
Approvc I f or T.3Ublio releas~e
AD-A277 240distribut i oL uil imited.AD-A277 240 0o 'o -•'

I lFINAL TECHNICAL REPORT

November 1, 1990 - October 31, 1993

IOrig13al DotitalqA0b1fn "plales: All DTIC ,ep,,eduda

I NEW MICRO- AND MACROSCOPIC MODELS
OF CONTACT AND FRICTIONI

W. W. Tworzydlo, J. T. Oden, W. Cecot, and C.H. Yew

Contract Number F49620-91-C-0011

I DTIC
EL.ECTE
MAR 23 1994 TR-93-10 __m u m November 1993

! -o

AIR FORCE OFFICE OF SCIENTIFIC RESEARCH
110 Duncan Avenue, Ste. B115, Building 410

Boiling Air Force Base, D.C. 20332-0001

This document bcs Doees approvedIfor public teleoaSe and sale; itsI
distribution is unlimited.

I Computational Mechanics Company, Inc. C9

7701 N. Lamar, Suite 200
Austin, TX 7/8752

(512) 467-0618comco



DISCLAIMER NOTICE

THIS DOCUMENT IS BEST

QUALITY AVAILABLE. THE COPY

FURNISHED TO DTIC CONTAINED

A SIGNIFICANT NUMBER OF

COLOR PAGES WHICH DO NOT

REPRODUCE LEGIBLY ON BLACK

AND WHITE MICROFICHE.



I
REPORT DOCUMENTATION PAGE Lw,,-

5 W'"M far th5 " c.lu.h.M so moa=inu m is "ah .a to "" I how Pm ar m ludmila I" r.Iwtwh iacM. mtg .~gSt men
92-- aund madalldn lbe datm maied. •an aldtal 0. sw4atnt shem m GOd. u Ia5ade "m. S -aud arnm g "bM oIma" Wdm ~m s o•" m d two
QuieMM ad tafimwuINm6 iamdind emmuem m ada 1W l hM~ mta Waahitagw. H~a~~~ Swtso Diresoaa for Udaiwadam Opms m 1ii p aroIl j~m

Lta Hilehway. little 12K. Atbatee.VA 22252402-O =4 toas GheOSms ofMmm man aedat. Paw elmdcs "r~d(?4L Waftin D 2
1. AC9-CYUSNLY(laZm 61" LREPO•RATE 3. OrTYPE AND DA1W0CV0M

November 29, 1993 Annual, Nov. 1, 1990-Oct. 31, 1993
4. 1TItE•AMD6JIITI S. FUMMNDING

New Micro- and Macroscopic Models of Contact and Friction SC-F49620-91 -C-O001 1
^AU1HR PR-2304/A3-2302/C2

I W.W. Tworzydlo, W. Cecot, J.T. Oden, and C. H. Yew TA-"01AA

7. P•RFORMIG ORGANIZATION NAME(S) AND AORRS5(55) s. PERPORMBIO OROANIZATION
REO NUMEER

i The Computational Mechanics Co., Inc. ASRTV.-T NUMB

7701 North Lamar, Suite 200 TR-93• 1 0
Austin, TX 78752I 9. SPNSORING / MON1[1URING AGEN4CY NAME(S) AND ADDRESSMS) 10. SPONSORING Z MONITORING __

The Air Force Office of Scientific Research / - '!/
i 110 Duncan Avenue, Suite B115

Building 410
Bolling AFB. DC 203,2-0001

11. SUPPLAEENTARY NOTES

I 12a. DISTRIBUTION/AVAMAwL.YSTATErENT n1b. DISTRIBUTIONCOO

DOD Ar" .".- ""

13. AB•rRACr (e•v •= ,)

This is the final report for the three year research project dedicated to the development of new asperity-I ased models of frictional interfaces. The main concept is to combine statistical homogenization methods with
S realistic nonlinear finite element analysis of surface micro-asperities, and thus produce new asperity-based

I models of contact and friction.
Research in the project started with the development of a complete theory and software for the statistical

iomogenization of random surface parameters. The next stage focused on the development of a finite elementi :ode for modeling surface asperities. This code is based on a proprietary h/p adaptive finite element kernel,
Nhich has been customized for the analysis of elastic and elasto-viscoplastic asperities with contact, molecular-
range adhesion, and sliding resistance. To verify the new asperity-based interface models, special experimentsi •ere designed and performed for custom-shaped asperities and for rough engineering surfaces. The results of
:hese experiments compare favorably with asperity-based theoretical and numerical predictions, and thus
:onfirm the feasibility and practical value of the new models developed in this project.

These models will be applicable in the analysis and control of a broad range of contact and friction phe-
omena, such as friction-induced squeaks and noises, tribology of bearings, electrical and thermal connectors,

.he mechanism of wear, and many others.
14, S4UIDCFTTU 11. NUMIIEOP PAGO

micro-mechanics, contact, friction, asperity, adhesion, interface, finite ele- 179
ments, viscoplastic 1II PRICE

-- N/A
17. SACUIUTYCL,,^IFICATION 15. 8 ITYCLAS:iCATION It SECLMIrYC.A.5.PICAT'ION X IMITATION OF AIST••-T

OP R9MOT OF THIS PACE OF ABSTRACTS Unclassified Unclassified Unclassified UL



I
I

FINAL TECHNICAL REPORT

November 1,1990 - October 31, 1993

I. on

I NEW MICRO- AND MACROSCOPIC MODELS
OF CONTACT AND FRICTION

W. W. Tworzydlo, J. T. Oden, W. Cecot, and C.H. Yev Accesion For

NTIS C.RA&I
Contract Number F49620-91-C-0011 DTIC ýAB

J u 'ication~
Ju~ifc ti , ...... ....... . . ..

By ...... .............................. ..

II
T R -9 3 -1 0 , • Ia ty c ,: u

November 1993 ' I--- *a-io
D jst Special

II A-1

I AIR FORCE OFFICE OF SCIENTIFIC RESEARCH
110 Duncan Avenue, Ste. B115, Building 410

Bolling Air Force Base, D.C. 20332-0001

I
I

Computational Mechanics Company, Inc.
7701 N. Lamar, Suite 200

Austin, TX 78752
(512) 467-0618

COMCO
I



I

I Contents

I Introduction 1

1.1 Objectives of the Project ........ ............................. .

1.2 Research Summary ......... ................................ 2

1.3 Personnel ......... ..................................... 4

1.4 Presentations, Publications, and Technology Transition ................ 5

1.4.1 Presentations ......... ............................... 5

1.4.2 Publications .......... ................................

1.4.3 Technology Transition ......... .......................... 6

1.5 Outline of the Report ........... ............................... 7

2 Asperity-Based Models of Contact and Friction 8

2.1 Microstructure of the Frictional Interface ........ .................... 13

2.2 Statistics of a. Random Surface ......... .......................... 16

2.3 Calculation of Surface Statistics From Profile Data ..... ............... 19

2.3.1 Profiles on Gaussian Isotropic Surfaces ..................... ... 1

2.3.2 Profiles on Gaussian Anisotropic Surfaces ...................... "29

2.4 Calculation of Asperity Statistics From Surface Statistics ..... ........... 23

2.4.1 Asperity Statistics for Gaussian Isotropic Surfaces ................ 23

2.4.2 Asperity Statistics for Gaussian Anisotropic Surfaces ............. 24

I 2.4.3 Asperity Statistics for Deterministic Surfaces .................... 2

2.5 Calculation of Macrocontact Expectations of Interface Paramelers ...... ... 29

I 2.5.1 Expectation Calculation for Gaussian Isotropic Surfaces ........... 29

2.5.2 Expectation Calculation for Random Anisotropic Surfaces ...... .... 32

I 2.5.3 Expectation Calculation for Deterministic Surfaces .... .......... .:33

2.6 Numerical Verification of Statistical Postprocessi lgily ................... 33

I 2.6.1 Verification of Profile Postprocessing... ......................... 33

2.6.2 Verification of Expectation Calculation ....... ................. 3-1

3 Deformation Mechanics of a Single Asperity 39

.3.1 Momentum and Geometric Equations ............................. 0

I!
I



I3.2 Constitutive Equations .. .. .. .. .. ..... . ..... . ..... . ..... . ............ 10

3.2.1 Linearly Elastic Constitutive Mlodels. .. .. .. .... ...... .... ... .... 11

I3.2.2 E lasto-Viscop last ic C'onstitutive Miodel Nki thl Damracge. .. .. .. ...... 41

3.3 Boundary Conditions.................. . . ...... . ......... . .. .. .. .. .. .-. 45

I3.3.1 Support Conditions.............. . . ... . . .. . ........ .. .. .. .. .. .15

3.3.21 Contact Condition .. .. .. .. ..... . ...... ... . ..... . ..... . ...... 46I3.3.3 Adhesion........ ..... . . ... . ........ .. .. .. .. .. .. .. .. .. . ....

3.3.4 Shear R~esistance. .. .. .. .. ..... . ..... . ..... . ..... . ............ 5I3.3.5 Initial Conditions .. .. .. .. .. ..... . ..... . ..... . ...... .......... 52

3.4 Variational Formulation. .. .. .. ... . ..... . ...... .... ..... . ............ 5:I3.4i.1I Boundary Integrals .. .. .. .. .... ...... ... . ..... . ............... 5.1

3.5 Solution Mlethod for Elastic Contact Problems. .. .. .. .. ...... ... . ....... 0I3.6 Solution Mfethod for Viscoplastic Contact Problems. .. .. .. .. ..... . ..... 62

4 Finite Elemnent Analysis of Contact Problemis with Friction 6 P)

4.1 General Information About the 31) Finite Element. Code .. .. .. .. .. . ...... 6

4.2 Forimulation of a Structural Defori-ration Problemn in the 31) Cotode.. .. .. .... 72

5 Basic Verification of Numnerical Models 74

7 Verification of Nunierical Models of Asperity so

7.1 Elastic Sphere in Contact with a Rigid Flat. .. .. .. ... . ..... . ............. 0

7.2 Experimental Studies of Miodels of Asperity. .. .. .. .. .. ..... . ... ....... S

7.2.1 The Test Apparatus .. .. .. .. ..... . ...... ...... ... . .......... S

7.2.2 Tests Rlesults From thc Above Apparatis . .. .. .. .. ... . .............

7.2.3 Deformation of Asperities Under a LagrNorma~l Load... .. .. . . ...

7.3 Numerical Simulation of Experimental Meuasuremlents.... .. .. .. .. .. ...

7.3.1 Viscoplastic Uniaxial Strcss State.... .. .. .. .. .. .. .. .. .. ...

7.3.2 Viscoplastic Cylindrica-l Asperity .. .. .. .. ..... . ...... ..........

7.3.3 Viscoplastic Custom Surface Mlodel .. .. .. .. .... ...... .... ....... $7

8 Studies of Asper-ity-Based Models of Contact and Fr-ictionl 106

Ii



I

I 8.1 Simulation of a Greenwood-Williamson Asperity- Based Contact Model . . 106

8.2 Effects of Asperity Shape ......... ............................. 107

8.3 A very smooth engineering surface ........ ........................ 109

8.4 Studies of a rough surface .......... ............................ 120

9 Experimental Verification of Asperity-Based Contact Models 125

9.1 Experimental Samples, Apparatus, and Measurements ................. 125

9.1.1 Specimen Preparation and Experimental Arrangenirit: ........ 125

9.1.2 Mleasurement of Surface Roughness ....... ................... 126

9.1.3 Experimental Measurements of Contact. Compliance .............. 127

9.1.4 Specimen Preparation and Experimental Arrangement for Deterinin-
ing the Coefficient o." Friction ........ ...................... 138

9.2 Numerical Prediction of Interface Contact ....... ................... 10

9.2.1 Data for Numerical Calculations ....... ..................... 140

9.2.2 Modeling of Surface Loading...........................142

9.3 Studies of Unloading ......... ............................... 15.5

3 10 Studies of Friction 161

10.1 Static Coefficient of Friction ........ ........................... 161

10.2 Studies of Frictional Sliding ......... ........................... 162

11 Towards Application of Asperity-Based Models it, Modeling of Dynamic

Friction 170

12 Conclusions 174

13 References 175

I

Il

I



Ii1 Introduction

I Friction and rubbing of materials are among the miost commnon pheitoniceia *III i1&Chi;1IiC'q

occurring whenever two solid bodies come into contact. Th'lese phelinomena are rcsponsible

for a variety of occurrences in everyday life. Some of themn, such as tire traction, are ver-y

useful; others, like violin music, are asthietic and pleasing,, and inaily others, suc-h as nioises.,,
vibrations, and wear, are extremely unpleasant and deleterious to mlechlanical systemls. '[his3 common occurrence of friction and the diversity of its effects undlerscore the extreni to irupor-

tance of a deep understanding, and the needl for miodelinig. ntd (0111rot of frictionip~on~a

It is wvell known, however, that the phenomenea of contatict and fr-iction of solid Vvjsare

among the most comp~lex and dlifficult to model of all ineclitanical everit , prima Iriy lv d ito
the complex structure of engineering surfaces., the severe clas;t o -p1lastic del,'fulormto.Ia un

heat generation, atomnic-range interactions th at take place on I vpi (a coat act sn rfw es. the

presence of contamninants, lubrication, and even chemiical reactilons on lme cont act sa r-fa es.

Efforts toward anl understanding of friction phienomnenai andc of iliodcllii,, friction begani1 '1~~it the historical wvorks of Arr'ontons [221 and Ciott lot ill [32] over two cetuvt'ries a!ýo. Silt cc

then, anl extensive bodyv of experlineletal a ndltho(tc work- 1t;as a(ccn viiiIntt ((I (..In e~~Itribologv, and a good einipirical understiinding of t!he sit j 'ct exists,' todaly. I A~ 1wvN. I i

progress in formulating a theoretical background a 1(1deintg n iodltls of frict ion amaI (fc(

have bee n mu ch slower to evolIve th anT XI xpr InIeI WtaI ý I I %VeSt Ig'nltIon's. 'Al It ough) cont7(! -1;J )I,(

p)rogress in this direction has been ma (IC in recent. yea vs. thecre, are still secvcral i ss ihn I I
need to be resolved in order to model friction aul 11('1prdl ici frictitoin phiem tollica wit Ii11 p racilicaI reliability. One of the miost diifficult 1 )rohletns encoli aII core is thle est a na tiloll of miat erial
constants occurring in new constitutive miodels of' frict iotial i iiierfaccs. Tlwe'w dli!WIicIt1it iS

reflect an urg-ent need for constructing new coitst~itIt ive iaoh'lls of contact mci' frictiott alid

for estimating, the necessary materia~l coeffricients.

Presently, there are two basic approaches for the dlevelopmlent of mechanical cons~iit I(1

mTodels of friction and two resulting types of frictionald initerlace miodels. Thes:e aire:

1. phenormenological models based prima~rily onl experlnirioidtta observtlions-, a id~

2. asperity- based models, formuILlated vi a a tliteoret i cl na vd and stat ist lca]lIiotnloge-

nizatiomi of the mnicroscale clef ormatiomi of surfaice asi eiitics in (0111 act, withi an ojppos1 tnt

-Surface.

I Unfort unately, to date, none of these approaches hias produtced comipletely s.-t isfictory

resilits . It is well knaown' that expetilt ilttal res tilts decpem Ii.rn gl oil tHie ci ia actcrnistics (If

Ithle test. apparati , so the resutlts of different., teýsts oti thle saint' sample canl be con:sikiralbly



scattered. Moreover, these macroscopic experimental m-easurem-ents do not provide sufficient
insight into the nature of the pheinomena occurring onl the contactin'g surfaces, the severity of
the deformation, propagation of damnage, etc. Such an insight can be provided by asperity--
based models, which are based onl the iniicroscale analysis (if deform-ation and the relative
slidling of surface asperities. H~owever, predictions made' using' classical or existiiitý asperitv-

based models were not. generally applicable t~o the enlvi ronm1- ents normially mnet Iin enginec ring
applications. The mnainl reason is that these classical miodels were lbasedi oni analytical, closed -
formn solutions of the deformation of a surface asperity, which required gross silinpli1ficat'0IonS
of the geometry of the asperity a nd of the cons ti tntit e ni ndels of t Ii( contacting ii ateri als
(elastic, plastic, or a~t niost elasto-plastic).

1.1 Objectives of the Pr-oject

In this project, a, new approach foir constructingI const~itutiive mnodels of friction has been
developed that providles a realistic link bet wecri inicroscale pliciionilena occurring, onl CON-I ~ ~tactirig surfaces and Tnacrt)esCale p~henomenological i noilels of thle i nterfa ce. This approi ('I
involvye's the use of special finite eleenwit mlethods inIII the i nude] inrg of corn jplex defo-ma t ionls

of aslerities of arbitrary shaipe. wit-h realistic nlonIi near coiist~it t ive 1iiodels of the ((ii t actill[

mnaterials. Thel( technical app roach for the eval tuitionl of the i ra.r vba.>' I d iodleis otf

contact and~ friction consists of two stages:

1.Apply the huinte elemient, teciin Itieu to an aly/c the nionlinear iriechaiitncal responlses- of
surface asperities of different heights, 'li apes. anrd withi general; viscoelastoplast ic III;-
terial properties.

2. Apply statistical horriogen ization- tech iliques to evaluiate iljacrosco pie, pheloten icnoloi~i-

Cal constitutive modlels of t he inter face.

T[le ap~proachI devceloped hiere provides a mecans for genieratingy a variet v of tknew amd uisefu I
models of friction al interfaces. Depenidli ig onl t~hi Selected level of colrupie-Xi ty of the i oe
of the asperity, a x'iscoelastopla st ic, hyperclast ic. or britt~le niateria! (can hle consuler1-(L' thle
e volutilonl o f thle damIag11'e to theIC sr face ca n be i nodlel ed anIId t lI ce effec(t s of I tb 11 ic a t; ion anti1
slurface contarmination can lbe taken into accouint.

1.2 Research Sunmmzary

Th is final report presents the resifl ts of research work perforire d dir gthle thiree-YCa I'

project. The m-ajor tasks and resuilts of each year are briefly suinniani/edl Hin thi's sectionl.
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The first year of the project was dedicated to building a solid foundation for the statistical
homogenization procedures, as well as initial work on tihe finite elenieit modeling capability.

In particular, the following tasks were accomnplishcd iM the first. year:

1. A detailed study of the mechanics and statistics of aspterity-based models of coIntact.
friction, and adhesion.

2. Formulation of a complete theoretical background, and development of computer codes
for the calculation of macro-scale interface parameters from profilornetric data of the
surface and from finite element analysis of a fanrily of representative asperities.

3. Initial work on the research-type finite Clerlient. code for the nonlilear analysis of surface

asperities in contact with the opposing surfaces.

In the second year of the project, the work focused on the complete development of the

finite element asperity-modeling code, and on iinitial tests and experimental verificatiorn.

This included the following tasks:

4. Development of the three-dimensional adaptive finite element code for the analysis of

surface asperities in contact with opposing surfaces. The startirrg point for this effort
was an existing in-house finite element kecriel, wNvich was extendi(ed aird cust oinized toI satisfy the objectives of this project. The development effort focused on the implemen-
tation of elastic and viscoplastic three-dimension;al solid rno1dels, on the develop'lrent

of contact and sliding resistance algorithlns, as well as on extensio,,ns of the graphics.
user interface, and adaptive algorithms needed for this project.

5. Design, development, and performance of Phase I of the verification experiment, which

were oriented on the testing of numerical models of nonelastic surface asperities in

contact with a rigid fiat.. Special custoom-shaped "asperities" were used at this stagre.

