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ABSTRACT

In this thesis the benefits of parallel computing using a workstation cluster are

explored for two typical Naval applications. The applications are examples of one off-

line and one on-line program. The off-line program is a Navy program currently in use

by the Naval Space Command in its satellite prediction model. The on-line program is

a large grain data flow problem with critical throughput requirements and represents a

hypothetical combat weapons system. Data and function decomposition techniques are

used in both applications. Speedup and throughput are the performance metrics studied.

The software employed was the Parallel Virtual Machine (PVM) by the Oak Ridge

National Laboratory. PVM enables a network of heterogeneous workstations to appear

as a parallel multicomputer to the user programs. PVM runs over the workstation

operating system and provides the user with a set of library calls for message passing

and process creation.
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L INTRODUCTION

All successful organizations depend on reliable and timely data management. As

an organization evolves, its data system requirements also increase. The United States

Navy is an example of one such organization. Its data processing requirements demand

evermore computing speed and capacity. An economical solution to this need is to

network the workstations present in abundance and utilize parallel processing. To this

end, this thesis provides performance results of two typical applications on a

workstation cluster.

With the introduction of small, relatively inexpensive computers, a vast amount of

computing resources are often left idle for a long period of time. A ship often has this

characteristic. A ship's complement of computers is usually used for intermittent word

processing or single dedicated computational tasks. With these computers networked

together, a lot of unused CPU power is available. In order to tap into these unused

assets, parallelization software tools have been developed. These programs operate at

the user level like an extra layer of operating system code.

The Navy's computation requirements can be classified as off-line and on-line data

processing programs. An off-line program does not require continuous, time-critical,

processing. It executes once per some specified time period with clear beginning and

ending times. An on-line program does require continuous computational assets for its

functions. It is characterized by constant, non-stop, real time processing.

For this thesis, one example of each type of program was parallelized using a

software tool. The tool used for parallelization was the Parallel Virtual Machine

(PVM). The off-line program was the Naval Space Command's PPT2 Analytical



Satellite Position Propagation Program. The on-line program is a hypothetical

Shipboard Combat Weapon System.

A. PVM: PARALLEL VIRTUAL MACHINE

PVM is a software library, currently being refined, developed by the Oak Ridge

National Laboratory (ORNL). It is a software system that enables a collection of

heterogeneous computers to be used as a coherent and flexible concurrent

computational system [Ref. 1]. PVM was chosen because it is relatively easy to use, is

an emerging standard for software of its kind, and its price is definitely reasonable. It

is currently available free of charge from ORNL and installation is relatively easy.

PVM version 3.2 was used for this thesis. A short description on acquiring and

installing PVM appears in Appendix A.

B. THESIS SCOPE AND CONTRIBUTION

The goal of this thesis was to exploit the benefits of parallel computing, as cost

effectively as possible, using a software tool. The two applications process large

amounts of data and represent contrasting requirements while lending themselves to

parallel processing. The positive aspect of parallelizing these procedures is the

performance improvement over their serial counterparts. Parallelization could have

been accomplished using a specific parallel multicomputer. These systems tend to be

large and expensive, and tie-up extensive human and fiscal resources for a limited

number of uses. PVM provided the desired cost effectiveness. While, arguably, PVM

may not accomplish the tasks as fast as, say, an INTEL iPSC/2 hypercube, the process

execution times were satisfactory for the applications tested. Furthermore, they were

accomplished on a shared network without noticeably disturbing other system users.
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The representative use of a loosely shared network in this thesis is the most

noteworthy aspect. For instance, the on-line application was tested as though it was in a

shipboard environment. It performed as desired while simulated shipboard tasks such

as, supply data-base upkeep, report and correspondence word processing, and

computerized engineering parameter measuring were being carried out.

C. THESIS ORGANIZATION

This thesis is organized as follows. Chapters H and Ill cover the Naval Space

Command's PPT2 program. Chapter H specifically describes PPT2 itself, the modes of

parallelization used, and the variable mode which was finally used. Chapter III reports

the results obtained for this application and recommendations for possible future

improvements to the model.

Chapters IV and V deal with the hypothetical Combat System model. Chapter IV

details the design and requirements of the model and Chapter V contains the results.

Chapter VI contains overall conclusions and areas for further study.

3



H. PARALLELIZATION OF PPT2

Currently the Naval Space Command tracks over 6000 objects orbiting around the

earth. With more and more countries entering space exploitation, and as the United

States increases its emphasis on space communication, this data set of satellites will

forseeably increase dramatically in the future. These increases in the satellite catalog

will increase the computational demands on the computer tasked with orbit prediction.

If the NAVSPACECOM's orbital model's accuracy is increased or multiple calls to the

orbit prediction algorithm are made for accuracy, the computational demands may be

too much of a burden if the computer was a serial machine [Ref. 2]. Given these

computational loads, and the time dependency of the results, parallel processing of the

catalog is a logical extension.

A. PPT2

PPT2 is the NAVSPACECOM's program which implements an analytic satellite

motion model based on the Brouwer-Lyddane orbital prediction theory. Reference [2]

goes into great depth describing this theory and how PPT2 implements the theory in

FORTRAN. For this thesis, the accuracy of the PPT2 program, or the theory of how it

works was not relevant. The one major aspect of PPT2 considered was the required

size of each satellite data record which is 84 elements. No other internal details of

PPT2 are discussed here.

B. PARALLEL DECOMPOSITION METHODS

Given a program and its associated data set, there are two primary ways to process

it in parallel. The program can be separated into individual sections with a processor

dedicated to compute its respective part, much like a factory assembly line. The other

4



primary method is dividing up the data set and sending parts to many separate

processors all running the same algorithm, but on different data. Each of these methods

is highly dependent on the program description and the size of the data.

Although the PPT2 algorithm is sufficiently large to break down into individual

computational nodes, the data set size is such that data decomposition is more effective.

These observations are validated in Reference [2]. Control decomposition had been

previously attempted but was not successful [Ref. 3]. Based on these results, all of the

parallelization methods used were various ways of decomposing the satellite catalogue

and distributing it to multiple nodes executing PPT2.

C. DECOMPOSITION STRATEGIES

The basic algorithm for all of the decomposition strategies used a master/slave

distribution network. For all the programs, there was one supervisor (master) node

which decomposed the data set and distributed it to the worker (slave) nodes. Each

worker ran on a separate processor and sent its results to a gathering node which

printed the results to a file and reported to the supervisor when the process had

completed for all satellites. Figure 2.1 graphically presents these relationships.

To get a general understanding of the decomposition requirements multiple

decomposition strategies were developed, each with benefits over the previous strategy

until four different methods had been explored. All the methods endeavored to keep the

worker processors busy as much as possible to increase speedup and efficiency. Each

method is described below.

5



Figure 2.1. Supervisor/Worker Dependency Graph.
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1. dsl: Send/Request One at a Time

For this strategy, the supervisor node initially sends one satellite to each

individual worker node and waits for the workers to individually request another

satellite. This method brought out the high PVM communications overhead which

needed to be overcome for adequate speedup.

2. ds2: Send/No Request

The supervisor node for this routine sent one satellite at a time to each

worker node until the input file was exhausted. This process reduced the

communications overhead between the supervisor and worker, but it did not keep all

the processors busy for a sufficiently long time.

3. ds3: Send Block

For this scheme, the supervisor divided the number, S, of input satellites by

the number, n, of worker processors. The supervisor then decomposed the input data

into blocks of S/n size and distributed these to each processor individually. This was

much more efficient than the previous two methods, but for a large n, n > 8, the

workers numbered eight and above were still not getting data fast enough to notice

effective processor computational overlap.

4. ds4: Send Half Block

For this scheme, the supervisor divided the S/n size block by two then sent

the two half blocks to each worker so all the workers had one half of their data while

the supervisor was sending the second half. These schemes were used with data sets of

600 and 1200 satellites. For experimentation, PVM was started on eighteen different

workstations so measurements could be taken for one to sixteen working nodes.

7
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The collected data consisted of the actual execution time taken to process all the

elements in the input files. The programs were run ten times for each number of

processors in order to get a good average time. They were executed at times when the

network was minimally used to avoid, as much as possible, bus contentions with other

users. The results of these are given in Figures 2.2 and 2.3. These figures show a

definite advantage in sending two input blocks of data to each worker node over the

other schemes.

Some other decomposition strategies were experimented with, but not in as much

detail. One strategy was to send the entire input data to all of the workers

simultaneously and let the worker nodes extract the data they were to use. This method

was memory prohibitive and its execution time was about the same as ds2 from Figures

2.2 and 2.3. Other data distribution techniques involved various methods of packing

and unpacking the data to be sent via PVM. Only the data block decomposition

schemes could take advantage of these attempts, but the execution time improvements

were slight.

D. MULTIPLE BLOCK DECOMPOSMION SCHEME: DS5

The data decomposition scheme ds4 was modified to send a variety of block sizes

depending on the size of the input and the number of working nodes used. In this

scheme, ds5, the supervisor still sent a block of data to each worker, then the worker

extracted one satellite at a time from its input buffer and sent a block of results, equal

in size to its input block, to the gathering node. The FORTRAN code for the ds5

supervisor and worker/gathering nodes is in Appendix B. In PVM, the buffer

manipulation time is the costliest aspect of communications which is why this scheme

optimized the performance. Sending blocks of data between processors vice one data

10



element at a time, minimized the buffer manipulation which resulted in lower execution

times for this data distribution scheme.

The next chapter provides the results of using this scheme. Theoretical execution

time equations were developed for this scheme and compared to the actual results.

The optimal number of processors and number of input blocks to use were also

calculated along with values for speedup.

11



mI. RESULTS OF PP12 WITH PVM

The results presented in this chapter were obtained using the data block

decomposition strategy, ds5, discussed in Chapter HI. Eight working nodes were used

for all ds5 program runs and were used to obtain the data for all the figures in this

chapter. The ds5 supervisor and worker programs were run under PVM, on the Naval

Postgraduate School's ECE local area network of various SUN/SPARC workstations.

The ECE LAN is an Ethernet based network of various types of workstations. In order

to maintain data integrity, only SPARC IPX and SPARC II machines were used. These

machines have 40 MHz processors and have been configured with 32 Mbytes of system

memory and are essentially the same systems.

A. INIT[AL WORKER EXECUTION TIME EQUATION DERIVATIONS

To determine the length of time required to run the parallel algorithm, ds5, the

execution time of each working node needed to be determined. This execution time was

broken down into three phases: setup, calculation, and breakdown. During the setup

phase the worker node waited for and received the next input block from the

supervisor. The calculation phase is the time it took for PPT2 to execute on the entire

input block of data. The breakdown phase was simply the period in which the worker

node packed and sent the results to the gathering node.

In order to obtain an expression for the three phase times, certain variables need to

be introduced to represent applicable parts of the program process. Table 3.1 contains a

list of the basic variables used and their definitions. Using the variables in Table 3.1,

expressions for the setup time, t%, the calculation time, t,, and the breakdown time, tb,

were derived for the ith worker processor, Pi.

12



TABLE 3.1. BASIC VARIABLE LIST.

Vari. le Definition
S total number of satellites in the input file
t. node process initialization time

time for gathering node to report to the supervisor the
process is complete

nb number of blocks sent to each worker

Cf fixed communications time for buffer setup and network
access for sending records

CI• communications time required to pack and send one
satellite record

Cupf fixed communications time to unpack the input buffer

CUM• communications time to unpack one satellite record

k number of working processors used
Sp number of satellites sent to each worker = S/k

Sb number of satellites per data block = Spmnb

Tppa2 time for PFI2 to operate on one satellite record

1. Setup Phase Timing Analysis

The time it takes for the ith node to setup is basically dependent on the time it

takes for the master to send the data blocks and the time required to unpack the input

buffer. Initially, the working node on processor Pi will have to wait for the master to

send data blocks to all the workers j, where j < i, before the first block is sent to Pi.

The time required to send this first block of data, t•, and the time to unpack each block

make up the setup time.

The time required to send the first block is represented by Equation 3.1:
tA =i'tlb (3.1)

where tib is the time to send one block of data which is the fixed net communications

time added to the product of the communications time per satellite and the number of

satellites per block is as stated in Equation 3.2.

13



S= (c, + C",. S.) (3.2)

The time to unpack the buffer, t,, is the time spent by Pi to unpack all of the blocks of

data. This time is expressed in Equation 3.3.

t. =,n (c., + cs,) (3.3)

The total setup time can now be expressed as:
t. = tft + t. (3.4)

which is simply the sum of the first block communications time and the unpacking time

for all of the blocks of data.

