NAVAL POSTGRADUATE SCHOOL
Monterey, California

q-

=

NE

NE

NS

N=

1=

e

<
DTIC
ELECTS:4 |

A 94-09261 MAR 2 5.19 D
S T T THESIS B

PARALLEL PROCESSING OF NAVY SPECIFIC APPLICATIONS
USING A WORKSTATION CLUSTER

by

Leon Conrad Stone, Jr.

December 1993
Thesis Advisor:
Co-Advisor:

Shridhar Shukla
Beny Neta

Approved for public release; distribution is unlimited.

94 3 24 078

AT ey
Low
.

LTI

Form Approved OMB No. 0704-0188

REPORT DOCUMENTATION PAGE

Nhiamhhf-hedhm-dmn“bmlhpm“hhfwwm“mhmﬂ-‘-;
snd mainkining the dais needed, snd corpleting snd reviswing the collection of informeticn. Send comments rogarding this burden estimsts or amy other aspoct of this collection of
m-&whmumnwmm Dmlwhlmw-lm 1215 Jefferson Devis Highway, Suite

REPORT DATE 3. REPORT 'I'YPE AND DATES COVERED

16 December 1993. Master’s Thesis

4. TITLE AND SUBTITLE PARALLEL PROCESSING OF NAVY SPECIFIC 5. FUNDING NUMBERS
APPLICATIONS USING A WORKSTATION CLUSTER.

6. AUTHOR(S) Leon Conrad Stone Jr.

1. AGE.NC’Y USE ONLY (Leave blank) 2.

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION
Naval Postgraduate School REPORT NUMBER
Monterey CA 93943-5000
9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING/MONITORING
AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES The views expressed in this thesis are those of the author and do not reflect the official policy
or position of the Department of Defense or the U.S. Government.
12a. DISTRIBUTION/AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE
Approved for public release; distribution is unlimited. A
13. ABSTRACT (maximum 200 words)

In this thesis the benefits of parallel computing using a workstation cluster are explored for two typical Naval
applications. The applications are examples of one off-line and one on-line program. The off-line program is a Navy program
currently in use by the Naval Space Command in its satellite prediction model. The on-line program is a large grain data flow
problem with critical throughput requirements and represents a hypothetical combat weapons system. Data and function
decomposition techniques are used in both applications. Speedup and throughput are the performance metrics studied.

The software employed was the Parallel Virtual Machine (PVM) by the Oak Ridge National Laboratory. PVM enables
a network of heterogeneous workstations to appear as a parallel multicomputer to the user programs. PVYM runs over the
workstation operating system and provides the user with a set of library calls for message passing and process creation.

14. SUBJECT TERMS Parallelization, PPT2, PVM, Large Grain Data Flow Problems 15. NUMB%RZ%F PAGES
L2 2 3
16. PRICE CODE
17. SECURITY CLASSIFICA- 18. SECURITY CLASSIFICATION | 9. SECURITY CLASSIFICA- 20. LIMITATION OF
TION OF REPORT OF THIS PAGE TION OF ABSTRACT ABSTRACT
Unclassified Unclassified Unclassified UL
NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)

Prescribed by ANSI Sid. 239-18

Approved for public release; distribution is unlimited.

PARALLEL PROCESSING OF NAVY SPECIFIC APPLICATIONS
USING A WORKSTATION CLUSTER

by
Leon Conrad Stone Jr.
Lieutenant, United States Navy
B.S., Purdue University, 1987
Submitted in partial fulfillment of the
requirements for the degree of
MASTER OF SCIENCE IN ELECTRICAL ENGINEERING
from the
NAVAL POSTGRADUATE SCHOOL

December 1993

Author: _[ﬁ»«, Lo~ ﬂ;v/n

Leon Conrad Stone Jr.

Approved by: W/‘/M

” Shridhar Shukla, Thesis Advisor

P\‘\\sj(;j

Beny Neta, Co-Advisor

17407/ L1422

Michael A. Morgan,
Department of Electrical and Computer Engineering

ii

ABSTRACT

In this thesis the benefits of parallel computing using a workstation cluster are
explored for two typical Naval applications. The applications are examples of one off-
line and one on-line program. The off-line program is a Navy program currently in use
by the Naval Space Command in its satellite prediction model. The on-line program is
a large grain data flow problem with critical throughput requirements and represents a
hypothetical combat weapons system. Data and function decomposition techniques are
used in both applications. Speedup and throughput are the performance metrics studied.

The software employed was the Parallel Virtual Machine (PVM) by the Oak Ridge
National Laboratory. PVM enables a network of heterogeneous workstations to appear
as a parallel multicomputer to the user programs. PVM runs over the workstation
operating system and provides the user with a set of library calls for message passing

and process creation.

Aqvuession Yor
NTIS GSRA&I &

DTIC TARz

Unauncunceq Ej

Jlstificniion__________

By_.
_.’il_E':E}..b}i‘“ﬁ"ﬂ
Avu}lapi;&%y dcdss

‘vl aud/or
Diat Loealad

1
M

TABLE OF CONTENTS

Page
I. INTRODUCTION.......ccitiiuimurtitninernsracssteasessosenseersesnsasessssaesssresenss 1
A. PVM: PARALLEL VIRTUAL MACHINEc.ccotuiuerainniininninneen. 2
B. THESIS SCOPE AND CONTRIBUTIONc.cvutiuiininienrinieninnnnn. 2
C. THESIS ORGANIZATIONccuiiiinirniinrintanraereiiiaietiacisinsesasenes 3
II. PARALLELIZATION OF PPT2cuvuuienienieeeiaicunrencnsecncnnmsnsmnmsssresenns 4
V-V - 4 7 P 4
B. PARALLEL DECOMPOSITION METHODSccccooeitiniuniencinnnnnnn. 4
C. DECOMPOSITION STRATEGIES.......cccccoeeuiieninniinianieniinnnnneanennee. 5
1. dsl: Send/Request One at a Time........cccoviieieiernieiniicinenenennnnn. 7
2. ds2: Send/NO ReQUESLc.ccvuerireruiariininrnrennetetararoreraraonsnnns 7
3. ds3: Send BIOCK ...ccuvviiininiiiiiiiiiiiiircr e 7
4. ds4: Send Half BIOCKcouveuimininriiiiiiiininiiiiiinianiniiniainnenss 7
D. MULTIPLE BLOCK DECOMPOSITION SCHEME: DSS.................... 10
II. RESULTS OF PPT2 WITH PVMccciiniiiiiniininnniniiaiiiin et e canenns 12
A. INITIAL WORKER EXECUTION TIME EQUATION
DERIVATIONScoitniuiiitiiitiinienteeeitentrerarensseensstensensensassssnnnes 12
1. Setup Phase Timing Analysis........cccoeieiiieneiiiiiiiinininenieanncnnanane 13
2. Calculation Phase Timing AnalysiS........c.cooviuiinieninnnnieniiinninene. 14
3. Breakdown Phase Timing AnalysiS........cccccovvuiiiiuinieninnenencnnanen. 14
B. EXECUTION TIME EQUATIONS........ccotiimiimieinieieiinrenrinracniennes 16
C. PARALLEL AND SERIAL PROGRAM COMPARISONc..c....... 17
D. SPEEDUP COMPARISONccoiiuiiniiiniinrnniiniecretanneneanreneennens 20
E. OPTIMUM NUMBER OF PROCESSORS TO USE.......cc.cceceeuennnnn.e. 20

\Y

F. PPT2 AND PVM WITH ACTUAL DATA......ccccoitiiiiniiiiincrniinnens 22

G. PPT2 CONCLUSIONSccuimiriiitiiinitieierincraeeieenneensenennes 25

IV. A THROUGHPUT CRITICAL ON-LINE APPLICATION........................ 26
A. PROCESSING IN A HYPOTHETICAL COMBAT SYSTEM................ 26

B. PROBLEMS WITH IMPLEMENTATION USING PVM...................... 28

C. BATCHING OF COMMUNICATION COSTS.......c.c..cevvuurunennncnnnnnn. 28

D. THREE TECHNIQUESccceottuiimimmuienenrnnrineennernneennrnansansennns 29

1. Unscheduled Node Processingccoevuveuneeeniiuniennenenennnnnnennn. 30

2. Scheduled Node Processing..........coceeuvreuiennninnieeninunnncennnennnnn. 30

3. Scheduled Node Processing Using Hardware Multicasts.................. 30

E. NODE SCHEDULINGccccuvetuiuuimuimniirnrencrnnmereecnnnenrmonnnneneennns 32

V. RESULTS FOR THE ON-LINE APPLICATIONccccceuiiiininnnnnnnnnnn. 35
A. PARAMETERS OF INTERESTccccoiuiiiiiiiiiiiiiiiiniinineneneaene 35

B. RESULTS WITHOUT NETWORK LOADINGcccccuvinniinninnnnnnnns 36

C. RESULTS WITH A NETWORK PERTURBATIONccccccoenunnnnnn. 37

D. ON-LINE CONCLUSIONS.......cccttitiuimminureneenerrinsntniernesnesnennnans 41

VI. CONCLUSION......c.ctutttimuiimieniietiieeieiiieneniieneteterrreteneraeraeenenes 43
A. FUTURE STUDY ..cccttiituiiuiitiiiieenitnieniieteenienetsieerensnsesernesnseens 43
LIST OF REFERENCESccccceuiiiiiiirtnennninnrrtnseniieiceeneeneenesaneennnnes 45
APPENDIX A - ACQUIRING AND INSTALLING PVMcccccivnivninnnnnnnnn. 46
APPENDIX B - BLOCK DECOMPOSITION SCHEME PROGRAMS................ 47
APPENDIX C - EMPIRICAL VALUES FOR PPT2 VARIABLES 54
APPENDIX D - UNSCHEDULED NODE PROCESSING PROGRAMS............. 55
APPENDIX E - SCHEDULED NODE PROCESSING PROGRAMS.................. 89

APPENDIX F - HARDWARE MULTICAST NODE PROCESSING

Figure

Figure 2.1.
Figure 2.2.
Figure 2.3.
Figure 3.1.
Figure 3.2.
Figure 3.3.
Figure 3.4.

Figure 3.5.
Figure 4.1.
Figure 4.2.
Figure 5.1.
Figure 5-2.
Figure 5-3.

LIST OF FIGURES
Page

Supervisor/Worker Dependency Graph...........cceeeviieiecninrinenrnrnnnnen. 6
PVM Applied to PPT2 Using 600 Input Satellites.cccceeurenennen.. 8
PVM Applied to PPT2 Using 1200 Input Satellites.c...c.c......... 9
ds5 Worker Execution Times Using Eight Worker Processors. 15
Serial vs. Parallel Results Using ds§ With Eight Workers.................... 19
Serial vs. Parallel (ds5) Speedup Ratios Using Eight Workers. 21
Serial vs. Parallel (ds5) Execution Time Comparisons Using Actual

- PPN 23
Serial vs. Parallel (ds5) Speedup Ratios Using the Catalog Data. 24
Hypothetical Combat System Node Representation Graph. 27
Frame of Time Slots Starting at Time ti.........ccoceevevnriiineinrieiieneenens 32
Unscheduled Output Buffer Size.........ccccouvinieiiiieiiniiiiiiiiienenennn. 38
Scheduled Output Buffer Size..........cccovnvuiiiiiiiiiiiiiiiiieiieieeenens 39
Hardware Multicast Output Buffer Size.cccoceiiiiiiiieiiniieiininnnn, 40

ACKNOWLEDGMENT

I wish to express my deep appreciation for my advisor, Professor Shridhar Shukla
for his tireless support and his ceaseless confidence in my abilities throughout this
research. To my co-advisor, Professor Beny Neta, I wish to thank for bringing the
PPT2 opportunity to my attention and for his appreciation of my endeavors.

Finally, I wish to thank my wife and daughter, Sue and Julia. Their unconditional
love, unwavering patience, and, most of all, their total understanding made this thesis

possible.

viii

L. INTRODUCTION

All successful organizations depend on reliable and timely data management. As
an organization evolves, its data system requirements also increase. The United States
Navy is an example of one such organization. Its data processing requirements demand
evermore computing speed and capacity. An economical solution to this need is to
network the workstations present in abundance and utilize parallel processing. To this
end, this thesis provides performance results of two typical applications on a
workstation cluster.

With the introduction of small, relatively inexpensive computers, a vast amount of
computing resources are often left idle for a long period of time. A ship often has this
characteristic. A ship's complement of computers is usually used for intermittent word
processing or single dedicated computational tasks. With these computers networked
together, a lot of unused CPU power is available. In order to tap into these unused
assets, parallelization software tools have been developed. These programs operate at
the user level like an extra layer of operating system code.

The Navy's computation requirements can be classified as off-line and on-line data
processing programs. An off-line program does not require continuous, time-critical,
processing. It executes once per some specified time period with clear beginning and
ending times. An on-line program does require continuous computational assets for its
functions. It is characterized by constant, non-stop, real time processing .

For this thesis, one example of each type of program was parallelized using a
software tool. The tool used for parallelization was the Parallel Virtual Machine
(PVM). The off-line program was the Naval Space Command's PPT2 Analytical

Satellite Position Propagation Program. The on-line program is a hypothetical
Shipboard Combat Weapon System.

A. PVM: PARALLEL VIRTUAL MACHINE

PVM is a software library, currently being refined, developed by the Oak Ridge
National Laboratory (ORNL). It is a software system that enables a collection of
heterogeneous computers to be used as a coherent and flexible concurrent
computational system [Ref. 1]. PVM was chosen because it is relatively easy to use, is
an emerging standard for software of its kind, and its price is definitely reasonable. It
is currently available free of charge from ORNL and installation is relatively easy.
PVM version 3.2 was used for this thesis. A short description on acquiring and

installing PVM appears in Appendix A.

B. THESIS SCOPE AND CONTRIBUTION

The goal of this thesis was to exploit the benefits of parallel computing, as cost
effectively as possible, using a software tool. The two applications process large
amounts of data and represent contrasting requirements while lending themselves to
parallel processing. The positive aspect of parallelizing these procedures is the
performance improvement over their serial counterparts. Parallelization could have
been accomplished using a specific parallel multicomputer. These systems tend to be
large and expensive, and tie-up extensive human and fiscal resources for a limited
number of uses. PVM provided the desired cost effectiveness. While, arguably, PVM
may not accomplish the tasks as fast as, say, an INTEL iPSC/2 hypercube, the process
execution times were satisfactory for the applications tested. Furthermore, they were

accomplished on a shared network without noticeably disturbing other system users.

The representative use of a loosely shared network in this thesis is the most
noteworthy aspect. For instance, the on-line application was tested as though it was in a
shipboard environment. It performed as desired while simulated shipboard tasks such
as, supply data-base upkeep, report and correspondence word processing, and

computerized engineering parameter measuring were being carried out.

C. THESIS ORGANIZATION

This thesis is organized as follows. Chapters II and III cover the Naval Space
Command's PPT2 program. Chapter II specifically describes PPT?2 itself, the modes of
parallelization used, and the variable mode which was finally used. Chapter III reports
the results obtained for this application and recommendations for possible future
improvements to the model.

Chapters IV and V deal with the hypothetical Combat System model. Chapter IV
details the design and requirements of the model and Chapter V contains the resuits.

Chapter VI contains overall conclusions and areas for further study.

II. PARALLELIZATION OF PPT2

Currently the Naval Space Command tracks over 6000 objects orbiting around the
earth. With more and more countries entering space exploitation, and as the United
States increases its emphasis on space communication, this data set of satellites will
forseeably increase dramatically in the future. These increases in the satellite catalog
will increase the computational demands on the computer tasked with orbit prediction.
If the NAVSPACECOM's orbital model's accuracy is increased or multiple calls to the
orbit prediction algorithm are made for accuracy, the computational demands may be
too much of a burden if the computer was a serial machine [Ref. 2]. Given these
computational loads, and the time dependency of the results, parallel processing of the

catalog is a logical extension.

A. PPT2

PPT2 is the NAVSPACECOM's program which implements an analytic satellite
motion model based on the Brouwer-Lyddane orbital prediction theory. Reference [2]
goes into great depth describing this theory and how PPT2 implements the theory in
FORTRAN. For this thesis, the accuracy of the PPT2 program, or the theory of how it
works was not relevant. The one major aspect of PPT2 considered was the required
size of each satellite data record which is 84 elements. No other internal details of

PPT?2 are discussed here.

B. PARALLEL DECOMPOSITION METHODS

Given a program and its associated data set, there are two primary ways to process
it in parallel. The program can be separated into individual sections with a processor
dedicated to compute its respective part, much like a factory assembly line. The other

primary method is dividing up the data set and sending parts to many separate
processors all running the same algorithm, but on different data. Each of these methods
is highly dependent on the program description and the size of the data.

Although the PPT2 algorithm is sufficiently large to break down into individual
computational nodes, the data set size is such that data decomposition is more effective.
These observations are validated in Reference [2]. Control decomposition had been
previously attempted but was not successful [Ref. 3]. Based on these results, all of the
parallelization methods used were various ways of decomposing the satellite catalogue

and distributing it to multiple nodes executing PPT2.

