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1 Introduction

Friction and rubbing of materials are among the most common phenomena in niechanices,
occurring whenever two solid bodies come into contact. These plhienomena are responsible
for a variety of occurrences in everyday life. Some of them, such as tire traction, are very
useful; others, like violin music, are asthetic and pleasing, and many others, such as noises,
vibrations, and wear, are extremely unpleasaut aud deleterious to mechanical systems. "This
common occurrence of friction and the diversity of its effects underscore the extreme impor-
tance of a deep understanding, and the need for modeling, and control of friction plienomena.
It is well known, however, that the phenomena of coutact and friction of solid hodies are
among the most complex and difficult to model of all mechanical events, primarily due to
the complex structure of engincering surfaces, the severe elasto -plastic deformation. damage.
heat generation, atomic-range interactions that take place on typical contact surfaces, the

presence of contaminants, lubrication, and even chemical reactions en these contact surfaces.

Efforts toward an understanding of friction phenomena and of modeling friction began
with the historical works of Arontons {2} and Coulamb [32] over two centuries ago. Since
then, an extensive body of experimeutal and theorctical work has accumulated en zeneral
tribology, and a good empirical understanding of the subjoct exists today.  However, the
progress in formulating a theoretical background and designing models of frictionad interfaces
have been much slower to evolve than experimental investigations. Although considerable
progress in this direction has been made in recent vears. there are still several fssues that
need to be resolved in order to model friction and predict friction phenomena with practical
reliability. One of the most difficult problems encountered is the estimation of material
constants occurring in new constitutive models of frictional interfaces. These ditficnities
reflect an urgent need for constructing new constitutive models of contact and friction and

for estimating the necessary matcrial coeflicients.

Presently, there are two basic approaches for the development of mechanical constitntive

models of friction and two resulting types of frictional interface models. These are:

1. phenomenological models based primarily on experimental observations, and

2. asperity-based models, formulated via a theoretical analysis and statistical homoge-
nization of the microscale deformation of surface asperities in contact with an opposing

surface.

Unfortunately, to date, none of these approaches has produced completely satisfactory
resuits. It is well known that expecimental results depend strongly on the characteristios of

the test apparati, so the results of different tests on the same sample can be considerably
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scattered. Moreover, these macroscopic experimental measurements do not provide sufficient
insight into the nature of the phenomena occurring on the contacting surfaces, the severity of
the deformation, propagation of damage, etc. Such an insight can be provided by asperity-
based models, which are based on the microscale analysis of deformation and the relative
sliding of surface asperitics. However, predictions made using classical or existing asperity-
based models were not generally applicable to the environments normally met in engineering
applications. The main reason is that these classical models were based on analytical, closed -
form solutions of the deformation of a surface asperity, which required gross simplifications
of the geometry of the asperity and of the constitutive models of the contacting materials

(elastic, plastic, or at most elasto-plastic).

1.1 Objectives of the Project

In this project, a new approach for constructing constitutive models of friction has been
developed that provides a realistic link between microscale phenomena occurring on con-
tacting surfaces and macroscale phenomenological models of the interface. This approach
involves the use of special finite element methods in the modeling of complex deformations
of asperities of arbitrary shape, with realistic nonlinear constitutive models of the contacting
materials. The technical approach for the evaluation of the microasperity based models of

contact and friction consists of two stages:

I. Apply the finite element technique to analyze the nonlinear echanical respenses of
surface asperities of different heights, shapes, and with general viscoelastoplastic mna-

terial properties.

2. Apply statistical homogenization techniques to evaluate macroscopic, phenenienologi-

cal constitutive models of the interface.

The approach developed here provides a means for generating a variety of new and useful
models of frictional interfaces. Depending on the selected level of complexity of the mode]
of the asperity, a viscoclastoplastic, hyperelastic, or brittle material can be considered. the
evolution of the damage to the surface can be modeled, and the effects of Tubeication and

surface contamination can be taken into account.

1.2 Research Summary

This final report presents the results of rescarch work performed during the three-yvear

project. The major tasks and results of each vear are briefly summarized in this section.




The first year of the project was dedicated to building a solid foundation for the statistical

homogenization procedures, as well as initial work on the finite clement modeling capability.

In particular, the following tasks were accomplished in the first year:

[ Q]

A detailed study of the mechanics and statistics of asperity-based models of contact.

friction, and adhesion.

Formulation of a complete theoretical background. and development of computer codes
for the calculation of macro-scale interface paramcters from profilometric data of the

surface and from finite clement analysis of a family of representative asperities.

Initial work on the rescarch-type finite element code for the nonlinear analysis of surface

asperities in contact with the opposing surfaces.

In the second year of the project, the work focused on the complete development of the

finite element asperity-modeling code, and on initial tests and experimental verification.

This included the following tasks:

4.

co

_\]

Development of the three-dimensional adaptive finite element code for the analyvsis of
surface asperities in contact with opposing surfaces. The starting point {or this effort
was an existing in-house finite element kecuel, which was extended and customized to
satisfy the objectives of this project. The development effort focused on the implemen-
tation of elastic and viscoplastic three-dimensicunal solid models, ou the developinent
of contact and sliding resistance algorithms, as well as on extensions of ihe graphics.

user interface, and adaptive algorithins necded for this project.

Design, development, and performance of Phase [ of the veritication experiments=. which

were oriented on the testing of numerical models of nonelastic surface asperities in

contact with a rigid flat. Special custom-shaped “asperities™ were used at this stage.

Verification of finite element asperity models by comparison with the analytical and
experimental results. The numerical predictions were compared with existing analytical
solutions for selected simplified cases (Hertz problem) and with the experimental results

obtained for fully nonlinear, elastoplastic contact problems.

Introductory tests of the complete homogenization procedure, to study the macroscopic

behavior of homogenized interfaces.

The third and final year of the project was dedicated to the actual development of new,

asperity-based constitutive models for a variety of interfaces, and to their comparisons with

analytical and experirnental results. The particular tasks completed in the third vear include:




8. Evaluation of the results of experimental verifications performed in the second vear of
the project.

9. Design and performance of the Phase I verification experiment, dedicated to detailed

studies of the behavior of real engineering surfuces under normal and tangential loads.

10. Development of asperity-based constitutive models lor the surfaces studied in the ex-
periment, and comparison of numerical and experimental results.

11. Additional studies of the influence of surface roughness on the clasto-plastic response
of the interface, as well as introductory modcling of asperity behavior under {rictional

loads.

12. Formulation of a theoretical background for the application of asperity-based models of
s Pi 1 A

interfaces in the modeling of dynamic friction phenomena. This incinded, in pacticular,

development of analytical formulas (models) representing the behavior of asperiry-

based models.

Additionally, an exiensive study of error estimation techniques and hp-adaptive nesh
refinement strategies was perforimed for various classes of problems invalving contact and
{riction.

The final result of this project is a proven and workable approach to the development of
asperity-based constitutive models of frictional interfaces, together with relevant rescarchi-
type homogenization software. These results are directly applicable in the analvsis of o
variety of friction phenomena, such as the kinetic coefficient of friction. friction-induced
noises and vibrations, surface compliance for bearing applications. real countact area for

electric and heat interfaces, and introductory studies of models of surface damage and wear.

1.3 Personnel

The research effort during the course of this project was performed by a highly specialized
team of COMCO researchers. The principal investigator on the project was Dr. J. Tinslev
Oden, President and Senior Scientist at COMCQ. Assisting extensively on the project were
Dr. W. Woytek Tworzydlo. Director of Continuum Mechanics group, and Dr. Witold Cecot.
Senior Research Enginecr. Additional help was provided by Dr. Jon Bass, Vice-President
for Research and Technology and Mr. Olivier Hardy. Graduate Research Engineer.

A starting point for the finite element modeling capability was a proprictary adaptive
finite clement kernel. developed by COMCO software group.

The specialized experimental work was performed by Professor C. H. Yew of the Univer-

sity of Texas at Austin. The error estimation study and hp-adaptive stratesy development




for problems with contact and friction was performed by (Y. Lee, Graduate Student at the
Texas Institute for Computational Mechanics (TICOM), University of Texas at Austin.

1.4 Presentations, Publications, and Technology Transition
1.4.1 Presentations

The research related to new models of contact and friction was presented at the following
professional meetings:

1. 113th ASME Winter Annual Meeting,
Anaheim, Califcrnia, November 8-13, 1992.

2. AFOSR Grantees and Contractors Meeting,
“Research in Computational Mechanics”,
Washington University, St. Louis, May 20-21, 1993.

3. 114th ASME Winter Annual Meeting,

New Orleans, Louisiana, November 28-December 3, 1993.

1.4.2 Publications

The following friction-related papers were published or submitted for publication during the
course of the project:

Ibrahim, R. A. and Soom, A., Editors, Friction-Induced Vibration, Cnatter, Squeal, and
Chaos, ASME, De-Vol. 49, New York, 1992, Tworzydlo, \V. W., Becker, E. B., and Oden.
J. T., “Numerical Modeling of Friction-Induced Vibrations and Dynamic Instabilities™. pp.
13-32.

Wriggers, P. and Wagner, W., Editor:, Nonlinear Computational Mechanics - State of the
Art, Springer-Verlag, Berlin, 1992, Lee, C. Y., Oden, J. T. , and Ainsworth, M., “Local A
Posteriori Error Estimates and Numerical Resuits for Contact Problems and Problems of
Flow Through Porous Media”, pp. 671-689.

Tworzydlo, W. W. and Oden, J. T., “Towards an automated enviromment in computational
mechanics”, Computer Methods in Applied Mechanics and Eugineering, Vol. 104, pp. 37-
143, 1993.

Lee, C. Y. and Oden, J. T., “A Priori Error Estimation of hp-Finite Element Approxima-
tions of Frictional Contact Problems with Normal Compliance”, International Journal of

Engineering Science, Vol. 31, pp. 927-952, 1993.




Ainsworth, M., Oden, J. T., and Lee, C. Y., “Local A Posteriori Error Estimators for
Variational Inequalities”, International Journal for Numerical Methods in Partial Differential
Equations, Vol. 9, pp. 23-33, 1993.

Lee, C. Y. and Oden, J. T., “Theory and Approximation of Quasistatic Frictional Contact
Problems”, Computer Methods in Applied Mechanics and Enginecring, Vol. 106, pp. 407-
429, 1993.
Tworzydlo, W. W., Oden, J. T., Cecot, W., and Yew, C. H., “New Asperity-Based Models
of Contact and Friction”, ASME Publications, to appear in December, 1993.
Tworzydlo, W. W., Becker, E. B., and Oden, J. T., “Numerical Modeling of Friction-Induced
Vibrations aud Dynamic Instabilities”, Applied Mechanics Reviews, to appear.

Two additional papers dedicated to asperity-based models of contact and friction are

currently in preparation.

1.4.3 Technology Transition

The results of this contract and previous AFOSR-sponsored contracts dedicated to friction
modeling are finding their way into practical applications in engineering. This includes. for

example:

Tire modeling

The Oden-Martins friction model, was implemented in the TIRE3D tive modeling code.
developed by COMCO under the National Tire Modeling Program (NTMP). The code is
presently being used by NASA and Goodyear for analysis and design of rolling tires.
Modeling and Prediction of Friction-Induced Noises

The results of AFOSR-sponsored friction projects are being applied in practical attempts
to understand, model, and eliminate {riction-induced noises in industrial applications. In
particular, Ford Motor Company and ORTECH Iuternational Rescarch Institute are using
the apprcach developed in our projects to eliminate noiscs in automotive components, such
as the squeaking window seal in the Ford Taurus. Presently, the Computetional Mechanices
Company is being involved in this team to provide expertise in friction modeling.
Modeling of Earthquakes

Recently the Computational Mechanics Company was awarded a research grant from the
U.S. Geological Survey, for a project dedicated to Modeling and Prediction of Farthguakes as
Unstable Phenomena of Dynamic Friction. The research work in this project is directly based
on the methodology and experience developed in previous and present contracts sponsored

by the AFOSR.




Modeling of Bearings

Currently several potential R & D projects are being discussed with major bearing man-
ufacturers. The projects under consideration will apply the results of AFOSR-sponsored
research to precise modeling of contact problems inherent in bearing design, such as:

e compliance of the interface,
e real contact area,

e surface wear mechanisms, etc.

1.5 Outline of the Report

This report presents the results of the second year of effort on this project, as well as a bricf
compilation of the most important results of vear I. In particular, Section 2 presents a study
of statistical methods of homogenization of interface parameters. Of particular interest are
such issues as extraction of surface statistics from profilometric data, calculation of an asper-
ity distribution for random surfaces, and the practical calculatiou of expected macroscopic
parameters from a microasperity analysis. In Section 3, a detailed fornulation of the bound-
ary value problem representing the deformation of a surface asperity is developed. This
formulation includes elastic and viscoelastoplastic material properties. damage modeling. a
nonpenetration condition on the contact plane, and boundary conditions resulting from ad-
hesion forces and sliding resistance of the interface. Section 4 presents the background of
the adaptive finite element technology developed for the analysis of the deformation of a
microasperity. A general idea of the Ap-adaptive finite element methodology is discussed in
this section, together with a detailed preseuntation of the numerical algorithms used for the
solution of elastic and viscoplastic contact problems.

The above theoretical part of the report is followed by examples and tests of the mi-
croasperity analysis. In particular, Section 5 presents some basic tests of numerical models
of viscoplastic material behavior. Then, in Section 6, finite element models of asperity
response are verified by comparison with the Hertz solution and with experimental mea-
surements performed for custom-shaped asperities. This section is followed by studices of
asperity-based interface models for various types of engincering surfaces {Section 7). Then.
in Section 8, detailed comparisons cf asperity-based models with results of specially ae-
signed experiments are presented. lollowing Section 9 is dedicated to studies of the static
coefficient of friction for the interfaces. Section 10 presents studies directed towards applica-
tion of asperity-basd interface models in modeling of dynamic friction phenomena. Finally,
in Section 11, conclusions of this work are summarized together with remaining research
challenges.

-1




2 Asperity—Based Models of Centact and Friction

One of the major missions in tribology is the development of constitutive models of frictional
interfaces. Throughout the decades a varicty of approaches and types of models have been
developed. They can be classified into several groups, including:

models based on experimental observations,

e microasperity-based models,

phenomenological models developed from basic principles of mechanics, and

models of the type related to plasticity theory.

[t should be noted here that this distinction is only of a general nature and most of the
models presented in the literature combine, in some sense, features of more than one of these

groups.

In this project we focus on the development of new asperity-based models of contact and
friction. These models are aimed at the development of constitutive equations of frictional
interfaces via the statistical homogenization of the deformation of surface asperities subject
to contact with an opposing surface. The advantage of the asperity-based models is that
they provide good quantitative insight into the phenomena occurring at the interface and
predict additional information hardly available from the experiment -based laws, such as the
surface plasticity indices, microfracture indices, etc.

The first contact model that was constructed to predict the true contact area can be
found in a paper by Abbott and Firestone (1], in which the contact surface was simulated in
a network of spheres that are truncated upon indentation into a hard flat. By knowing the
hardness of the softer of the two materials in contact, an estimate of the truc contact area

could be made, assuming perfectly plastic deformations.

An important advance in development of asperity-based models of contact is represented
by the pioncering paper of Greenwood and Williamson [14}, in which the rough surfaces were
viewed as a randomly distributed population of elastic asperities with randomly distributed
asperity heights. Each asperity was assumed to be spherical and elastic and its deformation
properties governed by the Hertz solution for clastic contact. Experimental evidence was
provided to support the assertion, now widely held by tribologists, that for normally isotropic
engineering surfaces, a Gaussian distribution of asperities heights generally exists. In such
models, there are no microfrictional effects on the asperities, such effects lecading to second-
order changes in contact pressure, a result established nearly two decades carlier by Mindlin
[62]. In a related paper, Greenwood and Tripp [13] showed that contact of two rongh surfaces




with Gaussian distributions of asperity heights on which asperity coutacts were misaligned
was equivalent to a single elastic surface with a Gaussian distribution of asperity heights
impending on a rigid flat. The use of such statistical representations of surface topography
has since become a popular approach in modeling both elastic and inelastic contact.

The Greenwood-Williamson model was based on the assumption that only the asperity
height was a random variable, and that the radius I? of each pcak was constant. Secveral
generalizations of such random topography models appeared in the literature of the 1970s.
The paper of Whitehouse and Archard [93] extends the random-asperity models to include
random heights and curvatures, and Nayak [68] provided a general approach to random sur-
face modeling using notions of joint probability distribution functions. In this same vein, we
mention the work of Bush, Gibson, and Thomas [23], who derived a joint probability distri-
bution density function for random asperity heights and curvatures of a random population
of elliptic paraboloids in elastic contact with a smooth rigid flat.