6. Verification of finite element asperity models by comparison with the analytical arid
experimental resuits. The numerica. predictions were compared wi h existirig analiytical

solutions for selected simplified cases ( Iertz problem) and with the experimental results
obtained for fully nonlinear, elastoplastic contact problems.

I 7. Introductory tests of the complete homogenization procedutre, to study the macroscopic
behavior of homogenized interfaces.

The third and final year of tihe project was dedicated to the actuial development of new,
asperity-based constitutive models for a variety of interfaces, and to their comparisonis with

analytical and ,xperimnental results. The particular tasks coinipletde in t•Ie third year mincide:

* :3



I S8. Evaluation of the results of experlimental verifications performed In the second( year of
the project.

I9. Design and performance of thc Phase 11 veCrificationl CxNriflCli.e, dedlcated to defailed
studies of the behavior of real engineering surfaces under normal aiiid tangciitial loads.

I10. Development of asperity- based constitutive models for thle silrfaces st miied inI the ex-
periment, and comparison of mnumrical and experlimnctal1 restilts.

I11. Additional studies of the intluence of suirface rouuhi(P11ess on the elast o-plast i( res; poll.§
of the interface, as wvell as Introductory mod cling of asperity behavior udrFrilijolilalI loads.

12. Formulation of a theoretical background for thle application of aspeni v-ba-se-d rnialels of
interfaces in the m-odeling cof (lyna ulic frictionl phenlionwi a. l'hP isI inci)ieJ ii anVhr .
development of analytical forniulas (mo1dels) representing the belaia\or of0 1~ei
based models.

Additionally, an eX~ensu ye sttidly of crror est imat ion tech nim(pios anid lip- ada A ive nwe~i
refinem-ent strategies wa~s lIei'formcd foir varloous classes of p roklei vs 1\"IIIIý coii ot. act aill,

friction.

The final resuilt of this project is a lpro\(uli anld workablie approach to the wvlpneut ofUaslperity- based constittutive miodels of frictloonal interfaces. toget her. withi relevanit res''1ý1Care
type homogenization softwaire. These results are directly app-Alcakle In the uo~ of
variety of friction phenomena, s uchi as thle ki net ic coefficient of frict m.fion, i -iiJ~
noises and vibrations, surfalce compliance for hearing, applications, real conitact area1' foi-
electric and heat interfaces, and hit roduictorY stuidies of mod'els of surfauce damnage- and wear.

1.3 Personnel

"I'The research effort during the couirse of this project was performied by a highly specializoed
team- of COMCO researchiers. The prinlcipahl ieigtron Owe projec ' was Dr. J. "'iiislovI Oden, President and Senior S3cientist at CO MCO. Assisting extenlsi velv on the project. were
Dr. \V. Wovtek Tworzydlo. Director of Contiminiu Mlcluarics grouip, and D~r. \i told ('ecot.
Senior Research Engineer . Additional help was provided by Dr. .Jon Bass, ~Vice-Prci(Idcuit

for lte,;,arch and Techinology anld Mr. Olivier Hardy. U radbuate 1Res.earch EnIiginer.

A. starting point for the finite element modecling. c;apab)ility was a proprietary adlaptivC

finite elernent kernel. developed by CONICC) software group.
T1 he specialized exp~erimienital work wa,;s performcd b,,,, lrofes:;o- (C. If. Yew. of the V vr

Si ty of Texas at. Austin. Thel( error estimr at.ion st idly and hp-ada pti ye st rate'ý'- developuienil
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I for problems with contact and friction was performed by (C.Y. Lee, Graduate Student at, the
Texas Institute for Computational Mechanics (TICOM), University of Texas at Austin.

1.4 Presentations, Publications, and Technology Transition

I 1.4.1 Presentations

The research related to new models of contact and friction was presented at. the following
professional meetings:

I 1. 113th ASME Winter Annual Meeting,
Anaheim, Califernia, November 8-13, 1992.

I 2. AFOSR Grantees and Contractors Meeting,
"Research in Computational Mechanics",
Washington University, St. Louis, May 20-21, 1993.

3. 114th ASME Winter Annual Meeting,
New Orleans, Louisiana, November 2$-December 3, 1993.

1.4.2 Publications

The following friction-related papers were published or submitted for publication during tlie
course of the project:

Ibrahim, R. A. and Soom, A., Editors, Friction-Induced Vibration, Cnatter, Squeal, and
Chaos, ASME, De-Vol. ,19, New York, 1992, Tworzvdlo, W. W., Becker, E. B., and Oden.

J. T., "Numerical Modeling of Friction-Induced Vibrations and Dynamic Instabilities". pp.
13-32.

Wriggers, P. and Wagner, W., Editor>, Nonlinear Computational Mechanics - State of the

Art, Springer-Verlag, Berlin, 1992, Lee, C. Y., Oden, J. '. , and Ainsworth, M., "Local A
iPosteriori Error Estimates and Numerical Rctuits for Contact Problems and Problems of
Flow Through Porous Media", pp. 671-689.

Tworzydlo, W. W. and Oden, ,J. T., "Towards an automated environlnent in coinput(ationa.l
mechanics", Computer Methods in Applied Mechalnics and (rTigineerng, "Vol. 104, pp. 87-
143, 1993.

Lee, C. Y. and Oden, J. T., "A Priori Error Estimation of hp-Finite Element Approxima-
tions of Frictional Contact Problems with Normal Coupiliaince , International Journal of

Engineering Science, Vol. 31, pp. 927-9.52, 1993.

I 5I



I

I Ainsworth, M., Oden, J. T., and Lee, C. Y., "Local A Posteriori Error Estimators for
Variational Inequalities", International Journal for Numerical Methods in Partial Differential
Equations, Vol. 9, pp. 23-33, 1993.

Lee, C. Y. and Oden, J. T., "Theory and Approximation of Quasistatic Frictional Contact

Problems", Computer Methods in Applied Mechanics and Engineering, Vol. 106, pp. -107-
429, 1993.

Tworzydlo, W. W., Oden, J. T., Cecot, W., and Yew, C. H., "New Asperity-Based .Modlels

of Contact and Friction", ASME Publications, to appear in December, 199(3.

Tworzydlo, W. W., Becker, E. B., and Oden, J. T., "Numerical Modeling of Friction-litduced

Vibrations and Dynamic Instabilities", Applied Mechanics Reviews, to appear.

Two additional papers dedicated to asperity-based models of contact aniid friction are

currently in preparation.

1.4.3 Technology Transition

The results of this contract and previous AFOSR-sponsored contracts dedicated to friction
modeling are finding their way into practical applications in engineering. This includes, for
example:

I Tire modeling

The Oden-Martins friction model, was implemented in the TItRE3I) tire irodeliing code.

developed by COMCO under the National Tire Mlodeling Programn (NTNMP). The code is
presently being used by NASA and Goodyear for analysis and design of rolling tilres.

Modeling and Prediction of Friction-Induced Noises

The results of AFOSR-sponsored friction projects are being applied in practical attermpts
to understand, model, and eliminate friction-induced noises in industrial applications. in

particular, Ford Motor Company and OTFECH International Research Institute are using
the approach developed in our projects to elinuinate noises in autolntotiV e cunipo11itets, sulch
as the squeaking window seal in the Ford TI'aurus. Plresently, the Con lputi¶.iorilt Niecuanics
Company is be;ng involved in this team to provilde expertise ill friction :,,'miOellIa.

Modeling of Earthquakes

Recently the Computational Mechanics Company was awarded, a resa•-rch grant from hlie
U.S. Geological Survey, for a project dedicated to lodlin, and PrWdi."ihon of -ac'hqLzaks ;is

Unstable Phenomena of Dynamic Friction. The rseearch work in this project is directly based
on the methodology and experience developed in previous and present conitracts sponlsored
by the AFOSR.

*6
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Modeling of Bearings

Currently several potential R & D projects are being discussed with major bearing man-

ufacturers. The projects under consideration wvill apply the results of AFOSR-sponsored

research to precise modeling of contact problems inherent in bearing design, such as:

"" compliance of the interface,

3 .real contact area,

"* surface wear mechanisms, etc.I
1.5 Outline of the Report

I This report presents the results of the second year of effort on this project, as well as a brief

compilation of the most important results of year 1. In particular, Section 2 presents a study3 of statistical methods of homogenization of interface parameters. Of particular interest are

such issues as extraction of surface statistics from profilometric data., calculation of an asper-
ity distribution for random surfaces, and the practical calculation of expected macroscopic

parameters from a microasperity analysis. In Section 3, a detailed formulation of the bound-
ary value problem representing the deformation of a surface asperity is developed. This

formulation includes elastic and viscoelastoplastic material properties, damage modeling, a

nonpenetration condition on the contact plane, and boundary conditions resulting froom ad-
hesion forces and sliding resistance of the interface. Section 4 presents the background of

the adaptive finite element technology developed for the analysis of the deformation of a
microasperity. A general idea of the hp-adaptive finite element, methodology is discussed in
this section, together with a detailed presentation of the numerical algorithms used for the

solution of elastic and viscoplastic contact problems.

The above theoretical part of the report is followed by examples and tests of the nii-

croasperity analysis. In particular, Section 5 presents some basic tests of numerical models

of viscoplastic material behavior. Then, in Section 6, finite element models of asperity
Sresponse are verified by comparison with the Hertz solution and with experimental mea-

surements performed for custom-shaped asperities. This section is followed by studies of
asperity-based interface models for various types of engineering surfaces (Section 7). Then.

in Section 8, detailed comparisons cf asperity-based models with results of specially (le-

signed experiments are presented. Following Section 9 is dedicated to studies of the static3 coefficient of friction for the interfaces. Section 10 presents studies directed towards applica-

tion of asperity-basd interface models in modeling of dynamic friction phenomena. Finally,
in Section I1, conclusions of this work are summarized together with remaining research

challenges.

I 7I
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I 2 Asperity-Based Models of Contact and Friction

5 One of the major missions in tribology is the developmiient of constitutive models of frictional

interfaces. Throughout the decades a variety of approaches and types of models have been3 developed. They can be classified into several groups, including:

"* models based on experimental observations,

I * microasperity-based models,

"" phenomenological models developed froom basic principles of mechanics, and

"* models of the type related to plasticity theory.

I It should be noted here that this distinction is only of a general nature and most of the

models presented in the literature combine, in some sense, features of more than one of these
Igroups.

In this project we focus on the development of new asperity-based models of contact and

friction. These models are aimed at the development of constitutive equations of frictional

interfaces via the statistical homogenization of the deformation of surface asperities subject
to contact with an opposing surface. The advantage of the asperity-based models is that

they provide good quantitative insight into the phenomena occurring at the interface arid

predict additional information hardly available from the experiment--based laws, such as the

surface plasticity indices, microfracture indices, etc.

The first contact model that was constructed to predict the true contact area can be
found in a paper by Abbott and Firestone [1], in which the contact surface was simulated in

a network of spheres that are truncated upon indentation into a hard flat. By knowing the

hardness of the softer of the two materials in contact, an estimate of the true contact area3 could be made, assuming perfectly plastic deformations.

An important advance in development of asperity-based models of contact is represented

by the pioneering paper of Greenwood and Williamson [4-14], in whicth the rough surfaces were

viewed as a randomly distributed i)opulation of elastic asperities with randomly distributed
asperity heights. Each asperity was assumed to be spherical and elastic and its deformation

properties governed by the Hertz solution for elastic contact. Experimental evidence was

provided to support the assertion, now widely held by tribologists, that for normally isotropic

engineering surfaces, a Gaussian distribution of asperities heights generally exists. In such

models, there are no microfrictional effects on the asperities, such effects leading to second-
order changes in contact pressure, a result established nearly two decades earlier by Mindlin

[62]. In a related paper, Greenwood and Tripp [.13] showed that contact of two rough surfaces

I
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with Gaussian distributions of asperity heights on v.hich asperity contacts were misaligned

was equivalent to a single elastic surface with a Gaussian (listrilbution of asperity heights

impending on a rigid flat. The use of such statistical representations of surface topography

has since become a popular approach in modeling both elastic anrd inelastic contact.

3 The Greenwood-Williamson model was based on the assumption that only the asperity

height was a random variable, and that the radius R, of each peak was constant. Several

generalizations of such random topography models appeared in the literature of the 1970s.I The paper of Whitehouse and Archard [9.5] extends the random--asperity models to include

random heights and curvatures, and Nayak [68] provided a general approach to random sur-3 •face modeling using notions of joint probability distribution functions. In this sanme vein. we

"mention the work of Bush, Gibson, and Thomas [23], who derived a joint probability distri-
bution density function for random asperity heights and curvatures of a random population

_ of elliptic paraboloids in elastic contact with a smooth rigid flat.

Such random-microtopography models that employ a deterministic function for asperity

peak shapes are called asperity meodls. One source of possible inconsistency in such models
has to do with the fact that a Caussian distribution of asperity heights and curvatures
for a given asperity shape may lead to a non- Gaussian cumulative probability distributioniI of the surface height, an unrealistic result for most "engineering surfaces." This problem
was addressed by Hlisakado [49] and Hisakado and Tsukizoe [50], by assuming a Gaussian

PDF (Probability Density Function) for surface heights. with a given deterministic asperity
shape, and then deriving the PD F for peak heights. tIisakado [-19] assumed a. paraboloidal

asperity shape and Hisakado and Tsukizoe [.50] a conical shape. Francis [-11] points out thatI the Ilisakado models may lead to unrealistic PDFs for asperity heights. since they may be
strongly dependent on the asperity shape and may become negative for paraboloidal and3 conical shapes.

Extensions of asperity-based models to microcontact deformation laws involving elasto-

.plastic deformations were first contributed bv Hisakado [49]. Halling and Nuri [47] account

for plastic deformation of the interface by assuming that a rough surface d.eforms elastically
while contacting a nonlinearly elastic flat, representing strain-hardening, with each micro-

contact defined by a fully-plastic spherical indentation. Significant generalizations of these

types of asperity models can be found in the detailed studies of Francis [-II], who intro-

duces the notion of the sum surface, discussed later in the present work. This enables one
to model Gaussian engineering surfaces with asperity shapes that a paraboloidal only at

their vertices, but which have random heights and curvatures, using the joint PDF of Navak3 [68]. Moreover, Francis [41] also takes into account elastic and fully plastic deformations.
with strain-hardening, using functions de•ermined empirically from spherical indentations

of various metals. We also mention that an extension of the Greenwood-Williamson model

of spherical asperities with Hert.zian elastic contact, constant radii, and random heights to

I 9I
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cases in which a transition to perfectly plastic deformations occur was recently proposed by
Chang, Etsion, and Bogy [26-28].

We note that most of the references cited above dealt with attempts to model either
contact without sliding motion, or purely static or quasi-static friction effects.

The asperity-based models of frictional interfaces are constructed in five basic steps:

* 1. Perform a statistical analysis for the surface profile (profiles),

2. calculate the surface statistics (distribution of surface height, gradient, and curvature)3 from one or more set of profile data,

3. calculate, from surface statistics, the probability distribution and density of surface3 asperities of different heights and (possibly) peak shapes,

4. calculate, by analytical or numerical methods, responses of representatives of a family3 of surface asperities of different shapes to prescribed load programs,

5. calculate, from asperity data and the probabilistic distribution of asperities, the ex-3 pected values of the interface response (normal and tangential forces, damage, etc.) to
prescribed load programs. This response characterizes constitutive properties of the

interface.

Several variations of this basic scheme may be derived for random and deterministic
surfaces, isotropic or anisotropic finish, etc. In this case a general classification of surfaces

presented (after Nayak [68]) in Fig. 2.1 is helpful.5 For practical purposes, it is reasonable to consider the following three classes:

(i) Gaussian isotropic surfaces,

U (ii) Gaussian anisotropic surfaces, and

(iii) other surfaces, in particular deterministic surfaces obtained by special finishing tech-
niques.

The flowchart illustrating the homogenization procedure for these three groups is pre-
sented in Fig. 2.2.

The details of these procedures will be discussed later. Here it is important to observe
that for Gaussian isotropic surfaces it suffices to gather profilometric data along only one
profile on the surface and to consider asperities of axisymmetric peak shapes. For Gaussian

anisotropic surfaces, however, one needs at least three nonparallel profiles and asperities of

3 10
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3 Figure 2.2: Flowchart for statistical homogenization of interfaces.
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U different principal curvatures and orientations. Finally, for non-random surfaces, a full two-
dimensional map z = z(x, y) of the surface may be needed, and asperities may have various
deterministic shapes, depending on the surface finish.

3 2.1 Microstructure of the Frictional Interface

We begin by considering the contact of two deformable bodies, I and II, over a nominal
contact area Ao, as illustrated in Fig. 2.3. An element of unit nominal contact area is isolated
for study, as indicated in the figure. The average stress vector V over the unit contact area
has components of force P and Q normal and tangential to the unit area, respectively. The
situation is equivalent to that of two typical coupons of surface material, one taken from the
material near the contact surface of each body, pressed together with a force P normal to
the tangent plane at the center of the coupon interface and simultaneously subjected to a
shear force Q tangent to the plane. The bulk deformations of bodies I and II are ignored,
our aim being only to characterize the mechanical properties of the contact interface. The

nominal unit surfaces in contact are, for the present, assumed to be initially flat and parallel
to one another.

I It is standard practice to depict the approximate profile of rough engineering surfaces
with a profilometer or stylus, drawn across the surface, which generally yields a jagged profile
Swith an exaggerated vertical scale of the type shown in Fig. 2.4(a). We consider two such

opposing surfaces 1 and 2 which are to ultimately come in contact. Refrence planes defining
the mean asperity height of each surface profile are established, and we characterize the
shape of each profile by introducing functions z, and z2, given the height of asperities above
the respective reference planes, i.e., the functions zi = zi(x, y), i = 1,2, with (x, y) a point in
the parallel mean-height reference planes, define the profiles of the rough material surfaces

1 and 2, respectively. The distance h between planes is the separation of the surfaces, and
the distance between actual opposing material points is denoted s. Thus, at a point (x,y)

on the reference plane, we have
s =- h - z (2.1)

where z is the sum surface (see Francis [41]),

Z= ZI ± Z2

I Francis has pointed out that, from the fact that the sum z of the surface heights appears
in the geometric relation (2.1), the situation is equivalent to that of a single deformable3 surface of height z = zI + z2 approaching a rigid flat, as suggested in Fig. 2.4(b).

Clearly, the undeformed surfaces overlap whenever

s(X,y) < 0

3 13
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As the normal load pressing the surfaces together increases, the separation h decreases
and at each minimum of the function s a microcontact nucleates and expands due to local
deformation of the surfaces.

It is of importance to note that arguments presented by Francis [41] are of a purely3 geometric nature. From a mechanical point of view, two major objections can be raised
here:

S1. The sum of two asperities (say, spherical) in contact with a rigid flat is not mechanically
equivilant to two spheres in contact-see Fig. 2.5.

In particular, the distance-force curves P = P(a) for the two models are different.
Moreover, the "asperity" peak on the sum surface corresponding to two spheres is not
spherical. It can be shown, however, using the Hertz solution, that these differences
vanish when the ratio of asperity radius R to the contact radius r goes to infinity
(relatively smooth surfaces at moderate loads).

3 2. In the case of contact with friction, the sum surface approach will not model the friction
component due to the interlocking of asperities. Similarly as above, the importance of3 this effect diminishes with increasing surface smoothness.

In view of these remarks, the sum surface approach seems to be correct and justified for
typical engineering surface finishes at moderate loads. Note that this condition is also re-
quired for the satisfaction of the assumption that separate microcontacts do not interact
mechanically and that contacts do not merge.

