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Annual Technical Report on Grant entitled 'Control and Stabilization of Distributed

Parameter Systems; Theoretical and Computational Aspects" AFOSR-89-0511, Sept. 1, 89 -

Aug. 31, 93

Co-Principal Investigators: L. Lasiecka, R. Triggiani (University of Virginia)

A. Manitius (George Mason University)

During the period September 1, 1989 - August 31, 1993, the research of the principal

investigators has progressed to cover essentially all of the research problems proposed for

investigation in Part II and Part M of the original proposal. Annual technical reports have been

filed in preceding years, from 1990 to 1993, summarizing research findings and providing a

detailed list of publications by the P.I., which have arisen out of the present research project.

Accordingly, in the present document we shall dwell mainly with the research results during the,

as yet uncovered, period Jan. 1993 through August 31, 1993. For sake of clarity, we classify our

exposition according to two classes of topics:
(1) exact controllability and uniform stabilization for structural dynamics problems (linear and

non linear, wave-like and plate-like equations);

S(2) numerical approximations of stabilizing feedbacks either through Riccati operators, or
through explicit dissipative feedbacks.

5 1. Exact controllability and stabilization in structural dynamics

Several results have been obtained which establish the properties of exact controllability and
stabilization (typically, uniform) for many models of wave-like and plate-like equations. They
include Euler-Bernoulli equations, Kirchhoff equations, and nonlinear von Karman equations. It
has been shown that by exercising physically implementable feedbacks (control) acting on the
boundary through bending moments (or, in some cases, through moments and shear), one can
suppress (uniformly) the vibrations of the system or, in the case of exact controllability, one can5 steer the system to the desired target state. The following papers refer to this topic.

• M. Bradley and I. Lasiecka, Global decay rates for the solutions to a von Karman plate
without geometric conditions to appear in J. Math. Anal. Applic.

* I. Lasiecka, and R. Triggiani, "Uniform stabilization of the wave equation with Dirichlet -
feedback control without geometrical conditions," Applied Mathem. & Optimiz., Vol. 25 D

(1992), 1898-224. Preliminary version in Springer-Verlag Lectures Notes LNCIS, Vol. .........
147, 62-l10, J. P. Zolesio Editor.

0 I. Lasiecka and R. Triggiani, Optimal regularity, exact controllability and uniform
stabilization of the Schrodinger equation," Differential & Integral Eqts., Vol. 5 (1992), C

d J or
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521-535.

9 M. A. Horn and I. Lasiecka, Asymptotic behavior with respect to thickness of boundary
stabilizing feedbacks for the Kirchoff plate J. Diff. Eq. to appear.

* M. A. Horn and I. Lasiecka, Global stabilization of a dynamic von Karman plate with
nonlinear boundary feedback, Applied Mathematics and Optimization, to appear.

0 I. Lasiecka and D. Tataru, Uniform boundary stabilization of semilinear wave equation
with nonlinear boundary conditions, J. Diff. Integr. Eq., Vol. 6 (1993) 507-533.

0 I. Lasiecka, Global Uniform decay rates for the solutions to wave equation with non-linear
boundary condition, Applicable Analysis, Vol. 47 (1992), 191-212

e R. Triggiani, Constructive steering control and abstract rank conditions, J.O.T.A., Vol. 74
(1992), 347-367.

• I. Lasiecka and R. Triggiani, Algebraic Riccati equations arising from systems with
unbounded input-solution operator: applications to boundary control problems for wave
and plate equations, J. Non Linear Analysis, Vol. 20 (1993), 659-695.

2. Numerical approximation of stabilizing feedbacks either through Riccati operators

This part of the research aims at computing stabilizing feedback of conservative or weakly

damped elastic structures. We report here one which relies on the optimal quadratic cost theory

(regulator problems) which produces a stabilizing feedback based on both the position and

velocity and expressed in terms of a Riccati operator.

I. Lasiecka, Galerkin approximations of infinite-dimensional compensators for flexible
structures with unbounded control actions, Acta Applicandae Mathematica, Vol. 28 (1992)
101-133.

I. Lasiecka and R. Triggiani, Approximation theory for Algebraic Riccati equations with
unbounded input operators: The case of analytic semigroups, Mathematics and
Computations, Vol. 57, No. 196 (1991), pp. 639-662.

3 E. Hendrickson and I. Lasiecka, Numerical approximations of solutions to Riccati
equations in boundary control problems for hyperbolic equations, Computational
Optimization and Applications.

* R. Triggiani, A sharp result on the exponential uniform-norm decay of a family of
semigroups, Semigroup Forum, to appear.
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I. Lasiecka and R. Triggiani, four chapters on theory and applications in numerical
approximations of boundary control problems for partial differential equations in their
monograph: "Control Theory for Partial Differential Equations," Cambridge University
Press, Series Mathematics and its Applications, in progress.

The work of A. Manitius is appended separately.
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1 Introduction

This report describes research on computational aspects of control and stabilization of flexible

3 structures.

The focus of this work was on control observation and stabilization of elastic beams. Two

models were explored, the Euler Bernouli beam model, and the Timoehenko beam model.

In both cases, the computational approximation method chosen was that of finite elements,

I piece-wise cubic in case of E-B beam, and both piece-wise cubic and piece-wise linear in

the case of Timoshenko beam model. The immediate objective of this research was to gain

insight into the dynamics of control/observation process through numerical computation, as

a complementary tool to analysis. This included both linear output, and state feedback,

as well as more advanced control concepts such as adaptive observer and adaptive model

3 reference control. The software developed in this work will serve for exploration of flexible

structures, composed of beams and some problems involving nonlinear phenomena arising

3 in control of large flexible structures.

Currently, the established practical methodology for simulation and control of large flex-

I ible structures consists of developing a large finite element model directly from mechanical

properties of the structure represented by a finite system of masses and springs, such as, for

3 example, the approach underlying the NASTRAN code. In this work, we proceed from a

continuum model of the structure, described by partial differential equations, to the finite

3 element model as an approximation of the continuum model. By examining a family of

finite element models of increasing dimension, one can in, 2stigate the control/observation

I phenomena related to the approximation of the continuum model by the finite dimensional

finite-element models. This approach offers a possibility of gaining insight into the rela-

tionship between continuum and finite dimensional models of flexible structures, and into

questions such as the role of neglected high-frequency components.

Currently, there exists a large gap in research methodologies between two approaches:

the PDE-based theory of dynamics of elastic structures, and the more practice-oriented

methodology based on finite dimensional models derived from structural mechanics models.

3



The corresponding control approaches are very far apart. The present research is aimed in

part at providing a link between the two by using computational tools.

2 Discussion of Models

Traditional linear PDE models of elasticity such as Euler-Bernoulli (E-B) equation, and

Timoshenko equation, are derived under certain assumptions of linearity of stress-strain

relations, and assuming small amplitude of deflections. These models have an infinite number

of eigenvalues placed on the imaginary axis. Characteristic frequencies associated with these

eigenvalues from an increasing sequence with no bound. In modified E-B models, a viscous

damping is introduced resulting in the uniform shift of the eigenvalues to the left half plane.

This property is inconsistent with the experimentally observed fact that, in flexible structures

the modulus of frequency characteristics eventually rolls off at higher frequencies. This fact

has led to several efforts in constructing models that provide frequency-dependent damping.

Except for the Rayleigh damping, these are either nonlinear models, or models with materials

memory governed by PDE's with "hereditary" terms. Such models may be more accurate at

higher frequencies, but they introduce additional complication such as nonlinearities or an

augmented state space. It has not yet been proved that the control design problem benefits

from introduction of these additional complications.

In this report, we still rely on linear PDE models, being aware that results concerning

high-frequency behavior of such models may be not representative for the control design.

An additional loss of accuracy at the high frequency range is introduced by the finite

element approximations. It is known that for both Euler-Bernoulli equations and Timo-

shenko equation, the eigenvalues of the approximate finite-element models do not all match

true eigenvalues of the PDE model. In both cases, only the first few modal frequencies are

reproduced with negligible numerical error (say less than 0.1%), and the mismatch increases

for higher frequencies. This mismatch is illustrated numerically in a subsequent section of

this report. Hence, for high frequencies, not only the continuum models are inaccurate, but

their usual computational approximations are inaccurate representations of the continuum

4



models at high frequency.

3 Beam Model

1 3.1 Euler Bernoulli Beam

In this section we review the well-known setup for the cubic finite element approximation of

the Euler-Bernoulli beam equation. Although this method can be found in various parts in

3 the literature, the combination of finite elements in space with time derivatives and control

forces requires piecing it together from a couple of sources, hence it is induced here for the

I sake of completeness.

Consider an elastic beam of length I with uniform cross-sectional area which is small

compared to the length. The distributed force acting on the beam is assumed to be zero.

I The lateral vibration of the beam can be described by Euler Bernoulli beam equation:

fJ4 W(t, X) 02W(t, X) +Ow,,(t, ,) (
l + &2 + k at

where 0 < x < 1, E, I are the modulus of elasticity and the moment of inertia respectively,

5 p = A- m and A is the cross sectional area of beam and m is mass per unit volume, and k

is the viscous damping coefficient. w(t, z) is the vertical deflection of beam.

3 Several cases of the boundary conditions for the beam are:

a). clamped at one end and free at another, ("clamped-free"), controlled by a shear force

I at the free end, and/or by a torque at the free end.

b). hinged at both ends, ("hinged-hinged"), controlled by a torque at the left end (x=0).

c). hinged at one end and free at another, ("hinged-free"), controlled by a torque at left

Smd (x=O).

When there is no external force acting on the beam, the boundary conditions are as

follows:

(i) Free end:

EIOW(t, X)

5



8 X2t z) 0 , cztzl

(ii) Hinged end: U
W(t,o) =o

aiwl (t, X)
EI X2 =0, atx = 0

(iii) Clamped end: I
w(t,0) = 0

OW(t,:) = O,atz = 0

3.2 Control Inputs and Outputs

We assume that the control acts on the beam through shear force(s) applied at a point, or a

bending moment (an external torque) applied to one or both ends of the beam. More recently, 3
distributed force actuators made out of piezo-ceramic materials, have appeared. Control by

using such actuators can be modeled by an easy modification of the finite element model

described below.

Typical configurations of control actuators and sensors are: 3
A). Clamped-free beam controlled by a point force applied to the free end (x = 1).

Boundary conditions: 3
w(t,0) =0 0

aw (t~o 0•-( =0
•2Ox

Control input:

=• u(t)
6-3 (t, =



I.
Measured outputs:

Y_(t) = -(t, 1)

B). Hinged-hinged beam controlled by a torque applied to one end

Boundary conditions:

3 w(t,O) = W(t,l) = 0

--2w

Control input:

I ( 0) = U(t)

3 Measured outputs:

--_-- Y, Wt = L--(t,0)
a awg y1Ct) =•,
88w 0,))

_ y2(t) = .(t,

.. Y,(t) = L( (t,X.))

where x, is the sensor location.

