con- 3
strained nodes can be eliminated by introducing transition (or composite) elements as
shown in Fig. lc and Fig. ld for the meshes shown in Fig. la and Fig. lb, respectively.

We let ShrD := SP(O) n HrD(fl). The finite element solution uh of the model I
problem satisfies: Find uih E Sr, rv such that

(2.8) B(uh,,vh) = L(vh) V vI, E Si.r,

We let eh := u - uh denote the error in the finite element solution. U
2.2 Definition of ri%-superconvergence quantities 3

Let Th E T be a finite element grid and 7 E Th be any element. Let F(u) be

the solution-quantity of interest, for example we may have F(u) = 0 or - or a

linear combination of the derivatives. We now define several geometrical quantities
associated with the error in the finite element solution in the element r. 3

Given ', 0 <_ i: 100 we define the following:

1. t%-contour of F(u) in the element r E Thfor the ezact solution u: I

(2.9) )(u; r, : TI) a -Er E(a;F;u, uh, h,T") = }
Here E(z; F;u, uh, h,r) is the relative error as defined in (1.2).

2. i7%-band of F(u) in the element T E Th for the ezact solution u:

(2.10) B%")(u;r,Th) M E T e(z;F;U Uhhr) < -I-

3. Superconvergence points of F(u) in the element i" E Th for the class of exact I
solutions U:
(2.11) X;("" (U; r Th) := nCO C?) (u;',rTh)I

uE8 I

I



4. v1%-superconwgence regions of F(u) in the element r E Th for the clss of eact
sohdions U:

n.n
SE U

Here U denotes the set of exact solutions of interest.

AY ýmark 2.1. In some caes the sets defined above may be empty.

Remark 2.2. The function u is a solution (resp. U is a class of solutions) of (2.1)
for a given set of data (reap. for given classes of data). When I = 0 the solution u
satisfies Laplace's equation, i.e. -Au = 0 (i.e. the solution is harmonic). The major-
ity of steady-state computations in engineering are done to approximate "harmonic"
solutions. (By "harmonic" solutions we mean solutions of the homogeneous differen-
tial equation (or system of differential equations) with non-homogeneous boundary-
conditions.) Thus it is important to study superconvergence for this class of solutions.

One is interested to know a-priori the 9%-superconvergence regions and the super-
convergence points, if they exist, for classes of solutions of interest (In the practical
computations in plane elasticity and heat-conduction the class of solutions of interest is
the class of "harmonic" solutions with a finite number of algebraic point singularities of
the type r"). In general, if Th is any grid, it is impossible to predict the locations of the
superconvergence regions and points. Here we will make additional assumptions about
the approximation which will enable us to determine a-priori the il%-superconvergence
regions and points, if they exist. In particular we will assume that:

1. We are interested in the asymptotic locations of the tq%-superconvergence regions
as a mesh-parameter h tends to zero (details about how the limit is taken are
given below);

2. The global modes of the error (pollutions) are negligible when compared with
the magnitude of the error in the local best-approximation (see Section 3);

3. We are interested in a specific class of solutions. The majority of the results in
this paper will be given for the class of harmonic solutions.

In this paper we will determine the asymptotic 9%-superconvergence regions and
points for elements in the interior of the mesh and smooth solutions. (The solutions
can have point-singularities at the boundaries but they are analytic in the interior of
homogeneous domains; all the practical solutions in orthotropic heat-conduction and
elasticity are of this type.) The theoretical results are given in [1] for a special class
of locally periodic grids. Here we will demonstrate through numerical examples that
the conclusions of the theoretical study hold, for all practical purposes, for the types
of grids of quadrilaterals which are used in practical engineering computations.

9
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2.3 The class of locally periodic meshes

We now present the definition of a special class of locally periodic meshes. Let us m
consider a locally periodic grid defined as follows. Let 0 < H < H°, n°o = (z o) E

(2.13) S(o*, H) {=1u = (W:1,22)1 li: - z?I < H, i = 1,2}

and assume that H' is sufficiently small such that 9(wO, HO) C fl. Further, let 7 be a m
set of multi-indices (i,j), z('j) .(AiJ) E(d ) a=•I ,.X2 ) E 0 and

(2.14) c(u("j),h) := S(u('j),h) C S(w°,H), (i, j) E 7

be the set of the h-cells (or cells) which cover exactly S(u°, H) i.e. m

(2.15a) U 9(u(,( h)= .(,,,H) m
(i.j)E-V

(2.15b) c(a(i),h)flc(z(2-a),h) = 0 for (Iiji) # (i2 ,h)

We will refer to S(z°, H) as the subdomain of periodicity of the mesh centered at no.
Denoting by

(2.16) a:= S(0,1):= {(il,i2)j Ill <1, 1i22<1} 3
the unit- (master-) cell Z, every h-cell is an h-scaled and translated master-cell.

Let T be a mesh on the master-cell (the master-mesh) and T;(ij) be the mesh
on c(z('j), h) which is the scaled and translated image of T. We will consider the
family T of locally periodic meshes. Let Th E T and Th(a', H) be the restriction
of Th on S(z,H) and T("') the restriction of Th(z 0 ,H) on c(z('J),h). We assume
that T("'j) = T("j), (ij) E - i.e. Th(z°,H) is made by the periodic repetition of the
h-scaled master mesh.

The type of meshes under consideration is depicted in Fig. 2a, where the subdo-

mains S(z°, H) D S(z°, Hj) are covered by a periodic array of cells shown in Fig. 2b
(where the master-mesh in the master-cell is shown in Fig. 2c). Outside the square
S(z 0 , H) the mesh is arbitrary; it could have curved elements, etc. The values of H1
depend on h i.e. H1 = H,(h). More precisely we will assume that there exist constants
C1 and C2 independent of h such that

(2.17) C1H 5 h <_ C2 Hla, a >1 3
103
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3 The theoretical setting

Given a function u and the multi-index a := (al, a2) we define

(3.1a) D 8u 8:a z'' IaI := a +a 2

I
3 (3.1b) (Iu)u (2ID%12 )(a)]J k> 0, integer101=1S

3 and let us denote

3 (3.2a) IIUIIs(.o,H.) IIUII,(S(.oH.))

3 (3.2b) IU I s(.oI) I= IUI,,Le-(S(m.,H,))

I
(3.2c) II u IIS(0,.H,) := I Du I

Let Q be a polynomial of degree p + 1 on the master-cell 2 and let T be the master-3 mesh. Then denote

3 (3.3) p:=1

where QINT is the interpolant of degree p of the function Q defined over the master-
mesh T (for which h = 1). As we mentioned above, any polynomial of degree p on an
element rk belongs to SP'('rk). Hence any polynomial of degree p on S(w0 , H) belongs
to SI•(S(w 0 , H)). Hence p defined in (3.3) is 6-periodic; this can be shown exactly as3 in [18]. We have

(3.4a) P(1",2) = p(-1," 2), 1'21 < 1

(3.4b) p(X1,l)= p(M1,-1), iII < 1

3 11
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Further let I
(3.5) Hp'Z(2) {= u E H1 (2)1 u satisfies (3.4)}

and

(3.6) S',PaRMc {= u E Hp'u(2)1 uj#I E SIP(f) V f ET}

Further let iP E Sp'(Z) such that U
(3.7a) Be(i',f) = B1 (p,fO) V 'D E SjPpR(2)

and

(3.7b) j(P-ip)= 01

Note that the function P' exists and is uniquely determined (we will compute it nu- 3
merically in the examples). Let us also define 0 E H'(2) by

(3.8) p:= p-•' = Q-,4 where aZ := QT +',P

We will now outline the main theorem of the paper. We will make the following I
assumptions about the exact solution u:

Assumption I

On . (u0 H)

_ II
(3.9) IDauI <K<oo, O<Iatl p+2

Remark 3.1. Assumption I states that the solution is locally smooth in the subdomain
S(.-O, H) i.e. the subdomain should be sufficiently far from boundaries, material-
interfaces and points where the data are rough.

Assumption II

If a.:= (Do) ( 0 ), a=(al,a2 ), jai_<p+l then

123
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(3.10) R2 = a. > 0

3 Further, we assume that the mesh T(fl, h) is such that:

Assumption III

3 OnS(°0 ,HI), H1 <H<HO

3 (3.11) IjehIls(.o.,H) _ Ch"H1

with P _! (p + 1) - e, where e is specified in the theorem below and where C is
independent of T(fl, h), H2, but it depends on K, H and R. We will assume everywhere
below that H is sufficiently small depending on K, R and p.

Remark 3.2. We do not assume that u is smooth in fl outside of S(. 0 , H). For3 example, 0 can have a boundary with reentrant corners (as in Fig. 2(a)) and hence u
can be unsmooth in the neighborhood of these corners. Nevertheless assumption III
makes an implicit requirement on the (refinement of the) mesh in the neighborhood of
these corners. if u is smooth in a convex 0 and the mesh is quasi-uniform then

3 (3.12) 1eklf IChP* 1 nh I" IV+lu1n, r_>

and hence in assumption III we can take P < p + 1 arbitrary.

Remark 3.3. Assumptions II, III imply that the principal part of the error in S(a 0 , H1 )
is related to the non-zero (p + 1)-derivatives of the exact solution at r0.

3 Let 'bh E HPER(C(W(ij), h)) be the function 4', defined above, scaled and translated
III: the cell c(u('a),h) of the mesh in S(w°,H) i.e.

(3.13) h() hP"+' (i), 0-h- () = hP.-(i), i=1,2,

where 4 E c (.(i), h) and i = - S S

It is easy to see that 'Ph can be periodically extended over S(w°, H1 ). In [1] we have
proven the following theorem based on the theory of interior estimates (see [19]-[24]):

3 Theorem 1. Let H1 < H < H° and the assumptions I-III and (2.17) hold with

( 6p+ 1  1S(3.14) =- 6p ' U6(6p+1)' = E=u

3 13
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Then for any . E S(w°, HI)

(3.15) D--. (0)I I .(a)I+ I-ICh'+,

with IAI A 1 and C independent of h.

Remaw 3.4. Note that 0 (and thus Oh) depends on the polynomial Q which approx- 3
imates well the solution in S(m°, H). Theorem 1 states that for small h we have onS(ie°,HI)

(3.16) •• m

or more precisely I
(3.17) I•,,-)1I" (wl=Jh r)l÷+ JAJ ChP

On the other hand it is easy to see that

(3.18) Max (IO Ieu(.)h ) 8: I > Cha? I
where C depends on the constant R defined in (3.10). Nevertheless this does not mean
that 3

(3.19) Ž1-> ChP, i =1,2 3
The case that

(3.20) ILekI 5a h-- . o>0, foreither i=1 or 2,

is very exceptional. Hence we will assume that (3.20) does not happen i.e. we will
assume that there exists a constant a > 0 independent of h such that 3

aeh
(3.21) I• I I - , o• 31

" ~I



This assumption could formally be improved by imposing additional assumptions on
the a.'s (defined in assumption II). Note also that (3.21) is always assumed to hold in
the classical superconvergence theories.

Remark 3.5. Under assumption (3.21) Theorem 1 states that: A point A in the element

f is asymptotically ii%-superconvergence point for F(u) i-., j = 1, 2, if and only if

(3.22a) 6(k; F; Q, i, 1,) <
100

where

IF(¢')(i) I i (): €I
(3.22b) (;F; Q,,1,):= ( if 6b) '0

and zero otherwise (see also (1.2)).

Remark 3.6. Theorem 1 states that at a superconvergence point the accuracy is by a
factor h" (with v given in (3.14)) better than in the other points. The value of the
factor v in (3.14) is a theoretical one and practically we usually see v = 1, or higher,
but the theoretical determination of the largest v is out of scope of this paper. For some

I examples of observed values of v in numerical experiments see Section 5.2. The case
v > 0 is of course sufficient for the analysis of the '-xistence of the superconvergence
points and i/%-superconvergence regions.

4 The methodology for determining the q7%-
I superconvergence regions

4.1 The method of freezing the periodicity

In this paper superconvergence is treated as local behavior and is based on the
local behavior of the solution in the interior of the domain. We will consider the class
of solutions which are locally smooth in S(a°, H), namely,

1 (4.1) UG := {ue H'(1)I I D0 u I S(.oH) < K, 0• < p+ 2I

3 where S(w°, H) denotes an interior subdomain of interest in which the mesh is locally
periodic as described above (the subdomain must be a finite distance away from the
boundary and points of roughness of the source term; see Fig. 2a). In many instances
we are only interested in the subclass of solutions in U0 which are harmonic, namely,
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(4.2) U'-, {uEU I u o i 0} Ii
We may also assume that the functions are harmonic in a subdomain which is slightly
bigger than S(.o, H) and which includes S(*o, H) in its interior.

a. The clauses of (p + 1)-degree monomial solution.

