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ABSTRACT

The objective of this investigation is to study the damage mechanics of composite

structures using a micromechanical approach for determining strength and stiffness

degradation of the composite structures as damages, such as matrix cracking and fiber

breakage, progress. The micromechanical cell method provides for analysis of stress at

the fiber and matrix level while providing smeared composite properties for global

structural analysis. As a result, the damage and failure criteria are expressed in terms of

the fiber and matrix stress level of the composite structure. A correlation for stiffness

reduction due to transverse cracking of a ceramic matrix composite under tensile loading

is implemented in a three-dimensional finite element model. Next, thermal residual

stresses from fabrication of the ceramic matrix composite are incorporated into the

analysis. Finally, the finite element method is applied to a polymer matrix composite

laminate with a center hole in order to study the progression of damage and final failure

during tensile loading. The comparisons between the present predictions and the

experimental results for the previous examples are very good.
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L INTRODUCTION

A. BACKGROUND

Modern structural designs increasingly incorporate man-made composite materials

in applications that require components with special material properties which are

unavailable from conventional metals or alloys. From the structural mechanics viewpoint,

composites are typically used to improve either the stiffness-to-weight ratio or the

strength-to-weight ratio of a structural member. Naval shipboard applications of

composite materials are typically dependent on these weight savings when a composite

material is used to fulfill a specified stiffness or strength requirement. Current naval

composite applications include main propulsion shafting, decks, superstructures, small

equipment foundations and graphite-reinforced-poly (GRP) auxiliary system piping.

Although the composite material itself may actually cost more than its conventional

metallic predecessor, incorporation of lightweight composite materials usually reduces

total ship cost due to synergistic savings in the entire ship structure because of the

reduced total ship weight.

Composite properties such as strength and stiffness are dependent upon the volume

fraction of the fiber and the individual properties of the constituent fiber and matrix

materials. The variation of the fiber volume fraction for a given composite allows the

designer greater flexibility when incorporating composite materials irto a structure. With

this flexibility comes added complexity due to the fact that the optimum volume fraction



for a given stiffness may not be optimum for composite strength. And, composite

material properties may vary due to damage accumulation such as matrix transverse

cracking during the loading history of the composite member. This current research

investigates the analysis of composite material properties, such as stiffness and strength,

and their degradation using a three dimensional micromechanical model.

B. DETERMINING COMPOSITE MATERIAL PROPERTIES

The study of composite materials and structures can be undertaken from two

different approaches: micromechanical and macromechanical. In the micromechanical

approach, the properties of the constituent fiber and matrix materials and their interaction

through stress-strain constitutive relations are analyzed in order to predict the overall

behavior of the composite structural member. In the macromechanical approach, the

properties of the constituent fiber and matrix materials are averaged or smeared to

produce a set of pseudo-homogeneous properties for the composite structural member.

The macromechanical approach has the advantage of requiring less detailed modeling in

that individual fiber and matrix properties are only used initially in determining the

smeared composite properties. Finite element models using the macromechanical

approach are somewhat less complex and typically require less computational time than

those models vhich are based on the micromechanical approach. However, the

micromechanical approach provides more useful information such as the fiber and matrix

stress and strain which are typically used for failure criteria or strength degradation

computations. Thus, the more complex micromechanical approach is more useful when
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analyzing damage mechanics and failure of composite material structures.

. Under normal, non-damaging or elastic loading conditions, the stiffness properties

of aligned, continuous, fiber composites can be predicted by the simple rule of mixtures

(ROM). The ROM model uses the strength of materials approach and is based upon

assumptions that the composite is loaded at low strain levels in the elastic region where

no damage occurs in the fibers or matrix, that the fibers have uniform properties and are

aligned parallel throughout the composite, that the matrix and fibers have a no-slip

perfectly bonded interface, and that, for the longitudinally applied load case, there is equal

strain in the fiber and matrix [Ref.1]. For composites which approximate these

assumptions and which are loaded in the longitudinal direction along the fiber, ROM

provides reasonable values for composite stiffness. However, for transverse loading with

respect to the fiber axis, ROM does not accurately predict the composite stiffness.

Micromechanical models based on the theory of elasticity provide better overall

results for aligned, parallel fiber composites [Ref. 21. Noteworthy among the

micromechanical models are the relations developed by C.C. Chamis [Ref. 3]: Chamis

assumed that the matrix is isotropic and that the fibers are orthotropic. A composite with

such constituents would have one plane of symmetry and therefore would be transversely

isotropic. With the condition of transverse isotropy, Chamis reduced the problem from one

with three dimensions to one with two dimensions. This method resulted in five

independent properties in order to define a stress-strain constitutive relation for the

smeared composite. Chamis and Sendeckyj [Ref. 4] provide an excellent survey of the

early micromechanics approach to predicting composite stiffness. Jones [Ref. 5]
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succinctly presents methods for bounding stiffness properties of composites using

variational energy approaches with classical elasticity theory and also describes the

contiguity approach used to develop the famous Halpin-Tsai relations. These previous

methods provide generally reasonable values for composite stiffness. But, these early

micromechanical methods are often not sufficiently accurate or readily applied to

structural computations involving composites. And, these methods are based on two-

dimensional, linear elastic analysis while the real composite member is three dimensional,

and typically behaves in nonlinear manner over its useful loading range [Ref. 6 ].

In recent years, there has been significant study of three-dimensional

micromechanical models. Dvorak and Bahei-EI-Din [Ref. 7] formulated an axisymmetric

model for an elastic-plastic constitutive relation based on cylindrical fibers with

surrounding matrix material. The axisymmetric assumption was considered physically

valid and reduced the complexity of the three dimensional elasticity analysis for the

micromechanical modelling of elastic-plastic deformation. Aboudi [Ref. 8] introduced the

micromechanical method of cells based on the assumption that the composite material

consisted of two repetitive phases of fiber and matrix materials. By assuming the

repetitive or periodic nature of the fiber and matrix array, Aboudi was able to simplify

his model by using a representative cell which consisted of four subcells. Although a

view of his model appears to desc ibe a square cell with one subcell of fiber and three

subcells of matrix, the geometry of the fiber and matrix is not restricted due to calculation

of the interface conditions on an average bases. Aboudi introduced the method of cells

starting with simple unidirectional fiber composites and then extended his method to

4



discontinuous short fiber composites. Aboudi's micromechanical model is mathematically

complex and computational intensive. Others, such as Pecknold [Ref. 9] noted that

Aboudi's model forms the basis for a finite element model. Pecknold conducted an

investigation of a simplified unit cell model. Kwon used a micromechanics model [Ref.

10, 11, 12) by focusing on the fiber and matrix stresses at the micromechanical level.

Kwon later refined his original cell method [Ref. 6]. Kwon's micromechanics models are

especially applicable for the investigation of composite damage because it considers both

the fiber and matrix stress at the micromechanical level and thus allows specific fiber and

matrix yield and/or failure criteria to be applied. The refined Kwon model [Ref. 6]

formed the basis for this current work.

C. THE MICROMECHANICAL CELL MODEL

Similar to the Aboudi cell model, the Kwon model considers the composite as a unit

cell composed of four subcells: one fiber subcell and three matrix subcells. The unit cell

is represented by a three dimensional solid, the rectangular parallelpiped. Based on

symmetry, only one-quarter of the total cell may be modeled as shown in Figure 1.1.

5



Figure 1.1 - The Kwon Micromechanical Model Unit Cell And Subcells
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Note that the size of each cell is dependent on the fiber volume fraction. Kwon

then expresses the composite stresses and strains as a function of the subcell stresses, the

subcell strains, and the volume fraction as shown in Equations (1.1) and (1.2):

=V _IV,; bv~( ~7 +ý7 ' _FVIa + (I _;)d i~j = 1,3 (1.1)

where &, and 9, are composite stresses and strains, a',, and &'U are subcell (a = a, b, c,

or d) stresses and strains, and Vf is the fiber volume fraction.

