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ABSTRACT

The angular momentum of a free-flying multibody system in

space is a conserved quantity. This conservation law acts as a

nonholonomic constraint and manifests itself when cyclic motion of

the articulated joints of an on board manipulator produces a net

change in the orientation of the whole system. This poses two

important and coupled problems: (a) the motion planning problem of

the manipulator for attitude reorientation of the space structure

using internal motion of the joints, and (b) planning the

manipulator joint trajectories that produce repeatable motion of

all the configuration variables. We have adopted a surface

integral approach to come up with algorithms for these nonholonomic

motion planning problems.
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I. INTRODUCTION

There is a growing interest in the area of attitude

control and motion planning of multi-body systems in space.

These structures in space are expected to have attached

articulated joint manipulator arms on board. A problem

arises for these structures in that the movement of the

manipulator arm will cause a displacement for the whole

structure. This displacement is a result of the dynamic

coupling between the arm and the structure. Multi-body

systems in space, in the absence of external forces, conserve

the angular momentum of the system. This conservation acts as

a nonholonomic constraint on the motion of the system. For

structures with attached manipulator arms, this conservation

law manifests itself when cyclic motion of the manipulator

joints produce a net change in the orientation, i.e., a drift

in the orientation, of the whole system. Changes in system

orientation can also arise from other causes such as: (1)

differential gravitational forces; (2) solar radiation

effects; (3) dynamic interactions between a space station and

on board robots or a docking shuttle craft; and, (4) the

operation of booster rockets used for orbit maintenance (Ref.

20].
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An extensive literature survey will lead one to believe

that the best way for attitude control would be to use

momentum exchange devices with control momentum gyroscopes as

the most desirable devices for attitude control.

Though the most desirable devices, gyroscopes have some

disadvantages which are: (1) they require a steady power

source to overcome the dissipated energy of the friction in

the bearings; (2) susceptibility to mechanical failure as a

result of its constant motion; and, (3) a significant added

weight effect. Other devices such as booster rockets and gas

jets have the disadvantage of: (1) requiring onboard fuel

storage which adds a considerable weight effect; and, (2) fuel

sources that once expended are non-replenishable without a

considerable monetary expense.

If manipulators can effectively be used to reorient a

space structure, they can serve as a reliable back-up means of

attitude control in the event of a power interruption or

mechanical failure of the gyroscope. In the case of a small

satellite with an attached manipulator where the added mass of

a gyroscope or booster rocket fuel is undesirable, the

manipulator can serve the dual purpose of attitude control and

automation in space.

The advantages of the manipulator are: (1) they are

already aboard; (2) require much less power than momentum

exchange devices; (3) are less susceptible to mechanical

failure; and, (4) use of the manipulators internal controls
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does not modify the total angular momentum of the system [Ref.

24].

A related issue to using a manipulator arm to reorient a

space structure is that, due to the nonholonomic nature of the

structure, the use of a manipulator to perform a required task

may result in a undesirable change in the orientation of the

structure. It thus becomes desirable to be able to predict

and control the change in orientation of a freely-floating

space structure. The ability to predict and control this

change is the subject of this thesis.

Some of the earliest work in the study of the motion

planning problems of nonholonomic systems has been done by

Kane and Scher [Ref. 12], who studied the falling cat problem,

and Kane, Hedrick and Yatteau (Ref. 11], who studied the

astronaut maneuvering scheme.

More recently the study of the use of manipulators for

reorientation of space structures has been done by Vafa and

Dubowsky [Ref. 29], where cyclic motion of the joint variables

were proposed to reorient the space vehicle, and Fernandes,

Gurvits and Li [Ref. 4] proved the controllability of a space

robot system using a three link manipulator. This work

motivated Nakamura and Mukherjee [Ref. 22], who proposed a bi-

directional approach to the motion planning of free-flying

space robots to control both the space vehicle orientation and

the manipulator joints by actuating only the manipulator

joints. Conversely, Yamada and Yoshikawa [Ref. 32] prescribed
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an arm trajectory and then found the optimal trajectory that

yielded the desired attitude change with the minimum arm

movement. Walsh and Sastry [Ref. 31] provided kinematic

algorithms for reorienting some systems of linked rigid bodies

floating in space.

Other studies on the control, stabilization,

repeatability, drift and motion planning for reorientation of

linked multi-bodied structures in space can be found in the

reference section.

This thesis follows on with work done by Mukherjee and

Anderson [Ref. 19], wh.erein they proposed a method of the

surface integral approach for planning the motion of a two

dimensional nonholonomic system.

In this thesis we present two concepts. The first is an

algorithm for the motion planning of a space manipulator to

achieve attitude control of a freely-floating three

dimensional space structure. Generally stated the ilgorithm

provides a means for calculating the coordinate trajectories

required to drive a nonholonomic system from one point in its

configuration space to some other desired point. The

algorithm invokes the use of Stokes' Theorem and, therefore,

takes a surface integral approach to the problem as is done in

(Ref. 20].

Secondly, we present a means of determining the

manipulator motion required for the nonholonomic freely

floating space structure to behave in a holonomic manner

4



globally, which we call "pseudo-holonomic behavior" [Ref. 21].

The method determines if "holonomic loops" [Ref. 213 do exist,

where the system exhibits holonomic behavior globally for

particular paths in the configuration space of the

nonholonomic system. The planar space robot is the system

studied and its configuration space is the joint space of the

manipulator. If a "holonomic loop" does exist, wp present an

algorithm for finding that loop within the configuration

space.

This thesis is organized as follows:

Chapter II presents some mathematical preliminaries

necessary for understanding the behavior of nonholonomic

systems.

Chapter III studies the freely floating three dimensional

space structure with an attached three link manipulator as

shown in Figure 1.1. The problem to be solved is to change

the orientation of the structure from one configuration to

another configuration by moving the manipulator arm joints

along pre-planned paths. An exawnle of the initial and final

orientations of the structure are as shown in Figure 1.2.

Chapter III provides an algorithm for planning the path of the

manipulator joints necessary to achieve a desired change in

orientation of the structure. Once the path is planned a

simulation is ronducted to illustrate that manipulators can

indeed reorient a space structure.

5



Chapter IV studies the freely-floating planar space robot

with an attached two link manipulator arm as shown in Figure

1.3. The problem to be solved is how to plan the path of the

manipulator arm joints such that the space robot will not

reorient itself in space. This amounts to finding the path in

space for the manipulator arm where the planar space robot

exhibits holonomic behavior globally. Chapter IV provides an

algorithm for planning the path of the manipulator joints that

will allow the planar space robot to regain its original

orientation after the manipulator motion is complete. Once

the path is planned a simulation is conducted, illustrating

that repeatable motion is possible for nonholonomic systems.