Such random-microtopography models that employ a deterministic function for asperity
peak shapes are called asperity models. One source of possible inconsistency in such models
has to do with the fact that a Gaussian distribution of asperity heights and curvatures
for a given asperity shape may lead to a non-Gaussian cumulative probability distribution
of the surface height, an unrealistic result for most “engineering surfaces.” This problem
was addressed by Hisakado [19] and Hisakado and Tsukizoe [30], by assuming a Gaussian
PDF (Probability Density Function) for surface heights. with a given deterministic asperity
shape, and then deriving the PDF for peak heights. Hisakado [19] assumed a paraboloidal
asperity shape and Hisakado and Tsukizoe [50] a conical shape. Francis [11] points out that
the Hisakado models may lead to unrealistic PDFs for asperity heights. since they may be
strongly dependent on the asperity shape and may become negative for paraboloidal and
conical shapes.

Extensions of asperity-based models to microcontact deformation laws involving elasto-
plastic deformations were first contributed by Hisakado [49]. Halling and Nuri [47] account
for plastic deformation of the interface by assuming that a rough surface deforms elastically
while contacting a noulinearly elastic flat, representing strain-hardening, with each micro-
contact defined by a fully-plastic spherical indentation. Significant generalizations of these
types of asperity models can be found in the detailed studies of Francis [1l], who intro-
duces the notion of the sum surface, discussed later in the present work. This enables one
to model Gaussian engineering surfaccs with asperity shapes that a paraboloidal oniy at
their vertices, but which have random heights and curvatures, using the joint PDF of Nayak
(68]. Moreover, Francis [1] also takes into account elastic and fully plastic deformations.
with strain-hardening. using functions determined empirically from spherical indentations
of various metals. We also mention that an extension of the Greenwood-Williamson model

of spherical asperities with Hertzian clastic contact, constant radii, and random heights to




cases in which a transition to perfectly plastic deformations occur was recently proposed by
Chang, Etsion, and Bogy [26-28].

We note that most of the references cited above dealt with attempts to model either
contact without sliding motion, or purely static or quasi-static friction effects.

The asperity-based models of frictional interfaces are constructed in five basic steps:

1. Perform a statistical analysis for the surface profile (profiles),

2. calculate the surface statistics (distribution of surface height, gradient, and curvature)
from one or more set of profile data,

3. calculate, from surface statistics, the probability distribution and density of surface
asperities of different heights and (possibly) peak shapes,

4. calculate, by analytical or numerical methods, responses of representatives of a family
of surface asperities of different shapes to prescribed load programs,

5. calculate, from asperity data and the probabilistic distribution of asperities, the ex-
pected values of the interface response (normal and tangential forces, damage, etc.) to
prescribed load programs. This response characterizes constitutive properties of the
interface.

Several variations of this basic scheme may be derived for random and deterministic
surfaces, isotropic or anisotropic finish, etc. In this case a general classification of surfaces
presented (after Nayak [68]) in Fig. 2.1 is helpful.

For practical purposes, it is reasonable to consider the following three classes:

(i) Gaussian isotropic surfaces,
(i1) Gaussian anisotropic surfaces, and

(iii) other surfaces, in particular deterministic surfaces obtained by special finishing tech-

niques.

The flowchart illustrating the homogenization procedure for these three groups is pre-
sented in Fig. 2.2.

The details of these procedures will be discussed later. Here it is important to observe
that for Gaussian isotropic surfaces it suffices to gather profilometric data along only one
profile on the surface and to consider asperities of axisymmetric peak shapes. For Gaussian
anisotropic surfaces, however, one needs at least three nonparallel profiles and asperities of
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different principal curvatures and orientations. Finally, for non-random surfaces, a full two-
dimensional map z = z(z,y) of the surface may be needed, and asperities may have various
deterministic shapes, depending on the surface finish.

2.1 Microstructure of the Frictional Interface

We begin by considering the contact of two deformable bodies, I and I, over a nominal
contact area Ao, as illustrated in Fig. 2.3. An element of unit nominal contact area is isolated
for study, as indicated in the figure. The average stress vector ¥ over the unit contact area
has components of force P and () normal and tangential to the unit area, respectively. The
situation is equivalent to that of two typical coupons of surface material. one taken from the
material near the contact surface of each body, pressed together with a force P normal to
the tangent plane at the center of the coupon interface and simultaneously subjected to a
shear force Q) tangent to the plane. The bulk deformations of bodies I and I are ignored,
our aim being only to characterize the mechanical properties of the contact interface. The
nominal unit surfaces in contact are, for the present, assumed to be initially flat and parallel

to one another.

It is standard practice to depict the approximate profile of rough engineering surfaces
with a profilometer or stylus, drawn across the surface, which generally yields a jagged profile
with an exaggerated vertical scale of the type shown in Fig. 2.4(a). We consider two such
opposing surfaces 1 and 2 which are to ultimately come in contact. Refrence planes defining
the mean asperity height of each surface profile are established, and we characterize the
shape of each profile by introducing functions z; and z,, given the height of asperities above
the respective reference planes, i.e., the functions z; = z;(x,y),¢ = 1,2, with (z,y) a point in
the parallel mean-height reference planes, define the profiles of the rough material surfaces
1 and 2, respectively. The distance h between planes is the separation of the surfaces, and
the distance between actual opposing material points is denoted s. Thus, at a point (z,y)
on the reference plane, we have

s=h-—z (2.1)
where z is the sum surface (see Francis [41]),

=1+

Francis Las pointed out that, from the fact that the sum = of the surface heights appears
in the geometric relation (2.1), the situation is equivalent to that of a single deformable
surface of height z = z; + z; approaching a rigid flat, as suggested in Fig. 2.4(b).

Clearly, the undeformed surfaces overlap whenever

s{z,y) <0
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Figure 2.3: Contacting bodies and coupons near the contact interface subjected to an average
stress vector of magnitude X.
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Figure 2.4: (a) Profiles of opposing rough surfaces, and (b) microtopography of surfaces and
the equivalent sum surface z.
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As the normal load pressing the surfaces together increases, the separation A decreases
and at each minimum of the function s a microcontact nucleates and expands due to local
deformation of the surfaces.

It is of importance to note that arguments presented by Francis [41] are of a purely
geometric nature. From a mechanical point of view, two major objections can be raised
here:

1. The sum of two asperities (say, spherical) in contact with a rigid flat is not mechanically
equivilant to two spheres in contact—see Fig. 2.5.

In pariicular, the distance-force curves P = P(a) for the two models are different.
Moreover, the “asperity” peak on the sum surface corresponding to two spheres is not
spherical. It can be shown, however, using the Hertz solution, that these differences
vanish when the ratio of asperity radius R to the contact radius r goes to infinity
(relatively smooth surfaces at moderate loads).

2. In the case of contact with friction, the sum surface approach will not model the friction
component due to the interlocking of asperities. Similarly as above, the importance of
this effect diminishes with increasing surface smoothness.

In view of these remarks, the sum surface approach seems to be correct and justified for
typical engineering surface finishes at moderate loads. Note that this condition is also re-
quired for the satisfaction of the assumption that separate microcontacts do not interact

mechanically and that contacts do not merge.

It is well known in tribology that techniques used to produce engineering surfaces usu-
ally produce a Gaussian distribution of the surface heights ;. Moreover, the sum z of two
Gaussian surfaces is also Gaussian; indeed, Tallian [85] points out that if z; and z; are not
exactly Gaussian, their sum surface will be closer to Gaussian than either surface. If the
shape of an asperity is assumed to be paraboloidal, as have been done by several authors.
then the peak heights and curvatures are correlated random variables, with the result that a
Gaussian distriution of heights and curvatures may lead to a cumulative probabiiity distri-
bution of surface heights which is non-Gaussian. This issue has been studied by Hisakado
[49], Hisakado and Tsukizoe {50], and by Francis [41], who assert that if the peak shape is
paraboloidal only at its vertex, then the ensemble of peaks can be made to conform to the
Gaussian distribution.

2.2 Statistics of a Random Surface

There are several methods of homogenization that can be found in the literature. Few
have been effectively used for describing nonlinear frictional phenomena. As one possible
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technique we describe a general approach inspired by the works of Lonquet-Higgins [57-59],
Nayak [68], and Francis {41]; see also Chang, Etsion, and Bogy [26-28]. To fix some of
these ideas, we note that for a given asperity profile, one defines the autocorrelation function
C(X,Y) for the random variable z = z(z,y) (the snrface height),

C(X,Y) = ZILr&ab// H(2,y)2(z + X,y + V)dz dy

and the power spectral density P(k,,k,) as its Fourier transform,

]_ o) oo
Plkz, ky) = 475/%/_% C(X,Y)exp [—i( Xk, + Yk,)]|dX dY

The power spectral moments are

mi; = / / Plke, k) kikidk, dk, (2.2)
and the r.m.s. roughness ¢ is the variance,
0% = mog = C(0,0) = / / Pky. k) )dks d,
A convenient representation of a continuous random surface is of the form [58,68):
22,y) = 3 Cacos (hen + yhyn + €0) (2.3)

n=1

where amplitudes C,, wave numbers k., and kyn, and phase ¢, are random variables. It
is assumed that there are an infinite number of wave vectors in any area dk.dk, and that ¢
has a uniform probability density in the range (0,27). The power spectral density is related
to representation (2.3) by

P (k, k) dk.dk, ZC2

the summation being over all terms with (knz, kny) lying in the area dk.dk, around
(kzy ky). The power spectral moments m,, can then be expressed as

—

n™yn

=S kP kSCE (2.4)

(O]
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Similar definitions and representations as above can be introduced for arbitrary surface
profile z(s), s being a parameter on the surface. Of particular interest are spectral moments
of a profile mgy, m,, and m,.

2.3 Calculation of Surface Statistics From Profile Data

Information about the statistics of a two—dimensional surface can be effectively obtained
from profilometric data for one or more profiles on the surface. This greatly simplifies the
homogenization procedure because both experimental measurements and statistical post-
processing are much easier for one-dimensional profiles. In this section we discuss details of
these computations for both isotropic and anisotropic surfaces.

2.3.1 Profiles on Gaussian Isotropic Surfaces

It was shown by Lonquet-Higgins [57-59] and Nayak [68] that for random isotropic surfaces
the mean surface height and non-zero spectral moments are expressed in terms of mean
profile height and profile spectral moments:

Zsurface = Eproﬁle
Mgg = Mo
Mo = Moz = 1y
3moy = moy =My = My

Therefore, in order to calculate surface statistics it suffices to perform measurements for one
profile on the surface. The spectral moments of the profile can be calculated in several ways:

¢ from the definition as moments of power spectral density
¢ from statistical postprocessing (sampling) of profle data

¢ from counting zeros and extrema of the profile

Calculation from definition:

m; = /_Z@(k)k‘dk

where k is a wave number and ®(k) is a power spectral density. This particular method is
rather expensive because it requires evaluation of the autocorrelation function and the power
spectral density as its Fourier transform.
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It is much easier to calculate profile spectral moments if one reinterprets them as standard
deviations o, ¢, of profile heights z, slopes Z, and curvatures 2, respectively:

mg = O
mo 52
my = &2

Assuming that the profile data was sampled at n points separated by the interval As (see
Fig. 2.6), the profile statistics can be calculated from the following sampling formulas [16}:

(a) mean height, slope and curvature:

= = Lso
< = nz..l

tr
Il

[
Tl

—

n—1

The values of first and second derivatives can be calculated from a second order approx-
imation of the profile shape, discussed in Appendix A.l. Note that the mean slope and
mean curvature of a perfect Gaussian profile should be zero. For real profiles they may
slightly differ from zero. Also note that for the above procedure, shorter wavelengths can be
automatically filtered out by appropriate selection of the sampling interval As.

An ingenuous alternative way of calculating m, and my was proposed by Lonquet-Higgins
[58], see also Nayak [68]. The densities of zeros and of extrema of the profile are expressed

through spectral moments as:
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Figure 2.6: Sampling of profilometric data.
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By zero point we mean here the point where 2(s) = Z. The counting of zeros and extrema
can be performed simultaneously with the sampling procedure described above. Then, after
calculation of the variation o, variations of slopes and curvatures can be obtained as:

0 = 70D,
KUDcxtr

&

In practice, both sampling and counting methods can be easily implemented in the same
sampling program. Practical comparisons of these procedures are presented further in this
report.

Another parameter necessary for the homogenization procedure is a density of peaks on
the surface, defined for homogenous surfaces as:

. N,
Dy = dlrlgzv dA

dy—o0

where dA = dz dy is the surface area and N, is the number of asperity peaks within this
area. The density of surface peaks can be calculated from profile parameters [68] as:

1 my

D, = —
P erv3 my

2.3.2 Profiles on Gaussian Anisotropic Surfaces

Basic statistical information for anisotropic random surfaces consists of nine moments of the
power spectral density: mgo,...,my. However. since the properties of the surface do not
depend on the orientation of the x, y axes, only certain invariant combinations appear in the
probability distribution of the surface statistics {59,68). These invariants are:

1. Moo

2. Mgy + Moy




2
3. MagMg2 — My,

4. myo + 2mag + Moy

5. MaoMos — 4myzma, + 3m§2
6. (Mo + maz) (maz + Moy) ~ (Mmar + mu3)*
7. {m40 (mazmoy — miz) — My (Maymos — Mizmz) + Map (Marmaz — m3,) }

From three profiles in three nonparallel directions 6;,7 = 1,2,3 nine parameters can be
defined: mq;), Mgy, Magi), ¢ = 1,2,3. However, since mo(1y = mo(z) = mo(a), then these three
profiles define seven constants—invariants described above. This means that three nonpar-
allel profiles suffice to define surface statistics for Gaussian anisotropic surfaces. (Detailed

equations will not be derived here.)

2.4 Calculation of Asperity Statistics From Surface Statistics

The primary idea of asperity-based interface models is to calculate interface parameters
(normal force, friction force, etc.) for a family of asperities of certain deterministic shapes and
to obtain expected values of these parameters for the interface from a statistical distribution
of asperities. This requires the calculation of probability density of surface asperities. For
random surfaces, this probability density can be expressed in terms of surface statistics. This
problem will be addressed in this section.

2.4.1 Asperity Statistics for Gaussian Isotropic Surfaces

For Gaussian isotropic surfaces two random variables are assumed to govern the distribution
of asperities: asperity peak height z, and mean curvature . The joint probability density
function of these parameters was derived by Nayak [68] and recast in a different form by
Francis [41]. Here we present the formula due to Francis:

v {rP—1+em} gy (€7 -20€ n+n’)

fen(&,m) = Py

where
z : . .
E = =2 nondimensional peak height
o
K . .
n = V15— nondimensional peak curvature
g
(-72
B = V1.5 — wavelength spectrum parameter
oo
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The wavelength spectrum parameter varies for random surfaces between 0 and 1: zero
corresponds to the widest wavelength spectrum (asperity heights and wave numbers are
not correlated), and one corresponds to the narrow spectrum (longer asperities have bigger
heights). Note that deterministic surfaces may have g > 1, see Section 2.6.1.

2.4.2 Asperity Statistics for Gaussian Anisotropic Surfaces

For Gaussian anisotropic surfaces the representative asperities are no longer of axisymmetric
shape. Instead, one should consider asperities with elliptic horizontal cross sections, shown

in Fig. 2.7b.
The peaks of these asperities can be characterized by four parameters:
1. z, — peak height

K1, Ko — principal curvatures

o

3. a — orientation of the main axis of curvature

Equivalently, peak height z, and three Cartesian curvatures (second derivatives of z)
Kz, Kzy, Kyy €an be used. The joint probability density function based on all these param-
eters should be defined as fenma (&,71,72,a). In principle, this function can be defined
from surface statistics, in particular spectral moments mgp, . .., My {59,68]. To the author’s
knowledge, no such formula is presently available in a closed form.

2.4.3 Asperity Statistics for Deterministic Surfaces

Some special types of finish may produce surfaces of non-Gaussian random distribution or
deterministic distribution. For such arbitrary surfaces the distribution of asperity peaks
cannot be obtained from profile data and need to be calculated directly from a surface map.
In this section we present a simple sampling procedure to calculate asperity statistics from

surface data.

We assume that:

e The surface is homogenous.

o The function z(z,y) (surface height) for the surface is given. This can be obtained
from two—dimensional sampling, holography or other methods.

e Asperity peaks are characterized by the peak height z, and mean curvature &.
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Figure 2.7: Typical asperity: (a) isotropic random surface, (b) anisotropic random surface.
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The probability density of asperity height and curvature f,,«(zp, &) can be obtained from the
following sampling procedure: Cover the domain (2 with a regular mesh of points (z;,¥:),7 =
1,n presented in Fig. 2.8. The mesh spacing h can be defined so as to filter out high-
frequency noise. The sampling is performed by looping through the points (z;,y:),7 = 1,n
and for each point:

1. Check if the point is a peak or near a peak within resolution h. The peak is identified
as a peak if its height z(z,, y,) is greater than all its nearest neighbors (eight for interior
points). Alternatively, more elaborate criteria may be used.

2. If the point is a peak, then calculate the second derivatives z,,,z,, and z,,. Here
simple finite difference formulas may be used or a generalized minimization procedure
as presented in Appendix A.