It is well known in tribology that techniques used to produce engineering surfaces usu-
ally produce a Gaussian distribution of the surface heights zi. Moreover, the sum z of two3 Gaussian surfaces is also Gaussian; indeed, Tallian [85] points out that if z1 and Z2 are not
exactly Gaussian, their sum surface will be closer to Gaussian than either surface. If the
shape of an asperity is assumed to be paraboloidal, as have been done by several authors.

then the peak heights and curvatures are correlated random variables, with the result that a
Gaussian distriution of heights and curvatures may lead to a cumulative probabihity distri-3 bution of surface heights which is non-Gaussian. This issue has been studied by Hisakado
[49], Hisakado and Tsukizoe [50], and by Francis [41], who assert that if the peak shape is
paraboloidal only at its vertex, then the ensemble of peaks can be made to conform to the

Gaussian distribution.

3 2.2 Statistics of a Random Surface

There are several methods of homogenization that can be found in the literature. Few
have been effectively used for describing nonlinear frictional phenomena. As one possible

3 16
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U technique we describe a general approach inspired by the works of Lonquet-Higgins [57-59],

Nayak [681, and Francis [41]; see also Chang, Etsion, and Bogy [26-28]. To fix some of3 these ideas, we note that for a given asperity profile, one defines the autocorrelation function

C(X, Y) for the random variable z z(x, y) (the surface height),I
C(X,Y) = limh- ;jjy)YZ(x + X,y + Y)dx dy

I boo

3 and the power spectral density P(kx, ky) as its Fourier transform,

3 P(kx, k-) = 1 C 0(X, 1') exp [-i(.kx + Yk,)]dX dY

The power spectral moments are

4-,, = P(k'., k i)kdk, dk, (2.2)COD

and the r.m.s. roughness a is the variance,

3 a 2 
= M o ,o 0) = P(k,, ky)dkr dkt

A convenient representation of a continuous randm surface is of the form [58,68]:

z(x, y) C,, cos (xk,, + ykyn + En) (2.3)
3 n=1

where amplitudes C,,, wave numbers k2,, and ky•, and phase 5,, are random variables. It

is assumed that there are an infinite number of wave vectors in any area dk=dky and that 5

has a uniform probability density in the range (0, 27r). The power spectral density is related

to representation (2.3) by

3 ak

the summation being over all terms with (kn,,k,y) lying in the area dk.dky around

(k,, k.). The power spectral moments mpq can then be expressed as
1

Mipq 1 1 k• •k, C2 (2.4)

!n
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I Similar definitions and representations as above can be introduced for arbitrary surface
profile z(s), s being a parameter on the surface. Of particular interest are spectral moments3 of a profile ioo, M 2 , and M 4.

I 2.3 Calculation of Surface Statistics From Profile Data

Information about the statistics of a two-dimensional surface can be effectively obtained3 from profilometric data for one or more profiles on the surface. This greatly simplifies the
homogenization procedure because both experimental measurements and statistical post-
processing are much easier for one-dimensional profiles. In this section we discuss details of

these computations for both isotropic and anisotropic surfaces.

3 2.3.1 Profiles on Gaussian Isotropic Surfaces

It was shown by Lonquet-Higgins [57-59] and Nayak [68] that for random isotropic surfaces

the mean surface height and non-zero spectral moments are expressed in terms of mean
profile height and profile spectral moments:

Zsurface = Zproffle

i7n0 0  M

M20 7 7 0 2  7 in 2

3M 2 2 = i 0 4  M 17 4 0  7 in 4

Therefore, in order to calculate surface statistics it suffices to perform measurements for one
profile on the surface. The spectral moments of the profile can be calculated in several ways:

* from the definition as moments of power spectral density

I * from statistical postprocessing (sampling) of profle data

* from counting zeros and extrema of the profile

Calculation from definition: 3ni .- (k)k'dk

where k is a wave number and 4(k) is a power spectral density. This particular method is
rather expensive because it requires evaluation of the autocorrelation function and the power

spectral density as its Fourier transform.

I3 19
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U It is much easier to calculate profile spectral moments if one reinterprets them as standard

deviations a, 6, & of profile heights z, slopes r, and curvatures ., respectively:
I mon 0.

7n2 & C2

172l = a2

Assuming that the profile data was sampled at n points separated by the interval As (see
Fig. 2.6), the profile statistics can be calculated from the following sampling formulas [16]:

3 (a) mean height, slope and curvature:

I n

*~ -- 2- n

inIZ

3 (b) variations of height, slope and curvature:

n

,2 - )2

n -IIn a21

The values of first and second derivatives can be calculated from a second order approx-
I imation of the profile shape, discussed in Appendix A.1. Note that the mean slope and

mean curvature of a perfect Gaussian profile should be zero. For real profiles thley may
I slightly differ from zero. Also note that for the above procedure, shorter wavelengths can be

automatically filtered out by appropriate selection of the sampling interval As.

An ingenuous alternative way of calculating m2 and n4 was proposed by Lonquet-fliggins
[58], see also Nayak [68]. The densities of zeros and of extrema of the profile are expressed

through spectral moments as:

|20
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Dzero = M,1

* ~~~Dextr = 1m)

By zero point we mean here the point where z(s) = *. The counting of zeros and extrema
can be performed simultaneously with the sampling procedure described above. Then, after
calculation of the variation o, variations of slopes and curvatures can be obtained as:I

6r= 7r aDzero
a= r&Dextr

In practice, both sampling and counting methods can be easily implemented in the same
sampling program. Practical comparisons of these procedures are presented further in this
report.3 Another parameter necessary for the homogenization procedure is a density of peaks on
the surface, defined for homogenous surfaces as:

Dp = lim J1rP
d.-- dAi dy--oo

where dA = dx dy is the surface area and Np is the number of asperity peaks within this
area. The density of surface peaks can be calculated from profile parameters [68] as:

D _ = m4-~ 6iv' m--

2.3.2 Profiles on Gaussian Anisotropic Surfaces

II Basic statistical information for anisotropic random surfaces consists of nine moments of the

power spectral density: moo,..., n40. However, since the properties of the surface do not
depend on the orientation of the x, y axes, only certain invariant combinations appear in the
probability distribution of the surface statistics [59,68]. These invariants are:

m 1. MOO

3 2. in0 2 + in2o

-- 22
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I 3. m 20m0 2 - Mr1l

4. m4o + 2m 22 + in0 4

5. M 4oMo4 - 4mr 3m 3 1 + 3m22

6. (M 40 + n 2 2 ) (Mn22 + in 0 4 ) - (M 3 1 + rn1 3 ) 2

7. {M40 (m 22mo4 - 1•3 ) - in 31 (m 31mo4 - 7n13M22 ) + in 22 (rn31in1 3 - r 22) }

I From three profiles in three nonparallel directions Oi, i = 1, 2, 3 nine parameters can be
defined: mO(i), m 2(i),im 4(i), i = 1, 2,3. However, since motp) =771(2) = mO(3 ), then these three

I profiles define seven constants-invariants described above. This means that three nonpar-

allel profiles suffice to define surface statistics for Gaussian anisotropic surfaces. (Detailed
equations will not be derived here.)

2.4 Calculation of Asperity Statistics From Surface Statistics

The primary idea of asperity-based interface models is to calculate interface parameters
(normal force, friction force, etc.) for a family of asperities of certain deterministic shapes and

to obtain expected values of these parameters for the interface from a statistical distribution
of asperities. This requires the calculation of probability density of surface asperities. For
random surfaces, this probability density can be expressed in terms of surface statistics. This

problem will be addressed in this section.

I 2.4.1 Asperity Statistics for Gaussian Isotropic Surfaces

* For Gaussian isotropic surfaces two random variables are assumed to govern the distribution
of asperities: asperity peak height zp and mean curvature ic. The joint probability density
function of these parameters was derived by Nayak [68] and recast in a different form by

Francis [41]. Here we present the formula due to Francis:

V-3 2- 1 1,_7 e3 (ý2 2/32,7+772)I,/5
where

I - nondimensional peak height

7 = v1.5& nondimensional peak curvature

S= V --.5 wavelength spectrum parameter
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I The wavelength spectrum parameter varies for random surfaces between 0 and 1: zero
corresponds to the widest wavelength spectrum (asperity heights and wave numbers are
not correlated), and one corresponds to the narrow spectrum (longer asperities have bigger
heights). Note that deterministic surfaces may have /3 > 1, see Section 2.6.1.

I 2.4.2 Asperity Statistics for Gaussian Anisotropic Surfaces

For Gaussian anisotropic surfaces the representative asperities are no longer of axisymmetric
shape. Instead, one should consider asperities with elliptic horizontal cross sections, shown

in Fig. 2.7b.

The peaks of these asperities can be characterized by four parameters:

* 1. zv - peak height

2. il, K2 - principal curvatures

3. a - orientation of the main axis of curvature

I Equivalently, peak height zP and three Cartesian curvatures (second derivatives of z)
KXX, Kv, iyy can be used. The joint probability density function based on all these param-

eters should be defined as f~lMO (ý, 11, q2,a). In principle, this function can be defined

from surface statistics, in particular spectral moments o., . - . 772 4 0 [.59,68]. To the author's
knowledge, no such formula is presently available in a closed form.

2.4.3 Asperity Statistics for Deterministic Surfaces

Some special types of finish may produce surfaces of non-Gaussian random distribution or
deterministic distribution. For such arbitrary surfaces the distribution of asperity peaks

cannot be obtained from profile data and need to be calculated directly from a surface map.
In this section we present a simple sampling procedure to calculate asperity statistics from
surface data.

We assume that:

I * The surface is homogenous.

9 The function z(x,y) (surface height) for the surface is given. This can be obtained

from two-dimensional sampling, holography or other methods.

o Asperity peaks are characterized by the peak height z, and mean curvature tc.
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Figure 2.7: Typical asperity: (a) isotropic random surface, (b) anisotropic random surface.
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I The probability density of asperity height and curvature f,,,(zp, N) can be obtained from the
following sampling procedure: Cover the domain Q2 with a regular mesh of points (xi, yi), i =
1,n presented in Fig. 2.8. The mesh spacing h can be defined so as to filter out high-
frequency noise. The sampling is performed by looping through the points (xi, yi), i = 1, n

* and for each point:

1. Check if the point is a peak or near a peak within resolution h. The peak is identified
as a peak if its height z(xv, YP) is greater than all its nearest neighbors (eight for interior

points). Alternatively, more elaborate criteria may be used.

2. If the point is a peak, then calculate the second derivatives z•., z~Y and z•. Here

simple finite difference formulas may be used or a generalized minimization procedure
* as presented in Appendix A.

The mean surface height and standard deviation of the surface height are calculated as:

I The joint probability density of asperity peak heights and curvatures can be calcu-
lated after locating all the peaks by dividing the range of peak heights and curvatures
S[Zpmin, Zpmax] X [Kmin, Kmax] into area elements Az-Atc (see Fig. 2.9). Then for each area
element with a center point (-pi, NJ) define

I f:,P, NJK3 ) = -- np(i,j)
Np

Here NVp is the total number of peaks and np(i,j) is the number of peaks within the area
element AzzAK, identified by:

Zpmin + (i -)AZ < Z < Zpnin -A i_

Nkmin + ( )A, <• K < K:,i,, + jAK

The values above define the discrete values of the joint probability density function of as-
perity peak heights and curvatures. This function may then be regularized by an application
of appropriate approximation techniques. A similar procedure can be used if one chooses
to characterize asperity peaks with more than two parmeters. such as zp, K3, K2 and a for
anisotropic surfaces.
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I 2.5 Calculation of Macrocontact Expectations of Interface Pa-
rameters

Once we know the probability distribution of asperity heights and shapes as well as the
values of any parameter X for single asperity, it is possible to calculate the expected value

of X for the interface. This procedure varies somewhat depending on the classification of
surface type. In this section we present a detailed procedure of the expectation calculation3 for Gaussian isotropic surfaces and outline its extensions to other surface types.

2.5.1 Expectation Calculation for Gaussian Isotropic Surfaces

For Gaussian isotropic surfaces, the following parameters are needed to calculate the expected
* value of the macroscopic interface parameter X:

i) Np The number of peaks within the contact area A0 .

ii) f07(ý, 77) Probability density of asperity peaks of (nondimensional) heightSand mean curvature q. By' a simple change of variables one
can define f, (!,, t).

I iii) X(zp, c, a, d) The value of parameter X for different peak heights z-P and cur-
vatures K, subjected to a normal approach a and sliding distance

* d.

iv) a, 6, & Deviations of profile heights, slopes, and curvatures used to
nondimensionalize peak heights and curvatures.

The expected value of X per asperity is calculated as

I
E(X(a, d)) = X(zp, K, a, s)fý,(zp, K)drdzp (2.5)

3 and the macrocontact expectation of X is

X(a,s) = NpE(X(a,d))

I Note that even for Gaussian isotropic surfaces there exist asperities of non-axisymmetric

cross sections. However, due to isotropy, it suffices to consider only axisymmetric represen-
tatives of certain mean peak curvature K. In this project we choose the asperity to be a
cosine hill defined in a local coordinate system as:

3 z(x, y) = C cos kx cos ky
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I For this asperity the peak height and mean curvature are defined as

zp = CI = Ck2

The above shape is consistent with a generic representation of a Gaussian surface presented in
formula (2.3). This is different than approaches presented to date in the literature, in which
asperity peaks were usually assumed to be spherical or paraboloidal. This was because these
works were based on analytical solutions for asperity deformation, such as Hertz' solution.
In this work we are modeling the asperity by the finite element method, so it is possible to
use the model which does not suffer from inconsistencies of spherical or paraboloidal asperity

peaks.

Although for Gaussian isotropic surfaces the probability density of asperity heights and
curvatures is analytic, the values of X(zp, /c,...) that we obtain from finite element com-
putations are not. Therefore the expected value of X must be calculated using numerical3 quadrature. This quadrature was implemented under the following assumptions:

(a) The domain of integration is truncated to the subregion [Z-nin, Zmad] X [Knji,,, Krnax],

where the probability density f& is large enough to effectively contribute to the
final integral E(X). This region is defined adaptively (see Section 2.6.2).

(b) The parameter values X(zp, sc,...) are given (calculated by FEM) for certain
selected values of peak heights and curvatures in the domain of integration. These
points are not necessarily regularly distributed within the domain of integration.

The numerical procedure for the calculation of the integral consists of the following steps:

I 1. Divide area [Zmjn, Zmax] X krnin, Kmax] into area elements Az x Atc (see Fig. 2.10).

2. Calculate the integral by looping over cells and applying numerical quadrature (trape-
zoidal, Simpson, Gauss, or any other) according to the formula

I
E(X) = E [E {V (zp@-), K(0.. f07e~,), K(_) ) WcAzZ\PC} (2.6)

3 where i is the number of integration cells, a is the number of quadrature points within
a cell, and w,, is the corresponding weight factor.

I
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3 Figure 2.10: Numerical integration of expectation value E(X).
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I Note that this integration requires the value of X at integration points (zp(,), K(•,)) within
each cell. Since it may be difficult to perform finite element analysis for values of zp and
r. corresponding exactly to all the integration points, these values are calculated from the
original data points using the error minimization procedure presented in Appendix A. The
quadrature rule currently implemented for integration are the trapezoidal and four-point
Gauss rule.

Note that the above procedure introduces error due to truncation of the integration3 domain and due to numerical integration. This leads to a rather unwelcome result that even
for constant X, the calculated expected value E(X) would be different than X. In order to
compensate for this error, we additionally calculate the integral of the probability density
(which should be one):

I~~ ~ k7f (-(a, Kp@.)) wzsc

Then the corrected value of expectation of X is calculated as:

I E(X) = E(X)/I (2.7)

U
This procedure assures that for constant X the expected value E(X) is equal to X.

U 2.5.2 Expectation Calculation for Random Anisotropic Surfaces

3 As mentioned previously, for anisotropic Gaussian surfaces one has to consider asperities of
random peak heights zp, principal curvatures K, and PC2, and orientations of the principal
axis a. The calculation of expected values of the interface parameters is similar to equation

(2.5):

3E (x(zK,K2, a a...))(
00 00 2 ir(2.8)

Jo0 jo j00 P1 (r K1 , KC2 , a ... ) fton (Zr , K 1, K ) dad dt dz

Note that presently there exist no closed form solution for the probability density f7,77,,
of asperity peaks of random heights, principal curvatures and orientations. Also note that
in order to span the integration space, one would need to obtain finite element solutions for
a large family of asperities, corresponding to various combinations of zp, K1, K2, and a. This3 would be a very expensive task computationally, and will not be considered in this project.
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3 2.5.3 Expectation Calculation for Deterministic Surfaces

The calculation of expectation values E(X) for non-random surfaces follows essentially the

same numerical procedure as for Gaussian isotropic or anisotropic surfaces. Depending on

the surface type, the peak height zp, curvature Kc and other parameters may be selected to

represent typical asperities. The joint probability density f ,...(zp, .) can be obtained

from surface sampling as discussed in Section 2.4.3.

U 2.6 Numerical Verification of Statistical Postprocessing

The homogenization procedures discussed in the previous section for Gaussian isotropic

surfaces were used as the basis for the implementation of specialized software for this purpose.

In this section, certain basic tests of this software will be presented.

2.6.1 Verification of Profile Postprocessing

The program for profile postprocessing was designed to read in the data z(s) for one or more

profiles on the surface, and use them to calculate mean profile height, slope and curvature

as well as spectral moments and peak density for the surface. Both statistical sampling and

counting methods were implemented (see Section 2.3.1).

Example 1

I In the first example a deterministic cosine profile was generated:

z(s) = Ccosks

with C = 1 and k = 2. For such a profile, the mean profile height, slope and curvature

are zero. The standard deviations of height, slope and surface curvature can be calculated

exactly to be:I
Ior = - 0.7071

C_
= k ' = 1.4142

=k __ 2.8284I 33
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I The corresponding wavelength spectrum parameter is 3 = 1.2247.

The above profile was sampled with the interval 0.2 which corresponds to about 100
points per one wavelength. The results of this sampling are presented in Fig. 2.11.

The calculation of mean surface heights, slopes and curvatures (which should all be zero)
is very accurate. So is the calculation of the standard deviation of surface height. Deviations
of surface slopes and curvatures are less accurate (up to 7 percent error), which is caused by
an approximate calculation of slopes and curvatures. For this particular case, the counting

method gives better results than the statistical sampling method.

E Example 2

In the second example we have generated a quasi-random profile by using a one-dimensional

version of the formula (2.3). A series with -40 components of a quasi-random distribution of
Ci, ki and sri were specified. The resulting profile is presented graphically in Fig. 2.12a.

SFor a fully infinite series and random C, ki and E, the power spectral moments are
expressed by a one-dimensional equivalent of formula (2.4). For truncated series this is not
true, but a reasonable approximation can be expected for the values of spectral moments.

These values, calculated for the above profile. are shown in Fig. 2.12b. The profile was then
sampled using the procedure described in Section 2.3.1. The results are shown in Fig. 2.12c.

It is somewhat more difficult to verify the results in this case. since neither of the methods
produce exact results. It can be noted. though. that the results for surface height (mean
height and deviation) are the most accurate, while for curvatures the differences reach up
to about 20 percent. Other tests. not discussed here. show that with a decreasing sampling
interval, these differences become smaller (but they do not vanish).I
2.6.2 Verification of Expectation Calculation

I To perform a basic test for the calculation of joint probability density of surface asperities
and for expectation values of X, we considered the following set of test data:I

1. The profile and surface statistics were taken from Example 2 in the previous section.
in particular:

I
I
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sampling results for single wave, C=!,k=2.
i++++++++++................++++..+

Sampling interval: .2

R E SULTS

Method 1 Method 2
(samo1inc) ,Co..... na)

Mean height: -2.884ge-35
Mean slope: -3.343ie-T5
Mean curvature: -4.3874e-04

St.D. of height: 7.07!5e-Jl
St.D. of slope: 1.3628e+00 1.4143e-00
St.D. of curvature: 2.62172e+00 2.7222e+00
Surface peak density: 1i.384e-01 1.2222e-01
Wavelength spectrum: 1.2243e+00 1.2727e+00

I
I
I

Figure 2.11: Sampling result for a simple cosinusoidal profile.
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St.D. of curvar.u.re: 5.3455e-01 52.324e-01Surface peak density: 2.5.3Sge-02 L.8898e-02
Wavelenqc•i spectr-um: 7.3117e-O1. 1.0609e÷00I

Figure 2.12: Profile sampling test: (a) quasi-random surface profile, (b) surface statistics
I from series expansion, and (c) surface statistics from sampling.
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Ia = 1.1620

ar = 0.59221

= 0.49315

INp = 0.025359

A 0 = 1

2. The area of integration of expectation values E(X) was defined by:

I
Zpri = -5, zp .rax = 10

K fmin = 0 
1 "max = 5

This domain was subdivided into 20 x 20 integration cells, with trapezoidal integration
I within each cell.

3. The variable X was assumed to be identically equal to one (so that the expectation

value should be one). This was implemented by specifying eight data points with a
value 1.0, randomly distributed within the integration domain.

U The results of the numerical calculation of expectation values are presented in Fig. 2.13.

Note that the program estimates the effective support of the probability density function
fC7(z, t), which is identified as the loci of points where fý(Jzpi) is greater than 10'. This
is done to avoid integration over too large a domain. The above estimate is still very
safe-for example, for the profile considered here the estimated effective support of fJZPK)

corresponds to peak heights between:

U Zpmin = -3.5 Zpmax = 7.0

* while the real profile had a maximum peak height of only 2.5 and a minimum peak height

of about -0.8.

I isThe value of expectation E(X) calculated by integration (formula (2.6)) is 1.0043. This
is an effect of truncation of the integration domain and of numerical integration. After
correction according to formula (2.7), the value of expectation E(X) is exactly one.

This simple example confirms the correctness of the theoretical formulation and the
software used for calculation of joint probability density f•(,,77) and for the expectation
value of X for Gaussian isotropic surfaces.
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INPUT ECHO

zomin=-5.0000e+00 zpmax= 1.0000e+01 kapmin= 0.0000e+00 ka~max= 1.O000e-O!

nksi=20 neta=20 irule=l
4igrna= 1.1620e+00 sigdot= 5.922!e-01 sigdble= 4.9315e-O0

npeak= 2.5359e-02 area= !.0000e00

3 RE S ULT S

Effective support of probability density:
Szsmin=-3.5000e+-00 zsmax= 7.0000e00 kasmin= 0.0000e+00 kasmax= 3.'J00e-00

..ntegrated value of X= !.0043e+00

Expectation value of X= 1.0000e+00

Macroscopic value of x= 2.5359e-02

Value X per unit area = 2.5359e-02

i
I
i

Figure 2.13: The calculation of expection values of X.
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Figure 3.1: Surface asperity in contact with a rigid flat (a section).

1 3 Deformation Mechanics of a Single Asperity

3 We now focus on the analysis of a typical asperity in contact with a rigid flat. The asperity is
a body of revolution, symmetric about its z = x3-axis, and subjected to adhesion pressures q
on its exterior surfaces that are not in contact with the rigid flat, and to contact pressures due
to its indentation into the rigid flat (see Fig. 3.1). The equations governing the deformation
of the asperity are discussed below.

3
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I 3.1 Momentum and Geometric Equations

The momentum equations for the asperity are:

I = 0 (3.9)I
where oij is the Cauchy stress tensor at a point z = (x 1 ,x 2,x 3) E Q, l being the open3 material domain of the asperity and oij,j is the divergence of the stress aij.

In rate-dependent viscoplastic applications a rate form of the equilibrium equations is
used:

sij - 0 (3.10)

where the dot denotes the time derivative.

Geometric equations express strains in terms of displacements:

3 ... (u2,j + Uj~i)

Strains can be decomposed into elastic and nonelastic strains:

I Similarly as for the momentum equations, the rate form of geometric equations will also
be used:

3.2 Constitutive Equations

I Surface asperities for typical engineering surfaces consist of the same material as the bulk
body with possible contaminations and structure change from oxidation and surface finish3 processes. Therefore, for general surfaces a variety of material classes should be considered,
such as elastic, hypoelastic, elastoplastic, etc. In this project two major material classes are
considered, namely:

* linearly elastic (isotropic or anisotropic) for some metal surfaces, ceramics, composites,3 and hard rubbers, and
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I * viscoelastoplastic models for metallic surfaces and modern ductile ceramics.

1 3.2.1 Linearly Elastic Constitutive Models

The general linearly elastic constitutive relations are given as:

=aij - Eijklekl

where Eijkl are the components of the fourth order elasticity tensor. It has up to 36 inde-
pendent coefficients for general anisotropic materials. However, for most material classes,
the number of material coefficients is much smaller and, for isotropic materials, there are
only two coefficients, E and v. The specific forms of tensor E for various materials are well
known and will not be presented here.

1 3.2.2 Elasto-Viscoplastic Constitutive Model With Damage

We now describe the Bodner-Partom constitutive equations [10,11] used in the modeling of
viscoelastoplastic asperities. The elastic-viscoplastic analysis is based on decomposition of
strain rates

'I + 6-(7) (3.11)

where superscripts (e) and (n) denote elastic and nonelastic strain components, respectively.
The constitutive relations are

6j= Ejjk(ýkl - (3.12)

A nonelastic deformation is governed by the flow rule:

Ii}.) f(Oij7, zk, wk)

3j = gi(aij, Zk)

3 j = hi(oij,wi)

where fo,gi and hi are constitutive functions, zi are internal state variables, and wi are
damage variablcs. These functions and state variables characterize the viscoplastic response

of the material with continuum damage effects.

In the particular version of the Bodner-Partom theory applied in this work, the nonelastic
flow rule is of the form:

-- 41



I

!si
I where sii are the deviatoric components of a stress tensor

I i " Oij - Irkkij

33 The current value of parameter A is given by

A 2  1 D2exp [(z 2 (1-W 2 ))A] >0

where J2 is the second invariant of a deviatoric stress tensor

J2 = 1 Sijsij

I Do is a limiting strain rate in shear, n is a material constant and z and w are state variables
which evolve during deformation. In particular, z is the hardness variable, which represents

I viscoplastic hardening (or softening) of a material. The variable W is the damage variable.
This variable represents weakening of the material due to nucleation and propagation of
microscopic voids and cracks in the material. The micro-cracks considered here are in the
range of 0.01 mm in length. The rupture criterion is w = 1, which corresponds to the
saturation of the material with voids. Alternatively, a single crack may grow to a size on the
order of 1 mm. In the latter case, crack is too big to be treated in a continuum sense, and
its propagation should be followed using the methods of fracture mechanics.

In the framework of materials science the value of w is usually interpreted as ratio of the
area of voids to the total area of a certain cross section of a sample:

3Avoid

A

The state variables z and w evolve according to the specific equations of the viscoplastic
theory:

3 1. Evolution equations of hardness variable

The internal state variable z consists of isotropic and directional components,

I Z I + ZD
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I The evolution equation proposed for the isotropic hardening component [10,11,24,25] is

I1(t) = m,[z, - Z'(t)]W,,(t) - Az [z(t) (3.13)

3 with the initial condition, z'(0) = zo. In the first term, z, is the limiting (saturation) value

of z , m, is the hardening rate, and the plastic work rate is

I .(,?J )

which is taken as the measure of hardening. z2 is the minimum value of zI at a given

temperature, and A1 and r1 are temperature dependent material constants. The evolution
form of the directional hardening component (Refs. [10,11,24,25]) is defined as

1 zD(t) ==ij(tuj(t

3 where uij are the direction cosines of the current stress state,

I uij(t) = Orij(t)/[aklak,]½ (3.14)

The evolution equation for Oij(t) has the same general form as that for isotropic hardening

but has tensorial character,

•s=m 2[z~u~s(t - i32(t)]~i'V(t)

--A2zI{[Okt(t),&(0t)]½}"Z• v21(t)

where
vij(t) = O3ij(t)/[O13k(t)O13•(t)]½

3 and

3 As in Eq. (3.13), m 2 is the hardening rate. A2 and r 2 are temperature dependent material

constants.

3 2. Evolution of damage
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I The damage parameter consists, in general, of isotropic and directional components,

3 W=W' +W D

The evolution of isotropic damage proposed in reference [11] is of the formU
= jQ (3.15)

I
In the above P and H are material constants, Q is the stress intensity function, given by

Q=[A'+a,+B 3J_2+CIi+

3 where a~m• is the maximum principal tensile stress, I+ is the first stress invariant (nonneg-
ative) and J2 is the previously introduced second invariant of deviatoric stress.

3 A, B, C, and v are material constants. A, B, C must satisfy the condition

A+B+C=1

Clearly, the actual proportion of these constants selects the factor for stress state which is
most important in the development of internal damage.

The initial condition for isotropic damage is w'(o) = 0. In practical analyses the coef-