Let us assume that for a given locally periodic grid with corresponding periodic
master-mesh T, given material orthotropy and given class of smooth solutions U we

consider

(4.3) {Q:IQI Q(Z1,Z2)= Ft..(I2) ,Z 2)=p+1
h=1 1=0

the class of (p + 1)-degree monomials which occur in all (p + 1)-degree Taylor-series U
expansions of functions from U. Here Q,, k - 1,... ,nd denotes a set of linearly
independent monomials which form a basis for Q. For example, let us assume that U
is the class of smooth solutions given in (4.1); in this case we may choose

(4.4) Qk(zl,z2) : 2 1 < k < nd = p + 2

and we obtain the class of all (p + 1)-degree monomials QG. U
In the case that we are interested only in the class of harmonic solutions UH given

in (4.2) we will take Q as the two-dimensional linear space of harmonic monomials of
degree (p + 1) denoted by QH, namely,

(4.5a) QZ:- {Q'I ) 1

(4.5b) QI(z2,: 2 ) = Re(z 1 ), Q2'(z 1,z 2 ) = -m(zp+ 1 ), Z =- 0 +i 2 . 3
In the previous Section we outlined Theorem 1 which states that we can obtain

the asymptotic values of the error for any smooth solution u in the interior of a peri- -
odic mesh-subdomain by solving the periodic boundary-value problem (3.7), using the
master-mesh t over the master-cell 2, with data obtained from the local (p + 1)-degree

Taylor-series expansion Q of the exact solution. Based on this result we will construct a
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numerical procedure to determine the i7%-superconvergence quantities for a given class
of smooth solutions by employing the corresponding class of (p±+ )-degree monomials.

In order to apply the results of the theoretical study to the practical meshes, for
which the mesh is not locally periodic (like for example the mesh shown in Fig. 3a),
the following technique of freezing the periodicity will be employed:

1. Let w0h be an interior patch of elements of interest (shown shaded gray in Fig. 3a)
in which we study the i,%-superconvergence. Define the s-layered patch of ele-
ments wh", a > 1, surrounding the patch w~h by

(4.6) W. := U W-,:= WU T'

xE(-°) XEN(-')

where N(Y') denotes the set of the vertices of element r', wX is the patch of
the elements connected to vertex X. The patch w." is shown with thick black
perigram in Fig. 3b.

2. Complete the patch w~h to a periodic-grid over a slightly larger square periodic-
cell which encloses the patch as shown in Fig. 3c. The periodic-cell is then scaled
and translated to the unit master-cell 2.

3. Assume that the mesh in the neighborhood of element " is made from the periodic
repetition of h-cells obtained from the master-cell (by h-scaling and translation)
and let h tend to zero. Then the theoretical-setting of the previous Section
applies and the asymptotic error-function in the mesh-cell wh can be obtained by
solving the periodic boundary-value problem over the master-cell E. Based on the
results of the theoretical study, outlined in Section 3, the asymptotic locations
of the in%-superconvergence quantities in any element r C w0h for a solution u
(resp. class of solutions U) can be obtained from the corresponding quantities
(defined on the master-cell 2) for the local (p + 1)-degree Taylor-series expansion
Q of u (resp. the class Q of the local (p + 1)-degree Taylor-series expansions of
functions u E U), namely:

(4.7) lim rn C)("Uw T) -%h-0o "FO~ %h-- u(,(;IT

(4.8) lirn B"')(,) rT%)--'F(,),Q;T,T)h-.0 Fu(;'hý 3FU(;Ff
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(4.9) lim Xr,,(U;Tr, Th) = O ="(Q i f

(4.10) lim ~FM(;TT) = *P(1 ) (Q; f, t

Remark 4.1. The above limits hold for the locally periodic meshes under the assump-
tions of the theoretical analysis outlined in Section 3 (see [1] for the details). Hence
for the general grids the limit should be understood for the mesh which is constructed 1
by freezing the periodicity (as is, for example, shown in Fig. 3c).

In the numerical examples it will be demonstrated that the results of V%-superconver-
gence obtained from the above methodology hold, for all practical purposes, for the
complex grids used in engineering computations (provided that the pollution-error is
controlled, the approximation is in the asymptotic range and that sufficient number of I
mesh-layers are included in the patch w.').

Remark 4.2. Above we assumed that w." = wx; of course we can use any other patch
as woa, for example consisting of one element only. I
4.2 Determination of the i7%-superconvergence quantities 3
The asymptotic 9/%-contours for a given solution u can be obtained by contouring the
function 0&, defined in (3.8), corresponding to the local Taylor-series expansion Q of I
the solution u. The superconvergence points m for a given class of solutions U satisfy

(4.11) F(4'1 )(&) = 0, 1 < i < nd

i.e. when there is a superconvergence point then the zero-contours of F(j ) intersect i
at W for 1 < i < nd. Here Oi := Pi - zP" which is obtained from (3.7) for pi =
Qj - (QJ)INT where Qj is the i-th basis monomial of the nd-dimensional monomial

space Q corresponding to the class U, as discussed in Section 4.1. We also let i :1
(Q)INT + Zp.

The asymptotic iq%-superconvergence bands for a solution u can be determined
from the function F(O) by using piecewise linear interpolation of F(Ob) on a sufficiently I
refined uniform mesh obtained by subdividing the quadrilateral of interest.

The asymptotic 9/%-superconvergence regions for a class of solutions U can be de- 3
termined by using numerical optimization. In particular, consider the uniform subdivi-
sion of the element T into subtriangles with vertices at the set of points ZE :E }!=.
Define the relative-error function at the point 4k

18 3
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I ad

(4.12) "-: i=1 .100,er¢.)(h; Fmax ai }F,1,k)=)%) I

Then the function (;)(is;F; Q,{ tlD',1, f) can be defined for any point is E f by
using linear interpolation in the subtriangles. The asymptotic '9%-superconvergence
regions in the element r can be approximated using the level-sets of the functions63 (i; P;Q, {ibi },=x, 1, f)ie
OI¢,)mF;i.e.

1(4.13) ftF'',(;fC E f 6 (re(; F;Q ivi 1 , fT < q%}

We will call the above approach the direct approach. It is also possible to use a simplified
approach which avoids the use of numerical optimization at every point. First observe
that

I ,()d

I (4.14) -1

(.a [wnJ 2aAF(~b)(%)I n]dF(~(i)
< mn .=1-.-nPi=1(a)

Hence we can define the function

1 (4.15) ;

i where

ma • E ax aF(O,)()j
(4.16) Z= min ad-... i=1

Ea.
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The quantity Z_. can be computed using numerical optimization. Let

(4.17) ",T {is E r ~(re;F;Q,{wib}I~k,,1, f < - }
denote the approximate regions of ti%-superconvergence for the class of solutions Q
obtained by the simplified approach.

The common ii%-superconvergence region in an element T for a given class of meshes
and materials can be determined by using either the direct or the simplified approach.

Remark 4.3. Note that we have 3
(4.18) ,. "(Q;fT) " 7•.' (T

Therefore the simplified approach results to a conservative estimate for the iq%-superconvergence
regions. For the class of harmonic functions UH we observed that the regions obtained
by the two approaches are very similar.

Remark 4.4. The functions defined in (4.12), (4.15) depend on the set of points 'E.
To ensure good accuracy in the approximation of the ij%-superconvergence regions a I
sufficient number of points must be employed. In the examples below the set of points
= was obtained by subdividing the quadrilateral into two triangles and by refining these
triangles uniformly several times. The points in '- are the vertices of this triangulation.

5 Numerical studies of superconvergence I
We will now give examples of numerical studies of classical superconvergence

and 9%-superconvergence for complex grids of quadrilaterals. In this Section we will I
address the following questions:

1. Given any periodic mesh of quadrilaterals (with complex geometry and/or local 5
refinements etc.), where are the superconvergence points for the derivatives, for
the class of harmonic and general solutions?

2. Given an element in the interior of a complex grid of quadrilaterals, where are
the points of least-error for the derivatives for the class of harmonic and general
solutions?

3. Can we put some reasonable restrictions on the grid (which can be controlled in
the computation) such that i7%-superconvergence for the derivatives is assured I
for any solution (including solutions with algebraic point-singularities i.e. all the
solutions which are of interest in the practical computations) in the interior of
any practical grid? 3

20 3
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5.1 Determination of the superconvergence points for the
periodic meshes

In [1] we demonstrated that the classical superconvergence points for the derivatives
in periodic meshes of triangles or squares can be determined numerically. Here we
use the same methodology to find the superconvergence points for periodic meshes of
square elements with refinements (or meshes obtained from these meshes via a smooth
transformation). We studied in detail the superconvergence in the periodic meshes
shown in Fig. 4 and we give the results below.

5.1.1 Grid with mesh-interface with constrained nodes

In order to study the superconvergence in the elements near a mesh-interface with
constrained nodes we considered the periodic-cell shown in Fig. 4a. Note that although
the theoretical setting was outlined for a square periodic unit-cell 2, it is also valid for
the rectangular unit-cell employed in this example. Here 2 = (-0.5h,0.5h)x (0,1) and
h = 0.05. We are interested in determining the superconvergence points for the zj- and
Z2 -derivatives for the class of harmonic and the class of general solutions for bilinear
and biquadratic elements.

(a) Bilinear elements

For bilinear elements, the only quadratic harmonic monomial which gives non-zero
error is QX(z1 ,: 2) = 1• - 2. Therefore we have superconvergence of the z," and X2-

derivatives along the zero-lines of - -h, respectively (where ikH is the periodicCIzI ' 49X2 epctvl wer ste eidc

error-function which corresponds to QH) which are shown in Fig. 5a. The points of
intersection of these lines are superconvergence points for the z,- and z2-derivatives,
simultaneously; these points are given in Table 1.

Further we note that for the class of general solutions there are two general quadratic
monomials which give non-zero error, namely Q(X 1 1 2) 1 :2, Q• (a,:2) 2 z. Let us
denote the error-functions in the periodic mesh-cell, corresponding to these monomials,
by •p and •t, respectively and analyze their structure. First consider the function

2 and let us denote by P2 the interpolation-error function introduced in (3.3) which
is associated to Q•. We can easily see that QG and (QG)INT are independent of x,
and that P2 = 0 on every boundary line of the elements parallel to the mesh-interface.
In addition for every fixed :x, (QG)INT is a linear interpolant of QG. From this we see

that in (3.7a) we have

(5.1) Bap(, f)) = 0 V f; E S1,p.R(Z)

and hence z2 is a constant function. Therefore
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(5-2) 1 i= 1,2I

and (as special case) •- vanishes identically. I
Let us now analyze Of. Because p, is symmetric with respect to a,, so is z'0.

Hence in every element of size h, z01 is constant for fixed z2. In addition it is easy U
to write difference equations for the values of z01 at the nodal points (of elements of
size h). From this we conclude that the function z0i has to be linear in the subdomain
occupied by elements of size h and using the periodicity we conclude that Oza has to U
be constant in this subdomain. From the difference equations it is easy to see that the

function zOi is not constant in the subdomain occupied by elements of size i. A more
detailed analysis shows that the derivatives of the function x'i decay exponentially
with the distance from the mesh-interface.

Because z2 is constant and - vanishes identically as discussed above, there axe

superconvergence lines for the x1 -derivatives; these lines are the same as the supercon-
vergence lines for the x,-derivatives for the har-m.onic solutions (shown by thick line in g

Fig. 5a). For the z 2-derivative there is one superconvergence point in each element at

the intersections of the zero-lines of N I0, b as shown in Fig. 5b. 3
Since z", i = 1, 2, is constant in the elements of size h the simultaneous super-

convergence points for both derivatives are located at the centers of these elements.

We note that in the elements of size - the simultaneous superconvergence points are

not at the center of the element (for harmonic solutions) or they do not exist at all

(for general solutions). Nevertheless in the element of size h not at the interface the
2

,9%-value at the centers of the elements is very small and these points are simultaneous
superconvergence points for very small tolerance. This follows from the exponential
decay of the derivatives of the function 01 with the distance from the interface.