C). Hinged-free beam is like case B) except the condition w(t, 1) = 0 is replaced by

3. Oaw/8x3 (t, 1) = 0.

Let the state space for the system be

(w(t,x),w,(t,z)) E H 2(0,1) x L 2(0,1) (2)

i w ith 2X+_

I (w,wt) 112= J(. at + at (3)

Then in both cases A) and B) the control input operator is unbounded.

I 7



However, in case the control torque acts on the beam's end through a hub with a nonzero

moment of inertia IH, the linearized overall system has a bounded input operator:

18Wo(, 0) H2'• L2O (t), E ' E L (4)

with an auxiliary differential equation

IH--d -L Eo 2wI t 0• 0 =(t) (5)

where 0(t) is the angle of hub rotation, and u(t) is a control torque.

3.3 Kelvin-Voight Damping and Rayleigh Damping I
In some beam models the damping is assumed to be proportional to the strain rate, thus I
contributing the term

0-x2[cI (6)

where c is the Kelvin-Voight damping coefficient, and I is the moment of inertia. This 3
term is easy to include in the finite element model described below. This type of damping

moves the high frequency cigenvalues into the negative real semiaxis. I
The linear combination of (6) and viscous damping is known as Rayleigh damping.

3.4 Finite ,-ment Model

Finite Element Method is ut;- to approximate the continuum Euler-Bernoulli model with

a finite-dimensional model, which converts the spatial and time- differential equation into

time differential equation. 1 I

The beam is divided into N segments of equal length, with N + 1 nodes, as shown

in Fig.(1) At any arbitrarily fixed time t > 0, the displacement over each element, w, is

approximated by a linear combination of four cubic interpolation functions 0j, with uj being 3
the value of w, at time t, at both ends of the element.

'Detail see Appendix A Ii
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-.® , 3 ... a .G 01 N @ , N,

3 Figure 1: Finite element discretization of a one-dimensional beam.

I4 i W -- • e -' + + +~)Oe

4 )(X) 
(7)

I where j=1

I
, = , =,(e ) , () = W

1i~ - tI,) U3 W 2 WI(Xe+iJ

9(e) ~9(Ze) U4=,~ -~ W)
dx(

I and

3(e) 1 - 3 (x ') 2 2 (X Xe) 3

~() _X h- X,) 2

O(e) -3(T Te)2 - 2(T - e)3

=-(X - X-)Ihe C)2 he (9)

I Using the approximation of the form of Eq.(7) for w, and v = 4i in the variational form

of Euler-Bernoulli equation, we obtain the the finite element model over element e

M(O)fi(e) + K(e)P(e) + L(&)u(e) = Q(e) (10)

where M(e), K(e) and L(e) are 4 by 4 coefficient matrices, with

1 9



Mij)= 1*p~io4jdz 3
(e) -= k jd.-

+1 EI dz2O-dO dz2
r.(')~ ~ dT - TX* - - 2"•a-(1

and Q() - [Q(4)Q()Q()Q(e)]T is the boundary condition vector for element e, with I

(C) d d2w

Q(C) = [E,• . 32, d I2

3Q) = - E d2w

Qe = -[EI•-2x,., (12)

The variables u(e) in Eq.(10) represent the displacements and minus slopes, at any time

t > 0, at both ends of element e 3
,(e) - r,() () , (e) U(e) IT !

"1 U2  3 4

= [w(x,) O(Xe) w(Xe+l) O(e+) IT  (13) 3
Now the element model is converted into a second order time differential equation. For

the case in which El, p and k are constant over an element, the coefficient matrices M(e),K(e) 3
and L(') are given by (KW corresponds to viscous damping).

[ 156 -22h 54 13h
M(,)_ ph |-22h 4h' -13h -3h2 (4

U40 54 -13h 156 22h (14) 3
[ 13h -3h 2  22 4h2

156 -22h 54 13h 1
K(- k.h -22h 4W2  -13h -3h2 (15)420 54 -13h 156 22h

13h -3h 2  22h 4hW J

103
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I
3 r 6 -3h -6 -31

L (E) -3kh 2h2  3h W (16
h3  -6 3h 6 3h3 1-3k h2  3k 2h2 J

where h is mesh size.

3 The global model is obtained by assembling all element models in the way that the global

coefficient matrices and boundary conditions are formed by overlapping element coefficient

3 matrices at all intermediate nodes, where local variables are repeated for two consecutive
elements, such as = i) = W (i+1) = U(i+1) and u(') 0 (i) - 0('+') = U0"+1). Hence, the

3 global model is in the form

I MO+KU+LU=Q (17)

I where M, K and L are matrices of dimension (2N + r), (r = 0, 1 or 2)2, and Q is a

(2N + r) vector. The global variable vector U is

U
U U1 U 2 , ...... U2N+v-l U2N+7 I T

[W(X) (zI) ....... W(XN+I) O(XN+I) T  (18)

I An example of a 2 element beam is shown as follow

I MM(1) M1(3 M4 0 0 Q1l)

M21) MM213 M2(4) 0 0 Q2)
M(1) M(l) M.) + M) M.) + M2) Mf•) MJ(2) Q(1) + Q(2) (

M4I1) M(1) M.) + M2) M.) + M2(2) M2) M2(2) Q=() + Q(2) (19)

12 (2)2(2-- 0 0 M4(2) M4(2) M4(2) M,4(2) Q(42)
0 0 1 42 3 444

3 Matrices K and L are built in the same way as M. We obtain the global model for the

two-element beam
2It depends on boundary condition

* 11
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156 -22h 54 13h 0 0 U1
-22h 4h2  -13h -3h2 0 0 U2

S54 - 13h 312 0 54 13h U3
420 13h -3h 2  0 8h2  -13h -3h2 U4  +

0 0 54 -13h 156 22h &ao 0 13h -3h2 22h 4k j

156 -22h 54 13h 0 0 U0
-22h 4h 2  -13h -3h 2  0 0 U2I

kh 54 -13h 312 0 54 13h U3
420 13h -3h 2  0 8h2  -13h -3h 2  )4 +

0 0 54 -13h 156 22h 65
0 0 13h -3h 2  22h 4h 2 j 1'

6 -3h -6 -3h 0 0 U, F= 3
-3h 2hk2  3h h 2  0 0 V2  M

2E1 -6 3k 12 0 -6 -3k U3  _ 0

'h -3h h 2  0 4k 2  3h h 2  U4  - 0I
0 0 -6 3h 6 3h Us -F,
0 0 -3h h 2  3h 2h2  Us -M, 3

where I

F= M d d2w
I = [Tx (EIj)].-=o

A- Q(1) = [EI dj~w

F, Q(2) = d d2w

M =Q(2) = _4EI .2]I=,

3.5 Imposition of Boundary Conditions

The finite-element model in Eq.(17) is valid for any beam described by the differential equa-

tion (in Eq.(1)), irrespective of the boundary conditions. The coefficient matrix (in Eq.(17)) 3
12

I



I
I

is singular prior to the imposition of the essential boundary conditions (on the primary

3 variables). Upon the imposition of suitable boundary conditions of beam, we obtain a non-

singular matrix. First, we note that the natural boundary conditions are included in the

I column vector {Q(e)}. At all global nodes between the boundary nodes, the sum of the con-

tributions of the boundary conditions from right node of element e and left node of element

3 e + 1 is zero

IQWa' + Q•e+') = [d clw d ElgW3 -[(El -.-()]E=I.+j + [-(EI j_-)]2C+, = 0
T+_ d X2

Q(e) + = -[E -2:+ + [EI ,:z.+1 = 0 (20)

The boundary conditions at two ends of the beam areU
IQM,) = [T(EI- -- o

U Q(N) = d'w

=-[E d-2]== (21)

I For hinged-free beam, the only known essential boundary condition is

3U = -0 (22)

Using Eqs.(20) and (22) in Eq.(17), we have

{M"} {M12} j =0 {KII {K} 12} =0

U12  U2
* +0

{M 211 {M 22} f {K 21 } {K 2 2}
* 0

02N+2 U2N+2

13



{L-} {1 2 1} U =o0 FI
-Mo 3, U2 0

L 0 (23)
{L21} {L22} • 0

-FM = o
U2N+2 =01 =0

where each coefficient matrix is divided into four parts corresponding to variable partition. 1
The fact that the first variable U, is known and the remaining (2N + 1) variables are to be

determined provides us the motivation to partition (shown by dashed lines) the matrix

equation (23). Eq.(23) is in the form (where V1 = UJ). I

[{M1 } {M12} [K 11} {K12 } 1L"} {L12} V1  I {Q1}
{M 21} {M 22} J~V2 J K +[K 21} {K 221 V2J [ L21} IL 22) ' V2 f Q2}

(24)

Equation (24) can be written, after carrying out the matrix multiplication, in the form

I
f{Ml'}V + {M 12}V;2 +f Kll}VI' + f{K 12}V12 + {L1 }'Vl + f{L 12}V2 = {Ql} (25)

{M 21 )V' + {M 22}V2 + {K 21}`' + {K 22 }12 + {L 21}V' + {L 22 }V2 = {Q2} (26)

Since {V1} and {Q2} are known, we can use Eq.(26) to solve for {V2 }. In other word, I
we can simply cross out the first row and the first column of the coefficient matrices in this

case to get the modified model.

For hinged-hinged beam, the deflections at both ends are zero

U, = U

U2N+1 = U(N) 0 (27)

Using same procedure, we obtain modified model for hinged-hinged beam by deleting the 3
1st and (2N + 1)th rows and columns from coefficient matrices.

I
14
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I.
I

For clamped-free beam, the deflection and slop at left end are zero

(28)

The modified model is obtained by deleting the first two rows and columns from coefficient

3 matrices.

For clamped-clamped beam, the deflections and slopes at both ends are zero

SU, =,) 0

3U 2  U
U2N+1 = u(N) = O

3 U2N+2 -U4N) 0 (29)

3 The modified model is obtained by deleting the first two rows and columns, and the last

two rows and columns from coefficient matrices.

1 3.6 Finite Dimensional Control Model

I After incorporating the boundary conditions and output equations, we obtain the following

finite dimensional control modelU
3 M + Ki + Lz =Gu(t) (30)

y( = H31)

I where z(t) = V2(t), u(t) = control, y(t) = output. (Note that u(t) is different from vector

U in equation 17). Matrices M,K, and L are reduced versions of matrices M, K, L appearing

in (17), the reduction depending on the boundary conditions.

3 Case A). For a clamped-free beam with N finite elements, the size of matrices M, K, L

is 2N x 2N.

* 15
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I

G is a 2N x 1 column vector which is zeros except for G(2N - 1) = 1. 1
If y(t) = 4j(l, t), then H is a 1 x 4N row vector which is zero except for H(4N - 1) = 1.

Case B). For a hinged-hinged beam with control torque at the left end (x=O) of the beam,

and measured time derivative of the beam's slope at x=O, the size of matrices M, K, L is 3
2N x 2N.

G is a 2N x 1 column vector with G(1) = 1 and G(j) = 0 for j > 1. 3
H is a 1 x 4N row vector with H(2N + 1) = 1 and all other entries equal to zero.