Note that subcell 'a' represents the fiber and subcells 'b', 'c', and 'd' represent the

matrix. Thus, the composite smeared stress or strain values are equal to the volume

average of the subcell stresses and strains. The condition of stress continuity is satisfied

at the subcell interfaces as expressed by Equation (1.3).

a b c d a c b d
0C22 022 , 022 = C22 , 0.33 333 )33 3301 .3

a b C d a c b d
C012 " 0.12 , 0'12 "0"12 , 0"13 C013 C013 = 0;13
0Y3 = , c a d

2.23 , (43 = C3 , C23 =023

Each subcell may have different strains, but the following strain compatibilities are

assumed. The longitudinal strains of the subcells are equal and the sums of the transverse

strains of the subcell in either transverse direction are also equal. The shearing strains

must also satisfy similar conditions. Expressed mathematically, the strain conditions are

shown in Equation (1.4).

7



b C d
el I ' 'l 811 l , C/I F-1F

a c d c b Cd (1.4)822 ÷822 "22 +822 e83 +833 = 833 '833

b c d a b d
812 +e'2 = 812 +812 ,813 +813 = E83 I13

The constitutive relation for each subcell is expressed by the generalized Hooke's

law of Equation (1.5).

cao' = EtkI8 ij,k,I = 1,2,3 anda = a,b,c,d (1.5)

Solving Equations (1.1) to (1.5) together yields the expression for smeared

composite material properties in terms of fiber and matrix material properties and their

volume fractions. In addition, the equations provide the following sequential relations:

global displacements -- o composite strains -- > fiber and matrix strains -- I fiber and

matrix stresses --- composite stresses.

The global displacements are obtained from the finite element analyses of fibrous

composite structures. For damage progression studies, the calculation of stress and strain

at the fiber and matrix level allows failure criteria to be applied at that micro-level. Thus,

numerical modeling using this method can provide insight into the micro-level failure

process for composite materials.

For this current work, the Kwon micromechanical method of cells was implemented

within the finite element program in order to perform several function:: First, the new

micromechanical model was used to determine the smeared composite properties for use

in computing the basic finite element stiffness matrix. Secondly, the model was

implemented in the finite element post-processing routines to convert the finite element

8



displacement results into stresses and strains at the fiber and matrix micro-level. The

fiber and matrix stress levels were used for either stiffness reduction or the application

of failure criteria.
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IL FINITE ELEMENT MODEL DEVELOPMENT

Finite element numerical analysis was used to solve the three dimensional elasticity

problem in order to determine stress and strain of the fiber, matrix or the overall

composite specimen. The finite element method transforms the partial differential

equations to a system of algebraic equations. The primary solution was obtained in terms

of displacement. A solution post-processor subroutine converted the displacement solution

into composite strain. The Kwon micromechanical method of cells provided the algorithm

to solve for local cell strains, local cell stresses and composite stress. Stress values

determined at the micromechanical cell !evel provided the dependent variable for stiffness

reduction or failure relations. Details of the finite element method derivation are given

below.

A. ANALYTICAL DERIVATION

The derivation for the force equilibrium equations of a three dimensional solid body

which is experiencing negligible body forces is found in any advanced solid mechanics

or elasticity textbook [Ref. 13, 14, 15, 16]. These equations are shown in Equation (2.1).

Gaaa a&Y o +-• =0

ayx y&y.
N + +a=0 (2.1)

ax• &y• &s~
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These three equilibrium equations are written in terms on nine stress variables. However,

only six of the stress variables are independent due to the requirement for moment

equilibrium. Application of moment equilibrium conditions on the unit solid element

yields Equation (2.2).

T =1,I (2.2)

Tyz = 1zy

The unit solid element is shown in Figure 2.1 below with stress terms as indicated to

establish a reference for the sign convention and notation.

Tzx

Figure 2.1 Unit Solid Cell With Stress Components
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Let u, 'v', and 'w' represent displacement in the 'x', 'y', and 'z' directions

respectively. Then, the relationship of strain to displacement, assuming small

displacements, can be written as shown in Equation (2.3).

au Ovaw
ay (2.3)

(Opy ax (" 0- & (y A

The strain-displacement relations introduce six strain terms as unknown variables. Also,

at this point, u', 'v', and 'w' are unknown. These equations can be written more

conveniently in matrix form as in Equation (2.4).

C1 0 0
ax

Ex 0 "- a 0ay
0 - 0--By a
0 &Z v (2.4)

Yx 0 0 0 wv
Yyz N
Yy"z 0 a

aV 0 -a ayx. 0
Oz ax

Next, consider the constitutive relationship between stress and strain of Equation (2.5).

{c} =[D ]{} (2.5)
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In Equation (2.5), (a} is a '6 x V column vector of stress, (e} is a '6 x V' column vector

of strain, and [D] is the '6 x 6' matrix of material properties. Equations 2.1, 2.3, and 2.5

combine to give 15 equations with 15 unknown variables. Unfortunately, the equations

include several partial differential equations.

The derivation of the finite element equations from the three dimensional elasticity

equation above is based on course notes and commonly available current textbooks [Ref.

17, 18, 19, 20]. The method of weighted residuals as modified by Galerkin is employed

to develop the displacement based finite element equations. Eight noded isoparametric

rectangular parallelpiped elements are used for the formulation. Linear shape functions

are used for analytical and computational simplicity. Detailed derivation according to

these precepts is continued below.

The first step in converting the partial differential equations into algebraic equations

is to apply the method of weighted residuals to the three dimensional stress equilibrium

Equation (2.1). To this end, each of the three equations of Equation (2.1) are multiplied

by a weight function, W, (i=l, 2, 3), which is continuous over the physical domain of the

problem. Then, the three new product equations are integrated over the entire problem

domain. The goal is to chose weight functions W, which are orthogonal to the initial

residuals of the equilibrium equations such that the integral becomes equal to zero. If

'V' is the domain volume of the problem, the weighted residual equations are now shown

in Equation (2.6).

13



,a + x + .!-- Z W,dV = O0~fff (A~+LZKWd=

12 =fffA2 day+ W dV= 0(2.6)

At this point it should be noted that boundary conditions must be specified for Equation

(2.1). The boundary conditions may be specified as (1) essential or geometric boundary

conditions where some surface displacements are specified, (2) natural or stress boundary

conditions where surface tractions are specified, or (3) a combination of these types of

boundary conditions. Before applying boundary conditions, further manipulation of the

weighted residuals is required as shown by Equation (2.7): Integration by parts,

commonly referred to as Gauss' theorem or the divergence theorem when applied in three

dimensions, will be performed in order to weaken the continuity requirements on the

approximate solution.

J,1  ff f[ o( . ,T.V V= A+ v + ff (o.,,w, + -,^,w rnWI)dS

v $

=, + ,V + ff (, 2 +w o,,,,w 2 + ,W)dS (2.7)

V $

Titýý + X ý3+ 0 ý3)V +jf (rVnA 3 + rgIw.XY3+e.3dz3 - fff ar it, , v !(,,÷ ,,,÷o•w)t

In Equation (2.7), 'S' is the domain surface boundary, 'V' is the domain volume, and 'n.',

'ny', and 'n,' are outward unit surface normal directions cosines in the 'x, y', and Y

14



directions, respectively. Now, define the boundary stress conditions by surface tractions

terms as shown in Equation (2.8):

*JC =X~ cxy~n ýy +x.Zn

+Y = Tn. +ayny +Tyn, (2.8)

*ý = Txznx +Tyny +a'zn.

Equation (2.7) can be written in matrix form with Equation (2.8) incorporated:

_* bly Op

-2 dV=2 W 1 (2.9)

'W __W

__ W 3  3 3

Equation (2.9) can be further modified by separating the column vector inside the volume

integral into a product of a '3 x 6' matrix- and a '6 x 1' vector. This step, shown in

equation (2.10), isolates the weighting function derivatives in the matrix and the stress

terms in the vector.

o~ 5Wj _ •WV1  £5W o o .Y o £y °

Ow + ow 0 OlW 2
j a

T o A o O, (2. 10)

'rg " +ax0 0 - 0 -.

Substitution of the strain-displacement Equation (2.3) into the constitutive relation

given by Equation (2.5) provides another useful identity as shown by Equation (2.11).

15



au

uv

azy o,,
layu

0+ w 0uZ

5x z

Equation (2.4) is now substituted into the left hand side column vector of Equation (2.11).

Both Equation (2.10) and the modified Equation (2.11) are substituted into Equation (2.9)

to produce Equation (2.12).