C. DECOMPOSITION STRATEGIES

The basic algorithm for all of the decomposition strategies used a master/slave
distribution network. For all the programs, there was one supervisor (master) node
which decomposed the data set and distributed it to the worker (slave) nodes. Each
worker ran on a separate processor and sent its results to a gathering node which
printed the results to a file and reported to the supervisor when the process had
completed for all satellites. Figure 2.1 graphically presents these relationships.

To get a general understanding of the decomposition requirements multiple
decomposition strategies were developed, each with benefits over the previous strategy
until four different methods had been explored. All the methods endeavored to keep the
worker processors busy as much as possible to increase speedup and efficiency. Each

method is described below.

=

Figure 2.1. Supervisor/Worker Dependency Graph.

6

1. dsl: Send/Request One at a Time
For this strategy, the supervisor node initially sends one satellite to each
individual worker node and waits for the workers to individually request another
satellite. This method brought out the high PVM communications overhead which
needed to be overcome for adequate speedup.
2. ds2: Send/No Request
The supervisor node for this routine sent one satellite at a time to each
worker node until the input file was exhausted. This process reduced the
communications overhead between the supervisor and worker, but it did not keep all
the processors busy for a sufficiently long time.
3. ds3: Send Block
For this scheme, the supervisor divided the number, S, of input satellites by
the number, n, of worker processors. The supervisor then decomposed the input data
into blocks of S/n size and distributed these to each processor individually. This was
much more efficient than the previous two methods, but for a large n, n > 8, the
workers numbered eight and above were still not getting data fast enough to notice
effective processor computational overlap.
4. ds4: Send Half Block
For this scheme, the supervisor divided the S/n size block by two then sent
the two half blocks to each worker so all the workers had one half of their data while
the supervisor was sending the second half. These schemes were used with data sets of
600 and 1200 satellites. For experimentation, PVM was started on eighteen different

workstations so measurements could be taken for one to sixteen working nodes.

The four decompostition strategies applied to PPT2

dsl

2

. ve
,

A

7
7

2%
G
L
R
o ’
’ .
o
Gt o
i i N LS
G %
s

o %
e

oo
VR
s

a0
3

e
55

o
S
S5

5
Yoo
e

)

1
o
—

Spuodag
Figure 2.2. PVM Applied to PPT2 Using 600 Input Satellites.

14 15 16

13

9 10 11
Number of Processors

8

by

....... Sg
-
-9
S
L]
b5
=
o
o
<
£
S0
3
1™
-
v
=
S
Ll
=
g
£ S
§ :
- e
< .
S ; TSy
Gt SRR 3
0 E: Y
£ -
2o 4
f@%%@é”
*\}‘ ///’/ 4
N N\ N\
N, N N\ N
T) Y =
w o " = wn = wn =
(2] (2] o3 o3 — y—
SpU023g

Figure 2.3. PVM Applied to PPT2 Using 1200 Input Satellites.

12 13 14 15 16

10

Number of Processors

The collected data consisted of the actual execution time taken to process all the
elements in the input files. The programs were run ten times for each number of
processors in order to get a good average time. They were executed at times when the
network was minimally used to avoid, as much as possible, bus contentions with other
users. The results of these are given in Figures 2.2 and 2.3. These figures show a
definite advantage in sending two input blocks of data to each worker node over the
other schemes.

Some other decomposition strategies were experimented with, but not in as much
detail. One strategy was to send the entire input data to all of the workers
simultaneously and let the worker nodes extract the data they were to use. This method
was memory prohibitive and its execution time was about the same as ds2 from Figures
2.2 and 2.3. Other data distribution techniques involved various methods of packing
and unpacking the data to be sent via PVM. Only the data block decomposition
schemes could take advantage of these attempts, but the execution time improvements

were slight.

D. MULTIPLE BLOCK DECOMPOSITION SCHEME: DS5

The data decomposition scheme ds4 was modified to send a variety of block sizes
depending on the size of the input and the number of working nodes used. In this
scheme, ds5, the supervisor still sent a block of data to each worker, then the worker
extracted one satellite at a time from its input buffer and sent a block of results, equal
in size to its input block, to the gathering node. The FORTRAN code for the ds5
supervisor and worker/gathering nodes is in Appendix B. In PVM, the buffer
manipulation time is the costliest aspect of communications which is why this scheme

optimized the performance. Sending blocks of data between processors vice one data

10

clement at a time, minimized the buffer manipulation which resulted in lower execution
times for this data distribution scheme.

The next chapter provides the results of using this scheme. Theoretical execution
time equations were developed for this scheme and compared to the actual results.
The optimal number of processors and number of input blocks to use were also

calculated along with values for speedup.

11

. RESULTS OF PPT2 WITH PVYM

The results presented in this chapter were obtained using the data block
decomposition strategy, ds5, discussed in Chapter II. Eight working nodes were used
for all ds5 program runs and were used to obtain the data for all the figures in this
chapter. The ds5 supervisor and worker programs were run under PVM, on the Naval
Postgraduate School's ECE local area network of various SUN/SPARC workstations.
The ECE LAN is an Ethernet based network of various types of workstations. In order
to maintain data integrity, only SPARC IPX and SPARC II machines were used. These
machines have 40 MHz processors and have been configured with 32 Mbytes of system

memory and are essentially the same systems.

A. INITIAL WORKER EXECUTION TIME EQUATION DERIVATIONS

To determine the length of time required to run the parallel algorithm, dsS, the
execution time of each working node needed to be determined. This execution time was
broken down into three phases: setup, calculation, and breakdown. During the setup
phase the worker node waited for and received the next input block from the
supervisor. The calculation phase is the time it took for PPT2 to execute on the entire
input block of data. The breakdown phase was simply the period in which the worker
node packed and sent the results to the gathering node.

In order to obtain an expression for the three phase times, certain variables need to
be introduced to represent applicable parts of the program process. Table 3.1 contains a
list of the basic variables used and their definitions. Using the variables in Table 3.1,
expressions for the setup time, t,, the calculation time, t., and the breakdown time, t;,

were derived for the ith worker processor, P;.

12

1.

takes for the master to send the data blocks and the time required to unpack the input
buffer. Initially, the working node on processor P; will have to wait for the master to
send data blocks to all the workers j, where j < i, before the first block is sent to P;.
The time required to send this first block of data, t;, and the time to unpack each block

TABLE 3.1. BASIC VARIABLE LIST.

Vari: ble | Definition
S total number of satellites in the input file
to node process initialization time
tem time for gathering node to report to the supervisor the
process is complete
ny number of blocks sent to each worker
Cs fixed communications time for buffer setup and network
access for sending records
Cps communications time required to pack and send one
satellite record
Cupr | fixed communications time to unpack the input buffer
Cupps | cOmmunications time to unpack one satellite record
k number of working processors used
Sp number of satellites sent to each worker = S/k
Sy number of satellites per data block = Syn,
Tppe | time for PPT2 to operate on one satellite record
Setup Phase Timing Analysis

The time it takes for the ith node to setup is basically dependent on the time it

make up the setup time.

where t,, is the time to send one block of data which is the fixed net communications

time added to the product of the communications time per satellite and the number of

The time required to send the first block is represented by Equation 3.1:

tﬁ =i'tl.

satellites per block is as stated in Equation 3.2.

13

n,=(c,+C,-8,) (3.2)

The time to unpack the buffer, t,, is the time spent by P; to unpack all of the blocks of
data. This time is expressed in Equation 3.3.

tu = nb(Cw + Cwsb) (3°3)
The total setup time can now be expressed as:
=ty 412, (3.9

which is simply the sum of the first block communications time and the unpacking time
for all of the blocks of data.
2. Calculation Phase Timing Analysis
The calculation time is the time it takes for the PPT2 algorithm to process one
block of satellite records. Since t. is a function of the block size, the equation for the
calculation time is:
t.=T,,"S, 3.5
3. Breakdown Phase Timing Analysis
The breakdown phase is the time required for the working node ta send one
block of results to the gathering node. The expression for t, is:
,=(c,+C,-S,)=1, (3.6)
Using the equations for the three phases and empirical values for the variables, which
will be discussed later, the worker's total execution time was determined. The
execution times of eight worker nodes, given four input blocks of data, are shown in

Figure 3.1. The processor's phase times are described by two lines.

14

¢l

01

(soes) awij uonnoax3

9

Q1+

S}

S¥20{q DIDP PuD ‘SiaxJom g Joj dppenc umopypaig/uoindex3/dnyes

Jaquinp Jossa2%0.1d

Figure 3.1. dsS Worker Execution Times Using Eight Worker Processors.

15

The setup times are the lines on the processor number axis, and the execution and
breakdown times are on the line one half space below the processor number. The blank
space between the worker's breakdown phase and the next setup time is idle time. This
idle time is clearly the result of the communications time required by the master to send
blocks to all the working nodes, taking longer than the execution time of PPT2 on each
processor. Given the fact PPT2 may need to be run several times for accuracy or
tracking requirements, the calculation time needs to be scaled by some constant, 4, io
take into account multiple iterations. The variable 4 is the number of times PPT2 is

executed on each block of data.

B. EXECUTION TIME EQUATIONS

Looking at Figure 3.1 again, it is clear the worker execution time for the ith
worker, for any i, i = 1,...,k, is the total setup time added to one calculation and
breakdown time. This is true unless the calculation time dominates over the
communications time. As a result, instead of a single equation for the total worker
execution time, P; ryyime, there are two equations depending on the value of A. Thus,
the total time to execute a worker node on processor P;, or P; rypem is determined using
Equations 3.7 or 3.9.

The bracketed term in Equation 3.7 is the time in-between the end of a
breakdown period and the beginning of the next calculation phase. This time is simply
the time required by the supervisor to distribute a data block to all k workers for each
block except the first block. The subtraction of the unpack time within the brackets is
required because the expression for the setup time is made of n, unpack times and

Equation 3.7 only relies on the unpack time for the final block.

16

B e =8, + A1+ 1, +[(my -)k, — 2, ' 1,)] 3.7

for
LDt (tc,,, +C_.5,) 69

and
B e =4, 41 (A1, +1,) (3.9)

for
R k-1, +(C +C,5,) 5.10)

4

€

The two expressions for A are taken from Figure 3.1. Equation 3.7 simply means that
if the total calculation time and breakdown times are less than the time between setup
phases then the communications cost is dominate. Conversely, Equation 3.9 is for the
case when the number of iterations of PPT2 causes the calculation phase to dominate.
From the above equations, the total execution time, Tg, of the parallel algorithm
is:
L=t,+F e +1,m (3.11)
It should be noted that this equation uses the operation time of the k* worker. The kth
worker is used because it is at the end of the data distribution chain and takes longer to

complete execution relative to the other workers.

C. PARALLEL AND SERIAL PROGRAM COMPARISON

The comparison of the parallel program vs. serial program entailed theoretical and
actual results. In order to accomplish the theoretical comparison, values for the
variables in Table 3.1 were needed. Appendix C contains the empirical results from
studying the performance of PVM on the ECE SUN network. These values were then

17

used in the preceding equations for empirical evaluation of the two programs. The total
execution time of the serial program was taken to be simply T, multiplied by the
total number of satellites in the input file. Again, input and output times were assumed
to have been roughly equal for both programs so they were left out of the evaluations.

The input file used for testing consisted of the same satellite records used in
Reference [2]. This data file consisted of ten different records which were then
duplicated for a total of 4800 input records. An unclassified copy of a portion of the
catalog was obtained from the Naval Spéce Command after the research was |
completed, and was not used for program development or testing.

Figure 3.2 show the final comparative results. The theoretical lines refer to using
Equation 3.11. The actual lines represent data obtained from running the serial program
and dsS, (utilizing 8 workers), using values of A from 1 to 10 for both programs. A
block size of four was also used for the parallel algorithm. Figure 3.2 shows the
parallel program performed better than the serial program as the number of calls to
PPT?2 was increased. This performance improvement was predicted from the theoretical
plots even though the actual serial program performed better than expected and the
actual parallel program performed slightly worse than expected. It can also be noted
that when 4 = 7, Equation 3.11 switches from using Equation 3.7 for the worker
processor run time to Equation 3.9. The most dramatic event this figure displays is the
fact the parallel program did not perform as well as the serial program for 4 = 1.
Since one of the assumptions of this research was the fact PPT2 will most likely be
executed a multiple of times, the results for the case A = 1 are to be noted but should
not detract from the benefits of parallelization.

18

T TR e g =

]

v J31diiny uonpiay

L 9

S

19]|D.Dg |§ONBI0aY)

1911D4Dd |ONIOY

D}

9G |PNOY

rd

s

\

pd

=
v

e

v

|DII3S 92133103y |

S3}I|310S (0B 40} SWI} UOANIIX3 Zldd (3(IDJDd SA [DLIAS

o¢

0¥

0S

09

0L

08

06

(soes) awiy uoilnoax3

Figure 3.2. Serial vs. Parallel Results Using ds5 With Eight Workers.

19

Overall, the dsS algorithm using PVM was able to process the satellite catalog
faster than the serial program. These results were observed when the ECE network was
being heavily used and also when the network had little activity on it. Also, the
empirical data for the actual program times in Figure 3.2 is merely a representative
result of executing the programs at one certain time of the day, and different numbers
were obtained at different times, but again, the relative performance results were the

same.

D. SPEEDUP COMPARISON

One standard figure of merit in comparing two algorithms is speedup. Speedup in
this case, is the ratio of the serial results to the parallel results. The same data from the
previous section was used to determine the speedup ratios for values of A ranging from
one to ten. The speedup results are shown in Figure 3.3. Even though the actual
speedup was less than expected, there was a definite decrease in execution time, thus an

increase in speedup, when parallel execution was used instead of serial execution.

E. OPTIMUM NUMBER OF PROCESSORS TO USE

The execution time savings have been demonstrated in the previous sections, but
one other question of interest is what the optimum number of processors to use would
be. The optimum number of processors to use can be determined by setting the
derivative of Equation 3.11, with respect to the variable &, equal to zero then solve for
k. This will provide the optimum number of worker processors to use. Thus, by adding
one processor for the supervisor node and one processor for the gathering node, the

final value for the optimum number of processors is found.

20

10

3

= ~

o

3 \

a

S

b o.\

[} 3 w

& b

- g o

2 n o

d —_ \ S

o 8 oy 0

(o -_g wn

P o —

S 5 S

— Q =

3 £ 5

= <+

]
)
~
-

~ © 0 < o

oW uo[NdeXJ [8([DIDd/BWI| UOIINDSXT [DIIBS

Figure 3.3. Serial vs. Parallel (ds5) Speedup Ratios Using Eight Workers.

21

Iteration Multiplier A

Using Equation 3.7 the optimum product of worker processors and data blocks can
be determined. When Equation 3.9 was used, only the number of worker processors

can be found. The results for the two equations are given in Equations 3.12 and 3.13

respectively.

C +C__+A'T
ku.=\[s("‘ "’g) (3.12)
f

. \/s(c,,+c,,,, +4-T,,) .13

Cr
With the exception of the number of blocks in Equation 3.12, both of these equations
are identical. Equation 3.12 is much more flexible since the number of different
processors available may be limited while the number of blocks is not. For example,
using Equation 3.12, the empirical values in Appendix C, and setting A = 2, the
optimum kn,, product is = 63.35. If there are twelve total processors available, then by
subtracting one processor for the gathering node and one processor for the supervisor
node, there are ten processors available for the workers. Solving for the optimum

number of blocks to send yields 6.335 resulting in n,, to be six or seven.

F. PPT2 AND PVM WITH ACTUAL DATA

As mentioned earlier, a sample of the satellite catalog was obtained. Though it was
not used ir: devermining which parallel algorithm to use or in ascertaining the values in
Appendix C, it was used to produce plots similar to Figures 3.2 and 3.3. The data set
contained 6795 satellite records. The serial vs. parallel comparison plot is provided in
Figure 3.4, and the speedup comparison is shown in Figure 3.5. Again, the parallel

algorithm dsS was used with eight worker processors.

22

v Joydiynyy uonosay

0l 6 8 L 9 Q 14 ¢ c
19]{P4Pd _o:uog_ ~ “
S ER-LHESLETT] v

-

_ozg\

7

[

]

y

vd

—
e

gm ID2119.09y |

o
N

104

09

08

001

0cl

pjop 60jDIDD (DNJOD 10§ Wi} UOIINIBXS Zldd [9({0IDd SA |DLIBS

Oovl1

(soss) swi] uonnoax3y

Figure 3.4. Serial vs. Parallel (ds5) Execution Time Comparisons Using Actual

Data.

23

Serial vs Parallel Speedup Ratios

10

e

\ "
\ N
| -
9
£) © &
° =
3
a i
& E =
- b : S
3 & a w0 S
L I7,) : o
pre] P
[)] J— Q
— (@] H =
o 3
£ Q
\\\ ;
\ \ N
\\ _
~ © 0 <) o~ - o

awl] uoiIN23X3 9||piDd /W] UOIINDAX] |DIIBS

Figure 3.5. Serial vs. Parallel (ds5) Speedup Ratios Using the Catalog Data.