Controllability of the finite dimensional models can be verified by a modified Hautus

condition I
Rank [MA2 + KA + LIG] = 2N, VA E C (32)

For a beam with zero damping, the condition simplifies I

Rank [-Mw2 + LIGI = 2N, Vw E 7Z (33) I

Numerical tests performed in the examples investigated in this report showed this con-3

dition to be always satisfied in Case A and Case B.

4 The DIRK Method for the Integration of Finite
Element Model

In the process of numerical integration of the beam equations, one needs to use schemes that

are suitable for highly oscillatory systems. In addition, one needs to accommodate the fact

that the control input may be in the feedback form rather than an exogenous time function. 3
That is, at a given time t only the current value of control u(t) is available, while the future

values (u(t + 6),6 > 0) of control have not yet been determined by the control algorithm. I
The finite element model described in section 3.4 is a system of second order differential

equations. This system can be transformed into a standard state-space form 3
i = Ax + Bu (34) 3

16 1
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where

SA=[1 7 B=[M I](

In numerical calculation, direct use of matrices M-IL and M-Q is impractical. It is

3 better to perform a preliminary transformation of variables that maintains the symmetry of

submatrices appearing in matrix A. Let M = McMT denote the Cholesky decomposition of

I matrix M. Then in reference to equation (17), let

I.- ym~ r
I ,Km = M"K(MT)-

Li = M;'L(M.)-'

I QS = M 1 Q (36)

3 Then the original system is replaced by

I + K,0 + Ly = Q. (37)

In this case the corresponding first order system in state space form has matrices

30 [ ] B=[0] (38)A -L,. - Km Q.•

The matrix A is, for the Euler Bernoulli equation, a poorly conditioned matrix. For ex-

3 ample, a finite element model with 4 elements will have matrix A with cond (A) = 1.2902e+ 4.

For 64 elements the corresponding number is cond (A) = 8.4557e+s. As a result of this, the

I numerical accuracy of some operations involving A decreases with the increase in the num-

ber of elements, making the numerical computation difficult for high number of elements. A

I small step size is required to keep track of high frequencies, but a small step size increases

the round-off errors. As a result of this, the use of standard numerical integration methods

for the state equations leads to very large errors (e.g. the Matlab subroutine 'lsim' fails for

17
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N > 10). However, a recently developed extension of the Diagonally Implicit Runge Kutta I
(DIRK) method to second-order systems exhibits a very good numerical accuracy. The key

point here is that this forces the use of the second order systems rather that the augmented

first order system. 3
4.1 DIRK Method for Oscillatory Second-order Differential Equa-

tions 3
The DIRK method proposed by Van der Houwen and Sommeijer [26] is devised for second- 3
order differential equation without damping

S= f t, Y), y(O) = Yo, W(0) = io (39)

The general m-stage DIRK method for the system of ODEs (Eq.(39)) is given by 3
m I

yi = y•+cjhj+h 2' ajgf(t.+cih,Ynl), j=l,...,m

Yn+t = y,,+hi,+h Ebjf(t, + ch, Yj)
j=1

in,+1 = j,,+ h •,bj'f(t + cih, Y,,.) (40)
j=1

where the parameters ail, bj, bj and cj are assumed be real. By defining 3
A:= (aji), b:=(bj), ,b':= (bj), c:= (cj) (41) 3

the DIRK method can be represented by the Butcher array: 3
c A

V (42) 3
An example of Butcher array for two-stage DIRK method with algebraic order p = 2 is 3

shown as

I
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The system with damping is described by

1 = f(t,y, 0, y(0) -Y0, i (0) = yo (44)

3 A DIRK method for such system is not found in present literature. By extending the

results of Van der Houwen and Sommeijer for zero-damping system, we obtain the DIRK

3 method for system with damping

Y,• = y.+cjh•+h'Eajf(tu +cih,YnI.Yni), j= 1,...,m
1=1

'U

k•j = ý,+hma~jf(t.+ci h,Y, ,Y,k), j=1,...,mI=1im
y.+, = y, + hj + 2 E bif(tit + c h, , k.1)

j.+1 = ,,+h bif(tn+cjh,Yni,Y,,) (45)
j=1

where the parameters aj,, b, bY and ci are from Butcher array, and a~j are chosen as same

as aji. The simulation results show that the extended DIRK method works with reasonably

3 good accuracy.

4.2 DIRK Formulas for the Beam Problem

The finite-element model (Eq.(17)) for Euler Bernoulli beam can be writtc n as followingI

-M- 1 Ký - M- 1Ly + M-'Q

_ -K,- Lmy + Q. (46)

S•19
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where K. = -M-'K, L,. = M-L and Qm = M-Q. Actually, to preserve the symme- U
try of the matrices, we later use Cholesky's decomposition before the inversion of M.

Using DIRK method (Eq.(40)) with m = 2, we obtain the discrete time model for the

system without damping (Y - [0]) )

Yl = yR + clh&). + h2 l[al(-LmYi + Qr) + a12(-L.Y,2 + Qr)] (47) 3
Y.2 = y. + C2h!, +÷ h 2[a21(-LY,,i + Q.) + a22(-LY,2 + Q.)] (48)

y.+, = y,. + hji + h2[bl(-L.Yn, + Q.) + b2(-L.Y.2 + Q,.)] (49)

j,+1 = j,, + h[bV(-LYn, + Q.) + b'2(-LY, 2 + Q,.)] (50)

The discrete time model (Eq.(49) and Eq.(50)) still have variables Y,1 and Yn2 in their

expressions. To simplify the model, we solve Eq.(47) and Eq.(48) to get Y,,, and YK2 . Noting 3
the Y,,, and Yn2 are also functions of yn and yn and a12 = 0, we express the Y,1 and Y,2 in

the form 3

Y., = Aly, + A 2yn + AiQm 3
Y.2 = A 3y. + A4. - A2 2Q. (51) 3

where

A 1 = (I+h 2 auLn)- I
A 2 = cih(I + h2aiL)-l

All = h2aul(! + h 2aliL,)- 1  3
A3 = (I + h2a22L,)-'(I - h2a2 iLmAi) 3
A4 = (I + h2a22L,)-'(c2 hI - h 2 a2 LmA 2)

A 2 2 = (I + h2a2Lm.)-'(-h 2 aa2 jL,,A + h 2(a21 + a22)I) (52) 3
20
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and I is identity matrix with same size as L,.

Substituting Y.i and Y,.2 in Eq.(49) and Eq.(50), we obtain the following recursive,

discrete-time model

y .,,+, = Y. + hj, - h2[biL,,(Aly, + A~l, + AllQ,)

3 + b2L,(A 33y + A 4ii, + A22Q,) + (bl + b2)Q m,

= [I - h2L,(biAi + b2A3)JYi + [hi - h2L,,(blA 2 + b2A4)]1 ,,

I + [h2(b, + b2)I - h2Lm(biAjA + b2A 22)]Qm

n+1 = j. - h[b4L.(Ajy,, + A2ji, + AiIQm)

S+ b2L,,(A3!y, + A 43J, + A22Q ,,) + (b, + b2)Q,,,

3 = -hLt(b'iA + b2A 3)Y. + [I - hL,,(bIA 2 + b2A4 )13b,

+ [h(b'l + b')I - hL..(b•Ai + b2A 22)]Q, (53)

I Using the standard state-space form, we have

3 Xn+1 = Fxn + Gun (54)

Zn = Hz, (55)

I where Xn = [y,, ý,]T is a (4N + 2r) by 1 vector, standing for displacements and minus

slopes of all element (see Eq. (17)) and their velocities. u is input as bending moment, and

z is output which is measurable.
* and

aF I - h L2,(biAl + b2A3) hI - h L,,(bA 2 + b2A4) (56)
-hL ..(MIA, + b2'A 3) I - hLrn,(b~jA 2 + b'2A4)1

G h h2 (b, + b2)I - h2Lm(biAii + b2 A22]Q, I

[ h(b'1 + b2)I - hL,(bAii + b2A 22)]Q, ,I (57)

For damped system, the extended DIRK method (Eq.(45)) is used to get following equa-

tions

Y,,1 = y, + c1hi, + h2 [a(-KMYk - LY,,1 + Q.) + al 2(-K,,n2 - LYn2 + Qr)]

21



Y2= y, + c2hy,. + h 2[aan(-Kmkni - L.Yui + Qrn) + a22(-K~Y. 2 - Lmy. 2 + Qgs)]

4~1 = j. + hfa' 1(-K~k., - Lm~n m  ~(K~Y 2 -LY 2 +QJ

Yf 2  y~ ha~(-m~i LYmI + Q-) + a'12(-K,j,i.2 - L.Y. 2 + Q,,)] (8

y,,,= y. + hý. + h 2 [biFKmY., LmY.I + Q,.) + b2(-Kw~Yn 2 - Lye.Yft 2 + Q,.)]
j.1= j.n + h[b',(Kmk., - L.Y.i + Q-i) + b2(Kmkn2 - L.Y. 2 + Q.n)] (59)

Solving equations in Eq.(58), we have Y.1, Y,,2, 4~1 and 1'~in the form

=11 =Akl[!ýfl]±Bkl Qm (60) 1
[ý. I 'k 2 !n+ BmQ (61) 3

w here 3 2a , n h2 l K I c h

Akl =a' [In2Ii + h~a',Kr 0 [ 1 iI

I I+h2aiiLn h 2 aliKm n h2 a111
Bkl = ha'iLm I +ha'iiKm . ha'111

ha' Lm I1+ haI1' i~l2+2'i~ l 2 2Km 0~ 1[ c h~a'2 Ln h~a'.

Ih~L +a 2 ~ ki)K h2a2

Bk2 [ha'22Lm I + ha'22K In

(rh(ai+ 2 )ýI 1 [h 2 a2iLm h aim 1 ki) (62)Lh(a', + a'22)I J [ha'2iL.. ha , K.

Substituting Eq.(60) and Eq.(61) into Eq.(59) and rearranging leads

22



1n 2  1[ [2n
[Y"+1 ] 0 1][iY] hgLn hl4Km I LY.

h E 1%Lm h 2b2Km Y 2 1]+[h2(b, + ib 2)ij
hbYLm hb2K,, Y,.2 + h ( ,I + hb)IJ Q)

I U (I hI[~ (hbILM hl4K.](Ak,1 ['i") BkQ.

L_ I( I[in hLb hbLK m hb'K B 1 h)h_ rbL 2b (Ak2 1 ± B2.+ h'1+ 2i Q
S hb2Lsa hbdr jtte-2j'+ or I I h(be+ bh)I I

( h 2 bL h 2 bK, Aki h [2b2L. h2b2Kz] = n] hb'iLm hbM1 Km hb2Lm hI2K , [A

b+•h 2o + o bse heign +n e h a2b, Ki . ba h d2iffent b2 Koundary n* + ~h(b' + b2)I I [hYLvn hbYK:]ll hb;L. hY2Km]B2Q

2(63)

In the standard state-space form, we have

In+ Fzn + GUn (64)

zn Hzn (65)

where

F ~Il U h 2 bi Lm A2b, K 1 _k h2b2 L, h 2 2Km 1 Ak-2
1I hb',Lm Ai',K [ hb2Lm h b2'Km J

G [h 2(b, + 62)1] h 2bLm h 2 bKm B1 r h2 62Lm h 2b2Km 1 Bk2)Qn (66)
G ~h(b'j + b2) I hb'iLm h MKrn I k hb2Ln hl4Km J

1 5 Numerical Results of Simulationt

I Numerical simulations have been c'Lone for several cases, such as initially excited mode, feed-

back control and observer design. In each case, various beams with different boundary con-

I ditions were used, which are hinged-hinged, hinged-free, clamped-free and clamped-clamped
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beam. The finite-element model and the DIRK method, described in section 3 and 4 , were I
used in the simulations. Also, some comparisons between numerical results and analytical

solution have been done.

