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I. INTEGRAAL EQUATION STATUS

The required inner products in the Galerkin solution of the integral equation, using a
basis of exponential-weighted Laguerre polynomials, are ex-ressed as series of algebraic

forms. We are presently evaluating these series to get a feel for the invertibility of the
integral equation (transformed to a system of linear equations), prior to any inclusion
of the anticipated asymptotic behavior from the Sommerfeld half-space problem. If this
unmodified system of the first kind inverts nicely, then its inverse can be used to express
the boundary value problem as a system of the second kind; resulting in a whole new set
of opportunities for iterative or perturbation series approaches.

There are several important issues to be addressed in connection with the far (r --+ oc)
behavior:

(1) The far behavior

0 k1a eiklx

a0(X-- 0c, y - 0) /7i 3 / 2

is not the proper form close to the apex. An abrupt jump from the Laguerre series

to this oscillatory function is likely to lead to numerical instabilities, which suggests
that a scaling funtion that filters out its effect for small r could be useful.

(2) Inclusion of this far behavior is complicated in context of the even/odd symmetry
decomposition. One simplification, based on the same line of physical intuition
used to insure uniqueness in these types of scattering problems, is to invoke a
radiation condition inside the wedge material. That is, assume the wedge to be

slightly lossy so that the effect of the image source (in the even or odd case) is

negligible (in comparison with the original line source), which is the domain of the
surface integral equation. Admittedly, this is only a conjecture at the present, and
its utility remains to be tested via experiments (both analytical and numerical).
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II. CONFERENCES, MEETINGS, PROPOSALS, AND PAPERS

(1) We submitted an abstract titled "Single Surface Integral Equation for Penetrable
Wedge Scattering" to the Acoustical Society of America Meeting to be held in
Cambridge, MA during June 1994 (copy attached).

(2) We will present a seminar on this research at the Electrical Engineering Department
of the University of Mississippi on 3 March 1994. While in Oxford, we will also
meet with acoustics researchers from the National Center for Physical Acoustics.

(3) We submitted a proposal "Analytical and Asymptotic Diffraction Theory for Pen-
etrable Rough Surfaces" to ONR through the DEPSCoR program to continue and
extend this acoustic scattering research.

(4) The wedge paper [621, which is a result of last year's grant and has been the basis
for our present grant, has appeared in print (copy attached).
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Single Surface Integral Equation for Penetrable Wedge Scattering.

Anthony M. J. Davis (Mathematics Department, University of Alabama, Tuscaloosa, AL

35487-0350) and Robert W. Scharstein (Electrical Engineering Department, University of

Alabama, Tuscaloosa, AL 35487-0286)

The transmission problem of time-harmonic acoustic scattering by the velocity/density

contrast wedge is formulated, through symmetry arguments and with the construction of

suitable Green's functions, as a pair of uncoupled surface integral equations, each with

one unknown function defined on a single wedge face. The convergent solution to the

Fredholm integral equation of the first kind is expressed as a Galerkin series of Laguerre

polynomials, and the development takes account of the distant behavior anticipated from

the asymptotic solution to the related Sommerfeld half-space problem. The required inner

products for the Galerkin projection scheme, which are integrals of products of the weighted

Laguerre polynomials and the pair of Green's functions for the separate homogeneous

regions, are written as Taylor series coefficients of an auxiliary function. Efficient numerical

implementation of the physically-based analysis produces an accurate and intuitive picture

of the wave interactions with this canonical scatterer. [Work supported by the Naval

Research Laboratory - Stennis Space Center.]
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Wed Mellin Transform Solution for the Static
Line-Source Excitation of a

ds., Dielectric Wedge
ical

Robert W. Scharstein, Member, IEEE
29.