ficient v is of the order 10 (compare ref. [11]). Thus, when SI (metric) units are used in3 the analysis, the factor Q as well as the constant H reach extremely high values, beyond the
limit of real number capacity on some computers. Thus, for numerical analysis, equation1 (3.15) was recast in the equivalent, but more convenient form:

where:

I Q=Q = mx + B3\/3J-2 + CIi+

SH -= (H-

PSec
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I The additional advantage of this formulation is that both Q and H are in the stress units
(MPa) instead of the somewhat cumbersome (MP,)". The directional damage is defined in
a manner very similar to directional hardening, namely

WD WDoD oij UiJ

where ujj are directional cosines defined in equation (3.14) and the components of a tensor
W D evolve according to equation

I~~ Id WD

where q and M are material constants. The initial condition is

WP(O) = 0

Note that there are several problems with practical application of directional damage, relia-
* bility of the above model and conducting experiments relevant for the evolution of necessary

parameters. Even the extensive experiments presented in references [11,24,25] did not pro-
vide all the necessary data and, hence, the damage model is usually limited to the isotropic

damage.

S3.3 Boundary Conditions

The asperity can be viewed as a protuberance of a deformable half space (see Fig. 3.1). It is
subject to boundary conditions resulting from its support, contact with the opposing surface,
adhesion and sliding resistance.I
3.3.1 Support Conditions

I If the asperity is viewed as the protuberance on a deformable half space, the support condi-
tions are defined as zero displacements at infinity:

U lim U=O
.3 <0

In practical computations we will usually consider only a certain section of the bulk
material surrounding the asperity. Then the support condition will be:

u = 0 on r,

I on the cut-off boundary FL,.
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I 3.3.2 Contact Condition

* Let the position of the rigid flat (see figure 3.2) be defined by:

* a point po(Xo, Yo, zo) which belongs to the fiat, where x,, yo, zo are its coordinates in

the initial configuration,

3 * unit vector N, normal to the flat,

* displacement w of the fiat in direction N.

I Separation of material point in the deformable body from the flat is then given by the

following formula

s=(x +u-p 0 ).N-w-d

I where:

- initial position of a material point,
u - displacement of this point,
d - intermolecular distance which is

important when adhesion is taken
into account, otherwise d = 0.

The condition that the asperity cannot penetrate the rigid flat is:

s>_0 onF

SThe actual contact region is r, = {x G r, s(x) = 0}. The difficulty associated with the

contact condition in the above form is that it r-sults in a weak formulation of the problem

in the form of variational inequality, rather than the equation. In order to avoid difficul-

ties involved in solving variational inequalities, the contact condition is usually regularized
[54,71]. In this work we will use the penalty-type regularization of the form:

tN = tN(a) on Fc

3 where a = -s is the approach (penetration) and tc is the value of traction normal to
the flat which defines resistance of the surface to penetration. Because we will be using

rate formulation in viscoelastoplastic analysis, it is beneficial to introduce a continuously

differentiable penalty function, for example in the form presented graphically in Fig. 3.2:
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I Figure 3.2: Penalty function for contact condition.

0 if a<O0I H a2 if 0 < a <

I

H [ (a -2 if a >_6

I2

IHere H is a large number (normal stress) and e is a small number (penetration). The

above penalty function guarantees continuous derivative of the normal traction with respect
I to a, which greatly improves practical performance of the numerical computations.
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I 3.3.3 Adhesion

An important contributing factor to friction on contact surfaces is adhesion: the intermolec-
ular attractive forces that depend on atomic spacing and the corresponding surface energies
of materials. For highly polished uncontaminated surfaces, adhesion forces can be very large,
leading to the virtual welding of one surface to another, while for rough contaminated sur-
faces, adhesion effects are often negligible. For engineering surfaces under common working
conditions, adhesion effects can be significant, so that a rational model of contact and friction
should take them into account.

The DMT adhesion model, proposed by Derjaguin, Muller, and Toporov [36] and later
refined by Muller, Derjaguin, and Toporov [66], attempts to characterize the attractive forces
on a sperical elastic asperity in contact with a rigid flat, assuming that the shape of the
deformed asperity is given by the Hertz theory and that no attractive forces exist in the
contact region. The JKR model, due to Johnson, Kendall. and Roberts [52] also analyzes
the elastic spherical asperity-fiat problem with Hertz theory, but assumes that attractive
forces are confined to the contact area and that the attractive forces produce an elastic
deformation of the asperity. The JKR model has been found to be more suitable for soft
materials, such as rubbers, while the DMT model is claimed to be more suitable for harder
materials with high surface energies (see Chang, Etsion. and Bogy [26-28] and Pashley
[73]). Survey papers on developments in adhesion models have been contributed by Pashley.
Pethica, and Tabor [7.5] and by Pashley and Pethica [74]. See also MacFarlane and Tabor
[58].

We shall include adhesion effects in our contact and friction theory by using an approach
similar to, but more general than that of the DMT model. We continue to assume that the
surfaces are isotropic, rough, and have a Gaussian distribution of peak heights, that there is

no interaction between asperities, and that it suffices to consider a single asperity impending
on a rigid flat. Following Muller, et al. [67], we characterize the attractive adhesion pressure
q(s) as that attractive force per unit surface area, acting normal to the mean asperity height
plane, resulting from the Lennard-Jones interaction (interatomic) potential 4 of surface
physical chemistry. Then,

q(s) = Il-i (d)3 -i()9 (3.16)I ) 3d [ s

where

we s = the separation of the two surfaces outside the contact area

d = the intermolecular distance (generally d = 0.3 - 0.Snm)
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I In(3.6); Ay is the surface energy of adhesion and is defined as follows: if 7Y and 72 are
the surface energies of surfaces 1 and 2, respectively, before contact, and -Y12 is the joint
surface energy of the interface after contact, then

=A7 = 71 + 72 - 712 (3.17)

For values of surface energies of adhesion for various metals, see Rabinowic" [78] or
Ferrante, Smith, and Rose [39]. Traction resulting from adhesion can be expressed by the
following formula

I a= -q(s)N =q(a)N

S~where s is calculated according to the formula defined in the previous subsection.

The principal mathematical difficulty inherent in charactrizing the adhesion pressure is
that it is developed only on surface material outside the contact area, which, a priori, is
unknown. Several concluding remarks on adhesion, however, are in order at this point.

* Remarks

1. Fuller and Tabor [42], using the JKR model of adhesion and the rough surface asperity-
based model of Greenwood and Williamson [44], presented an adhesion parameter 0 of
the form

0 E= E (3.18)
where E is the effective modulus of elasticity of the contact surfaces

E- V ( 2 v) E-1 + (1 _V2) E-1

Ei,vi being Young's modulus and Poisson's ratio of surface i, oa is the standard de-
viation of surface heights, and R the mean radius of spherical elastic asperities. The
larger the value of 9, the less significant the effects of adhesion, and for rubber spheres,3 experiments showed that adhesion become negligible for 0 > 10.

2. Chang, Etsion, and Bogy [26-28] presented a study of adhesion effects using the DMT
model and an elasto-plastic asperity model of the contact surface. They investigated

the importance of adhesion with varying values of surface energy and plasticity, as
measured by the plasticity index of Greenwood and Williamson [44],

1 = rKH E /A- (3.19)
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I where H is the Brinell hardness (of the softer of the two materials) and K = 0.454 +
0.41v 1 , v, being the Poisson ratio of this material. These authors conluded that the
"pull-off force" due to adhesion (i.e., the integrated suction force due to adhesion)
becomes negligible for hard steel when the adhesion index 0 is greater than 100, as
compared to 0 > 10 for rubber; the adhesion force is negligible compared to the contact
load when the plasticity index T0 > 2.5 or when the surface energy A-Y < 0.5 j/mr2

for a sufficiently small external force. They concluded that "for smooth clean surfaces
the adhesion can be well over 20 percent of the contact load and, thus, cannot be

neglected."

3. Adhesion forces are time dependent and generally increase with time of contact, even-
tually acquiring a constant value for static contact. Thus, the static adhesion models
generally attempt to predict the maximum value of adhesion forces and can overesti-
mate adhesion effects for dynamic contact.

I 3.3.4 Shear Resistance

To construct new constitutive models of friction it is necessary to characterize the resistance
of the rough interface to sliding (i.e., to tangential motions of the reference planes relative
to one another). While this aspect of the modeling approach still requires much study, there
appears to be at least three methods available for this purpose. First, Bowden and Tabor
[13, 14] estimated the resistance to impending motion (more precisely, the static coefficient
of friction) by calculating the shear strength of metallic oxide junctions developed on theI contact surface. Similarly, Chang, Etsion, and Bogy [26-28] calculated the tangential load
required to reach the fracture strength of metallic junctions as an indication of the tangential
force required to produce sliding. Villiaggio [97], on the other hand, studied the problem of
contact of periodically spaced elastic asperities and defined the load-at which sliding initiates
as that which reduces the curvature of the resisting elastic asperities to zero. Francis [41]I modeled the micro sliding resistance using empirical relations based on existing experimental
data.

Extensive sequences of experiments on sliding resistance of thin films, involving 27 dif-
ferent materials and a wide range of normal loads, are described in the papers of Boyd and
Robertson [15], Briscoe, Scruton, and Willis [17], Towle [92], and Briscoe and Tabor [18]. InI all of these studies, it was discovered that (on a microcontact interface) the interfacial shear
stress -r, during sliding was a function of the normal stress an, = 'ijnjni, and, according to

I
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I Francis [41], their empirical findings suggest that

Cl + c2a,, for light loads
c3au (0.6 < m < 1.4) for intermediate loads

r. = 1og- [c5 + c(an) log r,] for heavy loads (3.20)
<c~~)< .9d(log r8) >

where 0.0 < c(a,) < 1.9 d(loga.,) 0

I wherein loads were varied over a factor of 10 or more and starting from 15 MPa (light), 40
MPa (intermedite) and 200 MPa (heavy). Francis [41] points out that a good approximation
to all of these cases is the simple quadratic function,

T r, = cO + c1on + c2cr• (3.21)I
where CO, c1, c2 are material constants.

Once a micro-shear resistance is characterized, the macro sliding resistance can be com-
puted using the statistical summation procedures described earlier.

U 3.3.5 Initial Conditions

Smooth functions u°(x) and z°(x) are prescribed such that for x E Q,

I u1(',0) = U°(*
z,(•,0) = Zo0,

W,(X, O) = 0

I
U
I
I
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Figure 3.4: A regularization function 0

I 3.4 Variational Formulation

3 In order to obtain a weak formulation of a boundary-value problem we introduce the space
of functions

V = IV -4Wl()N ()_+0 as -.XI __+0}
where fI is a computational domain, N is the dimension of the physical space (2 or 3), and
Wm'P(Q) is the Sobolev space, where specific values of m,p and q depend on the particular
form of constitutive equations.

Multiplying the equilibrium equation (3.10) by a test function and integrating over!R we3 obtain the weak form of the rate equilibrium equations:

I fvi&1 3 .1i d = 0 vVEV

After the substitution of the constitutive equations, application of the divergence theorem
I and a grouping of terms the following variational problem is obtained:

I
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I Find a displacement rate field t -* it(, t) E V such that

VijvEijk~itk.1fd = jVi,,EIk7)dQ2 +f viiids V v E V (3.22)

I The rates of nonelastic strains &(n) can be obtained from the relevant constitutive theory

(see Section 3.2.2). For elastic materials they are identically equal to zero. Therefore for these

materials it is also possible and computationally more efficient to use a total formulation of3 the problem which is as follows.

Find a displacement field u(x)EV, such thatI
Jvj,,Ej1k1Uk,jdfl= v, tids V v E V (3.23)

Note that the values or the rates of tractions on OQ need to be expressed in terms of

displacements using formulas presented in previous sections (contact condition, adhesion,

and sliding resistance).

I 3.4.1 Boundary Integrals

I The boundary 9Qi can be decomposed in the following way

Iwhere a = Fu U Ft U F" U Fc

I F - support zone (kinematic boundary conditions),

SFt - static zone (static boundary conditions),

Fa - adhesion zone (adhesion traction is not negligible),

Ic - contact zone(a > 0).

The integrals over Xf2 in formulas (3.22) and (3.23) can be calculated as sums of integrals

over these four parts of the boundary.

a Support zone

According to the formula (3.3.1)

Sui = 0 on F.
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rigid flat

Figure 3.5: Separation and contact when intermolecular forces are taken into account.

so there is no need to compute integrals over r,

I *Static zone

Traction on this part of the boundary is known, so it can be integrated. In the case of
asperities this traction is usually equal to zero.

9 Adhesion zone

The integrals over Fa have the following forms:

3 (a) total formulation

Jc vitids = jc viq(a)Nids

I 
(b) rate formulation

I
I
I
I
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I where 
vi jids viaN iNk i7kds + Ia vio nbN ds

Idta "" 31 (d) 9_d\ )3]

da = a 3\a -a

I When adhesion forces are taken into account then the intermolecular distance d plays an
important role. A graph of traction resulting from adhesion for d = 0.5 nm and A-,= 0.1
J / m2 in terms of the separation is shown in figure 3.6. Clearly, the adhesion traction is
strongly nonlinear, and practically vanishes at separtions greater than 4d.

Integration of adhesion derivative with respect to separation is required in formulas 3.4.1.
Figure 3.7 shows this function. Because the function changes very rapidly, it has to be
integrated with higher accuracy than e.g. shape functions. Some numerical experiments

* were carried out to check how many integration points are necessary to compute accurately
these integrals. They showed that 10 integration points in one direction are enough to
integrate influence of adhesion forces over an element face which has dimensions less than
10*d, providing that the slope i.e. angle between the face and the flat is small (less than
100). We have such a situation in the case of asperities. Moreover, integration need only be

I performed on part of I, on which separation is less than 4 * d. At this and higher distance,
adhesion traction and its derivatives are practically equal to zero.

I a Tractions on the contact zone 1,

Penalty method which we use here to solve variational inequality problem is equivalent
to allowing for penetration of the rigid flat by the asperity (a > 0). But this penetration
results in a big normal traction in the formI

tN = -aN

wwhere c is a small number.

In addition to normal traction there exists also a tangential traction (sliding resistance)
on the contact zone. There exist several theories which give formulas for sliding resistance
in terms of normal pressure [41J see section 4.3.4 for discussion. Generally all of them can

__ be expressed in the following form

(0 when b=0
t j )' when b=O (3.24)-• N ) h WiNIwhen b -#0

57



U X Graph
I derivative of adhesion [MPa/m]

S adfig.3

I 6.00-

5.00 -

I 4.00-

3.00-

I 2.00 -

1.00-

0.00 -

approach [nml

1 0.50 1.00 1.50 2.00
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3 where

I t - sliding resistance,

h - function which defines the relation between

3 sliding and normal tractions, its form depends

on adopted model of sliding resistance,

Sb- vector of relative displacement between

the asperity and the flat.

I Components of t are not continuous with respect to b when b = 0. To facilitate numerical
solution of the contact problem a regularization of the function t is introduced. The regu-
larization will be done for components of sliding resistance. This vector has at most two non
zero components. Let the first component ts have direction of an arbitrary vector S parallel
to the flat. Let the second component tT have direction of vector product N x S = T, where

N is normal to the flat and pointing towards the asperity. If bs and bT are coordinates of 6
then the components of t after regularization can be expressed by the following formulasI

ts = h(tN)O(b)'Is(bs, bT)

I
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tT = h(tN)¢(b)TT(bs, bT)

I where 4) is a function which provides smooth approximation (of class C1 ) for function h,
and has the following form

2 -1 for x < 0b

O 2W + ( )2) f (3.25)
21E for 0<x<Eb

li for eb < x

where eb is a small number.

3 '1's and 'TT are functions which guarantee a proper decomposition of vector t, i.e. they
provide that I1thI = t2 + t2T. Functions %Ps, TT have the following forms

q's = bs -

I ___

= bT

3 ~ý[bs + bT.

Combination of the above formulas leads to the following contributions to the weak
statement of the problems:

I for the total formulation

vitids = v:(-Ni + tsSi + tTTi)ds

for the incremental formulation

vitids =Jviayiitids +

I ( s =+ 'tS ýS +tT + atTfb /a a s + k A S b

whereI
CfiNiN +ý s S , tsS ,S ,+ ý h S iT 2 + (3.26)fs a ab Os ¢• OsS
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I OftT 8 tT ftT (.7

- Ti N, + -TTiS 1 + -'TiTT (3.27)
4a 1- 8bs 89bT

w - displacement of the flat in N direction,
b - displacement of the flat in S direction.

I 3.5 Solution Method for Elastic Contact Problems

Formulation of the contact problem is nonlinear even in the case of contact with an elastic
body because the area of contact depends on displacements (Fr = F1(u)). Generally, requir-
ing that variational equation (3.23) be satisfied for every test function leads to the following

I nonlinear system of equations:

3 L(u) - R = 0, (3.28)

where L stands for the left-hand side and R for the right-hand side.

I To solve the problem effectively, Newton-Raphson iteration technique was used. The idea of
the method is to substitute a nonlinear functional by its linear part. Linearization is made at
a series of points. Each point is the solution of the problem linearized at the previous point.
If the series is coiLvergent, it is convergent to a solution of the nonlinear problem. For a
simple case of a simple nonlinear equation with one unknown, two steps of Newton-Raphson3 method are shown in Fig. 3.8.

Basic formulas of the Newton-Raphson method are presented below. Let us assume that3 we know a field u,, which is an approximate solution of the equation (3.28). Uo 0  0 can be
assumed. First two components of the Taylor series evolution of left hand side of equation

* (3.28) give

L(u") - R - gradu[L(u") - R]u ; 0

I Assuming that bu = u1+1 - u' we obtain

I L(u') - R + graduL(u')(un+l - u') = 0

Equation (3.28) is a linear equation for u'+1 . We use this equation to compute a sequence
of approximate solutions ul,..., uM. The process is stopped when 1juM- uM-111 and

]IL(uM) - R11 are small enough.

For contact with elastic bodies, equation (3.28) has the following form
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Figure 3.8: Graphical presentation of construction of a series uo, u1 ,u 2,.., convergent to a
solution u" of equation f (u) = 0.
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invijEiik1uk-+'df2+jr victj~u,ýls r iiu+d =, fc viaiu(1 ±pi~ fr i#ju +i

where

3fij is the same as in the incremental formulation (3.29)

da [3 K aJ ~

pi = 1(w + d- PN + PoN)N, (3.31)

8 qiy ( [dp (d\9] Ni (3.32)
3 d [al a)/

Variations were evaluated neglecting dependence rc = Ic(u). The above linearized prob-
lem is solved by the standard FEM.

In order to provide automatic control of the performance of nonlinear procedures, an
expert system-like approach has been applied. This application is based on our previous
research on automation of computational procedures [96], and employs several heuristic
rules to monitor and control the performance of nonlinear iterations. While in the original
implementation discussed in reference [96] the specialized knowledge engineering software

was used to develop the expert system, in this project the essential features of the expert
system were coded in FORTRAN and included in the code. The expert system is activated

* at each time step after completing a prescribed number of iterations (sufficient to estimate

trends in error histories). The decisions of the expert system are used to control the solution

process and obtain a converged solution at minimum cost.

3.6 Solution Method for Viscoplastic Contact Problems

Formulation of the problem in this case is time-dependent.

The strategy employed in the solution of this problem is as follows: with the initial
distribution of stress, temperature and internal variables specified use the rate form of the
equilibrium condition (Eq. (2.23)) to obtain the nodal displacement rates. Then integrate5 the constitutive equations forward in time at the element Gauss integration points. With
updated value of the stress, temperature and internal variables at the new time, the equilib-
rium equation is solved again. This sequence of determining the nodal displacement rates,
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I then advancing the constitutive equations in time is continued until the desired history of
the initial boundary-value problem has been obtained.

3 Thus, the algorithm proceeds through the following steps:

3 1. At time t, initialize aii, Zi for each element;

2. Calculate 0 = fij(aij, Zk) for each element;

U 3. Assemble and solve [K]& = F;

I 4. Calculate iij for each element, i = [B]U;

5. Calculate &ij for each element, , = [E](ý - 0);

I 6. Calculate Zi for each element, Zi = gi(ij, Zk);

i 7. Integrate &rj, Z forward for each element to get oij and Zi at t + At,;

8. If t + At, < tfm go to 2, otherwise stop.

I The computational method above has been presented for a constant time step Ats.
Computational experience by several investigators (see refs. [7,8,55]) indicates that a very3 small time step can be required because of the "stiff" nature of the ordinary differential
equations describing the internal state variables. To gain improved efficiency and reliability
a variable time step algorithm has been implemented. The basic idea of this variable time
step algorithm is presented below for a scalar evolution equation.

The solution is advanced using a predictor-corrector scheme. The predictor phase consists
3of an Euler step:

3 I=f(y,t) (3.33)

The solution is advanced using a predictor-corrector scheme. The predictor phase consists

3 of an Euler step:

Yt+at = Yt + At1t (3.34)

An error indicator E [15,24] is then computed from

I
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I E = (3.36)

* )t+JyA4

The error indicator is next compared with a preset error criterion and if the criterion is
met, the time step is small enough to proceed to the corrector stage. Otherwise, the predictor
phase for Eqs. (3.34)-(3.35) is repeated with a smaller time step. For the viscoplastic
evolution equations with damage modeling, the control variables used to calculate the error
indicator were the components of a stress tensor aio, internal state variables Zi, and the
damage variables wi, with the maximum of these selected as the controlling error.

The corrector phase is the modified Newton scheme,

Yavg ,P + ýPt /2

It+A -- Yt + At Yang9

A flowchart depicting the adaptive scheme is shown in Fig. 3.9.

I
I
I
I
I
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Figure 3.9: Flowchart for the solution of viscoelastoplastic evolution problem with adaptive
I timestepping
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I 4 Finite Element Analysis of Contact Problems with
Friction

4.1 General Information About the 3D Finite Element Code

I The development of asperity modeling capabilities was based on existing, state-of-the-art
three-dimensional adaptive finite element kernel code, which consists of several separate
modules organized around the common data structure and execution supervisor. Figure 4.1
shows a general structure of the code directories. The most important modules are:

I * an object-based data structure designed specifically for the h-p adaptive finite element
method,

I e an execution supervisor controlling the overall execution of the computations,

* pre- and postprocessors,

* an adaptive package,

e linear equation solvers, and

* a solver for a specific boundary value problem (in this case, asperity modeling).

Importantly, the elements of the finite element data structure, adaptive package, graphical
interfaces and linear equations solvers were designed to be applicable to a general class of
problems, and relatively easy customizable to specific problems in solid mechanics or fluid
mechanics. Below, selected modules of the above kernel are discussed in more detail.I

Object-based Data Structure

A new state-of-the-art data structure was designed and implemented in the kernel to avoid
typical limitations of traditional finite element codes, such as:

I *fixed size common blocks and arrays,

* predefined limits on problem size,

* element information spread throughout memory in variety of arrays.

I The object-based data structure was coded in C computer language, which allows for
dynamic memory allocation and more flexible handling of objects and structures. Typical
examples of objects handled by this data structure are:
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Figure 4.1: A general finite element code structure
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I * elements,

* nodes,

* boundary condition data,

i set of degrees of freedom, etc.

The major advantages of object-based handling of these structures are listed below:

* the objects are created only when needed,

* all related information is contained in one structure, and closely packed in memory,

i all the objects are automatically saved/restarted,

e the memory is reused when object is deleted, say during mesh refinement.I
It is of importance to note here, that the elements in the above data structure are

grouped and colored in order to facilitate vector and parallel processing. The basic idea of
this vectorization and parallelization is presented in figure 4.2. Importantly, all the elements
in a batch are of the same type, so that the generation of element stiffness matrices and
right-hand sides can be effectively vectorized by putting loop over elements as the innermost
loop. On the other hand, since the elements in different colors have no common nodes or
sides, the generation of element of element matrices and assembly for different colors can be

performed in parallel.

i Adaptive three-dimensional finite element meshes

The finite element kernel is designed to handle h-p adaptive finite element meshed for
three- and two- dimensional problems. By h-p adaption we understand a finite element
technique, wherein the elements can be automatically subdivided into smaller elements (h-
refinement /unrefinement) and the polynomial order of approximation can be locally in-

creased or reduced. A major advantage of properly designed h-p mesh is that it can achieve
a higher order of accuracy with much less degrees of freedom than traditional finite element
methods. Moreover, the optimal mesh is designed automatically by adaptive procedure

driven by appropriate error estimators.

For three-dimensional problems, anisotropic h-refinement can offer a wide improvement inI computational effort over more conventional isotropic refinement schemes. This is primarily
true because anisotropic refinement allows for selected refinement in the directions of interest
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loop over groups

loop over batches

fl loop over integration points
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parallel vector get problem coefficients for
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endlooo

endloo0

endloop

I

I color - not connected elements

group - "topologicallvy" identical elements
batch - optimal vector length

I
I

Figure 4.2: Vectorization and parallelizaton for groups and colors

* 69

I



I

I only (i.e., directions of high error). Thus, anisotropic refinement may greatly reduce the total
number of unknowns in many problems, in turn reducing the required computational effort.

Isotropic refinement implies that an element is identically refined in each local direction.
For a hexahedral element, an isotropic refinement is a division into two along each of the three
local directions, which results in eight sub-elements. In contrast, an anisotropic refinement
of a hexahedral element is a division into two along a single local direction, resulting, of
course, in only two sub-elements. Thus, if solution phenomena is oriented with respect to
a particular local direction, then anisotropic refinement allows for degrees of freedom to be
introduced only in the direction which actually reduces the total error. Isotropic refinement,
on the other hand, would have introduced degrees of freedom in all directions, many of them
providing little improvement to the overall solution. Anisotropic refinement can, therefore,
provide a higher level of accuracy than isotropic refinement using the same number of degrees

* of freedom.

Several examples of h-adapted meshes in three dimensions will be shown in Section 6.
Note that the mesh refinement introduces several theoretical and numerical complications

into the algorithm, such as:

I * constrained or "hanging" nodes between elements of different refinement level,

* propagation of constraints and possible "deadlocks" in the case of directional refine-

ments for complex geometries,

3 * complications of unrefinement due to one-to-two approximation rule.

Detailed discussion of these issues is beyond the scope of this report. It is sufficient to
note, that before application of the above kernel to asperity modeling all these difficulties
have been successfully resolved and the existing kernel offers operational unique automated
directional refinement capability for three-dimensional hexagonal meshes.

Interactive user's interface and graphical postprocessing

I have been implemented in the adaptive kernel to enable user-friendly operation of the code
and viewing of three-dimensional result. The interactive graphic interface is based on a
window environment, with a menu-driven selection of options. A sample view of the screen

with several windows open is presented in figure 4.3.

The graphic interface can be customized for specific applications, such as contact and fric-I tion modeling, so that the solution process and essential data can be controlled interactively
by the user.

I 70

I



I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
U Figure 4.3: Sample screen with interactive window environment
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I The most important feature of the graphical user interface is a three-dimensional inter-
active postprocessing capability. For two-dimensional models, such visualization is rather
trivial as all of the computational domain is always visible and it is a simple matter to zoom
and/or pan through the mesh to closely review the results. The real challenge comes from
the need to visualize phenomena in three-dimensional domains where most of the numerical
data is actually hidden from the observer and one needs to enter the domain to view the
local structure of the solution.

The postprocessing capability implemented in the kernel is capable of displaying solution
obtained on structured and unstructured meshes, with both h-refinement and p-enrichment
present in the mesh. The package is fully interactive and operates efficiently on high-end
workstations. The basic graphic features displayed include:

e mesh plots,

* isosurfaces of selected quantities,

* slicing planes with overlaying isolines,

* *deformed configurations,

9 three-dimensional cursor for picking pointwise values of the solution,I
All the above displays are available with interactive translation, rotation and zoom op-

tions, hidden line removal, panning, etc.

Importantly, the graphics package is designed to take advantage of specialized graphic
hardware and software available on many platforms. The primary platform for the package
is the SGI Iris family, which is also a primary platform in this project. Alternatively, X-
windows graphics is supported, which is operational on most Unix workstations.

U 4.2 Formulation of a Structural Deformation Problem in the 3D
* Code

In the project, the 3D kernel was customized to solve contact problems. It was supplemented
with over 8,000 instructions. They enable to run specialized drivers when a contact problem

is to be solved. The drivers solve the contact problem using either total formulation or
incremental formulations (see section 3.4). The first one uses Newton-Raphson iterative
method and calls the FEM linear solver at each iteration step. The second driver uses Euler
predictor corrector integration method with automatic time step control and calls the FEM
linear solver twice at each time step.
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i To solve solid mechanics problems with contact, additional customization of the kernel
FEM code had to be implemented. They define, in a special format, coefficients of the volume
and boundary integrals introduced in previous section. As regards the contact condition,
it was assumed that contact can take place at any point of the boundary on which static
boundary conditions are applied. Therefore, while the integrals over this part of boundary
are evaluated, the program examines whether an integral point is in contact with the flat.
If penetration is greater than zero, then integrals corresponding to contact and friction
are added to the coefficients of the stiffness matrix and the right-hand side. Additionally,
adhesion integrals are being evaluated right outside the contact zone. In order to properly
capture the strongly nonlinear separation-dependent adhesion forces, very fine integration
schemes are being used.

To enable automatic generation of meshes for asperity analysis, five additional programs
were prepared. They generate customized grid files for:

* 3D axisymmetric asperity (cosine hill),

* 3D axisymmetric asperity (spherical),

i e 2D asperity (cosine hill),

* 2D asperity (cylindrical),

* 2D trapezoidal asperity.

i The first two programs make use of an in-house GAMMA3D mesh generator . All of
them provide generation of meshes with first and second order of geometry approximation.

I
i
I
I
i
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I 5 Basic Verification of Numerical Models

To confirm reliability of the code and material models several numerical tests were performed.
Selected tests are described in this section.

Several basic tests were carried out to verify the linear elasticity formulation. They were
performed for both 3D and 2D problems with second and first order geometry approxima-
tion. The results of tests were compared with analytical solutions. Satisfactory results were

* obtained for all the polynomial orders (1 through 8).

The objective of the next group of tests was to verify incremental formulation of the
viscoplastic problem. They were carried out for alloy B1900+Hf at temperature 871'C.
Material constants as well as experimental results for this material are given in reference
[10]. For Bodner-Partom model the material constants are as follows:

Do= 104 S-1 m = 0.270 MPa-1

n = 1.03 M2 = 1.52 MPa-1

Zo = 2400MPa r = r2=2

Z2= 2400 MPa A 1 = A2 = 0.0055 s 1

z = 3000 MPa E = 142 GPa

Z3= 1150 MPa v = 0.0805

* Some of these tests are listed below:

(a) Solution of the uniaxial tension for a purely elastic body using the incremental
formulation. The results were the same as obtained with the total formulation.

(b) Solution of the uniaxial creep test for an elasto-visco-plastic body. The results
were compared with an experiment presented in reference [56]. Certain discrep-

ancy of results was observed. This discrepancy was caused by an erroneous value
of the Young modulus given in reference [56]. After a correction of Young modulus
(E = 132 GPa) the numerical and experimental results agreed satisfactorily (see
Fig. 5.1). The test verified mathematical and numerical models for this simple
loading (uniaxial tension).

(c) Next three tests were carried out in order to examine the performance of the
computer program for more complicated loading histories. The tests included:

I * Uniaxial cyclic tension and compression shown in Fig. 5.2.

* Uniaxial loading for 5,000 s and relaxation for next 5,000 s. See Fig. 5.3.
* Loading for 1,000 s and creep for next 1,000 s. See Fig. 5.4.

The above basic tests verified the formulation of the viscoplastic problem as well as its
* implementation in the code.
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* 6 Verification of Numerical Models of Asperity

I Numerical modeling of response of surface asperities to contact and friction loads is one of
basic components of the new asperity-based interface models developed in this project. In3 order to verify correctness of finite element asperity simulations, we performed several tests
and comparisons, in particular:

U * modeling of elastic sphere in contact with a rigid flat, (Hertz problem). Analytical
solution is available for this problem [48,91],

I *numerical modeling and experimental measurements for custom-made asperities with
strongly pronounced nonelastic properties.

Details of these tests are presented further in this section.

I 6.1 Elastic Sphere in Contact with a Rigid Flat

3 In order to verify the contact algorithm and the nonlinear solution procedure, a finite element
solution was obtained for the contact of elastic sphere with a rigid flat. The finite element
solution of this problem was compared with theoretical solution due to Hertz [48,91]. For
a given sphere of radius R and prescribed normal displacements of the flat equal w, the
theoretical predictions of the contact radius r, contact area A and total load P are given by:

r = r-w
A = irRw
p 4 E R

- 3 (1-,2)

* The above problem was solved numerically using the following dimensionless data:

R = 1.0

E = 1000.
V = 0.33 w = .001, .002, .005, .01, .02

I
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Figure 6.2: Isosurfaces of the vertical displacement for the Hertz problem, w=.02
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U Due to a localized nature of the contact, the finite element mesh was defined only for a
section of the sphere around the contact zone. The problem was solved using the Newton3 procedure combined with adaptive mesh refinement. An example of the final refined mesh
obtained for w=.02 is shown in figure 6.1 (deformed configuration is displayed and only
boundary elements are shown for clarity). The same mesh with isosurfaces of vertical dis-
placement is presented in figure 6.2, the slicing plane, with stress ay,, is shown in figure 6.3,
and the error indicators projected on two slicing planes are displayed in figure 6.4.

I The results obtained numerically compare favorably with numerical predictions. A de-
tailed comparison of theoretical and numerical results are shown in table 6.5, and the graph-3 ical comparisons of predicted contact area and total load are shown in figure 6.6.

I 6.2 Experimental Studies of Models of Asperity

In order to verify numerical simulation of nonelastic behavior of asperities, several experi-3 mental measurements were performed and then compared with numerical predictions.

These tests included simple tension and compression problems designed to verify nonelas-
tic material constants for aluminum, as well as contact tests for two types of custom-made
asperities. In this phase of experiments, which we refer to as Phase I, custom asperities were
chosen in order to eliminate random surface factor from the comparisons. In Phase II. which3 will be performed in the next year of the project, real random surfaces will be considered.

The objective of this Phase I experimental study is to study the deformation of contact
surface asperities and to verify the analytical prediction by experimentation. In design of the
experimental study, it is initially conceived that the test is to be carried out under a small
normal load (500 Lbf) condition. A controlled surface asperities are machined onto both
surfaces of an aluminum block. In the test arrangement, the aluminum block is sandwiched
between two hardened steel blocks with smooth surfaces, and the steel-aluminum-steel block
assembly is compressibly loaded to approximately 500 Lbf. The deformation of asperities

on the aluminum block is monitored during loading. After completing the normal loading,
a horizontal load is slowly applied to the aluminum block until the block begins to slip.
An estimation of the coefficient of friction can thus be made by using the measured normal
and horizontal loads, and be compared with that from the analytical prediction. A test
apparatus is built for this purpose, and tests are carried out with this apparatus. After
reviewing the test results, it is decided that the deformation of surface asperities on the
aluminum specimen is too large for the purpose of model verification. The shape of asperity
is changed, and the tests are carried out under a normal load of approximately 2,000 Lbf.
The results from both arrangements are reported in this section.
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N ELASTIC SPHERE IN CONTACT WITH A RIGID FLAT

i E = 1.0000E+03 nu= 0.3000 R= 1.0000

-

i THEORY

Displ Cont. rad. Area Load Max. pres.

-
0.00200 0.04472 0.006283 1.3105E-01 3.1286E+01
0.00500 0.07071 0.015708 5.1803E-01 4.9468E+01
0.01000 0.10000 0.031416 1.4652E+00 6.9958E+01
0.02000 0.14142 0.062832 4.1442E+00 9.8936E+01

i
NUMERICAL

Displ Cont. rad. Area Load Max. pres.

0.00200 0.04237 0.00564 1.5400E-01 4.3600E+01
0.00500 0.07001 0.0154 5.5400E-01 5.4000E+01
0.01000 0.10092 0.0320 1.5400E+00 7.9200E+01
0.02000 0.14809 0.0689 4.5000E+00 1.0840E+02I

i
Figure 6.5: Comparison of theoretical and numerical results for the Hertz problem
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i Figure 6.6: Comparison of theoretical and numerical results for the Hertz problem; (a)
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1 6.2.1 The Test Apparatus

3 A sketch of the apparatus is shown in Fig. 6.7. An aluminum (6061, T4) block of 1' x 1' x
0.25" is sandwiched between two steel blocks of the same dimension as shown in the figure.
The V-shaped grooves of angle 45 deg, pitch spacing of 0.1 inch, and depth of 0.125 inch
are machined with a specially designed cutter on both surfaces of the aluminum block to
simulate the surface asperities. A sketch of the grooves is shown in Fig. 6.8. The surfaces of
the steel blocks are machined smooth and (water) quench hardened to RC-30. It should be
mentioned that, due to the angle of the cutting tool and the pitch spacing, the tips of the
grooves are not in a plane, the heights of tips vary alternatively as shown in the photograph3 (Fig. 6.8) to be discussed in a later sectiGn.

A normal load is applied to the specimen assembly through a mechanical screw jack from
the bottom of the apparatus. The normal load is monitored with a small "load transducer"
of capacity 500 Lbf. The normal deformation of the simulated asperities on aluminum block
is measured with a "proximate sensor" with an operation range from 0 to 0.1 inch. The sand-
wiched specimen assembly is first installed in position, and an initial load of approximately
50 Lbfs is applied to the specimen prior to "zero adjustment" of the recording instrument
(an X-Y plotter). A total normal load of 500 Lbs is then applied to the specimen at a rate of
approximately 10 Lbf per minute. After the normal load has reached 500 Lbf, a horizontal
load (by lead blocks and beads) is slowly applied to the aluminum block until the block starts
to slide. The horizontal load is monitored with a ring-shaped load transducer (laboratory
built) as shown in Fig. 6.7.

3 Note that even with very precise calibration of the test apparatus, certain compliance
or "setting in" occurs during loading and pollutes the measurements. This is especially
true in case of high loads and very small displacements considered in this experiment. It is

a standard practice in experimental tests to discard the initial part of the load curve and
appropriately translate the remaining part. In this section, we present results in the "raw"
form, but numerical comparisons refer to corrected graphs.

-- 6.2.2 Tests Results From the Above Apparatus

Two tests are carried out. A representative force-deformation plot is shown in Fig. 6.9. It
is seen that there is an appreciable amount of plastic deformation of the surface asperities

on the aluminum block (neglect the bulk deformation of both aluminum and steel blocks)
when the block assembly is loaded to 500 Lbf. A horizontal force is then slowly applied to
the aluminum block. It is visually observed that the aluminum block starts to slip when the
horizontal load reaches 108 Lbf. Since there are two contact surfaces between the aluminum
block (with asperities on both surfaces as shown in Fig. 6.8) and steel blocks (with smooth

* 87



I

I surfaces) in the test arrangements, the nominal coefficient of friction is (108 /2)/500 = 0.108.

I 6.2.3 Deformation of Asperities Under a Larger Normal Load

The asperities shown in Fig. 6.8 have pointed tips, the deformation of tip is difficult to
calculate. It is then decided to change the geometry of asperity as those shown in Figs.
6.8(b) and 6.8 (c). In Fig. 6.8 (b), the asperity is modeled as a 45-deg grooved with a3 truncated tip. In Fig. 6.8 (c), the asperity is modeled by spaced circular rods. The force-
deformation relationship for the specimen with asperities as shown in Fig. 6.8 (b) and 6.8
(c) are measured. The test arrangements are the same as that described in the previous
section. Since the maximum load in these test are much higher than 500 Lbf, the tests are
carried out and the representative force-deformation curves are shown in Figs. 6.10 and3 6.11, respectively. A photograph of the cross-section of the deformed grooves is shown if Fig.
6.12. It is seen that only the alternate grooves were deformed. There are seven grooves on
each surface of the aluminum block, therefore only eight (four on each surface) of them are
deformed. Since the maximum horizontal load required to move the aluminum block in this
exceeds the capacity of the ring load cell used in previous section, the horizontal pulling test3 has yet to be carried out (we need to build a new load cell and loading frame).

Finally, a test for the tensile property of the aluminum used in this study is carried out.
The stress-strain curve from an aluminum (6061, T4) specimen is shown in Fig. 6.13. Again,

the test is carried out at a slow loading rate (approximately 20 Lbf per minute).
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I Figure 6.7: A sketch of test apparatus (not to scale).
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3 Figure 6.8: Different models of asperities studied experimentally.
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Figure 6.12: A photograph of deformed asperity

I 6.3 Numerical Simulation of Experimental Measurements

6.3.1 Viscoplastic Uniaxial Stress State

The aim of this final test was to determine viscoplastic material constants for aluminum 6061
T4. Bodner-Partomn model of viscoplastic materials uses a total of 14 material constants.
However, for aluminum alloys at room temperature only 7 material constants are of primary
importance. Their values obtained from reference [10] for a different heat treatment (T6)I are listed below:

E = 73.9 GPa
V 0= 0.33

I

zo = 450 MPa
ZI = 550 MPa

igr= 0.12 MPaAd
D = 10"s'

n = 5.0

I In order to verify these values, a tension test was performed and compared with numerical
results. The test indicated that the 6061 T4 sample has slightly different values of Young
modulus and the kinematic hardening parameter. These values are:

E = 65.0 GPa
= 5.8I These material constants were used in further computations. Fig. 6.14 shows the plot

of stress-strain relation for initial and modified material constants in comparison with the
experimental results.
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Figure 6.13: A tensile stress-strain curve for aluminum
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6.3.2 Viscoplastic Cylindrical Asperity

Aluminum cylinder was used as a model of a "macro asperity". Numerical and experimental

tests were carried out. It was assumed that the cylinder can be analyzed as a 2D case. The

original mesh used for discretization of a section of a circle is shown in Fig. 6.15. After

the first solution pass the mesh was automatically refined. It is shown in Fig. 6.16. The

viscoplastic results obtained at both meshes as well as a purely elastic solution for the first

mesh are compared in Fig. 6.17. The conclusions are that:

* behavior of the specimen under applied loading is almost elastic,

* viscoplastic solution is reasonable - it gives smaller values of the contact force,

* .the refined mesh gives results which can be treated as a final numerical solution (the

difference between solutions obtained at coarse and fine meshes is small.)

U The numerical and experimental solutions are compared in Fig. 6.18. Note that the

experimental results have been rescaled. Instead of the total force - total displacement

relation measured in the experiment, Fig. 6.18 shows force per unit length of upper half-
cylinder. Moreover, metric units were used.

It can be observed that the numerical results compare favorably with experimental mea-

surements. Recall, however, that the experimental data were translated, to correct for

settling in the apparatus (see Section 6.1).

6.3.3 Viscoplastic Custom Surface Model

Comparisons of results for a model truncated V-shaped of asperity are described in this

section. Two meshes which were used for discretization of this specimen are shown in Fig.

6.19 and 6.20. Numerical results for both meshes are shown in Fig. 6.22 and 6.21. While for
the cylindrical model the behavior of the material was almost elastic, in this case the influence

of yielding was significant. Maximum nonlinear strain was about 80%. It means that at

least locally solution is beyond the theory of small strains which we use. The comparison of

numerical results and experimental ones is shown in Fig. 6.23. A good agreement of results

I can be observed for both models of asperity.

Some of unevitable sources of discrepancy are the following:I
e error of experimented measurements,

* modeling of inelastic behavior of the material beyond the small deformation range,
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e unknown deformation history of the specimens, prior to the experiment,

e errors of time-integration and other numerical errors.

Comparison of numerical and experimental results as well as the basic numerical tests
lead to a conclusion that the adaptive finite elements represents nonelastic deformation of
asperities with sufficient accuracy.

I
I
I
I
I
I
I
I
I
I
I
I
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i Figure 6.18: Comparison of numerical and experimental results for the cylindrical sample

I 100

I



I
I
I
I
I

I

IFiue .1:Oiiadiceitinoth seodseie (tuctdVs pe aseiy

I//// [llllllllW ii,

I
I
I

I Figure 6.20: Refined discretization of the second specimen

D 101



I
I
U
I
I

*/\

I
I\

*/\

I 1\

U /

- - original shape of

the specimen

I
I Figure 6.21: Deformation of the V-shaped asperity

I
i 102

I



CI
Ii

I 0 ------- original mesh

-iF-- refined mesh*L
U0.10 0.20 0.30 0.40

OISP MM X lOxxl

3 Figure 6.22: Numerical results for the second specimen obtained on two different meshes

3 103



*0 W

C2,'

* 0.t0.2 0'004

00



U

1 7 Studies of Asperity-Based Models of Contact and
* Friction

In this section we present examples of constitutive interface models, developed through a3 complete statistical homogenization procedure. The basic questions addressed here, besides
the quality of these models, are as follows:

I * what is the dominant type of asperity deformation (elastic or nonelastic),

* what is the effect of adhesion at the asperity level and after homogenization,

* what is the effect of surface roughness,

1 * how do theoretical predictions compare with experimental measurements.

To answer these questions four different types of surfaces were analyzed. The first three
were made of aluminum. Their profiles were taken from literature [44]. The fourth type of
surface was made of steel. The pressure-approach relationship was measured experimentally3and compared with its numerical prediction. The profile was scanned with an electronic