5.1 Beam Parameters 3
The beam used in simulation is Euler-Bernoulli beam (Eq.(1)) with a finite-element model. 3
Physically, the following thin aluminum alloy beam corresponds to the combination of pa-

rameters used in our simulations 3
Length 1 = Im

Cross-section width w, = 6 x 10-3m

Cross-section height h,- = 3.01 x 10- 3 m

(the beam vibrates in the "vertical" direction) 3
Cross sectional area A = 1.809 x 10-mn2

Area's moment of inertia I = 1.37 x 10" 1 m4  3
Young's modulus E = 7.309 x 10kg/m.sec2

Mass density m = 2.768 x 103kg/m 3  3
Then p = mA = 5.0072 x 1O2kg/m

El = 1.0015 x 10-3kg.m 3/sec2  3
EIl/p = 0.02m 4/sec 2

The 0.02 ratio corresponds to a thin, fairly elastic beam, which exhibits several vibration

modes. We could have, of course, chosen a different value of El/p, which would yield a 3
less elastic, and thus easier-to-control beam, but then some of the essential features of such

control problem would be lost. 3
5.2 Analytical Solution of Eu-Wr Bernoulli Beam

The undamped Euler Bernoulli beam equation is

C2i&w(t' ) + 02 w(tX) 0 (67)
O:X 4 2 &
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I.
where

CIE (68)
ILP

I The analytical solution of Eq.(67) with constant boundary conditions can be expressed

in Fourier series form:

00

w(z,t) =,= W.(z)T.(t) (69)

The functions T.(t) can be expressed asI
T,,(t) = A.cosw.t + B,,sinwjt (70)

I where A, and B,, are constants that can be found from the initial conditions.

The modal shape function W.(t) are

3 W,(z) = Cjcosl,,x, + C2sin,6,,x + C3coshp,,z + C4sinhflz (71)

where C1, C 2 , C3 , and C 4 are constants that depend on the boundary conditions. The

3 natural frequencies of the beam are

I w n =•(fl= ( )l)2 /E (72)

3 The modal shape functions and values of fh!, corresponding to different boundary con-

ditions, are as follows

3 (i) Hinged-hinged Beam

3 W.(x) = sinfix (73)

I fl= (n + 1)7r, n = 0, 1, 2,... (74)

(ii) Clamped-free Beam
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W.(x) = cosh,6x - cos#.z - csihO.1 + lsinh.x - sinfi,.) (75)

3ishP.L + cosj5,j

,.- =nir+-+o(-), n=0,1,2,... (76)
2 n

5.3 Comparison of natural and finite-element modal frequencies

In all the numerical comparisons given below, the numerical parameters of the beam were

1 = 1m, El/p = 0.02, k(damping)= 0.Interpretation of this choice is given in section 5.1. i

The tables below show eigenfrequencies W4 , WS, W•1 ,W 3 2 , W64 obtained from finite element

models with 4, 8, 16, 32 and 64 elements respectively, compared with w. = frequencies

corresponding to the PDE model.

These tables confirm the fact that the first few natural frequencies are modeled by FEs i
quite accurately, while the high frequencies are not. The number of accurately modeled IN
frequencies increases with the number of finite elements.

Mode No W4 ,S W16 "W W6 4  Wm

1 1.3961 1.3958 1.3958 1.3958 1.3958 1.3958 I
2 5.6051 5.5845 5.5832 5.5831 5.5831 5.5831
3 12.7915 12.5781 12.5630 12.5620 12.5620 12.5623
4 24.7871 22.4205 22.3382 22.3327 22.3324 22.3324
5 39.3990 35.2178 34.9162 34.8957 34.8944 34.8943
6 62.3044 51.1660 50.3125 50.2520 50.2481 50.2478 1
7 93.3411 70.5230 68.5536 68.4033 68.3935 68.3929
8 113.5887 99.1484 89.6820 89.3527 89.3309 89.3295
9 - 123.4418 113.7595 113.1044 113.0606 113.0576 3

10 157.5959 140.8713 139.6649 139.5829 139.5773
11 - 199.0853 171.1279 169.0429 168.8984 168.8885
12 249.2176 204.6639 201.2499 201.0079 200.9913 l
13 - 308.4743 241.6236 236.3008 235.9125 235.8856
14 - 373.3646 282.0920 274.2146 273.6133 273.5715
15 - 430.3208 325.6174 315.0143 314.1120 314.0489
16 - 454.3549 396.5935 358.7281 357.4106 357.3178

Table 1: Comparison of natural frequency and FE modal frequency for hinged-hinged beam m
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Mode No re4  res re-1  re 32  re4
1 1 2.5966e-4 1.6442e-° 1.0310e-' 6.5344e-° 1.5899e'
2 3.9469e-0 2.5966e-04 1.6443e-° 5  1.0311e-06 6.4215e-04
3 1.8273e- 0 2 1.2866e-°3 8.2786e-°5 5.2125e-06 3.2625e-04
4 1.0992e-°' 3.9469e-03 2.5966e-°4 1.6443e-06 1.0311e-°4
5 1.2909e-°' 9.2709e-0 3 6.2781e' 4.0044e-° 2.5156e-04
6 2.3994e-0 l 1.8273e-02 1.2866e-03 8.2786e-°s 5.2125e-04
7 3.6478e-°' 3.1145e- 0 2 2.3508e-03 1.5283e-04 9.6482e-04
8 2.7157e- 0 1 1.0992e-° 1  3.9469e-0 2.5966e-04 1.6443e-04
9 - 9.1849e- 0 2 6.2087e-0 3  4.1402e-04 2.6307e-043 10 - 1.2909e 0 ' 9.2709e0 6.2781e-°4 4.0044e-04

11 - 1.7880e-° 1  1.3260e-0 2 9.1401e-04 5.8544e-04
12 - 2.3994e- 0 1 1.8273e- 0 2 1.2866e-03 8.2786e-04
13 - 3.0773e-°o 2.4325e-02 1.7603e-03 1.1383e-04
14 - 3.6478e-° 1  3.1145e- 0 2 2.3508e-°3 1.5283e-4
15 - 3.7023e-0 1 3.6837e- 0 2 3.0741e-°s 2.0100e-°4
16 - 2.7157e- 0 1 1.0993e-0 1  3.9469e-03 2.5966e-04

I Table 2: Relative errors of frequencies of FE models for hinged-hinged beam

Mode No .o4 _s 1_ "132 W64 W,_

1 0.4973 0.4972 0.4972 0.4972 0.4972 0.4972
2 3.1198 3.1164 3.1162 3.1161 3.1161 3.1161
3 8.7929 8.7306 8.7257 8.7253 8.7253 8.7253
4 17.3464 17.1364 17.1007 17.0983 17.0981 17.0981
5 32.2635 28.4279 28.2759 28.2651 28.2645 28.2644
6 51.8153 42.7241 42.2600 42.2246 42.2223 42.22213 7 82.1445 60.1431 59.0730 58.9781 58.9718 58.9714
8 134.7818 79.8992 78.7473 78.5279 78.5132 78.5122
9 - 112.3348 101.3318 100.8777 100.8467 100.8446

10 - 142.4877 126.8937 126.0326 125.9726 125.9685
11 - 180.7453 155.5193 154.0001 153.8914 153.8840
12 - 227.8248 187.3077 184.7900 184.6038 184.5910
13 - 285.2434 222.3471 218.4154 218.1107 218.0895
14 - 352.5099 260.6273 254.8927 254.4132 254.3796
15 - 420.0845 301.6366 294.2423 293.5127 293.4612
16 - 541.9361 341.5518 336.4892 335.4110 335.3344

Table 3: Comparison of natural frequency and FE modal frequency for clamped-free beam
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Mode No re4  res re1s re3_ res4 I
I 3.278e-5 2.156e--s 2.042e-°7 8.279e-05 1.372e-05
2 1.165e-' 8.002e-°' 5.165e-06 3.776e- 0 7 7.439e N

3 7.742e-3 6.084e-04 3.987e-05 2.623e-06 2.689e-07
4 1.452e-02 2.240e-03 1.511e-04 9.574e-06 5.559e- 0 7

5 1.415e- 01  5.786e-03 4.084e-o' 2.642e-°s 1.855e-06
6 2.272e-0 1  1.189e-02 8.979e-04 5.829e- 05  3.671e-06
7 3.930e-0 1  1.987e-02 1.723e-03 1.133e-04 7.168e-06

8 7.167e-0 1  1.767e-02 2.995e-03 1.998e-04 1.269e-05

9 1. 140e-01  4.831e- 3.280e-04 2.091e-0 5

10 - 1.31 1e-0  7.345e-03 5.089e-04 3.258e-Os

11 - 1.746e-°' 1.063e-0 2  7.547e-04 4.854e-0 5

12 - 2.342e-°' 1.472e- 2  1.079e-03 6.973e-°5
13 - 3.079e-°' 1.952e-0 2  1.494e-03 9.716e-0'5
14 - 3.858e-0 ' 2.456e-0 2 2.017e-03 1.319e-4 I
15 - 4.315e-01  2.786e - 2 2.662e-03 1.752e-04
16 6.161e-'I 1.854e-0 2  3.444e-' 2.283e- 3

Table 4: Relative errors of frequencies of FE models for clamped-free beam.

5.4 Initially Excited Modes

In this simulation, the behaviors of beam are examined when their first five modes are excited 3
separately by initial functions. Also, the accuracy of finite-element model and DIRK method

used in Euler Bernoulli beam problem is studied.

Undamped beams with two types of boundary conditions, hinged-hinged and clamped-

free, are considered here. A beam is initially bent in the shape described by initial function,

and released. The lateral vibration of beam is simulated numerically, and the reconstruction

of the shape of beam is done by using the finite-element model.

5.4.1 Hinged-hinged Beam I
In the simulation, the modal shape functions were used as initial functions 3

W,(x) = C,[sin#,,z] (77) 3
where 6,l = (n + 1),r, n = 0, 1, 2,.... With C. = 1, we have initial functions for the first
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the first mode. Let Ti and T4443 be the positions on the t-axis where the exact solution I
assumes its first and 4443th zeros, respectively. The time interval for this, T = T4 - TI,

is the length of 2221 oscillations of the true solution. This distance is compared with its

numerical analogue. In numerical simulation, the distance between the first and 4443th
"numerical zeros" is denoted by T = 443 - Ti. The period preservation of DIRK method

in the beam problem is examined by checking how close the T is to T. The simulation has

been done for 4, 8, 16,and 32 element beam models for the first mode. The "numerical

zero" is obtained by using linear interpolation based on neighboring numerical values. The

simulation results are shown in Table 5, which is for the vertical vibration of displacement

in the middle point of beam.