2. Calculation Phase Timing Analysis

The calculation time is the time it takes for the PPT2 algorithm to process one

block of satellite records. Since t. is a function of the block size, the equation for the

calculation time is:

t. = T,,, -s, (3.5)

3. Breakdown Phase Timing Analysis

The breakdown phase is the time required for the working node to send one

block of results to the gathering node. The expression for tb is:
tb = (C, + C, .SO) = tib (3.6)

Using the equations for the three phases and empirical values for the variables, which

will be discussed later, the worker's total execution time was determined. The

execution times of eight worker nodes, given four input blocks of data, are shown in

Figure 3.1. The processor's phase times are described by two lines.

14
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The setup times are the lines on the processor number axis, and the execution and

breakdown times are on the line one half space below the processor number. The blank

space between the worker's breakdown phase and the next setup time is idle time. This

idle time is clearly the result of the communications time required by the master to send

blocks to all the working nodes, taking longer than the execution time of PPT2 on each

processor. Given the fact PPT2 may need to be run several times for accuracy or

tracking requirements, the calculation time needs to be scaled by some constant, A, to

take into account multiple iterations. The variable A is the number of times PPT2 is

executed on each block of data.

B. EXECUTION TIME EQUATIONS

Looking at Figure 3.1 again, it is clear the worker execution time for the ith

worker, for any i, i = 1,...,k, is the total setup time added to one calculation and

breakdown time. This is true unless the calculation time dominates over the

communications time. As a result, instead of a single equation for the total worker

execution time, P, , there are two equations depending on the value of A. Thus,

the total time to execute a worker node on processor Pi, or Pi1 _untim is determined using

Equations 3.7 or 3.9.

The bracketed term in Equation 3.7 is the time in-between the end of a

breakdown period and the beginning of the next calculation phase. This time is simply

the time required by the supervisor to distribute a data block to all k workers for each

block except the first block. The subtraction of the unpack time within the brackets is

required because the expression for the setup time is made of nb unpack times and

Equation 3.7 only relies on the unpack time for the final block.

16



Pi_,*. =ts + A' -+tb + [(nl- 1)(ktA:-t / nb)] (3.7)

for

A< (k- ),.6 +(C.f+ CS,,) (3.8)t'

and

_,.g = t, + n,, (A t, +t) (3.9)

for
(k- l)tlb +(C.,, + C Sb) (3.10)

t'

The two expressions for A are taken from Figure 3.1. Equation 3.7 simply means that

if the total calculation time and breakdown times are less than the time between setup

phases then the communications cost is dominate. Conversely, Equation 3.9 is for the

case when the number of iterations of PPI2 causes the calculation phase to dominate.

From the above equations, the total execution time, TB, of the parallel algorithm

is:

T: + Pk_. , + t. (3.11)

It should be noted that this equation uses the operation time of the kth worker. The kth

worker is used because it is at the end of the data distribution chain and takes longer to

complete execution relative to the other workers.

C. PARALLEL AND SERIAL PROGRAM COMPARISON

The comparison of the parallel program vs. serial program entailed theoretical and

actual results. In order to accomplish the theoretical comparison, values for the

variables in Table 3.1 were needed. Appendix C contains the empirical results from

studying the performance of PVM on the ECE SUN network. These values were then

17



used in the preceding equations for empirical evaluation of the two programs. The total

execution time of the serial program was taken to be simply Tpp2 multiplied by the

total number of satellites in the input file. Again, input and output times were assumed

to have been roughly equal for both programs so they were left out of the evaluations.

The input file used for testing consisted of the same satellite records used in

Reference [2]. This data file consisted of ten different records which were then

duplicated for a total of 4800 input records. An unclassified copy of a portion of the

catalog was obtained from the Naval Space Command after the research was

completed, and was not used for program development or testing.

Figure 3.2 show the final comparative results. The theoretical lines refer to using

Equation 3.11. The actual lines represent data obtained from running the serial program

and ds5, (utilizing 8 workers), using values of A from 1 to 10 for both programs. A

block size of four was also used for the parallel algorithm. Figure 3.2 shows the

parallel program performed better than the serial program as the number of calls to

PPT2 was increased. This performance improvement was predicted from the theoretical

plots even though the actual serial program performed better than expected and the

actual parallel program performed slightly worse than expected. It can also be noted

that when A - 7, Equation 3.11 switches from using Equation 3.7 for the worker

processor run time to Equation 3.9. The most dramatic event this figure displays is the

fact the parallel program did not perform as well as the serial program for A = 1.

Since one of the assumptions of this research was the fact PPT2 will most likely be

executed a multiple of times, the results for the case A = 1 are to be noted but should

not detract from the benefits of parallelization.

18



00

433I

43)

0 L

0 3 0

0 .

0 0

LO

a 0 3
43) O r- C LO -4 P

1- 19



Overall, the ds5 algorithm using PVM was able to process the satellite catalog

faster than the serial program. These results were observed when the ECE network was

being heavily used and also when the network had little activity on it. Also, the

empirical data for the actual program times in Figure 3.2 is merely a representative

result of executing the programs at one certain time of the day, and different numbers

were obtained at different times, but again, the relative performance results were the

same.

D. SPEEDUP COMPARISON

One standard figure of merit in comparing two algorithms is speedup. Speedup in

this case, is the ratio of the serial results to the parallel results. The same data from the

previous section was used to determine the speedup ratios for values of A ranging from

one to ten. The speedup results are shown in Figure 3.3. Even though the actual

speedup was less than expected, there was a definite decrease in execution time, thus an

increase in speedup, when parallel execution was used instead of serial execution.

E. OPTIMUM NUMBER OF PROCESSORS TO USE

The execution time savings have been demonstrated in the previous sections, but

one other question of interest is what the optimum number of processors to use would

be. The optimum number of processors to use can be determined by setting the

derivative of Equation 3.11, with respect to the variable k, equal to zero then solve for

k. This will provide the optimum number of worker processors to use. Thus, by adding

one processor for the supervisor node and one processor for the gathering node, the

final value for the optimum number of processors is found.
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Using Equation 3.7 the optimum product of worker processors and data blocks can

be determined. When Equation 3.9 was used, only the number of worker processors

can be found. The results for the two equations are given in Equations 3.12 and 3.13

respectively.

n IS(C. + C.+ A-T,.)(.2
V Cf

k = (3.13)

Cf

With the exception of the number of blocks in Equation 3.12, both of these equations

are identical. Equation 3.12 is much more flexible since the number of different

processors available may be limited while the number of blocks is not. For example,

using Equation 3.12, the empirical values in Appendix C, and setting A = 2, the

optimum knb product is - 63.35. If there are twelve total processors available, then by

subtracting one processor for the gathering node and one processor for the supervisor

node, there are ten processors available for the workers. Solving for the optimum

number of blocks to send yields 6.335 resulting in nb to be six or seven.

F. PPT2 AND PVM WITH ACTUAL DATA

As mentioned earlier, a sample of the satellite catalog was obtained. Though it was

not used ih dez-.rmining which parallel algorithm to use or in ascertaining the values in

Appendix C, it was used to produce plots similar to Figures 3.2 and 3.3. The data set

contained 6795 satellite records. The serial vs. parallel comparison plot is provided in

Figure 3.4, and the speedup comparison is shown in Figure 3.5. Again, the parallel

algorithm ds5 was used with eight worker processors.
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G. PPT2 CONCLUSIONS

The results of this chapter clearly demonstrate the effectiveness in reducing the

overall execution time using a parallel algorithm. Also, this algorithm was run using a

parallelization software tool, PVM, on a loosely coupled network of SUN workstations

instead of a dedicated parallel multicomputer. Interestingly, the results for the actual

catalog data were closer to the theoretical estimates than the data used in the previous

sections. This validates the earlier results even though they were more conservative

than the catalog results. Overall, using PVM and the multiblock data decomposition

scheme resulted in improved PPT2 operation, which was the goal of this study.
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IV. A THROUGHPUT CRITICAL ON-LINE APPLICATION

The second Naval application studied was the on-line hypothetical combat weapon

system. The future combat systems will be large grain data flow, throughput-critical

systems. These systems will be required to process electronic signals to detect, track,

and determine a fire control solution for increasingly sophisticated threats. An example

of the next generation of Navy signal processors is the AN/UYS-2 Digital Signal

Processing System (also known as the Enhanced Modular Signal Processor, EMSP),

which implements data-flow parallel processing to achieve high throughput rates for

this type of environment in a single tightly coupled system (Ref. 4]. The hypothetical

system presented here demonstrates the possible use of a loosely coupled LAN based

cluster of processors in large-grain data-flow parallelization as against a tightly coupled

system such as the EMSP.

A. PROCESSING IN A HYPOTHETICAL COMBAT SYSTEM

The hypothetical combat system is defined by the process node graph of Figure

4.1. This graph was designed to take into account the normal computational

requirements of the combat system. The two left most branches, the paths through

nodes P4D and P2B, represent the surface and air and the subsurface fire control

solutions steps. The right most branch represents the surface and air tracking iterations.

The nodes are marked with the processor it resides on and its personal identification

letter. For instance, P4D stands for processor four, program D. The lines connecting

the nodes have arrows indicating data flow paths. The numbers attached to the fines are

a measurement of how large the data message is between the two nodes.
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The cumulative communication and node execution time for each processor is

approximately equal simulating a load-balanced graph. Another constraint given the

graph is certain nodes must be allocated to certain processors due to memory

dependencies. It is also assumed that all the nodes execute once in a given period which

will be defined later. Though this is purely a hypothetical situation, it adequately

simulates a possible on-line system.

B. PROBLEMS WITH IMPLEMENTATION USING PVM

PVM presented a few distinct problems for the on-line application. One problem is

the high cost of buffer initialization associated with using PVM. Each

PVMINITSEND command, [Ref. 1], initializes a buffer in which to pack the output

data. This cost is fixed and is independent of the amount of data to be sent. With many

relatively small messages, this initialization time became an important factor in process

execution time due to its additive affects.

Another problem occurred during program testing with added network loading. In

Chapter V the loading will be discussed, but essentially a part of the forced network

communications caused a slave program to send multiple, large messages to another.

This sometimes caused the PVM daemon process on the slave's host computer to die.

This occurrence has been reported before, (Ref. 5], but was not investigated because

the use of the PVMADVISE command, [Ref. 1], eliminated this problem.

C. BATCHING OF COMMUNICATION COSTS

In PVM like systems, interprocessor communication has two distinct components,

operating system (OS) related, and network related. The OS related part consumes

processor cycles available to the application by making OS calls and affects the

throughput. This could be regarded as OS contention between nodes on the same
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processor. The network related part makes *available" processor cycles for one node,

which is trying to transmit or receive data, unusable because other nodes have control

of the bus. This is network contention and leads to processor blocking. Given the

graph of Figure 4.1 with its multiple nodes on multiple processors these contentions

can be numerous and affect the desired throughput.

One way of greatly reducing the number of these contentions is by batching the

communication for each processor. Batching communication means what the name

implies, taking all the input and output requirements for a processor and giving these

tasks to one and only one node assigned to the processor. In order to accomplish this, it

was assumed the nodes on a given processor could communicate using UNIX shared

memory and that such communication was very cheap compared to PVM

communication. This process added an extra node on each processor which is

analogous to the gathering node described in Chapter H for the PPT2 algorithms.

The gathering node accesses the shared memory to gather the output data for

transmission. It will also access the shared memory to place the input data upon

reception. To do this, the shared memory is used in such a fashion that either the

graph nodes can access their respective memory locations or the gathering node can

access the entire memory, but not both.

D. THREE TECHNIQUES

The nodes were studied using three different methods of process execution. Of

course, the overall graph execution was carried out in the sequence shown in Figure

4.1, but the sequence in which the nodes on each processor executed was manipulated.

The three methods used a master/slave relationship. The master program took care of

the PVM process spawning and then acted as either node PlA or Processor 1
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depending on the technique chosen. The master would initiate an iteration then wait to

receive certain criteria from the slaves before proceeding on to the next iteration. All

the programs were written in C and are in the appendices as mentioned below. The

three techniques are described as follows.

1. Unscheduled Node Processing

The unscheduled node processing method let each node begin execution upon

receipt of data and communicate upon completion of execution. No attempt was made

to reduce the number of contentions described in the communication batching section.

In this technique, there is a PVM.SEND for every message. The results of this scheme

was the metric by which the following "improvements* were judged. The code for this

set of programs, one for each node, is in Appendix D.

2. Scheduled Node Processing

This method uses the scheduling method described in the last section of this

chapter. In essence, all of the nodes on a given processor were restricted to a certain

order in which they can execute thereby reducing the number of OS contentions.