A0 0
av

0 0

fffoawo awz 0w [D]

0wl 0 0 owl (2.12)

a a'W 4 &k t
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Until this point, the elasticity relations have been manipulated to establish

displacement as the variable for which to solve. Now, to discretize the problem for

algebraic computational solution, assume that over a small domain each of the

displacements can be represented by a polynomial. By discretizing a three dimensional

domain, small-but-finite-sized volume elements can be formed. These finite elements

become eight-noded. Each node can have three orthogonal displacements. Then, each

element has a total of 24 degrees of freedom (dof). Calling 'u,, 'v,', and 'wi' the

displacement at each node, displacements can be defined in terms of polynomial shape

functions as follows in Equation (2.13).

u •Hu, ; v = H,v ; w = Hw, (2.13)

Also, the first partial derivatives of the shape functions exist as shown in Equation

(2.14).

- '•. - •=E •-,; -= - - W,
( i-a .I a j., (*

, _ . (2.14)0 ,.1-4 ' OY 1-1 O ,.
U-E- i-",; -='-- VI; -W-t

The '3 x 1' displacement vector can be expressed as the product of a '3 x 24' shape

function matrix and a '24 x 1' nodal displacement vector as shown in Appendix A. The

product of the '6 x 3' partial differential matrix of Equation (2.12) and the '3 x 24' shape

17



function matrix are typically combined into one '6 x 24' matrix. This matrix is referred

to as the 'B' matrix in this development and the full 'B' matrix is also shown in Appendix

A. In shorthand notation shown in Equation (2.15), the 'B' matrix can be partitioned into

sub-matrices labelled 'Bi', where i=1 to 8 for eight sub-matrices.

[BI = [ PIB1] [B21 P3 [B4] [BSI [B6 [B71 [B81 (2.15)

Based on this shorthand notation, the sub-matrices are defined in Equation (2.16).

3H,
'0 0

0 .__l' 0

0 0 al00
[B, ] = H,. where i =1 toS 2.6

OH, ax
0 c'"i •

S0 C

The Galerkin method (or more exactly the Bubnov-Galerkin method) takes the

weighting functions as equivalent to the shape functions as shown in Equation (2.17).

18



HI

H12

H3

H 4 (2.17)
W = W 2 =W 3  H 5

H6

H17

HS

Thus the Galerkin method only requires that the weighting function be continuous over

small discrete intervals which correspond to the sides of the finite elements. Based on

the Galerkin weighting functions shown above, the old weighting function matrix of

Equation (2.12) can now be written in terms of the shape functions as per Equation (2.18).

awl awl awl
0 0 0

2 M aw 2(2.18)0 2 2 0 B

0 0 M 0 aW M

& C-ý ax

Thus, Equation (2.12) can be revised as shown in Equation (2.19).

fff B]TD B]dV d ff I ,{H, d (2.19)
V S Hi
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In Equation (2.19), (d) is the displacement vector which has grown from the original '3

x V' vector of u', 'v', and 'w' to a '24 x V' vector of terms 'u,', 'vi', and 'wi'. Also, the

right hand side surface integral '3 x 1' vector has a vector for each term and is simply

shorthand for a '24 x 1' vector of discretized surface boundary tractions. The original

three partial differential equations of elasticity equilibrium have now been reduced to a

matrix equation of size 24. The integrals in Equation (2.19) may be easily solved if

simple forms for shape functions are chosen and if the modelled section geometry is

relatively simple.

If the modelled section geometry is complex, the finite element geometry can be

made simple by employing a transform mapping to another reference space. In order to

map 1x', 'y', and 'z coordinates for an irregular shaped element onto 'r', 's' and 't'

coordinates for a rectangular parallelpiped, the Jacobian transform matrix is required. The

Jacobian transform matrix essentially scales each component of the original space to a

new space. Thus, Equation (2.20) shows the Jacobian for an 'xyz' system mapped to an

'rst' system:

ax 0 z

J ax &Y &Z (2.20)
•s• as

N& N~ax &Y&

In terms of the shape functions and the nodal points, the Jacobian is expressed in

Equation (2.21) on the following page.

20



a~ix, , •'
a l l i x -i -- M i i O ~ i z ,

' aH ' ai (2.21)0- ix -Hg-
W~I aIjs~MiHx i llyi Mi

However, since the finite element integral equation includes shape function partial

derivatives with respect to the 'xyz' coordinate system, the inverse of the Jacobian is

required as described. Let [ J ]-'= [ F 1, where [ F ] is a '3 x 3' matrix. The shape

function derivatives with respect to the 'xyz' system are now expressed in Equation (2.22)

with respect to the 'rst' system.

aH. aH. 8H. aI.
_2 =r F ', +r MiF

ax ar 12 as 13

M =2I + - aHi i to 8 (2.22)
ay ar as a

aH all Mi a
rH 3, &H 32 N sF33 at

Equation (2.22) is used to calculate the [ B I and [ B]T matrices in the 'rst' system.

Equation (2.21) is used to transform the volume differential. The finite element integral

is transformed below as shown in Equation (2.23).

fff [ B IT [ D I[ [B] dVjxy.z) (d } fff [B ]T [ D I [ B ] I J I dV(,s,.t) ( ) (2.23)
V V

The transformation to the 'rst' coordinate system results in simplified finite element

integrals. The resultant transformed elements are termed isoparametric elements. The
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term isoparametric refers to the equality between the degree of the equations for

transforming 'xyz' into 'rst' coordinates and the degree of the shape functions for

estimating displacement. The shape functions defined in terms of 'rst' system variables

are shown in Equation (2.24).

H, -( (Ir) (I +s) ( +t)

H•2 4,(1 +) (1 -s) (I +t)

H3 '!(1 +r) (I -s) (I -t)

H4 = (I +r) (1 +s) (I -t) (2.24)

H5 = !(I -r) (I +s) (I +t)

H6 =(1 -r) (1 -s) (1 t)

HS 4'•(1 -r) (I +s)(0 -t)

In order to compute the integrals with a computer program, the Gauss quadrature

of numerical integration is used. The volume integral is redefined as the triple summation

from I to the number of integration points (NIP) of the integrand evaluated at Gauss

integration points (ri, si and t,) and multiplied by weighting factors as shown in Equation

(2.25).

NIP N1P hNI

fff[B [D]B ]IJIdv r,sst){dI = •.,E[B]r[D][B ]IJI I WjW f{ d)
v -ilj-1 k-I (2.25)

The results of the numerical integration may vary over the elements in the domain of the

model. Each of these results can be expressed as a '24 x 24' matrix which is termed the

elemental stiffness matrix [ K. 1.
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Recall the surface traction boundary conditions from the right-hand side of Equation

(2.12). The integration of the directional component of the applied stress over the

element surface area of the applied stress is equal to the external force applied to the

element. The result of the integration is a '24 x I' vector ( F. } which is equivalent to

the force in the 'x', 'y', and 'z' direction at each of the eight element nodes. Substituting

these resultant terms into Equation (2.24) completes the finite element derivation which

is shown in Equation (2.26).

[K, d ={F,) (2.26)

The finite element method involves combining these element matrix equations with

given boundary conditions in order to form one large system of simultaneous equations

for numerical solution. The computer programming methodology to achieve such a

solution is described in the next section.

B. FORTRAN COMPUTER PROGRAM DEVELOPMENT

Finite element numerical analysis was accomplished using FORTRAN computer

programs. The FORTRAN programs were implemented using the modular programming

concepts and FORTRAN subroutines developed by Akin [Ref. 21]. The various

FORTRAN programs used for this study differed from each other in only two or three

subroutines out of approximately 55 subroutines to the main program.

Program housekeeping data, nodal coordinates, element-node connectivity, boundary

conditions and material properties are read into the program from one input data file via

23



several standard Akin subroutines (for example, INPUT, INVECT, INPROP, and

APLYBC). Efficient storage of the input data, interim calculated program data, and

calculated results is accomplished through the use of semi-dynamic storage. Two large

data vectors are sized in the main program to store fixed point and floating point data

respectively. Matrix or array data is converted for storage in these column vectors.

Computation of pointers to mark data locations in the column vectors does require some

program overhead in that up to four subroutines (for example, PTI, PT2, PT3, and PT4A)

are called for this purpose. However, the efficient use of computer core memory through

the semi-dynamic storage method provides a significant advantage in the number of

elements and nodes which can be used in the model.