(b) Biquadratic elements

For the biquadratic elements we note that the harmonic and general monomials of
degree 3 (namely Q'(:X,z 2 ) = zX - 3z:X, QH(1 ,z2) = X3 -3Z2zX, and QG(z 1 ,: 2) =

011 QG(z0, :2) - :2) result in identical error-functions Of, OG in all the elements.
Let us analyze the functions 0, i = 1, 2, analogously as in the case of bilinear

elements. First, let us address the case i = 2. As in the case of bilinear elements
QG and (QG)INT are independent of zx and P2 is identically zero on the element- 3
boundaries and the center-lines parallel to the mesh-interface. Moreover (QW)jT is aNT
quadratic interpolant of QG for every fixed xj. Taking into account that QG(Zs,: 2 ) =

3Z, analogously as before, we conclude that
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(5.3) Be (P21i) = 0 V f) E S,2pz(E)

and hence r% is constant. Therefore

8!tG2 Op2(5.4) 1-, i= 1,2

and 2 vanishes identically and hence we have superconvergence lines for the z,-
821

derivative which are the zero-lines of (these lines are the thick lines shown in

Fig. 5c). Further the zero-lines of ! are the Gauss-lines parallel to the mesh-
8922

interface.
Let us now consider the case i= 1. First we observe that z0 is antisymmetric with

respect to 21 and hence 01 (0, z.) = 0. In the elements of size h the antisymmetry of
z"i implies that 01 has to be linear in z=. From the periodicity of z0i it follows that

Ot is identically zero. Therefore, in the elements of size h, ! is identically zero and
8:Z2

the superconvergence-lines for the =2-derivative in the elements of size h are the Gauss-

lines parallel to the mesh-interface (the zero-lines of ý!-). The superconvergence lines
822

for the z=-derivative in the elements of size h are the Gauss-lines perpendicular to the

mesh-interface (the zero-lines of
h

For the elements of size - the situation is more complicated because z01 is non-

zero although its derivatives decay exponentially with the distance from the mesh-
interface. Hence the superconvergence lines for the :1 -derivative in the elements of

h tatb•
size j (the zero-lines of -) are curved as shown in Fig. 5c. For elements which are

8:1
far from the mesh-interface the superconvergence-lines are practically the Gauss-lines

perpendicular to the mesh-interface. Further M L 0 0, in the elements of size h, and

the values of qi% at the Gauss-lines parallel to the mesh-interface (the zero-lines of

2 do not exceed 0.001%. Therefore the Gauss-lines parallel to the mesh-interface
OZ2

are q7%-superconvergence lines for the Z2-derivative with tolerance less than 0.001%.
From what we said above we see that there exist "almost" simultaneous supercon-

vergence points (with tolerance less than 0.001%) and hence for all practical purposes
we can use them as superconvergence points (these points are listed in Table 1). This
was also mentioned in Remark 1.1.
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5.1.2 Grid with mesh-interface with transition elements

We also studied the superconvergence in the elements near a mesh-interface with I
transition elements by employing the rectangular periodic mesh-cell shown in Fig. 4b.

(a) Linear elements 3
In order to find the superconvergence points for the class of harmonic solutions

we considered the periodic error functions io•, O which correspond to the quadratic
harmonic basis monomials, QH(Z,,z2 ) - 1 - :•, Q•(: 1,:2 ) = Zi32. The function 2

z,2 is antisymmetric with respect to the axis x, = 0 (note that the mesh is symmetric
about this axis). Using the periodicity condition we see that 02 = 0. Hence i is
identically equal to zero at the nodes and thus in the bilinear elements there exist

lines of superconvergence for the z,- and z2 -derivatives at the zero-lines of

respectively. In the triangular elements there exist superconvergence points for the :,-

(resp. Z2-) derivative at the intersection of zero-lines of '1 2,'- (resp.OZ, OZI Z 9

these points are given in Table 2a. For the class of general solutions there are tlree basis
monomials of quadratic degree, QG(ZI,:) = X2, QG(Z:,, 2 ) = :•, QG(Z:,,z) = X1:i.
We determined the superconvergence points in the bilinear square-elements for the zj- m

(resp. z2-) derivative at the intersection of the zero-lines of NI (resp. I8:1 ' 8:i0z
8 G

02 ); these points are given in Table 2a. We note that OG = p3 = 0 in the square
8:3

elements; in the triangular elements we utilized also the function 03 . In this Table
we also indicate which ones of the superconvergence points for the class of harmonic 3
solutions in the triangular elements are also valid for the class of general solutions.

(b) Quadratic elements

We computed the superconvergence points for the z:- (resp. :2-) derivative in the
elements for the class of harmonic solutions by considering the intersections of the
zero-lines of the x,- (resp. Z2-) derivatives for the error-functions corresponding to the U
two cubic harmonic basis monomials; the points are given in Table 2b. Note that for
the class of general solutions there are no superconvergence points in any element of
this mesh.

5.1.3 A periodic-mesh with several refinements 3
We also studied the superconvergence for the periodic mesh of bilinear elements

shown in Fig. 4c. For this mesh we determined the points of simultaneous super-
convergence for the xj- and Z2-derivatives for the class of harmonic solutions; these I
points are given in Table 3. Note that for some elements with constrained nodes the
superconvergence points for the derivatives coincide with a vertex of the element. 3
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U
5.2 Rate of convergence at the superconvergence points

We performed model computations on finite-element meshes with mesh-interface
(with constrained nodes or with transition elements) and we checked the rate of con-
vergence of the derivatives at the superconvergence points which are given in Tables
1, 2 for these meshes. We found that the rate of convergence at the superconvergence
points (given in Tables 1, 2) is of order (p + 1). We also checked the rate of conver-
gence at the p x p Gauss-Legendre points (for p = 1, 2) in the square elements near
the mesh-interface and found that these points are not superconvergence points, in
general.

In the computations we considered the Dirichlet boundary-value problem for the
Laplacian in the domain 0 = (0,1)' with Dirichiet-data obtained from the harmonic
exact solution u(zl, x2) = sin(w:l) sinh(wz,). The domain f was meshed with the pe-1 riodic grids with cell-size h as shown in Figs. 6 and 7. For these meshes we computed

the maximum values of I Leh- (the maximum was computed over the supercon-
! 'h

vergence points or the Gauss-Legendre points) in the square-elements of size h at the
mesh-interface and one-layer away from it.

The results of the convergence study for the mesh-interface with constrained nodes
are given in Tables 4a, 4b, 5a, 5b. In Table 4a (resp. Table 5a) we give the values of= l I' l(resp. I !e)at the superconvergence point and the Gauss-Legendre point in the

I h
elements of size - at the interface and one-layer away from the interface for bilinear1 approximation (p = 1). In Table 4b (resp. Table 5b) we give the maximum valueq of

"hl I (resp. je• O I) (computed over the superconvergence points or the Gauss-Legendre

g points) in the same elements for biquadratic approximation (p = 2). We observed that:

(i) When the superconvergence points are employed we haveI
(5.a)0eh I ._ ~ ('Pl ý-CP' i ,

g where 'usP denotes a superconvergence point.

(ii) When the Gauss-Legendre points are employed we have

(5.5b) ihI := M 8 Ch(.G-L)j
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(5.5) G-L OE& ( ) +

where *G-L denotes a Gauss-Legendre point.

We note that the values of 1!-h I apprear to be superconvergent at the Gauss-

Legendre points. (More precisely they are not superconvergent but it cannot be seen
in the computations because the points are ti%-superconvergence with very small tol-
erance, as explained in Section 5.1.1.) We also note that the values of the constant
C at the elements one-layer away from the mesh-interface are much smaller than the
values of if in the element at the mesh-interface. 3

The results of the convergence study for the mesh-interface with transition elements
are given in Tables 6a, 6b, 7. In Table 6a (reap. 6b) we give the maximum values of

(the maximum is computed either over the superconvergence points or the Gauss-
• h

Legendre points in each element) for linear (resp. quadratic) elements of size i at the
mesh-interface or one-layer away from it. We observed that when the superconvergence
points from Tables 2a, 2b (resp. the Gauss-Legendre points) are employed the rate

of convergence is of order (p + 1) (reap. p). In Table 7 we give the values of I1 U
computed at the superconvergence points (given in Table 2a) and at the center of the
element for the triangular elements", T'2 (shown in Fig. 4b). We observe that the rate 3
of convergence of the z1 -derivative is (p + 1) (reap. p) at the superconvergence point
(reap. at the center of the element).

In theoretical studies of superconvergence [4, 5] the superconvergence is analyzed 3
for discrete mean-square norms evaluated over subdomains (by employing the set of all
superconvergence points in a subdomain). A simple generalization of the discrete-norm
used in [4, 5] and elsewhere is I
(5.6) Eq= jV E I

where N denotes the number of points f f}N, (used in the definition of Eq) in the
subdomain for which the discrete-norm is evaluated (for q = 2 the norm of [4, 5] is
obtained). For the Dirichlet problem with exact solution u(z1 , 2) = sin(wz 1) sinh(rz 2)

in the domain 0 = (0,1)2 and with mesh-interface along the line X2 (as shown

in Fig. 6a) we computed the discrete-norm E9 using the Gauss-Legendre points in
the elements in the subdomain f0 = (0.25,0.75) x (0.50,0.75) for meshes of bilinear
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and biquwiratic elements and several values of q E [1, oo]. The values of the discrete-
norm and its convergence rates are given in Tables 8a (resp. 8b) for bilinear (resp.
biquadratic) elements. We observe that

(5.7) E, ' ChP-

(See also Remark 1.1.)

Remark 5.1. As noted in Remark 3.3, by employing the theory (which is given in detail
in [1]) we cannot show that the gain of the convergence rate is hv with v = 1, as has
been observed in the computations.

1 5.3 Relative error at the superconvergence points for meshes
which are not locally periodic.

3The cassical superconvergence points are obtained assuming that the grid is
locally periodic. However, the meshes which are used in practical computations are
not expected to satisfy this assumption. In such meshes we can still use the points
from a periodic pattern (for example the points for the mesh-interface given above) to
sample the solution, if that pattern appears in the interior of the grid. We now show
that by using such points we obtain more accurate values of the derivatives than if we
employ the p x p Gauss-Legendre points in each element (as is customarily done).

We considered the domain fl = (0,1)' with Neumann boundary conditions § on Of)
and source-function f corresponding to the exact solution, u(01 , Z2) = e-h[(u, -&) 2+(a2 -b)2 ].

Here we let k = 10 and (a, b) = (0,0). A mesh of bilinear elements was generated using
an adaptive algorithm as shown in Fig. 8a. We will focus on the elements in Patch
I (shown in Fig. 8a and Fig. 8b) and Patch II (shown in Fig. 8c and Fig. 8d). In

the elements shown in each patch we computed the relative error 8(t; a-u; u, Uh, h, 7),azi
i = 1, 2, in the zj- and z 2-derivatives of uh at the center of the element (the Gauss-
Legendre point) or at the superconvergence point which was obtained by assuming
that the element belongs to the periodic mesh-interface pattern (shown in Fig. 4a). In
Table 9a (resp. Table 9b) we give the values of the relative error in the derivatives at
the superconvergence points and the Gauss-Legendre points for the elements in Patch
I (resp. Patch II). We observe that in the elements with constrained nodes in Patch
I (elements 1-16) the relative error at the superconvergence points is substantially
smaller than the relative error at the Gauss-Legendre points. In particular the relative
errors in the z:-derivative at the Gauss-Legendre points are around 25% whereas at

I the superconvergence points they are around 2%. In the case of the elements with con-
strained nodes in Patch II (elements 1-4) the relative error in the z 2-derivative at the
superconvergence points is much smaller than the relative error in the z 2-derivative at
the Gauss-Legendre points. Hence we can conclude that the superconvergence points
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from a periodic mesh-pattern should be used instead of the Gauss-Legendre points to
sample the derivatives of the solution in the interior of any general grid which (may
not be locally periodic but) includes that pattern in its interior.

5.4 t/%-superconvergence in periodic meshes with local re- U
finements

We shall now describe numerical examples to illustrate the methodology described s

in Section 4 to determine regions of i/%-superconvergence. We shall first use the
methodology to find q%-superconvergence regions IV.. (Q ;T,T), i = 1, 2, for the

derivatives in the element r in the periodic mesh T for the class Q of (harmonic or
general) polynomial solutions of degree (p + 1). We will then demonstrate that the
methodology can also be used to find q/%-superconvergence regions in elements in the I
interior of any locally refined mesh or a mesh with distorted elements.