Chapter V presents conclusions and recommendations.
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Figure 1.1 A Freely-Floating Space Structure with a 3
Link Manipulator.

7



(a)

(b)

Figure 1.2 The (a) Initial, and (b) Final Orientation of
a Structure in Space.
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Figuro 1.3 A Planar Space Robot With-Two Links.
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II. MATHEMATICAL PRELIMINARIES

A. RELEVANT TBEORU(S

A review of a few mathematical theorems is necessary to

understand how nonholonomic systems behave and the problem

solutions which we propose. The first theorem concerns the

exactness and integrability of a differential equation. The

second concerns the path independence of line integrals.

Finally, the third is Stoke's Theorem, which transforms line

integrals into surface integrals.

1. Theorem 1: Exactness CRef. 5]

A differential expression of the form

M(x, y, z)dx + N(x, y, z) dy + P(x, y, z)dz (21)

is exact on a domain D in space if,

afdt a_ at
Mdx + Ndy + Pdz = -dx + -d -z (2-2)

Oax- Oy az(2)

for some (scalar) function f throughout D. The differential

form Equation (2-1) is exact, if and only if;

P am aN =M O• am (2-3)

10



It is a well established fact that a differential

expression is integrable, if it is exact or can be made exact,

by multiplying it by an integrating factor. In other words,

exactness implies integrability. Therefore, it follows that

non-integrability implies non-exactness. Exactness is also a

necessary and sufficient condition for path independence of

line integrals. This is stated formally next.

2. Theorem 2: Exactness and Independence of Path
[Ref. 14]

Let f(x,y,z), g(x,y,z) and h(x,y,z) be continuous

functions in a domain D in space, then the line integral is

f(fdx + gdy + hdz) (2-4)

is independent of the path C in D, if and only if, the

differential form under the integral sign in Equation (2-4) is

exact in D. Additionally the line integral is independent of

path in D if and only if it is zero on every simple closed

path C in D.

A line integral over a closed path C can be converted

the into a surface integral utilizing the well known Stoke's

Theorem [Ref. 2].

3. Theorem 3: Stoke's Theorem [Ref. 21

If D is a k-dimensional space and w is a (k-l)

differential form on D, then from Stoke's theorem we have

11



fO f = Ddo (2-5)

where, 8D is the path of the line integration and is the

boundary of the domain D, and dw is a differential k form,

obtained by the exterior differentiation of w.

B. MANIFESTATION OF NONHOLONOrY

The importance of theorem 2 lies in the fact that

nonholonomic systems are governed by non- integrable and, hence

non-exact differential constraint equations. Nonholonomic

systems are, therefore, path dependent. To illustrate path

dependency consider the following equation:

dp = v, dx + v 2 dy + v3 dz (2-6)

Where: .(1) p is the dependent variable of a nonholonomic

system; (2) x, y and z are the independent variables; and, (3)

v1, v2 and v 3 are continuous functions of x, y and z. Since

the system is non-integrable the differential form,

v1dx + v 2dy + v 3 dz

is not exact. Therefore, by theorem 2 the change in p is path

dependent. Hence, it is possible to change the coordinates of

the dependent variable p, by using closed trajectories of the

independent variables, as shown in Figure (2.1). The

independent variables, which trace the closed path C, start at

point two, move around the path and return to point five,

12



coincident with point two. The independent variables have

returned to their original value, whereas the dependent

variable p has taken on a new value, p + Ap. Path dependency

is a characteristic of nonholonomic systems, which we will use

to reorient a structure in space using angular momentum

preserving controls; this is considered next.

C. THE SURFACE INTEGRAL APPROACH: ATTITUDE CONTROL

In Chapter I, we have seen that freely floating structures

in space are nonholonomic systems. The nonholonomy arises

from the fact that the conservation of angular momentum yields

non-integrable constraints of motion. It is this non-

integrability that permits the reorientation of the structure

while maintaining a zero value of angular momentum.

In the case of an articulated space structure, the

nonholonomic constraint equations relate the rate of change of

the dependent variables, the structure orientation, to the

rate of change of the independent variables, the angles of the

articulated arms. To achieve the desired change in the

orientation of the structure, we need only find the correct

path in the configuration space of the independent variables,

the joint angles, to yield the desired change in the dependent

variables, the orientation of the structure. We can find this

path by methodically utilizing the surface integral approach

to solve for the closed path.

13



The nonholonomic motion constraint equation for the

articulated structure can be expressed in a differential form.

Integration of this differential form, to obtain the change in

the dependent variable, amounts to solving the line integral

of the equation in the space of the dependent variables. The

surface integral approach utilizes Stoke's theorem to convert

the line integral into a surface integral. This approach

simplifies the mathematics and allows us to appropriately

choose a surface area, which will yield the desired change in

the dependent variable. Once the surface area is chosen, the

path enclosing the surface area can be found by setting the

limits of integration. The change in the dependent variables

can now be found as a function of the limits of integration.

By choosing the limits of integration, we have the ability to

satisfy additional constraints, such as the limits on the

values of the independent variables.

To illustrate this, consider an arbitrary space structure

as previously shown in Figure 1.1 with an attached manipulator

arm. Suppose that the manipulator has constraints on its

motion, such as joint limits or work space limitations. Now

suppose we wish to reorient the structure by an amount 0 where

0 = nk, where n = 1,2,..., and k is the change in orientation,

as the manipulator traverses a path c. By appropriately

setting the limits of integration, we can choose our surface

such that we reorient the structure by traversing a path C one

time or traversing a smaller path c, n times. The manipulator

14



motion can then be planned amidst additional constraints,

such as manipulator joint limits and environmental work space

limitations. The surface integral approach will be presented

in detail in Chapter III.

D. THE NECESSARY CONDITION FOR REPEATABILITY

The property of repeatability of a system is that, when

the independent variables move along closed trajectories, the

dependent variables also move along closed trajectories.

Repeatability is ensured if the differential constraints of

motion of a system are integrable and, hence, are path

independent. Naturally holonomic systems exhibit this

property.

The purpose of Chapter IV is to demonstrate that: (1)

integrability of the differential constraint is only a

sufficient condition for repeatability, but it is by no means

a necessary condition; and, (2) that a necessary condition for

the repeatable motion of a nonholonomic system is as follows:

Consider a two dimensional path dependent system where 00

is the dependent variable and 01 and 02 are the independent

variables. Suppose also that the dependency of 00 on 01 and

02 is explicitly given by the following equation:

dO0 = g 1 d0 1 + g 2 d02  (2-7)

15



where g, and g 2 are functions of 01 and 02. The change in the

dependent variable is given by the line integral.