UiC Abstrat-An integral transform analysis of the static scatter- for the scattering of time-harmonic waves from impene-
ing of the two-dimensional potential radiated by a line source in trable wedges having Dirichlet and Neumann boundary
the vicinity of a penetrable wedge is presented. The Mellin
transform is used to derive the exact static solution to Laplace's conditions. The static modes of [51 appear as the residues
,quation for the dielectric wedge, in the form of a modal series, in the Mellin inversion integral.
The important dielectric edge condition behavior is explicitly
contained in this analytic solution. 11. STATEMENT OF THE BOUNDARY-VALUE PROBLEM

The static excitation of the penetrable wedge is due to
the line charge of unit lineal density, located at the source

I. INTRODUCTION coordinates (r', 46') of Fig. 1. The permittivity of the
ies HE static solution is a critical component of any wedge of angle 2 a is e,, which is surrounded by a
nal Idynamic scattering problem, especially with regard to medium with permittivity e,. All geometry and therefore
re-
cal edge conditions and behavior in source regions. A qua- all resultant fields are of infinite extent and invariant in
ity sistatic philosophy of extracting the dominant behavior of the z dimension, which restricts the physical domain to

a solution to the Helmholtz equation (V2 + k0)4,(r) = 0 R'.
ted from the static (k = 0) solution to Laplace's equation The irrotational electrostatic field is uniquely character-
of 7V2 (r) = 0 in the neighborhood of boundary discontinu- ized by the scalar potential 4#(r), which is a solution of

:re ities and sources is well known and successful [1]-[4], and Poisson's equation subject to appropriate boundary condi-

is naturally advocated by Anderson and Solodukhov [51 tions. Denote by 4il(r) the potential field in the external
for the dielectric wedge. The important edge behavior of region where the source is
the dynamic fields in the immediate vicinity of the apex 1
r = 0 is obtained from the static analysis, since all physical V24,#(r, 4,) = - -8(r - r')8(4, - 0,')
dimensions are scaled by the wavelength, and /r -- 0 is er
the limit of interest. The numerical results of Marx [6] (a <5 6 < 2ir - a), (1)
indicate that the dynamic-field behavior at the apex of the
dielectric wedge can differ from the static solution. How- and let 0 2(r) be the source-free field inside the wedge
ever, continued mathematical analysis of the wave prob- V24,(r, 4,) - 0 (-a < 4, < a). (2)
lem is required before initiating a comprehensive physical - -
interpretation. Boundary conditions at the material interfaces 4, - + a

This paper presents the complete and exact solution to for this scalar potential are continuity of 41 (from continu-
the static dielectric wedge problem. It should be noted ity of the tangential electric field) and continuity of the
that the special case with the line source lying on the x normal electric flux density e•, d9,k2/dn (absence of any free
axis (the wedge bisector) does appear in the Russian text surface charge).
[7]. Furthermore, Smythe [8] presents a formal treatment In order to simplify the ensuing analysis, it is expedient
of the static dielectric wedge, which is unfortunately flawed to decompose the desired solution qi(x, y) for the bound-
with divergent integral representations. In any event, the ary-value problem of Fig. 1 into its odd 4i°(x, y) and even
exact static solution is now available for this canonical 4(x, y) components
geometry. The potential problem is solved using the Mellin
transform, which is itself the static limit of the 11(x,+y)---[e (Xy) + 40(Xy)] (y> 0) (3)
Kontorovich-Lebedev transform employed by Jones [91 2

Manuscript received March 25 1993; revised July 31, 1993. T with respect to the x axis which bisects the wedge. Since

research was sponsored by the Naval Research Laboratory-Stennis qi*(x, y) is an odd function of y, it vanishes on the y = 0
Space Center. MS. under Contract No. N00014-92-C-6004. plane and is therefore the solution in the upper half-space

The author is with the Department of Electrical Engineering, The y -_ 0 for the problem having a soft bisecting plane
University of Alabama. 317 Houser Hall, Box 870286, Tuscaloosa, AL (Dirichlet boundary condition). This is equivalent to an
35487-0286.