We considered the periodic meshes shown in Figs. 4a-4c. In Figs. 9a-9d we give the
i/%-superconvergence regions for the elements in the mesh shown in Fig. 4a. Figs. 9a U
and 9b show R"W' (QH; 7., f), for 'q% = 5%, 10%, 25%, for p = 1 and p = 2, respectively.

In Figs. 9c and 9d the regions 1R•(QH;T',T), for i/% = 5%, 10%, 25%, are given for

p = 1 and p = 2, respectively. It can be observed that the q/%-superconvergence
regions for the z1 -derivative in the elements with constrained nodes are very different
from the i/%-superconvergence regions for the z:-derivative in the elements away from -
the interface. However, the q/%-superconvergence regions for the a 2-derivative in the
elements with constrained nodes are very similar to the i/%-superconvergence regions
for the z 2-derivative in the elements away from the mesh-interface. I

The 9%-superconvergence regions for the elements in the mesh shown in Fig. 4b
are given in Figs. 10a-10c, for the class of harmonic solutions. It can be observed

h
that the effect of transition elements in the elements of size h decays after one layer

2
of elements. In Figs. lla-11d we give q%-superconvergence regions for the class of
general solutions. Note that in the triangular elements, there are no regions for either I
derivative for q% • 25% and that the effect of the transition elements is significant up
to 4 layers of elements in the refined mesh.

We also studied the i7%-superconvergence regions in the elements in the periodic
mesh-pattern of Fig. 4c. In Figs. 12a-12d we show the 9% superconvergence regions
for p = 1 and p = 2 for the class of harmonic solutions. Figs. 12a and 12b show the
regions %. (QH;T-, Th), for i?% = 5%, 10%, 25% for p = 1 and p =2, respectively. In

Figs. 12c and 12d we show the regions R". (QH; r,Th), for 77% = 5%, 10%, 25% for 3
p = 1 and p = 2, respectively. It can be seen from Figs. 12a and 12c that the values of
the 71% function for the z, and M2 derivatives at the center of the elements which have
constrained nodes is greater than 25%.
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To demonstrate the decay of the effect of mesh-interface on the superconvergence

we computed the values of maximum relative error for the class of harmonic solutions
at the Gauss-Legendre points. In Table 10a (resp. 10b) we give the values of

U (5.8) 1%G-L := max 9(DO-L ; Q,
QEeQFIh

for the elements f of size j, which are separated by 0, 1, 2 and 3 layers from the mesh-

interface for bilinear (resp. biquadratic) approximation for the mesh-interface with
constrained nodes. In Tables 10c (resp. 10d) we give the values of 11%G-L for linear
(resp. quadratic) elements for the mesh-interface with transition elements. In both

h
cases we computed the values only for the square elements of size i. We observed that

the value of 9%G-L decays rapidly as we consider elements away from the interface.
h

Hence the Gauss-Legendre points in the elements of size i which are separated by
several mesh-layers from the mesh-interface are '9%-superconvergence points for very3 small tolerance.

5.5 17% superconvergence for general meshes with local re-
finements

Here we demonstrate that, for all practical purposes, the i/%-superconvergence
Sregions can be determined for.any element in the interior of any grid with local refine-

ments. Let us consider the locally-refined mesh shown in Fig. 13a and let us assume
that we are interested to determine the il%-superconvergence regions for the deriva-
tives in the elements shown shaded gray in the interior of the patch of interest (which
is shown with thick perigram in Fig. 13a). In order to find the 17%-superconvergence
regions, the patch, which is shown in 13b, was extracted from the mesh and completed
into a periodic mesh T in the square-cell 2, as shown in Fig. 13c. In Fig. 14a we
show the regions of i7%-superconvergence, *9"& (QH; . , T) for iq% = 5%, 10%, 25%.IF.
In Fig. 14b we show the bands of 17% relative error B't (u; 7-, Th) which were obtained

by solving the Neurra problem in the mesh shown in Fig. 13a with data consistent
with the harmonic solution u(01 , :2) = sin(wrx) sinh(7rZ 2). It can be observed that the
regions of i7%-superconvergence are practically the same as the bands of 77% relative
error. (Here we observe that there is only one monomial of degree (p+ 1) with non-zero3 relative error in the x1 -derivative in the elements of interest).

We also repeated the above computations with the exact solution (Gaussian hill
function) u(z1 , X2) = e-h[(,-G) 2+(2-b)2 ] with k = 10 (note that this solution is not3harmonic). The center of the Gaussian hill (a,b) is allowed to take values of (0.5,
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0.5), (-0.65, -0.3) and (0.25, 0.35). In Figs. 15a, 16a and 17a, we show the bands
of ij%-relative error B ' (u;,Th) obtained by solving the Neumann boundary-value 3
problem in the mesh TI shown in Fig. 13a. In Figs. 15b, 16b and 17b we give the
bands of i?%-relative error B" %(Q; -T, ) obtained by solving the periodic boundary-

W1i I
value problem over the periodic mesh T shown in Fig. 13c with data consistent with the
Taylor series expansion Q of the Gaussian hill function. It can be observed that the q%-
relative error bands obtained from the actual finite element solution are, for all practical I
purposes, identical to those obtained from the periodic boundary-value problem using
the Taylor series expansion. In Fig. 18 we show the it%-superconvergence regions
R,_. (QG;r,T) for qz% = 10%, 30%, 50%. In the element with constrained nodes the U

W1_;
t9%-superconvergence regions for the class of general solutions and n% • 50%, do not
include the center of the element which is the Gauss-Legendre point for p = 1.

5.6 i7%-superconvergence regions for a complex grid of skewed
quadrilaterals generated by a mesh generator

We will now give an example of finding the i7%-superconvergence regions in the
interior of a complex grid generated by commercial-like mesh-generator. We considered
the mesh of skewed quadrilaterals shown in Fig. 19a. We were interested to find the
iq%-superconvergence regions in the elements which are shown shaded in Figs. 19a, 20a.
In each case we considered the mesh-patches which include three mesh-layers around
the elements of interest as shown in Figs. 19b, 20b. These mesh-patches were scaled
and translated into the square-cell 2:= (-0.5,0.5) x (-0.5,0.5) and each mesh-patch 3
was completed into a periodic mesh T1 (resp. T2 ) as shown in Fig. 19c (resp. Fig. 20c).

In order to demonstrate that the results for the i7%-superconvergence regions ob-
tained from the methodology are also, for all practical purposes, valid in the actual I
mesh we performed the following computations. We computed the q%-relative error
regions with the error obtained by solving the following problems:

P1: Neumann boundary-value problem (with data consistent with the exact solution
u) solved using the domain and the mesh (actual grid) shown in Fig. 19a.

P2: Neumann boundary-value problem (with data consistent with the Taylor series
expansion Q of the exact solution u about the center of the mesh-patch of interest) IN
solved using the domain and the mesh (actual grid) shown in Fig. 19a.

P3: Periodic boundary-value problem (with data consistent with the Taylor series
expansion Q of the exact solution u about the center of the mesh-patch of interest)
solved using the periodic domain and mesh (periodic grid obtained by freezing
the periodicity) shown in Figs. 19c and 20c. g
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We computed the ii%-relative error regions for the following solutions:I

(5.Sa) u(mi,,z2 ) = Re(w(')(z)), k = 1,...,4

(5.5b) IY)(z + 1 1 1) =a2- (Z + ZOM)) a2. + (z + ZO') ), 2 . _- +

wherez =zx +iz 2 and we leta=2and z1) = 1(1+i), O2) = 1 (-_+i), 4s3)=

3 (-Iz-i), (4) = ½(I-i). The exact solutions given above are analytic in the domain
and are typical solutions of elliptic boundary-value problems in two dimensions (see also
[25]). We computed the regions of 25% relative error in the shaded elements shown in
Figs. 19b, 20b and determined the 25%-relative error region which is common to all four
solutions -2%t({W(h)}4 .1 ; r, i = 1, 2. In Figs. 21a, 21b, 21c (resp. 21d, 21e, 21f) we

sho th 2%-cmmo .2s%QW.(A,)14 .. 1.v~%t(fW()11 ;.r
show the 25%-common regions • ( k=.; ,-Th) (resp. k= 1j)

in the elements shown in Fig. 19a, computed by solving the problems P1, P2, P3,
respectively. It can be observed that the 25%-common regions, computed from the
three problems, are identical, for all practical purposes. In Fig. 21g (reap. 21h) we
show the i7%-superconvergence regions R25%(QH; T, T1 ) (resp. R25%(QH;T, t 1 )). Note

that the 25%-superconvergence regions lie entirely within the 25%-common regions.

Similarly in Figs. 22a, 22b, 22c (resp. 22d, 22e, 22f) we show the 25%-common
regions r,) ({ )};TTh) (resp. %( k),;rTh)), in the elements shown

in Fig. 20a, computed by solving the problems P1, P2, P3, respectively. In Fig. 22g
(resp. Fig. 22h) we show the i7%-superconvergence regions R21%(QH; T, T2) (resp. -g26%

;(QH;r, t2)). Again we note that the 25%-superconvergence regions are well within the
corresponding 25%-common regions.

I From the results in Sections 5.5 and 5.6 we make the following observations:

(i) The in%-relative error regions computed from the exact solution and the actual or
its Taylor series expansion using the periodic grid are, for all practical purposes,
identical.

3 (ii) Since we have studied q/%-superconvergence for smooth solutions the mesh was
allowed to be quite arbitrary.

3(iii) The locations of the q/%-superconvergence regions, for small 9, in the elements
cannot be predicted based on intuition. In many instances they are quite far
from the Gauss-Legendre points and hence the Gauss-Legendre points may not3be suitable sampling points.
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5.7 The pollution effect and rl%-superconvergence for singu-
lar solutions

In this Section we give examples which show the effect of the pollution on the
superconvergence of finite element solutions. In particular we demonstrate that: 5

1. In finite element approximations of singular solutions with quasiuniform meshes
the pollution error may be significant (depending on the strength of the singu-
larity, the polynomial degree of the elements and the region of interest) and the
il%-superconvergence regions may not exist, asymptotically.

2. For meshes which are nearly equilbrated in the energy-norm the pollution-effect
is insignificant and, for all practical purposes, we can have i/%-superconvergence
of the derivatives (as predicted by the methodology of Section 4) in any interior
element of the mesh.

To show the pollution effect for meshes of bilinear elements we considered the L- 3
shaped domain shown in Fig. 23 with boundary conditions compatible with the exact2 1
solution u(r, 6) = ro sin(af). For a = i (resp. a = ý)homogeneous Drheboundaryconditios.(resp homogeneous 2 Dirchlet3

boundary-conditions (resp. homogeneous mixed boundary-conditions) were applied
on the edges of the reentrant corner; in the remaining edges of the boundary Neu-
mann boundary-conditions compatible with the exact solution were imposed. Note
that the theoretical analysis shows (see [24], [26] and the references therein) that for
quasiuniform meshes of bilinear elements (p = 1) the pollution effect is significant1
(asymptotically) for a < •. Thus as the mesh is refined uniformly we expect to see

the following:

(i) For a = 2 the i7%-superconvergence regions exist asymptotically, as predicted
3

by the methodology.
1

(ii) For a = 1 there are no i7%-superconvergence regions, asymptotically, due to the
pollution effect. 3

We now proceed to the description of the numerical results.

We meshed the L-shaped domain with uniform-mesh of bilinear elements and con- -
sidered the mesh-patches in the subdomains shown in Fig. 24a (subdomain A) and
Fig. 24b (subdomain B). In Figs. 25a, 25b and 25c (resp. Fig. 25d, 25e and 25f) we
show the bands B" (u; r, Th) in subdomain A (resp. subdomain B) for the uniform I

h h 2
meshes with element-size h, - and -j respectively, for a = 3. It can be observed that 3
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the ,1%-bands for -- exist asymptotically and coincide with the bands predicted by
8:1

the methodology of Section 4. In Figs. 26a, 26b and 26c (reap. Figs. 26d, 26e and 26f)
1.

we show the bands B"4 (u; r, Th) for a = g; it can be observed that the Yj%-bandsALdisappear as the mesh-size h tends to zero. The reason for the disappearance of the
bands is that the error is uniformly large in the entire element (see also [26]).

We now consider the class of grids which are nearly equilibrated in the energy-norm
which are obtained by refining adaptively a coarse mesh of squares. In Fig. 27a (resp.