Sf giD8 + ag1 de'.1 (2-8)

ag agI (d 1Ac 2) a
f a2 Mg

applying Stokes' theorem yields,

f ae f4 - 'ag' dld (2-9)

where "A" denotes the exterior product, "." denotes the dot

product and a, the orientation of D has the same orientation

as dx 1Adx 2  when the direction along the path is

counterclockwise, otherwise o has the same orientation as

dx2 Adx,. For a nonholonomic system,

432 0g1980z 80

hence, we define

- F(e1,02) (2-10)

16



substituting into Equation (2-9) we get

= F(O1'e 2 ") fkd" a 2  
(2-11)

= F(e 1",e 2")1C(D) , ( 1 ',0 2n) D

Equation (2-10) was obtained by the application of the mean

value theorem of integral calculus. The function F can be

shown to be continuous in the entire domain D and, hence, the

mean value theorem applies. 01* and 02* denote some point

within the domain D; and, w (D) is the measure of the domain D;

in this case it is simply equal to the area enclosed within

the closed curve aD. F(01*, 02 *) can also be interpreted as the

mean value of the function F, defined by Equation (2-10),

taken over the domain D. If this mean value happens to be

zero, then we would have no net change in the dependent

variable as the independent variables move along closed paths

and return to their original value. Hence, we have a

nonholonomic system that exhibits pseudo holonomic behavior.

We will apply this concept to a planar space robot in Chapter

IV.

17
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( ( 4 ) Y

(1 (16= (5)y' o

(2) = (xo, yo. zo, pO+ 8p)
(5) = (X0, YO, Zo, PO+8P + Ap)

x (6) = (xW, yzf p0 +Ap)

ligure 2.1: The Closed Trajectory C in the Independent
Variables X, Y, and Z Produces a Change in
the Dependent Variable P by an Amount Ap.
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III.- THE SURFACE INTEGRAL APPROACH: ATTITUDE CONTROL

A. INTRODUCTION AND NOMENCLATURE

In Chapter I, we saw that for a freely-floating space

structure with an attached manipulator arm that if the

manipulator can effectively be used to reorient the structure

then manipulators can serve: (1) as a reliable back-up to

gyroscopes; and, (2) the dual purpose of attitude control and

automation in space.

In this chapter, we develop the algorithm for attitude

control of a space structure using a three link manipulator

and present the results of the simulations. We assume the

robot to have a PUMA type structure as shown in Figure 3.1(a),

and the reference frames are according to the Denavit-

Hartenburg [Ref. 3] convention. Figure 3.1(b) shows the

kinematic structure of the manipulator. For mathematical

simplicity: (1) the center of mass of the system was chosen to

coincide with the geometric center of the body; and, (2) the

inertial and body fixed axes were -hosen to be coincident at

point S.

The following nomenclature is used throughout the

development:

frame I Inertia frame.

19



frame S Frame fixed at the center of mass of the
space structure and directed along the
principal axes of the structure.

frame K The k-th kink frame of the manipulator
according to the Denavit-Hartenburg (3]
convention. k - 0 denotes the manipulator
base frame.

mk Mass of the k-th body for k = 1, 2, 3...

the mass of the space structure is ms (kg).

kIk E R3x3 Inertial matrix of the k-th body about the
principal axes located at the center of
mass, and expressed in the k-th link
frame. The inertia matrix of the space
structure is denoted by 1is, (kgM2 ).

IkijI'Sij (i,j)-th element of klk, Xs (kgm2 ).

x01 y0,z0  Position of the center of mass of the
space structure in the inertia frame (m).

01002,43 y-x-y Euler angles, describing the
orientation of the space structure with
respect to the inertia frame.

00,01,02,03 Euler parameters [Ref. 10].

R[-,*] E R 3 x3 Orthogonal rotation matrix corresponding
to a rotation of the (0) axis fixed on the
space structure by an angle (*).

(01 , 02 1 0 3 ) Joint configuration of the three link

manipulator.

B. ALGORITIM FOR MOTION PLANNING

The angles and parameters of interest in the development

of the algorithm for motion planning are: (1) Euler angles,

describing the orientation of the space structure; (2) Euler

parameters; and, (3) the joint angles of the manipulator. The

"home" and "intermediate" configurations of the manipulator

are as shown in Figure 3.2. The "home" configuration is

20



defined as 81, 02, and 03 equal to zero degrees where 01, 02,

and 03 are the joint angles of the first, second, and third

links, respectively. The "intermediate" configuration is

defined as 01 equal to ninety degrees and 02 and 03 equal to

zero degrees.

The reorientation of the space structure will be achieved

through rotations of the structure about the body fixed x, y,

and z axes. Our goal is to change the orientation of the

space structure from an initial set of Euler angles 01i, 02i,

03i to a desired set of values 01f, 02f, I 3f without any change

in the system configuration. In other words, we would like

the manipulator to have the same joint configuration (0I, 02,

03),say the "home" configuration, when the orientation of the

structure is (0102,03) - (10i,'2i,03i0 or ('01f',2f,03f. The

initial and final configurations are given in Figure 3.3.

Three classes of motion are defined as follows:

(1) Y - Class motion

The purpose of the class Y motion is to change the
orientation of the space structure about its' YS axis
using the manipulator. The manipulator will be at the
"home" configuration at the beginning and end of this
motion. Furthermore, during this motion the first joint of
the manipulator will be kept fixed at 01 = 0.0 radians.
The motion of the manipulator will, therefore, remain
confined to the Xs-Zs plane, and the problem will reduce
to a planar problem.

(2) Z - Class motion

The purpose of the class Z motion is only to reconfigure
the manipulator. It will be used to bring the manipulator
to the "intermediate" configuration from the "home"
configuration, and vice versa. The reconfiguration will
be achieved by using only the first joint of the

21



manipulator. The second and third joints of the
manipulator will be held fixed at (02, 03) M (0,0) during
this motion. The motion of the manipulator will,
therefore, remain confined to the XS-Ys plane. Note that
the Z-class motion is a holonomic motion because only one
manipulator joint is involved in this motion.

(3) X - Class motion

The purpose of the class X motion is to change the
orientation of the space structure about its' X$ axis
using the manipulator. The manipulator will be at the
"intermediate" configuration at the beginning and end of
this motion. Furthermore, during this motion the first
joint of the manipulator will be kept fixed at 01 - W
radians. The motion of the manipulator will, therefore,
remain confined to the Ys-Zs plane.