Subroutine MODEL provides overall control for the rest of the program. All

major subroutines are called from MODEL. Subroutine ASMMDS computes the element

stiffness matrices using Gauss quadrature integration. (ASMMDS is a locally developed

problem dependent subroutine). Two integration points are used in each coordinate

direction at the element nodes. This results in eight independent integrations points per

element. ASMMDS implements the subroutines (that is, MATER and COMDMX) which

impl-mý.-.nt the Kwon micromechanical cell method to build the composite smeared

properties. Fiber layup angle transformations are performed in subroutine STNROT.

Finally, ASMMDS calls subroutine STORSQ to assemble the elem total stiffness matrices

into the global stiffness matrix.

After completing ASMMDS computations, program control returns to MODEL

where boundary conditions are applied, modifications are made to the global force column
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vector and the global stiffness matrix (via subroutine APLYBC), and the displacement

solution is obtained (in subroutines FACTOR and SOLVE). FACTOR uses the

Cholesky method to factor the system square matrix into the product of a lower triangular

matrix and its transpose. SOLVE use Cholesky-Gauss methods of forward and back

substitutions to complete the solution. APLYBC, FACTOR and SOLVE are standard

Akin subroutines.

Post-processing to calculate stress, strain, stiffness reduction or damage

accumulation is accomplished in problem dependent subroutine MSTRES. MSTRES is

an original subroutine developed and modified as required for this study. MSTRES re-

computes the elemental stiffness matrices, and using the displacement solution previously

obtained, implements the Kwon cell method to compute the micro-level cell strain from

the composite macro-level strain. The micro-level cell strains are used to compute micro-

level cell stresses and macro-level composite stresses. Stiffness reduction and damage

criteria are applied based on the micro-level cell stresses calculated in this module.

Program output is arranged from this module or from other standard Akin models as

necessary.

Program iteration to modify material properties is required for computation of

damage accumulation. Necessary iteration control is designed into control module

MODEL for damage studies which are discussed later.
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UiL STIFFNESS REDUCTION OF A CERAMIC MATRIX COMPOSITE

A. OVERVIEW

In a typical composite, the stiffness or Young's Modulus of the matrix is much less

than that of the fiber. In polymer matrix composites (PMCs), the ratio of fiber stiffness

to matrix stiffness may be on the order of 100. In ceramic matrix composites (CMCs),

the ratio of fiber stiffness to matrix stiffness is usually on the order of 10 or lower. The

ratio of fiber failure strength to matrix failure strength follows an analogous relationship

as the stiffness rations for PMCs and CMCs. Ceramic matrix materials are typically

stiffer, stronger and more brittle than polymer matrix materials. However, PMCs tend

to fail based on the stress and strain at the fiber level, while CMCs tend to fail based on

relatively lower stresses and strains at the matrix level [Ref. 22]. Matrix cracking (or,

more precisely, matrix micro-cracking) is one of the causes of initial failure of all

composites, and, in particular, for CMCs. When the matrix develops cracks, the adjacent

fibers must carry additional load. Thus, the effect of matrix cracking is seen on the

macro-level as a reduction in stiffness for the composite structure.

Much previous research had been directed to model the matrix cracking

phenomenon. Aveston and Kelly [Ref. 23] extended the models of the late 1960': for

understanding the stress-strain behavior of composites with matrix cracks. They used

rigorous shear-lag analysis to calculate the fiber stresses when the matrix cracks in a

unidirectional fiber composite plate. They implement a "strain energy versus crack
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growth" approach to relate the interfacial fiber-matrix shear stress to the unbonded matrix

longitudinal stress after matrix cracking has occurred. Hahn and Tsai [Ref. 251 develop

a bilinear model to explain stress-strain behavior before and after matrix cracking. Hahn

and Tsai developed their model with experimental results for a [00/9001. glass fiber, epoxy

matrix composite loaded in a uni-stress condition. Garrett and Bailey [Ref. 25] and

Parvizi et al. [Ref. 26] tested cross-ply glass fiber, polyester matrix composite materials

to observe matrix cracking. They validated some of the earlier theoretical work of

Aveston and Kelly. They also studied the effect of applied stress and matrix crack

spacing. Reifsnider and his team [Ref. 27] identified a matrix crack pattern in terms of

a Characteristic Damage State related to applied stress and based on their experimental

work with composite laminates with multiple fiber layup angles. Talreja [Ref. 28, 29]

uses a complex, rigorous continuum mechanics approach to derive constitutive relations

which essentially extends the work of the authors cited above. However, Talreja's

approach is based on factors adjusted by a curve-fitting to experimental results. Talreja's

method provides some insight into the stiffness reduction from matrix cracking but

implementation of his model requires significant experimental data.

This research attempts to extend the prior studies by developing a correlation for

composite stiffness reduction due to matrix cracking. The correlation is based on results

from simple tensile testing of a composite specimen. The tensile testing provides

characterization of stiffness reduction versus applied load. While this correlation approach

is not predictive from first principles and basic material properties, it provides a
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methodology to predict global structural behavior of a composite material to the micro-

level stresses in the fiber and matrix.

B. EXPERIMENTAL BASIS

Wang [Ref. 30] performed comprehensive testing on continuous Nicalon (SIC) fiber

reinforced calcium aluminosilicate (CAS) composite systems. Wang focused much

attention on standardization of specimen design and testing methodology due to lack of

standards for testing fiber reinforced ceramic composites. Manufacturer supplied data for

the fiber and matrix are indicated in Table 3.1 below.

TABLE 3.1 CHARACTERISTICS OF MATRIX AND FIBERS IN THE SiC/CAS
COMPOSITES

Properties CAS Matrix Nicalon, SiC
Fibers

Elastic Modulus 98 193.2
(GPa)

Tensile Strength 124 2760
(MPa)

Poisson's Ratio 0.255 Not Provided

Wang determined the following properties for a 36% fiber volume SiC/CAS unidirectional

composite: Elastic Modulus ranged from 124 to 131 GPa and Poisson's ratio ranged from

0.29 to 0.30. These values agree with results of the micromechanical model.

Wang performed uniaxial cyclic loading of unidirectional [0] , [03/90/03], and

[03/903/03] composites. Stiffness reduction results of these tests are used for this study.
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C. MATRIX STIFFNESS REDUCTION CORRELATION

Kwon and Bemer [Ref. 31] proposed the following method to account for the effect

of matrix cracking on the composite stiffness. The degradation of the matrix elastic

modulus is assumed to be a function of the micro-level matrix stress as shown in

Equation (3. 1).

Em =Eo f(a~') (3.1)

In Equation (3.1), the superscript 'mW represents a matrix property, the subscript 'o'

represents the original undamaged elastic modulus, and 'f is a stiffness degradation

function which depends on the matrix cell stresses. A Weibull type distribution function

of the matrix cell von Mises stress values is used to model the stiffness degradation of

the matrix. The stiffness degradation Weibull function is given in Equation (3.2).

f=exp Y y if ne,, > oy, (3.2)

vine-ys
1 ~if e,• y.

In Equation (3.2), oe,m, is the equivalent von Mises stress of the matrix, ay, is the yield

or failure strength of the matrix, and y and 13 are constants of the material which are

determined from experiment.

A one-eighth model of a tensile test specimen was developed for input into an FEM

program developed as described in Chapter II. The composite model consisted of two

layers of 20 elements for a total of 40 elements. Material properties from Table 3.1, CAS

matrix Poisson's ratio of 0.31, and fiber volume of 36% were input for the analysis. A
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CAS matrix yield stress value of 130 MPa was used for the stiffness reduction function.

Boundary conditions of known displacements which were derived from the Wang

experimental strain and composite stiffness reduction data were also input into the FEM

program. The FEM postprocessor determined the matrix and fiber cell stresses. The

matrix von Mises level stress values were calculated at the cell level and then averaged

throughout the model. Average matrix cell level von Mises stress values were considered

valid as the specimen was modelled for uniaxial displacement loading. A separate

FORTRAN program based on the Kwon micromechanical model as implemented by

subroutine COMDMX was run to correlate the matrix stiffness reduction to the composite

stiffness reduction. This step essentially was directed at determining what the required

level of matrix stiffness degradation would be for a given composite stiffness degradation.