N T (sec) Tsec) T - T(sec) I
4 9.995417258409721e'3'- 9.995422709364795e+° -5.450955077321851e-°
8 9.997848301307209e+03 9.997851666551194e+° -3.365243985172128e-'

16 9.998002382497589e+° 9.997997585413077e+03 4.797084513484151e-°
32 9.998012037613589e+0I 9.9980O792203864Oe-+° 4.115574949537404e-

Table 5: Period Preservation of DIRK method for hinged-hinged beam I

The energy preservation is examined by comparing the norm of initial state variables 3
(displacements and slopes at all nodes, and their velocities) and the norm of state variables

after 2221 oscillations. If the ratio of the two norms equal to one, the DIRK method is said

to preserve energy in the beam problem. Table 6 shows the norms of state variables at initial

time and the 2221th periods. The simulations were done based on 4, 8, 16, and 32 elementI

beam models for the first mode.

N Norm 1 Norm 2 Ratio (n2/ni)
4 5.622171573624205e+°° 5.622207813156914e+00 1.000006445824755e+°° 3
8 7.303973028800612e+°' 7.303991774413425e+°° 1.000002566495350e+oo

16 9.840042663007326e+00 9.840095651102425e+0I 1.000005384945667e+°°

32 1 .355666901633727e+°" 1.355672308055335e+ol 1.000003988016232e+°3 ]

Table 6: Energy Preservation of DIRK method for hinged-hinged beam
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From the simulation results (Table 5 and Table 6), we can see that the DIRK method

3 used in the finite-element model of hinged-hinged beam preserves both period and energy of

oscillation quite well, and does not have big difference for models with various sizes. As an

I example, the first and last periods of trajectory of beam, displacement at middle point, are

shown in Fig.(5) and (6), which was done for a 32 element FE model.

The accuracy of finite-element model plus DIRK method is measured by calculating the

L2 norm and the energy norm of the error between exact solution and numerical solution

which are based on FE model. The two norms are defined by

I L2 norm:

Ieilo = 11W.- - W-.,110=o If{ I -We ,.,,.2ldx1/2 (79)

"Energy" norm'

3 le un = IIW. - ,,.J,. = {J. I I±: d - d ul 1dx) (80)

where w,, and w,,. are exact solution and numerical solution respectively.

In our experiment, the "Energy norm" was calculated corresponding to each mode.

Hence, the exact solution w, in Eq.(80) is replaced by modal solution wn

w" = sin f3Xcosw~t (81)

The numerical solution wi.u is obtained by reconstructing beam shape through finite

element model.

The L2 errors of finite-element model and DIRK integration method for the first five

3 modes are shown in Table 7, where t, to t 4 are 1, 5, 8, and 10 seconds respectively. The

simulations were done based on 4, 8, 16, 32, and 64 element models, using different step

sizes, baring with modes. The logarithm of the L 2 error versus the logarithm of element

number at t = Is is shown in Fig.(7), and the logarithm of the L2 error versus the logarithm

of time are shown in Fig.(8). The simulation results show that the finite element model and
3This energy norm is the one customarily used for hyperbolic equations. In the Euler-Bernoulli equation,

a second derivative of w is used to compute the strain energy. Such a norm is used later in the control-- problems
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DIRK method together have very good accuracy, but a high mode beam needs high order

model. For the first three modes, the 16 element model has given reasonably good accuracy,

of order 10'- to 10-s, but for mode 4 and mode 5, high order mode is needed. For mode 5,

I the even 64 element model gives higher error than in the lower mode case with lower order

model. Also, the accuracy slightly decreases with time.

N Ile(t)lo I III(t2)I 14e(t 3)l1o Ile(t 4)llo
Mode 1 (h=O.Ols)

4 3.2138e-° 1.1000e-' 20 2.6000e-°0
8 2.0349e-' 7.0090e-° 1.2444e-°4 1.6356e-04

16 1.2731e,-° 4.3852e-06 7.78OOe-°6 1.0227e- 05

32 7.6794e-°8 2.6516e- 07  4.6339e-0 7  6.1083e-0 7

64 2.3292e-09 8.6500e-°9 8.4527e-°9 1.2702e-°8
Mode 2 (h=0.0025s)

4 6.50OOe- 1.9300Ce- 2  8.9200e-0 2  8.5700e-u2
8 4.3288e-04 1.50OOe-03 5.4000,e-3 6.50OOe-°3

16 2.7080e-°5  9.7218e-°s 3.4042e-04 4.1599e-0 4

32 1.7090e-06 6.0937e' 2.1271e- 05  2.6029e-05

64 9.9915e- 3.5991e-° 1.2721e-06 1.5493e-_
Mode 3 (h=0.001s)

4 4.6700e- 0 2 4.0570e-°1  8.5320ec' 8.5290e- 0 1
8 2.10OOe-°3 2.50OOe-°3 3.60OOe-03 4.70OOe-°3

16 1.3057e-04 7.7637e-°5 1.6017e-04 2.7291e-°4
32 8.1749e-06 4.8771e-°6 1.1343e- 05  1.9334e-05
64 5.1160e- 0 7 3.0453e-0 7  7.0898e- 0 7  1.2094e-°6

Mode 4 (h=O.0005s) T_ _ __________ __________

4 1.2059e-°° 1.8450e-°l 1.1110e- 1  1.4220e- 1

8 2.8100e- 0 2 2.8800e- 0 1 2.9300e- 0 2  3.9100e-°1
16 1.70OOe-°3 2.0200e-0 2  1.2400e- 0 2  1.2000e- 0 2

32 1.0722e-04 1.30OOe-°3 8.2854e-04 6.9332e-04
64 6.7082e-&r 8.0490e- 05  5.2067e- 0 5 4.3146e-04

Mode 5 (h=0.0004s)
4 9.0730e- 0 1 2.3870e- 01  1.0454e-00 1.7580e-°O
8 3.89000e-2 8.0530e- 0 1 4.1850e-O° 1.3291e-°°

16 5.90OOe-03 7.6300e-0 2 4.4300e- 0 2 4.9700e- 0 2

32 3.6936e-04 4.90OOe-°3 3.40OOe-03 2.2OOe-03
64 3.0805e-41 3.0805e-°4 2.1733e-04 1.3448e-04

Table 7: L2 norms of errors between exact and numerical solutions at t = 1, 5,8, 10 seconds.
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To obtain the energy norm (in Eq.(80)), the dwe/dZ and dw.,Idz need be calculated3 first. The dwe./dz can be derived directly from exact solution Eq.(81)

dx = PO.,pzcoswt (82)

The numerical solution dwng/dx can be obtained through finite-element method. First,

the local form dwt*./dx is derived from Eq.(7)

i dw- ==u4(t) '(x) (83)

I Then the global solution is assembled according to boundary condition. The relative

energy norm errors for the first five modes are shown in Table 8. The logarithms of the

I energy norm errors versus the logarithm of element number and time are shown in Fig.(9)

and Fig.(10).I
101. . . ,

mode 4
100 mode5

3 10" mode 3

mode 2

mode I

CIO
10,

10,7

100 10 lS.. . o4 ..N

Figure 9: Log of energy norm error vs. log of element number (t=ls)
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N Ile(tO)0o lle(t 2)Ilo Ile(t 3)H1o Ile(t 4)Iio I
Mode 1 (h=0.Ols)

4 3.4000e-" 3.4000e_- 1.8000 0e-° 1.9200e-0

8 3.7756e-° 3.6796e-' 1.20OOe-03 1.300Oe- 0 3 I
16 4.4161e-0° 4.4161e-°s 8.2840e- 05  8.6877e-03
32 5.4688e-06 5.4596e-06 6.8722e-° 7.0547e-°
64 6.8015e-' 6.8039e- 0 7 6.8710e-07  6.8496e-0 7

Mode 2 (h=0.0025s) _02

4 2.320Oe-°2 3.5700e- 2  1.6140e-0 1 1.6470e-°•

8 2.8000e-°3 3.6000e-s 1.0100,e- 0 2  1.2700e - 2

16 3.7063e-04 3.9911e-°4 7.0241e-°4 8.8320e-°4
32 4.3573e-0 5 4.4436e-0 5 5.7915e- 05  6.5879e-°s
64 5.4802e-06 5.4802e-°" 5.9077e-06 6.2033e-°6

Mode 3 (h=0.001s) tll
4 8.4500e- 2  5.7460e-°- 1.2081e-°° 1.5980e-
8 9.30Oe-°3 9.30Oe-O& 1.0000e-02 1.0900e- 02

16 1.20OO0e-° 1.20Oe-°3 1.20Oe-°3 1.20Oe-°3
32 1.4665e-0 4 1.4636e-°4 1.4709e-°w 1.4876e- 0
64 1.8347e-°0  1.8347e-°4 1.8369e- 05  1.8422e- 05

Mode 4 (h=0.0005s)
4 1.8063e-°° 2.1125e -° 1.9710e-°o 2.2720e- 1 i
8 4.5800e- 02  3.2912e-00 4.9900e- 0 2 5.7210e-0 1

16 3.70OOe-°3 2.3130e-°° 1.9500e- 0 2 1.7700e-0 2°

32 3.9366e-04 1.4700e- 0 2  1.3000e-03 1.10OOe-°s

64 4.4585e-°5  9.2051e-04 9.1739e- 05  7.6602e-0 5

Mode 5 (h=0.0004s) 00
4 9.2610e-°O 5.7110e' 1.4600e- 7.6780e
8 1.7640e-0 1  8.8090e-0° 1.5786e-0° 1.9580e-°

16 1.0200e-0 2 1.0891e-°° 7.0200e- 0 2 7.2100e-0 2

32 8.6750e-04 7.0000e- 0 2 5.50Oe-°3 3.3OOe-° 3

64 9.1475e-° 4.40OOe-3I 3.5354e-04 2.1217e-° f
Table 8: Energy norms of errors between exact and numerical solutions at t = 1, 5,8, 10

seconds. I

5.4.2 Clamped-free Beam

We consider the same beam used in section 3.2.1 here, but with boundary condition fixed at

left end and free at right end. The mode shape function for clamped-free beam has following
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I form

W,, = C[cosh1•3,x - cos/p.x - cosh• 1 •3 + cos#3l - sinfiz)1 n = 0, 1, 2,... (84)
sih8 + .1 1sin h1fl-, .

where A(j = nwr + 1 + o(l). The values of #3j1 for the first five modes are

flil = 1.8744

213i = 4.6948

0131 = 7.8540

#41 -= 10.9956

5 13sl = 14.1372

The period and energy preservation of DIRK method in this case is examined in the same

way as in hinged-hinged beam case. The simulations have been done on 4, 8, 16, and 32
element models, all for the first mode. The time interval for each simulation is 14,040 seconds,

which includes 1111 periods. The distances between the first zero and the 2221th zero were
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calculated based on both analytical solution and numerical simulation. The comparison of 9
the distances are shown in Table 9, where T and T represent the distances calculated based

on analytical solution and numerical simulation respectively. I
N T (sec) T(sec) T- T(sec) I
4 1.402607614640182e- 1.402 53 0249457789e+• 7.736518239325960e-°O
8 1.402607614640182e+' 1.4025 74016042990e+04 3.359859719221276e-e m

16 1.402610352676545e+04 1.40 2 575979053479e+°4 3.437362306576688' e-01
32 1.402610522961071e+04 1 .402576151727471e+°1 3.437123359999532e]-°l

Table 9: Period Preservation of DIRK method for clamped-free beam S
The energy preservation of DIRK method is examined by comparing the norms of all 3

states at initial time and at the end of the 1111th period. The results are shown in Table

50, which are for 4, 8, 16, and 32 element models. In Table 50, norm 1 and norm 2 represent 3
the norms of states at the initial time and the end time.