Shared memory use is assumed for communication between nodes on a processor. The

batching of the communication between processors and the scheduling of nodes on the

processors greatly reduces the network contentions. In this scheme, there is a

PVMSEND for every pair of communicating processors. The code for this technique

is in Appendix E.

3. Scheduled Node Processing Using Hardware Multicasts

This technique uses basically the same approach as the previous method, but

all communications are assumed to be passed between the nodes via hardware

multicasts. Thus, all the communication from a processor to all the other processors is
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multicast at the hardware level by the senders communication node. In this scheme,

there is a PVM SEND per processor. This PVMSEND is assumed to be a hardware

multicast to a group (which is not currently implemented in PVM). This further

reduces the network contentions since fewer PVM message calls are used. Hardware

multicasts were chosen because software multicasts greatly decreased the throughput.

Using the PVMMCAST command, [Ref. 1], was multicasting at the user level, but at

the OS level, the PVM daemons were handling the multiple sends and receives. PVM

routes messages either through the daemons or TCP direct. Since recent TCP

implementations make use cf hardware multicast for implementing user level

multicasts, the use of hardware multicasts instead of the software commands was

assumed. This is expected to be true of future PVM implementations. The code for this

method is in Appendix F.

To further clarify the network contention reduction between the three algorithms,

an example follows. From the graph in Figure 4.1, Processor 1 has three nodes. For

the unscheduled method, Processor 1 has to output a total of five times per period.

Using the scheduled technique, this number reduces to three. Then by using the

hardware multicasts this number reduces to one. Of course, as the number of message

pack and send calls is reduced the message size increases. This grouping of multiple

messages reduces the number of times PVM has to initialize an output buffer

eliminating this component of the communications cost overhead. However, in the last

technique, every processor must unpack a larger message, reducing the gain from a

hardware multicast.
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E. NODE SCHEDULING

The last two processing techniques mentioned above depend on the nodes having a

certain constraint on them as to when they can execute and communicate. To reduce the

OS contentions each node is "scheduled" on its respective processor so each one has its

turn without blocking another node or being blocked itself. Once the nodes are

scheduled, it is instructive to think of their execution taking place within one frame of

time slots. One of the assumptions, or constraints, applied to the hypothetical graph is

the sum of the node execution and communication costs on each processor is

approximately equal. This sum is the period in which one frame of scheduled time slots

can be executed. To reduce the number of network contentions, the interprocessor

communication is scheduled within each frame. Figure 4.2 shows a representative

frame of time slots with the nodes from Figure 4.1 assigned to their respective

execution positions.

P1 P P3 _P4 V5

comi Bi-3 Ai-2
Ai comi Ci_8 Ci-5 Bi-4
Ai Ai-3 corni-2 Ci-
Bi-6 Bi-1 Ai-4 comi Ci-
Ci-5  Ci-5 Bi-2  Ai-3 comi

Figure 4.2. Frame of Time Slots Starting at Time t,.

Figure 4.2 shows the schedule of nodes for the ith frame. The node indices

indicate which frame of data they are executing on in the current frame. For instance,

PIA, the root node, is working on new data received for this frame, and P5C, the

output node, is working on data the graph received i-9 frames ago. The schedule of
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nodes is one of many possibilities, but once the schedule was chosen the indices used

were unique.

To determine index j for node xj, the following algorithm was applied.

Letting:
. f= the time node x executes within the period.

fi= the time the parent of x executes within the period
tp. f= the time the processor x resides on communicates within the period.
tpx;, = the time the processor the parent of x resides on communicates within

the period.
k = index of parent of x.

If x is the graph root node, then j = i.

If x and the parent of x reside on the same processor:
Iftx < txp thenj = k- 1.
Iftx > tp thenj = k.

If x and the parent of x reside on different processors:
If tpxc < tpxpc then:

If t x > tpx, and t.p < txp.P then jfik - 1.

IftX > tPXc and tP > tpp thenj = k-2.
if t x < tpx, and txp < tpxpc then j= k - 2.
if t X < tpx,, and txp > tpxpý then = k - 3.

If tpx > tpxpc then:
if t x > tp., and txp < tp.p then j = k.
If t x > tpx, and txp > tpxp, then j= k - 1.
If t x < tpx, and txp < tp,,p, then = k - 1.
If t x < tpxc and txp > tp,,p, then j= k - 2.

If a node relies on more than one parent, then use the above algorithm for all the

parents then use the smallest calculated index out of the set of calculated indices for the

node x.
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The schedule represented by Figure 4.2 is not the only possible node scheduling

scheme, but it was the one chosen for this study. Trying to determine an optimum

schedule with respect to graph latency was not pursued.
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V. RESULTS FOR THE ON-LINE APPLICATION

The three node processing techniques described in the previous chapter were

implemented using PVM and certain parameters of performance were measured. The

execution and communications costs were measured, as was done for PPT2, and

theoretical values were obtained. The programs were run during a time when the

network utilization was low and during a time when the network was purposefully

loaded in order to compare and contrast the results.

A. PARAMETERS OF INTEREST

Throughput was the primary measurement studied. The values obtained were

normalized with respect to the theoretical costs as discussed below. In addition to

throughput, post processing of the data was used to determine the size an output buffer

would need to be if there was a buffer between node P5C and the next stage of the

weapons system. The buffer was accessed at the average period, F. The standard

deviation, s, of the period was determined to clarify the results of the buffer

processing. For further statistical analysis, the coefficient of variation, V, which is

defined as the ratio s/F, was calculated. The scheduling represented by Figure 4.2

implies a graph latency of ten frames. Though this is a valid area of interest, output

latency was not studied.

The theoretical period was determined by using the communications costs from

Figure 4.1 and the execution times for the nodes in the longest path. The execution

loop times and the message packing and sending times were measured on the ECE SUN

system like the variables for PMT2 were determined. These numbers were used in

combination with the variable weighting factor used when the programs were run to

determine the theoretical period.
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B. RESULTS WITHOUT NETWORK LOADING

The programs were run a multiple of times to determine what patterns, if any,

they exhibited. Table 5.1 shows the results of one such run. For this run, the

theoretical period was approximately 1.509 seconds. Even though empirical results are

presented here, all the values were dependent on the load variations in the SUN

network due to the other system users. While these values were obtained for this run,

another set of runs at a different time could possibly yield different results. With this in

mind, more emphasis was placed on the trends and patterns observed than on the actual

values.

TABLE 5.1. TYPICAL ON-LINE RESULTS WITHOUT NETWORK
LOADING.

Units = seconds Unscheduled Scheduled Multicast
Average
Period, - 0.871 0.996 1.001
Normalized
average, t. 57.7% 66.0% 66.3%
Standard
deviation, s 0.339 0.0786 0.0729
Coefficient of
variation, V 38.9% 7.89% 7.28%
Mean output
buffer size, b 3.56 1.431 1.896

From Table 5.1, the periods were slightly higher for the Scheduled and Multicast

techniques than the Unscheduled method. This was the general trend for all the runs.

Another trend was the fact the standard deviations of the Unscheduled method was

between three to six times larger than the two scheduling algorithms. This was readily

evident in the output which showed a wide range of throughput values for the
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Unscheduled technique, and a more narrow range for the other two. The output buffer

pattern observed was that the Unscheduled buffer size would be from two to five times

larger than the other two.

The buffer size was observed to be more oscillatory for the Unscheduled

processing than the other two approaches. Figures 5.1, 5.2, and 5.3 show the buffer

size in reference to the iteration number for a run of 1000 graph iteration cycles

utilizing the three node processing techniques. These plots reinforce the buffer data

observations by showing the Unscheduled buffer size varying more, and getting larger

than the Scheduled or Multicast methods.

C. RESULTS WITH A NETWORK PERTURBATION

The addition of a controlled load was applied to the process runs for this section.

The loading consisted of one program manipulating large amounts of input/output,

around 3.5 Mbytes, and two other programs sending and receiving a large amount of

fairly large messages. These load programs were assigned to the same processors used

by the graph nodes. The results from one of the runs are presented in Table 5.2.

This run was chosen because it presented some of the uncontrollable network

influences as well as the observed trends. One example of the network usage affects is

observed ki the periods for the run prior to adding the load. The period for the

Unscheduled method is noticeably less than the other two methods which is in contrast

with the data in Table 5.1. This is due to the network load variations at the times the

programs were executed.

37



0
0

CP3

a0

SLo

00

a,

O• • ,.C)

o 0

ICD

•- -o

0 z

CD

ifN

azis Jiajjnl3

F/gure 5t.1. Unscheduled Output Buffer Size.

38



Lo

0

0

0

ip

75-

0
0

0

06 °
0

C

U, CN

0
0

Co to3 L0 1- )C

azis jollngi

Figure 5-2. Scheduled Output Buffer Size.

39



0
0

;= o

0

0
0
0C

Co
030
=.. 0

CCN

-o E

o 0

400

L.. 0 "'
o .1"

-o
0- Z 0

C)~

C.-=o r-. CD 1 C

400



TABLE 5.2. TYPICAL ON-LINE RESULTS WITH NETWORK
PERTURBATION.

Units = seconds Unscheduled Scheduled Multicast
Before loading

" 0.784 0.996 1.072
£1. 60.0% 66.0% 71.0%

s 0.256 0.0809 0.2489
V 32.7% 8.12% 23.2%
b 1.78 1.587 2.14

"During loading
" 1.094 1.611 1.566

t3 72.5% 106.8% 103.8%

s 0.277 0.1914 0.311
V 25.3% 11.88% 19.86%
b 3.21 1.575 2.84

The observed patterns for each section of Table 5.2, before loading and during

loading, were similar to those described in the previous section. The most prominent

observation for this run comes from comparing the two sections. The buffer size stayed

relatively constant before loading and during loading for the Scheduled and Multicast

techniques, but the Unscheduled buffer size would increase by two to five times. The

periods also increased, but not as significantly.

D. ON-LINE CONCLUSIONS

The use of node scheduling did not adversely affect the periods compared to not

scheduling the nodes. While memory is cheap, and the buffer size may not be a

hardware problem, the access time can be considerable compared to the throughput.

This could add an excessive delay to the overall throughput of the graph when looking

at it from the next stage after node P5C. This was the stimulus behind the buffer

consideration.
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The hardware multicasting did not considerably improve the performance of the

node scheduling. This may be caused by the physical properties of the chosen graph

because the nodes had to unpack one large message instead of a few smaller ones. The

smaller messages were received at various times allowing the nodes to unpack them as

the data arrived instead of all at one time. Another factor which influenced the

Multicast performance was the fact the physical hardware was not available and PVM

was used to simulate it.
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VL CONCLUSION

This thesis provided separate conclusions at the end of each application section.

Overall, using a software tool can effectively improve the performance of a given

procedure. PVM is becoming the standard for use as a parallelization software tool and

it demonstrated its usefulness when applied to the off-line PP12 program and the on-

line hypothetical combat weapons system.

A. FUTURE STUDY

Further work is required in the following areas:

1. The PP'2 theoretical optimum block size could be studied further.

2. A larger set of data from the Naval Space Command would increase the

usefulness of the results presented. If possible, the use of the block distribution

algorithm and PVM on the actual satellite catalog with the proper number of iterations

for each individual record would better demonstrate a real scenario.

3. The four data decomposition schemes presented for PPT2 are basic with

numerous possible improvements. One such variation is having the supervisor send an

initial block of data to each worker, divide up the remaining records into blocks, then

send these blocks. Another area for testing is the use of multiple supervisors with their

own sets of workers implementing each of the schemes.

4. The way in which the network was loaded for the on-line application was not

varied. The load programs ran on the same processors the node programs were on.

Further study on the affects of the load programs operating on different processors is

warranted.

5. The on-line application research just scratched the surface of the possibilities for

this area. The code for the node processing schemes were written with the user able to
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easily vary the communications and execution costs. Though many program runs were

accomplished for this thesis, the varying of the costs was not fully studied.
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APPENDIX A - ACQUIRING AND INSTALLING PVM

First send the message "send index from pvm3" to netlib@ornl.gov
then follow the instructions.

Probably the quickest way to get the files is to use rcp.
finger anon~netlib2.cs.utk.edu

(* this command will explain how to copy files from the Netlib Software Repository *)

It will tell you to use: rcp anon~netlib2.cs.utk.edu:FILENAME LOCALJFILENAME

Create the directory "pvm" where pvm is to be installed.

So type the following commands from the pvm directory:

rcp anon@netlib2.cs.utk.edu:pvm3/filename.
or

rcp -r anon@netlib2.cs.utk.edu:pvm3/directory.

for all the files listed in the index.