22
Fig. 28a) we show a nearly equilibrated grid for the exact solution u(r, 0) = r sin(" 20)

and mark the elements of interest in Patch P (reap. Patch Q). The periodic meshes
obtained by completing these patches are shown in Fig. 27b and Fig. 28b for patches P
and Q, respectively. In Fig. 29a and (resp. Fig. 30a) we show the bands B'_ (u; r' TT)

obtained from the solution of the finite element problem on the actual mesh and in
Fig. 29b (reap. Fig. 30b) we show the corresponding iq%-bands obtained from the
periodic boundary-value problem using Taylor series expansion on the mesh shown in
Fig. 27b (resp. Fig 28b), respectively.

We also considered the nearly equilibrated grid for the exact solution u(r, 0) =
* ~1 1i(9

ry sin(10) with appropriate boundary conditions, as discussed earlier. The mesh and3

the elements of interest are shown in Fig. 31a and Fig. 32a. The corresponding periodic
meshes for these patches are shown in Fig. 31b and Fig. 32b. We computed the bands
B"% (u; 7-, Th) using the finite element solution in the actual mesh shown in Fig. 31a (or

Fig. 32a) and the bands B". (Q;,r, T,) from the finite-element solution of the periodic

boundary-value problem using the mesh shown in Fig. 31b (or Fig. 32b). These are
shown in Fig. 33a and Fig. 33b (resp. Fig. 34a and Fig. 34b) for the patch shown in
Fig. 31a (resp. Fig. 32a). It can be seen that the corresponding bands are identical.

Hence we conclude that when the mesh is adaptive (nearly equilibrated in the energy
norm) the i7%-superconvergence regions, which are determined using the methodology
of Section 4, are valid for any interior-patch of the mesh.

6 Summary of conclusions

We presented the new concept of i7%-superconvergence which enables us to deter-
mine the points of least error for the derivatives in elements in the interior of general
meshes of quadrilaterals. We conducted a numerical study to determine the applica-
bility of the new concept in practical grids and we arrived at the following conclusions:

1. The regions of 77%-superconvergence in any mesh can be determined by using a
computer-based approach. This approach takes directly into account the topol-

33



i

I
ogy of the mesh, the degree p of the elements and the nature of the solution
(harmonic or general).

2. The classical superconvergence points (i.e. the 0%i6-superconvergence points) in
an element are very sensitive to the local geometry of the mesh and in some cases
they may not exist.

3. The ii%-superconvergence regions for the derivatives in an interior element are
robust with respect to the topology of the mesh outside the immediate neigh- I
borhood of the element and can always be determined for any class of smooth
solutions using the method of freezing the periodicity. 3

4. For singular solutions computed using quasi-uniform meshes, the pollution error
may be significant and ii%-superconvergence regions may not exist asymptotically
for these meshes. However, for meshes which are nearly equilibrated in the energy I
norm, the pollution error in the derivatives is negligible and i7%-superconvergence
regions for the derivatives can be determined in any interior element of the mesh. 3

5. The position of the superconvergence points for the typical local topologies, as
reported here, can be used if the mesh generator creates meshes with a small
number of local mesh-topologies as for example in the codes using constrained I
square meshes with refinements (or mapped meshes).

The methodology presented in this paper can be also employed to study the w9%- I
superconvergence of flux-quantities in finite element approximations of elliptic systems
(i7%-superconvergence of the gradient of the displacement, strain, stress in elasticity
etc.).

I!

I
I
I
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List of Figures
Fig. 1. h-refinement for bilinear and biquadratic quadrilaterals: 1-irregular rule. The 3
active nodes are shown with a solid circle and the constrained nodes are indicated by
a circle. (a) A mesh-patch of bilinear elements showing the locations of active and
constrained nodes; (b) A mesh-patch of biquadratic elements showing the location of I
active and constrained nodes; (c) The mesh-patch of bilinear quadrilaterals shown in
(a) with transition elements; (d) The mesh-patch of biquadratic elements shown in (b) 3
with transition elements.

Fig. 2. Locally periodic grid: (a) An L-shaped domain with a periodic-mesh subdo-
main S(u°, H) covered exactly by a periodic array of h-cells. The perimeter of the 3
periodic-mesh subdomain S(w0 , H) is shown with a thick line; (b) The master-mesh t
in the periodic-mesh subdomain S(uo, HO).

Fig. 3. Method of freezing the periodicity: (a) A finite element mesh of skewed I
quadrilaterals with the interior mesh-patch w0h shown shaded gray and the mesh-patch
wh (which includes w0h in its interior) shown with thick-black perigram; (b) Extraction
of the mesh-patch w and completion to a periodic mesh in a square-cell; (c) The finite
element mesh assumed by the method of freezing the periodicity.

Fig. 4. Typical mesh topologies in locally refined meshes: (a) Mesh-interface with I
constrained nodes; (b) Mesh-interface with transition elements; (c) A periodic mesh
with two levels of refinement.

Fig. 5. Mesh-interface with constrained nodes: Superconvergence points. (a) Bilinear
elements:-Zero-lines of (thin-lines) intersecting at the

elements: Zero-lines of (ia

points of simultaneous superconvergence for the ml- and z2 -derivatives for the class of

harmonic solutions; (b) Bilinear elements: Zero-lines of 2 (thick-lines) and

(thin-lines) intersecting at the points of superconvergence for the z 2-derivative for the

class of general solutions; (c) Biquadratic elements: Zero-lines of 2!L' (thick-lines)

and -2 (thin-lines) and their intersections. Note that 1 does not vanish (in the

elements of size - but is very small) at these points which are 0.001% superconvergence
2

points.

Fig. 6. Rate of convergence at the superconvergence points: Sequence of meshes with
a memh-interface. Meshes with constrained nodes along the interface. The cell-size in
the meshes is (a) h = 0.25; (b) h = 0.125; (c) h = 0.0625; (d) h = 0.03125. 3
Fig. 7. Rate of convergence at the superconvergence points: Sequence of meshes with
a mesh-interface. Meshes with transition-elements along the interface. The cell size in
the meshes is (a) h = 0.25; (b) h = 0.125; (c) h = 0.0625; (d) h = 0.03125.
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Fig. 8. Relative error at the superconvergence points: An adaptive mesh of bilinear
elements generated for the exact solution u(z 1,z.) = e-k[(a -)2+(u'-b)2 used for the
study. (a) An interior patch of elements with a mesh-interface (Patch I) in the finite
element mesh; (b) The mesh-patch I with the elements of interest enumerated; (c) An
interior patch of elements with a small region with a mesh-interface (Patch II); (d)
The mesh-patch II with the elements of interest enumerated.

Fig. 9. 9%-superconvergence in periodic meshes with local refinements: Contours
of 0%-error and ii%-superconvergence regions for the harmonic monomials of degree
(p+ 1). The elements shown shaded gray in the mesh (to the right) are considered. (a)
C (QH;,T) and 'R"! (Q; for p = 1; (b) Ce; (QH;T,) and . (QH;T,)

for p = 2; (C) CO% (QH;TTl and R (QH;,r,) for p = 1; (d) CO,% (QH;TT) and
,,~.V (QH;T,~op2

Fig. 10. in%-superconvergence in periodic meshes with local refinements: Mesh with
transition elements at the mesh interface. Contours of 0%-error and tq%-superconvergence
for the class of harmonic monomials of degree (p+1). (a) Cfl (QH;, T) and IV (QH-r, !)

for p = 1; (b) r ,'• (Q fl.,,) and 'R', (QH;T,T) for p = 1; (c) Cfl(Q;TT) and
R'I,% (QH; T,T) for p = 2; The thin line is the 0%-error contour for the monomial Q'

and the thick line is the 0%-error contour for the monomial QH. Note that in the
triangular subelements we have superconvergence points and in the square elements
we have bands of superconvergence.

5 Fig. 11. i7%-superconvergence in periodic meshes with local refinements: Mesh with
transition elements at the mesh interface. Contours of 0% error and i7%-superconvergence
regions for the class of general monomials of degree (p + 1).
(a) C% (QH;,r,T and I.%, (jH;r, for p= 1;
(b) C0% and " r (QH;T,T) for p = 1;

(C) CO (Q% ;TT) and 77._ (QH;',T) for p = 1;
(d) rj T) and r, for p = 2;

(d) C&, (QH;,T) and (QH;T,y) for p = 2.

Note that for p = 2, there are no regions of ii%-superconvergence for q% < 5%.

Fig. 12. 77%-superconvergence in periodic meshes with local refinements as shown
in Fig. 4c. Contours of 0% error and q/%-superconvergence reions for the class of
harmonic monomials of degree (p+l). (a) C0% (•Q;,•,) and R".%. (Q 7;,T)forp = 1;

1(b) Coe%% (QH; 7,T)l and XI% 1~ (QH;r,T)l for p:= 2; (c) CO&% (QH;T,T) and V19"~ (QH;T,T)

for p = 1; (d) C0% (QH;TT) and R"% (QH;,r,T)f for p = 2. The thin line corresponds

I to the 0%-error contour for the monomial QH and the thick line corresponds to the
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0%-contour for the monomial QH2. Note that in some elements, the 'i% at the Gauss-
Legendre point is more than 25%. 3
Fig. 13. q%-superconvergence for general meshes with local refinements: Adap-
tive mesh of bilinear square elements generated using the exact solution u(I ,I Z2) =

e-k[(u 1-. ) 2+(.•-b)', k = 10. (a) The finite element mesh Th in the domain fl. The I
interior mesh-patch of interest is shown with a thick perigram; (b) The interior mesh-
patch of interest (shown in (a)) is shown with the elements in which superconvergence
is studied (shown with gray shading); (c) The periodic mesh !f obtained by completing I
the patch of interest. The patch of elements in which superconvergence is studied are
shown with gray shading.

Fig. 14. 9/%-superconvergence for general meshes with local refinements: Adaptive
mesh of bilinear square elements shown in Fig. 13a. (a) t9%-superconvergence regions
R"9.6 (QH;",, fT) for the harmonic solutions in the elements marked gray in the peri-

odic mesh T shown in Fig. 13c; (b) Bands of qj%-relative error for the exact solution
U(: 1,z 2) = sin(wrz )sinh(•r: 2 ) in the elements marked gray in the finite element mesh
TI as shown in Fig. 13b. Note that the q/%-superconvergence regions shown in (a) are
very similar to the bands of 97%-relative error shown in (b).

Fig. 15. q/%-superconvergence for general meshes with local refinements: Adap-
tive mesh of bilinear elements shown in Fig. 13a. (a) Bands of '9%-relative error
B"% (u; T, Th) for the exact solution u(Z:, X2) = e-[(_1-_)I+("-) 2] where I = 10 and-I

(a, b) = (0.5, 0.5) computed by solving the Neumann problem in the mesh shown
in Fig. 13a. The bands of 9%-relative error shown for the elements marked gray in
Fig. 13b; (b) Bands of q%-relative error B". (Q;',rTf for the Taylor series expansion

of u computed by solving the periodic boundary-value problem in the periodic mesh
t shown in Fig. 13c. The bands of i7%-relative error shown for the elements marked
gray in Fig. 13c. Note that the bands of i7%-relative error computed from the finite
element solution are very similar to the bands of i%-relative error computed from the
periodic boundary-value problem. 5
Fig. 16. i7%-superconvergence for general meshes with local refinements: Adaptive
mesh of bilinear square elements shown in Fig. 13a: (a) Bands of i7%-relative error

B'"8% (u;Tr, Th) for the exact solution U(zlzI2 ) = e-k[(il-°)2 +(i2-b)2 ] where k = 10 and

(a, b) = (-0.65, -0.30) computed by solving the Neumann problem in the mesh shown
in Fig. 13a. The bands of ii%-relative error shown for the elements marked gray in 3
Fig. 13b; (b) Bands of q/%-relative error B% (Q; T, T) for the Taylor series expansion

of u computed by solving the periodic boundary-value problem in the periodic mesh
t shown in Fig. 13c. Note that the bands obtained from the above figures are very
similar.

I
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Fig. 17. 9%-superconvergence for general meshes with local refinements: Adaptive
mesh of bilinear square elements shown in Fig. 13a: (a) Bands of 9%-relative error
B".. (u; r, Th) for the exact solution u(zl,,z) = e-[(1,-°+('&-2 ] where k = 10 and

(a, b) = (0.25, 0.35) computed by solving the Neumann problem in the mesh shown
in Fig. 13a. The bands of 9%-relative error shown for the elements marked gray in
Fig. 13b; (b) Bands of vq%-relative error B"&.• (Q; r,Tf) for the Taylor series expansion

of u computed by solving the periodic boundary-value problem in the periodic mesh
t shown in Fig. 13c. Note that the bands of 9%-relative error given in the above two
figures are very similar.