N Norm 1 Norm 2 Ratio (n2/n1)
4 5.345123709927852e- 2  5.3 44 597898707650e-° 9.999016278670547e- 0

8 7.143825321630370e- 0 2  7.143131244537075e- 0 2 9.999028423761716e- 0 1

16 9.803811033736426e-02 9.803363985544561e- 02  9.999544005703163e- 0 132 1 .365134397632705e-°lI 1.365072728087120e-°l 9.999548252936177e-°"

Table 50: Energy Preservation of DIRK method for clamped-free beam

5.5 Stabilization of a Beam by using State and Output Feedback S
A beam with a nonzero initial state (e.g. nonzero initial deflection, and /or initial deflection

velocity) can be brought to rest ("stabilized") by using several feedback mechanisms.

A clamped-free beam can be stabilized by using shear force control at the tip which is 5
proportional to the minus velocity of the tip

Shear force control= -kaw(t, 1), t > 0g

where k > 0.

Alternatively, the control can be computed by using state feedback found by solving an

algebraic Riccati equation. The determination of the feedback gains is possible only through I
39
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approximation. In our setting, assuming that the finite element model with N elements

provides acceptable approximation of the system state, the approximate Riccati feedback

can be computed by solving an algebraic Riccati equation for the finite dimensional model.

For problems with unbounded control operators, the question of convergence of such a

procedure when N --, oo is, in general, covered by Lasiecka and Triggiani [36] The case of an5 Euler-Bernoulli beam is in the context of Linear-quadratic regulator has also been discussed

by Gibson and Adamian [22], however their setup involves an attachment of the beam to aI' hub at x = 0 which makes the input operator bounded.

The convergence conditions given by Lasiecka and Triggiani require that certain inequal-

ities be satisfied by the approximation method uniformly for all N --+ oo. Whether these

inequalities hold in the case of a cubic finite element method appears to be an open prob-

lem. Even if they hold, pointwise converge of distributed gain feedbacks is not guaranteed.3 However, even without the theoretical proof of convergence, the cubic finite element method

appears to produce numerically convergent state trajectories as N -- oo.ft The cost function used in simulations is of the form

I J~~~(11 W(t,. 112p + 11 ti(t,.) 11~2 ) + j2(t)dt (5

or

S IO'(II w(t,. L DO +I Rii. IIJOd + R 2( dt (86)

In either case, the approximation by finite elements reduces these cost functions to fa-

miliar quadratic cost functionals of the finite-dimensional control theory

J = j (XT (t)QX(t) + uT (t)Ru(t))dt (87)

where x(t) =state vector, u(t) =control vector. In the beam case with energy norm, the

matrices Q, R are

Q L ' R =r (88)
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In actual computations, the mans matrix M is split by Cholesky decomposition I
M = MMT (89)

and the state vector is transformed accordingly

0 M 0 Y"I (90)

Hence the matrix Q, actually used in computation had the form

wet L., 0] R = r(scalar) (91)
where

LM = M;'L(M.)-' (92) 3
In the case of the second cost function, the matrix Qn is an identity matrix, because it

arises from a Cholesky transformation applied to Q = diag{M, M}. (I
5.5.1 Clamped-free Beam

Parameters used in simulation were I = 3m, EI/p = 0.1. The initial conditions were

assumed in a form of modal shape functions U
w,(z) = cosh(,fx) - cos(/flz) - RI(sinh(,Onx) - sin(j6,z)) (93)

where R1 = (cosh(fl/l) + cos(#nl))/(ainh(fl.1) + sin(f9nl)) I
and 6.1 = [1.8744,4.6948,7.8540,10.9956,14.1372] for (n=1,...5). Parameter P. relates

to modal frequencies by the formula 3
Wn PI~i~ii (94) 5

Figures (28)-(31) show the distribution of eigenvalues corresponding to R = 100, N = i

8,16,32 and N = 100. Characteristically, most of the eigenvalues are distributed along a

vertical strip parallel to the imaginary axis. This suggests that the LQR control through t
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shear force has an effect analogous to viscous damping. The bending of the eigenvalue locus

3 towards the imaginary axis at high frequencies occurs at the frequencies which are artifacts

of the approximation. One can see, by comparing eigenvalue plots for N = 8,16,32,100 that

Sas N increases, the number of eigenvalues which remain in the vertical strip increases. Thus,

the eigenvalues which for low N were seen approaching the imaginary axis are, for high N,

Sseen to be distant from the imaginary axis. It is, therefore, likely, that as N -o oo all the

eigenvalues of large modulus still be in the vertical strip bounded away from the imaginary

axis. This would suggests the absence of a "spillover" in case of a Riccati feedback.

The distance from the set of eigenvalues to the imaginary axis depends, for a fixed N, on

the parameter R in the cost. Figures (32),(33) show that distance as a function of parameter

R, for N = 8 elements. It is interesting to observe the existence of a sharp minimum of

max(real(A,)), that is the existence of a maximum of the distance functions. This occurs for

R" = 1.64 and yields the maximum decay rate 5 - 0.87.

Although one would be tempted to think that R" yields the "best" transients to zero,

3 this is not necessarily so. In fact, by comparing Figures (22)-(24) one can see that the best

transients occur for R approximately equal 100.

3 Figure (25) shows a three dimensional view of the beam stabilization process with the

initial function being the first modal shape.

SFor output feedback, Lagnese [33] provides a formula for the decay rate in an upper

bound on the energy norm. This formula, after a time scale conversion, yields the best decay

rate

Max 1 ). - (95)A=--2L2 (1 + V2-)V

For the specific beam parameters, this yields

A,,,n, = 0.01029 (96)

This appears to be a very conservative estimate. Simulations show that much better

decay is possible with output feedback.
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Figure (26) give comparison of transients under near optimal (numerically) value of the 5
feedback gain k = 0.022 in the output feedback, and the state feedback corresponding to

R = 100. The state feedback is seen to provide about twice as fast stabilization as the 3
output feedback. This suggests, that an improvement in the output feedback's performance

is possible if one adds sensors to the beam, so as to provide dynamically the information U
about the beam's shape. Alternatively, one can insert an observer in the loop. 3
5.5.2 Hinged-hinged Beam

While a hinged-hinged beam with a torque control at one end is less likely to be encountered

in typical applications, it represents an interesting case mathematically. Without control,

it is a problem with symmetry induced by the boundary conditions, thus offering easier

interpretations that the unsymmetric clamped-free and hinged-free problems. m

The beam investigated numerically has parameters I = 1, El/p = 0.02. Figures (40)-

(44) show the closed-loop eigenvalue patterns for the system under state (Riccati) feedback 5
for N = 8,16,32.

In contrast to the clamped-free beam, the closed-loop eigenvalues are now distributed S
primarily within the conical sector in the left half plane. The eigenvalues of large modulus

are larger negative real parts. This pattern is consistent for all values of N, and R, and is

distributed only by the few eigenvalues at the end of the chain. For very low values of R one

also finds two large real eigenvalues for in the left half-plane.

The transient corresponding to the state feedback is shown on Figure (27). a
5.6 Repositioning of a Beam using State or Output Feedback

A beam can be repositioned by using a external input, torque or shear force, at either end

of beam, and stabilized via output feedback or state feedback compensator. In the latter 3
case, the states of system are assumed to be known, and state estimation will be discussed

in next section. An external input, a torque as bending moment or a force as shear force, is

applied at either ends, depending on the boundary conditions of beam. Only is static input

4
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considered in the simulation, with a proportional gain to drive a beam to desired position.3 The output feedback compensator is based on feedbacks in velocity-type term and position

or slope. The state feedback compensator is designed by using operator Riccati equations.5 In addition, a Posicast type pre-compensator, or preshaping-command input technique, is

used to reduce the vibration of beam, due to the forcing function.

I In this simulation, FE model is used to approximate the PDE model of Euler-Bernoulli

beam, and the second-order DIRK method is used as integrating method. Undamped hinged-

free, and clamped-free beams are considered here.

3 5.6.1 Input Gain

5 As mentioned before, the external inputs for beams in the simulation are a torque as bending

moment applied at left end for hinged-hinged beam, and a shear force applied at right end

i for clamped-free beam. In either case, the external input r is a step function with amplitude

Gi, i.e. r = Gil(t), which is adjusted to the desired value of the system output. The Gi

Scan be obtained through the static equation of beam and desired values. The G, can be

interpreted as a gain needed at the system input to produce the desired output yd.

5 First, the input gain Gi for output feedback design is considered. The undamped system

with output feedback can be described as

S= -L.y + Qrntu(t) (97)

u(t) = -KC[fl+r (98)

S= -K 1 K 21 C2]0 +r

=-KiCl#-K 2 C2i+r

- where K1 , C, and K2, C2 are feedback gain vectors and output matrices, corresponding

to the variables y and • respectively. Substituting Eq.(97) into Eq.(98) and rearranging it

leads to

-l= (L. + QmmKiCi)y - QmK 2C2 j + Qmr (99)
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The static equation is obtained by setting, for t = oo, g• = 0, j = 0, and y = yi in Eq.(99) t

as3

0 = -(L. + QmmKlCt)yd + Q•Gl(t) (100) 5
where yd is the desired value. Hence, the value of Gi can be obtained by solving Eq.(100).

n Q•(Lm + QKCl)yd (101)

Similarly, for state feedback the value of Gi can be calculated by

G, - Q TQ,(Lrn+QrKl)y, (102) 1
where K1 is state feedback gain corresponding to the variable y. 3

5.6.2 Output Feedback Control

The simulations for output feedback control were done in following cases:

(i) hinged-free beam with a control torque at left end, and feedback on the velocity of

slope at left end, plus slope at left end, or position at right end. However, whether the latter

two feedbacks are needed depends on the flexibility of beam. 5
(ii) clamped-free beams with a shear force input at free end, and a feedback as the velocity

of position at free end (the "robotic arm" configuration).

In the simulation, system time responses, corresponding to the flexibility of beam and

element number of FE models was studied. Also the comparison of output feedback stabi-

lization between hinged-free and clamped-free beam was done in the term of feedback gain,

and stability margin. A lightly damped beam was used in the simulation with parameters

as I = 3,p = 0.1, k = 0.02, El = 0.02 to 100. The desired static position at the tip of beam

is Yd = L.