24

G. PPT2 CONCLUSIONS

The results of this chapter clearly demonstrate the effectiveness in reducing the
overall execution time using a parallel algorithm. Also, this algorithm was run using a
parallelization software tool, PVM, on a loosely coupled network of SUN workstations
instead of a dedicated parallel multicomputer. Interestingly, the results for the actual
catalog data were closer to the theoretical estimates than the data used in the previous
sections. This validates the earlier results even though they were more conservative
than the catalog results. Overall, using PVM and the multiblock data decomposition
scheme resulted in improved PPT2 operation, which was the goal of this study.

25

IV. A THROUGHPUT CRITICAL ON-LINE APPLICATION

The second Naval application studied was the on-line hypothetical combat weapon
system. The future combat systems will be large grain data flow, throughput-critical
systems. These systems will be required to process electronic signals to detect, track,
and determine a fire control solution for increasingly sophisticated threats. An example
of the next generation of Navy signal processors is the AN/UYS-2 Digital Signal
Processing System (also known as the Enhanced Modular Signal Processor, EMSP),
which implements data-flow parallel processing to achieve high throughput rates for
this type of environment in a single tightly coupled system [Ref. 4]. The hypothetical
system presented here demonstrates the possible use of a loosely coupled LAN based
cluster of processors in large-grain data-flow parallelization as against a tightly coupled
system such as the EMSP.

A. PROCESSING IN A HYPOTHETICAL COMBAT SYSTEM

The hypothetical combat system is defined by the process node graph of Figure
4.1. This graph was designed to take into account the normal computational
requirements of the combat system. The two left most branches, the paths through
nodes P4D and P2B, represent the surface and air and the subsurface fire control
solutions steps. The right most branch represents the surface and air tracking iterations.
The nodes are marked with the processor it resides on and its personal identification
letter. For instance, P4D stands for processor four, program D. The lines connecting
the nodes have arrows indicating data flow paths. The numbers attached to the lines are

a measurement of how large the data message is between the twc nodes.

26

Figure 4.1. Hypothetical Combat System Node Representation Graph.

27

The cumulative communication and node execution time for each processor is
approximately equal simulating a load-balanced graph. Another constraint given the
graph is certain nodes must be allocated to certain processors due to memory
dependencies. It is also assumed that all the nodes execute once in a given period which
will be defined later. Though this is purely a hypothetical situation, it adequately

simulates a possible on-line system.

B. PROBLEMS WITH IMPLEMENTATION USING PVM

PVM presented a few distinct problems for the on-line application. One problem is
the high cost of buffer initialization associated with using PVM. Each
PVM_INITSEND command, [Ref. 1], initializes a buffer in which to pack the output
data. This cost is fixed and is independent of the amount of data to be sent. With many
relatively small messages, this initialization time became an important factor in process
execution time due to its additive affects.

Another problem occurred during program testing with added network loading. In
Chapter V the loading will be discussed, but essentially a part of the forced network
communications caused a slave program to send multiple, large messages to another.
This sometimes caused the PVM daemon process on the slave's host computer to die.
This occurrence has been reported before, [Ref. 5], but was not investigated because
the use of the PVM_ADVISE command, [Ref. 1], eliminated this problem.

C. BATCHING OF COMMUNICATION COSTS

In PVM like systems, interprocessor communication has two distinct components,
operating system (OS) related, and network related. The OS related part consumes
processor cycles available to the application by making OS calls and affects the

throughput. This could be regarded as OS contention between nodes on the same

28

processor. The network related part makes “available” processor cycles for one node,
which is trying to transmit or receive data, unusable because other nodes have control
of the bus. This is network contention and leads to processor blocking. Given the
graph of Figure 4.1 with its multiple nodes on multiple processors these contentions
can be numerous and affect the desired throughput.

One way of greatly reducing the number of these contentions is by batching the
communication for each processor. Batching communication means what the name
implies, taking all the input and output requirements for a processor and giving these
tasks to one and only one node assigned to the processor. In order to accomplish this, it
was assumed the nodes on a given processor could communicate using UNIX shared
memory and that such communication was very cheap compared to PVM
communication. This process added an extra node on each processor which is
analogous to the gathering node described in Chapter II for the PPT2 algorithms.

The gathering node accesses the shared memory to gather the output data for
transmission. It will also access the shared memory to place the input data upon
reception. To do this, the shared memory is used in such a fashion that either the
graph nodes can access their respective memory locations or the gathering node can

access the entire memory, but not both.

D. THREE TECHNIQUES

The nodes were studied using three different methods of process execution. Of
course, the overall graph execution was carried out in the sequence shown in Figure
4.1, but the sequence in which the nodes on each processor executed was manipulated.
The three methods used a master/slave relationship. The master program took care of

the PVM process spawning and then acted as either node P1A or Processor 1

29

depending on the technique chosen. The master would initiate an iteration then wait to
receive certain criteria from the slaves before proceeding on to the next iteration. All
the programs were written in C and are in the appendices as mentioned below. The
three techniques are described as follows.

1. Unscheduled Node Processing
The unscheduled node processing method let each node begin execution upon
receipt of data and communicate upon completion of execution. No attempt was made
to reduce the number of contentions described in the communication batching section.
In this technique, there is a PVM_SEND for every message. The results of this scheme
was the metric by which the following "improvements” were judged. The code for this
set of programs, one for each node, is in Appendix D.
2. Scheduled Node Processing
This method uses the scheduling method described in the last section of this
chapter. In essence, all of the nodes on a given processor were restricted to a certain
order in which they can execute thereby reducing the number of OS contentions.
Shared memory use is assumed for communication between nodes on a processor. The
batching of the communication between processors and the scheduling of nodes on the
processors greatly reduces the network contentions. In this scheme, there is a
PVM_SEND for every pair of communicating processors. The code for this technique
is in Appendix E.
3. Scheduled Node Processing Using Hardware Multicasts
This technique uses basically the same approach as the previous method, but
all communications are assumed to be passed between the nodes via hardware

multicasts. Thus, all the communication from a processor to all the other processors is

30

multicast at the hardware level by the senders communication node. In this scheme,
there is a PVM_SEND per processor. This PVM_SEND is assumed to be a hardware
multicast to a group (which is not currently implemented in PVM). This further
reduces the network contentions since fewer PVM message calls are used. Hardware
multicasts were chosen because software multicasts greatly decreased the throughput.
Using the PVM_MCAST command, [Ref. 1], was multicasting at the user level, but at
the OS level, the PVM daemons were handling the multiple sends and receives. PVM
routes messages either through the daemons or TCP direct. Since recent TCP
implementations make use ¢f hardware multicast for implementing user level
multicasts, the use of hardware multicasts instead of the software commands was
assumed. This is expected to be true of future PVM implementations. The code for this

method is in Appendix F.

To further clarify the network contention reduction between the three algorithms,
an example follows. From the graph in Figure 4.1, Processor 1 has three nodes. For
the unscheduled method, Processor 1 has to output a total of five times per period.
Using the scheduled technique, this number reduces to three. Then by using the
hardware multicasts this number reduces to one. Of course, as the number of message
pack and send calls is reduced the message size increases. This grouping of multiple
messages reduces the number of times PVM has to initialize an output buffer
eliminating this component of the communications cost overhead. However, in the last
technique, every processor must unpack a larger message, reducing the gain from a

hardware multicast.

31

E. NODE SCHEDULING

The last two processing techniques mentioned above depend on the nodes having a
certain constraint on them as to when they can execute and communicate. To reduce the
OS contentions each node is "scheduled” on its respective processor so each one has its
turn without blocking another node or being blocked itself. Once the nodes are
scheduled, it is instructive to think of their exec;ltion taking place within one frame of
time slots. One of the assumptions, or constraints, applied to the hypothetical graph is
the sum of the node execution and communication costs on each processor is
approximately equal. This sum is the period in which one frame of scheduled time slots
can be executed. To reduce the number of network contentions, the interprocessor
communication is scheduled within each frame. Figure 4.2 shows a representative
frame of time slots with the nodes from Figure 4.1 assigned to their respective

execution positions.

P v NI <] Py Ps
comy; D;j.2 Bi3 Bi3 Aj2
Aj com; Cis Cis Bi4
Ai A3 com; D;» Cio
Bis Bi.1 Aj com Ci9
Cis Cis Bio Aij3 comj

Figure 4.2. Frame of Time Slots Starting at Time t;.

Figure 4.2 shows the schedule of nodes for the ith frame. The node indices
indicate which frame of data they are executing on in the current frame. For instance,
P1A, the root node, is working on new data received for this frame, and P5C, the

output node, is working on data the graph received i-9 frames ago. The schedule of

32

nodes is one of many possibilities, but once the schedule was chosen the indices used
were unique.
To determine index j for node x;, the following algorithm was applied.
Letting:
= the time node x executes within the period.
tp = the time the parent of x executes within the period

tpxc the time the processor x resides on communicates within the period.

tpxpc = the time the processor the parent of x resides on communicates within
the period.

k = index of parent of x.

If x is the graph root node, then j = i.

If x and the parent of x reside on the same processor:
Ifty <tgthenj=k-1.
Ift; >t thenj =k

If x and the parent of x reside on different processors:
If tpxc < tpype then:

Ift g > tpand t, < tpy, then j

Ifty > tpyoand ty; > tp thenj

Ift, < tpeandty, < tpy thenj

Ifty < tpyo and t,, > tpy, then j

1
WRNN

oo

If tpye > tpyyc then:
Ifty > tpeand t,, < tp,, thenj
Iftx > tpxcandtxp > tpxpcthenj
Ift, < tpyandt,, < tpy, thenj
Ift, < tpycand t;; > tp, thenj

wnuwn
B
'

[}
N

If a node relies on more than one parent, then use the above algorithm for all the
parents then use the smallest calculated index out of the set of calculated indices for the

node x.

33

The schedule represented by Figure 4.2 is not the only possible node scheduling
scheme, but it was the one chosen for this study. Trying to determine an optimum
schedule with respect to graph latency was not pursued.

34

T

V. RESULTS FOR THE ON-LINE APPLICATION

The three node processing techniques described in the previous chapter were
implemented using PVM and certain parameters of performance were measured. The
execution and communications costs were measured, as was done for PPT2, and
theoretical values were obtained. The programs were run during a time when the
network utilization was low and during a time when the network was purposefully

loaded in order to compare and contrast the results.

A. PARAMETERS OF INTEREST

Throughput was the primary measurement studied. The values obtained were
normalized with respect to the theoretical costs as discussed below. In addition to
throughput, post processing of the data was used to determine the size an output buffer
would need to be if there was a buffer between node PSC and the next stage of the
weapons system. The buffer was accessed at the average period, 7. The standard
deviation, s, of the period was determined to clarify the results of the buffer
processing. For further statistical analysis, the coefficient of variation, V, which is
defined as the ratio s/f, was calculated. The scheduling represented by Figure 4.2
implies a graph latency of ten frames. Though this is a valid area of interest, output
latency was not studied.

The theoretical period was determined by using the communications costs from
Figure 4.1 and the execution times for the nodes in the longest path. The execution
loop times and the message packing and sending times were measured on the ECE SUN
system like the variables for PPT2 were determined. These numbers were used in
combination with the variable weighting factor used when the programs were run to

determine the theoretical period.

35

B. RESULTS WITHOUT NETWORK LOADING

The programs were run a multiple of times to determine what patterns, if any,
they exhibited. Table 5.1 shows the resuits of one such run. For this run, the
theoretical period was approximately 1.509 seconds. Even though empirical results are
presented here, all the values were dependent on the load variations in the SUN
network due to the other system users. While these values were obtained for this run,
another set of runs at a different time could possibly yield different results. With this in
mind, more emphasis was placed on the trends and patterns observed than on the actual
values.

TABLE 5.1. TYPICAL ON-LINE RESULTS WITHOUT NETWORK

LOADING.
Units = seconds Unscheduled Scheduled Multicast
Average
Period, 7 0.871 0.996 1.001
Normalized
average, I, 57.7% 66.0% 66.3%
Standard
deviation, s 0.339 0.0786 0.0729
Coefficient of
variation, V 38.9% 7.89% 7.28%
Mean output
buffer size, b 3.56 1.431 1.896

From Table 5.1, the periods were slightly higher for the Scheduled and Multicast
techniques than the Unscheduled method. This was the general trend for all the runs.
Another trend was the fact the standard deviations of the Unscheduled method was
between three to six times larger than the two scheduling algorithms. This was readily

evident in the output which showed a wide range of throughput values for the

36

Unscheduled technique, and a more narrow range for the other two. The output buffer
pattern observed was that the Unscheduled buffer size would be from two to five times
larger than the other two.

The buffer size was observed to be more oscillatory for the Unscheduled
processing than the other two approaches. Figures 5.1, 5.2, and 5.3 show the buffer
size in reference to the iteration number for a run of 1000 graph iteration cycles
utilizing the three node processing techniques. These plots reinforce the buffer data
observations by showing the Unscheduled buffer size varying more, and getting larger
than the Scheduled or Multicast methods.

C. RESULTS WITH A NETWORK PERTURBATION

The addition of a controlled load was applied to the process runs for this section.
The loading consisted of one program manipulating large amounts of input/output,
around 3.5 Mbytes, and two other programs sending and receiving a large amount of
fairly large messages. These load programs were assigned to the same processors used
by the graph nodes. The results from one of the runs are presented in Table 5.2.

This run was chosen because it presented some of the uncontrollable network
influences as well as the observed trends. One example of the network usage affects is
observed i1 the periods for the run prior to adding the load. The period for the
Unscheduled method is noticeably less than the other two methods which is in contrast
with the data in Table 5.1. This is due to the network load variations at the times the

programs were executed.

37

Unschedule buffer usage

azis Jayng

Figure 5.1. Unscheduled Output Buffer Size.

38

200 300 400 500 600 700 800 900 1000

100

lteration Number

g

0004

006

008

00L

JaquinN uonDIsY|

009 00S (00) 4 0o¢ 00¢ 001

LB ¥ L] ¥])

] 1 L i L 1

abosn Jayng ajnpayos

3Ny
Figure 5-2. Scheduled Output Buffer Size.

9ZIs Jo

39

0001

JaqWINN Uo1DI3Y|

006 008 00L 009 00S 00V 00¢

00¢

001

L] T L4 L L 4 L] T

1 'y I | o . 1 [l

obosn Jayyng 1SDIINN SIOMPIDH

azis Jajing

Figure 5-3. Hardware Multicast Output Buffer Size.

40

TABLE 5.2. TYPICAL ON-LINE RESULTS WITH NETWORK

PERTURBATION.
Units = seconds Unscheduled Scheduled Multicast
Before loading
t 0.784 0.996 1.072
t, 60.0% 66.0% 71.0%
5 0.256 0.0809 0.2489
v 32.7% 8.12% 23.2%
b 1.78 1.587 2.14
During loading
t 1.094 1.611 1.566
[1.5% 106.8% 103.8%
s 0.277 0.1914 0.311
N 25.3% 11.88% 19.86%
b 3.21 1.575 2.84

The observed patterns for each section of Table 5.2, before loading and during
loading, were similar to those described in the previous section. The most prominent
observation for this run comes from comparing the two sections. The buffer size stayed
relatively constant before loading and during loading for the Scheduled and Multicast
techniques, but the Unscheduled buffer size would increase by two to five times. The

periods also increased, but not as significantly.

D. ON-LINE CONCLUSIONS

The use of node scheduling did not adversely affect the periods compared to not
scheduling the nodes. While memory is cheap, and the buffer size may not be a
hardware problem, the access time can be considerable compared to the throughput.
This could add an excessive delay to the overall throughput of the graph when looking
at it from the next stage after node PSC. This was the stimulus behind the buffer

consideration.

41

The hardware multicasting did not considerably improve the performance of the
node scheduling. This may be caused by the physical properties of the chosen graph
because the nodes had to unpack one large message instead of a few smaller ones. The
smaller messages were received at various times allowing the nodes to unpack them as
the data arrived instead of all at one time. Another factor which influenced the
Multicast performance was the fact the physical hardware was not available and PVM

was used to simulate it.

42

V1. CONCLUSION

This thesis provided separate conclusions at the end of each application section.
Overall, using a software tool can effectively improve the performance of a given
procedure. PVM is becoming the standard for use as a parallelization software tool and
it demonstrated its usefulness when applied to the off-line PPT2 program and the on-
line hypothetical combat weapons system.

A. FUTURE STUDY

Further work is required in the following areas:

1. The PPT2 theoretical optimum block size could be studied further.

2. A larger set of data from the Naval Space Command would increase the
usefulness of the results presented. If possible, the use of the block distribution
algorithm and PVM on the actual satellite catalog with the proper number of iterations
for each individual record would better demonstrate a real scenario.

3.The four data decomposition schemes presented for PPT2 are basic with
numerous possible improvements. One such variation is having the supervisor send an
initial block of data to each worker, divide up the remaining records into blocks, then
send these blocks. Another area for testing is the use of multiple supervisors with their
own sets of workers implementing each of the schemes.

4. The way in which the network was loaded for the on-line application was not
varied. The load programs ran on the same processors the node programs were on.
Further study on the affects of the load programs operating on different processors is
warranted.