At some point in time, the access modes for all files should be changed to allow all
users to be able to read and execute them.

Next, type: sh pvm3.1.shar
This command will create the pvm3 subdirectory and extract the pvrm files.

more pvm/pvm3/lib/cshrc/stub
This command shows a portion of code that needs to be appended to the installers
.cshrc file. The "setenv PVMROOT " line must be modified to take into account the
current location of pvm.

pvm/pvm3/make all
This command will then compile the pvm source code. Look in the file Makefile for
individual options if you do not want to install everything. If errors occur, the
Makefile.body needs to be modified then .. /lib/UpdateMk needs to be run. For
instance, in the file Makefile in the xep subdirectory, the xcflags path had to be
changed in order to get xep installed (only occurred when installing 3. 1, had no
problems installing 3.2.
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APM41dDEK B - BLOCK DECONMPSITON SCHEME PROGRAMS

SUPERVISOR (MASTER )PROGRAM:
progra m thslsm
include 'fpvm3.hW

C

c Fortrani Master program to solve the NAVASPASUR satellite
c orbit prediction problem.
c This program reads the dafta from, a file and distributes the data to
c the working nodes one block at a time.
C

implicit real'8 (a-h,o-z)
characterl16 fllenim

intege pid, baz
integer eof, gaftime(60)
integer start, finish, endtime, Gettime
external Gettime !$pragma C( gettime)

common/bloc/sWt84.8W0)

data istolll,pidIOI,msg~enI672I
data isatl/l,n/lI

integer i, info, nproc, iter
integer mytid, tids(O:40), slvtime(16)
integer who
character*12 nodename
character*8 arch

* Enroll this program in PVM
call pvmfmytid( mytid)

c - Starting up all the tasks

*Initiate nproc instances of thesisis. slave program
pit*,'Hoyw many working slave programs (1-16)?'

red*, uproc
nproc=nproc+ 1

pit,'Which input file?'
read*, fien

pit*, 'What blocksize?'
ra*, be
pit*, 'How many iterations?'

*eds, anum

"*Read complete catalog of satellite data-
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open(lO,file-filemn)

nad(10,*,ioMta-eot)sat(j,)j - 1,84)

isat-0

200 if(eof.ge.0)thm
isat=iaa+1
nrdIO,*,iostat-.eo(sat(j,isat+ 1)j - 1,84)
go to 200

andif

cloe10)

c Print the number of satellite records received.

print*,'isat - ',isat
print*.*

* If arch is set to W then ANY configured machine is acceptable
* otherwise arch should be set to architecture type you wish to use.

nodename -= 'thesisls'
arch = *

call pvmfspawn( nodename, 0, arch, nproc, tids, info)

c - ** Begin user program **

c Get beginning time sump

strt - Gettime ( Stant)

* send number of satellites and slave id array to slaves

msgtype = 2
call pvmfinitsend(0, info)
call pvmfpack( INTEGER4, nproc, 1, 1, info)
ca pvmfpack( INTGER4, tids, aproc, 1, info)
call pvmfpak( INTGER4, isat, 1, 1, info)
call pvmfpack( INTEGER4, bsz, 1, 1, info)
call pvmfpack( INT•_ER4, anum, 1, 1, info)
call pvmfhmcat nproc, tids, msgtype, info)

* broadcast data to all node programs
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c Delmine how mny macod in each block
i•w- iW.((qpcoo-I)*bqz)
itfxa- mod(iaat/bsz,nproc-I)

do 305 j- lbez

do 300 i-Il,nproc-I

if(i .le. iterx) thie
item - iter + I

else

item - iter
Mdif

call pvmfinitsend( 0, info)
call pvmfpwk( BYTEI, sat(1,n), msglen*itern, 1, info)
call pmfsend( tids(i), 3, info)

300 n-n+itern

305 continue

c wait for data completion signal from gathering node
call pvmfrecv( tids(0), 4, info )
call pvmfunpack( INTEGER4, gattime, 33, 1, info)

c Collect ending time stamp

finish - Gettime( finish)
endtime = finish - start

print*, 'The and to end runtime is ',eDltime, 'usecs.'

c End user program

c program finished leave PVM before exiting
call pvmfexit(info)
stop
end
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WORKER (SLAVE) PROGRAIM

progradm thl1
include 'fpvm3.h'

c

c Fortran Slav program to solve the NAVASPASUR satellite
c orbit prediction problem The slave program consists of two nodes.
c One node is a position calculation node and the other a. the data
c colection node. This version of the master-slave configuration
c receives, blocks of dat fromn the mester and perform. calculations.
C

implicit real6 ' (&-h,o-z)
realS8 kf(lO)

integer pid, me, uproc, bsz gatime(60)
kftege start, finish, endtime, Gettime
external Gettime !pragma C( geftti)

cominou/cons/a(64)
commkonlppt/f(25)ose(lO),kf(1O),cf(1O),bs(3,4),u(3),v(3),w(3),r,

& vel(3),dind,tmA-dkzident
commanldcsnblpe(6,S),e(S,8),ep(8,8),g(8),gp(8),ifti(S),ifto(S),

& iteri,iterojofjol,stat(2O),tol(6),iw~of(l l),ow(8,S)
comumfon/reo/rho(3),ros,hdr,hdv,rdv,del,iter
commonfbloclsat(94,W00)

dafta istopl,pidIOI,msglen/672/
data isatlll,n/lI

integer hnf, mytie -ntid, insgtype
intege tids(O:40)

c- Enroll this program in PVM-
call pvmfmnytid( mytid )

c Get the master's task id
call pvmfparet( mtid )

o -* Begi user program '_____

c. Receive data from host
,-. pvmfrecv( mticl, 2, info)
call pvmfumpack( ENT.EGER4, uproc, 1, 1, info)
call pvmflmpack( INTEER4, tids, uproc, 1, info)
call pvmfunpack( INTEER4, isat, 1, 1, info )
call pvmfunpack( IN4TEGER4, bsz, 1, 1, info)
call pvmfinpack( INTGER4, anum, 1, 1, info)
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c Detiermine which slave I am
*do10 i-0, uproc-1

10 continue

C

c Determiine if I am the gatherinig slave

if( tidu() ecq. mytid ) then

c Eixecute the gathering node
* Begin Collecting Node

ingtype - 10
k-i

do 1000, i-1,(nproc.-1)hez
call pvmfiwcv( -1, msgtyp info)
call pvmfimpmckQNTEGER4, iter, 1. 1, info)
cali pvnfiunpick(BYTEI, sat(1,k), msglen6'iter, 1, info)
k -(j)*iter + 1

1000 continue

c Commented out since I10 time was not considered
*write reffults to external file

* open(6,flle= '/home3/stoneipvm3/bin/SUN4/the~sis.out')

* do1231 i=1,isat
*1231 write(6,*)(sat~ji)j=l1,84)

* close(6)

*Send message to Host that process is complete
msgtype -4
call pvmfinitsend( 0, info)
call p'vmfdk( DNTEER4, gattfime, 33, 1, info)
call pvmfsend( mtid, msgtype, info)

*End Collecting Node

c-Begin Workcing Nodes
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Determine my block ain
jtwr-isWt((nproc-1)*bsz)
jtarz-=xd(iaat/bez~nproc-1)

c- beginn time stamp

start - Gettime ( start)

call cownl

do 1405 j -1,bsz

if(me .1.. iterx)thm
itern-itor+ 1

aims
itern-iter

andf

k=(j-l)*iter+ 1

canl pvmfrecv( mtid, mastype, info)

call pvmfiunpsck( BYTEI, sat(,k), msgleft*itern, 1, info)

do 1400 i -1,itern

c-Receive satellite to process-

do 1380 n= 1,84

1380 f(n)-sat(n,k+i-1)

* Set parameters for subroutine ppt2

ind= 1
kz-idint(dkz)

* Compute secular recovery

call ppt2(ind,kz)

* Compute subsequent task, ie. predict position, update elements

ind-idint(dind)
call ppt2(ind,kz)

52



do 1390 a- 1,84
1390 wI(uk+i-1)-f(n)

1400 continue

c - Send computed results to gathering n
call pvmflnitsmnd( 0, info)
call pvmfncpk( IN'EOER4, item, 1, I, info)
call pimfpack( BYTEI, mat(,k), msgleu*item, 1, info)
call pvmfend ids(O), 10, info)

1405 continue

Endng time somp

finish - GettiUe ( finish)

eadtime - finish - start

c The following was used for trouble shooting and processor comparison
* call pvmfadvise(PvmRouteDirectinfo)

* msgtype -25
* call pvmfmnitaend( 0, info)
* call pvnm k( INTEGER4, endtime, 1, 1, info)
* call pvmfrad(mtid, msgtype, info)

end if

c - End user program -

c Program finished. Leave PVM before exiting
call pvmfcxit(info)
stop
end

*DECK PPT2

**** NAVAL SPACE COMMAND PROPRIETARY CODE SEE
***** PROFESSOR B. NETA, NAVAL POSTGRADUATE

**** SCHOOL FOR ACCESS TO THE PPT2 SOURCE CODE
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APPENDIX C - EMPIRICAL VALUES FOR PPT2 VARIABLES

The ECE network results presented here were using SUN/SPARC IPX and

SUN/SPARC II stations. Esentially no difference in output values were observed

between the two stations.

Variable Definition Value

total number of satellites in the input file
node process initialization timeto I5506.7 As

time for gathering node to report to the
tim supervisor the process is complete 1300 Ms

number of blocks sent to each worker
nb 4

fixed communications time for buffer
Cf setup and network access for sending 0 Ms

records
communications time required to pack 1264.52 As

Cps and send one satellite record
fixed communications time to unpack the

Cupf input buffer 132.98 Ms

communications time to unpack one
Cump, satellite record 75.7 Ms

number of working processors used 8k __ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

number of satellites sent to each worker
Sp =S/k 600

number of satellites per data block =
Sb pb 150_

time for PPT2 to operate on one satellite
TppC record 1850 Ms
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APPEDIX D - UNSCHEDULED NODE PROCESSING PROGRAMS

MASTER PROGRAM (NODE PlA):

Unscheduled mster program, also handles node PIA - and execution

Dinclude "pvm3.h"
include < stdio.h >

#incude <sys/tim.h>
#include <time.h>
Ainclude <sys/types.h>
Ainclude <usiga.h>
Pinclude <stdlhb.h>

/* CONSTANTS */
#define done~lp 1000 1* Loop iteration counter
#defin ml 400 /* Iteration number for start of network loading */
#define dosize 300 /* Size of noise message *1

I* GLOBAL VARIABLES */
int done - 0;
int who;
int pnum;
double data mt[5000];
double doagmin;
int id num = 55000;

/* SLAVE VARIABLES */
int commgain; /* For varying the co•u nication weights */
int mywt; /* For varying the execution weights */
int in4dfla = 300; /* The next variables contain the branch communication */
int in2bfla = 300; /* and are defined as, using in4dfla, input to node*/
mt in5afla. = 300; /* P4D from PlA*
int in2af4d = 400;
mt in2df2b - 400;
iut in4affa = 900;
int in4cf2a - 350;
int in3at2a = 350;
mt in3bf2d = 350;
int in4bf2d = 350;
int inlbt3a = 525;
int in5bf3b = 525;
mnt in3cf4c = 350;
int in3cflb = 300;
mt in2cf5b = 300;
int in2cf4b = 350;
int inlcf4a = 350;
int inScflc = 300;
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int in~cf2c - 300,
int in~f3c - 300;

char SLAVENAME(3j;
int i,k,
mnt m-m, mumtot;
int n turnmax - 0, wnl -0,
int Wdml i - 0;

chr ynams(51;
int aproc -16;
int aytid; I* my task idI
iut t&dW20J, stidsf5j; I' slave task ids I
int inuproc - 3;
-bw itiinw-al. tmrl;

/* mead in comzmaiicatiou and execution scale fac-tors *

Usnl %, &commgain);
pIutf(Ex wt - )

scanf("%d, Amy wvt);
myt - mywt*4;

I'* use loading or not *I
prit*(\vWith NET loading typ 1, withou NET loading type 2: i)

scanf( %d", &wnl);

/* initial;z matices */
for(k=0; k < 1500; k + +)

data matO]J(double)k+5.66666;

/* enroll in pvm */
mytid = pvmMytido;