To reorient the structure there are twelve possible

combinations of rotations about the body fixed axes. The

scheme chosen for this problem was to sequentially rotate the

structure about its' y-x-y axes.

1. Y - Class Motion

The change in orientation, rotation of the structure

about its' Y. axis is given by the nonholonomic angular

momentum constraint equation as follows:

_ i (a;2 +÷; 3) (3-1a)

a & CLsine2 + C2cos63 + C3sin(02 + 03) + s1

b & C2cose3 + C3sin(02 + 03) + S2

A a 2qsin02 + 4cos8 3 + 2Csin(02 + 83) - S3
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where the constants CV, C2 , C3, s1, s 2 and s 3 are defined as,

C1 A 1 2 (0.55m 2 + m3 ) [im.(z + 11) + 0.55mli],

C2 & M3 1 213 (ms + mi + 0.5m2 ) ,

C3 A 0.m 5i13 [ms(.r + 11) + 0.5mi1i] , (3- 1b)

S1 A inI 233 + (0.25m2 + M3) 12] - (0.Sn2 + M3 )2 + s2 2

S2 & mt[X333 + 0.25m3 3] - 0.25•m ,

S3 A -Me[Is22 + I +,3 + (M2 +M 3 ) (r + 1 +)2 + m,(r + 0.511)2]

-[,(z + 0.511) ( 2 + M 3) (r + 11)]2 - S ,

and where, m. = (m. + m, + m2 + mi3), and r, 11, 12 and 13 are

defined in Figure 3.1(b). Equation (3-1a) gives the angular

velocity of the structure about its'Ys axis as a function of

the joint configuration and joint velocities.

If the second and third joints of the manipulator move

along a closed path C in the 02 -0 3 plane, then the net change

of orientation of the spacecraft about its' Ys axis is given

by;

,= fd* = f-a82 ' bd,) (3-2)

ff[(k) L (A) I 82d3
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where, S is the surface area enclosed within the closed curve

C. Choosing the surface area S to be rectangular, to simplify

the integration, and specifying three of the four limits of

integration we can solve for the change in orientation as a

function of the fourth limit of integration. The fourth, and

unknown, limit of integration was chosen as 02u. After

integrating, the final expression for the change in

orientation, *y as a function of 02u, Equation (3-3) was

obtained.

C2C3COSO 2 inS3-2C1sinO2.-2C3cose2 ). -v 4

V5  s 3 -C 2 -2(C1 +CG)Sn02 U 2v 5

+ 2 [s 2 v5 + (s3 - 2Clsin62 u) v4]V5 V6
arctan( s3 + C2 - 2 (C.- G) sin02 U- 2 cos02 U

V6

2 [s2vs + (s3 -2C:sini 2 ) v4 " at tan(-2C3 C80 2U)
VsVE V6

t.c [-E +ln( 2 C3 - s3 (3-3a)
v2 2 C2 S3

2 (s2 v2 S+ a s., 2C3 -C2 S3+arctan( ) -arctan( 3')]
V2V3 V3  V3

3 +2s• [atctan( an(O"/2) ) -azctan(L-1) ]
V7 V7 v 7

s3 +2sl+Cactan( 2 (C+C) + (C 2 -s 3) tan(O02 /2)
v. vs

s3÷2s3 +2C8actan( 2(Ci÷+G))

V. VS
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with

vA C2
2 + 2C 3

2 ,

V2 A C2
2 + 4C 3

2 ,

V 2 A 832 - C22 - 4C3
2 , (3-3b)

V4 A V, + 2C2C3sine2,

v62 A (s3 - 2C1sin82 .) 2 - (C2 + 2C3sin82 .)2 - 4C3
2cos 2 2.,

v7 2 A S32 - 4C32 - 4C 2

V 2 A (C2 - S3)2 - 4(C 1 + C3 ) 2

The relationship of 0. expressed as a continuous function of

02u' Equation (3-3), for 0 s 02u 9 W is shown in Figure 3.4.

Since the joints of the manipulator will have physical

limits, the maximum absolute value of #, will be limited by

the maximum value of 02u. Referring to Figure 3.4, if we

impose the joint limit of 02u s (3w/4) radians, then the

maximum change in vy will be of the order of +7.50 degrees.

Note that the sign of 0y can be reversed by simply traversing

the closed path in the 02-03 plane in the opposite direction.

If a change in orientation greater than 0. > 7.5 degrees is

desired, then the manipulator joints will have to move along

some closed path a multiple number of times. This closed path

can be found as follows: Set the desired change in 4y to a

where 0 - 6n, 5 denotes the change in orientation each time

the manipulator traces out a path, n denotes the integer
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number of times the arm must trace the path. The integer n is

then obtained by maximizing

6 - Q/n s 7.50

The value of 02u is then obtained from Equation (3-3) by

setting Gya-6 and using a non-liner function solver to solve

for the root of Equation (3-3). Visual examination of Figure

3.4 will give the range in which the root of the function will

lie.

Hence, any changes in orientation of the space

structure about its' Y. axis can be achieved through a single

or multiple closed looped trajectories of class Y motion.

2. Z - Class Motion

The purpose of class Z motion is solely to reconfigure

the manipulator from the "home" configuration to the

"intermediate" configuration and vice versa. This motion

makes it possible to change from rotating the structure about

its' Y. axis to rotating the structure about its' X. axis and

vice versa. This will allow the y-x-y rotation sequence

previously discussed.

The change in the orientation of the structure about

its' Z. axis is given by the holonomic Equation (3-4).

3

IS334Z [ [ I22 + 0.25M2122 +5*(0.513 + 1i)2] (02 + +Z) = 0 (3-4)
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which upon integration yields,

40Z
Is2.1 + Ij, 2 (3-5)

3

IM a Zj22 + 0 . 25m212 2 + m3 (0 513 + 12 )2

The.change in orientation Oz is negative when the manipulator

moves from the whome" configuration to the "intermediate"

configuration. It is positive when the manipulator moves from

the "intermediate" to the Ohome" configuration. The absolute

value of 0. is, therefore, a constant whose value depends upon

the inertia parameters of the system.

3. X - Class Motion

The change in orientation of the structure about its,

X. axis is computed in a similar fashion as that f or the

motion about the Y,, axis. All the equations developed for the

Y. class motion will hold, however, with three changes, 41Y is

replaced by j5., the constant 93 in Equation (3-1a) will have

X.922 replaced with XS1.1, and A in Equation (3-1a) will be

replaced by -A. 0., denoting the change in orientation of the

structure about its, XS axis can be expressed as a continuous

function of 02u, f or 0 :S 02u S w, as shown in Figure 3.4.