5. The on-line application research just scratched the surface of the possibilities for

this area. The code for the node processing schemes were written with the user able to

43

easily vary the communications and execution costs. Though many program runs were
accomplished for this thesis, the varying of the costs was not fully studied.

LIST OF REFERENCES

Oak Ridge National Laboratory, Oak Ridge, Tennessee

Technical Report ORNL/TM-12187, PVM 3 User's Guide and Reference
Manual, by A. Geist, A. Beguelin, J. Dongarra, W. Jiang, R.

Manchek, and V. Sunderam, May, 1993.

Phipps, W. E., Parallelization of the Navy Space Surveillance Center
(NAVSPASUR) Satellite Motion Model, Master's Thesis, Naval
Postgraduate School, Monterey, California, June, 1992.

Phipps, W.E., Neta, B., and Danielson, D.A.,"Parallelization of the
Naval Space Surveillance Satellite Motion Model," Journal of
Astronautical Sciences, Vol. 42, No. 2, April-June 1993.

Rice, M.L., "The Navy's new standard digital signal processor:
The AN/UYS-2," paper presented at the Association of Scientists and
Engineers, 27t Annual Technical Symposium, 23 May 1990.

Lewis, M. J., and Cline, R. E. Jr., "PVM Communication Performance
in a Switched FDDI Heterogeneous Distributed Computing
Environment," paper presented at the Symposium on Reliable and
Distributed Systems, October 1993,

45

APPENDUIX A - ACQUIRING AND INSTALLING PVM

First send the message "send index from pvin3" to netlib@ornl.gov
then follow the instructions.

Probably the quickest way to get the files is to use rcp.
finger anon@netlib2.cs.utk.edu
(* this command will explain how to copy files from the Netlib Software Repository *)

It will tell you to use: rcp anon@netlib2.cs.utk.edu: FILENAME LOCAL_FILENAME
Create the directory "pvm" where pvm is to be installed.
So type the following commands from the pvm directory:

1cp anon@netlib2.cs.utk.edu:pvm3/filename .
or
rep -r anon@netlib2.cs.utk.edu:pvm3/directory .

for all the files listed in the index.

At some point in time, the access modes for all files should be changed to allow all
users to be able to read and execute them.

Next, type: sh pvmn3.1.shar
This command will create the pvm3 subdirectory and extract the pvm files.

more pvm/pvm3/lib/cshrc/stub

This command shows a portion of code that needs to be appended to the installers
.cshrc file. The "setenv PVM_ROOT " line must be modified to take into account the
current location of pvm.

pvm/pvm3/make all

This command will then compile the pvm source code. Look in the file Makefile for
individual options if you do not want to install everything. If errors occur, the
Makefile.body needs to be modified then ../lib/UpdateMk needs to be run. For
instance, in the file Makefile in the xep subdirectory, the xcflags path had to be
changed in order to get xep installed (only occurred when installing 3.1, had no
problems installing 3.2.

46

APPENDIX B - BLOCK DECOMPOSITION SCHEME PROGRAMS

SUPERVISOR (MASTER)PROGRAM:
program thesislm
include ‘fpvm3.h’

<

¢ Fortran Master program to solve the NAVASPASUR satellite

c orbit prediction problem.

¢ This program reads the data from a file and distributes the data to

¢ the working nodes one block at a time.

c

implicit real*8 (a-h,0-2)
character*16 filenm

integer pid, bsz

integer eof, gattime(60)

integer start, finish, endtime, Gettime
external Gettime !$pragma C(gettime)

common/bloc/sat(84,8000)

data istop/1/,pid/0/,msglen/672/
data isat/1/,0/1/

integer i, info, nproc, iter

integer mytid, tids(0:40), slvtime(16)
integer who

character*12 nodename

character*8 arch

* Enroll this program in PVM
cal! pvmfmytid(mytid)

¢ ——————— Starting up all the tasks

* [Initiate nproc instances of thesisls slave program

print *,’How many working slave programs (1-16)?"

read *, nproc

nproc=nproc+1

print*,’ *

print*, 'Which input file?
read®, filenm

print*, ‘What blocksize?
read*, bsz

print*, ‘How many iterations?"’
read*, anum

* Read complete catalog of satellite data

47

——

open(10, file= filenm)
read(10,*,iostat =eof)(sat(j, 1),j=1,84)

isat=0
200 if{eof.ge.O)then
isat=igat+1
read(10,*, iostat = eof)(sat(j,isat + 1),j=1,84)

go to 200
endif
close(10)
¢ Print the number of satellite records received.
print*,’isat = ' isat
pﬁnt*,' 1]
* If arch is set to ‘*' then ANY configured machine is acceptable
* otherwise arch should be set to architecture type you wish to use.
nodename = ‘thesisls’
arch = '+

call pvinfspawn(nodename, 0, arch, nproc, tids, info)

€ ~————** Begin user program **

€ ~————see—eeeeee Get beginning time stamp
start = Gettime (start)

* send number of satellites and slave id array to slaves

msgtype = 2

call pvmfinitsend(0, info)

call pvmfpack(INTEGER4, nproc, 1, 1, info)
call pvmfpack(INTEGERJ, tids, aproc, 1, info)
call pvifpack(INTEGERJ, isat, 1, 1, info)
call pvinfpack(INTEGER4, bsz, 1, 1, info)

call pvmfpack(INTEGER4, anum, 1, 1, info)
call pvmfmcast(nproc, tids, msgtype, info)

* broadcast data to all node programs

48

c

Determine how many records in each block
iter=isst/((nproc-1)*bez)
iterx = mod(isat/bsz,nproc-1)

do 308 j=1,bsz
do 300 i=1,nproc-1

if(i .le. iterx) then
itern = iter + 1

else
itern = iter

endif

call pvmfinitsend(0, info)

call pvmfpack(BYTE], sat(1,n), msglen*itern, 1, info)
call pvinfeend(tids(i), 3, info)

300 n=n+itemn

305 continue

c

wait for data completion signal from gathering node

call pvmfrecv(tids(0), 4, info)

call pvmfunpack(INTEGER4, gattime, 33, 1, info)
Collect ending time stamp

finish = Gettime (finish)
endtime = finish - start

print*, 'The ead to end runtime is ',endtime, ' usecs.’

End user program

program finished leave PVM before exiting
call pvmfexit(info)

stop

end

49

WORKER (SLAVE) PROGRAM:

program thesisls
include ‘fpvn3.h’

c
¢ Fortran Slave program to solve the NAVASPASUR satellite

¢ orbit prediction problem. The slave program consists of two nodes.
¢ One node is & position calculation node and the other is the data

¢ colection node. This version of the master-glave configuration

¢ receives blocks of data from the master and performs calculations.
c

implicit real*8 (a-h,0-2)
real*8 kf(10)

integer pid, me, nproc, bsz, gattime(60)
integer start, finish, endtime, Gettime
external Gettime !$pragma C(gettime)

common/cons/a(64)
common/ppt/f(25),08c(10),kf(10),cf(10),bs(3,4),u(3),v(3),w(3),r,
& vel(3),dind,tm,dkz,dident
common/dcsub/pe(6,8),¢(8,8),ep(8,8),8(8),gp(8),ifti(8),ifto(8),
& iteri,itero,jof,jol,stat(20},tol(6),iw,0f(11),0w(8,8)
common/foreo/rho(3),ros,hdr,hdv,rdv,del, iter
common/bloc/sat(84,8000)

data istop/1/,pid/0/,msglen/672/
data isat/1/,n/1/

integer info, mytid ~tid, msgtype
integer tids(0:40)

¢—- Enroll this program in PVM ——-
call pvmfmytid(mytid)

¢ Get the master's task id
call pvifparent(mtid)

c ** Begin user program **

¢ Receive data from host
¢»21 pvmfrecv(mtid, 2, info)
call pvmfunpack(INTEGER4, nproc, 1, 1, info)
call pvmfunpack(INTEGERS, tids, nproc, 1, info)
call pvmfunpack(INTEGERA, isat, 1, 1, info)
call pvmfunpack(INTEGER4, bsz, 1, 1, info)
call pvmfunpack(INTEGER4, anum, 1, 1, info)

50

¢
¢ Determine which slave I am
do 10 i=0, nproc-1

if(tids(i) .eq. mytid) me = i
10 continue

¢ Determine if 1 am the gathering slave
if(tids(0) .eq. mytid) thea

¢ Execute the gathering node
* Begin Collecting Node

msgtype = 10
k=1

do 1000, i=1,(nproc-1)*bsz
call pvmfrecv(-1, msgtype, info)
call pvinfunpack(INTEGERM, iter, 1, 1, info)
call pvmfunpack(BYTE1, sat(1,k), msglen*iter, 1, info)
k=(i)*iter+1
1000 continue

¢ Commeated out since I/0 time was not considered
* Write results to external file

* open(6,file="/home3/stone/pvm3/bin/SUN4/thesisl.out')

* do1231li=1,isat
* 1231 write(6,*)(sat(j,i),j=1,84)

* close(6)

* Send message to Host that process is complete
msgtype = 4
call pvmfinitsend(0, info)
call pvmfpack(INTEGER4, gattime, 33, 1, info)
call pvmfsend(mtid, msgtype, info)

* End Collecting Node

c——Begin Working Nodes

51

olse
* Determine my block size
iter =isat/((nproc-1)*bsz)
iterx = mod(isat/bsz,nproc-1)
¢ ——————e——— beginning time stamp ————
start = Gettime (start)

call consl
msgtype = 3

do 1405 j=1,bsz
if(me .le. iterx)then
itern=iter+1
else
itern=iter
endif
k=(j-1)*iter+1
call pvmfrecv(mtid, msgtype, info)
call pvmfunpack(BYTE], sat(1,k), msglen*itern, 1, info)
do 1400 i=1,itern
c~——Receive satellite to process —
do 1380 n=1,84
1380 f(n)=sat(n,k+i-1)
* Set parameters for subroutine ppt2

ind=1
kz=idint(dkz)

* Compute secular recovery
call ppt2(ind,k2)
* Compute subsequent task, ie. predict position, update elements ...

ind=idint(dind)
call ppt2(ind,kz)

52

do 1390 n=1,84
1390 sat(n,k +i-1)=f(n)

1400 coatinue

¢ ~——-Send computed results to gathering node—----—-——-
call pvmfinitsend(0, info)
call pvmfpack(INTEGERY, item, 1, 1, info)
call pvmfpack(BYTE1, sat(1,k), msglen*item, 1, info)
call pvinfsead(tids(0), 10, info)

1405 coatinue

c Ending time stamp
finish = Gettime (finish)
endtime = finish - start

The following was used for trouble shooting and processor comparison
call pvmfadvise(PvmRouteDirect,info)

msgtype = 25

call pvmfinitsead(0, info)

call pvmfpack(INTEGER4, eadtime, 1, 1, info)
call pvmfsend(mtid, msgtype, info)

end if

% O

* * * &

c End user program ~--—-

¢ Program finished. Leave PVM before exiting
call pvmfexit(info)
stop
end

*DECK PPT2
B NAVAL SPACE COMMAND PROPRIETARY CODE SEE R

R PROFESSOR B. NETA, NAVAL POSTGRADUATE Hakdokok
R SCHOOL FOR ACCESS TO THE PPT2 SOURCE CODE etokdok

53

APPENDIX C - EMPIRICAL VALUES FOR PPT2 VARIABLES

The ECE network results presented here were using SUN/SPARC IPX and
SUN/SPARC II stations. Esentially no difference in output values were observed

between the two stations.
Variable Definition Value
total number of satellites in the input file
S 4800
node process initialization time
to P 5506.7 us
time for gathering node to report to the
Ym | supervisor the process is complete 1300 s
number of blocks sent to each worker 4
n,
fixed communications time for buffer
Ct | setup and network access for sending 6027.84 us
records
communications time required to pack
Cps | and send one satellite record 1264.52 ps
fixed communications time to unpack the
cupf input buffer 132.98 us
communications time to unpack one
Cupps | satellite record 75.7 ps
K number of working processors used g
number of satellites sent to each worker
S = S/k 600
S number of satellites per data block = 150
b S pmb
time for PPT2 to operate on one satellite
Tppa record 1850 MS

54

APPENDIX D - UNSCHEDULED NODE PROCESSING PROGRAMS

MASTER PROGRAM (NODE P1A):

4
Unscheduled master program, also handles node P1A commumication and execution
requirements.

#include *pvm3.h"
#include <stdio.h>
#include <sys/time.h>
#include <time.h>
#include < sys/types.h>
#include <signal.h>
#include <stdlib.h>

—~

/* CONSTANTS */
#define done_lp 1000 /* Loop iteration counter %/
#define snl 400 /* Iteration number for start of network loading */
#define dosize 300 /* Size of noise message */

/* GLOBAL VARIABLES */
int done = 0;
int who;
int paum;
double data_mat{5000];
double do_again;
int Id_num = 55000;

/* SLAVE VARIABLES */
int comm_gain ; /* For varying the communication weights */
int my_ wt; /* For varying the execution weights */
int inddfla = 300; /* The next variables contain the branch communication */
int in2bfla = 300; /* and are defined as, using inddfla, input to node */
int inSafla = 300; /* P4D from P1A */
int in2af4d = 400;
int in2df2b = 400;
int indaf5a = 900;
int indcf2a = 350;
int in3af2a = 350;
int in3bf2d = 350;
int indbf2d = 350;
int inlbf3a = 525;
int in5bf3b = 525;
int in3cf4c = 350;
int in3cflb = 300;
int in2cfSb = 300;
int in2cf4b = 350;
int inlcf4a = 350;
int inScflc = 300;

55

main()

char SLAVENAME(3};

int i, k;

int mum, munMot;

intn_tm _max = 0, wnl = 0;

int nl_dome = 0;

char myname(5];

int nproc = 16;

int mytid; /* my task id */
int tids[20], stids{5]; /* glave task ids */
int snproc = 3;

struct itimerval tmrval;

/* read in commmnication and execution scale factors */
printf("\nComm wt = *);
scanf(" %d", &comm_gain);
printR"\Ex wt = *);
scanf(" %d", &my_ wt);
my_wt = my_ wt*4;

/* use loading or not */

printf("\With NET loading type 1, without NET loading type 2:

scanf(" %d", &wnl);

/* initialize matices */
for(k=0; k<1500; k+ +)
data_mat[k]=(double)k +5.66666;

/* earoll in pvm */
mytid = pvin_mytidQ);

/* start up slave tasks */
nproc = 16;

pvm_spawn("p2a”, NULL.