At this point, necessary information to perform a correlation was accumulated. This data

is displayed in Table 3.2. Next, Equation (3.2) was manipulated (using logarithms and

basic algebra) into the format required to perform a least squares fit for constants y and

03. The least square fit constants were used to calculate the reduced matrix stiffness in

order to finally compute the new predicted, reduced composite stiffness. This predicted,

reduced composite stiffness was correlated to the experimentally determined, reduced

composite stiffness. The least square fit constants were adjusted to optimize the

maximum error and the root mean square error between the predicted and experimental,

reduced composite stiffness values. These steps were performed using a Microsoft Excel

4.0 spreadsheet, its built-in functions, and an interactive "macro" or program.
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TABLE 3.2 STIFFNESS REDUCTION CURVE FIT DATA

Strain % Stiffness EC Multiplier Required E. Matrix von
Reduction Multiplier Mises Stress

(MPa)
(experimental) (experimental) (calculated) (computed) (computed)

0.0015 1.5% 0.985 0.968 147

0.0020 4.0% 0.960 0.915 196

0.0025 12.5% 0.875 0.736 245

0.0030 18.0% 0.820 0.620 294

0.0035 22.5% 0.775 0.525 343

0.0040 24.5% 0.755 0.483 392

0.0045 26.0% 0.740 0.452 441

0.0050 28.5% 0.715 0.398 490

0.0055 32.0% 0.680 0.325 539

From the above data and analysis, y was determined to equal 0.307 and 13 was determined

to equal 1. 16. These material constants were assumed to be independent of the composite

layer configuration, the material properties of the fiber, and the volume fraction of the

fiber.

D. FEM STIFFNESS REDUCrION RESULTS

The correlation for stiffness reduction discussed above was incorporated into the

computer FEM program. To achieve stiffness reduction, the program was run once with

initial undamaged material properties to determine the matrix micromechanical stress

values. The matrix stiffness reduction factor was calculated based on these stress values.
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The matrix properties were degraded accordingly, and the FEM program was re-run to

determine the final specimen displacement and strain with the matrix cracking damage

present. Two different laminates were studied: Two cross-ply composite laminates made

of SiC/CAS with a fiber volume of 36%. Numerical results were compared with Wang's

experimental results as shown in Figures 3.1, 3.2, and 3.3. The numerical method for the

cross-ply [03/90/03] composite predicts slightly lower stiffness reduction at low composite

strains and slightly higher stiffness reduction at medium-to-high composite strains than

that obtained by experiment. For the cross-ply [03/903/03] composite, the numerical

method significantly under-predicts the stiffness reduction as compared to the

experimental results. In the latter case, post-experiment composite analysis indicated

some fiber breakage in addition to the matrix cracking phenomenon. The fiber breakage

offers a partial explanation for the higher than predicted stiffness reduction. Also, other

non-modelled micro-level stresses or load transfer mechanisms might account for the

additional stiffness reduction.

To gain further insight into the stiffness reduction mechanism for the cross-ply

composite laminates, the percent stiffness reduction was plotted for matrix cracking in

each layer and for matrix cracking in the whole laminate. Figures 3.4 and 3.5 display

these plots. One might expect a greater degree of matrix cracking to occur in the 900

layer, as its matrix supports a majority of the stress which results from the applied

longitudinal load than does its fibers. But, for the [03/90/03] composite, most stiffness

reduction occurred due to matrix cracks in the 00 layer. The reason is that the 00 layer

is much thicker than the 900 layer. As a result, the 00 layer carries more load compared
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to the 900 layer. For the [03/903/03] composite, the numerical method indicates that

stiffness reduction due to matrix cracking in both layers is comparable. The relatively

thick 900 layer in [03/903/03] yielded more contribution to the stiffness degradation, due

to matrix cracking in the 900 layer, than the relatively thin 900 layer in [03/90/031.

Figures 3.6, 3.7, and 3.8 display the longitudinal fiber stress changes as the matrix

cracking is modelled. For all composite laminates considered, as the matrix cracks, the

fiber stress is increased due to load transfer from damaged matrix to the relatively stiff

longitudinal fibers. For the cross-ply [03/90/03] laminate of Figure 3.7, matrix cracking

in the 0* layer accounts for most of the stress increase in the longitudinal fibers. For the

cross-ply [03/903/03] laminate of Figure 3.8, matrix cracking in either layer contributes

approximately the same relative share of longitudinal fiber stress increase. These fiber

stress graphical results further indicate the utility of the Kwon cell method.
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Figure 3.1 Experimental And Predicted Stiffness Reduction Due To Matrix Cracking For
A Unidirectional SiC/CAS Composite Laminate Loaded Uniaxially.
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Figure 3.2 Experimental And Predicted Stiffness Reduction Due To Matrix Cracking For
A [03/90/03] SiC/CAS Composite Laminate Loaded Uniaxially.
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Figure 3.3 Experimental And Predicted Stiffness Reduction Due To Matrix Cracking For
A [03/903/03] SiC/CAS Composite Laminate Loaded Uniaxially.
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Figure 3.4 Stiffness Reduction Due To Matrix Cracking In Different Layers Of A
[03/90/031 SiC/CAS Composite Laminate Loaded Uniaxially.
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Figure 3.5 Stiffness Reduction Due To Matrix Cracking In Different Layers Of A
[03/903/03] SiC/CAS Composite Laminate Loaded Uniaxially.
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Figure 3.6 Effects On Longitudinal Fiber Stress Of Stiffness Reduction Due To Matrix
Cracking Of A Unidirectional SiC/CAS Composite Laminate Loaded Uniaxially.
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Figure 3.7 Effects On Longitudinal Fiber Stress Of Stiffness Reduction Due To Matrix
Cracking In Different Layers Of A [03/90/031 SiC/CAS Composite Laminate Loaded
Uniaxially.
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Figure 3.8 Effects On Longitudinal Fiber Stress Of Stiffness Reduction Due To Matrix
Cracking In Different Layers Of A [03/903/03] SiC/CAS Composite Laminate Loaded
Uniaxially.
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L PARAMETRIC STUDY

A parametric study for different fiber volumes in a unidirectional SiC/CAS

composite laminate was conducted and reported by Kwon and Berner [Ref. 32]. Results

for stiffness reduction sensitivity to the variation of fiber volume are indicated in Figure

3.9. As the magnitude of the applied strain boundary condition was increased, the fiber

stress also increased. This resulted in an increased matrix stress too. When matrix stress

increased, the stiffness reduction factor also increased. Thus, composite stiffness

reduction increased for all fiber volumes modelled when the strain was increased. At

higher fiber volumes, the numerical model indicated smaller stiffness reduction. This

result is expected: As the amount of fibers was increased, the share of load carried by

the fibers increased likewise. Thus, local matrix stress and subsequent matrix cracking

was decreased.

Figure 3. 10 indicates the longitudinal fiber stress versus strain for several different

fiber volume fractions. The fiber stress increases with strain due to increasing load

transfer from the damaged matrix to the undamaged fibers. As the effect of matrix

cracking is reduced with higher fiber volumes, the rate of increase of fiber stress goes

down.

The parametric study results app'ar reasonable. However, comparison with

experimental data is warranted to fully validate the results. Also, experimental

verification could substantiate the assumption that the stiffness reduction correlation,

developed in section 'C' above, is truly independent of the fiber volume.
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Figure 3.9 Stiffness Reduction Versus Strain For Different Fiber Volumes For A

Unidirectional SiC/CAS Composite Laminate.
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Figure 3.10 Longitudinal Fiber Stress Versus Strain For Different Fiber Volumes For A
Unidirectional SiC/CAS Composite Laminate.

39



IV. STIFFNESS REDUCTION MODIFIED BY THERMAL RESIDUAL STRESS

A. BACKGROUND

The mismatch between the coefficient of thermal expansion (CTE) for the fiber and

the matrix of ceramic matrix composites (CMCs) and the relatively high fabrication

temperatures for CMCs can cause significant residual thermal stresses. These residual

thermal stresses may have a significant effect on the performance of CMCs.