Again imposing the limitation of 02u :5 (3w) /4 radians, the

maximum change in 0_, will be of the order s 6.66 degrees.
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Using the same logic as for 0y, we can conclude that

any arbitrary change in the orientation of the space structure

about its' XS axis can be achieved.

C. SYNTHESIS OF MANIPULATOR MOTION FOR REORIENTATION

Having looked at how the orientation of the space

structure changes with motion of the manipulator, the goal now

is to determine the path necessary for the manipulator to

traverse, so that we may achieve the desired change in the

orientation of the structure. As previously discussed, in

section B, we have chosen an y-x-y scheme to reorient the

space structure. To do this, consider the following sequence

of five rotations where the change in orientation of the

structure about the X., Y., and Z. axes are denoted by A,, A2 ,

A3 , and A4 .

1. Class Y motion with =y - A1

2. Class Z motion with Oz - A2

3. Class X motion with ox - A3

4. Class Z motion with Oz = -A2

5. Class Y motion with y = A4

Note that A,, A3 , and A4 are variables; whereas, A2 has a

constant absolute value. This is because, as previously

noted, the sole purpose of the Z class motion is to

reconfigure the manipulator arm.

Looking at this sequence of rotations in detail: Let the

initial orientation and the desired orientation of the space
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structure with respect to the inertial frame be given by the

rotation matrices Ri and Rf, respectively. Then,

Ri A R[y,A3i]R[x,02i]R[y,Oji] (3-6a)

Rf A R [y, 3 f]R(x,4 2 f]R[y,Ojf] (3-6b)

where (01i',2i',3i0, and (Olf',•2f,3f) denote the set of Euler

angles describing the initial and the desired orientation of

the space structure with respect to the inertial frame. Then,

the set of y-x-y Euler angles (01,02,03) describing the

desired orientation of the space structure with respect to the

initial orientation can be solved from the following equation.

R(y,0 3]1R x,4•2 ]R[y, • 1] = RfRiT (3.-7)

Equation (3-7) has a singularity for 02 = 0, ±*,. Except for

this situation, *5, 02 and *3 can be solved uniquely from

Equation (3-7) . At the singular configuration(s), the

orientation of the structure can be trivially depicted by one

single rotation about the Ys axis of magnitude (10 + 03) for

=2 - 0, and of magnitude (01 - 03) for 02 - ± Wr-

Consider the sequence of rotation of the manipulator:

1. Class Y motion with y - A,. The change in the
orientation of the structure can be represented by
R[y,Ai] . At the end of this motion the manipulator
returns to the "home" configuration.

2. Class Z motion with 0_ = A2. A2 is obtained from
Equation (3-5) as:
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A2 (3-8)

H + XS33 2

The change in the orientation of the structure can be
represented by R[z,A2]. By virtue of this motion, the
manipulator moves from the "home" configuration to the
"intermediate" configuration.

3. Class X motion with Ox - A3. The change in the
orientation of the space structure can be represented by
R x, A3]. At the end of this motion the manipulator
returns to the "intermediate" configuration.

4. Class Z motion with p. - - An n where A2 is defined by
Equation (3-8). The change in the orientation of the
structure can be represented by R [z, -A2]. By virtue of
this motion, the manipulator moves from the
'intermediate' to the "home" configuration.

5. Class Y motion with " A4. The change in the
orientation of the stricture can be represented by
R[y,A4 ]. At the end of this motion the manipulator
returns to the *home" configuration.

If the manipulator goes through the sequence of motions

discussed above, the change in the orientation of the space

structure would be represented by the rotation matrix,

R[y,A4 ]R[z,-A2 ]R[x,A,]R[z,A2 ]R[y,A1 ] (3-9)

If any arbitrary change in the orientation of the space

structure- given by Equation (3-7) is to be attained through

the above sequence of motions, then we should be able to solve

for A,, A3 , and A4 from the following equation;
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R[y, A.)JR[z,-A 2]R[X,A3]Rlz,A2JR~y,A,] (3-10)

for arbitrary values of 01, 02, and 03- Equation (3-10) will

have a singularity for 02 = 0, ±ir. Then Equation (3-10) can

be solved by setting A2 -A 3 - A4 - 0, and equating A, = 0

+ 463) when 02 - 0, and A, (- - 03) when 02 - ±1. When 02

0, ±wr, we solve for Al. A3, and A4 by first rewriting Equation

(3-10) as:

R [z, -A2]R[x, LAKXA3 R [z, A2 1 = R[y,43-A4jR[x,#21R[y,#j-Aj1 (3-11)

02 ;# 0,±

The product of the matrices on both sides of Equation (3-11)

is in a direction cosine matrix that can be equivalently

represented by the set of four euler parameters #, 02 3

and 04 [Ref. 10] as follows:

P0 =Cos (A!) P = Cos(±2 )COS ( *1.-A±+*3-A4 ) (3-12)~

P1=sin (Al)cosA2 , P1. = sin(.±2) Cos ( 43 -A4 '01 +A1) (3-13).2 2 2

P2 =sin(-) sinA2 , P2 = cos (±-)sin(*1A4 A 2 3-4
2 22

P3  0 ,P 3 = Sin(±-) sin( 23A 41+' (3-15)
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Since *2 ' 0, ±i, Equations (3-12) through (3-15) can be

solved for Al, A3 , and A4 as follows:

A, - axctan[sinA2 tan(A3/2)] ' (3-16)

A3 = 2azcsin[sin(4 2/2) secAt , (3-17)

A4 =Al + 43 - #1 (3-18)

The algorithm for the reorientation of the space structure

can, therefore, be established as follows: First solve for

the necessary change in the orientation 01, 02, and 03 from

Equation (3-7). Next compute the values of A,, A3 , and A4

from Equations (3-16) through (3-18) using the computed values

of 0,1 02 and *3- For each of A1 , A3 and A4 , compute the

closed trajectory in the 02-03 plane and the number of times

that the manipulator has to traverse the closed trajectory.

Such trajectories can always be planned. Now that the

trajectories are known we can follow the five step motion

sequence to achieve the desired change in orientation of the

structure

D. SIMfULATION RiSULTS

A simulation was conducted for a large angle maneuver of

an arbitrary space structure where the manipulator had the

following kinematic parameters, according to Figure 3.1b
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r= 0.15 m, 11 = 0.35 m, 12 = 0.50 M, 13 = 0.40 m

The dynamic parameters used are given in Table 3.1. The

initial and desired orientations of the space structure, given

in degrees were:

(• 4i,•213, i) - (135.0,25.0,-105.0) (3-19)

(#If, 02fh'3f) = (-55.0,95.0,75.0) (3-20)

This yielded the following y-x-y Euler angles:

A,= -66.79483,

A2 = -11.09346, (3-21)

A3 = 123.43739,

A4,= 89.83769

From the orientation and Euler angles, A,, A2 , A3 and A4 were

obtained as follows:

( (-86.47308,11;.57773,70.15945) (3-22)

where the units are in degrees.