5 Fig. 18. -9%-superconvergence for general meshes with local refinements: Adaptive
mesh of bilinear square elements shown in Fig. 13b. Regions of i?%-superconvergence
IlY1 (Q r;",T) for the general solutions in the elements marked gray in the periodic

mesh T (shown in Fig. 13c). Note that regions are shown for 1?% = 10%, 30%, 50%3 and that in some elements the regions do not exist for iq% < 25%.

Fig. 19. in%-superconvergence for a grid generated by a mesh generator: Mesh of
skewed quadrilaterals generated by converting a mesh of triangles. (a) The finite
element mesh in the domain. The patch of elements in which superconvergence is
studied are marked with gray shading. The patch surrounding these elements is shown
with a thick perigram. (b) The patch of elements shown in (a); (c) The periodic mesh

S~t generated by completing the patch shown in (b).

Fig. 20. q7%-superconvergence for a grid generated by a mesh generator: Mesh of
skewed quadrilaterals generated by converting a mesh of triangles. (a) The finite
element mesh in the domain. The patch of elements in which superconvergence is
studied are shown with gray shading. The mesh patch surrounding these elements is
shown with a thick perigram; (b) The patch of elements marked in (a); (c) The periodic
mesh T generated by completing the patch shown in (b).

Fig. 21. 7j%-superconvergence for a grid of skewed quadrilaterals generated by a mesh
generator: Elements shown with gray shading in Fig. 19a. Contours of 25%-relative
error for the four solutions given in Section 5.6. The regions of 25%-relative error

which are common to the four solutions are shaded gray. Bilinear elements (p =
1). (a) Contours of 25%-relative error and 25%-common regions for the zj-derivative
computed by solving the problem P1 (Neumann problem with data consistent with
the exact solution); (b) Contours of 25%-relative error and 25%-common regions for
the z1 -derivative computed by solving the problem P2 (Neumann problem with data
consistent with Taylor series expansion); (c) Contours of 25%-relative error and 25%-
common regions for the ml-derivative computed by solving the problem P3 (Periodic
boundary-value problem with Taylor series expansion); (d) Contours of 25%-relative
error and 25%-common regions for the z2-derivative computed by solving problem
P1 (Neumann problem over the entire domain); (e) Contours of 25%-relative error
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and 25%-common regions for the z2-derivative computed by solving the problem P2
(Neumann problem with data consistent with Taylor series expansion); (f) Contours of
25%-relative error and 25%-common regions for the z2-derivative computed by solving U
the problem P3 (Periodic boundary-value problem with Taylor series expansion); (g)
ii%-superconvergence regions %12 (QH;r, fl for the z,-derivative for the harmonicA- I
solutions of degree 2. (h) i7%-superconvergence regions 1V'% (QH.T, fl for the "

derivative of the error for the harmonic solutions of degree 2. Note that Figures (a),
(b) and (c) (resp. Figures (d), (e) and (f)) are, for all practical purposes, identical.

Fig. 22. 9%-superconvergence for a grid of skewed quadrialterals generated by a mesh
generator: Elements shown with gray shading in Fig. 20a. Contours of 25%-relative I
error for the four solutions given in Section 5.6. The regions of 25%-relative error
which are common to the four solutions are shaded gray. Bilinear elements (p =
1). (a) Contours of 25%-relative error and 25%-common regions for the zj-derivative
computed by solving the problem P1 (Neumann problem with data consistent with
the exact solution); (b) Contours of 25%-relative error and 25%-common regions for
the z2-derivative computed by solving the problem P2 (Neumann problem with data
consistent with Taylor series expansion); (c) Contours of 25%-relative error and 25%-
common regions for the z,-derivative computed by solving the problem P3 (Periodic 3
boundary-value problem with Taylor series expansion); (d) Contours of 25%-relative
error and 25%-common regions for the Z2-derivative computed by solving problem
P1 (Neumann problem over the entire domain); (e) Contours of 25%-relative error I
and 25%-common regions for the Z2-derivative computed by solving the problem P2
(Neumann problem with data consistent with Taylor series expansion); (f) Contours of
25%-relative error and 25%-common regions for the z2-derivative computed by solving I
the problem P3 (Periodic boundary-value problem with Taylor series expansion); (g)
tq%-superconvergence regions I7Z'I(QH; , ,t) for the z,-derivative for the harmonic

solutions of degree 2. (h) q/%-superconvergence regions I' (QH;T, T) for the Z2-

derivative of the error for the harmonic solutions of degree 2. Note that Figures (a),
(b) and (c) (resp. Figures (d), (e) and (f)) are, for all practical purposes, identical. I
Fig. 23. Pollution effect and 97%-superconvergence for singular solutions: L-shaped
domain. 3
Fig. 24. Pollution effect and 71%-superconvergence for singular solutions: L-shaped
domain meshed with a uniform mesh of square elements. (a) Subdomain A; (b) Sub-
domain B.

Fig. 25. Pollution effect and q%-superconvergence for singular solutions: L-shaped 3
domain meshed with a uniform mesh of squares; exact solution u(r, 0) r 21 sin 20;

3,
bilinear elements (p = 1). Bands of q/%-relative error for the :,-derivative B,' (U; T, Th) O
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for the elements in: (a) Subdomain A with element size h; (b) Subdomain A with
h h

element size 2 ; (c) Subdomain A with element size 4; (d) Subdomain B with element

h .h
size h; (e) Subdomain B with element size 2; (f) Subdomain B with element size ].
Note that as the element size is decreased the bands converge to the bands predictedby the methodology of Section 4.

Fig. 26. Pollution effect and ii%-superconvergence for singular solutions: L-shapedU 1
domain meshed with a uniform mesh of squares. Exact solution u(r, 0) = r4 sin -0
p = 1. Bands of ui%-relative error for the z1 -derivative B.%. (u; r, Th) for the elements

WT

in: (a) Subdomain A with element size h; (b) Subdomain A with element size 2;
h

(c) Subdomain A with element size 4; (d) Subdomain B with element size h; (e)

h h
Subdomain B with element size i; (f) Subdomain B with element size Z. Note that

as the element size is decreased the bands of 25%-relative error disappear.

Fig. 27. Pollution effect and il%-superconvergence for singular solutions: L-shaped
2.

domain; exact solution u(r,0) = rI sin 20; bilinear elements (p = 1). (a) Adaptive

mesh of square elements (nearly equilibrated in the energy norm). The patch of ele-
ments in which superconvergence is studied are shown with gray shading. The patch
surrounding these elements is marked with a thick perigram (Patch P); (b) Periodic
mesh t obtained by completing the interior patch shown in (a).

Fig. 28. Pollution effect and q%-superconvergence for singular solutions: L-shaped22

domain; exact solution u(r, 0) = rI sin -0; bilinear elements (p = 1). (a) Adaptive

mesh of square elements (nearly equilibrated in the energy norm). The patch of ele-
ments in which superconvergence is studied are shown with gray shading. The patch
surrounding these elements is marked with a thick perigram (Patch Q); (b) Periodic
mesh t obtained by completing the interior patch shown in (a).

Fig. 29. Pollution effect and q?%-superconvergence for singular solutions: L-shaped
22

domain; exact solution u(r, 0) = ry sin !-0; bilinear elements (p = 1). The patch of

elements shown with gray shading in Fig. 27a (Patch P). (a) Bands of 77%-relative error
for the z1 -derivative B•' (u; T, Th) computed by solving the finite element problem for

elements in Patch P; (b) Bands of 97%-relative error for the x, -derivative B'% (Q; •,)
computed by solving the periodic boundary-value problem with data consistent with

the Taylor series expansion of u.
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Fig. 30. Pollution effect and il•'-superconvergence for singular solutions: L-shaped

domain; exact solution u(r,9) = rt sin -6; bilinear elements (p = 1). The patch of

elements shown with gray shading in Fig. 28a (Patch Q). (a) Bands of n%-relative error
for the z1 -derivative Br_% (u; r, T2) computed by solving the finite element problem for I
elements in Patch Q; (b) Bands of Yj%-relative error for the z,-derivative B9'(Q;r, T)
computed by solving the periodic boundary-value problem with data consistent with
the Taylor series expansion of u.

Fig. 31. Pollution effect and 9/%-superconvergence for singular solutions: L-shaped

domain; exact solution u(r, 6) = ri sin10; bilinear elements (p = 1). (a) Adaptive
mesh of square elements (nearly equilibrated in the energy norm). The patch of ele-
ments in which superconvergence is studied are shown with gray shading. The patch
surrounding these elements is marked with a thick perigram. (b) Periodic mesh
obtained by completing the interior patch shown in (a).

Fig. 32. Pollution effect and i)%-superconvergence for singular solutions: L-shaped do-

main. Exact solution u(r, 6) = rk sin !0. p = 1. (a) Adaptive mesh of square elements

(nearly equilibrated in the energy norm). The elements in which superconvergence is I
studied are shown with gray shading. The patch surrounding these elements is marked
with a thick perigram. (b) Periodic mesh !f obtained by completing the interior patch
shown in (a).

Fig. 33. Pollution effect and q/%-superconvergence for singular solutions: L-shaped31 3
domain; exact solution u(r, 0) = r sin 0; bilinear elements (p = 1). The patch'of

elements shown with gray shading in Fig. 31a. (a) Bands of 11%-relative error for the
O1-derivative B", (u; T, Th) computed by solving the finite element problem; (b) Bands 3
of i7%-relative error for the z1-derivative B, (u; r, T) computed by solving the periodic

1
boundary-value problem with data consistent with Taylor series expansion of rd sin -9.

Fig. 34. Pollution effect and i7%-superconvergence for singular solutions: L-shaped

domain; exact solution u(r, O) = r3 sin -; bilinear elements (p = 1). Elements shown3'
with gray shading in Fig. 32a. (a) Bands of i7%-relative error for the z1 -derivative
B"% (u; r, Th) computed by solving the finite element problem; (b) Bands of i7%-relative 3
error for the x1 -derivative BM% (u; r, T) computed by solving the periodic boundary-

value problem with data consistent with Taylor series expansion of ry sin -0.3"
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Simultaneous superconvergence points for the z1 - and X2-derivatives
in the elements near the mesh-interface of Fig. 4a

Element p = I p = 2

(-.2378069181, -.5773502692)S'1  ( 0.3449514150, 0.189895754) (-.5421972529, .5773502692)
(.6071187677, .5773502692)

(.2378069181, -.5773502692)
r 2  (-0.3449514150, 0.189895754) (-.6071187677, -.5773502692)

( .5421972529, .5773502692)

(-.6111972936, -.5773502692)
73 (0.0000001171, 0.000000000) ( .5449056851, -.5773502692)

(.5773502692, .5773502692)
(-.5773502692, .5773502692)

( .6111972936, -.5773502692)
74 (-0.0000001171, 0.000000000) (-.5449056851, -.5773502692)

(.5773502692, .5773502692)
(-.5773502692, .5773502692)

Table 1. Superconvergence points in the elements near the mesh-interface with con-
strained nodes: Master element coordinates of the points for the elements shown in
Fig. 4a. The points of simultaneous superconvergence for the xj- and X2-derivatives
are given. Note that for p = 1, the superconvergence points in r1 and r2 are not close
to the center of the element and that for p = 2, there are only three superconvergence
points in the elements r1 and r2. The points for p = 2 are i/%-superconvergence points
with 7% _< 0.001%.