IEEE Log Number 9214090. out-of-phase image source. Similarly, 4i'(x, y) is the solu-

0018-926X/93S03.00 © 1993 IEEE
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y while the discontinuity in normal derivativea a

-4,'(r,o') - -0'(r, o)') = -8(r - r') (10)
2.ad4 do/ C,

- results from integrating (1) from 0'- to 0' +.

S 2 / The Mellin transform [10] is used to transform the
radial variable r to a complex variable s, whereupon the
remaining differential equation with boundary conditions

Fig. 1. Dielectric wedge and static line charge. in 4) is solved in closed form. The physical solution
0(r, 4)) is recovered by careful evaluation of the inverse
Mellin transform. The Mellin transform of f(r) is

+ F(s) =-f{f(r); s -frs-f(r) dr, (11)

S® 0 and has

Fig. 2. Odd and even symmetry components. f(r) =.-{F(s);.r) = 2 .JriF-i=

tion for the hard bisecting plane (Neumann boundary as its inversion formula. If ra- 'f(r) is absolutely inte-
condition), which sustains an in-phase image source. This grable on the positive real axis for some a > 0, then the

symmetry is depicted in Fig. 2. inversion is valid for c > a.
The Mellin transform of the product of r' and Poisson's

III.MATHMATIAL Axsisequation (1)

A. Mellin Transform for the Case of Odd Symmetry a2  
d a2

The source coordinate 4) = 4)' divides region (1) into [r - + r- + 4 1(r, 4)
two source-free regions, resulting in a total of three r r

subregions to consider for the half-space above the per- r- 8(r - r')8(ob - 4)') (13)
fectly soft plane:

412 (r, ), 0 : 0 is the simple form

0(x,y)= 41"(r,4o), a < o (4) 1s+ ) o) = -+-8(4 -4)'). (14)

di • '(r , o) , 0 ' < o b r . d o .

This fortunate property of the Mellin transform of the r
The Dirichlet boundary condition on the soft plane is dependence in the two-dimensional Laplacian is responsi-

ble for its successful application [71, [10], [11] to potential
4i,2 (r, 0) = 0 (5) problems in wedge-shaped regions. In region (2) where

there is no forcing term, this procedure gives
(r, 7r) = 0 (6) ( a

s 2 + d T,(s, o,) = O. (15) -
and at the material interface Ts1

4i,(r, a) = 4i-,(r, a) (7) The complex variable s is a parameter in the above pair
of ordinary differential equations in 4), with solutionsa a

E2 - - 2 (r, a) = el-4-7, (r, a). (8) 4 2(s, o) = A(s) sin (sob) (0 < 0 < a) (16)
dd aP•- (s, o) = B(s) sin (so4) + C(s) cos (so)T

Consistent with the conventional Green's function ansatz, (a < 4) < o') (17)

the potential is continuous everywhere across the source 'I'+(s, 4)) = D(s)sin [s(4) - 7r)) (4)' < 4) < 7T) (18)
plane o) o)' in view of the soft boundary conditions (5) and (6). Trans-

41)-(r, o4') = @*(r, 0'), (9) formation of the four remaining conditions (7)-(10) gives
the set of simultaneous equations

-sin (sa) sin (sa) cos (sa) 0 1A(s)
L cos(sa -cos(sa) sin (s-a) 0 B(s)

0 sin (s4)') Cos (sob') sin [s(7r - )'1 C(s) 
P

0 cos (so4') -sin(sob') cos [s(rr- 4))] j D(s) C1S 9)



SCHARSTEIN: SOLUTION FOR STATIC LINE-SOURCE EXCITATION OF A DIELECTRIC WEDGE 1677

to be solved for the coefficient functions in (16)-(18). the presence of two different dielectrics is entirely ac-
Solution of these yields the (soft) Mellin transforms counted for by r in all of the above transforms.