The orientation of the structure at the beginning and the

end of each of the five sequences of rotations is as shown in

Figure 3.5. The description of the closed loop path in the

8 1 -0 2 -6 3 space is as shown in Figure 3.6. As the manipulator

traces out the path, as described in Figure 3.6, the evolution
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of the Euler angles with respect to time is illustrated in

Figure 3.7.

1. Class Y motion with A1 = -66.79483 degrees. The minimum
number of times the robot has to move along a closed
trajectory will be n = 9. Then, for each closed loop
motion the change in orientation needs to be -66.79483/9
= -7.42164 degrees from Figure 3.4, we find that 0
+7.42164 degrees corresponds to a value of 02u that ries
between 125.0 and 135.0 degrees. Using these values as
the lower and upper limits, we find the exact solution
for qy - 7.42164 in Equation (3-3) to be 133.84235
degrees. The negative sign in the change in orientation
can be taken care of by simply travelling along the
closed path in the negative direction.

In Figure 3.6 ABCDA denotes the directed closed path in
the 8,- 03 plane. The change in the y-x-y Euler angles
(01, ý2, 03) is shown in Figure 3.7 during the time t =
0 seconds to t = 483.92 seconds. It can be seen from
Figure 3.7 that during this time 01 and 0 remain
constant, whereas Oý changes with a periodic motion. The
number of periods is equal to nine and corresponds to
the number of times the second and third joints of the
robot move along the closed path ABCDA in Figure 3.6.
The configuration of the system at the start and finish
of this motion is shown in Figure 3.5(a) and(b).

2. Class Z motion with A2 = -11.09346 degrees. In Figure
3.6, the path segment AO corresponds to the motion. The
variation of the y-x-y Euler angles during this motion
are not very clear from Figure 3.7 because this motion
takes only 10 seconds to complete, as compared to the
total time of simulation which is of the order of 2166
seconds. Figure 3.5(b) and (c) show us the configuration
of the system at the beginning and the end of this
motion.

3. Class X motion with A3 = 123.43739 degrees. The minimum
number of times the robot has to move along a closed
trajectory will be n - 19. Therefore, for each closed
loop motion the change in the orientation needs to be
123.43739/19 - 6.49670 degrees. From Figure 3.4, we find
that 4- -6.49670 degrees corresponds to a value of 02u
that lies between 125.0 and 135.0 degrees. Using these
values as the lower and upper limits we find the exact
solution for Ox -- 6.49670 to be 132.19918 degrees.
Since travelling along the positive direction of the
closed path produces a negative change in the orientation
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as evident from Figure 3.4, we will travel in the
negative direction. In Figure 3.6, OPQRO denotes the
directed closed loop path in the 02-03 plane. The change
irithe y-x-y Euler angles (01, 02, 03) is shown in Figure
3.7 during the time t = 493.92 seconds to t - 1509.27
seconds. It can be seen from the figure that all the
Euler angles undergo a periodic motion during this time.
The number of periods can be seen to be equal to nineteen
and equals the number of times the second and third
joints of the robot move along the closed path OPQRO in
Figure 3.6. The configuration of the system at the start
and finish of this motion is shown in Figure 3.5(c) and
(d).

4. Class Z motion with A2 = 11.09346 degrees. In Figure
3.6, the path segment OA corresponds to this motion. The
variation of the y-x-y Euler angles during this motion
are not very clear from Figure 3.7 because this motion
takes only 10 seconds to complete, as compared to the
total simulation time which is of the order of 2166
seconds. Figure 3.5(d) and (e) show us the configuration
of the system at the beginning and end of this motion.

5. Class Y motion with A, = 89.83769 degrees. The minimum
number of times the robot has to move along a closed
trajectory will be n = 12. Then, for each closed loop
motion the change in the orientation needs to be
89.83769/12 - 7.48647 degrees. From Figure 3.4, we find
that O¥ = 7.48647 degrees corresponds to a value of 02u
that lies between 125.0 and 135.0 degrees. Using these
values as lower and upper limits, we find the exact
solution for y = 7.48647 in Equation (3-3) to be
134.73799 degrees. In Figure 3.6, AMNBA denotes the
directed closed loop path in the 02-03 plane. The change
in the y-x-y Euler angles (01, 02, 03) is shown in Figure
3.7 during the time t - 1519.27 seconds to t = 2166.64
seconds. It can be seen from the figure that during this
time the Euler angles 0, and *2 remain constant whereas
03 changes with a periodic motion. The number of periods
can be seen to be equal to twelve and it equals the
number of times the second and third joints of the robot
move along the closed path AMNRA in Figure 3.6. The
configuration of the system at the start and finish of
this motion is shown in Figure 3.5(e) and (f).

We have thus effectively demonstrated a new method for

attitude control of a freely-floating space structure via a

surface integral approach. The next chapter will address the
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issue of how to maneuver a manipulator without effecting an

overall change in the orientation of the space structure.
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Y, Z, Z0

Z,

Xl

Figure 3.1 (a): The Home Configuration of the Three Link Robot
Manipulator Mounted on the Space Structure is
Shown. The Link Frames are According to the
Denavit -Hartenburg Convention.

ZI

Figure 3. 1(b) : Kinematic Structure of the 3-Link Robot
Manipulator with Revolute Joints. The Home
Configuration of the Manipulator is Shown.
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(a)

(b)

Figure 3.3:' The (a) Initial and (b) Final Configurations
of the Space Structure.
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10 -- -- 0 7-5 -- -- _-- --- -- --- -

00
S0.

ox = -6.66 -----------------

-10

0 50 100 150

82 (deg)

Figure 3.4: For the Simulation in Section D, the Change in
the Orientation of the Space Structure about
its x and y axes: #, and .o. respectively,
Depends Upon the Dimemnion of the Rectangular
Path in the 02-03 Plane.
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Figure 3.Ss Initial, Intermediate and Final Configurations
of the System.
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TABLE 3.1: DYNAMIC PARMES OF THE 3-R MANIPULATOR
iki (kg-)

k=S kal k=2 k=3

(1,1) 23.95781 00.0830 00.0147 00.0117

(2,2) 13.87031 00.0103 00.2343 00.1221

(3,3) 37.82812 00.0830 00.2343 00.1221

mk (kg) 1302.6250 7.62615 10.894S 8.71560
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e!- 0,- aO coordinates

A , (0.0, 0-0.0.o0)
B = (0.0, 00. 135.0)
C = (0.0. 133.84. 135.0)
D = (0.0, 133.84, 0.0)
0 (90.0, 0.0. 0.0)
P (90.0,0.0, 135.0)
Q (90.0. 132.20, 135.0)
R (90.0. 132.20, 0.0) C N

M -(0.0, 134.74, 0.0) B
N = (0.0, 134.74, 135.0)

P Q

• ,oo A D M >0

- -•- R=90.0.