The time responses of position at tip for a hinged-free beam with flexibility El -

0.1,0.5,1 and 100 are shown in Fig.(11). In this case, three sensors were assumed, mea-

suring the slope at left end, position at right end, and velocity of slope at left end, with 3
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I feedback gain k = [-0.50.05 - 1.5]. The beam was repositioned from zero to one at tip. A

t dynamic trajectory for repositioning of a hinged-free beam, displacement vs time coordinates,

is shown in Fig.(12).

I

3 ~EI-O.5-- " ~ ~........ i......... ...... ..... :i....

I •

0 0 . ... ... .... ........... • ........ ......... .. ......... ...... ..

1 2 4 6 a 10 12 14 16 18

Figure 11: Repositioning of hinged-free beams with output feedback

From Fig.(11 ), we can see that the beam with smaller E1 has longer settling time and

bigger overshot. The beam with El = 100 reach static state in about 7 seconds, while

the beam with E1 = 0.1 could not settle down at all during 20 second simulation interval.

The feedback gains used in the four cases were the same. Adjusting the feedback gains

according to different beams would improve dynamical trajectory somewhat. At least one

more feedback besides the velocity of slope at left end, is needed to stabilize the system.

The reason for this is that hinged-free beam has a double eigenvalue at zero, one of which

cannot be moved to the left half plane by just one feedback.
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Figure 13: Repositioning of a hinged-free beam with a). output feedback of tip position,
slope and slope rate, b). state feedback with observer. Much better decay of vibration is
achievable in case b.

dynamically estimated from available sensor measurements. This task will be performed by a

dynamic observer - i.e. a state estimator for the structure, see next section. The dynamically

changing reconstructed state is then fed into the state feedback controller.

The state feedback designed by discrete approximations and LQG methodology leads to

an interesting pattern of closed loop eigenvalues (Fig.(14)). Namely, the optimally placed

closed loop eigenvalues form a conical pattern along straight lines going into the left-hand

plane. The high frequency modes exhibit much larger damping than the low frequency

modes. This conclusion, already seen in the case of a hinged-hinged beam, is thus also trueI for a hinged-free beam.

4
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Figure 14: A typical example of closed loop eigenvalues with Riccati feedback design 3
5.6.4 Feedback Control with Posicast Pre-compensator 3
Control systems built by using output feedback respond poorly to external perturbations and 3
have modest stability margins. In addition, such systems poorly execute slewing command

maneuvers (see Fig.(12) and (13)). While the latter can be improved by command signal

shaping using low-pass prefilters, Posicast pre-compensators, or maneuver pre-programming,

the weak damping and small stability margin remains the basic feature of such control

systems.

Posicast is one of preshaping command input techniques which are used to reduce system

vibration. It involves breaking a step of a certain magnitude into two smaller steps, one of

which is delayed in time. This results in a response with a reduced settling time. In effect, 5
superposition of the responses leads to vibration cancellation. Posicast technique used here

is designed based on the dynamic characteristics of the closed-loop system, which is shown

in Fig.(15).
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3 Figure 15: Preshaping the command input with Posicast Filter: r(t)-command to position
the tip of the beam; F-feedback (state or output)I

In the beam problem, Posicast pre-compensator is used to preshape the command so

that the least damped modes in a beam won't appear in the response. In order to do this,

tP(s) should have zeros at the least damped poles of the closed-loop system. Assume that

the eigenvalues of closed-loop system at the least damped poles are

I A, = -G -jw. , n = 1,2,...,m (103)

The Posicast pre-compensator has its transfer function corresponding to each individual

mode as

1 K,,

W- (s) = +-K - e-K T (104)

where K, is fractional overshoot of the step response for the system to be controlled and

p 7T is the time to the peak for the step response. We can express Kn and Tn as

K .C= e- -'a4- (105)

T = 7(106)

The transfer function has zeros at A. in Eq.(103). Cascaded Posicast compensator in

multi-mode case has a form

50



!

P(S) = fi Wk(s) (107)

The Posicast pre-compensator has zeros at \t,*k = 1,2, ...m. The repositioning of a

hinged-free beam with output feedback using Posicast pre-compensator is shown in Fig.(16), 5
together with the response not using Posicast. The Posicast pre-compensator used here was

built based on the first three modes. 3
1.4 .

1.2-B

I3
S0.8 I

0.6 I

0.4- A: 3fhPsc
0.2 B: wihout Posl0 t 3

0m

-0 2 4 6 S 10 12 14 16 18
tme in seconds

Figure 16: Repositioning of a hinged-free beam (El = 0.5) through output feedback with 3
and without Posicast pre-compensator I

The simulation shows that the oscillation of repositioning has been eliminated and settling I
time is quite short in this case.

5.7 Observer Design I
One of the main steps in the construction of the feedback operator for the boundary control

of the beam is the construction of the observer which will compute the state of the beam

(deflection and it's time derivative) at every time instant t based just on the measurement of 3
51
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one scalar valued function z(t). Regular Luenberger observer in discrete-time and adaptive

I observer designs are discussed in this section.

1 5.7.1 Regular Observer in Discrete-time

The main numerical difficulty here is that the observer has an internal feedback loop which

shifts the eigenvalues of the A matrix by transforming A into A - LC, where C is the output

I matrix, and L is the observer gain. The matrix A - LC corresponds to system that is

no longer purely oscillatory, and thus does not lend itself to the use of the DIRK method

£ for second order ODE's. One then has to use a method suitable for damped oscillatory

problems, which puts us back into the consideration of the first order state equations systemg which, as discussed before, suffers from conditioning problems. We are interested in having

an observer of reasonably low dimension, yet capable of reproducing the motions of several

3 principal modes of the beam.

In the process of designing the observer (i.e. finding the gain matrix L) one has a choice

3 of first designing L for a continuous time model, and then applying the discretization in time

to matrix A - LC, or alternatively, one can first compute the discrete-time equivalent of

matrices A, C, and then perform the observer design in the discrete-time framework. We

found that the two steps do not commute, and that the second choice is a more accurate

approach. The first choice requires using a predicted value of z(t + hi), where h, is a fraction

of step size h dictated by the DIRK method.

The FE model of a beam in discrete-time, after using DIRK method, can be described

as

+ = Fz, + Gun (108)

z" = ,. (109)

Designing a observer based on the discrete-time model, we have

i,3+ = Fin + L(z,,- i,) (110)

in = Hn, in (111)
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where nj and n2 can be different in the case that observer has lower dimension model. g
The observer gain L can be obtained by shifting eigenvalues left or using Riccati equation. I

The observer errors for a hinged-hinged beam in the first two modes are shown in Fig.(17

) and Fig.(18 ). The beam was approximated by 64 element FE model, and the observers 5
were in lower dimension, 8 element. The observer was built based on only one measurement,

the slope of beam at right end. The computational experiments showed that an entire shape g
of the beam can be rapidly reconstructed while the beam vibrates, with good accuracy for

the first few natural modes. The number of modes accurately reconstructed can be increased j
at the expense of computational effort.

5.7.2 Adaptive Observer Design

The adaptive observer for Euler-Bernoulli beam is designed to estimate the states and the I
parameters of system in FE model, with unknown initial conditions, through only a few mea-

surements. The unknown parameters can be only the coefficients of stiffness and damping.

Considering the unknown parameters, the FE model for beam can be expressed as 3
7 = -qKmz. - q2 L, + Q. (112) 3

where q1 = k/p, q2 = El/p are unkown pararr 4ers, and Km = M;"Kq, L,, = M;`LV

and Qm = M;'1 Q with Mq = Mfq, Kq = K/k and Lq= L/EI (M, K, L see Eq.(17)).

Converting the equation (112) into a standard state-space form, we have

S- -q2Lm -q.K,, ] x+ [ Q. 1'(113)
Y= C[O (114) 5

However, the typical adaptive obwever design schemes appeared in literatures are based

on some specific system representations, for example, the system described by a differential 3
equation of the form

5
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Figure 17: Observer's error decay in time for a hinged-hinged beamn, mode 1.
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I Figure 18: Observer's error decay in time for a hinged-hinged beam, mode 2.
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i [ajA~ + buI
S= c~z =z1  (115)

where a = [al;a 2 ; ... ;a,,]T,b - [b; b2; ...b,,JT, the (n x (n - 1))matrix A is known and

J = 11; 0; ...0]. The vectors a and b represent the unknown parameters of the system. The i

matrix A is in the canonical form

1 ... (116

A = - or A2 0(116)

. 0 A"'"

where I E 7 (n-1)x(n-1) is an identity matrix, and Ai are the eigenvalues of system.

Such adaptive observer design scheme is not suitable for our beam problem because of

the following reasons 3
* The transformation from FE model to specifical form causes poor numerical condition,

specially for large dimension model. 3
o State variables in the specifical representation no longer has original physical interpre-

tation, and recovery original state variables through transformation is too complicated. 3
* There are 2n parameters to be tracked even though only 2 parameters in FE model are

unknown. 3
An adaptive observer design scheme based on state-space FE model of E-B beam is

considered here, which using sensitivity function concept to define adaptive updating law. 3
For the system described in Eq.(113), the observer can be designed as

S= [-qLm -qiK,.z+L(y-#)+[Q ]u (117),,

Ji =(118)

g(o) = 0 (119) 3
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where q, = k/p and q2 = El/p are unknown parameters. To obtain updating law for

I the observer, the sensitivity functions of the system with respect to parameters q, and q2

are studied. Sensitivity functions provide first-order estimates of the effect of parameter

5 variations on solutions. The observer equation, Eq.(117), can be written to

I = A(q)4 + L(y - j) + Bu (120)

3 where q = (q, q2]T, and let input u be zero.

Define
Oi(t, q) (121)

The sensitivity function around nominal solution q is expressed as

I(t) = A(q)ý(t) + OA(q) it q) (122)Oq

I We have

3 ~1 (--q~im -i' K Km(123)
-q 2Lm -q 1K,, . + 00 -K'.. -(t)(

-q2L,, -I, M 2 + L,, 0

The adaptive updating law can be described as

3q = -Ye1CQ1  (125)

12 = -Ye 1CQ2  (126)

I q,(0) = qj, (127)

5 q2(O) = qi2  (128)

where el = y- is observer error, and "y is speed coefficient.

I The numerical simulation procedure for observer is as following

Step 1: a) Given initial parameters q11 , qi2 , and measurement y.

b) Calculating I and 9 by solving Eq.(117) and (118).
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Step 2: Computing sensitivity functions 6 and f2 by using Eq.(123) and (124).

Step 3: Updating parameters qi and q2 by using Eq.(125) and (125). With updated

parameters, go back to Step 1-b) and repeat the whole procedure until the observer error is

small enough. 5
The observer gain L in Eq.(117) can be obtained by placing poles on the system corre-

sponding to each updated parameters. However, doing pole placement in each updating loop 3
brings calculation difficulties, especially when there are multiple eigenvalues in system. What

we used in the simulation is to design L initially for initial parameters by pole placement, 3
and redesign it only when closed-loop system A(q) - LC become unstable.