56

%

pvm_spawn(“p4d°, NULL, 1, "sun9°, 1, &tids{10]);
pvm_spawn("péc®, NULL, 1, "sun9", 1, &tids{11]);
pvm_spswn("p4d”, NULL, 1, “sun9°, 1, &tids[12]);
pvm_spawn("pSa”, NULL, 1, “sun20*, 1, &tids{13]);
pvm_spawn("p5b”, NULL, 1, "sun20", 1, &tids[14]);
pvm_spawn("pSc”, NULL, 1, "sun20”, 1, &tids{15]);

/* Send initial book keeping data to all the slaves */

pvm_initsead(PvmDataDefault);
pvm_pkint(&aproc, 1, 1);
pvm_pkint(tids, nproc, 1);
pvm_pkint(&my_wt, 1, 1);
pvm_pkint(&comm gain, 1, 1);
pvm_wn(tids, nproc, 20);

/* Send the input and output costs for each slave */

_initsend(PvmDataDefault);
pvm_pkint(&in1bf3a, 1, 1);
pvm_pkint(&in3cflb, 1, 1);
pvm_send(tids[0], 25);

pvm_initsend(PvmDataDefauit);
pvm_pkint(&inlcfda, 1, 1);
pvm_pkint(&inScflc, 1, 1);
pvm_send(tids{1], 25);

pvm_initsend(PvmDataDefault);
pvm_pkint(&in2af4d, 1, 1);
pvm_pkint(&indcf2a, 1, 1);
pvm_sead(tids(2], 25);

pvmn_initsend(PvmDataDefault);
pvm_pkint(&in2bfla, 1, 1);
pvm_pkint(&in2df2b, 1, 1);
pvm_send(tids{3], 25);

pvm_initsead(PvmDataDefault);
pvm_pkint(&in2cf4b, 1, 1);
pvm_pkint(&in2cf5b, 1, 1);
pvm_pkint(&inScfc, 1, 1);
pvm_send(tids[4], 25);

pvm_initsead(PvmDataDefault);
pvm_pkint(&in2df2b, 1, 1);
pvm_pkint(&in3bf2d, 1, 1);
pvm_send(tids{5], 25);

pvm_initsend(PvmDataDefault);
pvm_pkint(&in3af2a, 1, 1);
pvm_pkint(&inlbf3a, 1, 1);
pvm_send(tids[6], 25);

57

pvmn_initsend(PvmDataDefault);
pvm_pkint(&in3bf2d, 1, 1);
pvm_pkint(&inSbf3b, 1, 1);
pvm_send(tids{7], 25);

pvm_initsend(PvmDataDefault);
pvm_pkint(&in3cfdc, 1, 1);
pvm_pkint(&in3cflb, 1, 1);
pvm_pkint(&inScf3c, 1, 1);
pvm_send(tids{8], 25);

m_Wt);
pvm_pkint(&indafSa, 1, 1);
pvm_pkint(&inlicfda, 1, 1);
pvm_send(tids{9), 25);

pvm_initsend(PvmDataDefault);
pvm_pkint(&in4bf2d, 1, 1);
pvm_pkint(&in2cf4b, 1, 1);
pvm_send(tids{10}, 25);

pvm_initsend(PvmDataDefault);
pvm_pkint(&indcf2a, 1, 1);
pvm_pkint(&in3cfde, 1, 1);
pvm_send(tids[11], 25);

pvm_initsend(PvmDataDefault);
pvm_pkint(&inddfla, 1, 1);
pvm_pkint(&in2afdd, 1, 1);
pvm_send(tids[12], 25);

pvm_initsend(PvmDataDefauit);
pvm_pkint(&inSafla, 1, 1);
pvin_pkint(&indafSa, 1, 1);
pvm_send(tids{13], 25);

pvm_initsend(PvmDataDefauit);
pvm_pkint(&in5bf3b, 1, 1);
pvm_pkint(&in2cf5b, 1, 1);
pvm_send(tids(14]), 25);

pvm_initsead(PvmDataDefault);
pvm_pkint(&inScflc, 1, 1);
pvm_pkint(&inScf2c, 1, 1);
pvm_pkint(&inScf3c, 1, 1);
pvm_send(tids[15), 25);

* If want loading */
if(wnl == 1)
{

58

pvm_spewn("s1", NULL, 1, "sm3", 1, &stids{0]);
pvm_spawn(*s2°, NULL, 1, *am20°, 1, &stids{1]);
pvm_spawn("s3°, NULL, 1, “sun8", 1, &stids{2]);

pvm_initsend(PvmDataDefault);
pvm_pkint(&saproc, 1, 1);
pvm_pkint(stids, saproc, 1);

} pvin_mcast(stids, snproc, 62);

/* Begin User Program */

for (done = 0; done < done lp; done ++)
{

if (done == sl && wnl == 1)

pvm_initsend(PvmDataDefault);
pvm_pkint(&ld_num, 1, 1);
pvm_send(stids{0], 22);

}

if (done == done_lp - 1)
data_mat[0] = -444.55S5;

pvm_initsend(PvmDataDefault);
pvm_pkdouble(data_mat, dosize*comm_gain, 1);
pvm_send(tids[3], 4);

pvm_initsend(PvmDataDefault);
pvm_pkdouble(data_mat, dosize*comm_gain, 1);
pvm_send(tids{12], 13);

pvm_initsend(PvmDataDefault);
pvin_pkdouble(data_mat, dosize*comm_gain, 1);
pvm_send(tids{13], 14);

for (k = 0; k < my_wt*2; k++)
for (i=0;1< 1360; i+ +)
{
raum = rand();
mumtot = mumtot + mum;
data_matfi+1] =i + 1;
}

printf("\n On loop number %d\n",done);

pvm_recv(tids[1], 25);
pvm_upkdouble(&do_again, 1, 1);

59

} /* end of for loop */
printf{ "\nThe loop is done\n");

/* Ensure all slaves have quit prior to termination */
pvm_recv(tids{15], 35);
pvm_upkdouble(&do_again, 1, 1);

printf(*\nProgram ml.c cwt = %d, ewt = %d is done\n®, comm_gain, my_wt/4);

/* Program Finished exit PVM before stopping */
pvm_exit();

} /** END OF MAIN PROGRAM **/

THE INDIVIDUAL SLAVE PROGRAMS:

4
Slave program for node P1B

#include "pvm3.h"
#include <stdio.h>
#include <sys/time.h>
#include <time.h>
#include <sys/types.h>
#include <signal.h>
#include <stdlib.h>

/* CONSTANTS */
#define parent 6
#define child 8

main()
{
int i,k,mytid, master;
int tids[20};
int nproc, msgtype, me;
int raum, mumtot=0, done=0, disize, dosize;
double data_mat[10000];
int my_wt, comm_gain;

/* earoll in pvm */

mytid = pvmn_mytid(Q;
master = pvm_parent();

pvm_recv(master, 20);
pvm_upkint(&aproc, 1, 1);
pvm_upkint(tids, nproc, 1);
pvm_upkint(&my_wt, 1, 1);
pvm_upkint(&comm_gain, 1, 1);

pvm_recv(master, 25);
pvm_upkint(&disize, 1, 1);
pvm_upkint(&dosize, 1, 1);

for (i=0; i<nproc; i+ +)
if (mytid = = tids[i]) { me = i; break;}

while (done == 0)

{
pvm_recv(tids[parent], me+1);
pvm_upkdouble(data mat, disize*comm_gain, 1);

if (data_mat{0] < 0)

61

S~

done = 1;
/** glave execution core **/
for(k = 0; k < my wt; k++)
for (i = 0;i < 1360; i++)
{

mum = rand();

mumtot = mumtot + mum;

data matfi+1]) =i + 1;

}

_initsend(PvmDataDefault);
pvm_pkdouble(data_mat, dosize*comm_gain, 1);
pvm_send(tids{child], child+1);

} /* end of while done == 0 loop */
/* Program finished. Exit PVM before stopping */
pvm_exit();

} /*End of Slave program plb.c */

62

Slave program for node P1C

#include *pvm3.h"
#include <stdio.h>
#include <sys/time.h>
#include <time.h>
#include <sys/types.h>
#include <signal.h>
#include <stdlib.h>

/* CONSTANTS */
#define parent 9
#define child 15

main()
{
int i,k,mytid, master;
int tids[20];
int nproc, msgtype, me, disize, dosize;
int rmum, rmumtot=0, done=0;
double data_mat[10000];
double do_again = 2.2;
int my_wt, comm_gain;

/* enroll in pvm */

mytid = pvm_mytid();
master = pvm_parent();

pvm_recv(master, 20);
pvm_upkint(&aproc, 1, 1);
pvm_upkint(tids, nproc, 1);
pvm_upkint(&my wt, 1, 1);
pvm_upkint(&comm_gain, 1, 1);

pvm_recv(master, 25);
pvm_upkint(&disize, 1, 1);
pvm_upkint(&dosize, 1, 1);

for (i=0; i<nproc; i+ +)
if (mytid == tids{i]) { me = i; break;}

while (done == 0)

{
pvm_recv(tids[parent], me+1);

pvm_upkdouble(data_mat, disize*comm_gain, 1);

if (data_mat[C] < 0)
done = 1;

63

/%* glgve execution core **/

for (k = 0; k < my_wt; k++)
for (i = 0;i < 1360; i+ +)
{
mum = rand();
ranumtot = rnumtot + raum;
data matfi+1] =i + 1;
}

pvm_initsead(PvmDataDefault);
pvm_pkdouble(data_mat, dosize*comm_gain, 1);
pvm_send(tids{child], child+1);
pvm_initsead(PvmDataDefault);
pvm_pkdouble(&do_again, 1, 1);
pvm_send(master, 25);

} /* end of while done == 0 loop */

/* Program finished. Exit PVM before stopping */
pvm_exit(;

} /* End of Slave program plc.c */

Slave program for node P2A

#include "pvm3.h*
#include <stdio.h>
#include <sys/time.h>
#include <time.h>
#include <sys/types.h>
#include <signal.h>
#include <stdlib.h>

/* CONSTANTS */
#define parent 12
#define childl 11
#define child2 6

main()

{
int i,k,mytid, master, disize, dosize;
int tids{20], my_wt, comm_gain;
int nproc, msgtype, me;
int roum, mumtot=0, done=0;
double data_mat{10000];

/* earoll in pvm */

mytid = pvm_mytid(Q;
master = pvm_parent();

pvm_recv(master, 20);
pvin_upkint{&nproc, 1, 1);
pvm_upkint(tids, nproc, 1);
pvm_upkint(&my wt, 1, 1);
pvm_upkint(&comm_gain, 1, 1);

pvm_recv(master, 25);
pvm_upkint(&disize, 1, 1);
pvm_upkint(&dosize, 1, 1);

for (i=0; i<nproc; i+ +)

if (mytid == tids[i]) { me = i; break;}

while (done == 0)

{
pvm_recv(tids[parent], me+1);

pvm_upkdouble(data_mat, disize*comm_gain, 1);

if (data_mat[0] < 0)
done = 1;

65

~

/%* slave execution core **/

for(k = 0;k < my wt; k++)
for(i=0;i < 1360;i++)
{
mum = rand();
roumtot = rnumtot + mum;
data matfi+1] =i + 1;
}

pvm_initsend(PvmDataDefault);
pvm_pkdouble(data_mat, dosize*comm_gain, 1);
pvm_send(tids[child1], childl +1);
pvm_initsend(PviDataDefault);
pvm_pkdouble(data_mat, dosize*comm_gain, 1);
pvm_send(tids{child2), child2 +1);

} /* end of while done == 0 loop */

/* Program finished. Exit PVM before stopping */
pvm_exit(;

} /* End of Slave program p2a.c */

| oTesbbbbty

for node P2D *

#include "pvm3.h*
#include <stdio.h>
#include <sys/time.h>
#include <time.h>
#include <sys/types.h>
#include <signal.h>
#include <stdlib.h>

/* CONSTANTS */
#define pareat 3
#define childl 7
#define child2 10

; in(
int i,k,mytid, master;
int tids{20], my_wt, comm_gain;
int nproc, msgtype, me, disize, dosize;
int roum, mumtot=0, done=0;
double data_mat[10000];

I* enroll in pvm */

mytid = pvin_mytid();
master = pvi_parent();

pvmn_recv(master, 20);
pvm_upkint(&nproc, 1, 1);
pvm_upkint(tids, aproc, 1);
pvm_upkint(&my_wt, 1, 1);
pvm_upkint(&comm _gain, 1, 1);

pvm_recv(master, 25);
pvm_upkint(&disize, 1, 1);
pvm_upkint(&dosize, 1, 1);

for (1=0; i<nproc; i+ +)
if (mytid = = tids[i]) { me = i; break;}

~ while (done == 0)
{
pvm_recv(tids[parent], me+1);
pvm_upkdouble(data_mat, disize*comm_gain, 1);

if (data_mat{0] < 0)
done = 1;

67

/%% glave execution core **/

for(k = 0; k < my_wt; k++)
for(i=0;i < 1360; i++)
{
roum = rand();
mumtot = mumtot + roum;
data matfi+1] =i + I;
}

pvm_initsend(PvmDataDefault);

pvm_pkdouble(data_mat, dosize*comm_gain, 1);

pvm_send(tids[child1), childl +1);
_initsend(PvmDataDefault);

pvm_pkdouble(data_mat, dosize*comm_gain, 1);

pvm_send(tids{child2], child2 +1);

} /* end of while done == 0 loop */
/* Program finished. Exit PVM before stopping */

pvm_exit(Q;

} /* End of Slave program p2d.c */

68

I
Slave program for node P3A

#include "pvm3.h*
#include <stdio.h>
#include <sys/time.h>
#include <time.h>
#include <sys/types.h>
#include <signal.h>
#include <stdlib.h>

/* CONSTANTS */
#define parent 2
#define child 0

: in(
int i,k,mytid, master;
int tids{20), my_wt, comm_gain, disize, dosize;
int nproc, msgtype, me;
int rnum, rumtot==0, done=0;
double data_mat[10000];

/* earoll in pvm */

mytid = pvm_mytid(;
master = pvm_parent();

pvm_recv(master, 20);
pvm_upkint(&nproc. 1, l);
pvm_upkint(tids, nproc, 1);
pvm_upkint(&my_wt, 1, 1);
Wm_uphn“&wm_x‘in’ l’ 1);

pvm_recv(master, 25);
pvm_upkint(&dism, 19 1);
pvm_upkint(&dosize, 1, 1);

for (i=0; i<nmproc; i+ +)
if (mytid == tids[i]) { me = i; break;}

while (done == 0)

{
pvm_recv(tids[parent], me+1);
pvm_upkdouble(data_mat, disize*comm_gain, 1);

if (data_mat[0] < 0)
done = 1;

69

~—

/%* glave execution core **/

for (k = 0;k < my_wt; k++)
for (i = 0; i < 1360; i+ +)
{
mum = rand();
mumtot = roumiot + mum,
data matfi+1] =i+ 1;
}

pvm_initsend(PvmDataDefault);
pvm_pkdouble(dats_mat, dosize*comm_gain, 1);
pvmn_send(tids{child), child +1);
} /% end of while done = = 0 loop */
/* Program finished. Exit PVM before stopping */

pvm_exit();

} /* End of Slave program p3a.c */

70

* Slave program for node P3B

#include "pvm3.h"
#include <stdio.h>
#include <sys/time.h>
#include <time.h>
#include <sys/types.h>
#include <signal.h>
#include <stdlib.h>

/* CONSTANTS */
#define parent 5
#define child 14

{ in(
int i,k,mytid, master, disize, dosize;
int tids{20], my_wt, comm_gain;
int nproc, msgtype, me;
int roum, mumtot=0, done=0;
double date_mat{10000];

/* earoll in pvm */

mytid = pvm_mytid();
master = pvmn_parent();

pvm_recv(master, 20);
pvm_upkint(&nproc, 1, 1);
pvm_upkint(tids, nproc, 1);
pvm_upkint(&nw_“’t, l’ l);
pvm_upkint(&comm_gain, 1, 1);

pvm_recv(master, 25);
pvm_upkint(&disize, 1, 1);
pvm_upkint(&dosize, 1, 1);

for (i=0; i<nproc; i+ +)
if (mytid == tids[i]) { me = i; break;}

while (done == 0)
{
pvm_recv(tids[parent], me +1);

pvmm_upkdouble(data_mat, disize*comm_gain, 1);

if (data_mat[0] < 0)
done = 1;

71

~—

/** glave execution core **/

for (k = 0; k < my_wt; k++)
for(i =0;i < 1360; i+ +)
{
mum = rand();
roumtot = raumtot + roum;
data matfi+1] = i + 1;
}

pvm_initsend(PvmDataDefault);
pvm_pkdouble(data_mat, dosize*comm_gain, 1);
pvin_send(tids{child], child+1);
} /* end of while done == 0 loop */
/* Program finished. Exit PVM before stopping */

pvm_exit();

} /* End of Slave program p3b.c */

72

Slave program for node P3C

#include "pvm3.h*
#include <stdio.h>
#include <sys/time.h>
#include <time.h>
#include <sys/types.h>
#include <signal.h>
#include <stdlib.h>

/* CONSTANTS */
#define parentl 11

#define parent2 0
#define child 15

main()
{

int 1,k,mytid, master;

int tids{20], my_wt, comm _gain;

int nproc, msgtype, me;

int rnum, rmumtot=0, done=0;

double data_mat{10000};
int disize, disize2, dosize;

/* enroll in pvm */

mytid = pvm_mytid();
master = pvm_parent();

pvm_recv(master, 20);
pvm_upkint(&nproc, 1, 1);
pvm_upkint(tids, nproc, 1);

pvm_upkint(&my_wt, 1, 1);
pvm_upkint(&comm_gain, 1, 1);

pvm_recv(master, 25);
pvm_upkint(&disize, 1, 1);

pvm_upkint(&disize2, 1, 1);
pvm_upkint(&dosize, 1, 1);

my_wt = my_wt*2;

for (i=0; i<nproc; i+ +)

if (mytid == tids[i]) { me = i; break;}

while (done == 0)
{

pvm_recv(tids[parent1], me +1);

pvm_upkdouble(data_mat, disize*comm_gain, 1);

73

~—

pvm_recv(tids{parent2], me+1);
pvm_upkdouble(data_mat, disize2*comm _gain, 1);

if (dats_mat{0] < 0)
done = 1;

/%% slave execution core **/

for(k = 0; k < my_wt; k++)
for (i =0;i < 1360; i+ +)

mum = rand();
rmumtot = mumtot + mum;
data_mat[i+1} =i+ 1;

}

pvm_initsend(PvmDataDefault);
pvm_pkdouble(data_mat, dosize*comm_gain, 1);
pvm_send(tids{ch:id], child +1);
} /* end of while done == 0 loop */
/* Program finished. Exit PVM before stopping */
pvm_exit(;

} /* End of Slave program p3c.c */

74

T T e T

Slave program for node P4A

#include "pvm3.h*
#include <stdio.h>
#include <sys/time.h>
#include <time.h>
#include <sys/types.h>
#include <signal.h>
#include <stdlib.h>

/* CONSTANTS */
#define pareat 13
#define child 1

main()

{
int i,k,mytid, master;
int tids{20], my_wt, comm_gain;
int nproc, msgtype, me, disize, dosize;
int mum, mumtot=0, done=0;
double data_mat[10000];