The mean surface height and standard deviation of the surface height are calculated as:
1

- Iy
iz

l n

n—1 =1

]|
|

81}

(=i —3)°
The joint probability density of asperity peak heights and curvatures can be calcu-
lated after locating all the peaks by dividing the range of peak heights and curvatures
[2p mins Zpmax] X {Kmin, £max] into area elements Az,Ax (see Fig. 2.9). Then for each area
element with a center point (z,;, ;) define
) 1 o
f:x (:ph h‘]) = Fp'np(ls.])
Here NV, is the total number of peaks and n,(i, ;) is the number of peaks within the area
element Az,Ax, identified by:

Zpmin + (1 — 1)A2 <2, < Zpmin + 1Az

Kmin + (] - I)A" S Kp < Kmin + ]-l"

The values above define the discrete values of the joint probability density function of as-
perity peak heights and curvatures. This function may then be regularized by an application
of appropriate approximation techniques. A similar procedure can be used if one chooses
to characterize asperity peaks with more than two parmeters. such as z,,;,k; and a for
anisotropic surfaces.




|

il

Figure 2.8: Sampling of arbitrary surface.
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Figure 2.9: Accumulation of joint probability density f,
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2.5 Calculation of Macrocontact Expectations of Interface Pa-
rameters

Once we know the probability distribution of asperity heights and shapes as well as the
values of any parameter X for single asperity, it is possible to calculate the expected value
of X for the interface. This procedure varies somewhat depending on the classification of
surface type. In this section we present a detailed procedure of the expectation calculation
for Gaussian isotropic surfaces and outline its extensions to other surface types.

2.5.1 Expectation Calculation for Gaussian Isotropic Surfaces

For Gaussian isotropic surfaces, the following parameters are needed to calculate the expected
value of the macroscopic interface parameter X:
) N, The number of peaks within the contact arca A,.

i) fen(€,m) Probability density of asperity peaks of (nondimensional) height
¢ and mean curvature n. By a simple change of variables one
can defire fe,(2p, £).

i) X(zp,%,a,d) The value of parameter X for different peak heights z, and cur-
vatures k, subjected to a normal approach a and sliding distance

d.

iv) o,0,0 Deviations of profile heights, slopes, and curvatures used to
nondimensionalize peak heights and curvatures.

The expected value of X per asperity is calculated as
ECH@@)=[mA X (2, &, @, ) fen( 29, ) drdz, (2.5)

and the macrocontact expectation of X is

X(a,s) = N, E(X(a,d))

Note that even for Gaussian isotropic surfaces there exist asperities of non-axisymmetric
cross sections. However, due to isotropy, it suffices to consider only axisymmetric represen-
tatives of certain mean peak curvature x. In this project we choose the asperity to be a
cosine hill defined in a local coordinate system as:

z(z,y) = C cos kz cos ky
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For this asperity the peak height and mean curvature are defined as

z, = C
k = Ck?

The above shape is consistent with a generic representation of a Gaussian surface presented in
formula (2.3). This is different than approaches presented to date in the literature, in which
asperity peaks were usually assumed to be spherical or paraboloidal. This was because these
works were based on analytical solutions for asperity deformation, such as Hertz’ solution.
In this work we are modeling the asperity by the finite element method, so it is possible to
use the model which does not suffer from inconsistencies of spherical or paraboloidal asperity
peaks.

Although for Gaussian isotropic surfaces the probability density of asperity heights and
curvatures is analytic, the values of X(z,,,...) that we obtain from finite element com-
putations are not. Therefore the expected value of X must be calculated using numerical
quadrature. This quadrature was implemented under the following assumptions:

(a) The domain of integration is truncated to the subregion [zmin, Zmax) X [Kmins Kmax]:
where the probability density fe, is large enough to effectively contribute to the
final integral E(X). This region is defined adaptively (see Section 2.6.2).

(b) The parameter values X(z,,k,...) are given (calculated by FEM) for certain
selected values of peak heights and curvatures in the domain of integration. These
points are not necessarily regularly distributed within the domain of integration.

The numerical procedure for the calculation of the integral consists of the following steps:

1. Divide area {zimin, Zmax] X [Kmin, £max] into area elements Az x A« (see Fig. 2.10).

2. Calculate the integral by looping over cells and applying numerical quadrature (trape-
zoidal, Simpson, Gauss, or any other) according to the formula

E(X)=3 [ 3 {X (zp(a), K(a)s - ) fen (:p(a), n(a)) Wo zAn}] (2.6)

i=1 La=1

where ¢ is the number of integration cells, a is the number of quadrature points within
a cell, and w, is the corresponding weight factor.
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Figure 2.10: Numerical integration of expectation value E(X).
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Note that this integration requires the value of X at integration points (2,(a), £(s)) Within
each cell. Since it may be difficult to perform finite element analysis for values of z, and
k corresponding exactly to all the integration points, these values are calculated from the
original data points using the error minimization procedure presented in Appendix A. The
quadrature rule currently implemented for integration are the trapezoidal and four-point
Gauss rule.

Note that the above procedure introduces error due to truncation of the integration
domain and due to numerical integration. This leads to a rather unwelcome result that even
for constant X, the calculated expected value E(X) would be different than X. In order to
compensate for this error, we additionally calculate the integral of the probability density

(which should be one):

N m
I = Z l: ff,’ (2(0,), Kp(a)) wa.’_\ZAhZJ
1

=1 La=

Then the corrected value of expectation of X is calculated as:

E(X) = EX)/I (2.

D
-~1
~——

This procedure assures that for constant X the expected value E(.X) is equal to X.

2.5.2 Expectation Calculation for Random Anisotropic Surfaces

As mentioned previously, for anisotropic Gaussian surfaces one has to consider asperities of
random peak heights z,, principal curvatures s, and £, and orientations of the principal
axis a. The calculation of expected values of the interface parameters is similar to equation

(2.5):
E (X(zp, K1, K2,0,a.. )) =

=) 00 ro0  p2m
/ / / / X (zpy K1y K2y .- femma (2ps K1s K2, ) dadk  drod s,
-oJo Jo Jo

—
[
[0 4]
~——

Note that presently there exist no closed form solution for the probability density fen nya
of asperity peaks of random heights, principal curvatures and orientations. Also note that
in order to span the integration space, one would need to obtain finite element solutions for
a large family of aspcrities, corresponding to various combinations of z,, 1, K2, and a. This
would be a very expensive task computationally, and will not be considered in this project.
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2.5.3 Expectation Calculation for Deterministic Surfaces

The calculation of expectation values F(X) for non-random surfaces follows essentially the
same numerical procedure as for Gaussian isotropic or anisotropic surfaces. Depending on
the surface type, the peak height z,, curvature « and other parameters may be selected to
represent typical asperities. The joint probability density fe, (z,,%,...) can be obtained
from surface sampling as discussed in Section 2.4.3.

2.6 Numerical Verification of Statistical Postprocessing

The homogenization procedures discussed in the previous section for Gaussian isotropic
surfaces were used as the basis for the implementation of specialized software for this purpose.
In this section, certain basic tests of this software will be presented.

2.6.1 Verification of Profile Postprocessing

The program for profile postprocessing was designed to read in the data z(s) for one or more
profiles on the surface, and use them to calculate mean profile height, slope and curvature
as well as spectral moments and peak density for the surface. Both statistical sampling and

counting methods were implemented (see Section 2.3.1).

Example 1

In the first example a deterministic cosine profile was generated:

z(s) = Ccos ks

with C =1 and k = 2. For such a profile, the mean profile height, slope and curvature
are zero. The standard deviations of height, slope and surface curvature can be calculated

exactly to be:

C e

g = —\/—E = 0.7071
C

= k— = 1.4142

o A\/‘:Z- 1.414
C

= ’2—— = r) 2 +

o k\/_? 2.828
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The corresponding wavelength spectrum parameter is 3 = 1.2247.

The above profile was sampled with the interval 0.2 which corresponds to about 100
points per one wavelength. The results of this sampling are presented in Fig. 2.11.

The calculation of mean surface heights, slopes and curvatures (which should all be zero)
is very accurate. So is the calculation of the standard deviation of surface height. Deviations
of surface slopes and curvatures are less accurate (up to 7 percent error), which is caused by
an approximate calculation of slopes and curvatures. For this particular case, the counting
method gives better results than the statistical sampling method.

Example 2

In the second example we have generated a quasi-random profile by using a one-dimensional
version of the formula (2.3). A series with 40 components of a quasi-random distribution of
Ci, k; and ¢; were specified. The resulting profile is presented graphically in Fig. 2.12a.

For a fully infinite series and random (. k; and z; the power spectral moments are
expressed by a one-dimensional equivalent of formula (2.4). For truncated series this is not
true, but a reasonable approximation can be expected for the values of spectral moments.
These values. calculated for the above profile. are shown in Fig. 2.12b. The profile was then
sampled using the procedure described in Section 2.3.1. The results are shown in Fig. 2.12c.

It is somewhat more difficult to verifv the results in this case. since neither of the methods
produce exact results. It can be noted. though. that the results for surface height {mean
height and deviation) are the most accurate. while for curvatures the differences reach up
to about 20 percent. Other tests, not discussed here. show that with a decreasing sampling

interval. these differences become smaller (but they do not vanish).

2.6.2 Verification of Expectation Calculation

To perform a basic test for the calculation of joint probability density of surface asperities
and for expectation values of X. we considered the following set of test data:

1. The profile and surface statistics were taken from Example 2 in the previous section.

in particular:
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sampling results for single wave, C=1,k=2.
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St.D. of height:
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~)

o N e
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.0715e-J1
.3628e+00
.6272e+00
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R

.4143e+00
.7222e+00
.2222e-01
.2727e+00

Figure 2.11: Sampling result for a simple cosinusoidal profile.
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Figure 2.12: Profile sampling test: (a) quasi-random surface profile, (b) surface statistics
from series expansion, and (c) surface statistics from sampling.
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o = 11620

o = 0.59221
o 0.49315
N, 0.025359
Ay = 1

2. The area of integration of expectation values E(X) was defined by:

Spmin = —57 Zpmax — 10

Kmin = 0 sy Kmax = 5

This domain was subdivided into 20 x 20 integration cells, with trapezoidal integration
within each cell.

3. The variable X was assumed to be identically equal to one (so that the expectation
value should be one). This was implemented by specifying eight data points with a
value 1.0, randomly distributed within the integration domain.

The results of the numerical calculation of expectation values are presented in Fig. 2.13.

Note that the program estimates the effective support of the probability density function
fen(2p, &), which is identified as the loci of points where f¢,(2,%) is greater than 107*. This
is done to avoid integration over too large a domain. The above estimate is still very
safe—for example, for the profile considered here the estimated effective support of fe,(z,%)
corresponds to peak heights between:

Zpmin = -3.5 Zpmax = 7.0

while the real profile had a maximum peak height of only 2.5 and a minimum peak height
of about —0.8.

The value of expectation E(X) calculated by integration (formula (2.6)) is 1.0043. This
is an effect of truncation of the integration domain and of numerical integration. After
correction according to formula (2.7), the value of expectation E(X) is exactly one.

This simple example confirms the correctness of the theoretical formulation and the
software used for calculation of joint probability density fe,(¢,7) and for the expectation
value of X for Gaussian isotropic surfaces.
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Figure 2.13: The calculation of expection values of X.

38



original position or
the rlat
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Figure 3.1: Surface asperity in contact with a rigid flat (a section).

3 Deformation Mechanics of a Single Asperity

We now focus on the analysis of a typical asperity in contact with a rigid flat. The asperity is
a body of revolution, symmetric about its z = z3-axis, and subjected to adhesion pressures ¢
on its exterior surfaces that are not in contact with the rigid flat, and to contact pressures due
to its indentation into the rigid flat (see Fig. 3.1). The equations governing the deformation
of the asperity are discussed below.
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3.1 Momentum and Geometric Equations

The momentum equations for the asperity are:

O';j,j = 0 (39)

where o;; is the Cauchy stress tensor at a point * = (z,,z2,z3) € , § being the open
material domain of the asperity and o;;,; is the divergence of the stress o;;.

In rate-dependent viscoplastic applications a rate form of the equilibrium equations is

used:
Gij, =0 (3.10)

where the dot denotes the time derivative.

Geometric equations express strains in terms of displacements:

1
&ij = B} (ui; + uji)
Strains can be decomposed into elastic and nonelastic strains:
€ = 65;7) + Egl)
Similarly as for the momentum equations, the rate form of geometric equations will also

be used:

(t;; + uj;)

6| —

é,’j =

3.2 Constitutive Equations

Surface asperities for typical engineering surfaces consist of the same material as the bulk
body with possible contaminations and structure change from oxidation and surface finish
processes. Therefore, for general surfaces a variety of material classes should be considered,
such as elastic, hypoelastic, elastoplastic, etc. In this project two major material classes are
considered, namely:

e linearly elastic (isotropic or anisotropic) for some metal surfaces, ceramics, composites,
and hard rubbers, and
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e viscoelastoplastic models for metallic surfaces and modern ductile ceramics.

3.2.1 Linearly Elastic Constitutive Models

The general linearly elastic constitutive relations are given as:

0i; = Eijren

where E;j; are the components of the fourth order elasticity tensor. It has up to 36 inde-
pendent coefficients for general anisotropic materials. However, for most material classes,
the number of material coefficients is much smaller and, for isotropic materials, there are
only two coeflicients, F and v. The specific forms of tensor E for various materials are well
known and will not be presented here.

3.2.2 Elasto—Viscoplastic Constitutive Model With Damage

We now describe the Bodner-Partom constitutive equations [10,11] used in the modeling of
viscoelastoplastic asperities. The elastic—viscoplastic analysis is based on decomposition of

strain rates

=&l +elf) (3.11)

where superscripts (e) and (n) denote elastic and nonelastic strain components, respectively.
The constitutive relations are

&ij = Eu(én — €5) (3.12)

A nonelastic deformation is governed by the flow rule:

5'8-1) = [fij(0ijy 2k, k)
zi = giloi, =)
wi = hi(oy,wi)

where fi;,g; and h; are constitutive functions, z; are internal state variables, and w; are
damage variables. These functions and state variables characterize the viscoplastic response
of the material with continuum damage effects.

In the particular version of the Bodner-Partom theory applied in this work, the nonelastic
flow rule is of the form:
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(n)

5"j = /\3,']'

where s;; are the deviatoric components of a stress tensor

1

Sij = 0ij — §Ukk5ij

The current value of parameter A is given by

201 _ 2\ "
/\2=LD§exp[—(f——(—1§J—w)>] ,A>0
2

where J; is the second invariant of a deviatoric stress tensor

1
J2 = ES;J'S,'J'

Dy is a limiting strain rate in shear, n is a material constant and z and w are state variables
which evolve during deformation. In particular, z is the hardness variable, which represents
viscoplastic hardening (or softening) of a material. The variable w is the damage variable.
This variable represents weakening of the material due to nucleation and propagation of
microscopic voids and cracks in the material. The micro-cracks considered here are in the
range of 0.01 mm in length. The rupture criterion is w = 1, which corresponds to the
saturation of the material with voids. Alternatively, a single crack may grow to a size on the
order of 1 mm. In the latter case, crack is too big to be treated in a continuum sense, and
its propagation should be followed using the methods of fracture mechanics.

In the framework of materials science the value of w is usually interpreted as ratio of the
area of voids to the total area of a certain cross section of a sample:

Avoid
A

The state variables z and w evolve according to the specific equations of the viscoplastic

theory:

W =

1. Evolution equations of hardness variable

The internal state variable z consists of isotropic and directional components,

z=z'+:D
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The evolution equation proposed for the isotropic hardening component [10,11,24,25] is

£1(t) = mafer — /OIW(0) — Ara [—"ii—} " (3.13)

z

with the initial condition, 2/(0) = 2. In the first term, z; is the limiting (saturation) value
of 2!, m, is the hardening rate, and the plastic work rate is

Vo :(n)
Wy = 0ijé;;

which is taken as the measure of hardening. 2, is the minimum value of 27 at a given
temperature, and A, and r, are temperature dependent material constants. The evolution
form of the directional hardening component (Refs. [10,11,24,25]) is defined as

2P(t) = Bij(t)usi(t)

where u;; are the direction cosines of the current stress state,
L 0
uij(t) = oi;(t)/[onon)? (3.14)

The evolution equation for f3;;(t) has the same general form as that for isotropic hardening
but has tensorial character,

Bi; = malzaui;(t) — Bii(1)]Wo(t)

T2
‘.

— Ay {[ﬂkl(t)gkl(t)];'} vij(t)
1
where
vij(t) = Bis(t)/[Bu(t)Bu(t)]?
and

B:;(0) =0
As in Eq. (3.13), m; is the hardening rate. A, and r; are temperature dependent material
constants.

2. Evolution of damage
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The damage parameter consists, in general, of isotropic and directional components,

w=w1+wD

The evolution of isotropic damage proposed in reference {11] is of the form

o = % { [ln (-:-1)] &t_l}le (3.15)

In the above P and H are material constants, @ is the stress intensity function, given by
Q= [Aaj,‘,ax +B\/37; + CI;f]

where o}, is the maximum principal tensile stress, IT is the first stress invariant (nonneg-
ative) and J; is the previously introduced second invariant of deviatoric stress.

A, B,C, and v are material constants. A, B, C must satisfy the condition
A+B+C=1

Clearly, the actual proportion of these constants selects the factor for stress state which is
most important in the development of internal damage.