The simulation results for hinged-hinged beam with parameters q, = 0.2 and q2 = 1 are 3
shown in Fig.(20) and Fig.(21 ). The output error converged quite good in 30 seconds even

one of the parameter (qi) did not really converge to its truth value. The Fig.(21 ) shows the I
decay of the state error norm for all states and the states representing deflection.

6 Computational Experiments with a Timoshenko Beam
Model

In addition to the experiments with the Euler-Bernoulli beam, two finite-element models

were developed for the Timoshenko beam model.

As is well known, the Timoshenko model taken into account the shear deformation of 5
beam's filaments. This leads to a single fourth order in time-fourth order in space PDE, or

alternatively, to a coupled system of two second order in space-second order in time PDEs. I
The Timoshenko model is known to result in a lower and more realistic rate of growth

of natural beam frequencies that exhibited by the Euler-Bernoulli model. A number of

experiments performed by other researchers in labs showed good agreement of experimen-

tally determined frequencies with the computed ones. The Timoshenko beam actually has

two chains of eigenvalues, one corresponding to the deflection modes, the other, at higher

frequencies, to the shear deformation modes.

Our analysis to date showed that the fourth order Timoshenko model exhibits certain
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peculiar phenomena in the finite element context, namely the eigenvalues of cubic FE approx-

- imation are not necessarily restricted to the imaginary axis. This can be shown to be caused

by an inaccurate reproduction of eigenfunctions by the approximating system, especially at

3 high frequencies.

The second order Timoshenko system is free from this inconvenience, however its use5 with cubic elements entails twice as large dimension of the approximating system as the

fourth order model.

3 We have obtained a good approximation of natural frequencies using even a piece-wise

linear system of finite elements and a second order Timoshenko system. Details of this

research will be described in another report due to that research being done beyond the

termination date of the present subcontract.

Our current work on this project involves combining single beams into an interconnected

system of Timoshenko beams, as described by Lagnese et al [34] This work will enable us

to model experimental structures, such as e.g. the CSI Phase 2 structure at NASA Langley.

This work will be described in subsequent reports.

7 Software Developed Under This Project

Software developed under this project was done in Matlab, version 3.5 and version 4.0. These

are programs corresponding to various beam equations (Euler Bernoulli and Timoshenko, the

latter in both fourth order scalar version and in the second order system version), boundary

conditions, type of feedback control, and problem to be .solved.

One of the critical issues in developing these programs was the large dimension of the

system matrices. This required avoiding the standard Matlab numerical integration routine

"lsim.m", which easily bogs down on large FE models (the apparent reason for this is a

sensitive Pade approximation of eAt used by lsim.m) . However, replacing Isim by a custom

designed iterative scheme could lead to a very slow computation, because Matlab gets slowed

down by a large number of iterations within loops. This difficulty was overcome by using

the DIRK method to produce matrices of a discrete-time system (essentially, we use DIRK
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only to compute an energy-conserving approximant to the exponential matrix eAt), and then n

using a high speed Matlab kernel "ltitr.m" to solve the discrete-time linear system without

using any Matlab loops. This turned out to be a fast procedure.

A brief list of selected programs is given below.

bmhin.m - computes the finite element model for a hinged-hinged E-B beam, along with

the modal frequencies.

bmcla.m - computes the finite element model for a clamped-free E-B beam, along with

the modal frequencies. 3
dsl*.m - these programs integrate the state trajectory of the beam's FE model by using

the second order or the first order DIRK algorithm (* denotes the wild card character, there 3
are several version of this program)

dslctr*.m - these programs compute the trajectory of the closed loop system under either 3
the Riccati feedback or the velocity-position feedback.

wm.m - this program computes the polynomial interpolations between the mesh points, 5
allowing for a graphic three dimensional display of beam's motion in time.

dslobs*.m - these programs solve the observer's equations for the E-B model, given the

placement of sensors on the beam and the desired shift of the eigenvalues into the left half

plane.

adobs*.m - these programs solve the adaptive observer problem for a beam with unknown 3
parameters El and p, by computing the solutions of the sensitivity differential equations,

and by using a variation of the gradient rule for the adaptive observer algorithm.

Currently, software under development includes a FE model for a rectangular Kirchoff

plate using cubic-quartic FEs, and a model for a system of interconnected Timoshenko 3
beams with deflection and axial deformation modeled by piecewise linear FEs in the system

of second-order Timoshenko equations. 3
derivtim*.m - these programs compute the fourth order in time Timoshenko FE model

using cubic Hermite splines. 3
I
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A Appendix: Derivation of the Finite Element Model

I A.1 Variational formulation

Euler-Bernoulli beam is described by

82 w(t,X) + k aw(t,X) +EI&W(t,z) (129)

I 0t2  + & OX4 0

where 0 <_ z < 1, El is the product of the modulus of elasticity and the moment of

I inertia, p = A- m and A is the cross sectional area of beam and m is mass per unit volume,

and k is the damping coefficient of beam. w(t, z) is the vertical deflection of beam.

Before using finite element approximation, a variational formulation is formed which re-

casts a given differential equation in an equivalent integral form by trading the differentiation

between a test function and the dependent variable. We construct the variational form of

Eq. (129) over element e, with test function v

= X4+1 V[b '2W + kOW + "02 EI(- '2W )]dxi .. , 82wo Ow _.0%02w.

a 2 w 72 a 2 w

tOw + OvO2w
+ - Ox- O='= - [EI= O=2J'=+*:+, 092 w OW 02V, 2W

=w(pv-- kv-v + El-• ')dx- II
T+ at2 O x= x

'(e)~)-1 dv (C) dv )](C)

-V(x)Q•C) - v(xe+i)Q(e) - [-d ](C.)]O -[-T(x.+,]4 (130)

where

Q(C) = d d2w

Q(e) = I12W

Q(e)= T(EId•w)]x+,

Q(C) d2w
=-[ElI-d-2 ]_+ (131)
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A.2 Finite Element Method I
We divide a beam into N element with N + 1 nodes, as shown in Fig.(1), and assume that 5
displacement w over each element is interpolated by an expression of the form I

•() +) 4)0(e) + O(,)(C). + (041,(OP

S U•ge)(t)O+e)(e) (132)

where 3
u(e) = •()) W -() W(C)3 2 t(ze+i) as deflections,

U(e) = 0(e) = (z.), u (e) -(* = (x.+i) as slopes.I

and (e) are interpolation functions

€,•,Xe-( 1 - X,) -: X,)2= h I

0 (e) = (T-- X he X, ) 2 _ X h;; XeC (133) £
The interpolation implies that at any arbitrarily fixed time t > 0, the function w can be

approximated by a linear combination of ('), with u(') being the value of w or iOw/Ox, at

time t, at both end of element e. In other words, the time and spatial variations of w are

separable. Substituting for v = 0e)(z) and Eq.(132) into variational formulation Eq.(130),

we obtain 5

.(p, 1: -++ (134)+ ,--t-2 1 t - X E u-• dX
S j=i j=1 j=1

or 3
[M(e)] + [K(e)]f6 + [L(e)] u} = Q(e) (135) 3
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where

U = [U U2 U 3 U4 ]T  (136)
Q( =.)= Q Q) Q() Q() ]T (137)

Kjj)= k~ijdz

=Lae)+ EI--d z (138)L.6  
dzT2 dz

For the case in which the p, k and EI are constant over an element, the element matrices

M(C), K() and L(e) are given by (these are called the mass, damping, and stiffness matrix,

respectively)

156 -22h 54 13h

M(e) = ph -22h 4h 2  -13h -3h 2  (139)
420 54 -13h 156 22h

13h -3h 2  22h 4h 2

156 -22h 54 13h

K(e) = kh -22h 4 -13h -3h 2  (140)
420 54 -13h 156 22h

13h -3h 2 22h 4h 2[6 -3k -6 -3k]
L(e) 2EI -3k 2hk2  3h 2  (141)

- - -6 3h 6 3h
-3h h2  3h 2h 2

A.3 Assembly of Element Models

The global model is obtained by assembling all element models, in the way that the coeffi-

cient matrices of element models overlap at all intermediate nodes. We note the following

correspondence between the local variables uj and the global variables Uj (see Fig.(19)):

u, = ,,M) (,)
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Figure 19: Assembly of the beam element, N = 2 3
()= 8) o0() 3

U2 = U2 I(-, = (•-) = ) -(2) (2)

U3,, = U3/- =o-2 =W oF= U1
(1 0() 02 (2)

U4 = U4  2 w(1) 1

* 0 *1
= (N-1) (N-1) (N) (N)

U2N..1 =U 3  2 i= U2

U2 (N-1) - (N-1) -O(N) = U(N)1

U2N+1 = U3N W2N

U2N+2 - u(N) -O(N) (142)

Since there are two global variables (U,) per node, the coefficients associated with re-

pcated local variables should add up. In other words, the global coefficients have contri-

butions from both consecutive elements. For example, in two element beam, the global I
coefficients K33, K34, K 43 and K 4 4 have contributions from both element 1 and 2.

K4 = r(1) + K (2) K = K('1 + KW(2

K 43= i+ 21 44 -K44 22~

In general, the assembled matrices for the assembly of beam element have the form shown

in Eq.(145). The global model is in the form 3
MU-+KU+LU=Q (143) 3
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where coefficient matrices M,K and L are in (2N + r) dimension, which are assembled

3 in the way as shown in Eq.(145), and the boundary condition Q, in (r = 0,1 or 2) has the

form

I
QI) Fo

QM) + Q(2) 0
4 2 0

Q * * . = . . (144)
Q(N•1) + Q(N) 0

3 0
Q(N.1) + Q(N) 0F

Q4Q(N)(N 2 -Mi1
4Q(t) -M,

3 where

) d d2wFo= Q()= [T( '2 )].=o

A Mo- Q(1) d2 vW

=F- Q(2) d Ej2W

MI = Q(2) d2w4 __ [EI -dX2 ]X==

The global boundary conditions at all intermediate nodes are zeros because there are no

I externally applied shear forces and bending moments. Hence,

SQ() + Q() o Q(1) + Q(2) = 0

Q(N--) + QN)- 0 Q(N•1) + Q(N) = 0

41t depends on boundary condition
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(1 () MI~l M(I)~M~ ~M~

0) 1M2(11 M221 M213) M2(4+.,)u() -,()

• I

0 (145) I

M•(1 ) + M,() M(41 -) + MW7) M,(32) MW(2)

M44

(1 M(1 M() M(2 .( 1) M2(2) M.(32 M2(2)
1 2 42 •r44

I
I
I
I
I
I
I
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Figure 41: Closed-loop eigenvalues of hinged-hinged beam with state LQR feedback,

R=10, 8 elements.
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Figure 42: Closed-loop eigenvalues of hinged-hinged beam with state LQR feedback, 3
R=5, 8 elements. I
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Figure 43: Closed-loop eigenvalues of hinged-hinged beam with state LQR feedback,

R=5, 16 elements.
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Figure 44: Closed-loop elgenvalues of hinged-hinged beam with state LQR feedback,I

R=5, 64 elements.
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