/* earoll in pvm */

mytid = pvm_mytidQ;
master = pvm_pareat();

pvm_recv(master, 20);
pvm_upkint(&nproc, 1, 1);
pvm_upkint(tids, nproc, 1);
pvm_upkint(&my wt, 1, 1);
pvm_upkint(&comm_gain, 1, 1);

pvm_recv(master, 25);
pvm_upkint(&disize, 1, 1);
pvm_upkint(&dosize, 1, 1);

for (i=0; i <mproc; i+ +)
if (mytid = = tids{i]) { me = i; break;}

while (done == 0)

{
pvm_recv(tids{parent], me+1);
pvm_upkdouble(data_mat, disize*comm_gain, 1);

if (data_mat{0] < 0)
done = 1;

75

—~—

/%* glave execution core **/

for(k = 0; k < my_wt; k++)
for(i=0;i < 1360; i+ +)
{
mum = rand();
mumtot = rpumtot + roum;
data matfi+1] =i + 1;
}

pvm_initsend(PvmDataDefault);
pvm_pkdouble(data_mat, dosize*comm_gain, 1);
pvm_send(tids{child], child+1);
} /* end of while done == 0 loop */
/* Program finished. Exit PVM before stopping */
pvm_exit();

} /* End of Slave program pda.c */

76

14
Slave program for node P4B

#include *pvm3.h"
#include < stdio.h>
#include < sys/time.h>
#include <time.h>
#include <sys/types.h>
#include <signal.h>
#include < stdlib.h>

/* CONSTANTS */
#define parent 5
#define child 4

main()

{
int i,k,mytid, master;
int tids[20], my_wt, comm_gain;
int nproc, msgtype, me, disize, dosize;
int mum, mumtot=0, done=0;
double data_mat{10000];

/* earoll in pvm */

mytid = pvm_mytid();
master = pvm_parent();

pvm_recv(master, 20);
pvm_upkint(&nproc, 1, 1);
pvm_upkint(tids, nproc, 1);
pvm_upkint(&my_wt, 1, 1);
pvm_upkint(&comm _gain, 1, 1);

pvm_recv(master, 25);
pvm_upkint(&disize, 1, 1);
me_uph.nt(&dosma 1, 1);

for (i=0; i<nproc; i+ +)
if (mytid = = tids[i]) { me = i; break;}

while (done == 0)

{
pvm_recv(tids{parent], me+1);
pvm_upkdouble(data_mat, disize*comm_gain, 1);

if (data_mat[0] < 0)

—

done = 1;
/** slave execution core **/
for (k = 0; k < my_wt; k++)

for (i = 0;i < 1360; i+ +)
e
roum = rand();
mumtot = mumtot + rnum;
data matfi+1] =i+ 1;
}
pvm_initsend(PvmDataDefault);
pvm_pkdouble(data_mat, dosize*comm _gain, 1);
pvm_send(tids{child], child +1);
} /* end of while done == 0 loop */
/* Program finished. Exit PVM before stopping */

pvm_exit();

} /* End of Slave program p4b.c */

78

o

Slave program for node P4C

#include "pvm3.h"
#include <stdio.h>
#include <sys/time.h>
#include <time.h>
#include <sys/types.h>
#include <signal.h>
#include <stdlib.h>

/* CONSTANTS */
#define parent 2
#define child 8

main()

{
int i,k,mytid, master;
int tids{20], my_wt, comm_gain;
int nproc, msgtype, me, disize, dosize;
int rnum, rnumtot=0, done =0;
double data_mat[10000];

/* enroll in pvm */

mytid = pvm_mytid();
master = pvm_pareat();

pvm_recv(master, 20);
pvm_upkint(&nproc, 1, 1);
pvm_upkint(tids, nproc, 1);
pvm_upkint(&my_wt, 1, 1);
pvm_upkint(&comm_gain, 1, 1);

pvm_recv(master, 25);
pvm_upkint(&disize, 1, 1);
pvm_upkint(&dosize, 1, 1);

for (i=0; i<nproc; i+ +)
if (mytid = = tids[i]) { me = i; break;}

while (done == 0)
{
pvm_recv(tids[parent], me+1);
pvin_upkdouble(data_mat, disize*comm_gain, 1);

if (data_mat{0] < 0)
done = 1;

79

/** glave execution core **/

for(k = 0; k < my_wt; k++)
for(i =0;i < 1360; i+ +)
{
mum = rand();
mumtot = mumiot + rmum;
data mat[i+1] =i+ 1;
}

pvm_initsend(PvmDataDefault);
pvm_pkdouble(data_mat, dosize*comm_gain, 1);
pvm_send(tids{child], child +1);
} /* end of while done == 0 loop */
/* Program finished. Exit PVM before stopping */

pvm_exit(Q;

} /* End of Slave program p4c.c */

80

Slave program for node P4D

#include “pvm3.h"*
#include <stdio.h>
#include <sys/time.h>
#include <time.h>
#include <sys/types.h>
#include <signal.h>
#include <stdlib.h>

/* CONSTANTS */
#define child 2

main()

{
int i,k,mytid, master;
int tids[20}, my_wt, comm_gain;
int nproc, msgtype, me, disize, dosize;
int roum, mumtot=0, done=0;
double dats_mat[10000];

/* earoll in pvm */

mytid = pvm_mytid();
master = pvmn_pareat();

pvm_recv(master, 20);
pvm_upkint(&nproc, 1, 1);
pvm_upkint(tids, nproc, 1);
pvm_upkint(&my wt, 1, 1);
pvm_upkint(&comm_gain, 1, 1);

pvm_recv(master, 25);
pvm_upkinl(&diﬁu, l’]);
pvm_upkint(&dosize, 1, 1);

for (i=0; i <nproc; i+ +)
if (mytid = = tids[i]) { me = i; break;}

while (done == 0)

{
pvm_recv(master, me+1);
pvm_upkdouble(data_mat, disize*comm_gain, 1);

if (data_mat[0] < 0)
done = 1;

/** slave execution core **/

81

for(k = 0; k < my wt; k++)
for (i = 0; i < 1360; i+ +)
{
mum = rand();
mumtot = mumtot + rnum;
dats_matfi+1} =1+ 1;
}

pvm_initsend(PvaanDeﬁult);
pvm_pkdouble(data_mat, dosize*comm _gain, 1);
pvm_sead(tids{child], child +1);
} /* end of while done == 0 loop */
/* Program finished. Exit PVM before stopping */

pvm_exit();

} /* End of Slave program p4d.c */

82

Slave program for node PSA

#include "pvm3.h"
#include <stdio.h>
#include <sys/time.h>
#include <time.h>
#include <sys/types.h>
#include <signal.h>
#include <stdlib.h>

/* CONSTANTS */
#define child 9

; inQ
int i,k,mytid, master;
int tids{20], my_wt, comm_gain;
int nproc, msgtype, me, disize, dosize;
int rnum, rmumtot=0, done=0;
double data_mat{10000];

/* earoll in pvm */

mytid = pvm_mytid();
master = pvm_parent();

pvm_recv(master, 20);
pvm_upkint(&nproc, 1, 1);
pvm_upkint(tids, nproc, 1);
pvm_uph'nt(&my_\vt, 1, 1);
pvm_upkint(&comm_gain, 1, 1);

pvm_recv(master, 25);
pvm_upkint(&dosize, 1, 1);

for (i=0; i<nproc; i+ +)
if (mytid = = tids[i]) { me = i; break;}

while (done == 0)
{

pvm_recv(master, me+1);
pvm_upkdouble(data_mat, disize*comm_gain, 1);

if (data_mat[0] < 0)
done = 1;

/** slave execution core **/

83

for (k = 0; k < my wt; k++)
for(i=0;i < 1360; i+ +)
{
roum = rand();
mumtot = mumtot + rmum;
data matfli+1] =i+ 1;
}

pvmn_initsend(PvmDataDefault);
pvm_pkdouble(dats_mat, dosize*comm_gain, 1);
pvm_send(tids{child], child +1);
} /* end of while done == 0 loop */
/* Program finished. Exit PVM before stopping */

pvm_exit(Q);

} /* End of Slave program pSa.c */

Slave program for node P5B

#include “pvm3.h*
#include <stdio.h>
#include <sys/time.h>
#include <time.h>
#include <sys/types.h>
#include <signal.h>
#include <stdlib.h>

/* CONSTANTS */
#define parent 7
#define child 4

main()

{
int i,k,mytid, master;
int tids[20), my_wt, comm_gain;
int nproc, msgtype, me, dosize, disize;
int mum, ronumtot=0, done=0;
double data_mat[10000];

/* enroll in pvm */

mytid = pvm_mytid(;
master = pvm_parent();

pvm_recv(master, 20);
pvm_upkint(&aproc, 1, 1);
pvm_upkint(tids, nproc, 1);
pvm_upkint(&my wt, 1, 1);
pvm_upkint(&comm_gain, 1, 1);

pvm_recv(master, 25);
pvm_upkint(&disize, 1, 1);
pvm_upkint(&dosize, 1, 1);

for (i=0; i <nproc; i+ +)

if (mytid = = tids[i]) { me = i; break;}

while (done == 0)

pvmn_recv(tids[parent], me+1);

pvm_upkdouble(data_mat, disize*comm_gain, 1);

if (data_mat[0] < 0)
done = 1I;

85

/** glgve execution core **/

for (k = 0; k < my _wt; k++)
for(i =0;i < 1360; i+ +)
{
roum = rand();
mumiot = rpumtot + mum;
data mat[i+1] =i + 1;
}

pvm_initsend(PvmDataDefault);
pvm_pkdouble(data_mat, dosize*comm_gain, 1);
pvm_send(tids{child], child +1);
} /*end of while done == 0 loop */
/* Program finished. Exit PVM before stopping */

pvm_exit();

} /* End of Slave program p5b.c */

86

Slave program for node P5C

#include "pvm3.h*
#include <stdio.h>
#include <sys/time.h>
#include <time.h>
#include <sys/types.h>
#include <signal.h>
#include <stdlib.h>

/* CONSTANTS */
#define parentl 1
#define parent2 4
#define parent3 8

main()
{
int i,k,mytid, master, disize, disize2, disize3;
int tids{20}, my_wt, comm_gain;
int nproc, msgtype, me, go_now = 1;
int rmum, roumtot=0, done=0;
double data_mat{10000];
int oldintv = 0, newintv = 0, tcalc;
FILE *ofp;
struct timeval stime;

/* enroll in pvm */
mytid = pvm_mytid();
master = pvm_parent();

pvm_recv(master, 20);
pvm_upkint(&nproc, 1, 1);
pvm_upkint(tids, nproc, 1);
pvm_upkint(&my wt, 1, 1);
pvm_upkint(&comm_gain, 1, 1);
my_wt = my wt*2;
pvin_recv(master, 25);
pvm_upkint(&disize, 1, 1);
pvm_upkint(&disize2, 1, 1);
pvm_upkint(&disize3, 1, 1);

for (i=0; i<mproc; i+ +)
if (mytid == tids[i]) { me = i; break;)

ofp = fopen("/home3/stone/Thesis/matlab_files/No_sched.out","w");

while (done == 0)

{
pvm_recv(tids[parent1)], me +1);

pvm_upkdouble(data_mat, disize*comm_gain, 1);

S~

e e e e T

pvm_recv(tids{parent2], me +1);
pvm_upkdouble(data_mat, disize2*comm_gain, 1);

pvm_recv(tids{pareat3], me+1);
pvin_upkdouble(data_mat, disize3*comm_gain, 1);

if (data_mat{0] < 0)
doune = 1;

/** slave execution core **/
for(k = 0; k < my wt; k++)

for(i=0;i < 1360; i+ +)

{
mum = rand();
mumtot = roumtot + roum;
data mat{i+1) =i + 1;

}

gettimeofday(&stime, (struct timeval*)0);
newintv=stime.tv_sec*1000000 + stime.tv_usec;
tcalc = newintv-oldintv;
fprintf(ofp, "\n %d",tcalc);
oldintv = newintv;
} /* end of while done == 0 loop */
fclose(ofp);

/* Tell the Master all slaves have terminated */
pvm_initsend(PvmDataDefault);
pvm_pkdouble(&go_now, 1, 1);
pvm_send(master, 35);

/* Program finished. Exit PVM before stopping */

pvm_exit();

} /* End of Slave program p5c.c */

88

APPENDIX E - SCHEDULED NODE PROCESSING PROGRAMS

MASTER PROGRAM (PROCESSOR 1):

I
Scheduled master program, also handles node Processor 1 communication and execution
requirements.

/
#include "pvm3.h"

#include <stdio.h>

#include < sys/time.h>

#include <time.h>

#include <sys/types.h>

#include <signal.h>

#include < stdlib.h>

/* CONSTANTS */

#define done_Ip 1000 /* Loop iteration counter */

#define snl 400 /* Tteration number for start of network loading */
/* GRAPH TIME VARIABLES */

int 1d_num = 55000;

int pitop2 = 300; /* These variables contain the interprocessor comm*/

int pltop3 = 300; /* costs, read has Processor i to Processor j */

int pltop4 = 300;
int pltopS = 300 + 300;
int p2top3 = 350 + 350;
int p2top4 = 350 + 350;
int p2topS = 300;
int p3topl = 525;
int p3topS = 300 + 525;
int pdétopl = 350;
int pdtop2 = 400 + 350;
int p4top3 = 350;
int pStop2 = 300;
int pStop4 = 900;

int comm_gain; /* For varying communication weights */

int my_wt ; /* For varying execution weights */
/* GLOBAL VARIABLES */

int nproc = 4;

int mytid; /* my task id */

int tids[20]; /* slave task ids */

int done = 0, who;
double data_mat[9000], go_now;

main()

char SLAVENAME]3];

89

int i, k;
int mum, rnumtot;

struct itimerval tmrval;
int suproc = 3, stids{5], wal = 0, nl_done = 0;

printf("\nComm wt = °);
scanf(" %d", &comm_gain);
printf("\Ex wt = 7);
scanf(" %d", &my_wt);
my_wt = my_wt*4;

printf("\With NET loading type 1, without NET loading type 2: *);
scanf(" %d", &wnl);

/* initialize matices */

for(k=0; k<1500; k+ +)
data_mat{k]=(double)k +5.66666;

/* enroll in pvm */

mytid = pvm_mytid();

/* start up slave tasks */

gethostname(myname,5);

pvm_spawn("p2", NULL, 1, *sun3", 1, &tids[0]);
pvm_spawn("p3", NULL, 1, *sun8", 1, &tids[1]);
pvm_spawn("p4", NULL, 1, "sun9”, 1, &tids[2]);
pvm_spawn("p5*, NULL, 1, "sun20°, 1, &tids[3]);

pvm_initsend(PvmDataDefault);
pvm_pkint(&aproc, 1, 1);
pvm_pkint(tids, nproc, 1);
pvm_pkint(&my_wt, 1, 1);
pvm_pkint(&comm_gain, 1, 1);
pvm_mcast(tids, nproc, 10);

pvm_initsend(PvmDataDefault);
pvm_pkint(&pltop2, 1, 1);
pvm_pkint(&pdtop2, 1, 1);
P"m_Phn‘(&Ps‘OPz» 1, 1);
pvm_pkint(&p2top3, 1, 1);
pvm_pkint(&p2topd, 1, 1);
PVN_Phﬂt(&Pzwps» 1, 1);
pvm_send(tids[0], 20);

pvm_initsend(PvmDataDefault);
pvm_pkint(&pltop3, 1, 1);

pvm_pkint(&p2top3, 1, 1);
pvm_pkint(&p4top3, 1, 1);
pvm_pkint(&p3topl, 1, 1);
W.Phn‘(mw. 1, 1);
pvm_send(tids{1}, 20);

pvm_initsend(PvmDataDefault);
pvm_pkint(&pltop4, 1, 1);
pvm_pkint(&p2top4, 1, 1);
pvm_pkiny(&pStop4, 1, 1);
pvm_pkint(&p4topl, 1, 1);
pvm_pkint(&p4top2, 1, 1);
pvm_pkint(&p4top3, 1, 1);
pvm_send(tids{2], 20);

, initsend(PvmDataDefault);
pvm_pkint(&pltops, 1, 1);
pvm_pkint(&p2topS, 1, 1);
pvm_pkint(&p3tops, 1, 1);
pvm_pkint(&p5top2, 1, 1);
pvm_pkint(&pStop4, 1, 1);
pvm_send(tids{3}, 20);

if (wnl == 1)

{
pvm_spawn("s1", NULL, 1, "sun3", 1, &stids[0]);
pvm_spawn("s2", NULL, 1, "sun20", 1, &stids[1]);
pvm_spawn("s3", NULL, 1, "sun8", 1, &stids[2]);

pvm_initsend(PvmDataDefault);
pvm_pkint(&snproc, 1, 1);
pvm_pkint(stids, soproc, 1);
pvm_mcast(stids, saproc, 62);

}

/* Begin User Program */

for (done = 0; done < done_lp; done ++)
{

if (done == snl && wnl == 1)
pvm_initsend(PvmDataDefault);
pvm_pkint(&Id_num, 1, 1);

} pvm_sead(stids[0], 22);

if (done == done_lIp - 1)
data_mat{0] = -444.555;

pvm_initsend(PvmDataDefault);