The initial condition for isotropic damage is w/(0) = 0. In practical analyses the coef-
ficient v is of the order 10 (compare ref. [11]). Thus, when SI (metric) units are used in
the analysis, the factor () as well as the constant H reach extremely high values, beyond the
limit of real number capacity on some computers. Thus, for numerical analysis, equation
(3.15) was recast in the equivalent, but more convenient form:

sr=s{ln G} (3)

Q=Q" = Aok, + BV3L +CI}

where:

H=(HL)
p=p
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The additional advantage of this formulation is that both § and H are in the stress units
(M Pa) instead of the somewhat cumbersome (M P,)". The directional damage is defined in
a manner very similar to directional hardening, namely

D __ D, .
W = Wiy

where u;; are directional cosines defined in equation (3.14) and the components of a tensor
w? evolve according to equation

b= {In ()]}

where ¢ and M are material constants. The initial condition is

w2 (0) =0

ij
Note that there are several problems with practical application of directional damage, relia-
bility of the above model and conducting experiments relevant for the evolution of necessary
parameters. Even the extensive experiments presented in references [11,24,25] did not pro-

vide all the necessary data and, hence, the damage model is usually limited to the isotropic
damage.

3.3 Boundary Conditions

The asperity can be viewed as a protuberance of a deformable half space (see Fig. 3.1). It is
subject to boundary conditions resulting from its support, contact with the opposing surface,
adhesion and sliding resistance.

3.3.1 Support Conditions

If the asperity is viewed as the protuberance on a deformable half space, the support condi-
tions are defined as zero displacements at infinity:

lim «u=0
1 )|~ o0
z3<0

In practical computations we will usually consider only a certain section of the bulk
material surrounding the asperity. Then the support condition will be:
u=0 on I',

on the cut—off boundary T,,.
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3.3.2 Contact Condition

Let the position of the rigid flat (see figure 3.2) be defined by:

e a point p,(z,, Yo, 2,) Which belongs to the flat, where z,,v,,2, are its coordinates in
the initial configuration,

e unit vector IV, normal to the flat,

o displacement w of the flat in direction .

Separation of material point in the deformable body from the flat is then given by the
following formula

s=(x+u—p,)- N-w-d

where:
x - initial position of a material point,
u - displacement of this point,
d - intermolecular distance which is

important when adhesion is taken
into account, otherwise d = 0.

The condition that the asperity cannot penetrate the rigid flat is:

s>0 onT

The actual contact region is I', = { € T, s(x) = 0}. The difficulty associated with the
contact condition in the above form is that it r-sults in a weak formulation of the problem
in the form of variational inequality, rather than the equation. In order to avoid difficul-
ties involved in solving variational inequalities, the contact condition is usually regularized
[54,71]. In this work we will use the penalty-type regularization of the form:

N =ty(a)on T,

where ¢ = —s is the approach (penetration) and t% is the value of traction normal to
the flat which defines resistance of the surface to penetration. Because we will be using
rate formulation in viscoelastoplastic analysis, it is beneficial to introduce a continuously
differentiable penalty function, for example in the form presented graphically in Fig. 3.2:
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Figure 3.2: Penalty function for contact condition.

(0 if a<0

—Iia2 f 0<a<se
2e

H(a—i) if a>c¢

Here H is a large number (normal stress) and ¢ is a small number (penetration). The
above penalty function guarantees continuous derivative of the normal traction with respect
to a, which greatly improves practical performance of the numerical computations.
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3.3.3 Adhesion

An important contributing factor to friction on contact surfaces is adhesion: the intermolec-
ular attractive forces that depend on atomic spacing and the corresponding surface energies
of materials. For highly polished uncontaminated surfaces, adhesion forces can be very large,
leading to the virtual welding of one surface to another, while for rough contaminated sur-
faces, adhesion effects are often negligible. For engineering surfaces under common working
conditions, adhesion effects can be significant, so that a rational model of contact and friction
should take them into account.

The DMT adhesion model, proposed by Derjaguin, Muller, and Toporov [36] and later
refined by Muller, Derjaguin, and Toporov [66], attempts to characterize the attractive forces
on a sperical elastic asperity in contact with a rigid flat, assuming that the shape of the
deformed asperity is given by the Hertz theory and that no attractive forces exist in the
contact region. The JKR model, due to Johnson, Kendall. and Roberts [52] also analyzes
the elastic spherical asperity-fiat problem with Hertz theory, but assumes that attractive
forces are confined to the contact area and that the attractive forces produce an elastic
deformation of the asperity. The JKR model has been found to be more suitable for soft
materials, such as rubbers, while the DMT model is claimed to be more suitable for harder
materials with high surface energies (see Chang, Etsion, and Bogy [26-28] and Pashley
[73]). Survey papers on developments in adhesion models have been contributed by Pashley,
Pethica, and Tabor [75] and by Pashley and Pethica {74]. See also MacFarlane and Tabor
[58].

We shall include adhesion effects in our contact and friction theory by using an approach
similar to, but more general than that of the DMT model. We continue to assume that the
surfaces are isotropic, rough, and have a Gaussian distribution of peak heights, that there is
no interaction between asperities, and that it suffices to consider a single asperity impending
on a rigid flat. Following Muller, et al. [67], we characterize the attractive adhesion pressure
q(s) as that attractive force per unit surface area, acting normal to the mean asperity height
plane, resulting from the Lennard-Jones interaction (interatomic) potential ® of surface
physical chemistry. Then,

-3¢ (9]
where
s = the separation of the two surfaces outside the contact area
d = the intermolecular distance (generally d = 0.3 — 0.5nm)
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In (3.6), A~ is the surface energy of adhesion and is defined as follows: if 4; and 7, are
the surface energies of surfaces 1 and 2, respectively, before contact, and <;; is the joint
surface energy of the interface after contact, then

Ay=v+7—12 (3.17)

For values of surface energies of adhesion for various metals, see Rabinowic~ [78] or
Ferrante, Smith, and Rose [39]. Traction resulting from adhesion can be expressed by the
following formula

t* = —q(s)N =q(a)N

where s is calculated according to the formula defined in the previous subsection.

The principal mathematical difficulty inherent in charactrizing the adhesion pressure is
that it is developed only on surface material outside the contact area, which, a prior, is
unknown. Several concluding remarks on adhesion, however, are in order at this point.

Remarks

1. Fuller and Tabor [42], using the JKR model of adhesion and the rough surface asperity-
based model of Greenwood and Williamson [44], presented an adhesion parameter 6 of

the form £
c [T
=— ,/— 3.1
Ay \/R (3.18)

where E is the effective modulus of elasticity of the contact surfaces
E-!' = (1 —vf) Ef'+ (1—v§) E;!

E;,v; being Young’s modulus and Poisson’s ratio of surface ¢, o is the standard de-
viation of surface heights, and R the mean radius of spherical elastic asperities. The
larger the value of 8, the less significant the effects of adhesion, and for rubber spheres,
experiments showed that adhesion become negligible for § > 10.

2. Chang, Etsion, and Bogy [26-28] presented a study of adhesion effects using the DMT
model and an elasto—plastic asperity model of the contact surface. They investigated
the importance of adhesion with varying values of surface energy and plasticity, as
measured by the plasticity indez of Greenwood and Williamson [44],

2E o (3.19)

~7KH VR
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Figure 3.3: Pressure on a deformed asperity; the adhesion pressures ¢ due to molecular
attraction and the pressure p on the contact surface.
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where H is the Brinell hardness (of the softer of the two materials) and K = 0.454 +
0.41»y, 1 being the Poisson ratio of this material. These authors conluded that the
“pull-off force” due to adhesion (i.e., the integrated suction force due to adhesion)
becomes negligible for hard steel when the adhesion index 6 is greater than 100, as
compared to 6 > 10 for rubber; the adhesion force is negligible compared to the contact
load when the plasticity index ¥ > 2.5 or when the surface energy Ay < 0.5 j/m?
for a sufficiently small external force. They concluded that “for smooth clean surfaces
the adhesion can be well over 20 percent of the contact load and, thus, cannot be
neglected.”

3. Adhesion forces are time dependent and generally increase with time of contact, even-
tually acquiring a constant value for static contact. Thus, the static adhesion models
generally attempt to predict the maximum value of adhesion forces and can overesti-
mate adhesion effects for dynamic contact.

3.3.4 Shear Resistance

To construct new constitutive models of friction it is necessary to characterize the resistance
of the rough interface to sliding (i.e., to tangential motions of the reference planes relative
to one another). While this aspect of the modeling approach still requires much study, there
appears to be at least three methods available for this purpose. First, Bowden and Tabor
[13, 14] estimated the resistance to impending motion (more precisely, the static coefficient
of friction) by calculating the shear strength of metallic oxide junctions developed on the
contact surface. Similarly, Chang, Etsion, and Bogy [26-28] calculated the tangential load
required to reach the fracture strength of metallic junctions as an indication of the tangential
force required to produce sliding. Villiaggio [97], on the other hand, studied the problem of
contact of periodically spaced elastic asperities and defined the load at which sliding initiates
as that which reduces the curvature of the resisting elastic asperities to zero. Francis [41]
modeled the micro sliding resistance using empirical relations based on existing experimental
data.

Extensive sequences of experiments on sliding resistance of thin films, involving 27 dif-
ferent materials and a wide range of normal loads, are described in the papers of Boyd and
Robertson [15], Briscoe, Scruton, and Willis [17], Towle [92], and Briscoe and Tabor [18]. In
all of these studies, it was discovered that (on a microcontact interface) the interfacial shear
stress 7, during sliding was a function of the normal stress o, = o;;n;n;, and, according to
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Francis [41], their empirical findings suggest that

[ ¢ + 20, for light loads
c3on (0.6 <m < 1.4) for intermediate loads
Ty = J log™! [cs + c(04) log a,] for heavy loads (3.20)
d(log )
0< n Gy T 2
‘ where 0.0 < ¢(0,) < 1.9 d(logo.) 0

wherein loads were varied over a factor of 10 or more and starting from 15 MPa (light), 40
MPa (intermedite) and 200 MPa (heavy). Francis [41] points out that a good approximation
to all of these cases is the simple quadratic function,

Ty = Co + €10, + 072 (3.21)

where ¢y, ¢;, ¢; are material constants.

Once a micro-shear resistance is characterized, the macro sliding resistance can be com-
puted using the statistical summation procedures described earlier.

3.3.5 Initial Conditions

Smooth functions u%(z) and 2°(x) are prescribed such that for z € €,

ui(z,0) = u?(:c)
zi(x,0) z?(:c)
w;(:z:,O) = (
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Figure 3.4: A regularization function ¢

3.4 Variational Formulation

In order to obtain a weak formulation of a boundary-value problem we introduce the space

of functions
V={veWm(Q)", v(z)— 0 as |z — oo}

where ) is a computational domain, N is the dimension of the physical space (2 or 3), and
W™P(Q) is the Sobolev space, where specific values of m, p and q depend on the particular
form of constitutive equations.

Multiplying the equilibrium equation (3.10) by a test function and integrating over (1 we
obtain the weak form of the rate equilibrium equations:

/ﬂv,-c'r;,-,_,- dQ =0 YveV

After the substitution of the constitutive equations, application of the divergence theorem
and a grouping of terms the following variational problem is obtained:
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Find a displacement rate field t — u(z,t) € V such that

/n‘Ui,jEijklilk.ldQ = /nv,-,jE.-,-kzéi',')dQ + /an v;i;ds VveV (3.22)

The rates of nonelastic strains éﬁ';) can be obtained from the relevant constitutive theory
(see Section 3.2.2). For elastic materials they are identically equal to zero. Therefore for these
materials it is also possible and computationally more efficient to use a total formulation of

the problem which is as follows.
Find a displacement field u(z)eV, such that

/Q'Ui,jEijkluk,ldQ = /an vitids YveV (3.23)

Note that the values or the rates of tractions on 90 need to be expressed in terms of
displacements using formulas presented in previous sections (contact condition, adhesion,
and sliding resistance).

3.4.1 Boundary Integrals

The boundary 92 can be decomposed in the following way

aQ=FuUFgUFaUFC

where

', — support zone (kinematic boundary conditions),

[, — static zone (static boundary conditions),

[, — adhesion zone (adhesion traction is not negligible),
. — contact zone(a > 0).

The integrals over 9 in formulas (3.22) and (3.23) can be calculated as sums of integrals
over these four parts of the boundary.

s Support zone

According to the formula (3.3.1)

u.-=0 on Fu
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Figure 3.5: Separation and contact when intermolecular forces are taken into account.

so there is no need to compute integrals over T, !

e Static zone

Traction on this part of the boundary is known, so it can be integrated. In the case of
asperities this traction is usually equal to zero.

o Adhesion zone
The integrals over I', have the following forms:

(a) total formulation

/Fu vitids = /f, v;q(a)N;ds

(b) rate formulation
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Figure 3.6: Graph of adhesion traction in terms of separation.
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/ vitids = — A v,-aN,‘Nkﬁkds+/r viawN;ds

b (- (0]

When adhesion forces are taken into account then the intermolecular distance d plays an
important role. A graph of traction resulting from adhesion for d = 0.5 nm and Ay= 0.1
J / m? in terms of the separation is shown in figure 3.6. Clearly, the adhesion traction is
strongly nonlinear, and practically vanishes at separtions greater than 4d.

where

Integration of adhesion derivative with respect to separation is required in formulas 3.4.1.
Figure 3.7 shows this function. Because the function changes very rapidly, it has to be
integrated with higher accuracy than e.g. shape functions. Some numerical experiments
were carried out to check how many integration points are necessary to compute accurately
these integrals. They showed that 10 integration points in one direction are enough to
integrate influence of adhesion forces over an element face which has dimensions less than
10*d, providing that the slope i.e. angle between the face and the flat is small (less than
10°). We have such a situation in the case of asperities. Moreover, integration need only be
performed on part of I'; on which separation is less than 4 * d. At this and higher distance,
adhesion traction and its derivatives are practically equal to zero.

o Tractions on the contact zone I'.

Penalty method which we use here to solve variational inequality problem is equivalent
to allowing for penetration of the rigid flat by the asperity (¢ > 0). But this penetration
results in a big normal traction in the form

ty = -l-aN
€

where ¢ is a small number.

In addition to normal traction there exists also a tangential traction (sliding resistance)
on the contact zone. There exist several theories which give formulas for sliding resistance
in terms of normal pressure [41] see section 4.3.4 for discussion. Generally all of them can
be expressed in the following form

0 when b =0
t= (3.24)

h(tN)ng—l when b#0
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Figure 3.7: Graph of derivative of adhesion traction in terms of separation.

where

t — sliding resistance,

h — function which defines the relation between
sliding and normal tractions, its form depends
on adopted model of sliding resistance,

b — vector of relative displacement between

the asperity and the flat.

Components of t are not continuous with respect to b when b = 0. To facilitate numerical
solution of the contact problem a regularization of the function ¢t is introduced. The regu-
larization will be done for components of sliding resistance. This vector has at most two non
zero components. Let the first component t5 have direction of an arbitrary vector S parallel
to the flat. Let the second component t1 have direction of vector product N x § = T, where
IN is normal to the flat and pointing towards the asperity. If bs and br are coordinates of b
then the components of ¢ after regularization can be expressed by the following formulas

ts = h(tn)o(b)¥s(bs, br)
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= h(tn)@(b)¥r(bs, br)

where ¢ is a function which provides smooth approximation (of class C!) for function &,
and has the following form

-1 for z < —¢
2L 4 (5—)2 for —e<z<0

d(z) =4 ¢ % (3.25)
2&—-(;) for 0<2<¢

1 for ¢ <z

where €, is a small number.

U5 and ¥t are functions which guarantee a proper decomposition of vector ¢, i.e. they
provide that ||t]| = t% + tZ. Functions ¥, ¥ have the following forms

q;sz_ﬁ__
Vb3 + b3
g = — 0T

\/0% + 0%

Combination of the above formulas leads to the following contributions to the weak

-

statement of the problems:

for the total formulation

/ vit;ds = / v,-(fz-N,- +tsS; + tTT;)ds
| A8 e €

for the incremental formulation

A v,-i,-a’s = /v,-a,-jzljds +

ots . Ots . otr . otr
+/rc LwN +(3a 5335)5 +(3a absé)T]d

where

AsonLsgs 4 s g

3 i B or" SiT; + (3.26)

ai; = NN+
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otr Otr Otr

t5 Til; + 51;7}5,- + Eb—T'T‘lZ (3.27)
w — displacement of the flat in IV direction,
6 — displacement of the flat in S direction.

3.5 Solution Method for Elastic Contact Problems

Formulation of the contact problem is nonlinear even in the case of contact with an elastic
body because the area of contact depends on displacements (I'. = I'.(u)). Generally, requir-
ing that variational equation (3.23) be satisfied for every test function leads to the following
nonlinear system of equations:

L(u)— R =0, (3.28)

where L stands for the left-hand side and R for the right-hand side.

To solve the problem effectively, Newton-Raphson iteration technique was used. The idea of
the method is to substitute a nonlinear functional by its linear part. Linearization is made at
a series of points. Each point is the solution of the problem linearized at the previous point.
If the series is couvergent, it is convergent to a solution of the nonlinear problem. For a
simple case of a simple nonlinear equation with one unknown, two steps of Newton-Raphson
method are shown in Fig. 3.8.