Smequence of motion

(a) uavemse the directed path ABCDA nine times
(b) move from A to 0
(c) taverse the directed path OPQRO nineteen ames
(d) move from 0 to A
(e) avearse the directed path AMNGA twelve times

Figure 3.6: Description of the Closed Loop Path in 9 -0-03
Space that Changes the Orientation oi the
Space Structure from an Initial y-x-y Euler
Angles of (135.0, 25.0, -105.0) Degrees to a
Final Value of (-55.0-95.0, 75.0) Degrees.
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00

-o

o,, 1

-100 0

class y class X motionclsY

-200
0 10 2x10 3

time (sec)

7iguze 3.7: Evolution of the Ruler Angles *1- *i0, *3
Describing the Orientation of the Space
Structure, for the Simulation in Section D.
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IV.--PLANNING REPEATABLE PATHS FOR PLANAR SPACE ROBOTS

A. INTRODUCTION

In Chapters I and III, we saw that due to the nonholonomic

nature of a freely-floating space structure the use of an

organic manipulator will result in a change in the orientation

of the structure. Automation in space requires the ability

for a space robot to perform a task repeatedly in its work

space without any drift in its configuration variables, i.e.,

joint angles, orientation, and end-effector position. Hence,

the resultant change in orientation of the structure as the

manipulator arm performs a required task, which we exploited

in Chapter III for attitude control, is undesirable for

automation.

In Chapter II we proposed: (1) that integrability of the

differential constraint is only a sufficient condition for

repeatability, but it is by no means a necessary condition,

and (2) that a necessary condition for repeatable motion was

that the function F defined by Equation (2-10) be equal to

zero.

This chapter will apply these ideas to a two dimensional

space robot. The two dimensional case is studied purely for

its simplicity.
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B. NECESSARY CONDITION FOR REPEATABILITY

Not all nonholonomic systems exhibit pseudo-holonomic

behavior. Consider the rolling disk shown in Figure 4.1 [Ref.

8]. The two nonholonomic constraints are given by:

dx - r sina dO (4-1a)

dy - r cosa dO (4-1b)

Rearranging Equation(4-1) for the change in the dependent

variables x and y for the closed loop motion of the

independent variables 0 and a we get:

j dx- r sina dO (4-2a)

dy = r cosa d9 (4-2b)

where F(a,G) A { sina, cosa }. Since F(a,O) will not equal

zero at any point in the space of 0 and a it will not satisfy

the condition for repeatability, consequently it does not

admit repeatable motion.

In the case of a planar space robot with two links, shown

in Figure 4.2, the nonholonomic conservation of momentum

constraint equation is given by Equation(4-3).

•, = do .(P) -(f)C2A A (4-3)

1 (()1.,e2) d1 + g 2 (8 1 1(W,)d 2
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where

00_- the orientation of the space vehicle,

82 and 02 = the joint variables of the manipulator,

A, B, C = functions of 01 and 02 as defined in Appendix A,

r - the position of the joint of the first link with
respect to the center of gravity of the body,

11= the length of the first link,

3 = the length of the second link,

mQ, ml, m2 are the masses of the rigid body and the two
links,

10, 11, X2 are the moments of inertia of the rigid body
and the two links about their respective centers of mass,

M-nm0+iM1 +iM2 ,and

It - IO + 1r + 12

Applying Stoke's theorem to Equation (4-3) we get

cdO.ff., 8(-P) - -L(-g)]IdBI1 2fIB A C W A (4-4)
A BA -ac+

S A2  ] de J82

where S is the region enclosed by the path C in the joint

space of the robot which the manipulator arm traces. We can

show that A # 0 therefore Equation (4-4) will satisfy the

necessary condition for repeatability if;

F[AIR - B _ aC + c 8A ]F(e1 ,e2 ) £ 88- s2 M e2 M8 M
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where A2 # 0.

To find the "holonomic loop", on which the planar space

robot exhibits holonomic behavior globally, we need find the

values of 01 and 02 which set Equation (4-5) to zero. To

determine the appropriate values of 01 and 82 , we choose path

in the robot joint space, which we desire the robot to

execute, such that it encloses at least one point where the

function F goes to zero. This path can then be optimized by

using a variety of numerical optimization techniques to drive

Equation (4-5) to zero. In simulation we choose to use (1) an

elliptical path as the most general case of a path; and, (2)

the steepest descent optimization technique for its

simplicity.

The elliptical path, shown in Figure 4.3, was

parameterized as follows:

0, = 610 + a coso cos2wt - b sino sin2rt, t e [0,1] (4-6a)

02 = 020 + a sinO cos2wt + b cosO sin2rt, t e [0,1] (4-6b)

where a and b are the semi-major and semi-minor axes of the

ellipse respectively, 0 is the angle of inclination of the

ellipse with the 01 axis, 010 and 020 are the coordinates of

the center of the ellipse. Substituting Equation (4-6) and

its time derivatives into Equation (4-4), dO can be expressed

as a function of the single variable t such that we get:
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SdO0 - S (gjd61 + g 2d02 ) (4-7)

= S [g101 + g2 02 ] dt

To optimize the path we need to: (1) arbitrarily choose

the parameters, 6101, 620, a, b, and 0 , of the ellipse; and,

(2) to change the five parameters so that the value of the

.surface integral given by Equation (4-7) is equal to zero.

In making the initial choices of the ellipse parameters,

we needed to ensure that: (1) the ellipse encompasses at least

one point where the function F defined by Equation (2-10) is

equal to zero. This can be satisfied by considering Figure

4.4, which provides the set of all points where the function

F vanishes; and, (2) the elliptical path lies in the work

space of the robot. This can be done by applying the methods

discussed in [Ref. 23].

For the optimization, to eliminate the trivial solution,

where the surface integral is zero, because the area of the

closed path is equal to zero, we imposed the restriction that

the area of the ellipse was constant. In other words, a and

b were not allowed to change independently of each other.