4
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Superconvergence points for the zn-, zX2-derivative in the elements
near the mesh-interface of Fig. 4b; linear elements

Element mdeUP(QH;T t) A7_(QG. r,i' X~Q;~t(QG; r,)I

71 (0.500000000, YES (0.2219334168, NO I
0.5000000000) 0.2291334168)

2 (0.0000000000, NO (0.7743219764, NO
0.6500546310) 0.0000000000) I

73 (0.6500546310, NO (0.0000000000, NO i
0.0000000000) 0.7743219764)

74 (0.0000000000, YES (-0.4759591794, YES
0.9038367177) 0.0000004630)

T5  (0.0000000000, YES (0.4759591794, YES 3
0.9038367177) 0.0000004630)

S(0.0000000000, YES (0.0000000100, YES
0.8164965809) 0.000000000)

r7 (0.0000000000, YES (-0.0000000100, YES
0.8164965809) 0.000000000) U

1
Table 2a. Superconvergence points in the elements near the mesh-interface with
transition elements: Master element coordinates of the points for the elements shown in
Fig. 4b; linear elements. The superconvergence points for the triangular sub-elements U
are given in the master-element coordinates of each triangle. The points which are also
superconvergence points for the general solutions are indicated by "yes". 5

4
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Superconvergence points for the z1-, z2-derivative in the elements
near the mesh-interface of Fig. 4b; quadratic elements

IElement X42(QH_,ri A4) AenI(QG;.) T AXt(0.H;T,T)f At(QG.,r~,T)

I (0.6346980477, NO (0.3376461192, NO
0.2686462265); 0.3623896091);
(0.2686462265, NO (0.0555703987, NO
0.6346980477); 0.0555703987);
(0.3978751334, NO
0.3978751334);

(0.2960013625, NO
0.2960013625);

'2 (0.2728756106, NO (0.0000000000, NO
0.2305710433); 0.1358925622);
(0.6495869087, NO (0.0000000000, NO
0.3168545738); 0.7973549868);

(0.2899495590, NO
0.4545768446);
(0.4561334539, NO
0.2890038707);

r3  (0.2305710433, NO (0.1358925622, NO
0.2728756106); 0.0000000000);
(0.3168545738, NO (0.7973549868, NO
0.6495869087); 0.0000000000);

(0.4545768446, NO
0.2899495590);

(0.2890038707, NO
0.4561334539);

T4 (0.5779800281, NO (1.0000000000, NO
-0.1233185871); -0.7250525375);
(-0.5783530068, NO (1.0000000000, NO
0.0846847343); 0.5795077940);
(-0.5775012409, NO (-1.000000000, NO
0.9724859376); 0.5546779289);

(-1.000000000, NO
0.4051347137)

Table 2b. Superconvergence points for the elements near the mesh-interface with
transition elements: Master element coordinates of the points for the elements shown
in Fig. 4b; quadratic elements. The superconvergence points for the triangular sub-
elements are given in the master-element coordinates of each triangle. The points which
are also superconvergence points for the general solutions are indicated by "yes". Note
that there are no superconvergence points for the class of general solutions.
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I
Simultaneous superconvergence points for the 3
zj- and Z2-derivatives for the mesh of Fig. 4c

Bilinear elementsI

Element A't(Q;T, ),t•fl (Q ; n, It)

1-s (1.0000000000, 1.0000000000)

(s 0.6000010117, 0.2000010310) 3
T.( 0.2000001110, 0.6000000313)

-10 (-1.0000000000, 1.0000000000)

1- 1  (-0.6000010117,-0.1999987998)

1-2 (0.6000010117,-0.1999987998)

TO (1.0000000000, 1.0000000000)

14 (-0.2000001110,-0.6000000313) 5
1-is (-1.0000000000,-1.0000000000)

T16  (-1.0000000000, 1.0000000000)

T1 7• (-1.0000000000,- 1.0000000000)

T18  (0.2000001110,-0.6000000313)

(-1.0000000000, 1.0000000000)

r-• (-1.0000000000, 1.0000000000)

S( 1.0000000000,-1.0000000000)

Table 3. Superconvergence points for a periodic mesh with several refinements: Mas-
ter element coordinates of the points in the elements of the mesh shown in Fig. 4c; U
bilinear elements. The points of simultaneous superconvergence for the z1- and x2-
derivatives are given. Here we report the coordinates of the superconvergence points
which are distinct from the Gauss-Legendre points. Note that for some elements the
superconvergence points are at the vertex of the element.

I
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Grid with mesh-interface with constrained nodes

Bilinear elements

Gauss-Legendre Superconvergence points

CeUlsize Points from Table 1

De& I9e I j h-1  I 1 1, --eA h- 2

IG-L I zI G-L AT Iup Izi Iup

Element of size A at the mesh-interface

0.25000 .57517440E+00 2.30 .17657086E+00 2.83
0.12500 .31086194E+00 2.49 .38090653E-01 2.44
0.06250 .15849922E+00 2.54 .86690122E-02 2.22
0.03125 .79755480E-01 2.55 .21457579E-02 2.20

Element of size 4 one layer away from the mesh-interface

0.25000 .77153390E-01 0.31 .77003693E-01 1.23
0.12500 .34914069E-01 0.28 .19916182E-01 1.28
0.06250 .16510365E-01 0.27 .52710414E-02 1.35
0.03125 .77883456E-02 0.25 .13379941E-02 1.37

Table 4a. Rate of convergence at the superconvergence points: Grids with mesh-
interface with constrained nodes shown in Figs. 6a-6d, exact solution u(X1 ,X 2) =

sin(7rl) sinh(7rX2), bilinear elements (p = 1). The values of I eh at the Gauss-
s ) h )

Legendre points and the superconvergence points (from Table 1) are given in the square
h

elements of size - at the mesh-interface and one layer away from the mesh-interface
are given.
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Grid with mesh-interface with constrained nodes 3

Biquadratic elements

Gauss-Legendre Superconvergence points

Cell-size Points from Table 1

S8 I I IGh-2 - e &I _I h-3
OX -L OZI G-L ft, axp 8'l.p

Element of size 4 at the mesh-interface

0.25000 .35616628E-01 0.57 .34981651E-01 2.24
0.12500 .45941576E-02 0.29 .33414467E-02 1.71
0.06250 .10988098E-02 0.28 .41561324E-03 1.70
0.03125 .26815619E-03 0.28 .51379346E-04 1.69

Element of size 4 one layer away from the mesh-interface 1
0.25000 .76959609E-02 0.12 .76081781E-02 0.49 5
0.12500 .72206159E-03 0.05 .66641794E-03 0.34
0.06250 .16100891E-03 0.04 .68416871E-04 0.28
0.03125 .40986412E-04 0.04 .80145619E-05 0.26

I
Table 4b. Rate of convergence at the superconvergence points: Grids with mesh-
interface with constrained nodes shown in Figs. 6a-6d, exact solution u(xl,: 2) =

sin(irz1 )sinh(7rz 2 ), biquadratic elements (p = 2). The maximum values of t0h- Iat

the Gauss-Legendre points and the superconvergence points (from Table 1) are given 3
in the square elements of size - at the mesh-interface and one layer away from the

mesh-interface are given.

5
I
U
I
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Grid with mesh-interface with constrained nodes

Bilinear elements

Gauss-Legendre Superconvergence points

Cell-aize Points from Table 1
hJI I _e I I -e 8 h - I2 1832 AI -

I G-L X2 G-L OX2 ,ip Wz 2

Element of size A at the mesh-interface

0.25000 .95499223E-01 1.52 .14953978E+00 2.39
0.12500 .20029031E-01 1.28 .32446341E-01 2.08
0.06250 .44797614E-02 1.15 .74421844E-02 1.91
0.03125 .11031333E-02 1.13 .18400167E-02 1.88

Element of size y one layer away from the mesh-interface

0.25000 .99972051E-01 1.60 .99972059E-01 1.60
0.12500 .21907125F-01 1.40 .20028986E-01 1.28
0.06250 .47790173&-02 1.22 .45774021E-02 1.17
0.03125 .11739024E-02 1.20 .11421790E-02 1.17

Table 5a. Rate of convergence at the superconvergence points: Grids with mesh-
interface with constrained nodes shown in Figs. 6a-6d, exact solution u(XI, x2) =

sin(rxl) sinh(7rz 2), bilinear elements (p = 1). The values of Iez2 at the Gauss-
aX2

Legendre points and the superconvergence points (from Table 1) are given in the square

elements of size - at the mesh-interface and one layer away from the mesh-interface

are given.
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Grid with mesh-interface with constrained nodes 3

Biquadratic elements

Gauss-Legendre Superconvergence points

Cell-size Points from Table 1

'eIo I• -"e -3 1• --eA h-3
I832 IG-L 832 O-L 832 O82 W

Element of size I at the mesh-interface

0.25000 .29600593E-01 1.72 .23262232E-01 1.49
0.12500 .36423052E-02 1.87 .29870942E-02 1.53
0.06250 .A4509815E-03 1.82 .37367439E-03 1.53 1
0.03125 .55001651E-04 1.80 .46708914E-04 1.53

Element of size 4 one layer away from the mesh-interface U
0.25000 .52147491E-02 0.33 .52147491E-02 0.33 5
0.12500 .38514170E-03 0.20 .38514162E-03 0.20
0.06250 .35773791E-04 0.15 .35773789E-04 0.15
0.03125 .46018761E-05 0.15 .46049812E-05 0.15

3
Table 5b. Rate of convergence at the superconvergence points: Grids with mesh-
interface with constrained nodes shown in Figs. 6a-6d, exact solution u(X1 ,X 2) -

sin(rx1 ) sinh(7rX2), biquadratic elements (p = 2). The maximum values of at
OX 2

the Gauss-Legendre points and the superconvergence points (from Table 1) are given
h

in the square elements of size ý at the mesh-interface and one layer away from the

25

mesh-interface are given. 3

!
I
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I
3 Grid witb mesh-interface with transition elements

Linear elements

I Gauss-Legendre Superconvergence points

Cell-size Points from Table I

18_ I -kI lh-' I -"9ek I P I Oeh I h- 2I I OzI G-L IZ IG-L IOXI. 8zz, I3

Element of size I at the mesh-interface

1 0.25000 .26294012E-01 0.11 .71260207E-01 1.14
0.12500 .10959010E-01 0.09 .10239329E-01 0.66
0.06250 .98340266E-02 0.16 .20809826E-02 0.53
0.03125 .60270808E-02 0.19 .53221772E-03 0.54

I Element of size 4 one layer away from the mesh-interface

0.25000 .24196256E-01 0.10 .53080555E-01 0.85
0.12500 .60704882E-02 0.05 .74038127E-02 0.47
0.06250 .16056918E-02 0.03 .88662264E-03 0.23
0.03125 .10302041E-02 0.03 .23838655E-03 0.24

Table 6a. Rate of convergence at the superconvergence points: Grids with mesh-
interface with transition elements shown in Figs. 7a-7d, exact solution u(x, X2) =
sin(7rxl) sinh(r•' 2 ), linear elements (p = 1). The values of [oh at the Gauss-Legendre

points and the superconvergence points (from Tables 2a, 2b) are given in the square
h

elements of size - at the mesh-interface and one layer away from the mesh-interface
are given. 5

I
I
I
I
1 53



p
Grid with mesh-interface with transition elements

Quadratic elements

Gauss-Legendre Superconvergence points U
Ceil-size Points from Table 1

A a_ I --AIG i I lPz__A
lox, G-L I -L ax, loIM

Element of size A at the mesh-interface

0.25000 .40118091E-01 0.64 .44601274E-01 2.86
0.12500 .11331178E-01 0.73 .11754109E-01 6.01
0.06250 .30112286E-02 0.77 .10030098E-02 4.11
0.03125 .74461581E-03 0.77 .12576887E-03 4.12

Element of size one layer away from the mesh-interface I
0.25000 .64905047E-02 0.10 .71044126E-02 0.45
0.12500 .10139819E-02 0.07 .11000841E-02 0.56 S
0.06250 .24176022E-03 0.06 17214310E-03 0.71
0.03125 .53840918E-04 0.06 .21691406E-04 0.71 3

I
Table 6b. Rate of convergence at the superconvergence points: Grids with mesh-
interface with transition elements shown in Figs. 7a-7d, exact solution u(zX z 2) =

sin(7rx) sinh(VrX2 ), quadratic elements (p = 2). The maximum values of at the

Gauss-Legendre points and the superconvergence points (from Tables 2a, 2b) are givenh
in the square elements of size h at the mesh-interface and one layer away from the

2
mesh-interface are given.