Basic formulas of the Newton-Raphson method are presented below. Let us assume that
we know a field u, which is an approximate solution of the equation (3.28). u, = 0 can be
assumed. First two components of the Taylor series evolution of left hand side of equation
(3.28) give

L(u") — R— grady[L(u") — Rléu =0

Assuming that éu = u"*! — u™ we obtain

L(u") — R+ grady, L(u")(u™"' — u*) = 0

Equation (3.28) is a linear equation for u**!. We use this equation to compute a sequence

of approximate solutions u!,...,uM. The process is stopped when ||uM — uM-1|| and
[|L(u™) — R|| are small enough.

For contact with elastic bodies, equation (3.28) has the following form
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Lv;JE;jkzu:jldQ+/l_ v,-a.‘ju;-‘“ds+/r v,-B;,-u}‘“ds:/I: v;[a;ju_(,-n)+p,~]ds+/r v;[ﬁ;jug-")+q;]ds

where

o is the same as in the incremental formulation (3.29)

27 14 (g)g - (g)s} NiN, (3.30)

Bi; = 8—
pi = Lw+d-PN+P,N)N (3.31)

da
€
3 9
RRGIL

- 84y
% = 37

Variations were evaluated neglecting dependence I'. = I'.(u). The above linearized prob-
lem is solved by the standard FEM.

l In order to provide automatic control of the performance of nonlinear procedures, an
expert system-like approach has been applied. This application is based on our previous
l research on automation of computational procedures [96], and employs several heuristic
rules to monitor and control the performance of nonlinear iterations. While in the original
implementation discussed in reference [96] the specialized knowledge engineering software
l was used to develop the expert system, in this project the essential features of the expert
system were coded in FORTRAN and included in the code. The expert system is activated
' at each time step after completing a prescribed number of iterations (sufficient to estimate
trends in error histories). The decisions of the expert system are used to control the solution
l process and obtain a converged solution at minimum cost.

3.6 Solution Method for Viscoplastic Contact Problems

Formulation of the problem in this case is time-dependent.

The strategy employed in the solution of this problem is as follows: with the initial
distribution of stress, temperature and internal variables specified use the rate form of the
equilibrium condition (Eq. (2.23)) to obtain the nodal displacement rates. Then integrate
the constitutive equations forward in time at the element Gauss integration points. With
updated value of the stress, temperature and internal variables at the new time, the equilib-
rium equation is solved again. This sequence of determining the nodal displacement rates,
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then advancing the constitutive equations in time is continued until the desired history of
the initial boundary-value problem has been obtained.

Thus, the algorithm proceeds through the following steps:

1. At time ¢, initialize 0;;, Z; for each element;

2. Calculate €% = fi;(0ij, Zi) for each element;

3. Assemble and solve [K|U = F;

4. Calculate &; for each element, é = [B]U;

5. Calculate 6;; for each element, ¢ = [E](é — ¢*);

6. Calculate Z; for each element, Z; = 9i(0ij, Zk);

7. Integrate g;;, Z forward for each element to get 0;; and Z; at ¢ + At,;

8. If t + At, < tgna g0 to 2, otherwise stop.

The computational method above has been presented for a constant time step Ats.
Computational experience by several investigators (see refs. [7,8,55]) indicates that a very
small time step can be required because of the “stiff” nature of the ordinary differential
equations describing the internal state variables. To gain improved efficiency and reliability
a variable time step algorithm has been implemented. The basic idea of this variable time
step algorithm is presented below for a scalar evolution equation.

The solution is advanced using a predictor-corrector scheme. The predictor phase consists
of an Euler step:

y = fly,t) (3.33)

The solution is advanced using a predictor-corrector scheme. The predictor phase consists
of an Euler step:

Yhae = Y + Aty (3.31)

y'z}:-Az = f (yﬁ,m,t + At) (3.35)

An error indicator E [15,24] is then computed from
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The error indicator is next compared with a preset error criterion and if the criterion is
met, the time step is small enough to proceed to the corrector stage. Otherwise, the predictor
phase for Eqgs. (3.34)-(3.35) is repeated with a smaller time step. For the viscoplastic
evolution equations with damage modeling, the control variables used to calculate the error
indicator were the components of a stress tensor o;;, internal state variables Z;, and the
damage variables w;, with the maximum of these selected as the controlling error.

(3.36)

The corrector phase is the modified Newton scheme,
towg = (e + U3 ar) /2

ytc+At =Yt + Atyavy

A flowchart depicting the adaptive scheme is shown in Fig. 3.9.
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4 Finite Element Analysis of Contact Problems with
Friction

4.1 General Information About the 3D Finite Element Code

The development of asperity modeling capabilities was based on existing, state-of-the-art
three-dimensional adaptive finite element kernel code, which consists of several separate
modules organized around the common data structure and execution supervisor. Figure 4.1
shows a general structure of the code directories. The most important modules are:

¢ an object-based data structure designed specifically for the h-p adaptive finite element
method,

e an execution supervisor controlling the overall execution of the computations,
e pre- and postprocessors,

e an adaptive package,

e linear equation solvers, and

a solver for a specific boundary value problem (in this case, asperity modeling).

Importantly, the elements of the finite element data structure, adaptive package, graphical
interfaces and linear equations solvers were designed to be applicable to a general class of
problems; and relatively easy customizable to specific problems in solid mechanics or fluid
mechanics. Below, selected modules of the above kernel are discussed in more detail.

Object-based Data Structure

A new state-of-the-art data structure was designed and implemented in the kernel to avoid
typical limitations of traditional finite element codes, such as:

o fixed size common blocks and arrays,
o predefined limits on problem size,

¢ element information spread throughout memory in variety of arrays.

The object-based data structure was coded in C computer language, which allows for
dynamic memory allocation and more flexible handling of objects and structures. Typical
examples of objects handled by this data structure are:
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Figure 4.1: A general finite element code structure
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¢ elements,
e nodes,
¢ boundary condition data,

o set of degrees of freedom, etc.

The major advantages of object-based handling of these structures are listed below:

o the objects are created only when needed,
o all related information is contained in one structure, and closely packed in memory,
e all the objects are automatically saved/restarted,

e the memory is reused when object is deleted, say during mesh refinement.

It is of importance to note here, that the elements in the above data structure are
grouped and colored in order to facilitate vector and parallel processing. The basic idea of
this vectorization and parallelization is presented in figure 4.2. Importantly, all the elements
in a batch are of the same type, so that the generation of element stiffness matrices and
right-hand sides can be effectively vectorized by putting loop over elements as the innermost
loop. On the other hand, since the elements in different colors have no common nodes or
sides, the generation of element of element matrices and assembly for different colors can be
performed in parallel.

Adaptive three-dimensional finite element meshes

The finite element kernel is designed to handle h-p adaptive finite element meshed for
three- and two- dimensional problems. By h-p adaption we understand a finite element
technique, wherein the elements can be automatically subdivided into smaller elements (h-
refinement /unrefinement) and the polynomial order of approximation can be locally in-
creased or reduced. A major advantage of properly designed h-p mesh is that it can achieve
a higher order of accuracy with much less degrees of freedom than traditional finite element
methods. Moreover, the optimal mesh is designed automatically by adaptive procedure
driven by appropriate error estimators.

For three-dimensional problems, anisotropic h-refinement can offer a wide improvement in
computational effort over more conventional isotropic refinement schemes. This is primarily
true because anisotropic refinement allows for selected refinement in the directions of interest
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only (i.e., directions of high error). Thus, anisotropic refinement may greatly reduce the total
number of unknowns in many problems, in turn reducing the required computational effort.

Isotropic refinement implies that an element is identically refined in each local direction.
For a hexahedral element, an isotropic refinement is a division into two along each of the three
local directions, which results in eight sub-elements. In contrast, an anisotropic refinement
of a hexahedral element is a division into two along a single local direction, resulting, of
course, in only two sub-elements. Thus, if solution phenomena is oriented with respect to
a particular local direction, then anisotropic refinement allows for degrees of freedom to be
introduced only in the direction which actually reduces the total error. Isotropic refinement,
on the other hand, would have introduced degrees of freedom in all directions, many of them
providing little improvement to the overall solution. Anisotropic refinement can, therefore,
provide a higher level of accuracy than isotropic refinement using the same number of degrees
of freedom.

Several examples of h-adapted meshes in three dimensions will be shown in Section 6.
Note that the mesh refinement introduces several theoretical and numerical complications
into the algorithm, such as:

e constrained or "hanging” nodes between elements of different refinement level,

e propagation of constraints and possible "deadlocks™ in the case of directional refine-
ments for complex geometries,

o complications of unrefinement due to one-to-two approximation rule.

Detailed discussion of these issues is beyond the scope of this report. It is sufficient to
note, that before application of the above kernel to asperity modeling all these difficulties
have been successfully resolved and the existing kernel offers operational unique automated
directional refinement capability for three-dirmensional hexagonal meshes.

Interactive user’s interface and graphical postprocessing

have been implemented in the adaptive kernel to enable user-friendly operation of the code
and viewing of three-dimensional result. The interactive graphic interface is based on a
window environment, with a menu-driven selection of options. A sample view of the screen
with several windows open is presented in figure 4.3.

The graphic interface can be customized for specific applications, such as contact and fric-
tion modeling, so that the solution process and essential data can be controlled interactively
by the user.




S e gt 4 B N L . 1 Y Y i - = e

Figure 4.3: Sample screen with interactive window environment
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The most important feature of the graphical user interface is a three-dimensional inter-
active postprocessing capability. For two-dimensional models, such visualization is rather
trivial as all of the computational domain is always visible and it is a simple matter to zoom
and/or pan through the mesh to closely review the results. The real challenge comes from
the need to visualize phenomena in three-dimensional domains where most of the numerical
data is actually hidden from the observer and one needs to enter the domain to view the
local structure of the solution.

The postprocessing capability implemented in the kernel is capable of displaying solution
obtained on structured and unstructured meshes, with both h-refinement and p-enrichment
present in the mesh. The package is fully interactive and operates efficiently on high-end
workstations. The basic graphic features displayed include:

e mesh plots,

¢ isosurfaces of selected quantities,

e slicing planes with overlaying isolines,
o deformed configurations,

three-dimensional cursor for picking pointwise values of the solution,

All the above displays are available with interactive translation, rotation and zoom op-
tions, hidden line removal, panning, etc.

Importantly, the graphics package is designed to take advantage of specialized graphic
hardware and software available on many platforms. The primary platform for the package
is the SGI Iris family, which is also a primary platform in this project. Alternatively, X-
windows graphics is supported, which is operational on most Unix workstations.

4.2 Formulation of a Structural Deformation Problem in the 3D
Code

In the project, the 3D kernel was customized to solve contact problems. It was supplemented
with over 8,000 instructions. They enable to run specialized drivers when a contact problem
is to be solved. The drivers solve the contact problem using either total formulation or
incremental formulations (see section 3.4). The first one uses Newton-Raphson iterative
method and calls the FEM linear solver at each iteration step. The second driver uses Euler
predictor corrector integration method with automatic time step control and calls the FEM
linear solver twice at each time step.
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To solve solid mechanics problems with contact, additional customization of the kernel
FEM code had to be implemented. They define, in a special format, coefficients of the volume
and boundary integrals introduced in previous section. As regards the contact condition,
it was assumed that contact can take place at any point of the boundary on which static
boundary conditions are applied. Therefore, while the integrals over this part of boundary
are evaluated, the program examines whether an integral point is in contact with the flat.
If penetration is greater than zero, then integrals corresponding to contact and friction
are added to the coefficients of the stiffness matrix and the right-hand side. Additionally,
adhesion integrals are being evaluated right outside the contact zone. In order to properly
capture the strongly nonlinear separation-dependent adhesion forces, very fine integration
schemes are being used.

To enable automatic generation of meshes for asperity analysis, five additional programs
were prepared. They generate customized grid files for:

¢ 3D axisymmetric asperity (cosine hill),
e 3D axisymmetric asperity (spherical),
o 2D asperity (cosine hill),

¢ 2D asperity (cylindrical),

e 2D trapezoidal asperity.

The first two programs make use of an in-house GAMMAS3D mesh generator . All of
them provide generation of meshes with first and second order of geometry approximation.



5 Basic Verification of Numerical Models

To confirm reliability of the code and material models several numerical tests were performed.
Selected tests are described in this section.

Several basic tests were carried out to verify the linear elasticity formulation. They were
performed for both 3D and 2D problems with second and first order geometry approxima-
tion. The results of tests were compared with analytical solutions. Satisfactory results were
obtained for all the polynomial orders (1 through 8).

The objective of the next group of tests was to verify incremental formulation of the
viscoplastic problem. They were carried out for alloy B1900+Hf at temperature 871°C.
Material constants as well as experimental results for this material are given in reference
[10]. For Bodner-Partom model the material constants are as follows:

D, = 10% 57! m = 0.270 M Pa™?

n = 1.03 m, = 1.52 M Pa™1

2, = 2400 MPa r = rg =2

Z, = 2400 MPa A = Ay = 0.0055 57!
zp = 3000 MPa = 142 GPa

z3 = 1150 MPa v = 0.0805

Some of these tests are listed below:

(a) Solution of the uniaxial tension for a purely elastic body using the incremental
formulation. The results were the same as obtained with the total formulation.

(b) Solution of the uniaxial creep test for an elasto-visco-plastic body. The results
were compared with an experiment presented in reference [56]. Certain discrep-
ancy of results was observed. This discrepancy was caused by an erroneous value
of the Young modulus given in reference [56]. After a correction of Young modulus
(E =132 GPa) the numerical and experimental results agreed satisfactorily (see
Fig. 5.1). The test verified mathematical and numerical models for this simple
loading (uniaxial tension).

(c) Next three tests were carried out in order to examine the performance of the
computer program for more complicated loading histories. The tests included:

e Uniaxial cyclic tension and compression shown in Fig. 5.2.
¢ Uniaxial loading for 5,000 s and relaxation for next 5,000 s. See Fig. 5.3.
¢ Loading for 1,000 s and creep for next 1,000 s. See Fig. 5.4.

The above basic tests verified the formulation of the viscoplastic problem as well as its
implementation in the code.
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Figure 5.1: Experimental and numerical results of uniaxial tension of a specimen with cor-

rected Young modulus
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Figure 5.2: Cyclic loading test of the viscoplastic model ~ 10 cycles.
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6 Verification of Numerical Models of Asperity

Numerical modeling of response of surface asperities to contact and friction loads is one of
basic components of the new asperity-based interface models developed in this project. In
order to verify correctness of finite element asperity simulations, we performed several tests
and comparisons, in particular:

s mcdeling of elastic sphere in contact with & rigid flat, (Hertz problem). Analytical
solution is available for this problem {48,91],

e numerical modeling and experimental measurements for custom-made asperities with
strongly pronounced nonelastic properties.

Details of these tests are presented further in this section.

6.1 FElastic Sphere in Contact with a Rigid Flat

In order to verify the contact algorithm and the nonlinear solution procedure, a finite element.
solution was obtained for the contact of elastic sphere with a rigid flat. The finite element
solution of this problem was compared with theoretical solution due to Hertz [48.91]. For
a given sphere of radius R and prescribed normal displacements of the flat equal w, the
theoretical predictions of the contact radius r, contact area A and total load P are given by:

?

w

il

r
A Rw
P E

Wi N
N

1
Riw

(1-v2)

The above problem was solved numerically using the following dimensionless data:

R 1.0

E = 1000.

v = 0.3

w .001, .002, .005, .01, .02
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Figure 6.1: h-p refined mesh for the Hertz problem, w = .02, deformed configuration. Only
boundary elements shown. P-order up to three.
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Figure 6.2: Isosurfaces of the vertical displacement for the Hertz problem, w
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Figure 6.4: Distribution of error indicator for the Hertz problem, w = .02
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Due to a localized nature of the contact, the finite element mesh was defined only for a
section of the sphere around the contact zone. The problem was solved using the Newton
procedure combined with adaptive mesh refinement. An example of the final refined mesh
obtained for w=.02 is shown in figure 6.1 (deformed configuration is displayed and only
boundary elements are shown for clarity). The same mesh with isosurfaces of vertical dis-
placement is presented in figure 6.2, the slicing plane, with stress oy, is shown in figure 6.3,
and the error indicators projected on two slicing planes are displayed in figure 6.4.

The results obtained numerically compare favorably with numerical predictions. A de-
tailed comparison of theoretical and numerical results are shown in table 6.5, and the graph-
ical comparisons of predicted contact area and total load are shown in figure 6.6.

6.2 Experimental Studies of Models of Asperity

In order to verify numerical simulation of nonelastic behavior of asperities, several experi-
mental measurements were performed and then compared with numerical predictions.

These tests included simple tension and compression problems designed to verify nonelas-
tic material constants for aluminum, as well as contact tests for two types of custom-made
asperities. In this phase of experiments, which we refer to as Phase I, custom asperities were
chosen in order to eliminate random surface factor from the comparisons. In Phase Il. which
will be performed in the next year of the project, real random surfaces will be considered.