microscope. Having the profile of a surface as a discrete function it was possible to compute
its statistical characteristics such as medium height, standard deviations of height, slope
and curvature. Those statistical characteristics were used to compute expected values of
real area and force of contact as functions of approach. Deterministic solutions to a contact

* of two asperities were computed by the hp adaptive code using different assumptions about
shape of asperities, its material model and with or without taking into account the adhesion
forces. The results include also estimation of friction coefficient.

7.1 Simulation of a Greenwood-Williamson Asperity-Based
Contact Model

The results of elastic solution of spherical contact problem were used for initial tests of
a complete statistical homogenization procedure. In particular, we compared our finite
element based predictions with a classical asperity-based contact model due to Greenwood
and Williamson [44]. This is one of historically first asperity-based models, derived under
the following simplifying assumptions:

e the tips of asperities are spherical,

Ue all asperities have the same radius of curvature R,
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U * asperity height is a random variable with Gaussian distribution,

3 e contact is elastic and described by the theoretical solution of the Hertz problem.

Although this model is much simpler than the ultimate objective of this project (random
asperity height and curvature, nonelastic deformation, etc.), it provides a very good initial
test for the homogenization procedure. Importantly, our modeling of this problem differs3 from Greenwood's approach in that:

* solution of elastic contact problem has been obtained from finite element modeling,
* rather than from Hertz theory,

* expected values of contact load and area have been calculated using general numerical3 quadrature, instead of analytical integration.

The simulation of the Greenwood-Williamson model was performed for the following set
of parameters:

R = 0.1414 mm3p = 7.07106 x 11-4 mm
V = 0.3
E = 321.7335 kG\mm2

n = 300 peaks\mrm 2

where R is the radius of asperity tips, op is the standard deviation of asperity height and n3 is the surface density of asperity peaks. The results are presented in figure 7.1, which shows
respective comparisons of load-separation and load vs.contact area curves. It can be seen
that the difference introduced by numerical modeling of asperity and numerical integration of
expectation values is within acceptable bounds (note that these differences could be further
reduced by application of finer meshes for the asperity contact problem.)I
7.2 Effects of Asperity Shape

I Next test of the homogenization procedure was performed for an aluminum interface with
surface characterized by the following parameters: a = 1.3 /Am, 6, = 0.13, & 0.018 Pn- 1 ,

3DP = 0.00044 peaks /Msm 2 . During this test the force and area of contact for a single asperity
were computed in two ways, using

I * homogenization procedure based on elastic solution for sperical asperities, with random
distribution not only of heights but also of curvatures, (Hertz solution was used).

I
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I e Homogenization procedure based on numerical solutions for elastic, sinusoidal asperi-
ties. These asperities better simulate the actual shape of a rough surface.

Numerical solution for sinusoidal asperities was computed with taking advantage of the
fact that the problem is axisymmetric. Comparison of the computed contact force and

area versus penetration is shown in figures 7.2 and 7.3. Results for contact of two surfaces
obtained by those two models are compared in figure 7.4.

The results of this test show that influence of asperity geometry (sinusoidal rather of
spherical) is important, especially for higher loadings. However, after homogenization, these
differences are less pronounced. This is because major contribution to expected values of
contact pressure and area come from asperities deformed at their tips only.

I 7.3 A very smooth engineering surface

The next case analyzed is normal contact of two very smooth aluminum surfaces, with profiles
corresponding to that shown by Greenwood and Williamson in Reference (181, Figure 5. The

material is aluminum alloy (6061, T4), with constitutive parameters defined in Section 6.3 The surface roughness corresponds approximately to a very well polished bearing surface,
and is defined by the following parameters:

a = 0.013 ,um

6r =0.013

& = 0.018 pm- 1

3DP = 0.058 IZm-2

To represent relative surface roughness, it is convenient to use a so-called plasticity index,

I defined by Greenwood and Williamson [441 as:

E'

where E' = E(1 - v2), H is the material hardness, and R is the asperity radius. According

I to arguments presented by Greenwood and Williamson, for the values of T smaller than
1 the surface deformation is essentially elastic at a wide range of normal loads, while for
*I' > 1 plastic deformation can be expected. Since in the present approach the asperity

peak curvature is a random variable, we obtain a range of plasticity indices corresponding to
various asperities under consideration. For the surface considered here, the value of plasticity
index varies between 1 =0.8 and 'I = 3.5.
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3 Figure 7.2: Contact force for a sinusoidal asperity
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I In order to study the effect of adhesion for smooth surfaces, considered cases with and
without adhesion forces (clean and contaminated surfaces, respectively). The model of ad-3 hesion corresponds to the one discussed in this work, with the surface energy of adhesion
/-f = IJ/m2[52].

The first step of the analysis was to use finite element method to model loading of
several individual asperities, with radii spanning the effective support of the probability
density function, namely from R=15 microns to R=300 microns. A typical mesh for such
an analysis is shown in Figure 7.5. A very fine refinement around the perimeter of the
contact zone was needed to correctly resolve the strongly nonlinear adhesion forces. A
sample solution for a selected asperity of radius 1R=15.4 microns is shown in the form of
load-deflection curves in figure 7.6. It is of interest to notice, that in presence of adhesion
(clean surfaces in vacuum), certain attractive force develops before the asperities come into
contact. In these computations, elastic asperity bahavior was assumed.

After sending the finite element results through the statistical homogenization package,
one obtains pressure-approach and contact area approach curves as shown in Figures 7.7 and
7.8. Interestingly, due to a specific statistical distribution of asperity heights, the effect of
adhesion is more pronounced on the surface level than for a single asperity and, for clean
smooth surfaces in vacuum, a considerable attractive force can be expected.
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Figure 7.7: Smooth aluminum surface: normal stress versus approach curve

I One comment is in place regarding the "approach" axis in Figure 7.6. By definition.
the approach between two surfaces is measured from the moment when the surfaces (the

highest asperity tips) come into contact. For real surfaces this initial contact is relatively

easy to capture. However, in theoretical analysis, with Gaussian distribution of surface

height, it is not the case - the maximum asperity height is not clearly defined (in fact it

grows to infinity, with probability density vanishing to zero). As a consequence, the selection
of the zero point on the "approach" axis is somewhat arbitrary - for practical purposes it

may be chosen as a point where some noticeable normal load develops on the interface.

In Figure 7.7, for illustration purposes, the approach was measured from a rather large
separation between the surfaces. Importantly, this approach measurement does not affect

the relationship between the real contact area, normal load and normal stiffness, which is
of greater practical importance. For the surface under consideration the real contact area

calculated for increasing load is shown in Figure 7.9.

As mentioned, the above asperity analysis was performed using small deformation theory,
with additional assumption of elastic asperity deformation. Therefore a question arises: Of

all the asperities in contact, how many satisfy the above assumptions? An answer to this
question is shown in Figure 7.10, which presents, for increasing approach, the percentage of
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Figure 7.9: Smooth aluminum surface: contact area for increasing normal pressure

I asperities that are in purely elastic contact, as well as the percentage of asperities within
the range of small deformation theory (I•tmaz < 8%). Clearly, the surface deformation
remains well within the range of small deformation theory. However, the number of nonelastic
asperities increases with increasing approach (load). This corresponds quite well to the
behavior suggested by the range of plasticity index for the surface under consideration. In

order to assess the importance of nonelastic effects, an additional, fully nonlinear derivation
was performed, for the case without adhesion. A comparison of approach-pressure curves
obtained with purely elastic and elasto-plastic approaches is shown in figure 7.10. The
maximum difference between elastic and elasto-plastic results was less that 5%.

It can be noted, that a very localized occurrence of plastic deformation in an asperity
does not strongly affect the values of load and contact area, and that the load-deflection and
load-area curves obtained with the elastic theory are quite reliable, even with 50 percent ofI asperities outside the purely elastic range. This is because only for about 7% of asperities
the elasto-plastic solution was significantly different than the purely elastic one.

1I
I
3 117

I



U
I

I 100.00 - I _ e.def.

E 80.00 -

I 60.00- •

U 40.00 -

I 20.00 -

0.00 I I pressure [10r Pa]

i 0.00 0.50 1.00 1.50 2.00

Figure 7.10: Smooth aluminum surface: percentage of asperities satisfying assumptions of
purely elastic deformation
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1 7.4 Studies of a rough surface

A second example considered here is that of a hypothetical rough engineering surface. Sim-
ilarly as in the previous case, the material is aluminum alloy, and the surface statistics isI defined by:

a o" = 1.3 ym

= 0.13

= 0.018 pm-'

Dp = 0.00044 pm- 2

3 For this surface, the plasticity index is well over the value of 30.0, so that extensive plastic
deformation can be expected. In order to derive asperity-based model of the interface, several
asperities with various peak curvatures were analyzed by the finite element method. The
deformation was fully elasto-viscoplastic, and the asperities were subjected to normal load
executed by a rigid flat surface. Importantly, for the rough surface the results were not

Sstrongly affected by adhesion. This effect corresponds well to the observations of Chang, et.
al. [26-28], that the effect of adhesion, even for clean surfaces, diminishes with increasing
surface roughness. On the other hand, for rough surfaces the effect of nonelastic deformation
is very significant - this can be seen from the comparison of elastic and elasto-plastic pressure-
approach curves shown in Figure 7.11. Clearly, the difference between elastic and elasto-3 plastic solution is very pronounced. A similar effect can be observed on the plot showing
the dependence of real contact area on the normal pressure - Figure 7.13. Importantly, this
difference will have a very strong effect on the values of the coefficient of friction.

It is of interest to look again at the percentage of asperities within elastic range and within
small deformation range. These numbers are shown in figure 7.14. It can be observed, that for

I rough surfaces even a very small load causes significant plastic deformation - the percentage
of elastic asperities is essentially zero. Moreover, at higher loads, some asperities experience
strain levels exceeding the range of small strain theory - an important observation, especially

for more flexible polymer surfaces.
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I Figure 7.11: Rough aluminum surface: normal stress versus approach curve
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1 8 Experimental Verification of Asperity-Based Con-
tact Models

The ultimate test of new asperity-based models of contact interfaces comes in applications3 to predicting phenomenological behavior of real engineering surfaces.

To verify these new models, a special experiment was designed and performed. The main
objective was to compare experimental force-deflection relationship with the asperity-based
theoretical prediction. Additionally, measured and computed coefficients of friction were also
compared. The following subsections describe the experiment and numerical computations.

8.1 Experimental Samples, Apparatus, and Measurements

I A major difficulty in experimental verifications of models of frictional interfaces is caused by
relatively small height of surface asperities and resulting small compliance of the interface.
Under these conditions, it is rather difficult to avoid pollution of the results by such effects
as:

* *deformation of a bulk material,

e departure of experimental contacting surfaces from ideally flat, which spoils homoge-
neous distribution of contacting asperities and creates additional, plate-bending type
compliance,

* .compliance of the loading apparatus,

3 * departure of loads from purely axial, etc.

In order to minimize these negative effects, special specimens and apparatus were used,5 as described below.

3 8.1.1 Specimen Preparation and Experimental Arrangement:

The disk specimens of 1/8 in. thickness and 1 in. diameter were cut from a cold rolled 1020
steel rod. The rod has a hardness of 89 Rb, and the tensile stress-strain relationship of the

rod material is shown in figure 8.1. The material has an elastic modulus E = 30 x 106 psi,
and a yield stress approximately 42 x 10i psi.

Ten disks were used in each test. The disks were first lapped with a milling machine to
ensure the same surface flatness among them. Both surfaces of the disks were then sand-5 blasted with steel and glass beads to produce an artificial surface roughness. In the test
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I arrangement, ten disks were stacked to form a column of nine (9) contact surfaces as shown
in figure 8.2. Note that, for the first disk (no. 1) and the last disks (no. 10), only the contact3 surfaces with the adjacent disks were sand-blasted, the contact surfaces of these disks (no.
1 and 10) with anvils of the testing machine were kept smooth as lapped. The purpose of
using the stacked column was to increase the deformation of contact surfaces nine times so
that the average value of deformation of the contact surface asperities could be measured
with a reasonable accuracy. As portrayed in the figure, the applied load was measured with3 a load cell, and the displacement was measured with a LVDT which has a resolution of 0.001
inch.

U 8.1.2 Measurement of Surface Roughness

The average depth of surface asperities produced by sand-blasting was first estimated with
a comparator which is a device commonly used by the sand-blasting industries. It was
estimated that the surface which was sandblasted by the glass beads has an average asperity
depth of 20 /u, and the surface which was sandblasted by the steel beads has an average
asperity depth of 40 y. These asperities are too small to be monitored by a standard stylus
profilometer. That is why the surface roughness of the specimen were determined with a
scanning electronic microscope (courtesy of NASA-JSC). The surface of the disk specimen
was first scanned to determine the distribution of asperities (i.e., a top view). The disk3 specimen was then sectioned, lapped, polished, and scanned from the side to determine the
depth variation of surface asperities (i.e. a side view profile). The results are presented in

* the following paragraphs:

1. The top and side view pictures of surface asperities produced by sand-blasting the3 surface with glass beads are shown in Figs. 8.3 and 8.4, respectively. The variation of
asperity depth, traced from Fig. 8.4, is shown in Fig. 8.5. In view of Fig. 8.3, it is seen
that the sand-blasting had indeed produced a reasonably homogeneous distribution of
surface asperities. From Figs. 8.4 and 8.5, it is seen that the surface damage produced
by glass beads blasting is not severe; the depth variation of asperities is gentle and their

Sdistribution appears to be random. Based on Fig. 8.5, the average depth of asperities
is estimated to be approximately 15 p which is slightly smaller than that estimated by

* using the comparator.

2. The corresponding information on surface asperities produced by sand-blasting the
surface with steel beads are shown in Fig. 8.6, 8.7, and 8.8 respectively. It is seen that,
although the distribution of asperities appears to be uniform, blasting the surface
with steel beads has produced severe micro-scale damage on the surface. The surface

Sasperities are more rough and abrupt than that produced by sandblasting the surface
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I with glass beads. Based on Fig. 8.8, the average depth of asperities is estimated to be
40 p - the same as that from the comparator. Figure 8.9 shows a steel bead wedged3 between asperities.

8.1.3 Experimental Measurements of Contact Compliance

The sand-blasted disks were stacked together to form a cylinder, and the cylindrical specimen3 was then installed to a MTS testing machine. A compressive force was applied to the stacked
cylinder at an approximate rate of 100 Lbf/min. The overall deformation (between the
smooth surfaces of no. 1 and no. 10 disks) was measured with a LVDT displacement sensor
(with a resolution of 0.001 in) as shown in Fig. 8.2. Two tests for each stacked cylinders,
which were made of disks with a glass-bead blasted surface and with a steel-bead blasted3 surface, were carried out to ensure the repeatability of the testing. The corresponding results
are presented in Figs. 8.10 and 8.11, respectively. The following observation is made:

I 1. Figure 8.10 shows the compressive force-displacement curve of a cylinder made by
stacking ten disks (stAL 1020) whose surfaces were sandblasted with glass beads. The3 cylinder was coriip _ssively loaded to 1,000 Lbf, unloaded, and then reloaded to 3.000
Lbf. Note thr.t the diameter of the cylinder is 1 inch, the nominal compressive stress
in the cylinder under a load of 3,000 Lbf is approximately 3820 psi - well within the
elastic limit of the cylinder material. Furthermore, each disk has a thickness of 0.125
in. the elastic deformation of the equivalent solid cylinder is expected to be

3 PL _ 3000 x (10 x 0.125) 06 =---==0005 n
AE 1- x (0.5) 2 x 30 x 106

I Referring to the force deformation curve shown in Fig. 8.10, it is interesting to note
that the initial portion of the curve is nonlinear, and there is a permanent deformation
of approximately 0.0007 inch after unloading, and the reloading curve joins the initial
loading curve as shown in the figure. At a load of 3,000 Lbf, the measured deformation
of the stacked cylinder is approximately 0.004 inch which is substantially larger than the
above calculated elastic deformation. This phenomenon implies that the deformation of
asperities between the contact surfaces (there are nine contact surfaces in the stacked3 cylinder) in the stacked cylinder are plastic, and the contact surface compliance is

nonlinear.

2. The corresponding force-displacement curve for a cylinder made by stacking ten disks
which surfaces are sandblasted with steel beads is shown in Fig. 8.11. It is seen that3 the characteristics of the force-deformation relation is similar to that displayed in Fig.
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Figure 8.1: Tensile stress-strain relationship of a SAE 1020 steel

3 8.10. The permanent deformation of the cylinder when unloaded from 1,000 Lbf is
approximately 0.0014 in - much larger than that from its counterpart of glass-bead
blasted surface. Note that the force-deformation curve does not follow the initial curve
when the cylinder is re-loaded, however, the slopes of the initial curve and the reloaded

* curve do appear to be the same.
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3 Figure 8.2: A sketch of experimental arrangement (Disk: dia= 1 inch, thickness = 1/8 inch)
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I Figure 8.3: Top view of a surface sandblasted with glass beads (Amplification: x 100, Scale:
Shown as the white bar below the picture
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i Figure 8.4: Profile of a surface sandblaste'd with glass beads - a side view (Amplification,

and scale information are shown in the dark line below the pictures)
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I Figure 8.5: Variation of surface asperities traced from Figure 8.4.
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I Figure 8.6: Top view of a surface sandblasted with steel beads (Amplification: x 100, Scale:

Shown as the white bar below the picture).

I
I
I
I

! 132

I



i

I
I
I
I
I

I

I

I
5 Figure 8.7: Profile (at two locations) of a surface sandblasted with steel beads - a side view

(Amplification, and scale information are shown in the back line below the pictures)
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I Figure 8.8: Variation of surface asperities traced from Figure 8.7.
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Figure 8.10: The force-displacement relationship of a cylinder made by stacking ten disks
whose surfaces are sandblasted with glass beads.
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I 8.1.4 Specimen Preparation and Experimental Arrangement for Determining
the Coefficient of Friction

I In order to measure the values of the coefficient of friction for the surfaces under considera-
tion, a simple quasi-static experiment was performed. This experiment was oriented on basic
measurement of the static coefficient of friction, as identified by visible inception of sliding.
No attempt has been made to measure initial microslip, change of normal compliance or

* other more intricate phenomena associated with frictional sliding.

The disk specimens of 1/2 inch thick and 1 inch diameter were cut from a cold rolled
1020 steel rod. The rod is from the same stock of material used in the previous test. The
material has an elastic modulus E = 30 x 106 psi, a yield stress approximately 42 x 10' psi.
and a hardness of 89 R6 .

SBoth surfaces (top and bottom) of the disk specimen were prepared in a same manner
as the previous test. The disk surfaces were first lapped with a milling machine, and then
sand-blasted with steel beads or with glass beads to produce an artificial surface roughness.
The average depth of surface asperities were estimated with a comparator which gave a value
of 20 ps for the glass-bead-blasted surface, and 40 ys for the steel-bead-blasted surface - same

* as those reported in the previous tests.

The specimen was sandwiched between two steel anvil blocks which have a hardened
(approximately 32 R,) and smooth surface. The entire assembly was then installed into
the test apparatus. A normal compressive load of 250 Lbf was first applied slowly to the
assembly. It should be mentioned that due to the smallness of the surface asperities, we were
not able to record the deformation of the surface asperities during loading. After completing
the normal loading, a horizontal load is slowly applied to the specimen disk until the disk
begins to slip. The onset of slipping was observed visually. Two tests were carried out for
each surface roughness and the results are summarized in the next section.

Test Results

(a) Glass-Beads-Blasted Surface:

I Normal load = 25OLbf
Horizontal load = llOLbf (first test) (8.37)

= 105Lbf (second test)
= 107.5Lbf (average)

Since there are two contact surfaces between the test specimen (roughened on
both surface) and the steel anvil blocks (with smooth surfaces), the coefficient of
friction is
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I Figure 8.11: The force-displacement relationship of a cylinder made by stacking ten disks
whose surfaces are sandblasted with steel beads.

I
I
I
I
I 138

I



U

107.5 250 0.215

(b) Steel-Bead-Blasted 
Surface

I Normal load = 250Lbf

Horizontal load = 106Lbf (first test)
= lOOLbf (second test) (8.38)
= 103Lbf (average)

* The coefficient of friction is

I 103 _

v 103 0.206
2 x 250

It should be mentioned that the exact magnitude of horizontal load at the onset of slipping
is difficult to ascertain visually. We estimate the error for the above listed horizontal loads
has a range of ± 5 Lbf.I
8.2 Numerical Prediction of Interface Contact

I We used the new microasperity based model of frictional interfaces to predict numerically
the force-deformation relation for the surfaces studied in the experiment. The computation
was performed only for the surface sandblasted with glass beads. We did not analyze the

surface blasted with steel beads, because it was very rough and did not meet at least two
assumptions of our model. Those assumptions are: small deformations of asperities, and
non-interference of neighboring asperities. Moreover, the experimental force-displacement
curve for this surface indicates that the error of measurements on unloading-loading part
was rather large (see Figure 8.11).

8.2.1 Data for Numerical Calculations

To calculate statistical characteristics of the surface we used scans obtained from an electronic
microscope. We digitalized the side view of the sectioned disk specimen in aim to get the

surface profile as a function. Graph of this function (height versus distance) for a segment of
the profile is shown in Figure 8.12. The figure also shows the actual scan of the corresponding
segment of the real profile.

Using the sampling method, we obtained the following statistical characteristics of the
surface:
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I Figure 8.12: Digitized and original profile of the specimen used in the experiment.
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Mean height: 112 pM,
Mean Slope: 0.000729 = 2.40

Mean Curvature: -0.000288 m- 1 ,

Standard deviation of height: 4.91 /Am,

Standard deviation of slope: 0.160

Standard deviation of curvature: 0.0227 pim-1,

3 Surface peak density: 0.000508 peaks/p m 2,

Wavelength spectrum parameter: 0.304.

1 Another microscopic scan of the specimen (Figure 8.3) indicates that the surface is
isotropic so that the above coefficients fully characterize the shape of the surface.

I To be able to perform mechanical analysis of asperities we also need to know material