91

pvm data_mat, pltop5*comm_gain, 1);
pvm_send(tids{3], 4);

pvm_initsend(PvmDataDefault);
pvm_pkdouble(data_mat, pltop4*comm ,_gain, 1);
pvm_sead(tids{2], 3);

pvm_initsend(PvmDataDefault);
pvm_pkdouble(data_mat, pltop3*comm_gaiu, 1);
pvm_send(tids{1], 2);

pvm_initsend(PvmDataDefault);
pvm_pkdouble(data_mat, pltop2*comm _gain, 1);
pvm_sead(tids{0), 1);

/* Execution core section */
for (k = 0; k < my_wt*2; k++)

for (i = 0;1 < 1360; i+ +)

{
mum = rand();
mumtot = mumtot + roum;
data matfi+1] =i+ 1;

}

for (k = 0; k < my_wt; k++)
for(i=0;i < 1360; i+ +)

mum = rand();
mumtot = rnumtot + mum;
data_mat[i+1] = i+1;

}

for (k = 0; k < my_wt; k++)
for i = 0; i < 1360; i+ +)

mum = rand();
mumtot = rmumtot + rnum;
data matfi+1] =i+ 1;

}

printf("\nOn loop number %d\n",done);
if(dats_mat{0] > = 0)
{

pvm_recv(tids[1], 2);

pvm_upkdouble(data_mat, p3topl*comm_gain, 1);

pvm_recv(tids[2], 3);
pvm_upkdouble(data_mat, pdtopl*comm _gain, 1);

pvm_recv(tids(3], 4);

92

y pvm_upkdouble(&go_now, 1, 1);

} /* end of for loop */
printf("\nThe loop is done\n");

/* Ensure all slaves have quit prior to termination */
for(i=0; i <nproc; i+ +)
{
m_M-l, 3s);
pvm_upkint(&who, 1, 1);

}
printf("\nProgram m2.c cwt = %d, ewt = %d is done\n", comm_gain, my_wt/4);
/* Program Finished exit PVM before stopping */

pvm_exit(Q);
} /** END OF MAIN PROGRAM **/

93

THE INDIVIDUAL SLAVE PROGRAMS:

I
Slave program for scheduled Processor 2

#include "pvm3.h"
#include <stdio.h>
#include < sys/time.h>
#include <time.h>
#include <sys/types.h>
#include <signal.h>
#include <stdlib.h>

/* CONSTANTS */
#define parentl 2
#define parent2 3

main()
{
int i,k,mytid, master;
int tids[20], stids[20], my_wt, comm_gain;
int nproc, msgtype, me, snproc;
int rnum, rmumtot=0, done=0;
double data_mat{10000];
/* These hold the input cost,"'i", or the output cost, 0" */
int disizel, disized, disizeS, dosize3, dosize4, dosizeS;

/* enroll in pvm */

mytid = pvim_mytid();
master = pvm_parent();

pvm_recv(master, 10);
pvm_upkint(&nproc, 1, 1);
pvm_upkint(tids, nproc, 1);
pvm_upkint(&my_wt, 1, 1);
pvmm_upkint(&comm _gain, 1, 1);

pvmn_recv(master, 20);

pvm_upkint(&disizel, 1, 1);
pvm_upkint(&disized, 1, 1);
pvm_upkint(&disize$, 1, 1);
pvm_upkint(&dosize3, 1, 1);
pvm_upkint(&dosized, 1, 1);
pvm_upkint(&dosizeS, 1, 1);

for (i=0; i<nproc; i+ +)
if (mytid = = tids[i]) { me = i; break;}

pvm_recv(master, me+1);
pvm_upkdouble(data_mat, disizel*comm_gain, 1);

94

while (done = = 0)

{

pvm_initsend(PvmDataDefault);

pvm_pkdouble(data_mat, dosizeS*comm_gain, 1);

pvm_send(tids{3], 4);
pvm_initsend(PvmDataDefault);

pvm_pkdouble(data_mat, dosized*comm_gain, 1);

pvm_send(tids{2], 3);

pvm_initsend(PvmDataDefault);

pvm_pkdouble(data_mat, dosize3*comm_gain, 1);

pvm_send(tids{1], 2);

/** slave execution core **/

for (k = 0; k < my_wt; k++)
forG = 0;i < 1360; i+ +)
{
rnum = rand();
mumtot = mumtot + mum;
data matfi+1] =i+ 1;
}

for (k = 0; k < my_wt; k++)
for (i = 0; i < 1360; i++)

mum = rand();
mumtot = rmumtot + rnum;
data mat[i+1] =i + 1;

}

for (k = 0; k < my_wt; k++)
for (i =0;i < 1360; i+ +)

mum = rand();
mumtot = rmmumtot + raum;
data matfi+1] =1 + 1;

}

for(k = 0; k < my_wt; k++)
for(i=0;1i < 1360; i+ +)
{
mum = rand();
mumtot = rnumtot + raum,;
data matfi+1] =i + 1;

}

pvm_recv(tids{2], me+1);

/* simulates node A */

/* simulates node B */

/* simulates node C */

/* simulates node D */

pvm_upkdouble(data_mat, disize4*comm_gain, 1);

95

pvm_recv(tids{3], me+1);
pvm_upkdouble(data_mat, disizeS*comm_gain, 1);

_recv(master, me+1);
pvmn_upkdouble(data_mat, disizel*comm_gain, 1);

if (data_mat{0] < 0)

{
done = 1;
pvm_initsend(PvmDataDefault);
pvm_pkdouble(data_mat, dosize3*comm _gain, 1);
pvm_send(tids{1], 2);

}
} /* ead of while done == 0 loop */
/* Inform the master I have terminated */
pvm_initsend(PvmDataDefault);
pvm_pkint(&me, 1, 1);
pvm_send(master, 35);

/* Program finished. Exit PVM before stopping */
pvm_exit();

} /* End of Slave program p2.c */

96

I
Slave program for scheduled processor 3

#include “pvm3.h*
#include <stdio.h>
#include <sys/time.h>
#include <time.h>
#include <sys/types.h>
#include <signal.h>
#include <stdlib.h>

/* CONSTANTS */
#define parentl 3
#define done_tag 45

main()
{
int i,k,mytid, master;
int tids[20], stids{20], my_wt, comm_gain;
int nproc, msgtype, me, snproc;
int mum, rnumtot=0, done=0;
double data_mat[10000];
double go_now = 55.55;
int disizel, disize2, disized, dosizel, dosize5;

I* earoll in pvm */

mytid = pvm_mytid(;
master = pvmn_parent();

pvm_recv(master, 10);
pvm_upkint(&nproc, 1, 1);
pvm_upkint(tids, nproc, 1);
pvm_upkint(&my_wt, 1, 1);
pvm_upkint(&comm_gain, 1, 1);

pvm_recv(master, 20);

pvm_upkint(&disizel, 1, 1);
pvm_upkint(&disize2, 1, 1);
pvm_upkint(&disized, 1, 1);
pvm_upkint(&dosizel, 1, 1);
pvm_upkint(&dosizes, 1, 1);

for (1=0; i<nproc; i+ +)
if (mytid == tids[i]) { me = i; break;}

pvm_recv(tids[0], 2);
pvm_upkdouble(data_mat, disize2*comm_gain, 1);

{

97

pvm_initsend(PvmDataDefault);
pvm_pkdouble(data_mat, dosize5*comm_gain, 1);
pvm_send(tids{3], 4);

pvm_initsead(PvmDataDefault);
pvin_pkdouble(data_mat, dosizel*comm_gain, 1);
pvm_sead(master, me+1);

pvm_initsend(PvmDataDefault);
pvm_pkdouble(&go_now, 1, 1);
pvm_send(tids{2], 20);

/** slave execution core **/
for(k = 0;k < my wt; k++) /* simulates node A */
for(i=0;i < 1360; i+ +)
{
mum = rand();
rmumtot = mumtot + mum;
data matfi+1] =i + 1;

}

for(k =0k < my wt; k++) /* simulates node B */
for(i=0;i < 1360;i++)
{

mum = rand();
mumtot = mumtot + roum;
data mat[i+1) =i + 1;

}
/* simulates node C */
for(k = 0; k < my_wt*2; k++)

for(i = 0;i < 1360; i+ +)
{

mum = rand();

mumtot = rnumtot + rmum;

data matfi+1] =i+ 1;
}

pvmn_recv(master, me+1);
pvm_upkdouble(data mat, disizel*comm gain, 1);

pvm_recv(tids[2], me+1);
pvm_upkdouble(data_mat, disize4*comm_gain, 1);

pvm_recv(tids[0], me+1);
pvmn_upkdouble(data_mat, disize2*comm_gain, 1);

if (data_mat{0] < 0)

{
done = 1;
go_now = -34.33;
pvm_initsend(PvmDataDefault);

98

pvm_pkdouble(&go_now, 1, 1);
pvm_send(tids{2], 20);

}
} /* end of while done == 0 loop */

/* Inform the master]I have terminated */
pvm_initsend(PvmDataDefauit);
pvm_pkint(&me, 1, 1);
pvm_send(master, 35);

/* Program finished. Exit PVM before stopping */
pvm_exit();

} /* End of Slave program p3.c */

Slave program for scheduled processor 4

#include *pvm3.h"
#include <stdio.h>
#include < sys/time.h>
#include <time.h>
#include <sys/types.h>
#include <signal.h>
#include < stdlib.h>

/* CONSTANTS */
#define parent] 2
#define parent2 3

e
int i,k,mytid, master;
int tids{20], my_wt, comm_gain;
int nproc, msgtype, me, snproc;
int raum, mumtot=0, done=0;
double data_mat[10000];
double go_now;
int disizel, disize2, disizeS, dosizel, dosize2, dosize3;

/* earoll in pvi */
mytid = pvm_mytid();
master = pvm_pareat();

pvm_recv(master, 10);
pvm_upkint(&aproc, 1, 1);
pvm_upkint(tids, nproc, 1);
pvm_upkint(&my_wt, 1, 1);
pvm_upkint(&comm_gain, 1, 1);

pvm_recv(master, 20);

pvm_upkint(&disizel, 1, 1);
pvm_upkint(&disize2, 1, 1);
pvm_upkint(&disize$, 1, 1);
pvm_upkint(&dosizel, 1, 1);
pvm_upkint(&dosize2, 1, 1);
pvm_upkint(&dosize3, 1, 1);

for (i=0; i <nproc; i+ +)
if (mytid = = tids[i]) { me = i; break;}

data_mat[0] = 456.3333;

pvm_recv(tids{1], 20);
pvm_upkdouble(&go_now, 1, 1);

100

while (done == 0)
{
,_initsend(PvmDataDefault);

pvm_pkdouble(data_mat, dosizel*comm _gain, 1);

pvm_send(master, me+1);

pvm_initsend(PvmDataDefauilt);

pvm_pkdouble(data_mat, dosize2*comm_gain, 1);

pvm_sead(tids{0], 1);
pvm_initsend(PvmDataDefault);

data_mat, dosize3*comm_gain, 1);

pvm_pkdouble(
pvm_send(tids{1], 2);

_initsend(PvmDataDefault);
pvm_pkdouble(&go_now, 1, 1);
pvm_send(tids{3], 4);

if (data_mat[0] < 0)
done = 1;

/** glave execution core **/
for (k = 0; k < my_wt; k++)
for (i = 0; i < 1360; i+ +)

roum = rand();
roumtot = mumtot + rnum;
dau_ml[i+l] =i+4+1;

}

for (k = 0; k < my wt; k++)
for (i = 0; i < 1360; i+ +)

mum = rand();
rmumtot = rmumtot + rnum;
data__mnt[i+l] =i+1;

}

for (k = 0; k < my_wt; k++)
for (i = 0;i < 1360; i++)

mum = rand();
rmumtot = roumtot + rnum;
data_mat[i-i-l] =1+ 1;

}

for k = 0; k < my_wt; k++)
for(i=0;i < 1360; i+ +)

mum = rand();
mumtot = mumtot + roum;

/* simulates node A */

/* simulates node B */

/* simulates node C */

/* simulates node D */

101

data matfi+1] =i + 1;
}

pvm_recv(tids{0], me+1);
pvm_upkdouble(data_mat, disize2*comm_gain, 1);

pvm_recv(tids{3], me+1);
pvm_upkdouble(data_mat, disizeS*comm_gain, 1);

pvm_recv(master, me+1);
pvm_upkdouble(data_mat, disizel*comm_gain, 1);

pvm_recv(tids{me-1], 20);
pvm_upkdouble(&go_now, 1, 1);

if (go_now < 0)
{

done = 1;
pvm_initsend(PvmDataDefault);
pvm_pkdouble(&go_now, 1, 1);

}
} /* end of while done == 0 loop */

/* Inform the master I have terminated */
pvm_initsend(PvmDataDefault);
pvm_pkint(&me, 1, 1);
pvm_send(master, 35);

/* Program finished. Exit PVM before stopping */
pvm_exit();

} /* End of Slave program p4.c */

102

!
Slave program for scheduled processor 5

#include "pvm3.h"
#include <stdio.h>
#include <sys/time.h>
#include <time.h>
#include <sys/types.h>
#include <signal.h>
#include <stdlib.h>

/* CONSTANTS %/
#define parentl 2
#define parent2 3

main()

{
int i,k,mytid, master;
int tids{20], my_wt, comm_gain;
int nproc, msgtype, me;
int rmum, rnumtot=0, done=0;
double data_mat{10000], go_now;
FILE *ofp;
int oldintv = O, newintv = 0, tcalc;
struct timeval stime;

/* earoll in pvm %/
myﬁd = pvm_mytido;
master = pvin_parent();

pvm_recv(master, 10);
pvm_upkint(&nproc, 1, 1);
pvm_upkint(tids, nproc, 1);
pvm_upkint(&my_wt, 1, 1);
pvm_upkint(&comm_gain, 1, 1);

pvm_recv(master, 20);

pvm_upkint(&disizel, 1, 1);
pvm_upkint(&disize2, 1, 1);
pvm_upkint(&disize3, 1, 1);
pvm_upkint(&dosize2, 1, 1);
pvm_upkint(&dosized, 1, 1);

for (i=0; i<mproc; i+ +)
if (mytid == tids{i]) { me = i; break;}

ofp = fopen("/home3/stone/Thesis/matlab_files/Sched.out","w");
fprintf(ofp,"\n %d" ,comm_gain);
fprintf(ofp, "\n%d",my_wt/4);

data_mat{0] = 456.33333;

103

| b R i —

pvm_recv(tids{2], me+1);
pvm_upkdouble(&go_now, 1,);

while (done = = 0)

{
pvm_initsend(PvmDataDefauit);
pvm_pkdouble(data_mat, dosize2*comm _gain, 1);
pvm_send(tids{0], 1);

pvm_initsend(PvmDataDefault);
pvm_pkdouble(data_mat, dosized*comm_gain, 1);
pvm_send(tids[2], 3);

pvm_initsend(PvmDataDefault);
pvm_pkdouble(&go_now, 1, 1);
pvm_send(master, me+1);

/** slave execution core **/
for (k = 0; k < my_wt; k++) /* simulates node A */

for (i = 0;i < 1360; i+ +)

{
rmum = rand();
roumtot = mumtot + roum;
data mat{i+1] =i + 1;

}

for(k = 0; k < my_wt; k++) /* simulates node B */
for(i=0;i < 1360; i++)
{
mum = rand();
mumtot = rnumtot + rmum;
data matfi+1} =i + 1;

for (k = 0; k < my_wt*2; k++) /* simulates node C */
for(i=0;i < 1360; i+ +)
{
roum = rand();
mumtot = rmumtot + raum;
data matfi+1] =i+ 1;
}

gettimeofday(&stime, (struct ﬁmevd*)O);
newintv=stime.tv_sec*1000000 + stime.tv_usec;
tcalc = newintv-oldintv;

fprintf(ofp, "\n %d",tcalc);
oldintv = pewintv;

pvm_recv(tids[0], me+1);

104

pvm_upkdouble(data_mat, disize2*comm_gain, 1);

pvm_recv(tids{1], me+1);
pvm_upkdouble(data_mat, disize3*comm_gain, 1);

pvm_recv(master, me + 1);
pvm_upkdouble(data_mat, disizel*comm_gain, 1);

pvm_recv(tids{2], me+1);
pvm_upkdouble(&go_now, 1, 1);

if (go_now < 0)
done = 1;

} /*end of while done == 0 loop */
fclose(ofp);

/* Inform the master I have terminated */
pvm_initsend(PvmDataDefault);
pvm_pkint(&me, 1, 1);
pvm_send(master, 35);

/* Program finished. Exit PVM before stopping */
pvm_exit();

} /* End of Slave program p5.c */

/* done = pvm_probe(master, done_tag);*/

105

APPENDIX F - HARDWARE MULTICAST NODE PROCESSING PROGRAMS

MASTER PROGRAM (PROCESSOR 1):

14
Scheduled master program using hardware implemented message multicasts

#include "pvm3.h"
#include <stdio.h>
#include <sys/time.h>
#include <time.h>
#include <sys/types.h>
#include <stdlib.h>