The objective of this Phase I experimental study is to study the deformation of contact
surface asperities and to verify the analytical prediction by experimentation. In design of the
experimental study, it is initially conceived that the test is to be carried out under a small
normal load (500 Lbf) condition. A controlled surface asperities are machined onto both
surfaces of an aluminum block. In the test arrangement, the aluminum block is sandwiched
between two hardened steel blocks with smooth surfaces, and the steel-aluminum-steel block
assembly is compressibly loaded to approximately 500 Lbf. The deformation of asperities
on the aluminum block is monitored during loading. After completing the normal loading,
a horizontal load is slowly applied to the aluminum block until the block begins to slip.
An estimation of the coefficient of friction can thus be made by using the measured normal
and horizontal loads, and be compared with that from the analytical prediction. A test
apparatus is built for this purpose, and tests are carried out with this apparatus. After
reviewing the test results, it is decided that the deformation of surface asperities on the
aluminum specimen is too large for the purpose of model verification. The shape of asperity
is changed, and the tests are carried out under a normal load of approximately 2,000 Lbf.
The results from both arrangements are reported in this section.
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6.2.1 The Test Apparatus

A sketch of the apparatus is shown in Fig. 6.7. An aluminum (6061, T4) block of 1’ x 1" x
0.25” is sandwiched between two steel blocks of the same dimension as shown in the figure.
The V-shaped grooves of angle 45 deg, pitch spacing of 0.1 inch, and depth of 0.125 inch
are machined with a specially designed cutter on both surfaces of the aluminum block to
simulate the surface asperities. A sketch of the grooves is shown in Fig. 6.8. The surfaces of
the steel blocks are machined smooth and (water) quench hardened to RC-30. It should be
mentioned that, due to the angle of the cutting tool and the pitch spacing, the tips of the
grooves are not in a plane, the heights of tips vary alternatively as shown in the photograph
(Fig. 6.8) to be discussed in a later secticn.

A normal load is applied to the specimen assembly through a mechanical screw jack from
the bottom of the apparatus. The normal load is monitored with a small “load transducer”
of capacity 500 Lbf. The normal deformation of the simulated asperities on aluminum block
is measured with a “proximate sensor” with an operation range from 0 to 0.1 inch. The sand-
wiched specimen assembly is first installed in position, and an initial load of approximately
50 Lbfs is applied to the specimen prior to “zero adjustment” of the recording instrument
(an X-Y plotter). A total normal load of 500 Lbs is then applied to the specimen at a rate of
approximately 10 Lbf per minute. After the normal load has reached 500 Lbf, a horizontal
load (by lead blocks and beads) is slowly applied to the aluminum block until the block starts
to slide. The horizontal load is monitored with a ring-shaped load transducer (laboratory
built) as shown in Fig. 6.7.

Note that even with very precise calibration of the test apparatus, certain compliance
or “setting in” occurs during loading and pollutes the measurements. This is especially
true in case of high loads and very small displacements considered in this experiment. It is
a standard practice in experimental tests to discard the initial part of the load curve and
appropriately translate the remaining part. In this section, we present results in the “raw”
form, but numerical comparisons refer to corrected graphs.

6.2.2 Tests Results From the Above Apparatus

Two tests are carried out. A representative force-deformation plot is shown in Fig. 6.9. It
is seen that there is an appreciable amount of plastic deformation of the surface asperities
on the aluminum block (neglect the bulk deformation of both aluminum and steel blocks)
when the block assembly is loaded to 500 Lbf. A horizontal force is then slowly applied to
the aluminum block. It is visually observed that the aluminum block starts to slip when the
horizontal load reaches 108 Lbf. Since there are two contact surfaces between the aluminum
block (with asperities on both surfaces as shown in Fig. 6.8) and steel blocks (with smooth
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surfaces) in the test arrangements, the nominal coefficient of friction is (108 /2)/500 = 0.108.

6.2.3 Deformation of Asperities Under a Larger Normal Load

The asperities shown in Fig. 6.8 have pointed tips, the deformation of tip is difficult to
calculate. It is then decided to change the geometry of asperity as those shown in Figs.
6.8(b) and 6.8 (c). In Fig. 6.8 (b), the asperity is modeled as a 45-deg grooved with a
truncated tip. In Fig. 6.8 (c), the asperity is modeled by spaced circular rods. The force-
deformation relationship for the specimen with asperities as shown in Fig. 6.8 (b) and 6.8
(c) are measured. The test arrangements are the same as that described in the previous
section. Since the maximum load in these test are much higher than 500 Lbf, the tests are
carried out and the representative force-deformation curves are shown in Figs. 6.10 and
6.11, respectively. A photograph of the cross-section of the deformed grooves is shown if Fig.
6.12. It is seen that only the alternate grooves were deformed. There are seven grooves on
each surface of the aluminum block, therefore only eight (four on each surface) of them are
deformed. Since the maximum horizontal load required to move the aluminum block in this
exceeds the capacity of the ring load cell used in previous section, the horizontal pulling test
has yet to be carried out (we need to build a new load cell and loading frame).

Finally, a test for the tensile property of the aluminum used in this study is carried out.
The stress-strain curve from an aluminum (6061, T4) specimen is shown in Fig. 6.13. Again,
the test is carried out at a slow loading rate (approximately 20 Lbf per minute).

88




1/2" wall thickness
steel ring

500 1b.
load cell

| [

holder

steel block

Proximate — -/VWVVV\—
displacement sensor Al block with
asperities --

MAVAVAVAVAVAVA!

steel block

holder

A
d) screw jack
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Figure 6.12: A photograph of deformed asperity

6.3 Numerical Simulation of Experimental Measurements
6.3.1 Viscoplastic Uniaxial Stress State

The aim of this final test was to determine viscoplastic material constants for aluminum 6061
T4. Bodner-Partom model of viscoplastic materials uses a total of 14 material constants.
However, for aluminum alloys at room temperature only 7 material constants are of primary
importance. Their values obtained from reference [10] for a different heat treatment (T6)
are listed below:

E = 739 GPa

v = 0.33

20 = 450 MPa
zy = 9550 MPa
m; = 0.12MPa~!
D = 108%™

n = 5.0

In order to verify these values, a tension test was performed and compared with numerical
results. The test indicated that the 6061 T4 sample has slightly different values of Young
modulus and the kinematic hardening parameter. These values are:

E = 65.0GPa
n = 58

These material constants were used in further computations. Fig. 6.14 shows the plot
of stress-strain relation for initial and modified material constants in comparison with the
experimental results.
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6.3.2 Viscoplastic Cylindrical Asperity

Aluminum cylinder was used as a model of a "macro asperity”. Numerical and experimental
tests were carried out. It was assumed that the cylinder can be analyzed as a 2D case. The
original mesh used for discretization of a section of a circle is shown in Fig. 6.15. After
the first solution pass the mesh was automatically refined. It is shown in Fig. 6.16. The
viscoplastic results obtained at both meshes as well as a purely elastic solution for the first
mesh are compared in Fig. 6.17. The conclusions are that:

o behavior of the specimen under applied loading is almost elastic,
e viscoplastic solution is reasonable - it gives smaller values of the contact force,

e the refined mesh gives results which can be treated as a final numerical solution (the
difference between solutions obtained at coarse and fine meshes is small.)

The numerical and experimental solutions are compared in Fig. 6.18. Note that the
experimental results have been rescaled. Instead of the total force - total displacement
relation measured in the experiment, Fig. 6.18 shows force per unit length of upper half-
cylinder. Moreover, metric units were used.

It can be observed that the numerical results compare favorably with experimental mea-
surements. Recall, however, that the experimental data were translated, to correct for
settling in the apparatus (see Section 6.1).

6.3.3 Viscoplastic Custom Surface Model

Comparisons of resuits for a model truncated V-shaped of asperity are described in this
section. Two meshes which were used for discretization of this specimen are shown in Fig.
6.19 and 6.20. Numerical results for both meshes are shown in Fig. 6.22 and 6.21. While for
the cylindrical model the behavior of the material was almost elastic, in this case the influence
of yielding was significant. Maximum nonlinear strain was about 80%. It means that at
least locally solution is beyond the theory of small strains which we use. The comparison of
numerical results and experimental ones is shown in Fig. 6.23. A good agreement of results
can be observed for both models of asperity.

Some of unevitable sources of discrepancy are the following:

e error of experimented measurements,

¢ modeling of inelastic behavior of the material beyond the small deformation range,
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e unknown deformation history of the specimens, prior to the experiment,
e errors of time-integration and other numerical errors.
Comparison of numerical and experimental results as well as the basic numerical tests

lead to a conclusion that the adaptive finite elements represents nonelastic deformation of
asperities with sufficient accuracy.
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7 Studies of Asperity-Based Models of Contact and
Friction

In this section we present examples of constitutive interface models, developed through a
complete statistical homogenization procedure. The basic questions addressed here, besides
the quality of these models, are as follows:

o what is the dominant type of asperity deformation (elastic or nonelastic),
o what is the effect of adhesion at the asperity level and after homogenization,
e what is the effect of surface roughness,

e how do theoretical predictions compare with experimental measurements.

To answer these questions four different types of surfaces were analyzed. The first three
were made of aluminum. Their profiles were taken from literature [44]. The fourth type of
surface was made of steel. The pressure-approach relationship was measured experimentally
and compared with its numerical prediction. The profile was scanned with an electronic
microscope. Having the profile of a surface as a discrete function it was possible to compute
its statistical characteristics such as medium height, standard deviations of height, slope
and curvature. Those statistical characteristics were used to compute expected values of
real area and force of contact as functions of approach. Deterministic solutions to a contact
of two asperities were computed by the hp adaptive code using different assumptions about
shape of asperities, its material model and with or without taking into account the adhesion
forces. The results include also estimation of friction coefficient.

7.1 Simulation of a Greenwood-Williamson Asperity-Based
Contact Model

The results of elastic solution of spherical contact problem were used for initial tests of
a complete statistical homogenization procedure. In particular, we compared our finite
element based predictions with a classical asperity-based contact model due to Greenwood
and Williamson [44]. This is one of historically first asperity-based models, derived under
the following simplifying assumptions:

o the tips of asperities are spherical,

o all asperities have the same radius of curvature R,
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e asperity height is a random variable with Gaussian distribution,

e contact is elastic and described by the theoretical solution of the Hertz problem.

Although this model is much simpler than the ultimate objective of this project (random
asperity height and curvature, nonelastic deformation, etc.), it provides a very good initial
test for the hornogenization procedure. Importantly, our modeling of this problem differs
from Greenwood’s approach in that:

o solution of elastic contact problem has been obtained from finite element modeling,
rather than from Hertz theory,

e expected values of contact load and area have been calculated using general numerical
quadrature, instead of analytical integration.

The simulation of the Greenwood-Williamson model was performed for the following set
of parameters:

R = 0.1414 mm

o, = T7.07106 x 127 mm
v = 03

E = 321.7335 kG\mm?
n = 300 peaks\mm?

where R is the radius of asperity tips, o, is the standard deviation of asperity height and n
is the surface density of asperity peaks. The results are presented in figure 7.1, which shows
respective comparisons of load-separation and load vs.contact area curves. It can be seen
that the difference introduced by numerical modeling of asperity and numerical integration of
expectation values is within acceptable bounds (note that these differences could be further
reduced by application of finer meshes for the asperity contact problem.)

7.2 Effects of Asperity Shape

Next test of the homogenization procedure was performed for an aluminum interface with
surface characterized by the following parameters: o = 1.3 um, ¢ = 0.13, & = 0.018 um™!,
D, =0.00044 peaks /um?. During this test the force and area of contact for a single asperity

were computed in two ways, using

e homogenization procedure based on elastic solution for sperical asperities, with random
distribution not only of heights but also of curvatures, (Hertz solution was used).
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e Homogenization procedure based on numerical solutions for elastic, sinusoidal asperi-
ties. These asperities better simulate the actual shape of a rough surface.

Numerical solution for sinusoidal asperities was computed with taking advantage of the
fact that the problem is axisymmetric. Comparison of the computed contact force and
area versus penetration is shown in figures 7.2 and 7.3. Results for contact of two surfaces
obtained by those two models are compared in figure 7.4.

The results of this test show that influence of asperity geometry (sinusoidal rather of
spherical) is important, especially for higher loadings. However, after homogenization, these
differences are less pronounced. This is because major contribution to expected values of
contact pressure and area come from asperities deformed at their tips only.

7.3 A very smooth engineering surface

The next case analyzed is normal contact of two very smooth aluminum surfaces, with profiles
corresponding to that shown by Greenwood and Williamson in Reference (18], Figure 5. The
material is aluminum alloy (6061, T4), with constitutive parameters defined in Section 6.
The surface roughness corresponds approximately to a very well polished bearing surface,
and is defined by the following parameters:

c = 0013 pm
c = 0.013

& = 0.018 pm™!
D, = 0.058 pm™?

To represent relative surface roughness, it is convenient to use a so-called plasticity index,
defined by Greenwood and Williamson [44] as:

= _H_‘/;R

where E' = E(1 — v?), H is the material hardness, and R is the asperity radius. According
to arguments presented by Greenwood and Williamson, for the values of ¥ smaller than
1 the surface deformation is essentially elastic at a wide range of normal loads, while for
¥ > 1 plastic deformation can be expected. Since in the present approach the asperity
peak curvature is a random variable, we obtain a range of plasticity indices corresponding to
various asperities under consideration. For the surface considered here, the value of plasticity
index varies between ¥ = 0.8 and ¥ = 3.5.
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In order to study the effect of adhesion for smooth surfaces, considered cases with and
without adhesion forces (clean and contaminated surfaces, respectively). The model of ad-
hesion corresponds to the one discussed in this work, with the surface energy of adhesion
Ay = |J/m?[52).

The first step of the analysis was to use finite element method to model loading of
several individual asperities, with radii spanning the effective support of the probability
density function, namely from R=15 microns to R=300 microns. A typical mesh for such
an analysis is shown in Figure 7.5. A very fine refinement around the perimeter of the
contact zone was needed to correctly resolve the strongly nonlinear adhesion forces. A
sample solution for a selected asperity of radius R=15.4 microns is shown in the form of
load-deflection curves in figure 7.6. It is of interest to notice, that in presence of adhesion
(clean surfaces in vacuum), certain attractive force develops before the asperities come into
contact. In these computations, elastic asperity bahavior was assumed.

After sending the finite element results through the statistical homogenization package,
one obtains pressure-approach and contact area approach curves as shown in Figures 7.7 and
7.8. Interestingly, due to a specific statistical distribution of asperity heights, the effect of
adhesion is more pronounced on the surface level than for a single asperity and, for clean
smooth surfaces in vacuum, a considerable attractive force can be expected.
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Figure 7.5: An adapted finite element mesh for surface asperity analysis
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One comment is in place regarding the “approach” axis in Figure 7.6. By definition.
the approach between two surfaces is measured from the moment when the surfaces (the
highest asperity tips) come into contact. For real surfaces this initial contact is relatively
easy to capture. However, in theoretical analysis, with Gaussian distribution of surface
height, it is not the case — the maximum asperity height is not clearly defined (in fact it
grows to infinity, with probability density vanishing to zero). As a consequence, the selection
of the zero point on the “approach” axis is somewhat arbitrary ~ for practical purposes it
may be chosen as a point where some noticeable normal load develops on the interface.
In Figure 7.7, for illustration purposes, the approach was measured from a rather large
separation between the surfaces. Importantly, this approach measurement does not affect
the relationship between the real contact area, normal load and normal stiffness, which is
of greater practical importance. For the surface under consideration the real contact area
calculated for increasing load is shown in Figure 7.9.

As mentioned, the above asperity analysis was performed using small deformation theory,
with additional assumption of elastic asperity deformation. Therefore a question arises: Of
all the asperities in contact, how many satisfy the above assumptions? An answer to this
question is shown in Figure 7.10, which presents, for increasing approach, the percentage of
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Figure 7.8: Smooth aluminum surface: contact area versus approach curve
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asperities that are in purely elastic contact, as well as the percentage of asperities within
the range of small deformation theory (|€|mez < 8%). Clearly, the surface deformation
remains well within the range of small deformation theory. However, the number of nonelastic
asperities increases with increasing approach (load). This corresponds quite well to the
behavior suggested by the range of plasticity index for the surface under consideration. In
order to assess the importance of nonelastic effects, an additional, fully nonlinear derivation
was performed, for the case without adhesion. A comparison of approach-pressure curves
obtained with purely elastic and elasto-plastic approaches is shown in figure 7.10. The
maximum difference between elastic and elasto-plastic results was less that 5%.

It can be noted, that a very localized occurrence of plastic deformation in an asperity
does not strongly affect the values of load and contact area, and that the load-deflection and
load-area curves obtained with the elastic theory are quite reliable, even with 50 percent of
asperities outside the purely elastic range. This is because only for about 7% of asperities
the elasto-plastic solution was significantly different than the purely elastic one.
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7.4 Studies of a rough surface

A second example considered here is that of a hypothetical rough engineering surface. Sim-
ilarly as in the previous case, the material is aluminum alloy, and the surface statistics is

defined by:

o = 13 um
] 0.13
o 0.018 um™!

D, = 0.00044 pm~?