The micromechanical matrix stress was the primary factor in the stiffness reduction

correlation developed for the SiC/CAS as discussed in the previous chapter. The Weibull

type correlation has a reasonable physical basis in using the ratio of the difference of

matrix cell stress and matrix yield stress to the matrix yield stress: This ratio indicates

some sort of threshold matrix cell stress level at which the matrix begins to develop

cracks. Residual thermal stresses in the matrix could affect the threshold stress for the

onset of cracking.

A calculation was performed to estimate the residual thermal stresses in the

SiC/CAS composite laminates which were analyzed in Chapter III. The calculated

thermal residual stress terms were incorporated into the FEM program for the analysis of

stiffness reduction. Results of the numerically predicted stiffness reduction were

compared with experimental data.
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B. DERIVATION

Two separate calculations were performed for the thermal residual stress in the

matrix of the SiC/CAS composites: unidirectional laminate calculations and cross-ply

laminate calculations. The coefficient of thermal expansion (CTE) for the SiC fiber, CE,

was taken as 4.0 x 10. per degree Celsius; the CTE for the CAS matrix, a., 5.0 x 10-6

per degree Celsius. This data is based on Wang [Ref. 30]. Other basic material

properties listed previously in Table 3.1 were also used. A temperature delta of 300°C

was used as a typical value for the difference between fiber/matrix bond setting

fabrication temperature to application temperature. The approximate computation

described below relies on the Chamis relations [Ref. 3] to determine smeared properties

for the composite laminates. A method to numerically compute the thermal residual

stresses using the Kwon cell method is briefly outlined in Appendix B.

1. Uniditcdonal Case

Consider a two dimensional view of tL fiber and matrix interface as two solid

blocks which are adjacent to one another. A force balance must exist between the bonded

fiber and matrix after cooldown from bond setting during fabrication as shown in

Equation (4.1).

Of Af =a., AN (4.1)

If each side of Equation (4.1) is multiplied by the composite thickness and then divided

by the total composite volume, Equation (4.2) is obtained.

af Vf = 0. Va (4.2)

41



The mechanical strain of the fiber and matrix is given by the basic Hooke's Law

relationship and is equal to the respective elastic modulus divided by the respective stress

term. The thermal strain is equal to the appropriate CTE times the temperature delta.

Equation (4.3) shows that the sum of the mechanical strains of the fiber and the matrix

must be equal to the magnitude of the difference of the thermal strains of the matrix and

the fiber.

Of Et =Ia. -at IAT (43)

Ef Eva

When Equations (4.2) and (4.3) are combined algebraically, Equation (4.4) results.

.a, -cc, IAT

1 V. (4.4)

Em ErVf

Although developed independently, Equation (4.4) is equivalent to the result derived by

Sambell, et. al., [Ref. 33]. When the appropriate values are substituted into Equation

(4.4), the resultant residual thermal stress in the matrix is approximately 15 MPa.

2. Cross-Ply Case

The cross-ply development for thermal residual stress is analogous to the

unidirectional development, but necessarily more complex due to the consideration of the

two laminae of different fib .r layup angle and the two stress directions. In the following

derivation, subscript 'L represents the global longitudinal direction, subscript T represents

the global transverse direction, superscript '0' represents the 0° fiber layup lamina, and
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superscript '90' represents the 90' fiber layup lamina. Four different strain terms are

represented in Equation (4.5).

90 90
90OL Y 908 L -_VLT -•+aLATEL 90

90 90

90 OT 'UL 90 + A
8 T -v, - aTAT

T o T 9 0ETO E (4.5)
o 0

o L OT 0
-L -VLT ° aLAT

o 0
o aT OL OAT

ST = - VTL - TT

Because the strains in the global transverse and longitudinal directions must be equal,

Equation (4.5) actually represents two independent equations with four unknowns. To add

two required equations to the system, Equation (4.6) describes the force balance between

the laminae.

ALoa +A9T =0 (4.6)
A~Y +A90a° = 0

To solve for the longitudinal and transverse CTE values and elastic modulus values for

the fiber, the equation of Chamis [Ref. 3] were used. The matrix CTE was assumed to

be isotropic. Noting that the ratio of the areas for the 00 lamina to the 900 lamina is two

for the [03/903/03] composite and six for the [03/90/03] composite, the system of four

equations and four unknowns given by Equations (4.5) and (4.6) is solved to give residual

thermal stress values. Matrix thermal residual stress values are shown in Table 4.1.
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TABLE 4.1 MATRIX THERMAL RESIDUAL STRESSES

[03/903/03] Laminate [03/90/03] Laminate
Matrix Thermal Residual Matrix Thermal Residual

Lamina Stress (MPa) Stress (MPa)

_a1  a72  at a 2

00 -19.3 25.3 -8.43 10.6

900 -40.8 52.1 -47.3 68.3

C. FEM STIFFNESS REDUCTION WITH THERMAL RESIDUAL STRESS

The Weibull stiffness reduction function constants were re-computed using the

matrix residual stress values. The new y was 0.238 and the new 03 was 1.42. Figure 4.1

shows the graph for the stiffness reduction of the unidirectional composite laminate. The

new predicted stiffness reduction values show good agreement with the experimental

results, but the overall comparison indicates mixed results for this case. The new

predicted stiffness reduction values show slight improvement over the previous (without

thermal residual stress) predicted values at low strains. The previous model shows

slightly better agreement with experimental results at medium to high strain rates. Both

piedictions are within the same range of accuracy for the constants and assumptions

employed in deriving the model.

Figure 4.2 shows the graph of stiffness reduction for the cross-ply [03/90/03]

composite laminate. The new predicted stiffness reduction values show vastly improved
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agreement with experimental results as compared to the previous model. For medium to

high strains, the new predicted values are extremely close to the experimental values. For

low strain levels the predicted stiffness reduction due to matrix cracking is smaller than

both the experimental results and the previous results. However, the shape of the stiffness

reduction curve shows upward curvature and then levels off just short of achieving

downward curvature. This type of behavior might occur if weak fibers in the composite

laminate were cracked or damaged at a low strain level. From a statistical viewpoint,

some early weak fiber breakage is a real probability.

Figure 4.3 shows the graph of stiffness reduction with thermal residual stress for the

cross-ply [03/903/031 composite. The numerical prediction with thermal residual stress

incorporated shows slight improvement in matching the experimental results as the

previous numerical method. These results indicate the need for further refinement of the

stiffness reduction correlation for thermal residual stresses and their effect on matrix

cracking.
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V. DAMAGE PROGRESSION AND FAILURE IN A POLYMER MATRIX

COMPOSITE

A. OVERVIEW

A finite element analysis was also performed concerning the effects of flaws (in this

case, a circular hole) on the failure behavior of composite laminates. From classical

elasticity based on isotropic materials, an "infinite" plate containing a small circular hole

and loaded in uniaxial tension, "ao," will experience a stress concentration factor (SCF)

at the edge of the hole. The SCF produces a stress of magnitude 3 times ao in a region

outside the hole and perpendicular to the applied stress. Konisch and Whitney [Ref. 34]

noted that the classical SCF approach produced anomalous results when applied to

composite laminates with holes. They modified a solution to the elasticity equations for

an isotropic material for application to a composite plate with a hole. Then, using a semi-

inverse solution technique, they determined the stresses in the vicinity of the hole. Their

semi-inverse solution produced a slightly improved correlation with experimental data.

However, overall force equilibrium was not satisfied throughout the composite by this

type of semi-inverse solution.

The study of stress around holes in composite plates is predicated by the need to

use bolted or pinned joints to connect such plates within structures. Bolt hole analysis

has added complexity due to the loading in the hole area. Chang, Scott and Springer
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[Ref. 35, 36] studied the failure of such joints in composite materials. They developed

models for the bolt hole boundary conditions and implemented a variation of the Yamada

and Sun [Ref. 37] failure criteria. The Yamada-Sun criteria is a quadratic equation for

composite laminate failure prediction based on average laminate properties. More

recently, Chang and Chang have extended the early work to study the failure of composite

plates with non-loaded holes [Ref. 38]. The recent Chang research is based upon FEM

analysis using composite laminate theory. Chang used statistical Weibull functions to

determine degraded stiffness properties for the composite laminate when composite

damage criteria are exceeded. Chang implemented a fiber damage zone failure method

covered by Hahn and Tsai [Ref. 39]. The Chang numerical predictions show good

agreement with experimental results. This current work attempts to similarly predict

failure progression using the Kwon micromechanical model with its strong physical basis

in the micromechanical properties of the composite constituents. Further finite element

analysis and modelling remain to fully compare this present method with Chang's results.