/* CONSTANTS */
#define done_Ip 1000
#define snl 400

/* GRAPH TIME VARIABLES */
int plout = 300 + 300 + 300 + 300+300;
int p2out = 350+350 + 350+350 + 300;
int p3out = 525 + 300+525;
int pdout = 350 + 400+350 + 350;
int pSout = 300 + 900;
int ld noum = 55000;

/* GLOBAL VARIABLES */
int nproc = 4;
int mytid; /* my task id */
int tids[20}; /* slave task ids */
int who, done = 0;
double data_mat[11000], go_now ;
main()
{

int i, k,mnum, mumtot;

int snproc = 3, stids[5], wnl = 0, nl_done = 0;
struct itimerval tmrval;

int comm_gain, my_wt;

printf("\nComm wt = ");

scanf(" %d", &comm_gain);

printf("\Ex wt = *);

scanf(" %d", &my_wt);

my _wt = my wt*4;

printf("\With NET loading type 1, without NET loading type 2: ");
scanf(" %d", &wnl);

/* initialize matices */

106

~

for(k=0; k< 1500; k+ +)
data_mat{k]=(double)k +5.66666;

/* earoll in pvm */
mytid = pvm_mytid0;

/* start up slave tasks */
pvm_spawn("p2h", NULL, 1, "sun3", 1, &tids[0]);
pvm_spawn("p3h", NULL, 1, "sun8", 1, &tids[1]);
pvm_sptwn("pﬁl', NULL, 1, “sun9", 1, &ﬁd8[2]);
pvm_spawn(“pSh”, NULL, 1, "sun20", 1, &tids{3]);

_initsend(PvmDataDefault);
pvm_pkint(&nproc, 1, 1);
pvm_pkint(tids, nproc, 1);
pvm_pkint(&my_wt, 1, 1);
pvm_pkint(&comm_gain, 1, 1);
pvm_mcast(tids, nproc, 10);

pvm_initsend(PvmDataDefault);
pvm_pkint(&plout, 1, 1);
P"m_th(&on“t» 1, 1);
pvm_send(tids{0}, 20);

pvm_initsend(PvmDataDefauit);
pvm_pkint(&p2eut, 1, 1);
pvm_pkint(&p3out, 1, 1);
pvm_send(tids[1], 20);

pvm_initsend(PvmDataDefault);
pvm_pkint(&p3out, 1, 1);
pvm_pkint(&pdout, 1, 1);
pvm_send(tids(2], 20);

_initsend(PvmDataDefault);
pvm_pkint(&pdout, 1, 1);
pvm_pkint(&pSout, 1, 1);
pvm_send(tids{3], 20);

if(wnl == 1)

{
pvm_spawn("s1", NULL, 1, “sun3", 1, &stids[0]);
pvm_spawn("s2", NULL, 1, "sun20", 1, &stids[1]);
pvm_spawn(“s3°, NULL, 1, “sun8", 1, &stids{2]);

pvm_initsend(PvmDataDefault);
pvm_pkint(&snproc, 1, 1);
pvm_pkint(stids, snproc, 1);
pvm_mcast(stids, snproc, 62);

107

/* Begin User Program */

for (done = 0; done < done_lp; done + +)
{

{
pvm_initsend(PvinDataDefault);
pvm_pkint(&ld num, 1, 1);

} pvm_send(stids[0], 22);

if (done == done_lp - 1)
data_mat{0] = -444.555;

pvm_initsend(PvmDataDefault);
pvm_pkdouble(data_mat, plout*comm gain, 1);
pvm_send(tids{0], 12);

/* Slave execution cores for P1A, P1B, and P1C */
for (k = 0; k < my_wt*2; k+~-)
for(i=0;i < 1360; i+ +)
{
mum = rand();
mumtot = mumtot + mum;
dats matfi+1] =i + 1;
}

for(k = 0; k < my_wt; k+ +)
for (i = 0;1 < 1360; i+ +)
{
mum = rand();
mumtot = mumtot + rmum;
data matfi+1) =i+ 1;
}

for (k = 0; k < my_wt; k++)
for (i = 0;i < 1360; i+ +)

mum = rand();
roumtot = rnumtot + rmum;
data matfi+1] =i + 1;

}

printf("\nOn loop number %d\n",done);
if(data_mat[0] > = 0)
{

pvm_recv(tids[3], 51);

pvin_upkdouble(data_mat, pSout*comm _gain, 1);

108

}
} /*end of for loop */
printf{"\nThe loop is done\n");
/* Ensure all slaves have quit prior to termination */
for(i=0; i <mproc; i+ +)
{
m_m('l' 35);
pvm_upkint(&who, 1, 1);
}

printf("\nProgram m2h.c cwt = %d, ewt = %d is done\n®, comm_gain, my_wt/4);

/* Program Finished exit PVM before stopping */
pvm_exit();

} /** END OF MAIN PROGRAM **/

109

THE INDIVIDUAL SLAVE PROGRAMS:

7/
Slave program for scheduled w/ hardware multicast for Processor 2

#include “pvm3.h”
#include <stdio.h>
#include <sys/time.h>
#include < time.h>
#include < sys/types.h>
#include <stdlib.h>

main()

int tids[20], my_wt, comm_gain;
int nproc, msgtype, me, i,k,mytid, master;
int mum, mumtot=0, done=0;
double data_mat[11000];
int plout, p2out, p3out, pdout, pSout;

/* earoll in pvm */
mytid = pvm_mytid0;
master = pvin_parent();

pvm_recv(master, 10);
pvm_upkint(&nproc, 1, 1);
pvm_upkint(tids, nproc, 1);
pvm_upkint(&my_wt, 1, 1);
pvm_upkint(&comm gain, 1, 1);

pvm_recv(master, 20);
pvm_upkint(&plout, 1, 1);
pvm_upkint(&p2out, 1, 1);
for (i=0; i<nproc; i+ +) ‘

if (mytid == tids[i]) { me = i; break;}
pvm_recv(master, 12);
pvm_upkdouble(data_mat, plout*comm_gain, 1);

while (done == 0)

{
pvm_initsend(PvmDataDefault);
pvm_pkdouble(data_mat, p2out*comm_gain, 1);
pvm_send(tids[1), 23);

f** glave execution core **/
fork = 0; k < my wt; k++) /* simulates node A */
for(i = 0; i < 1360; i+ +)
{
mum = rand();
roumtot = ropumtot -+ raum;
data matfi+1] =i + I;

110

}
}

}
for (k = 0; k < my_wt; k++) /* gimulates node B */
for(i=0;i < 1360; i+ +)

rmum = rand();
mumtot = mumtot + roum;
data_mat{i+1] =i + 1;

}
for (k = 0; k < my_wt; k++) /* simulates node C */
for (i = 0; i < 1360; i+ +)

mum = rand();
rmumtot = mumtot + rnum;
data matfi+1] = i+l

}
for(k = 0; k < my_wt; k++) /* simulates node D */
for (i =0;i < 1360; i++)
{
roum = rand();
rmumtot = rmumtot + mum;
data mat{i+1] =1 + 1;
}
pvm_recv(master, 12);
pvm_upkdouble(data_mat, plout*comm_gain, 1);
if (data_mat[0] < 0)

done = 1;

pvm_initsend(PvmDataDefault);
pvm_pkdouble(data_mat, p2out*comm _gain, 1);
pvm_send(tids{1], 23);

/* end of while done == 0 loop */

/* Inform the master I have terminated */
pvm_initsend(PvmDataDefault);
pvm_pkint(&me, 1, 1);
pvm_send(master, 35);

/* Program finished. Exit PVM before stopping */
pvm_exit();
} /* End of Slave program p2.c */

111

I
Slave program for scheduled hardware multicast for Processor 3

#include "pvm3.h"
#include <stdio.h>
#include <sys/time.h>
#include <time.h>
#include <sys/types.h>
#include <signal.h>
#include <stdlib.h>

masin()

{
int i,k,mytid, master, nproc, msgtype, me;
int tids[{20], stids{20], my_wt, comm_gain;
int mum, mumtot=0, done=0;
double data_mat[11000}, go_now = 55.55;
int plout, p2out, p3out, pdout, pSout, snproc;

/* earoll in pvm */
mytid = pvm_mytid0;
master = pvm_parent();

pvm_recv(master, 10);
pvm_llpkinl(&npfoc, 1, 1);
pvm_upkint(tids, nproc, 1);
pvm_upkint(&my_wt, 1, 1);
pvm_upkint(&comm_gain, 1, 1);

pvm_recv(master, 20);
pvm_upkint(&p2out, 1, 1);
pvm_upkint(&p3out, 1, 1);

for (i=0; i<nproc; i+ +)
if (mytid == tids[i}) { me = i; break;}

pvm_recv(tids[0], 23);
pvm_upkdouble(data_mat, p2out*comm_gain, 1);

while (done == 0)
{

pvm_initsend(PvmDataDefault);
pvm_pkdouble(data_mat, p3out*comm_gain, 1);
pvm_send(tids{2], 34);

/** slave execution core **/
for(k = 0; k < my_wt; k++) /* simulates node A */
for (i = 0;i < 1360; i+ +)
{

mum = rand();

112

mumtot = mumtot + rnum;
data matfi+1] =i + 1;
}
for(k = 0;k < my wt; k++) /* simulates node B */
for(i=0;i < 1360; i+ +)
{
mum = rand();
mumtot = rnumtot + mum;
data matfi+1] =1+ 1;

}
for (k = 0; k < my_wt*2; k++) /* simulates node C */
for (i = 0;i < 1360; i+ +)
{
mum = rand();
mumtot = rnumtot + mum;
data matfi+1] =i+ 1;

pvm_recv(tids{0}, 23);
pvin_upkdouble(data_mat, p2out*comm_gain, 1);

if (dats_mat{0] < 0)

{
done = 1;
pvm_initsend(PvmDataDefault);
pvm_pkdouble(data_mat, p3out*comm_gain, 1);
pvm_send(tids{2], 34);

}

} /* end of while done == 0 loop */

/* Inform the master I have terminated */
pvm_initsend(PvmDataDefault);

pvm_pkint(&me, 1, 1);
pvm_send(master, 35);

/* Program finished. Exit PVM before stopping */
pvm_exit(Q;

} /* End of Slave program p3h.c */

113

I

Slave program for scheduled hardware multicast for Processor 4

#include “pvm3.h*
#include <stdio.h>
#include <sys/time.h>
#include <time.h>
#include <sys/types.h>
#include <signal.h>
#include <stdlib.h>

{ in(
int i,k,mytid, master, nproc, msgtype, me;
int tids{20], my_wt, comm_gain;
int mum, mumtot=0, done=0;
double data_mat{10000], go_now;

int p3out, pdout;

/* enroll in pvm */
mytid = pvm_mytid();
master = pvm_parent();

pvm_recv(master, 10);
pvm_upkint(&mproc, 1, 1);
pvm_upkint(tids, nproc, 1);
pvmn_upkint(&my_wt, 1, 1);
pvm_upkint(&comm_gain, 1, 1);

pvm_recv(master, 20);
pvm_upkint(&p3out, 1, 1);
pvm_upkint(&p4out, 1, 1);

for (i=0; i <mproc; i+ +)
if (mytid = = tids[i]) { me = i; break;}

data_mat{0] = 456.3333;

pvm_recv(tids{1}, 34);
pvm_upkdouble(data_mat, p3out*comm_gain, 1);

while (done == 0)

{
pvm_initsead(PvmDataDefault);
pvm_pkdouble(data_mat, pdout*comm_gain, 1);
pvm_send(tids(3], 45);

if (data_mat[0] < 0)
done = 1;

/** glave execution core **/

114

~—

for(k = 0; k < my_wt; k++) /* simulates node A */

for (i = 0;i < 1360; i+ +)

{
mum = rand();
mumtot = rmmumtot + rmum;
data matfi+1] =i + 1;

}
for(k = 0; k < my_wt; k++) /* simulates node B */

for(i = 0;1 < 1360; i+ +)

mum = rand();
mumtot = mumtot + raum;
datn_mt[i-l-l] =i+ 1;

}

for (k = 0; k < my_wt; k++) /* simulates node C */

forG = 0;1 < 1360; i+ +)

{
mum = rand();
mumtot = mumtot + mum;
data matfi+1] =i + 1;

}
for (k = 0; k < my wt; k++) /* simulates node D */

for(i = 0;i < 1360; i+ +)

{
mum = rand();
mumtot = mumtot + rnum;
data matfi+1] =i + I;

}

pvm_recv(tids[1], 34);
pvm_upkdouble(data_mat, p3out*comm_gain, 1);

if (data_mat{0] < 0)

{
done = 1;
pvm_initsend(PvmDataDefault);
pvm_pkdouble(data_mat, pdout*comm_gain, 1);
pvm_send(tids[3], 45);

}
} /* ead of while done == 0 loop */
/* Inform the master I have terminated */
pvm_initsend(PvmDataDefault);
pvm_pkint(&me, 1, 1);
pvm_send(master, 35);

/* Program finished. Exit PVM before stopping */
pvmn_exit();

} /* End of Slave program p4h.c */

115

Ww:kw LEERe -z dhecens st i iamact R T — yp—— ——

b
i
i

/ -
Slave program for scheduled hardware multicast for Processor 5

#include "pvm3.h"
#include <stdio.h>
#include <sys/time.h>
#include <time.h>
#include <sys/types.h>
#include <stdlib.h>

main()
{
int i,k,mytid, master, nproc, msgtype, me;
int tids{20], my_wt, comm_gain;
int mum, mumtot=0, done=0;
double data_mat[10000], go_now;
int oldintv = 0, newintv = 0, tcalc, pdout, pSout;
FILE *ofp;
struct timeval stime;

/* earoll in pvm */
mytid = pvm_mytid(;
master = pvm_parent();

pvin_recv(master, 10);
pvm_upkint(&nproc, 1, 1);
pvm_upkint(tids, nproc, 1);
PVln_“Pldm(&mY_Wt» 1, 1);
pvm_upkint(&comm_gain, 1, 1);

pvm_recv(master, 20);
pvm_upkint(&pdout, 1, 1);
pvm_upkiny(&pSout, 1, 1);

for (i=0; i<nproc; i+ +)

if (mytid == tids[i]) { me = i; break;}
ofp = fopen("/home3/stone/Thesis/matlab_files/Sched_hs.out","w");
data_mat[0] = 456.33333;

pvm_recv(tids{2], 45);
pvm_upkdouble(data_mat, pdout*comm_gain, 1);

while (done == 0)
{

_initsend(PvmDataDefault);
pvmn_pkdouble(data_mat, pSout*comm_gain, 1);
pvm_send(master, 51);

/** slave execution core **/

for(k = 0; k < my wt; k++) /* simulates node A */
for(1 =0;i < 1360; i+ +)

116

~

{
roum = rand();
mumtot = rmumtot + mum;
data_matfi+1] = i+

}
for (k = 0; k < my_wt; k++) /# simulates node B */

for (i = 0;i < 1360; i+ +)

{
raum = rand();
mumtot = mumfot + rmum;
data matfli+1] =i+ 1;

}
for (k = 0; k < my wt*2; k++) /* gimulates node C */

for (i = 0;i < 1360; i+ +)

raum = rand();
mumtot = rnumtot + rnum;
data_mat[i+1] =i + 1;

}
gettimeofday(&stime, (struct timeval*)0);
newinty =stime.tv_sec*1000000 + stime.tv_usec;
tcalc = newintv-oldintv;
fprintf(ofp, "\n%d", tcalc);
oldintv = newintv;

pvm_recv(tids(2], 45);
pvm_upkdouble(data_mat, pdout*comm _gain, 1);
if (data_mat[0] < 0)
done = 1;
} /* end of while done == 0 loop */

fclose(ofp);

/* Inform the master I have terminated */
pvm_initsend(PvmDataDefauit);
pvm_pkint(&me, 1, 1);
pvmm_send(master, 35);

/* Program finished. Exit PVM before stopping */
pvm_exit();

} /*End of Slave program pS.c */

117

INITIAL DISTRIBUTION LIST

Defense Technical Information Center
Cameron Station
Alexandria, VA 22304-6145

Dudley Knox Library, Code 52
Naval Postgraduate School
Monterey, CA 93943-5101

Chairman, Code EC

Department of Electrical and Computer Engineering
Naval Postgraduate School

Monterey, CA 93943-5121

Prof. Shridhar B. Shukla, Code EC/Sh

Department of Electrical and Computer Engineering
Naval Postgraduate School

Monterey, CA 93943-5121

Prof. B. Neta, Code MA/Nd
Department of Mathematics
Naval Postgraduate School
Monterey, CA 93943

Prof. Donald A. Danielson, Code MA/Dd
Department of Mathematics

Naval Postgraduate School

Monterey, CA 93943

Chairman, Code MA
Department of Mathematics
Naval Postgraduate School
Monterey, CA 93943

Dr. Steve Knowles, Coiz N4/6T
Technical Director

Naval Space Command
Dahlgren, VA 22448-5170

118

10.

Dr. Paul Schumacher, Code 63T
Naval Space Command
Dahigren, VA 22448-5170

LT. Leon C. Stone, Jr.
414 W. Broadway
Princeton, IN 47670

119