This imposed the added constraint,

a db + b da = 0 (4-8)

49



We define a function V as follows:

V= -C2 , C 6fDF(OxOe) doldo, (4-9)

and solve the unconstrained minimization problem by implicitly

assuming that a and b are dependent.

The steepest descent method involved numerical partial

differentiation to change the parameters of the ellipse and to

solve the unconstrained minimization problem where;

d'O° - 0 (4-10a)
-100

d82o _ 0 ... ° , (4-lOb)
0620

BC• (4-10o)

da -C (4-10d)
Ba

This provided a systematic way to reach the local minimum

value of the function V. If this minimum value is zero, then

we have found the "holonomic loop'. Though in general, the

method of steepest descent does not guarantee the convergence

of a function to its global minimum value, in our case the

method always converged to a minimum. This was due to the

particular nature of the function F.
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c. SIMULATION RESULTS

A simulation was conducted for a planar space robot which

had the kinematic and dynamic parameters given in Table 4.1.

The initial parameters of the ellipse were chosen to be:

a=l.50000, b=1.00000,

O= 0.75000,

010=0.50000, 920=0.50000

The initial and optimal path parameters yielded the paths as

shown in Figure 4.5. Path I and II correspond to the initial

and optimized path parameters, respectively. Path I yielded

the numerical value for Equation (4-9) of • = -0.162775. The

optimized path parameters were;

a-1.31117, b=1.14381,

0.0.79302,

810=0.34094, 020=-0.07054

yielding • = -9.9636 * 10-9. Note that the sinusoidal curve,

F(0 1 1 8 2 ) - 0, inset in Figure 4.5 passes through both Paths I

and II, therefore, both paths satisfy the necessary condition

for repeatability. Several simulations were carried out and

in all cases the "holonomic loops" were found.

By finding the "holonomic loop", control of the attitude

and, hence, the end-effector of the manipulator was obtained.

The drift in the end-effector of the manipulator for the

original path and optimized path are given in Figures 4.6 and

4.7, respectively. The magnitude of the drift in the case of
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Path I is 76.96 mm/cycle. The magnitude of the drift in the

case of Path II is negligible at 0.87 mm/cycle.
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Figure 4.1: A Rolling Disk on a Flat Surface.
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Figuwe 4.2 A Planar Space Robot with Two Links is
Capable of Exhibiting Pseudo-holonomic
Behavior.
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a = semii-major axis of ellipse
b = semi-minor axis of ellipse

P =(910,020)/

• 'I (a cos t, b sin 0)

Figure 4.3 Parametric Representation of the Elliptical
Path in the Joint Space of the Robot. P is
the Center of the Ellipse, and 0 is the Angle
Between the Major Axis of the Ellipse and 03.
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Figure 4.4 All Points in e0-e 2 Where F(e1 , 02) - 0.
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TABLB 4.1s KINEMATIC AND DYNAMC PALRAMThRS

Nass Inertia Length

___ __ ___ __(kg) (kg-rn2 ) (in)

Vehicle 27.440 1.520 r = 0.20

Link'1 5.380 0.115 11 0.50

Link-2 2.640 0.028 1, = 0.35
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Figure 4.5 Elliptical Paths in Joint Space.
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Figure 4.6 End-Effector Drift in 20 Cycles for Path I.
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Figure 4.7 Repeatable End-Effector Motion for Path II.
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V. CONCLUSIONS AND RECONMENDATIONS

A. CONCLUSIONS

This thesis has presented two concepts. The first being

a algorithm for the motion planning of a space manipulator to

achieve attitude control of a freely-floating three

dimensional space structure. Generally stated the algorithm

provided a means for calculating the coordinate trajectories

required to drive a nonholonomic system from one point in its

configuration space to some other desired point. The

algorithm invoked Stokes' Theorem and hence took a surface

integral approach to the motion planning problem. In

particular, we considered a three dimensional structure with

a three link manipulator arm.

Due to the nonholonomic nature of structures in space,

articulated joint manipulators can effectively be used as a

back-up means to a gyroscope for the attitude control of these

structures. Attitude control is achieved through the motion

planning of the internal motion of the manipulator arm joints.

We found the surface integral approach to be a simple and

effective means to solving the motion planning problem.

Secondly, we presented a means of determining the

manipulator motion required for the nonholonomic freely-

floating space structure to behave in a holonomic manner,



which we called "pseudo-holonomic" Our method determined if

"holonomic loops" existed, where the system exhibits holonomic

behavior globally for the configuration space of the

nonholonomic system. If a "holonomic loop" did exist we

presented an algorithm for finding that loop within the

configuration space. In this case, we looked at a planar

space robot with a two link manipulator arm.

Additionally, though the nonholonomic nature of the space

structure does not normally admit repeatable motion, it is

possible, however, to find exceptions to the rule where

systems do exhibit holonomic behavior globally. Finding the

"holonomic loop" in the joint space of the manipulator

admitted repeatable motion of the space robot. Hence, we have

seen that manipulators can effectively serve the dual purpose

of attitude control and automation in space.

We have demonstrated the ability to predict and control

the change in orientation of a freely-floating space

structure.

B. RECOWMIDATIONS

The application of the two algorithms to more complicated

structures is the next logical step. The approach presented

here can be extended to other nonholonomic systems such as

mobile robots. The finding of "holonomic loops" can be

further extended to the three dimensional space structure with

an attached three linked manipulator arm.
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APPNDWIX A.

"The t.rrnw A, B, and C in Eq.(2) are defined as follows

A •ý 1, + ,s2,no(vni + r2) + (nom t + mtm2 + 4morn2) + A--M2(7n +ML)

+ -LM(719 + 2-f&2)rIllos 01 + IM20(nO + O.5MI)I12COS02 + •-LMOMri2Cos(OI + 02)

12 + i + -im2  o + Mm2+) + -m2(m, + Jm 2)rIco,
.I

+ W--mo (r +20rn2)rL 1cos l + -m no+m )n2rt2Co5,(9 + 0O2)

12A

4M - 2M 2yI
8  ' A + [2 +t "2"Ln( mona' + mlm) +t •-momv1) .+ 02 + 2 ,mmz/csO I0•

where, ,o, ml, and 4.4 are the masses of the space vehicle and the two links f the ma-.
nipwhetor, mo, IL, and I., are the monten; of inertias of the space vehicle and the two liueks

about their center of masses, r is the distance of the first joint from the center of mass of

the vehicle, 11 and L! are the lengths of the two links, W Pf mo+ rm, +m 2 , and I, Io Io-I1, + 2.
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