B. FAILURE CRrTERIA AND MODELLING

Chang implemented failure criteria at the composite level using modifications of the

quadratic relations of Yamada and Sun. Since material failure has physical origins at the

micromechanical level, it is desirable to establish failure criteria on material properties at

that level. Aboudi [Ref. 8] has proposed the criteria presented in Equations (5.1) and

(5.2).
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_, x (5.1)

X(a 4Sf 1

In Equation (5.1), u',, is the local fiber longitudinal stress and Xf is the ultimate tensile

strength of the fiber in the longitudinal direction. In Equation (5.2), e 22 is the local

transverse stress of the matrix, a', 2 is the local matrix shear stress in the longitudinal-

transverse plane, X. is the ultimate tensile strength of the matrix, and S. is the ultimate

shear strength of the matrix. Thus, equations (5.1) and (5.2) are based on local cell stress

levels of the fiber and matrix and on the ultimate strengths of the fiber and matrix. Local

fiber and matrix cracking damage, indicating local laminate failure, is assumed to occur

when these criteria are exceeded.

When the composite level stresses exceeded his global failure criteria, Chang

modelled failure using a different method for both the fiber and composite. For the fiber,

Chang degraded fiber properties by reducing the fiber transverse elastic modulus to zero

and the fiber longitudinal elastic modulus and shear modulus according to an

experimentally determined Weibull distribution. Chang degraded the matrix properties

by reducing the matrix transverse elastic modulus to zero. For this work, when the fiber

or matrix criteria of equations (5.1) and (5.2) was exceeded, the respective elastic moduli

and shear moduli for all directional combinations were reduced by a factor to near zero.

Actual reduction to zero was not possible using numerical methods due to resultant

singularities in the matrix equations.
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C. FEM DAMAGE PROGRESSION STUDY

As noted above, comparison to and extension of the Chang research was a desired

goal. Thus, the material chosen for this numerical analysis was based on the Fiberite

T300/1034-C graphite epoxy composite which was also used for the Chang work A

cross-ply polymer matrix composite was studied: a [0/90]. laminate. The fiber and matrix

properties were "reverse engineered" from the smeared composite properties presented by

Chang. The fiber and matrix properties were determined by an interactive trial and error

method utilizing the Kwon cell model. Table 5.1 below shows the Chang smeared

properties and the calculated fiber and matrix properties. Fiber volume was calculated

to be 50%.

TABLE 5.1 GRAPHITE EPOXY T300/1034-C PROPERTIES

Property Composite - Fiber Matrix
Chang Smeared Calculated Calculated

Longitudinal 21.3 40.0 0.50
Elastic Modulus

(Msi)

Poisson's Ratio 0.30 0.23 0.40

Longitudinal 251 560 5.0
Tensile Strength

(Ksi)

Shear Strength 19.4 NA 23
(Ksi)

Transverse Tensile 9.65 NA 5.0
Strength
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The FEM program discussed earlier in this report was modified to simulate damage

progression. The composite laminate was simulated with a one-eighth model due to

symmetry. The one-eighth model laminate plate was 0.5 inches wide, 4.0 inches long,

and 0.125 inches thick. Hole radius was one-fourth of the laminate model width at 0.125

inches. Figure 5.1 displays a scaled version of the specimen one-eighth model. A

program control loop was implemented to increase the applied end tension up to 72.0 Ksi

in increments of either 6.0 Ksi or 7.2 Ksi, depending on the number of load iterations

chosen. The tension was applied in the 'x' direction. Within each load increment, a

conditional program loop tested for failure; recorded and wrote failure output data; and,

iterated to re-compute degraded stiffness properties, re-solve for new displacements, and

re-calculate to determine cell stresses until the failure criteria indicated no further failures

for the current load increment.

For the [0/901, composite laminate, total matrix failure occurred in the 900 layer at

approximately 36 Ksi. The matrix failure occurred perpendicular to the applied load

exactly along the region of maximum stress according to classical theory. Total specimen

failure occurred at 54 Ksi when the fiber in the 00 layer failed across the specimen. The

fiber failure around the hole in the 00 layer initiated 78.50 to 900 off the axis of the

applied load, and then progressed along at 660 to 78.50 off the axis of the applied load.

At failure, the fiber failed simultaneously along the outer specimen elements at 66' to

78.50 off the axis of the applied load. These results are displayed in Figures 5.2 through

5.10 on the following pages. Chang modelled a [(0/90)61, laminate for numerical

prediction of failure. For this similar laminate with the same width-to-diameter ratio
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(W/D=4.0), Chang observed failure at approximately 52 Ksi with the failure path about

759 off the axis of the applied load. Thus, the current results show good agreement with

previous research in this area.

The [0/90]. composite laminate was re-modelled with end displacements applied as

compared to above, when end forces which are equivalent to end stress tractions, were

applied. Failure load was within 5% of the results above. The failure path was also

similar to the results discussed above.

These results differ only slightly from the Chang analytical results. A primary

cause for the slight difference probably lies with the "reverse engineered" fiber and matrix

properties and fiber volume used for this study. A secondary difference is the failure

criteria applied. The failure degradation model used for this current study was somewhat

severe, in that properties were reduced to the threshold of numerical singularity.

However, the current failure model is desirable from the point of simplicity.
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Figure 5.1 - X-Y Plane View Of The FEM One-Eighth Model Of A Composite Plate
With A Circular Center Hole.
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Figure 5.2 - Damage Progress At 12.0 Ksi Applied Stress For [0/901.
T300/1034-C Graphite Epoxy Composite Laminate Plate With Center
Hole.

Note: The small circles indicate fiber failure. The small boxes indicate matrix failure.
Hollow symbols indicate the 0 degree layer. Solid symbols indicate the 90 degree
layer.
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Figure 5.3 - Damage Progress At 18.0 Ksi Applied Stress For [0/90]1
T300/1034-C Graphite Epoxy Composite Laminate Plate With Center
Hole.
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Figure 5.4 - Damage Progress At 24.0 Ksi Applied Stress For [0/90],
T300/1034-C Graphite Epoxy Composite Laminate Plate With Center
Hole.
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Figure 5.5 - Damage Progress At 30.0 Ksi Applied Stress For [0/901.
T300/1034-C Graphite Epoxy Composite Laminate Plate With Center
Hole.
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Figure 5.6 - Damage Progress At 36.0 Ksi Applied Stress For [0/901.
T300/1034-C Graphite Epoxy Composite Laminate Plate With Center
Hole.
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Figure 5.7 - Damage Progress At 42.0 Ksi Applied Stress For [0/900o
T300/1034-C Graphite Epoxy Composite Laminate Plate With Center
Hole.
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Figure 5.8 - Damage Progress At 48.0 Ksi Applied Stress For [0/90],
T300/I034-C Graphite Epoxy Composite Laminate Plate With Center
Hole.
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Figure 5.9 - Damage Progress At 54.0 Ksi Applied Stress For [0/901.
T300/1034-C Graphite Epoxy Composite Laminate Plate With Center
Hole.
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VL SUMMARY AND CONCLUSIONS

A. SUMMARY

The new micromechanical model for composite properties developed by Kwon [Ref.

12] was readily incorporated into finite element analysis of composite structural

specimens. The Kwon micromechanical model also provided for useful micro-level fiber

and matrix stresses in the finite element post-processor subroutines. The fiber and matrix

stresses were used to initiate stiffness reduction correlations for material property

degradation and failure criteria for damage progression until failure.

The stiffness reduction correlation developed for SiC/CAS ceramic matrix

composites was implemented in the finite element analysis based on micro-level matrix

stresses determined from the Kwon micromechanical cell model. A stiffness reduction

correlation was developed by using finite element analysis of a unidirectional SiC/CAS

composite. The stiffness reduction correlation was based on a Weibull type function.

Stiffness reduction predictions for the [03/90/03] SiC/CAS composite showed very good

agreement with experimental results of Wang [Ref. 30]. Stiffness reduction predictions

for the [03/903/03] SiC/CAS showed good agreement with experimental results.