5I
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!
Grid with mesh-interface with transition elements

Linear elements

Center of the Superconvergence points

Cell-size element from Table I

III1 I__ _ h-1 I591 I1h-2

Triangular element r" at the mesh-interface

0.25000 .64847413E-01 0.26 .71810910E-01 1.15
0.12500 .23381462E-01 0.19 .20457913E-01 1.31
0.06250 .90781904E-02 0.15 .72098413E-02 1.85
0.03125 .43145871E-02 0.14 .18104208E-02 1.85

I Triangular element r3 at the mesh-interface

0.25000 .55608910E-01 0.22 .64651209E-01 1.03
0.12500 .24097771E-01 0.19 .27108881E-01 1.73
0.06250 .90104544E-02 0.14 .10000891E-O1 2.5650.03125 .45067131E-02 0.14 .25104930E-02 2.57

Table 7. Rate of convergence at the superconvergence points: Grids with mesh-
interface with transition elements shown in Figs. 7a-7d, exact solution u(x1,x 2) =

sin(7r,) sinh(7rX2 ), linear elements (p = 1). The values of ]-h are given at the center
ofstherian gar e s s ' 2 aroI ~ of the triangular elements r2 and rl] (see Fig. 4b) and at the superconvergence points

(from Table 2a).
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Rate of convergence of E, ,

Grids with mesh-interface

Bilinear elements I
h E, Elh-2

0.25000 .38189339E+00 6.11
0.12500 .94191674E-01 6.02
0.06250 .24140167E-01 6.18
0.03125 .6076550E-02 6.22

h £2 E2 h0 I
0.25000 .42966792E+00 3.44
0.12500 .14797583E+00 3.35
0.06250 .51739635E-01 3.31
0.03125 .18205665F-01 3.30

h E3 E 3 h

0.25000 .47927923E+00 3.04
0.12500 .18460718E+00 2.95
0.06250 .72701566E-01 2.93
0.03125 .28800505E-01 2.93

h E E 4 h

0.25000 .50758796E+00 2.87
0.12500 .20781247E+00 2.80
0.06250 .86769758E-01 2.78
0.03125 .36422194E-01 2.78

h E1° E1 0h-4 3
0.25000 .56625513E+00 2.60
0.12500 .26052825E+00 2.57
0.06250 .12086784E+00 2.55
0.03125 .56320092E-01 2.55

h E._ E__h-1 3
0.25000 .62835301E+00 2.51
0.12500 .31841522E+00 2.51
0.06250 .15947373E+00 2.55
0.03125 .79755480E-01 2.55

Table 8a. Rate of convergence of the discrete-norm Eq. Meshes shown in Fig. 6a- I
6d, exact solution u(X1 ,X2 ) = sin(irx1 )sinh(7rX 2), bilinear elements (p = 1). The
discrete-norm Eq was computed using the Gauss-Legendre points in the elements in
the subdomain fl0 = (0.25,0.75) x (0.5,0.75) g =- (0,1)2. The mesh-interface is U
located along the line z2 = 0.50.
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Rate of convergence of E,

Grids with mesh-interface

Biquadratic elements

5h EA Elh-3
0.25000 .21415864E-01 1.37
0.12500 .27893542E-02 1.43
0.06250 .35907094E-03 1.47
0.03125 .45166015E-04 1.48

I h E2 Eh-I

0.25000 .24765556E-01 0.79
0.12500 .46104445E-02 0.83
0.06250 .82232958E-03 0.84
0.03125 .14526387E-03 0.84

h E3  EhO

0.25000 .27360051E-01 0.70
0.12500 .61654349E-02 0.79
0.06250 .12477526E-02 0.80
0.03125 .24915430E-03 0.81

h E Eh-4

0.25000 .29631698E-01 0.67
0.12500 .72911007E-02 0.79
0.06250 .15701595E-02 0.80
0.03125 .32847516E-03 0.80

h E10  Eoh- I

0.25000 .35949866E-01 0.66
0.12500 .10195347E-01 0.80
0.06250 .25087484E-02 0.85
0.03125 .58695587E-03 0.85

ih hE00h-2

0.25000 .44992746E-01 0.72
0.12500 .13862436E-01 0.89
0.06250 .34181964F-,02 0.88

10.03125 .86914062E-03 0.89

I Table 8b. Rate of convergence of the discrete-norm Eq. Meshes shown in Fig. 6a-
6d, exact solution u(X1 , X2) = sin(rx1 ) sinh(7rX2), biquadratic elements (p = 2). The
discrete-norm Eq was computed using the Gauss-Legendre points in the elements in
the subdomain 00 = (0.25,0.75) x (0.5,0.75) C fj = (0,1)2. The mesh-interface is
located along the line X2 = 0.50.
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U
Relative error at the superconvergence points and Gauss points

in the elements in the mesh-patch shown in Fig. 8a, p = 1

Element ( x; u. u, h, r, ) e(2; -*; u, %, h, r, ) I

"number i Gauss point Point from Table la Gauss point Point from Table la

Elements at the mesh-interface I
1 0.244 0.011 0.079 0.054 3
2 0.254 0.020 0.079 0.056
3 0.246 0.013 0.084 0.044
4 0.253 0.019 0.084 0.046 I
5 0.248 0.014 0.088 0.039
6 0.251 0.017 0.089 0.040
7 0.249 0.015 0.089 0.036 3
8 0.250 0.016 0.089 0.036
9 0.250 0.016 0.089 0.036
10 0.249 0.015 0.089 0.036 I
11 0.251 0.017 0.088 0.040
12 0.248 0.014 0.088 0.039
13 0.253 0.019 0.084 0.046 $
14 0.246 0.013 0.084 0.044
15 0.254 0.020 0.079 0.056
16 0.244 0.011 0.079 0.054 9

Elements one layer away from the mesh-interface U
17 0.061 0.060 0.044 0.044
18 0.066 0.062 0.044 0.044I
19 0.060 0.060 0.043 0.043
20 0.064 0.060 0.043 0.043
21 0.059 0.058 0.042 0.042 U
22 0.063 0.060 0.040 0.040
23 0.058 0.058 0.040 0.040
24 0.061 0.060 0.039 0.039 U
25 0.059 0.057 0.039 0.039
26 0.059 0.057 0.040 0.040
27 0.059 0.057 0.040 0.040
28 0.059 0.057 0.042 0.042
29 0.064 0.060 0.043 0.043
30 0.060 0.060 0.043 0.043 I
31 0.066 0.062 0.044 0.044

32 0.061 0.060 0.044 0.044 "

58 1



I
Table 9a. Relative error at the superconvergence points for meshes which are not
locally periodic: Mesh shown in Fig. 8a, bilinear elements (p = 1) exact solution
u(zsI 2) - e-kI(Mi -°+(z 2 -b)2J, k = 10, (a, b) = (0,0). The relative errors in the zj- and
z 2-derivatives at the Gauss-Legendre point and the superconvergence points (given
in Table 1) are given for the various elements in Patch I shown in Fig. 8a and enu-
merated as shown in Fig. 8b. Note that the relative error of z1-derivative at the
superconvergence points for elements 1-16 is around 0.02, but the relative error at the
Gauss-Legendre point is around 0.25.
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I
Relative error at the superconvergence points and Gauss points

in the elements in the mesh-patch shown in Fig. 8c, p = I

E;uuh,;) 0e(i; O- ; u, uh, h,)
Element

number i Gauss point Point from Table la Gauss point Point from Table Ia

Elements at the mesh-interface

1 0.091 0.084 0.378 0.102 1
2 0.111 0.097 0.381 0.106
3 0.118 0.101 0.424 0.191
4 0.131 0.118 0.447 0.197

Elements one layer away from the mesh-interface 3
5 0.067 0.064 0.081 0.080

0.067 0.064 0.087 0.084 I7 0.069 0.064 0.099 0.0938 0.069 0.064 0.101 0.099 3

Table 9b. Relative error at the superconvergence points for meshes which are not I
locally periodic: Mesh shown in Fig. 8c, bilinear elements (p = 1) exact solution
U(XIX2) = e-k[(zl-a)2 +(z2 -b)2 j , k = 10, (a, b) = (0,0). The relative errors in the x1- and
X2-derivatives at the Gauss-Legendre point and the superconvergence points (given in
Table 1) are given for the various elements in Patch II shown in Fig. 8c and numbered as
shown in Fig. 8d. Note that the relative error of X2-derivative at the superconvergence i
points is smaller than the relative error at the Gauss-Legendre point.
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Grid with mesh-interface of Fig. 4a

ar d Bilinear elements

im Layer • 1%G-L = max O()GQL; , C, 1, f)

0 0.25 26.713
1 0.75 4.124
2 1.25 0.454
3 1.75 0.042

Table 10a. it%-superconvergence in periodic meshes with local refinements. Grid with
mesh-interface shown in Fig. 4a; bilinear elements; Harmonic solutions, z1-derivative

5 of the error. vj% values at the (l x I) Gauss-Legendre points in the elements of size (2h

in different layers away from the interface. The distance between the Gauss-Legendre
point considered and the interface is denoted by d.
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U
Grid with mesh-interface of Fig. 4a

Biquadratic elements

Layer Point d =1%G-L M.. max@(z Qa f
_______ __________ EQ' ,d ,f

0 1 .1056624327 25.137
2 .1056624327 25.137
3 .3943375673 1.566
4 .3943375673 1.566

1 1 .6056624327 4.910
2 .6056624327 4.910 I
3 .8943375673 0.306
4 .8943375673 0.306

2 1 1.1056624327 0.325
2 1.1056624327 0.325
3 1.3943375673 0.020
4 1.3943375673 0.020

3 1 1.6056624327 0.019
2 1.6056624327 0.019
3 1.8943375673 0.002
4 1.8943375673 0.002

I
Table 10b. il%-superconvergence in periodic meshes with local refinements. Grid
with mesh-interface with constrained nodes shown in Fig. 4a; biquadratic elements;
Harmonic solutions, xj-derivative of the error. 17% values at the (2 x 2) Gauss-Legendre

points in the elements of size (2h) in different layers away from the interface. (The2 1-1 (Te1

master element coordinates of the points in the element are: Point 1 = (r- , -);
=vv~v vf3- •; •

Point 2 ( •'I); Point 3 = Point 4=1( /)). The distance
- 3 r 3 v/35 -)F Poin 4=

between the Gauss-Legendre point considered and the interface is denoted by d.

6
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Grid with mesh-interface of Fig. 4b

Linear elements

d 7a- = a GO•-L; -•L,9U l,'

Layer 1 -L maX - I Q, C, 1, f)

0 0.25 4.389
1 0.75 0.230
2 1.25 0.023
3 1.75 0.002

Table 10c. i/%-superconvergence in periodic meshes with local refinements. Grid with
mesh-interface with transition elements shown in Fig. 4b; linear elements; Harmonic
solutions, XI-derivative of the error. q% values at the (1 x 1) Gauss-Legendre points

in the elements of size (h) in different layers away from the interface. The distance3 between the Gauss-Legendre point considered and the interface is denoted by d.

6
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Grid with mesh-interface of Fig. 4b

Quadratic elements

Layer Point d GL = O(iGL QU i
T QIEQ-H

0 1 .1056624327 36.202 I
2 .1056624327 16.369
3 .3943375673 6.812
4 .3943375673 7.243

1 1 .6056624327 25.589
2 .6056624327 12.789
3 .8943375673 0.813
4 .8943375673 1.544

2 1 1.1056624327 15.290
2 1.1056624327 5.707
3 1.3943375673 0.546
4 1.3943375673 0.003

3 1 1.6056624327 3.001 I
2 1.6056624327 0.004
3 1.8943375673 0.000
4 1.8943375673 0.000

I
Table 10d. rl%-superconvergence in periodic meshes with local refinements. Grid
with mesh-interface with transition elements shown in Fig. 4b; quadratic elements;
Harmonic solutions, x,-derivative of the error. q% values at the (2 x 2) Gauss-Legendre

points in the elements of size (h) in different layers away from the interface. (The
-1 -1

master element coordinates of the points in the element are: Point 1 = (-, -);

1 -1 -1 1 1 1

Point 2 ;Point 3 = , ) Point 4 = (- )). The distance

between the Gauss-Legendre point considered and the interface is denoted by d.
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The Laboratoy for Numera Analysis a an integral part of the Institute for Physa
Science and Technology of the University of Maryland, under the general administration of the
Director, Institute for Physical Science and Technology. It has the following goal.:

To conduct research in the mathematical theozy and omputational implementation of
numerical analysis and related topics, with emphasis on the numerical treatment of
linear and nonlinear differential equations and problems in linear and nonlinear algebra.

To help bridge gaps between computational directions in engineering, physics, etc., and
those in the mathematical community.

To provide a limited consulting service in all areas of numerical mathematics to the
University as a whole, and also to governm4 it agencies and industries in the State of
Maryland and the Washington Metropolitan area.

To assist with the education of numerical analysts, especially at the postdoctoral level,
in conjunction with the Interdisciplinary Applied Mathematics Program and the
programs of the Mathematics and Computer Science Departments. This includes active
collaboration with government agencies such as the National Institute of Standards and
Technology.

To be an international center of study and research for foreign students in numerical
mathematics who are supported by foreign governments or exchange agencies
(Fulbright, etc.).

Further information may be obtained from Professor L Babu•ika, Chairman, Laboratory for
Numerical Analysis, Institute for Physical Science and Technology, University of Maryland, College
Park, Maryland 20742-2431.