For this surface, the plasticity index is well over the value of 30.0, so that extensive plastic
deformation can be expected. In order to derive asperity-based model of the interface, several
asperities with various peak curvatures were analyzed by the finite element method. The
deformation was fully elasto-viscoplastic, and the asperities were subjected to normal load
executed by a rigid flat surface. Importantly, for the rough surface the results were not
strongly affected by adhesion. This effect corresponds well to the observations of Chang, et.
al. [26-28], that the effect of adhesion, even for clean surfaces, diminishes with increasing
surface roughness. On the other hand, for rough surfaces the effect of nonelastic deformation
is very significant — this can be seen from the comparison of elastic and elasto-plastic pressure-
approach curves shown in Figure 7.11. Clearly, the difference between elastic and elasto-
plastic solution is very pronounced. A similar effect can be observed on the plot showing
the dependence of real contact area on the normal pressure - Figure 7.13. Importantly, this
difference will have a very strong effect on the values of the coeflicient of friction.

It is of interest to look again at the percentage of asperities within elastic range and within
small deformation range. These numbers are shown in figure 7.14. It can be observed, that for
rough surfaces even a very small load causes significant plastic deformation - the percentage
of elastic asperities is essentially zero. Moreover, at higher loads, some asperities experience
strain levels exceeding the range of small strain theory — an important observation, especially
for more flexible polymer surfaces.
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8 Experimental Verification of Asperity-Based Con-
tact Models

The ultimate test of new asperity-based models of contact interfaces comes in applications
to predicting phenomenological behavior of real engineering surfaces.

To verify these new models, a special experiment was designed and performed. The main
objective was to compare experimental force-deflection relationship with the asperity-based
theoretical prediction. Additionally, measured and computed coefficients of friction were also
compared. The following subsections describe the experiment and numerical computations.

8.1 Experimental Samples, Apparatus, and Measurements

A major difficulty in experimental verifications of models of frictional interfaces is caused by
relatively small height of surface asperities and resulting small compliance of the interface.
Under these conditions, it is rather difficult to avoid pollution of the results by such effects
as:

deformation of a bulk material,

departure of experimental contacting surfaces from ideally flat, which spoils homoge-
neous distribution of contacting asperities and creates additional, plate-bending type
compliance,

e compliance of the loading apparatus,

departure of loads from purely axial, etc.

In order to minimize these negative effects, special specimens and apparatus were used,
as described below.

8.1.1 Specimen Preparation and Experimental Arrangement:

The disk specimens of 1/8 in. thickness and 1 in. diameter were cut from a cold rolled 1020
steel rod. The rod has a hardness of 89 Ry, and the tensile stress-strain relationship of the
rod material is shown in figure 8.1. The material has an elastic modulus E = 30 x 10 psi,
and a yield stress approximately 42 x 10° psi.

Ten disks were used in each test. The disks were first lapped with a milling machine to
ensure the same surface flatness among them. Both surfaces of the disks were then sand-
blasted with steel and glass beads to produce an artificial surface roughness. In the test
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arrangement, ten disks were stacked to form a column of nine (9) contact surfaces as shown
in figure 8.2. Note that, for the first disk (no. 1) and the last disks (no. 10), only the contact
surfaces with the adjacent disks were sand-blasted, the contact surfaces of these disks (no.
1 and 10) with anvils of the testing machine were kept smooth as lapped. The purpose of
using the stacked column was to increase the deformation of contact surfaces nine times so
that the average value of deformation of the contact surface asperities could be measured
with a reasonable accuracy. As portrayed in the figure, the applied load was measured with
a load cell, and the displacement was measured with a LVDT which has a resolution of 0.001
inch.

8.1.2 Measurement of Surface Roughness

The average depth of surface asperities produced by sand-blasting was first estimated with
a comparator which is a device commonly used by the sand-blasting industries. It was
estimated that the surface which was sandblasted by the glass beads has an average asperity
depth of 20 x4, and the surface which was sandblasted by the steel beads has an average
asperity depth of 40 u. These asperities are too small to be monitored by a standard stylus
profilometer. That is why the surface roughness of the specimen were determined with a
scanning electronic microscope (courtesy of NASA-JSC). The surface of the disk specimen
was first scanned to determine the distribution of asperities (i.e., a top view). The disk
specimen was then sectioned, lapped, polished, and scanned from the side to determine the
depth variation of surface asperities (i.e. a side view profile). The results are presented in
the following paragraphs:

1. The top and side view pictures of surface asperities produced by sand-blasting the
surface with glass beads are shown in Figs. 8.3 and 8.4, respectively. The variation of
asperity depth, traced from Fig. 8.4, is shown in Fig. 8.5. In view of Fig. 8.3, it is seen
that the sand-blasting had indeed produced a reasonably homogeneous distribution of
surface asperities. From Figs. 8.4 and 8.5, it is seen that the surface damage produced
by glass beads blasting is not severe; the depth variation of asperities is gentle and their
distribution appears to be random. Based on Fig. 8.5, the average depth of asperities
is estimated to be approximately 15 u which is slightly smaller than that estimated by
using the comparator.

2. The corresponding information on surface asperities produced by sand-blasting the
surface with steel beads are shown in Fig. 8.6, 8.7, and 8.8 respectively. It is seen that,
although the distribution of asperities appears to be uniform, blasting the surface
with steel beads has produced severe micro-scale damage on the surface. The surface
asperities are more rough and abrupt than that produced by sandblasting the surface
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with glass beads. Based on Fig. 8.8, the average depth of asperities is estimated to be
40 u - the same as that from the comparator. Figure 8.9 shows a steel bead wedged
between asperities.

8.1.3 Experimental Measurements of Contact Compliance

The sand-blasted disks were stacked together to form a cylinder, and the cylindrical specimen
was then installed to a MTS testing machine. A compressive force was applied to the stacked
cylinder at an approximate rate of 100 Lbf/min. The overall deformation (between the
smooth surfaces of no. 1 and no. 10 disks) was measured with a LVDT displacement sensor
(with a resolution of 0.001 in) as shown in Fig. 8.2. Two tests for each stacked cylinders,
which were made of disks with a glass-bead blasted surface and with a steel-bead blasted
surface, were carried out to ensure the repeatability of the testing. The corresponding results
are presented in Figs. 8.10 and 8.11, respectively. The following observation is made:

1. Figure 8.10 shows the compressive force-displacement curve of a cylinder made by
stacking ten disks (5A T 1020) whose surfaces were sandblasted with glass beads. The
cylinder was corup .ssively loaded to 1,000 Lbf, unloaded, and then reloaded to 3.000
Lbf. Note th=t the diameter of the cylinder is 1 inch, the nominal compressive stress
in the cylinder under a load of 3,000 Lbf is approximately 3820 psi - well within the
elastic limit of the cylinder material. Furthermore, each disk has a thickness of 0.125
in. the elastic deformation of the equivalent solid cylinder is expected to be

_ PL 3000 x (10 x 0.125)
T AE " T[] x(0.5)2 x 30 x 108

) = 0.000159 in.

Referring to the force deformation curve shown in Fig. 8.10, it is interesting to note
that the initial portion of the curve is nonlinear, and there is a permanent deformation
of approximately 0.0007 inch after unloading, and the reloading curve joins the initial
loading curve as shown in the figure. At a load of 3,000 Lbf, the measured deformation
of the stacked cylinder is approximately 0.004 inch which is substantially larger than the
above calculated elastic deformation. This phenomenon implies that the deformation of
asperities between the contact surfaces (there are nine contact surfaces in the stacked
cylinder) in the stacked cylinder are plastic, and the contact surface compliance is
nonlinear.

2. The corresponding force-displacement curve for a cylinder made by stacking ten disks
which surfaces are sandblasted with steel beads is shown in Fig. 8.11. It is seen that
the characteristics of the force-deformation relation is similar to that displayed in Fig.
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Figure 8.1: Tensile stress-strain relationship of a SAE 1020 steel

8.10. The permanent deformation of the cylinder when unloaded from 1,000 Lbf is
approximately 0.0014 in - much larger than that from its counterpart of glass-bead
blasted surface. Note that the force-deformation curve does not follow the initial curve
when the cylinder is re-loaded, however, the slopes of the initial curve and the reloaded
curve do appear to be the same.
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Figure 8.2: A sketch of experimental arrangement (Disk: dia= 1 inch, thickness = 1/8 inch)
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Figure 8.3: Top view of a surface sandblasted with glass beads (Amplification: x 100, Scale:
Shown as the white bar below the picture




Figure 8.4: Profile of a surface sandblasted with glass beads - a side view (Amplification,
and scale information are shown in the dark line below the pictures)
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Figure 8.5: Variation of surface asperities traced from Figure 8.4.
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Figure 8.6: Top view of a surface sandblasted with steel beads (Amplification: x 100, Scale:
Shown as the white bar below the picture).
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Figure 8.7: Profile (at two locations) of a surface sandblasted with steel beads - a side view
(Amplification, and scale information are shown in the back line below the pictures)
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Figure 8.8: Variation of surface asperities traced from Figure 8.7.
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A steel bead wedged in the asperities
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Figure 8.9:
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Figure 8.10: The force-displacement relationship of a cylinder made by stacking ten disks
whose surfaces are sandblasted with glass beads.
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8.1.4 Specimen Preparation and Experimental Arrangement for Determining
the Coefficient of Friction

In order to measure the values of the coefficient of friction for the surfaces under considera-
tion, a simple quasi-static experiment was performed. This experiment was oriented on basic
measurement of the static coefficient of friction, as identified by visible inception of sliding.
No attempt has been made to measure initial microslip, change of normal compliance or
other more intricate phenomena associated with frictional sliding.

The disk specimens of 1/2 inch thick and 1 inch diameter were cut from a cold rolled
1020 steel rod. The rod is from the same stock of material used in the previous test. The
material has an elastic modulus £ = 30 x 10° psi, a yield stress approximately 42 x 10® psi.
and a hardness of 89 R;.

Both surfaces (top and bottom) of the disk specimen were prepared in a same manner
as the previous test. The disk surfaces were first lapped with a milling machine, and then
sand-blasted with steel beads or with glass beads to produce an artificial surface roughness.
The average depth of surface asperities were estimated with a comparator which gave a value
of 20 u for the glass-bead-blasted surface, and 40 u for the steel-bead-blasted surface - same
as those reported in the previous tests.

The specimen was sandwiched between two steel anvil blocks which have a hardened
(approximately 32 R.) and smooth surface. The entire assembly was then installed into
the test apparatus. A normal compressive load of 250 Lbf was first applied slowly to the
assembly. It should be mentioned that due to the smallness of the surface asperities, we were
not able to record the deformation of the surface asperities during loading. After completing
the normal loading, a horizontal load is slowly applied to the specimen disk until the disk
begins to slip. The onset of slipping was observed visually. Two tests were carried out for
each surface roughness and the results are summarized in the next section.

Test Results
(a) Glass-Beads-Blasted Surface:

Normal load = 250Lbf
Horizontal load = 110Lbf (first test)
105Lbf (second test)
= 107.5Lbf (average)

(8.37)

Since there are two contact surfaces between the test specimen (roughened on
both surface) and the steel anvil blocks (with smooth surfaces), the coefficient of
friction is

137




3000

2000

Load, 1b.

1000

0 0.002 0.004 0.006
Displacement, in.

Figure 8.11: The force-displacement relationship of a cylinder made by stacking ten disks
whose surfaces are sandblasted with steel beads.
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107.5
2 x 250

n= = 0.215

(b) Steel-Bead-Blasted Surface

Normal load = 250Lbf
Horizontal load = 106Lbf (first test)
= 100Lbf (second test)
= 103Lbf (average)

(8.38)

The coefficient of friction is

y = 103
T 2x250
It should be mentioned that the exact magnitude of horizontal load at the onset of slipping

is difficult to ascertain visually. We estimate the error for the above listed horizontal loads
has a range of & 5 Lbf.

= 0.206

8.2 Numerical Prediction of Interface Contact

We used the new microasperity based model of frictional interfaces to predict numerically
the force-deformation relation for the surfaces studied in the experiment. The computation
was performed only for the surface sandblasted with glass beads. We did not analyze the
surface blasted with steel beads, because it was very rough and did not meet at least two
assumptions of our model. Those assumptions are: small deformations of asperities, and
non-interference of neighboring asperities. Moreover, the experimental force-displacement
curve for this surface indicates that the error of measurements on unloading-loading part
was rather large (see Figure 8.11).

8.2.1 Data for Numerical Calculations

To calculate statistical characteristics of the surface we used scans obtained from an electronic
microscope. We digitalized the side view of the sectioned disk specimen in aim to get the
surface profile as a function. Graph of this function (height versus distance) for a segment of
the profile is shown in Figure 8.12. The figure also shows the actual scan of the corresponding
segment of the real profile.

Using the sampling method, we obtained the following statistical characteristics of the
surface:
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Figure 8.12: Digitized and original profile of the specimen used in the experiment.
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.

Mean height: 112 pm,
Mean Slope: 0.000729 = 2.4°
Mean Curvature: —0.000288 um™!,

Standard deviation of height: 4.91 um,
Standard deviation of slope: 0.160
Standard deviation of curvature:  0.0227  um™!,
Surface peak density: 0.000508 peaks/um?,
Wavelength spectrum parameter: 0.304.

Another microscopic scan of the specimen (Figure 8.3) indicates that the surface is
isotropic so that the above coeflicients fully characterize the shape of the surface.

To be able to perform mechanical analysis of asperities we also need to know material
constants of the specimen material (cold rolled SAE 1020 steel). Bodner-Partom constitutive
constants for steel are given in reference [10]. These generic constants were tuned for our
particular sample, using the results of the tension test (Figure 8.13). The final values of the
constants used for numerical calculations are listed below.

E = 209 GPa
m; = 0.05 MPa
n = 228
v = 03
Zg = 600MPa

Do = 10000s~!
Z, = 1050 MPa

These constants provide good correlation of numerical and experimental results for the
tension test - see Figure 8.13.

8.2.2 Modeling of Surface Loading

As a first step of the homogenization procedure, the above surface statistics was used to
determine effective support of joint probability density of asperity peaks, in particular the
range of surface peak heights and curvatures. This range is defined by:
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Figure 8.13: Comparison of tensile stress-strain relationships obtained experimentally and
numerically.
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Figure 8.14: Adaptively refined mesh for an axisymmetric asperity (deformed shape is
shown).

-12um <z, <16pm (8.39)
0.004pm™' <k, <0.08um™! (8.40)

Within this range, several sample asperities under normal load were modeled by the finite
element method. Because the experimental surface was very rough and no effort has been
made to make it extremely clean, adhesion effects were neglected. It was assumed that the
deformation of the asperity was elasto-viscoplastic.

Figure 8.14 shows a deformed mesh which was used to discretize half of the asperity
cross section (the problem is axisymmetric). The rate of load application, controlled by the
normal velocity, was equal to 0.25 um/s, and corresponded roughly to the one used in the
experimental setup.

About 10,000 time steps were necessary to complete the analysis. At each of those points
the values of approach contact force and area of contact were printed out. From those 10,000
discrete values about 40 were chosen as data for statistical homogenization. This was because
not all of those 10,000 values were computed with the same accuracy. It can be explained
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Figure 8.15: Area of contact as a function of approach obtained directly from the numerical
analysis (about 10,000 data points).

on the example of area of contact. As a result of numerical analysis we obtain the area
in terms of approach as a piecewise constant function (see Figure 8.15) while it is obvious
that this relationship is at least continuous for a smooth asperity. The discontinuity of the
numerical result is caused by the fact that the contact condition is examined at integration
points. Therefore, the contact area increases incrementally, as new integration points join
the contact zone. For further analysis the centroids of the horizontal segments on the graph
of area versus approach were chosen as basic data points. Final graphs of contact force and
area in terms of approach are shown in Figures 8.15 and 8.17, respectively.
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Figure 8.16: Final graph of contact area as a function of asperity deflection.
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Figure 8.17: Final graph of contact force as a function of asperity deflection.

The results of mechanical analysis shown in Figures 8.15 through 8.17 were obtained for
one representative asperity with width to height ratio w/h = 13.4. For exactly cosinusoidal
profile this w/h ratio gives standard deviation equal to standard deviation of slope of the
real surface. The wavelength spectrum parameter of the analyzed surface indicates that also
asperities with other w/h could have an influence on the expected values of global force and
area of contact. However, for the sake of simplicity and efficiency of the computation we
limited our numerical analysis to the asperities with the most representative width to height
ratio. Note that, due to absence of rate-dependent effects, the results obtained for the basic
asperity (peak curvature equal to 0.042 um™!) are also useful for asperities with different
peak curvatures. The contact force and area for those asperities can be computed by simple
rescaling of the existing values, because both force and area of contact are proportional to
squared dimensions of an asperity.