I* start up slave tasks *

uproc = 16;

gethostname(myrname,5);

pvmspawn(wplb*, NULL, 1, myname, 1, AtdaO]);
pvmLsa~wn('plc, NULL, 1, myname, 1, Atidsf 1]);
pyzq.qww(Opap, NUILL, 1, *sun3a, 1, &tids[2j);
pvm-qpawn(ap2b*. NULL, 1, esum3w, 1, &tids[3D;
pvmspawn(up2c*, NULL, 1, Ouu3m, 1, &tids[4]);
pvzqspawn(-p2d- NULL, 1, uW-,l3 1, &tidsIISI);
pvmLspawn(*p3a', NULL, 1, 'suu8, 1, &tids[6]);
pvmýspawn("p3b", NULL, 1, *sung", 1, &tids[7]);
pvmýspawn("p3c', NULL, 1, 'sunS', 1, &tids[S]);
pvma~pawn(*p4a*, NULL, 1, 'sun9", 1, &tids[9]);
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pyn qwwo(-p4b-, NULL, 1, 3=9-, 1, atIdafoD;
pvm qjawu-p4c-, NULL. 1, 'x9', 1, &tds[1 ID;
pvuapswua(p4d-, NULL, 1, 'u=9-, 1, &tidu12D;
pvm~spvwn(*pSa', NULL, 1, "m20 1, &fiu(13D;

ipavm wnC'p~b*, NULL, 1, *m 0' 1, &tiAW14D;
pvm Vawu(*pSc', NULL, 1, 'mm' 1, &WIdS(1);

/* Saud WnWia book koepng data to all the alaves *
pvm Wmat d(PvmDataD*Wnt);
pvnapkint(&nproc, 1, 1);
pvm pidnttids, nproc, 1);
pvm~pkint(&iy~wt, 1, 1);

pvmnamcasttids, uproc, 20);

/* Send the input and output costs for each slav. e
pvm Wmtad(PvmDataDeidt);
pvm pidnt(&inlbf~a, 1, 1);
pvmpkidnt(&in3cflb, 1, 1);
pvmaaid(tidaOJ, 25);

pvmniftsmd(PvmO&Dct~fault);
pvm .pkint(&inlcf4a, 1, 1);
pvmjkidnt(&.in~cflc, 1, 1);
pvm sed(tids[ 1], 25);

pvMjmtsead(PvmDataDefaut);,
pvm~pkint(&in2af4d, 1, 1);
pvminjdint(&in4cf2a, 1, 1);
pvmseud(Wis2], 25);

pvminitend(PvmDatsDefault);
pvinpkint(&ln2bfla, 1, 1);
pvm~pidnt(&in2df2b, 1, 1);
pvm send(tidsf 31, 25);

pvmk initsaid(Pvm~ta~efut);
pvmnpidnt(&in2cf4b, 1, 1);
pvni~pkint(&in2cf5b, 1, 1);
pvm~pkint(&inSct2c, 1, 1);
pvm send(tids[4], 25);

pvm_*Nemd(PvmDataDefault);
pvmjpidnt(&in2dt2b, 1, 1);
pvmjkidnt(&in3bf2d, 1, 1);
pvm~smd(tids[SJ, 25);

pvminitsend(PvmDat&Default);
pvm~pldnt(&in3af2a, 1, 1);
pvmjpkint(&inlbf3a, 1, 1);
pvin~sed(tids[6], 25);
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pvumD*MKaVdmwaak);
pvm~pkint(&ia3btKd 1, 1);
pvm~jkini(&inSbf3b. 1. 1);
pvm~sond~ddsM. 25);

pvmimtUai(PnmdktaDemdt);
pvznpkiat&in3cf4c, 1, 1);
pvm pkjnI(&in~cfb, 1, 1);

pv apit(&in~cf3c, 1. 1);
pvmsmdid(SJg, 25);

pvmitsimd(PvuDaftDdadt);
pvmykint(&iu4af5a, 1, 1);
pvmjpict(&inlcf4s, 1, 1);
pvmuuad~td49J, 25);

pvm_*temd(PvmDaWaDeaut);
pvmjpiknt(&im4bt2d, 1, 1);
pvmj*int( iza2cf . 1, 1);
pvm uuid~tidsf 10], 25);

pvm~initscxl(Pvmd~at&Mcfult);
pvmj~kint(&in4cf2a, 1, 1);
pvmjpidnt(&in3cf4c, 1, 1);
pvm-send(tids[Il1], 25);

pvumjnitaseu(Pvmd~atacfmult;
pvmjpkint(&in4dfla, 1, 1);
pvm-jiint(&in2af4d, 1, 1);
pvmmdx~tids[121, 25);

pvmuuntucmd(PmDat@Dcfault);
pvm~cidnt(&in~afta, 1, 1);
pvmjp~int(&in4,aE~a, 1, 1);
pvm emd(tids[13'j, 25);

pvmýinitued(PvmData~eefult);
pvmjpidnt(&in~bf3b, 1, 1);
pvm-plint(&in2cf5b, 1, 1);
pvm umnd(tiduf 14], 25);

pvjmLinitwsid(PvmData~efauWt);
pvm~pkint(&in5cflc, 1, 1);
pvmipkint(&in5cf2c, 1, 1);
pvm~pkint(&in~cf3c, 1, 1);
pvmquaad(tidIs]15, 25);

1* If want loading *
if (wnl = 1)
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pvmqisM* sl-, NULL, 1, 's=3-, 1, &stduOD;
pan qwswn(. s2, NULL, 1, *s- *, 1, &sWid1D;
pvmq,&R(.wns3w, NULL, 1, usum8, 1, &stids[2D;

pvm~initssnd(PvmDataDcfault);
p pkint(&uiproc, 1, 1);

pvm pkintd, ar, 1);
pvm mcaistida, umproc, 62);

/* Beein Usw Program ~

for (done 0; done < done ip; done + +)

if (done - nl && wn1l 1)

pvminitaend(PvmData~e6iudt);
pvmjpiint(&Zdnwn, 1, 1);
pvmasend~stids[OJ, 22);

if (done -=done Ip - 1)
data MatfO] = -444.555;

pvminitsend(PvmDataDefault);
pvmjpkdOublc(datk mat, dosize~comm~jain, 1);
pvm~sesd~tids[31, 4);

pvm *tsend(NvmDaWta~fault);
pvmjpkdouble(datg,_mat, dosize*comm.Jain, 1);
pvmend(tids[l2], 13);

pvmjnitsend(PvinData.Dcfant);
pmPkdouble(data,_mat, dos ze~comm~gain, 1);

pvm-send(tids[13J, 14);

for (k = 0; k < my~yt*2; k+I+)
for (i=O ; i< 1360; i+ +)

MUM = randO;
mnumtot = mumtot + mnum;
data inatfi + 11 + 1;

printf(a\n On loop number %d\n*,done);

pvmFecv(tids[ 1], 25);

pvm~upkdouble(&doagain, 1, 1);
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} Inmd of for loop1

pridndtITM loop is donae);

1* Ensure all slaves have quit prior to termination *
pvmrecv(tidl(5], 35);
pvmupkdouble(&do._again, 1, 1);

prin(dtfWrgm ml.c cwt - %d, ewt - %d is done"n, comm.jpin, my wt/4);

I* Program Finished exit PVM before stopping *I
pvmnexito;

)/(* END OF MAIN PROGRAM *I
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THE MNIVIDUAL SILAVE PROGRAMS:

Slave propram for nods PiE

#include -pvm3.h-
Dinclude <uldiokh>
Dinclude < xyu/time.h >
#include < tixw.h >
#include <sys/types~h>
Dinclude <siinal.h>
Iinclude <uldlib.h>

/* CONSTANTS *
#define parent 6
#define child 8

mainO

iut i,k,mytid, master,
nt tids[20];

int nproc, msgtype, me;
mlt mum, rnuitot=0, done=0, disize, dosize;
double datamatf 10000];
int my~wt, commgjain;

I* enroll in pvind'/

mytid =pvm mytido;
master =pvm~parentO;

pvm~krecv(master, 20 );
pvm-upkint(&nproc, 1, 1);
pvm-upkint(tids, uproc, 1);
pvm-upkint(&my~wt, 1, 1);
pvinupkint(&commgain, 1, 1);

pvmkrecv(master, 25 );
pvmýupkint(&disize, 1, 1);
pvmkupkint(&dosize, 1, 1);

for( i=0; i<nproc; i++ )
if (mytid ==tids~i]) me = i; break;)

while (done ==0)

pvmkrecv(tidsfparent], ine+ 1);
pvm ~upkdouble(data mat, disize~coimmjain, 1);

if (data matf 0] <0)
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doe- 1;

/** slave excution corm */

for(k - 0; k < my wt; k++)
for(i 0= ; i < 1360; i+ +)
{

mum - rundO;
sumtot = mumtot + mum;

data mat[i+] =i+ 1;

py inl e taDefiu );
pvm~pkdobe(datam&t, dosizs*omm~jam, 1);
pma ad(tidschild], child+ 1);

} /*nd of while done - = 0 loop *1

/* Program finished. Exit PVM before stopping *1

pvm-exitO;

} I* End of Slave program plb.c *I
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Slav. pwrogm for gods PIC

Iinclude 'pvm3.h-
#include <utdio.h>
Dinclude <systime.h>
Dinclude < time.h >
Ninclude <qyu/ypoh>
Iinclude <signal.h>
#include <stdlib.h>

/* CONSTANTS *
#define prmit 9
#define child 15

maino

int i,k,mytid, master;
mnt tids[201;
int nproc, msgtype, me, disize, dosize;
int mum, rnumtot-0, dooe=0;
double daftamatf 10000];
double dot again = 2.2;
int my~wt, comm jain;

1* enroll in pvm *I

mytid =pvmmytido;

nmaster =pvmjmaretO;

pvmLrecv(inaster, 20)
pvm~uplint(&nproc, 1, 1);
pvmyupkint(tids, uproc, 1);
pvmkupkint(&my~wt, 1, 1);
pvmýupkint(&comm~gain, 1, 1);

pvmrecv(nmase, 25);
pvmy~pkint(&disize, 1, 1);
pvm~upkint(&dosize, 1, 1);

for (i=0; i<nproc; i+ +)I
if (mytid ==tids[i]) (ma = i; break;)

while (done ==0)

pvmkrecv~tids~parent], me+ 1);
pvm upkdouble(data _mat, disize-*commjgamn, 1);

if (data _mat[0J < 0)
done = 1;
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I111lave executia. Core ~

for (k-=O; k < my~wt;k+ +)
for (i M0;i < 1360; i+ +)

mum - rando;
inumtce = mnumtot + mium;
daa ntfi + 1-=i + 1;

ptamjni~AmDatsD4Wnt);
Pvm Pkdoubwedauamat, dosinacommgain, 1);

pvm-sud(tiWchild], child-+-I);

pvmjndtsmKmDah~cfanit;
pvmj*double(&do _again, 1, 1);
pvmaid(masWe, 25);

)/*and of while done u0 loop'*1

1* Program finished. Exit PVM before stopping *

PVMLexitO;

* IEnd of Slave progrmrnplc.c*
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Dinclude 'pvm3.h
Dinclude <stdio.h>
iAnclude <syu/timeh>

#include <tuck~>
Dinclude <syu/types.h>
#include <uagnal.h>
Ninclude <stdlb.h>

/* CONSTANTS *
fdefine parent 12
#define childi I1I
Odefic child2 6

mainO

int i~kmytid, master, disize dosize;
mnt tids[201, mywt, commjgain;
mnt nproc, msgtype, me;
int mum, ruumtot-0, done=0;
double data matl100001;

1* enroll in pvm *I

mytid -pvmRmytido;

mamate =V pvjxmrnto;

pvmrecv(maste, 20 );
pvm~upkInt(&nproc, 1, 1);
pvmLupkint(tids, nproc, 1);
pvmupkInt(&mywt, 1, 1);
pvmrupkint(&commgapin, 1, 1);

pvm~recv~naster, 25);
pvm~upkint(&disize, 1, 1);
pvm~upkInt(&dosize, 1, 1);

for (i=0; i<nproc; i+ +)
if (mytid ==tidsfi] (me = i; break;}

while (done = 0)

pvmrjecvftids(parent], me+ 1);
pvm upkdouble(data mat, disize*commgain, 1);

if (data mat[O] < 0)
done = 1;
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SI M lv exacuton conr

for(k- = 0;k < My wt; k+ +)
for (i = 0-i < 1360; i+ +)

mum - rmndO,
rnuntot - rniumtot + mum;

daaza~+1-i + 1;

pvbm W~d(Pvnd~tahfUlt)
pvmjkdouble(dsatý nu, dosizeftommj~hin, 1);
pvm pmad(tzds[childlJ, childl. + 1);

pvminatumd(PvmDaftaDefwit);
pvmjkdouble(data..mst, dosirn*oomm.jai, 1);
pvmpmnd(tids[child2], child2 + 1);