constants of the specimen material (cold rolled SAE 1020 steel). Bodner-Partom constitutive
constants for steel are given in reference (101. These generic constants were tuned for our
particular sample, using the results of the tension test (Figure 8.13). The final values of the

* constants used for numerical calculations are listed below.

E = 209 GPa

m, = 0.05 MPa

n = 2.28

v = 0.3

Zo = 600MPa

Do = 10000s-'

Z, = 1050 MPa

These constants provide good correlation of numerical and experimental results for the
tension test - see Figure 8.13.

8.2.2 Modeling of Surface Loading

I As a first step of the homogenization procedure, the above surface statistics was used to
determine effective support of joint probability density of asperity peaks, in particular the
range of surface peak heights and curvatures. This range is defined by:
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Figure 8.13: Comparison of tensile stress-strain relationships obtained experimentally and
numerically.
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Figure 8.14: Adaptively refined mesh for an axisymmetric asperity (deformed shape is
* shown).

I -121im < z,, 16Alm (8.39)

0.004ptm- 1 < kP < 0.08Am- 1  (8.40)

Within this range, several sample asperities under normal load were modeled by the finite
element method. Because the experimental surface was very rough and no effort has been
made to make it extremely clean, adhesion effects were neglected. It was assumed that the
deformation of the asperity was elasto-viscoplastic.

Figure 8.14 shows a deformed mesh which was used to discretize half of the asperity
cross section (the problem is axisymmetric). The rate of load application, controlled by the
normal velocity, was equal to 0.25 ym/s, and corresponded roughly to the one used in the
experimental setup.

About 10,000 time steps were necessary to complete the analysis. At each of those points
the values of approach contact force and area of contact were printed out. From those 10,000
discrete values about 40 were chosen as data for statistical homogenization. This was because
not all of those 10,000 values were computed with the same accuracy. It can be explained
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Figure 8.15: Area of contact as a function of approach obtained directly from the numerical
analysis (about 10,000 data points).

on the example of area of contact. As a result of numerical analysis we obtain the area
in terms of approach as a piecewise constant function (see Figure 8.15) while it is obvious
that this relationship is at least continuous for a smooth asperity. The discontinuity of the
numerical result is caused by the fact that the contact condition is examined at integration
points. Therefore, the contact area increases incrementally, as new integration points join
the contact zone. For further analysis the centroids of the horizontal segments on the graph
of area versus approach were chosen as basic data points. Final graphs of contact force and
area in terms of approach are shown in Figures 8.15 and 8.17, respectively.

I
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I Figure 8.16: Final graph of contact area as a function of asperity deflection.
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Figure 8.17: Final graph of contact force as a function of asperity deflection.

The results of mechanical analysis shown in Figures 8.15 through 8.17 were obtained for

one representative asperity with width to height ratio w/h = 13.4. For exactly cosinusoidal

profile this w/h ratio gives standard deviation equal to standard deviation of slope of the
real surface. The wavelength spectrum parameter of the analyzed surface indicates that also
asperities with other w/h could have an influence on the expected values of global force and

area of contact. However, for the sake of simplicity and efficiency of the computation we
limited our numerical analysis to the asperities with the most representative width to height

ratio. Note that, due to absence of rate-dependent effects, the results obtained for the basic

asperity (peak curvature equal to 0.042 pm- 1) are also useful for asperities with different
peak curvatures. The contact force and area for those asperities can be computed by simple

rescaling of the existing values, because both force and area of contact are proportional to
squared dimensions of an asperity.

I The results of finite element asperity analysis, in particular contact force and real contact
area, were used by statistical homogenization package, to produce force-approach and area-

pressure curves shown in Figures 8.18 and 8.19. Note that, at this stage, we focus only on the
loading part of the curve. The numerical predictions are compared with the experimental

results. Note that the original experimental curve was rescaled to represent only one surface
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Figure 8.18: Numerical and experimental approach-pressure curves for the interface.

pair and normal pressure rather than total force. In the spirit on remark from Section 6.1,
the zero point on the theoretical "approach" axis was chosen to match experimental load

and surface stiffness at the initial contact of the surfaces.
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I Figure 8.19: Numerical contact area vs. approach curves for the interface.

I
I
I
I
* 148

I



I

I A comparison of experimental and numerical results shows a very good agreement up to
a load of about 800 N/pm2 (1000 psi). For higher loading an increasing discrepancy of the
experimental and numerical curves can be observed (see Figure 8.20). There can be several
reasons of that and some of them are discussed below.

I 1. To predict more precisely behavior of the specimen, the elastic deformation of the
bulk material has to be considered. A graph of experimental normal stress reduced
by bulk deformation is shown in Figure 8.21. Apparently, for higher loading bulk
deformation is significant and has to be taken into account.

2. Another reason of discrepancy between numerical and experimental results can be
additional deformation of the apparatus and stacked samples. Assuming pro-
portionality of that deformation to the loading one can tentatively modify experimental
data. Figure 8.22 shows original and modified experimental results. It was assumed
that the experimental measurement has systematic error which depends linearly on
loading and causes that the sensor indicates displacement exaggerated by 1.5 pm for
the highest loading. In Figure 8.23, the modified experimental data are compared with
numerical results. A good agreement of both curves car. be observed for wide range of
loading, which confirms strong possiblity of systematic settling in the apparatus and
in the samples.

I 3. Error of numerical results increases with increasing loading because at higher loads
more asperities have large deformations, so that more asperities are beyond the assump-
tions of our theory (see Figure 8.24).

4. Another reason of the discrepancy for loads higher than 800 N/cmn2 can be loss of
accuracy during experiment caused by unloading. Complete unloading might have
been accompanied by a microdisplacement in a horizontal direction and then reloading

* would deform different asperities than the original loading.

I
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i Figure 8.20: Numerical and experimental contact force in terms of approach for wider range
of loadings.
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I Figure 8.21: Experimental stress versus approach curves: (a) original and (b) corrected for
bulk deformation of a sample.
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I Figure 8.22: Experimental pressure-approach curves: (a) original and (b) corrected for ad-
ditional settling of the setup.
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i Figure 8.23: Comparison of numerical prediction of normal stresses with modified experi-
mental results.
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I 8.3 Studies of Unloading

* An additional study that was performed for the experimental surface was focused on modeling
of the static unloading path. By static unloading we understand the situation, wherein
the normal load is reduced to zero or almost zero without relative sliding on the interface.
This means that the asperity tips, which became "conformal" during loading due to plastic
deformation, remain conformal and aligned. This situation is illustrated in figure 8.25.

3 Importantly, modeling of the unloading path required additional extension of the homog-
enization package to monitor the displacement and load corresponding to the beginning of
surface unloading. Moreover, even for single unloading of the interface, the results at the

asperity level must consider a whole family of unloading curves, starting at different normal
deflection. This is a consequence of random asperity height; at the beginning of surface

* unloading each individual asperity is "caught" at a different stage of deformation.

For practical modeling, it would not be feasible to consider an infinite number of unload-3 ing paths at the asperity level. Instead, we adopted the following procedure:

(a) analyze in detail a few (three to four) unloading paths for the asperity, starting3 at different deflection levels, and

(b) use approximation techniques to represent unloading paths which start at the
* intermediate load level.

This approach is illustrated in figure 8.26. Importantly, the finite element analysis of the3 unloading path was performed using exactly the same methods as for the loading curve -
the unified viscoplastic constitutive theories applied here do not require special treatment of
elasto-plastic unloading. The approximation method used for the construction of intermedi-
ate unloading paths was based on the blending function formula [ ].

The formula is a mapping of a unit square into a domain which has four curvilinear sides.
Coordinates of the square (s, t E [0,1]) can be treated as parameters. They parametrize sides
of the curvilinear domain. Let the parametric equations of these curves -tj = AB, -Y2 = BC,

I 73 = DC, -y4 = AD (Figure 8.26) be given generally in the form

U 7k= {(x,Y)d?2 : x=xk(p),y=yk(p),petO, I]), k= 1,2,3,4

where in our case:I
X are approach,-s,

I Y are contact forces,
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I Figure 8.24: Percentage of asperities satisfying small deformation assumption.
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Uinitial unloading

* IJ 3)

first loading second loading

Figure 8.25: Static loading, unloading and reloading of the interface

-s for k = 1,3,
SP = ýt for k = 2,4.

Using the above notations the blended functions provide mapping of parameters s, t into

x and y coordinates in the following way

I ~ ~X(S,t) = X1(S)(1 -t)+ X2(t) S ±X3(S) t +
+X4(t)" (I -S) - XA(1 -- 00 -- S) -- XB" (1 - 0t).S

I-XC. t -SXD" t. (1 - s)

Y(S, 0 = YI(S)(1 -t)+ Y2(t)-S + Y3(S) -t +

+y 4 (t) (1 - S) - YA(l - t)(1 - s) - YB " (1 - t) .S

3 -Yc t S YD" - t (1 - s)

where (XA, YA), (XB, YB), (XC, Yc), (XD, YD) are coordinates of comers A, B, C, D correspond-

ingly. Figure 8.27 shows a family of unloading curves generated by the blending functions.

Note that the blended curves can be generated also outside domain ABCD. Curve 7o was not3 generated but computed by solution of the unloading problem for the asperity. Comparison
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Figure 8.26: Contact force for an asperity in terms of deformation during loading and un-
loading at three different levels.
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I of this curve with blended functions indicates reasonably good correlation. This correlation
improves with increasing number of calculated unloading curves.

5 After application of the statistical homogenization, the loading-unloading curves were
obtained for the surface, and are shown in figure 8.28. Clearly, the theoretical unloading
path is steeper than the one observed in the experiments. At present time we do not have
a precise explanation of this fact. However, we believe, that the asperity-based theoretical
curve better represents the actual behavior of the interface. This is supported by the following

* arguments:

1. For the loading section of the curve, random •perity height has a significant smoothing
effect, because different asperities are contacted at different loading stages. However,
the unloading path is only supported by elastic "rebound" of all the deformed asperities3 - see figure 7.26. Therefore, the unloading deflection cannot essentially be higher than
the maximum elastic rebound of a single asperity. Since the unloading path for a
single asperity is rather steep (see figure 8.26), the elastic rebound, even for the largest
asperities, does not exceed 1.0 y.

2. The additional normal compliance, present in the experimental setup, can have a much
more significant distorting effect on the (very steep) unloading path than on the load-
ing path. Indeed, presence of additional deflection of about 1.5 p would modify the3 theoretical unloading curve to match the experimental one. It is conceivable that such
deflection can be present due to departure of the surfaces from ideal flat, and the3 resulting "plate bending" effect.

It is also possible, that there may be some infinitesimal tangential sliding present on the
Ssurfaceduring unloading -thiswouldspoil thealignment ofdeformedasperitiesshownin
figure 8.25 and cause additional separation of the surfaces.

The above arguments are supported by the experimental work of Connoly, Shoffield and
Thornley [30], wherein experimental unloading curves were much steeper than these obtained
in the experiment reported here.

In view of these remarks, the question of interface unloading will require some additional,
extremely precise experimental studies. Furthermore, the phenomenon of unloading during5 tangential sliding will need a dedicated study. The unloading curve in this case will, due to
mechanical interaction of the sliding asperities, differ significantly from the static case.

I
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I Figure 8.27: A family of unloading curves generated by blending functions.
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I 9 Studies of Friction

In this section, we present some introductory studies of frictional characteristics of the in-
terface. In particular, we aim to:

I . estimate the value of the static coefficient of friction, and

9 study frictioncal deformation of microasperities.

I 9.1 Static Coefficient of Friction

For the sample surfaces studied in previous sections, introductory studies of the coefficient
of friction were performed. These studies were based on the following two assumptions:

1. sliding resistance between similar metallic surfaces is caused primarily by formation

and shearing of junctions between the contacting asperities,

2. the value of tangential force necessary to shear a junction is defined as:

T = rTA, (9.41)

where r, is shear resistance of the material and Ac is the real contact area between the
* asperities.

In the first approximation the shear strength of a junction can be considered to be indepen-
* dent of normal pressure and equal to the shear strength of the bulk material.

The formula (9.41) can be easily used to calculate the coefficient of friction on the interface

* level:

-= ;AJF

where A, is a real contact area per unit nominal area and F is the normal force per unit

nominal area.

Smooth Surface

The above formula, combined with pressure-area curves presented for the smooth alu-

minum surface in Figure 7.9, produces the values of the coefficient of friction shown for
increasing normal load in Figure 9.1. For the case with adhesion (clean smooth surfaces in
vacuum), the value of the coefficient of friction is very high at light loads - this is caused by
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Figure 9.1: Smooth aluminum surface: coefficient of friction for increasing loads

additional normal attraction due to adhesion. In the absence of adhesion the coefficient of
friction is almost constant over a wide range of loads, with a value slightly below 0.5. Note
that this value is essentially overestimated - junction strength of oxygenated aluminum sur-

faces is lower than the shear resistance of the bulk material, assumed here. A more detailed
studies of this phenomenon, including frictional microdisplacements, are currently underway.

Rough Surface

Some interesting observations can be made when the above analysis is applied to the
rough surface, studied in Section 7.4. The values of the coefficient of friction calculated
for this surface using elastic and elasto-plastic models are compared in Figure 9.2. Clearly,
a purely elastic approach underestimates the value of the coefficient of friction. This is a
result of an underestimated contact area predicted by the elastic solution on the asperity
level. The elasto-plastic approach produces more realistic values of the coefficient of friction,
of the order of 0.3.

Experimental Surface

The above simplified model was used to estimate the coefficient of friction for the rough
steel surface studied experimentally and numerically in Section 8. Figure 9.3 shows the

calculated value of the coefficient of friction for increasing normal load (approach). In the
absence of relevant data, it was assumed, that the shear resistance of asperity junctions is
equal to shear strength of the bulk material. For the actual normal pressure tested in the
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I experiment, the estimated value of the coefficient of friction due to junction shearing was
equal to 0.093, while the measured value was 0.215.

However, for this rather rough surface there exists an additional contribution to friction
due to interlocking of asperities. While for relatively smooth surfaces this component can
usually be neglected, for this rough surface this is not the case. A very approximate estimate
of the interlocking component of friction, based on relative motion of inclined surfaces (32,89],
leads to a conclusion that the additional contribution to the coefficient of friction is equal to
the average slope of the asperities. For the surface under consideration this is equal to 0.16,
which leads to the final value of the coefficient of friction equal to 0.253, as compared with
experimental value of 0.215.

This is a quite good correlation of numerical and experimental results, especially that,
due to a lack of relevant data, the shear resistance of asperity junctions was assumed to be
independent of the normal pressure (which is not exactly the case in practice).

I 9.2 Studies of Frictional Sliding

The simplified approach discussed in the previous subsection can only be used for general
estimates of sliding resistance of the interface. It cannot represent such intricate phenomena
as:

e tangential micro-displacements before inception of macro-scale sliding,

* damage of asperities by shearing below the contact junction, rather than at the junction,

* normal "settling" of the junction due to combined normal and tangential stress,

U * ploughing component of friction, etc.

Studies and understanding of the above phenomena can only be accomplished by mod-
eling of the actual sliding process, wherein two asperities in contact are subject to tangen-
tial mot.)n. Numerical modeling of these phenomena is computationally rather expensive,

because ul three-dimensional asperity models need to be used, combined with extensive
nonelastic deformation, complex stress states and sliding resistance of the metallic junction.

In this section, some introductory studies of tangential sliding are presented.

We analyzed a representative cosinusoidal asperity with height equal to 2 microns and
diameter at the base equal to 10 microns. The asperity was made of the steel studied in

the experiment, with full elasto-viscoplastic representation. The contacting flat was first
subjected to normal motion (0.125 microns), followed by tangential sliding of 1.0 micron.
The first step was performed in time 0-1800 s. The tangential loading step was applied in time
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Figure 9.4: Evolution of normal and tangential forces for the asperity

1800-4000 s. In order to model shear resistance of the metallic junction, large coefficient of
friction (20) was assumed. The main objective here was to identify, whether the maximum
deformation would occurr on the surfaace (shearing of the junction) or below the surface
(shearing ot the asperity tip).

The asperity was discretizated by FEM mesh which, after h-adaptation, had 666 degrees
of freedom Introductory results of this study are shown in Figs. 9.4 and 9.5. In particular,

figure 9.4 shows evolution of normal and tangential forces during the loading process. Figure
9.5 shows deformation of the asperity at the end of the analysis (at time 4000s).

During the analysis, no signs of destruction of the asperity were observed. In fact, the
average tangential traction on the contact surface due to tangential motion of the flat was
approximately 64MPa, which is well below the shear strength of steel. This means, that
representing shear strength of the junction by high coefficient of friction was not sufficient.
Instead, exact modeling of shear resistance on the junction surface is necessary. This required

additional modification of the finite element code and study of asperity sliding. These studies
are currently underway and will be presented in the forthcoming publications..
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Figure 9.,5: Deformed configuration and contours of horizontal displacement in the asperit~yi sliding study.
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* 10 Towards Application of Asperity-Based Models in
* Modeling of Dynamic Friction

The micro-asperity-based models developed in this work produce the values of normal pres-
sure, real contact area, sliding resistance, etc., as a function of approach of the two surfaces.
These functions are given in the form of series of discrete points or graphs.

However, application of these constitutive models in the analysis of dynamic friction re-
quires an analytic (and differentiable) formulas. Towards this end, some effort was dedicated
to development of automated tools that would produce analytical formulas representing the
interface constitutive laws.

A basic approach used is as follows:

1. micro-asperity based model is given as a series of discrete points, for example a sequence
i of approach-pressure values (Ak, Pk) k = 1, M

2. the user chooses the formula to be used, say the Oden-Martins law or logarithmic
* compliance curve,

3. the coefficients of the constitutive formula are determined automatically through the
minimization procedure described below.

The above procedure will be illustrated on the example of the fitting of the asperity-
based approach-pressure relationship into the Oden-Martins interface model [71]. The Oden-
Martins normal compliance law can be written in the following generalized form:

p = c(a - g), (10.42)
a0

* where

p nominal pressure,

a - approach,

ac,g, m - unknown material constants,

ao = 1pm (dimensionality factor).

I Note that a0 was introduced to assure proper dimensionality, and g is a translation (initial
gap) which appropriately locates the zero point for the approach axis. The constants in the
above formula were determined in such a way which provides the best fitting of the function
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Figure 10.1: Fitting of the Oden - Martins formula to the sequence of asperity-based data
points for the steel surface studied in Section 8

10.42 to the sequence of M given points (ak,pk). The best fitting means here that a function
B, which is square of a norm of differnce between discrete and continuous laws, attains its

infimum.

Function B has the following form:

M
B(c,g,m) = '[p(c,g,m, ak) - pk (10.43)

k= 1

where

I p(c, g, m, a) - nominal pressure given by formula 10.42

(ak,pk) - k-th discrete point.

For the load-approach curve representing our experimental surface (see Section 8), we
obtained g = 0pm, c = 15.2N/cm2 , and m = 2.25. Figure 10.1 shows pressure - approach

relationships for both discrete and the best fitting continuous forms.

A similar procedure was applied to the hypothetical very smooth surface described in
section 7. We obtained g = 0.0025pm, c = 3.17 x 109N/cm2 , and m = 5.17. The graphs of
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Figure 10.2: Fitting of the Oden - Martins formula to the sequence of discrete points for the
very smooth surface

aseperity-based and analytical pressure-approach relationships are shown in figure 10.2.

These examples indicate, that Oden-Martins law provides a good representation of typical
constitutive models of metallic interfaces. Note that the approach presented here is applicable
to other formulations, such as exponential normal compliance law.
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S11 Conclusions

I This report presented a detailed theoretical background, numerical algorithm, and practical
results of the development of new asperity-based constitutive models of frictional interfaces.
While the main idea stems from previous works on asperity-based approaches, the application
of the adaptive finite element method to the modeling of nonlinear asperity deformation
brought these models to a level of practical application to the modeling of real engineering
surfaces. This is confirmed by successful comparisons of the asperity-based predictions with
the results of carefully designed verification experiments.

3 The new models developed in this work will find application in many diverse aspects of
the modeling of friction, such as:

3 e simulation and control of friction-induced squeaks, stick-slip motion, chatter, and other
unstable phenomena,

3 * precise modeling of tribological surfaces, such as rollers, bearings, etc.

e modeling the conductivity of thermal and electrical connections, including microelec-3 tronic devices and semiconductors,

e understanding and modeling of surface damage and wear mechanisms,

9 and many others.

3 Indeed, the results of this research project are already finding their way into practical
applications in several of the above areas.

3 It is important to note, however, that there remain many open questions and challenges
in this topic, including:

3 * extensions to hyperelastic and brittle materials,

* extensive studies of surface sliding and various components of frictional resistance3 (shearing, interlocking, and ploughing),

9 studies of mechanisms of surface damage and wear,

3 extensions to hydrodynamics lubrication,

3 * dynamic loading of the surface and high-velocity sliding, etc.

These issues need to be addressed in the future to provide a full understanding and3 control of the complex phenomena occurring in frictional interfaces.
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