1 - r r"
* 2(s, 40) = - sin [s(7" - A')] sin (s4)/A.(s) C. Inverse Mellin Transforms-Preliminaries

el S The zeros of the denominator functions (23) and (30)
(0<6<•a) (20)

'(s, 46) =- sin [s(r - ')](sin (s6) A(s) = sin (Sir) ± r sin [s(--2a) 2 hrddsft (31)
1sh

+ F sin [s(0 - 2 a)])/Ao(s) are central to the Mellin inversion (12). These real, simple

(a < 6 < 4') (21) zeros can be computed via Muller's algorithm [12] for

r'S arbitrary half-angle a, or solved analytically as the roots
(s, 0) = - sin [s(7r - 6)](sin (so') of a trigonometric polynomial when a is a rational multi-

CIs pie of 7r. This procedure is demonstrated for the particu-

+r sin [s(O' - 2a)]}/Ao(s) lar case a = 7r/3, whereupon the variable change u =

sn-/3 in (31) gives(4.'<6<•n') (22)

with denominator function sin (3u) ± r sin (u) = 0 (32)

Ajs) -= sin (sr-) + F sin [s(n" - 2a)], (23) which factors into

and dielectric contrast parameter

F = . - (24) [3 ± r - 4sin 2 (u) sin (u) = 0. (33)
C2 + e 1

The required roots are now explicitly given by
B. Modifications for the Case of Even Symmetry

In the case of a hard ground plane, the Neumann 3 3 r
:boundary conditions - sin-'11 4-r"

d 3r+ 3m412 •(r, 0) = 0 (25) s. 3 3• +3
d0 (2- sin-'

(r, -r) = 0 (26) 0

replace the Dirichlet boundary conditions (5) and (6) of (m = 0,+ 1, ± 1, --. (34)

the previous section. A similar application of the Mellin
transform and the other unchanged boundary conditions where it is recalled that the + r (- 1) denotes the case of
yields the (hard) Mellin transforms soft (hard) symmetry. The effect of the dielectric material

S- 1 r" (e2 * e - rF * 0) on the potential above both symmetry

* 2(s, 6) = cos [s(7- - 0')]cos (s6)/1e(s) planes is a regular displacement of the integer poles for
e1 S the homogeneous case (E, = e1 - r = 0). The index n in

(0 :S 4. • a) (27) (34) is a denumerable ordering of these poles.

r) s D. Inverse Mellin Transform for the Case of Odd Symmetry

I4 s As r -- 0 the odd potential '/," 0 and the dipole
behavior 41*~ 1/r prevails as r -- • in the far field. A

-cos(so)}/A,(s), (a < 6 < o') (28) sufficient Bromwich contour for the complex integration

r's (12) is therefore guaranteed for the choice of real con-
1P, (s, 4) =- cos [s(n- - 6)]{F cos [s(w ' - 2a)] stant 0 < c < 1. Complete details of the Mellin inversion

CIS for the potential 4i,(r, 4) of (4) inside the dielectric sector

-cos(so')}/Ae(s) (4' < 4. < 7') (29) are provided, whereupon the final forms for 0ip(r, 4) and
where in this case the denominator function is q0(r, 4) are immediately written by comparison.

The sin (so) factor in I'(s, 4.) of (20) together with the
A,(s) = sin (sir) - r sin [s(Ar - 2a)]. (30) transform property [101

Note that. except for the simple scaling by E, which
persists from the original source strength chosen in (1), ..- '(sin (s4.)F(s); s) = -J[f(re'A)] (35)
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t ~ (r~r) (41)

which together with (35) gives

CR0(r, R) =
EI

C .2 sin [ s.( 7r - 0')]sin (s, ) (rr) =s

•-1 s.AS(s.)