,/* ad f whileduone--0loop *1

I* Program finishedl. Exit PVM before stopping *

pymlkexitO;

}/* End of Slave program p2a.c *
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* a.Program
for nodsP2D --- - - - - - - - - - - - - - - - - --.-

Dimolude 'pvm3.h-
fincludse <stdio.h>
#include <systme.h>
Dinclude <time>
Dinclud <syu*yesh>
Anclude <sipgnal>

<icld <tdlib.h >

1* CONSTANTS *
Idefmne parent 3
#define childi 7
#define child2 10

{an
int i,k,mytid, master,
int tids[20J, my~wt, commgapin;
int nproc, msgyp, me, disize, dosize;
int mnum, rnumtot=O, done-O;
double data mat[10000];

I* enroll in pvm /

mytid = pvmMytido;
master - pvm .parentO;

pvmkrecv(master, 20 );
pvmupkint(&nproc, 1, 1);
pvm upkint(tids, nproc, 1);
pvmkupkint(&my~wt, 1, 1);
pvm~upkint(&commgjain, 1, 1);

pvmrecv(master, 25);
pvmupkint(&disize, 1, 1);
pvmuypkint(&dosize, 1, 1);

for (i=O; i<nproc; i+ +)
if (mytid== tid~iJ){me = i; break;)

while (done = 0)

pvmrecv(tids~purent], me+ 1);
pvm upkdouble(data _mat, disize*commgapin, 1);

if (data mat[0] < 0)
done = 1;
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I*slave exewdo. Core

fior (k -0,k < mywt; k+ +)
for (i =O; i< 1360; i++)

nmunft - nmumitot + mum;
aa ai+J i + 1;

pvm Wunitd(NvmData~efimlt);
pvnipkdouble(data~mst, dosizeftommjain, 1);
pvmnm-ed~ids[childlJ, childi + 1);

pvm *snm(vData efsult);
pvmpkdAouble(data _mat, doui=scommgain, 1);
pvnisad(tidcbild2l, child2 + 1);

)/* end of while done -- 0loop*

/* Program finished. Exit PVM before stopping *

pvmpx=itO;

)I* End of Slave program p2d.c *

68



Dinclud. vm.
Dinclude <ustdio.h >

#include <t~iwAsh>
finclude <sy/tpm.h>
Dinclud. <hiinalpwh>
ginclude <dadl.h>

/* CONSTANTS *
Ddefine parent 2
#define child 0

int i~k~mytid, master;
int tidaf 201, mywyt, commgain, disize, dosize;
int uproc, msgtype. me;
int rmum rnumtot-0, done=0;
double data matf 100001;

1* enroll in pvm */

mytid, - pvmmpytido;
master = pvm~parentO;

pvmrecwv(maste, 20 );
pvm-upkint(&nproc, 1, 1);
pvm-upkint(tids, nproc, 1);
pvm-upkint(&mywyt, 1, 1);
pvmuypkint(commitain, 1, 1);

pvm~recv(master, 25 );
pvm-upkint(&disize, 1, 1);
pvmupkint(&dosize, 1, 1);

for ( i=0; i <nproc; i + +)
if (mytid ==tids[i]) (me = i; break;)

while (done = = 0)

pvm~recv(tids~parentj, me+ 1);
pvm upkdoUble(data ~mat, disizeftommjain, 1);

if (data mat[0] < 0)
done =1
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for (k = 0;k <nay wt;k+ +)
for (i -0; i< 1360,;i+ +)

Mmm - andAO;
rnomtot - rnuuto + Mum;

d +t uui11 + 1;

Pvm-Wbmd(PvmDafta~faut)
pvm, kdouble(datxamst, dosmcefommjgam, 1);
pvuamdqesdufchild], child+ 1);

* en.d ofwhile done - 0loopI

/* Program fintished. Exit PVM before stpping *

pvmexitO;

}* IEnd of Slaveprogram p3acI
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-- -- -- ~.------- - - ........ __ __ __ _ -

*Slav. ptoprm for nod. P33

#include -pvm3.h-
#ijcluds <stdio.h>
Dinclude <syutme.h>
Iinclude <timaeh>
Dinclu <sysltypes.h>
Dinclude <uigna.h>
Iinclud. <utdlib.h >

1* CONSTANTS *
#define parent 5
#define child 14

mainO

int i,k,mytid, master, disize, dosize;
int tidaf 201, my~wt, comnijain;
int nproc, mgtsype, me;
int mum, mnumtot-0, done-0;
double data_matf 100001;

I' enroll in pvm. */

mytid - pvmmytidO;
master - pvm..parento;

pvmrecv(master, 20 );
pvmupkint(&nproc, 1, 1);
pvm~upkint(tids, uproc, 1);
pvm-upkint(&my:wt, 1, 1);
pvm~upkint(&comm~gain, 1, 1);

pvmrecv(master, 25 );
pvmupkint(&disize, 1, 1);
pvm-upkint(&dosize, 1, 1);

for (i=0; i< nproc; i+ +)
if (mytid ==tids[i]) me = i; break;)

while (done =0)

pvmkrecv(tids~parent], me+ 1);
pvm upkdouble(data mat, disize~commjaain, 1);

if (data,_ma[f ] < 0)
done =1;
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s* slave emxe io r Cox

for(k = O;k < my_:k++)
for (i - O; i < 1360; i+ +){

mum - randO;
numlot - rmumtot + mum;
daa n~i+ 11 - z + 1;

pvm nits d(PvmlatDeal);
pvmpkdouble(datkamt do ozuomm.pin, 1);
pvmsed(tids[cWild], child+ 1);

I* emd of while done - - 0 loop*1

/* Program finished. Exit PVM before stopping */

pMmexitO;

} I* End of Slave program p3b.c *I
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Slav. program for nods PSC

#Dicude 'pvm3.h-
Iinclude <atdio.h>
hinclude <syuitimeb>
#include <timeb>
#include <syultypesh>
#include <aaignal.h >
#include <stdlib.h>

/* CONSTANTS *

#define parentl 11
#define parent2 0
#define child 15

mainO

int i,k,mytid, master,
int tids[2OJ, mywt, commjain;
int nproc, msgqyp, me;
int mum, rnumtot=0, done=0;
double data mat[I10000;
int diize, disize2, dosrze;

1* enroll in pvm *1

mytid =pvmmytidO;

master =pvmjpareato;

pvm~recv(master, 20 );
pvmtzpkint(&nproc, 1, 1);
pvmupkintftids, nproc, 1);
pvm~upkint(&my~wt, 1, 1);
pvmnupkint(&commgjain, 1, 1);

pv~recv(master, 25);
pvm~upkint(&disize, 1, 1);
pvmakupkint(&disize2, 1, 1);
pvmupkint(&dosizc, 1, 1);

mywyt = mywyt*2;

for (i=0; i<nproc; i+ +
if (mytid ==tidsfil) w e = i; break;)

while (done = 0)

pvmkrecv(tids~parentl], me+ 1);
pvm ~upkdouble(data mat, disize*comm~gain, 1);

73



pvmjs~cv(tids(pasit2i, me+ 1);
pvm~upkdouble(datk..mat. disize2ftomm gin, 1);

if (d4-ata0 <O <0)
done - 1;

I~slave execution core

for (k = 0; k < my~wt; k+ +)
for (i - 0; i < 1360; i ++)

mum - randO;
rmnutot = mumtot + mum;
data mat[i + 1] + 1;

pvm jnisU~d(PvmflataDefault);
pvmjpkdouble(dta~amat, dosize*commjaifl, 1);
pvmuaend(tids~c&A1, child+ 1);

} /*and of whiledonle = 0oop/

/* Program finished. Exit PVM before stopping *

PVMLexitO;

/ * End of Slave program p3c.c *
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Slav. progrmi for nod. P4A

#induded opvm3.hu
#include < stdio.h >
Dinclude <sysltimeh>
Dinclude <6=m.h>
#include <sysltypes.h>
Ainclude. <sinal~h>
#include <atdlib.h >

/* CONSTANTS ~
#define paret 13
#define child 1

maino

int i,k,mytid, master;
int tids[20], mywyt, conmmgain;
int nproc, ms"yp, me, disize, dosize;
int mumn, rumtot=O, done=0;
double data-mat[10000];

/* enroll in pvm */

mytid =pvmMytido;

master =pvmyarento;

pvmrjecv(master, 20 );
pvmupkint(nproc, 1, 1);
pvmnupkint(tids, uproc, 1);
pvmLupkmnt(&my_:wt, 1, 1);
pvm-upkint(commngain, 1, 1);

pvmrecv(master, 25);
pvmupkint(&disize, 1, 1);
pvm-u n(&dosize, 1, 1);

for (i=0; i <proc; i++ )
if (mytid ==tidsfij) me = i; break;)

while (done = 0)

pvnmecv(tidsfparentl, me+ 1);
pvm-upkdouble(datk-mat, disizeftomm-gain, 1);

if (data ma&t(l < 0)
done =1
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I" slave execution cor nI

for (k - O; k < myywt; k++)
for 0i - 0O; i < 1360; i + +)
{

mum - ranmdO;
mumtot - umlot + l"um;
data mat[i+1] - i + 1;

pvm iniftend(PmDataDefault);
pvm,_pkdouble(dat mat, douizefommjpin, 1);
pvmmdztids[child], child+ 1);

} *md of while done = = 0 loop*/

/* Program finished. Exit PVM before stopping */

pvmnexitO;

) /* End of Slave program p4a.c*/

76



I ..-.. . . . . . . .

Slave program, for node P4B

#include -pvm3.h-
#include <aidiokh>
#include <syutme.h>
#include <timekh>
#include <syu/typeh>
#include <sagna.h>
Dinclude <sidlib.h>

/* CONSTANTS
#define palet 5
#define child 4

mainO

int i,k,mytid, master,
int tiduf 20], my~wt, comm~gain;
mnt sproc, msgtype, me, disize, dosize;
int mum, mumtot=O, done=0;
double data mat[10000];

/* enroil in pvm /

mytid =pvm mytido;
master =pvMjxMretO;

pvmkrecv(master, 20 );
pvm~upkint(&nproc, 1, 1);
pvm~upkint(tids, nproc, 1);
pvmupkint(&mywt, 1, 1);
pvmLupkint(&commgain, 1, 1);

pvmkrecv(master, 25 );
pvm~upkint(&disize, 1, 1);
pvm-upkint(&dosize, 1, 1);

for (i=0; i< nproc; i+ +)
if (mytid ==tids[i]) me = i; break;)

while (done ==0)

pvmrecv(tidsfparentJ, me+ 1);
pvm upkdouble(data mat, disize'commgain, 1);

if (data mat[0J < 0)
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done - 1;

/',* slave execution core "I

for(k - O; k < mywt; k++)
for (i =. 0; i < 1360; i + +)

mum m randO;
rnuntot = rmuntot + mum;
daa mati+1] - i + 1;}

pvm med(PvmDataD ~ult);
pvm p uble(data mat, dosiz.commjpain, 1);
pvmyesedids[childJ, child+ 1);

} /* nd of while done 0 loop*

/* Program finished. Exit PVM before stopping */

pvm exitO;

} /* End of Slave program p4b.c */
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Slave pogmam for nods PNC

#include -pvm3.h
Dinclude <utdo.h>
Dinclude <sysitimsh>
#include <6=m.h>
#includs <syqps/tph>
#include <uignal.h>
#include <utdlib.h>

/* CONSTANTS ~
#define parent 2
#define child 8

int i,k,mytid, master,
int WisI201. my~wt, commjgain;
int nproc, msgtype, me, disize, dosiz~e;
int mnum, rnumtot=0, done =0;
double data, matf 10000];

/* enroll in pvm *1

mytid =pvm.mytido;

master =pvm~parentO;

pvmkrecv(master, 20 );
pvmupkint(&nproc, A, 1);
pvm~upkint(tids, nproc, 1);
pvmupkint(&mywt, 1, 1);
pvmupkint(&commjgain, 1, 1);

pvmraecv(master, 25 );
pvmupkint(&disize, 1, 1);
pvmkupkint(&dosize, 1, 1);

for (i=0; i<nproc; i++ )
if (mytid -=tids[i]) me = i; break;)

while (done = 0)

pvmrec~v(tids[parentJ, me+ 1);
pvm npkdouble(data mat, disize*comznjain, 1);

if (data mat[O] < 0)
done = 1;
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/* save, execution core ~

for (k = -k < znywt;k+ +)
for (i-0; i < 1360; i ++)