Thermal residual stresses were incorporated into the stiffness reduction correlation

and finite element analysis for three SiC/CAS composite laminates. The unidirectional

laminate was used to determine the initial stiffness reduction with thermal residual stress

correlation. The finite element analysis predictions for the (03/90/03] SiC/CAS composite
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showed markedly improved agreement with experimental results. However, the revised

prediction for stiffness reduction of a [03/903/031 composite showed little discernable

improvement in matching experimental results as compared with the stiffness reduction

correlation without thermal residuals stress included.

Damage progression and failure studies were performed using finite element analysis

with the Kwon micromechanical model for a graphite/epoxy (T300/1034-C) cross-ply

composite laminate with a center hole. The finite element analysis for this study

predicted the failure load and path with very good correlation to the previous work of

Chang [Ref. 38].

B. CONCLUSIONS

The micromechanical cell model developed by Kwon [Ref. 12] can be readily

implemented into finite element analysis of composite structures. The initial studies

performed in this current work indicate good correlation with experimental work and

previous research by other authors. Of course, further analysis of other continuous fiber

composite laminate structures with comparison to experimental results is warranted. Also,

the micromechanical model need to be modified for discontinuous fiber composites of

whisker composites.

The stiffness reduction correlation developed in Chapter III needs further r 'finement.

The predictions for the [03/903/03] cross-ply laminate showed only fair correlation with

experimental results. Incorporation of the characteristic damage state or zone concept
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based on matrix cracking density into the stiffness reduction weibull function would

provide a more clear relationship with the physical mechanism of the matrix cracking.

Including thermal residual stresses in the stiffness reduction correlation generally

improved the agreement of the predictions with experimental results. To further improve

these predictions, a full three-dimensional thermal residual stress analysis based on the

Kwon micromechanical model should be employed. Also, more detailed information on

composite fabrication practice with regard to heating and temperature might be useful to

improve the computation of thermal residual stress.

The computation of fiber and matrix stress at the micromechanical level is an

exceptionally powerful result of the Kwon micromechanical cell method. This method

provides an outstanding physical foundation for future study of composite structural

stiffness degradation, damage and failure analysis.
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APPENDIX A - EQUATIONS FOR FEM DERIVATION
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APPENDIX 3 - THERMAL STRESS DERIVATION USING KWON CELL
METHOD

The following derivation has been developed by Dr. Young W. Kwon. The

derivation is provided here for completeness and reference.

The foundation for the Kwon micromechanical cell method is based on the relations

given in Equation (B.I).

e= V, + FVl - fVrev-+ F/=j(1 - •- or + (i- an d ij= 1,3

let a V P. - ;-

Based on the unit cell as displayed in Figure 1. 1, the compatibility equations for stress

and strain are given in Equations (B.2) and (B.3).

022 =2 22 , 022 = CF33 =733 , 33 033
ob = d I = c d (B.2)

0 =2 2 , '02 =12 2 (013 =033 . 33 ='(13

b d023 -2 02330&3 3 C23= 23 23 (423

813 =Fbl d ~ ,

a;, o•F_ 11 = 81, , F_11 = 611

22 b c +d ab d (B.3)
+22 _622 = 822 .822 , 433 +433 = 633 +C33

6 2 b + d b c 6 d
S'+12 1= 12 +612 , el 3 +E73 = &13 +E613

The total strain is equal to the sum of the mechanical strain and the thermal strain

as given by Equation (B.4).
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a ( )'÷s ) (B .4)

The generalized Hooke's law relates the mechanical stress to the mechanical strain. From

Equation (B.4), the mechanical strain can be composed of the difference of the total strain

and the thermal strain. Equation (B.5) shows this result.

a~=E(c~bG E4cj Ei-kj8-i -EQL #therma (B.5)

An inverse relationship for the mechanical stress can also be developed as shown in the

algebraic derivation in Equation (B.6) for an orthotropic material.
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all =Citall +C 12aY22 +C13aY33 a XIAT
822 C a +C Cy +C aY +aE AT

22 21 11 22 22 23 33 22
83 C3 a +CY +C +a aA

E33 3111 3222 C33CY33 33TIall -a11IAT 1(III1
8.22 Ca2 T = C ]j 22

833 -a 3A J L 33 i
al E It -ct11AT 1. I I (a1 1 ATI::}CY3 I:332 A -(I-c T-a33AT 193 a3AT JJ(B.6)I a AT (a~,

ja22j=[E f-22J4E a22AT =E FI221 (au-u42
CF33 933 ~~a 33AT J13 (yhrlý

all =E11611 +E12C22 +El3e33 +aCtema),)1
aF22 = E2161 +E 22F,22 +E 23 633 +(ahermai)2

aY33 ý"E31s1 +E32C22 +E 33633 +(Cythermal)3

Use shortened format: (al aheml etc.
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Equation (B.7) re-writes the stress compatibility equations in terms of mechanical strain

and thermal stress that were developed in equation (B,6).

1. 2 022

E'21 E1  +E~22" 2 +ES3 33 -( ) = E2161 1 +E2 2 e2 2 +E23-3 3 - (042

2. 022 022

Ev,1c' 1 +E~2 2c 2 +EV3 s 3 -(0k) = EVE I +Ed•28 2 +E23c23 -(1t

a (B.7)03. 3 033

E*3,e'l +E32F"2 +E;e3s 3 -(as)X = E3,ec,1 +E31 2~2 +E~3 g3'3 -(C'T13
b d

4. a033 = CF33

E b le b +E b b Eb )b b = Eb18 1d d+E3 2 2d d+E 3 3d d (ad

Equation (B.8) re-writes the strain compatibility equations in a similar manner.

b c dell Pb •1 •l ell = I

1 1 = 8 i b = 12. ,

(Cm +(s-,y (-- ( +(cF,

4. ea "(B.8)

(s'+(F~)~y (e.)d d

b € d5. s22 +'22 = 622 +822

(6)8( ..~)2b +sb = y s +sd +ed(F -Y22 +(F-t)22 ÷")2 +(F-t)22 (F2 +()'22 +(F--T2 ÷([•ty22

6. 433 +÷-3 = C33 +F33

((= ()b b d d
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Combining terms from Equations (BI), (B.7), and (B.8) yields a system of equations

where the mechanical cell strains can be expressed in terms of the composite average

strains as shown in Equation (B.9).

S b F d

622 +822 -822 -22 = 0
* b c d

833 -833 +833 -33 = 0

as 22 +1322 +10622 +Y 622 =8F22

as.33  13 +OF-33 +Y F-33 =8F33
E: 2 s2 Eb -b=(E:, -E1 , 1 1 +(ar a-@ (B.9)
E&282F -E; 22 2 +-E;3 s 3 -E23F33 = (E21 -E;1 •1 , +(a7)3 -(OX) 2

E132422 -EC32sC2 +E*33s-a3 -E~33e"3 = (E-31 -E-3~ 1  + (Oc (at)y
S• d d d d = ( Ed. _(C,

E22F422 -E22F22 + 23F-33 -E2 383 2, (c*•2-y )2

Eb32 ,22 - 32F-22 + A-E 333 -E33633 1_ 3] I t • 33 3E~s2  dd E's~ E~s3 = (-1 -E1  () ~(t)d,

Equation (B.9) can be written in matrix/vector equation format as in Equation (B. 10).

I e-I [ -A]=l j }ij (B. 0)

Displacement based FEM programs will solve for composite macro-level

displacements. Postprocessing modules first convert these displacement values into

composite strains. Inverting Equation (B.10) a!lows solving for the micro-level cell

strains. In summary, the solution procedure for thermal stresses becomes:

1. Compute the smeared property matrix [D] and the thermal stress vector ({o).
2. Compute the displacement vector (d) from jK](d)=(F), where vector (F)

includes both mechanic-l and thermal loads.
3. Compute the composite strain vector(s).
4. Compute the fiber and matrix cell strains('}).
5. Compute the fiber and matrix mechanical strains {e.'} from the equation

{smE') + (&,"j = {Sa).

6. Compute the fiber and matrix cell stresses (a•) from (a') = [E] ({,•').

7. Compute the composite stress ({) from {a'}).
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