The results of finite element asperity analysis, in particular contact force and real contact
area, were used by statistical homogenization package, to produce force-approach and area-
pressure curves shown in Figures 8.18 and 8.19. Note that, at this stage, we focus only on the
loading part of the curve. The numerical predictions are compared with the experimental
results. Note that the original experimental curve was rescaled to represent only one surface
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Figure 8.18: Numerical and experimental approach-pressure curves for the interface.
pair and normal pressure rather than total force. In the spirit on remark from Section 6.1,

the zero point on the theoretical “approach” axis was chosen to match experimental load
and surface stiffness at the initial contact of the surfaces.
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Figure 8.19: Numerical contact area vs.
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A comparison of experimental and numerical results shows a very good agreement up to
a load of about 800 N/um? (1000 psi). For higher loading an increasing discrepancy of the
experimental and numerical curves can be observed (see Figure 8.20). There can be several
reasons of that and some of them are discussed below.

1. To predict more precisely behavior of the specimen, the elastic deformation of the
bulk material has to be considered. A graph of experimental normal stress reduced
by bulk deformation is shown in Figure 8.21. Apparently, for higher loading bulk
deformation is significant and has to be taken into account.

2. Another reason of discrepancy between numerical and experimental results can be
additional deformation of the apparatus and stacked samples. Assuming pro-
portionality of that deformation to the loading one can tentatively modify experimental
data. Figure 8.22 shows original and modified experimental results. It was assumed
that the experimental measurement has systematic error which depends linearly on
loading and causes that the sensor indicates displacement exaggerated by 1.5 um for
the highest loading. In Figure 8.23, the modified experimental data are compared with
numerical results. A good agreement of both curves car. be observed for wide range of
loading, which confirms strong possiblity of systematic settling in the apparatus and
in the samples.

3. Error of numerical results increases with increasing loading because at higher loads
more asperities have large deformations, so that more asperities are beyond the assump-
tions of our theory (see Figure 8.24).

4. Another reason of the discrepancy for loads higher than 800 N/cm? can be loss of
accuracy during experiment caused by unloading. Complete unloading might have
been accompanied by a microdisplacement in a horizontal direction and then reloading
would deform different asperities than the original loading.
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Figure 8.20: Numerical and experimental contact force in terms of approach for wider range
of loadings.
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Figure 8.21: Experimental stress versus approach curves: (a) original and (b) corrected for
bulk deformation of a sample.
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Figure 8.22: Experimental pressure-approach curves: (a) original and (b) corrected for ad-
ditional settling of the setup.
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Figure 8.23: Comparison of numerical prediction of normal stresses with modified experi-
mental results.
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8.3 Studies of Unloading

An additional study that was performed for the experimental surface was focused on modeling
of the static unloading path. By static unloading we understand the situation, wherein
the normal load is reduced to zero or almost zero without relative sliding on the interface.
This means that the asperity tips, which became “conformal” during loading due to plastic
deformation, remain conformal and aligned. This situation is illustrated in figure 8.25.

Importantly, modeling of the unloading path required additional extension of the homog-
enization package to monitor the displacement and load corresponding to the beginning of
surface unloading. Moreover, even for single unloading of the interface, the results at the
asperity level must consider a whole family of unloading curves, starting at different normal
deflection. This is a consequence of random asperity height; at the beginning of surface
unloading each individual asperity is “caught” at a different stage of deformation.

For practical modeling, it would not be feasible to consider an infinite number of unload-
ing paths at the asperity level. Instead, we adopted the following procedure:

(a) analyze in detail a few (three to four) unloading paths for the asperity, starting
at different deflection levels, and

(b) use approximation techniques to represent unloading paths which start at the
intermediate load level.

This approach is illustrated in figure 8.26. Importantly, the finite element analysis of the
unloading path was performed using exactly the same methods as for the loading curve -
the unified viscoplastic constitutive theories applied here do not require special treatment of
elasto-plastic unloading. The approximation method used for the construction of intermedi-
ate unloading paths was based on the blending function formula [ ].

The formula is a mapping of a unit square into a domain which has four curvilinear sides.
Coordinates of the square (s, t € [0,1]) can be treated as parameters. They parametrize sides
of the curvilinear domain. Let the parametric equations of these curves v; = AB, v, = BC,
73 = DC, 44 = AD (Figure 8.26) be given generally in the form

W= {(@y)ek" : = = 2u(p),y = wu(p), pel0, 1]}, k=1,2,3,4

where in our case:

T are approaches,
y are contact forces,
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Figure 8.24: Percentage of asperities satisfying small deformation assumption.

155




initial , unloading

Figure 8.25: Static loading, unloading and reloading of the interface

_ sfork=1,3,
P = t for k = 2,4.

Using the above notations the blended functions provide mapping of parameters s, t into
x and y coordinates in the following way

z(s,t) = z(8)(1 —t) + zo(t) - s+ z3(s) - t +
+2(t) (1= 8) = za(l = )(1 = 5) — 25 (1 = 1) - s
—zc-t-s—xp-t-(l—s)

y(s,t) = m(s)(1—t) +yat) s +ys(s) -t +
+ya(t) - (1 —8) —ya(l~t)(1 —s) —yp-(1—1)-s
~yc-t-s—yp-t-(1-3s)

where (z4,¥4), (z8,¥8), (zc,yc), (zp, yp) are coordinates of corners A, B, C, D correspond-
ingly. Figure 8.27 shows a family of unloading curves generated by the blending functions.
Note that the blended curves can be generated also outside domain ABCD. Curve 7y, was not
generated but computed by solution of the unloading problem for the asperity. Comparison
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Figure 8.26: Contact force for an asperity in terms of deformation during loading and un-

loading at three different levels.
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of this curve with blended functions indicates reasonably good correlation. This correlation
improves with increasing number of calculated unloading curves.

After application of the statistical homogenization, the loading-unloading curves were
obtained for the surface, and are shown in figure 8.28. Clearly, the theoretical unloading
path is steeper than the one observed in the experiments. At present time we do not have
a precise explanation of this fact. However, we believe, that the asperity-based theoretical
curve better represents the actual behavior of the interface. This is supported by the following
arguments:

1. For the loading section of the curve, random sperity height has a significant smoothing
effect, because different asperities are contacted at different loading stages. However,
the unloading path is only supported by elastic “rebound” of all the deformed asperities
- see figure 7.26. Therefore, the unloading deflection cannot essentially be higher than
the maximum elastic rebound of a single asperity. Since the unloading path for a
single asperity is rather steep (see figure 8.26), the elastic rebound, even for the largest
asperities, does not exceed 1.0 x.

2. The additional normal compliance, present in the experimental setup, can have a much
more significant distorting effect on the (very steep) unloading path than on the load-
ing path. Indeed, presence of additional deflection of about 1.5 g would modify the
theoretical unloading curve to match the experimental one. It is conceivable that such
deflection can be present due to departure of the surfaces from ideal flat, and the
resulting “plate bending” effect.

It is also possible, that there may be some infinitesimal tangential sliding present on the
surface during unloading - this would spoil the alignment of deformed asperities shown in
figure 8.25 and cause additional separation of the surfaces.

The above arguments are supported by the experimental work of Connoly, Shoffield and
Thornley [30], wherein experimental unloading curves were much steeper than these obtained
in the experiment reported here.

In view of these remarks, the question of interface unloading will require some additional.
extremely precise experimental studies. Furthermore, the phenomenon of unloading during
tangential sliding will need a dedicated study. The unloading curve in this case will, due to
mechanical interaction of the sliding asperities, differ significantly from the static case.
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Figure 8.27: A family of unloading curves generated by blending functions.
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Figure 8.28: Loading and unloading curves obtained numerically and experimentally.

160




9 Studies of Friction

In this section, we present some introductory studies of frictional characteristics of the in-
terface. In particular, we aim to:

e estimate the value of the static coefficient of friction, and

o study frictioncal deformation of microasperities.

9.1 Static Coefficient of Friction

For the sample surfaces studied in previous sections, introductory studies of the coefficient
of friction were performed. These studies were based on the following two assumptions:

1. sliding resistance between similar metallic surfaces is caused primarily by formation
and shearing of junctions between the contacting asperities,

2. the value of tangential force necessary to shear a junction is defined as:

T =r1,A, (9.41)

where 7, is shear resistance of the material and A, is the real contact area between the
asperities.

In the first approximation the shear strength of a junction can be considered to be indepen-
dent of normal pressure and equal to the shear strength of the bulk material.

The formula (9.41) can be easily used to calculate the coefficient of friction on the interface
level:

p=T1,A/F
where A, is a real contact area per unit nominal area and F is the normal force per unit
nominal area.
Smooth Surface

The above formula, combined with pressure-area curves presented for the smooth alu-
minum surface in Figure 7.9, produces the values of the coefficient of friction shown for
increasing normal load in Figure 9.1. For the case with adhesion (clean smooth surfaces in
vacuum), the value of the coefficient of friction is very high at light loads ~ this is caused by
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Figure 9.1: Smooth aluminum surface: coefficient of friction for increasing loads

additional normal attraction due to adhesion. In the absence of adhesion the coefficient of
friction is almost constant over a wide range of loads, with a value slightly below 0.5. Note
that this value is essentially overestimated - junction strength of oxygenated aluminum sur-
faces is lower than the shear resistance of the bulk material, assumed here. A more detailed
studies of this phenomenon, including frictional microdisplacements, are currently underway.

Rough Surface

Some interesting observations can be made when the above analysis is applied to the
rough surface, studied in Section 7.4. The values of the coefficient of friction calculated
for this surface using elastic and elasto-plastic models are compared in Figure 9.2. Clearly,
a purely elastic approach underestimates the value of the coefficient of friction. This is a
result of an underestimated contact area predicted by the elastic solution on the asperity
level. The elasto-plastic approach produces more realistic values of the coefficient of friction,
of the order of 0.3.

Experimental Surface

The above simplified model was used to estimate the coefficient of friction for the rough
steel surface studied experimentally and numerically in Section 8. Figure 9.3 shows the
calculated value of the coefficient of friction for increasing normal load (approach). In the
absence of relevant data, it was assumed, that the shear resistance of asperity junctions is
equal to shear strength of the bulk material. For the actual normal pressure tested in the
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Figure 9.2: Rough aluminym surface: coefficient of friction (shearing component) for in-
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Figure 9.3: Rough steel surface: shearing component of the coefficient of friction for increas-
ing normal approach (load)
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experiment, the estimated value of the coefficient of friction due to junction shearing was
equal to 0.093, while the measured value was 0.215.

However, for this rather rough surface there exists an additional contribution to friction
due to interlocking of asperities. While for relatively smooth surfaces this component can
usually be neglected, for this rough surface this is not the case. A very approximate estimate
of the interlocking component of friction, based on relative motion of inclined surfaces [32,89],
leads to a conclusion that the additional contribution to the coefficient of friction is equal to
the average slope of the asperities. For the surface under consideration this is equal to 0.16,
which leads to the final value of the coefficient of friction equal to 0.253, as compared with
experimental value of 0.215.

This is a quite good correlation of numerical and experimental results, especially that,
due to a lack of relevant data, the shear resistance of asperity junctions was assumed to be
independent of the normal pressure (which is not exactly the case in practice).

9.2 Studies of Frictional Sliding

The simplified approach discussed in the previous subsection can only be used for general
estimates of sliding resistance of the interface. It cannot represent such intricate phenomena
as:

e tangential micro-displacements before inception of macro-scale sliding,
¢ damage of asperities by shearing below the contact junction, rather than at the junction,
e normal “settling” of the junction due to combined normal and tangential stress,

¢ ploughing component of friction, etc.

Studies and understanding of the above phenomena can only be accomplished by mod-
eling of the actual sliding process, wherein two asperities in contact are subject to tangen-
tial moti»>n. Numerical modeling of these phenomena is computationally rather expensive,
because ‘ull three-dimensional asperity models need to be used, combined with extensive
nonelastic deformation, complex stress states and sliding resistance of the metallic junction.

In this section, some introductory studies of tar:gential sliding are presented.

We analyzed a representative cosinusoidal asperity with height equal to 2 microns and
diameter at the base equal to 10 microns. The asperity was made of the steel studied in
the experiment, with full elasto-viscoplastic representation. The contacting flat was first
subjected to normal motion (0.125 microns), followed by tangential sliding of 1.0 micron.
The first step was performed in time 0-1800 s. The tangential loading step was applied in time
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Figure 9.4: Evolution of normal and tangential forces for the asperity

1800-4000 s. In order to model shear resistance of the metallic junction, large coefficient of
friction (20) was assumed. The main objective here was to identify, whether the maximum
deformation would occurr on the surfaace (shearing of the junction) or below the surface
(shearing ot the asperity tip).

The asperity was discretizated by FEM mesh which, after h-adaptation, had 666 degrees
of freedom Introductory results of this study are shown in Figs. 9.4 and 9.5. In particular,
figure 9.4 shows evolution of normal and tangential forces during the loading process. Figure
9.5 shows deformation of the asperity at the end of the analysis (at time 4000s).

During the analysis, no signs of destruction of the asperity were observed. In fact, the
average tangential traction on the contact surface due to tangential motion of the flat was
approximately 64MPa, which is well below the shear strength of steel. This means, that
representing shear strength of the junction by high coefficient of friction was not sufficient.
Instead, exact modeling of shear resistance on the junction surface is necessary. This required
additional modification of the finite element code and study of asperity sliding. These studies
are currently underway and will be presented in the forthcoming publications..
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Figure 9.5: Deformed configuration and contours of horizontal displacement in the asperity
sliding study.

166




10 Towards Application of Asperity-Based Models in
Modeling of Dynamic Friction

The micro-asperity-based models developed in this work produce the values of normal pres-
sure, real contact area, sliding resistance, etc., as a function of approach of the two surfaces.
These functions are given in the form of series of discrete points or graphs.

However, application of these constitutive models in the analysis of dynamic friction re-
quires an analytic (and differentiable) formulas. Towards this end, some effort was dedicated
to development of automated tools that would produce analytical formulas representing the
interface constitutive laws.

A basic approach used is as follows:

1. micro-asperity based model is given as a series of discrete points, for example a sequence
of approach-pressure values (Ag,p) k=1, M

2. the user chooses the formula to be used, say the Oden-Martins law or logarithmic
compliance curve,

3. the coefficients of the constitutive formula are determined automatically through the
minimization procedure described below.

The above procedure will be illustrated on the example of the fitting of the asperity-
based approach-pressure relationship into the Oden-Martins interface model [71]. The Oden-
Martins normal compliance law can be written in the following generalized form:

p= c(a;g)"‘ (10.42)

where

- nominal pressure,
a — approach,
¢,g,m — unknown material constants,

ao = lpm (dimensionality factor).

Note that ag was introduced to assure proper dimensionality, and g is a translation (initial
gap) which appropriately locates the zero point for the approach axis. The constants in the
above formula were determined in such a way which provides the best fitting of the function
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Figure 10.1: Fitting of the Oden - Martins formula to the sequence of asperity-based data
points for the steel surface studied in Section 8

10.42 to the sequence of M given points (ax,px). The best fitting means here that a function
B, which is square of a norm of differnce between discrete and continuous laws, attains its
infimum.

Function B has the following form:

M
B(c,g,m) = Z[P(C,g, myak) _Pk]2 (1043)
k=1
where
p(c,9,m,a) — nominal pressure given by formula 10.42

(ak,px) — k-th discrete point.

For the load-approach curve representing our experimental surface (see Section 8), we
obtained ¢ = Oum, ¢ = 15.2N/cm?, and m = 2.25. Figure 10.1 shows pressure - approach
relationships for both discrete and the best fitting continuous forms.

A similiar procedure was applied to the hypothetical very smooth surface described in
section 7. We obtained g = 0.0025um,c = 3.17 x 10°N/cm?, and m = 5.17. The graphs of
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Figure 10.2: Fitting of the Oden - Martins formula to the sequence of discrete points for the
very smooth surface

aseperity-based and analytical pressure-approach relationships are shown in figure 10.2.

These examples indicate, that Oden-Martins law provides a good representation of typical
constitutive models of metallic interfaces. Note that the approach presented here is applicable
to other formulations, such as exponential normal compliance law.
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Conclusions

This report presented a detailed theoretical background, numerical algorithm, and practical
results of the development of new asperity-based constitutive models of frictional interfaces.
While the main idea stems from previous works on asperity-based approaches, the application
of the adaptive finite element method to the modeling of nonlinear asperity deformation
brought these models to a level of practical application to the modeling of real engineering
surfaces. This is confirmed by successful comparisons of the asperity-based predictions with
the results of carefully designed verification experiments.

The new models developed in this work will find application in many diverse aspects of
the modeling of friction, such as:

simulation and control of friction-induced squeaks, stick-slip motion, chatter, and other
unstable phenomena,

precise modeling of tribological surfaces, such as rollers, bearings, etc.

modeling the conductivity of thermal and electrical connections, including microelec-
tronic devices and semiconductors,

understanding and modeling of surface damage and wear mechanisms,

and many others.

Indeed, the results of this research project are already finding their way into practical

applications in several of the above areas.

It is important to note, however, that there remain many open questions and challenges

in this topic, including:

extensions to hyperelastic and brittle materials,

e extensive studies of surface sliding and various components of frictional resistance

(shearing, interlocking, and ploughing),

e studies of mechanisms of surface damage and wear,

e extensions to hydrodynamics lubrication,

¢ dynamic loading of the surface and high-velocity sliding, etc.

These issues need to be addressed in the future to provide a full understanding and
control of the complex phenomena occurring in frictional interfaces.
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