-nu - randO;
rnuutot - umnitot + mum;

dtmti+1 + i 1;

pvkiitnd(PvmData~efat);
v pkdouble(data mat, dosize*comm-sai, 1);

pvmuemnd(tidsfclzild], child+ 1);

}/* ad of while done - = 0 loop*

/* Program finished. Exit PVM before stopping *

pvm cxito;

} * End of Slave program p4c.c *
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Slave progrma for node N4D

#include -pvm3.h-
#include <atdio.h>
#include <sya/ime.h>
Dinclude <timeb>
iAnclude <sys/types.h>
Dinclude <uipgn.h>
#include <stdlib.h>

/* CONSTANTS ~
#define child 2

mainO

int i~k,inytid, nmaster;
int tids[2OJ, mywt, cominjain;
int nproc, msgtype, me, disize, dosize;
int mum, mumtot=0, done=0;
double data- matl 10000];

1* enroll in pvm *I

mytid =pvmmytfido;

master =pvm~paretO;

pvmrencv(master, 20 );
pvmkupkint(&nproc, 1, 1);
pvmupkint(tids, nproc, 1);
pvmýupkint(&my~wt, 1, 1);
pvm~upkint(&commjgain, 1, 1);

pvmrFecv(master, 25);
pvmupkint(&disize, 1, 1);
pvmkupkint(&dosize, 1, 1);

for ( i-0;i<nproc; i++ )
if (mytid ==tids[i]) me = i; break;)

while (done = 0)

pvm~recv(master, me+ 1);
pvm _upkdouble(data mat, disiz~e4coinmjapin, 1);

if (data matf 0] <0)
done = 1;

Sslave execution core **I
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for (k - 0; k < my-wt; k + +)
for (i-O0; i< 1360; i+ +)

rnumtiot - rnumtot + mnum;
daam~+J i + 1;

pv wedPvmData~efmt);
pvm~pkdoublo(dstsa mat, dosi *cm gain, 1);
pvm ammd~ids(child], child+ 1);

/* anrd of while doew - 0 oopI

1* Program finished. Exit PVM before stopping *

pvmýexitO;

}* End of Slave progrm p4d.cI
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Slave piogrm for node PSA

Ninclude -pvm3.h-
#include <aidiokh>
Dinclude <sys/timeb>
0include <tinah >
#include <sys/typeh>
#include <sagna.h>
#include < stdlb.h >

/* CONSTANTS *
0define child 9

int i,k,mytid, fluster;
int tids[20], my~wt, commgain;
int uproc, ins"tp, me, disize, dosize;
int mum, rnumtot-O, done-0;
double data matf10000];

/* enroll in pvm */

mytid =pvskmytido;

nmastr pvmparentO;

pvmLrecv(master, 20 );
pvmkupkint(&nproc, 1, 1);
pvmkupkmnt(tids, nproc, 1);
pvmýupkint(&mywt, 1, 1);
pvm-upkint(&commj~an, 1, 1);

pvmLrecv(master, 25);
pvm~upkint(&disize, 1, 1);
pvmLupkint(&dosize, 1, 1);

for (i=O; i<nproc; i ++ )
if (mytid ==tids[i]) me = i; break;)

while (done ==0)

pvmrjecv(master, me+ 1);
pvm upkdouble(data mat, disize*commjain, 1);

if (data inat[0] < 0)
done = 1;

Sslave execution core ~
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for(k =O; k < my~wt;k+ +)
for (i= 0;i < 1360; i+ +)

num = rundO;
MumtOt - Mmuinot + mum;
datainaugi + 11 - i + 1;

pvm_*hwnud(PvmData~efat);
pvJkdouble(data mat, dosizeftommjan1)

pvmammnd(idchild], child+ 1);

* an.d of whiledons - 0 o~o~p *

1* Program finishad. Exit PVM before stopping *

pvink ox to;

)I* End of Slave program p5a.cI
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Slave prosam, for nods PSE

Dinclude 'pvm3.h-
Dinclude <stdo.b>
hinclude <syu/time.h>
#include <timebh>
Dinclude <sys/type..h>
Dinclude <signal.h>
Dinclude <atdlib.h>

/* CONSTANTS/
#define parent 7
#define child 4

mainO

int i,k,mytid, waster,
int tids[20], myyt _gm~ain;
int nproc, msgtype, me, dosize, disize;
mnt mum, rnumtot=0, done=0;
double data mat[ 100001;

/* enroll in pvm *I

mytid pvmkmytido;
master =pvm__puretO;

pvmrjecv(master, 20 );
pvmkupkint(&nproc, 1, 1);
pvmy~pkint(tids, nproc, 1);
pvmkupkint(&my_ýwt, 1, 1);
pvmkupkint(&comm~gain, 1, 1);

pvmkrecv(master, 25 );
pvmupkint(&disize, 1, 1);
pvinupkint(&.dosize, 1, 1);

for( i-0; i<nproc; i+ +)
if (mytid ==tids[i]) w e = i; break;)

while (done =0)

pvmrccv(tids~parent], me+ 1);
pvm upkdouble(data mat, disize*comm-gain, 1);

if (data ~mat[0] < 0)
done = 1;
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1"slave Cucution Core ~

for (k -0;k <my~wt; k ++)
foer(i - 0; i < 1360; i+ +)

mum m randO;
mumtot - muumtot + muum;
datamat[i + 1 - i + 1;

pvminitsed(PvmDalaDcfaut);
pvm~pkdoublo(data..ma, dosin~%omm~jam, 1);
pvm sed(tids(childj, child+ 1);

* en~dof while dmev -i-iOloop/

1* Program finished. Exit PVM before stopping s

pvm-exito;

} 1* End of Slave program p~b-c *
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Slave program for node PSC

#include -pvm3.h-
Dinclude <stdo.h>
IAnclude <ays/tim..h>
finclud. <time.h>
#iuclude <sysltypes.h>
#include <asignal.h >
Ninclude <stdlib.h>

/* CONSTANTS ~
#define perenti 1
#define parent2 4
#define pmmut3 8

mainO

int i,k,mytid, master, disize, disiz.2, disize3;
int tids[201, My~wt, COMMgain;
int nproc, msgtype, me, go now = 1;
int mum, rnumtot=0, done=O;
double data_malt[100001;
mnt oldintv = 0, newintv =0, tcalc;
FILE *ofp;
struct timeval stime;

1* enroll inpvm *I
mytid. = pvm ~myt dO;
master - pvmyparento;

pvmrjecv(master, 20 );
pvmupkivt(&nproc, 1, 1);
pvm~upkint(tids, uproc, 1);
pvmupkint(&mywt, 1, 1);
pvmupkint(&commjgain, 1, 1);
mywt = my_wt*2;
pvmkrecv(master, 25)
pvmupkint(&disize, 1, 1);
pvmupkint(&disize2, 1, 1);
pvmkupkint(&disize3, 1, 1);

for (i=0; i~nproc; i++ )

if (mytid ==tids(iJ ] me = i; break;)

ofp = fopen(/home3/stone/Thesis/matlab files/No-sched.out","w)

while (done ==0)

pvmrecv(tids[paret1], mne+ 1);
pvm ~upkdouble~data mat, disize*cowmmgain, 1);
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Ipm. reatids[pseaga2J, me + 1);
pVm pkdOUbledataM mat, ~ ftwmmjmtn, 1);

pvmrecv(tidsfparent3], me+ 1);
.pvm upkdouble(data mat, disiz.3%ommgnain, 1);

if (data mat[0J < 0)
done - 1;

/*slave executon core ~
for (k - 0; k < my-wt; k+ +)

for i - 0; i < 1360; i ++)

mnum - rando;
inumtot - rnumtot + mum;
data mat[i + 1 - i + 1;

gettimeofday(&stire, (struct tirneval*)0);
newintvueggm-v-n*1000s+tm3.tv-usec;

tcalc = newintv-oldintv;
fprintf(ofp,*\n%d",tcalc);
oldintv - newintv;
}* Iend of while done 0loop*

fcloeeofp);
1* Tell the Master all slaves have terminated *

pvminnitsend(PvmDataDe1iult);
pvmj~kdouble(&gO now, 1, 1);
pvmksend(master 35);

/* Program finished. Exit PVM before stopping *
pvnke-xitO;
/ * End of Slave program p5c.c *
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APPENDIX E - SCHEDULED NODE PROCESSING PROGRAMS

MASTER PROGRAM (PROCESSOR 1):

Scheduled master program, also handles node Processor I communication and execution
requireumts.

#include "pvm3.h"
#include <"stio.h>
#include <sys/time.h>
#include <time.h>
#include <sys/types.h>
#include <asinl.h>
#include <stdlib.h>

/* CONSTANTS *J

#define doneIp 1000 I* Loop iteration counter *I
#define sol 400 /* Iteration number for start of network loading *I

/* GRAPH TIME VARIABLES *I
mt Id num = 55000;
mt pltop2 - 300; /* These variables contain the interprocessor comm*/
mt pltop3 = 300; /* costs, read has Processor i to Processorj *j
mt pltop4 = 300;
mt pltopS 30 0 + 3 0 0 ;
mt p2top3 = 350 + 350;
int p2top4 = 350 + 350;
mt p2topS = 300;
mt p3topl = 525;
mt p3top5 = 300 + 525;
mt p4topl = 350;
mt p4top2 = 400 + 350;
mt p4top3 = 350;
mt pStop2 = 300;
mt p5top4 = 900;
int commjgain; /* For varying communication weights */
mt mywt ; /* For varying execution weights */

/* GLOBAL VARIABLES */
int nproc = 4;
int mytid; /* my task id*/
int tids[20]; /* slave task ids */
int done = 0, who;
double datamat[9000], go..now;

maino
{

char SLAVENAME[3];
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int j, k;
int mum, maunMl;
dha mynanw(S];

int improc - 3, utids(5J, wnl -0, nI dome -0;

pxnnt(*%nCOmm wt - u);

acaff.' %do, &comm ain);
pzintf(NEi wt. a)
scango %d". &my-wt);
my_:t so my~wt*4;

pfintf(\With NET loading ty-pe 1, without NET loading tye2: i)

safmU %do, &wnl);

1* initialize matices */

for(k=0; k< 1500; k+ +)
data znat[k] =(double)k +5.66666;

I* em~li in pvmI*

mytid - pvmimytid0;

I* start up slave tasks *j

getbostname(mynamS,S)

pvmnspawn(mp2*, NULL, 1, "sun3', 1, &tids[O1);
pvmspawn~op3f, NULL, 1, aswi8o, 1, &tidsf 1]);
pvmqspawn(wpC, NULL, 1, *SUn9", 1, &Aids[2D);
pvmkspawn(mp5v, NULL, 1, asun2ON, 1, &tids[3]);

pvnkinitsend(PvmData~efault);
pvm pkint(&flproc. 1, 1);
pvmjpkint(tids, nproc, 1);
pvm-j)izt(&my...t, 1, 1);
pvm~pkint(&comm...gin, 1, 1);
pvm~mcast(tids, nproc, 10);

pvnkinisend(NmData~efault);
pvmjkinut(&pltop 2, 1, 1);
pvm~pkint(&p4top 2 , 1, 1);
pvm~pknt(&p5top2, 1, 1);
pvmypkint(&p2top 3 , 1, 1);
pvmpjdkmt(&p2top 4, 1, 1);
pvm jdknt(&p2topS, 1, 1);
pvmksend(tids[Ol, 20);

pvm initsend(PvrnData~efault);
pvmj~kint(&pltop3 , 1, 1);
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pvm Jkint(&p2top3, 1, 1);
pvm pkint(&p~top3, 1, 1);
pvm pkint(&p3topl, 1, 1);
pvmjikint&p3top5, 1, 1);
pvm ued(tIdu1, 20);

pvminitsmd(PvmDaWt*A~e~t)
pvm piint(&pllop4, 1, 1);
pvmjkidnt(&p2top4, 1, 1);
pvm pkint(&p~top4, 1, 1);

pvm pkdnt(&p4topl, 1, 1);
pvm pldnt(&p4top2, 1, 1);

pvm-send(tids[2J, 20);

pvmomd(PmDaWtafa~t)
pvm piknt(&pltop5, 1, 1);
pvm j~kznt(&p2top5, 1, 1);
pvnijikint(&p3top5, 1, 1);

pvmykmdt(&p~top4, 1, 1);
pvin..endftids[3], 20);

if (wnl ==1)

f
pvm spawn("sl", NULL, 1, *sum33 1, &stids[0J);
pvmspawn(%2', NULL, 1, ffsun2Ow, 1, &stids[1]);
pvmkspawn(*s3s, NULL, 1, "mu8", 1, &stids[2D);

pvmiknitseud(PvmData~efault);
pvm~pkint(&Mproc, 1, 1);
pvm~kidnt(stids, snproc, 1);
pvnmcast*stids, siproc, 62);