(r>r') for the sector0_ •6,< a (42)

as the inverse Mellin transform of (20). Since all three of
the transforms (20)-(22) are of the same general form,
the remaining two field expressions are evidently

-1 sin[s.(7r- 4)')]4)rd) = -1. (r/r')____"

Fig. 3. Bromwich contour in the complex s plane. .sin (s, 0) + F sin [s,(O - 2 a

renders (r 5 r') for the sector a < 5 <Y' (43)

1 m sin [s(7r- 0')](r'/r)$ and
2r) ri _• s{sin (sir) + r sin [s(" - 2a)]) -1 # sin,[s.(- 4))]

G(s) (36) El n-1 s"A'o(S") X

the desired function. The integration path in (36) has -{sin(s,4)') + F sin [s,(4' - 2a)]}

been pushed flush against the imaginary axis, and the (r 5 r') for the sector 0)' < 4 -• yr. (44)
principal value notation invoked to properly account for Note the reciprocity in the last two expressions for :) .- 0'.
the pole at the origin. For r > r', closure at infinity in the The above reduce to the correct potential due to a unit
right half-plane gives a convenient contour on which to line charge located at 7)' =r/2 above a soft ground T
apply Cauchy's integral theorem, and is shown in Fig. 3. plane in the special case of no dielectric wedge (e2 = e1). :

Let C, be a circle of vanishing radius p -- 0, centered on - u
the pole s, with residue E. Inverse Mellin Transform for the Case of Even Symmetr' h,

1 sin [s,("r - 0)')I(r'/r) " The monopole potential In r due to the original lire
lira 2 0r G(s)cds =(37) source and the in-phase image is the dominant feature ofp-.o 27ric Cs"(s) ' 0' in the far field as r -- •. Therefore, the condition of

where the derivative of the soft denominator function is integrability following the transform pair of (11) and (12) p,

A'o(s,) = ir cos(s.ir) + Or(- 2a)Fcos[s.(ir- 2a)]. is not satisfied, and the Mellin inversion formula cannot Pt
(38) be directly applied to the functions in (27)-(29). Mathe- is

matically, operating with the 4) derivative of the potential th.
The integral around the origin temporarily removes this troublesome logarithmic varia- int

1r- ' tion, which is then restored following the convergent
lim -cG(s) ds - (39) Melhm inversion.
p-.0 2A'i C, S(0) The 4) derivative of (27) diL

follows from the limit s, - 0. Let positive n = 1,2,.. be a1 - F cos [sr - 0)')] sin (s-b) 9iC
the indices of the poles in the right half-plane, and let - *2(s, 4)) = r" (45) tri,
negative n = -1, - 2,-- identify the poles in the left d46 f A'(s) As
half-plane. The odd symmetry of the function Ao(s) pro- is transformed in the manner of the previous section to
vides (G;

s-.,, =-s. and NVo(-S 0) = A'o(S.). (40) -- I an

The contribution from the integral around the infinite 412(r, ,)
semici-cle R of Fig. 3 is zero for r > r', while closure of = cos [s(Or - 0')] sin (s, 4)(r/r'))
the contour in the left half-plane is appropriate when • for
r < r'. Cauchy's integral theorem now yields n-I A'(sn) for

+ - 0 w sin[sn(ir 4-)]09 (r 5 r'), (46) e
f(r) + , (r/r')"J where the s, are now the hard poles in (34) and - r wit-( replaces F in (38) for this hard denominator function (31). me:
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ti) The antiderivative with respect to 46 yields

02(r, 4)

1 - r cos[s,(Tr - k")] cos (s. 46)

(r r') for the sector 0 _ < 4 : a, (47)

where the boundedness at r = 0 and the known behavior

Q) at r co specify 
0

of 0, for r < r'

"-ii, w;(r) = i- 1 In (r/r'), for r > r' (48)

as the 4'-independent term in this solution of Laplace's
equation. Similarly, the spatial potentials from the relatedtransforms (28) and (29) are thus 0.6~ .0.3 0.0 0.3 0.6

1(r, c) = W; (r) - [ (r/r') t±s' Fig. 4. Contours of constant potential for the dielectric wedge. Case:
el n-t $ne(Sn,) r' -=1. 0' - 7r/2", a -r/3, e, 1. e, 10.
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