1* Begin User Program *1

for (done = 0; done < done ip; done + +)

if (done -- sn&& wnl= 1)

pvjtwdPvmData ~efau t);
pvm~pidnt(&14dnum, 1, 1);
pvm~send(stids[0], 22);

if (done ==done ip - 1)
data matfO]- -44.555;

pvminitsend(PvmData~efault);
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pv= pkobim~dalsaint, plWtopSMoz SziU, 1);
pvm sedmidu3J, 4);

pvmuutasewd(NmDaSDbfaUk);
pvmj~kdouble(data..0U9, pltop4"coummSain. 1);
pavmumd~ids[21, 3);

pvkdouble(data...fut, pltop34'coiim...i )
pvui uendtid[1] 2);

pvr.jisd(PvmDaWtea~t)
pvzqj~double(data..zut. putop2omm..gain, 1);
pvm emd~ids[OJ, 1);

/* Execution core section *

for (k = 0; k < mywýt*2;k ++)
for (i-O0; i< 1360; i+ +)

mum - randO;
mumtot = rnunMt + mum;

dat ma~i1] i+ 1;

for (k = 0; k < mywyt; k+ +)

{b i=0 <16;i++
mum - randO;
Mmurtot = Mumtot + mum;
data ~mat[i + 11 + 1;

for (k -0; k < lywýt; k+ +)
for (i =0;i < 1360,;i+ +)

mum - randO;
Mumtot = Mumtot + mum;
data - mat~i + 1I + 1;

printf(lnon loop number %d~nm,done);

if(datakmat(O] > = 0)

pvinrecv(tids[1], 2);
pvm~upkdouble(data...mst. p3topl*comfll.gainl, 1);

pvm-recv~tids[2], 3);
pvmyupkdoublc(datammat, p4topl*comm....aifl, 1);

pvm~rev(tids[31, 4);
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pvmupkdouble(&gonpow. 1, 1);

)* iemd of for loop/

printf(\nlhe loop is done~n*);

/* Ensure all slaves have quit prior to termination/
for(i -0; i<nproc; i ++)

pvm recv(-l, 35);
pVIIu.pkint(&who, 1, 1);

prinf('\nProgram m2.c cwt = edwa = %dis done\nw, comm pin, mywt/4);

/* Program Finished exit PVM before stopping *
pvmLexitO;
} '''END OF MAIN PROGRAM '''
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THE MINDVUAL SILAVE PROGRAMS:

Slave pbopVm for scheduled Processor 2

Iinclude -pvm3.h-
#include <atdio.h>
#include <"ys/ime.h>
#include <time.h>
#include <sys/ypeh>
#include <signa.h>
Ninclude <stdlib.h>

/* CONSTANTS *
#define pereti 2
#define paret2 3

maino

int i,k,mytid, master;
int tids[20], stids[20], mywyt, comm~gain;
int nproc, msgtype, me, saproc;
int mum, rnumtot=0, donernO;
double data mat[10000J;

/* Theen hold the input cost, I iI, or the output cost,'o oI
int disizel, disize4, disize5, dosize3, dosize4, dosize5;

/* enroll inpvin*/

mytid =pvzmmytido;

master =pvm~preflto;

pvmrjecv(master, 10);
pvmkupkint(&nproc, 1, 1);
pvm upkint(tids, nproc, 1);
pvm~upkint(&mywyt, 1, 1);
pvmnLupkint(&.conmmjain, 1, 1);

pvm~recv(madter, 20 );
pvmupkint(&disizel, 1, 1);
pvmtRupkint(&disize4, 1, 1);
pvimLupkint(&disize5, 1, 1);
pvmkupkint(&dosize3, 1, 1);
pvmjxupkint(&dosizb4, 1, 1);
pvm~upkmnt&dosizes, 1, 1);

for (i=0; i< nproc; i++ )
if (mytid - = tids[i] ) ( me - i; break;)

pvmkrecv(master, me + 1);
pvm upkdouble(datmk mat, disizel*commjain, 1);
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while (dome -0)

pvminitaund(Pvm~sata~efkut);
pvm kdouble(dataý_mat, dosize5%omm..gain, 1);
p'vmucmnd(tids[31, 4);

pvminitsmmd(PvmI~atadef~ult)
pvm ~duble(data mat, dodeizMcommjpdn, 1);
pvminuwd(tids[2], 3);

pvmmjitsend(PvmDatsDefault)
pvm pkdouble(data _mat, dodWzc3omm~jain, 1);
pvmLmsd(tids[IJ, 2);

I~slave execution core ~

for (k -0; k <myyt; k ++) /* simulates node A/
for (i =0; i< 1360; i+ +)

mum = rAndO;
rnumtot = rnumtot + mum;
data -mat[i + 11 + 1;

for (k =0; k <my-..t; k ++) I* simulates node BI
for (i = 0; i < 1360; i+ +)

mnum. = randO;
mumtot = Mumtot + mum;
data _matfi + 1 - i + 1;

/* simulates node C *
for (k - 0; k < my_"; k+ +)

for (i=-0; i< 1360; i++)

mum = rando;
mnumtot = Mumtot + mum;
data ~matfi + 1 = i + 1;

for (k = 0; k < mywt; k+ +) I* simulates node D*
for (i =0; i< 1360; i+ +)

mum = rando;
mnumtot = mnumtot + Mum;
data _mat[i + 1] =i+ 1;

pvm-recv(tids[2J, me+ 1);
pvm upkdouble(data mat, disze4%cominP&, 1);
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pvuii'cv(idd[31, me+ I);
pvm upkdouble(data..mot, disinm5%ommgami1)

pvmrecv(infste, mne+ 1);
pvm upkdouble(data mat, disizelftomm-ain, 1);

if (data mat(O] < 0)

done - 1;
pvm_*mnitd(PvmDataDefkult);
pvmpkdouble(data..mat, dosize3"commjain, 1);
pvm emd(tids~l, 2);

)/*and of while done 0Oloop/

/* bnfrm the master I have temuinated *
pvm_*tscnd(PvmData~efadt);

pvmksmnd(inaster, 35);

/* program finished. Exit PVM before stopping *
pvmkexitO;

}/* End of Slave program p2.c/
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Slave program for schaduhed processor 3

Iincluds 'pvun3.h-
#include < stdiokh>
#include <rsyi=~.h>
#include <tinuh>
#include <qyutypes~h>
#include <uzgna~h>
#include <stdlb.h>

1* CONSTANTS ~
#define perati 3
#def ine done tag 45

maino

imt i,k,mytid, nmater;
int tids[20J, stids[20], my~wt, comm~gain;
int uproc, masgtype me, saproc;
int mumn, rnumtot-0, done=0;
double data mat[10000J;
double go now - 55.55;
int disizel, disize2, disize4, dosizel, dosizeS;

/* enroll in pvm */

mytid - pvmmytidO;
mater - pvm..parento;

pvmrjecv(nmater, 10 );
pvmLupkint(&nproc, 1, 1);
pvm~upkint(tids, nproc, 1);
pvmýupkint(&rnywyt, 1, 1);
pvm-upkint(&comm~gain, 1, 1);

pvmkrev(maste, 20 );
pvm~uplidnt(&disizel, 1, 1);
pvm~upkint(&disize2, 1, 1);
pvm~upkint(&disize4, 1, 1);
pvm-pkint(&dosizel, 1, 1);
pvmkupkint(&dosize5, 1, 1);

for (i=0; i<nproc; i+ +)
if (mytid = = tids[i]) me = i; break;)

pvmrecm(tids[0], 2);
pvm _upkdouble(data _mat, disize2*comm~gain, 1);

while (done ==0)
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pmuu *b * I *b~ t);
pvmjkdaubledmta ma, dosiraS soinmgn 1);
pvi~nud(tida3J, 4);

pvm jitsmmd(PvmDataDe&aut)
pvm pkdoubl.datmainat, dodwul~coinmgnn, 1);
pvm pend(mastur, .3+1);

pvminitsead(PvmDataMfml~ut);
pvm-pkdouble(&so now, 1, 1);
prm-suad(ids2] 20);

I~slave execution corn e
fbr (k -0; k <myyit;k+ +) /* simulatesnDode A/

for (i - 0-, i < 1360; i ++)

MUM = rawd;
mumtot - inumtot + mum;

datamati+1J- i+ 1;

for (k -0; k <mywyt;k+ +) I* imulates node BI
for (i = 0;, i < 1360; i ++)

mum = randO;
mumtot - mumtot + mum;

/* simulates node C *
for (k - 0; k < iny:wt*2; k+ +)

for (i - 0; i < 1360; i ++)

mum = rando;
mumitot - rnumtot + mum;
data matfi + 1] = i + 1;

pvm recv(master, me+ 1);
pvmkupkdouble(data ~mat, disizel~commSain, 1);

pvmrecvftids[2], me+ 1);
pvm upkdouble(datak mat, dWsiz4%commgain, 1);

pvmkrecv(tids[O], me+ 1);
pvm upkdouble(data mat, disze2*comm~gain, 1);

if (data mat[0J < 0)

done =1

gonow =-34.33;

pvm-*snd(PvmDataDefalt);
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pvmpkdouble(&go..now, 1, 1);
pvinamd(tidsf2J, 2,0);

* Iand of while done -- 0 loop*

1* Inform dhe master I have terminated *
pvm initswd(Pvmýatacfiult)
pvm~piint(&ms, 1, 1);
pvmasemd(master, 35);

1' Program finishd. Exit PVM before stopping *
pvm-exito;

/* IEnd of Slaveprogram p3.cI
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----- ---
Slave program for scheduled procesor 4

ADiclude -pvm3.h'
ffinAcude <adio.h>
Dincludc <uyu/iin.h>
#include <thmn.h>
Iincude <qystypes.h>
Dinclude <signai>
Dinclude <atdlb.h>

/* CONSTANTS ~
#define pwmeti 2
#define permt2 3

int i~k~mytid, master-,
int tidaI2Ol, my~wt, comm~pin;
int nproc, msgtyp, me, suproc;
mnt mum, rnumlot-0, done-0;
double data matf10000];
double goL now,
int disizel, disize2, disizeS, dosizel, dosize2, dosize3;

1* enrolli n pvm 'I
mytid - pvmkmytid0;
master - pvm..parent0;

pvmryecv(mmster, 10);
pvmUpkint(&nproc, 1, 1);
pvmnupkint(tids, npwoc, 1);
pvm-upkint(&mywyt, 1, 1);
pvm-upkmnt(&cormam~pn, 1, 1),

pvmqrecv(rnaster, 20 );
pikupkint(&disizel, 1, 1);
pvm-upkint(&disize2, 1, 1);
pvm-uplint(&disize5, 1, 1);
pvmkupkint(&dosizel, 1, 1);
pvmnupkint(&dosize2, 1, 1);
pvm upkint(&dosize3, 1, 1);

for (i-0; i< nproc; i++ )
if (mytid -- tbdsfi]) ( me - i; break;)

data mat[O] 456.3333;

pvzn rev~tidsf 1], 20);

pvm upkdouble(&go norw, 1, 1);
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whide (don. -0)

pvmuiitsodvmDataDcfault)
pvmpkdouble(data nast douizel~comm~jain, 1);
pvmamed(unoster, me.+ 1);

pvm *bwsd(PvznDabDcfS~t)
pvm,_kdouble(data~ma, dosize2%commjaifl, 1);
pvmuuad(tids[01, 1);

pvm_*mztd(PvmDataDdault);
pvm pkdoub~edatRamt, dosizo3%ommjaifl, 1);
pvm,_ummd(tIdsf11 2);

pvm,_*tsemd(PvmData~eftilt)
pvmpk*doublo(&go now, 1, 1);
pvmauscd~tids[3j. 4);

if (data matf 0] < 0)
done = 1;

/~slave execution core '
for (k=-0; k <my~yvt;k++) /* simulates node A/

fori -=0; i < 1360; i+ +)

mum - rando;
rnumtot = inumtot + mnum;
datiuaq + 11i+ - i + 1;

for (k =0; k <my.Wt4k+ +) /* simulates node B/
ibr(i = 0,i < 1360; i ++)

mum = randO;
rnumtot = rnumtot + mum;
data rnatfi + 1] + 1;

for (k = 0; k < mywyt; k ++) I* simulates node CI
fbr (i =0-, i< 1360; i+ +)

mum = rnmdo;
mnumtot - Mumtot + mum;
data ma~i + 1J - i + 1;

for (k =0; k <myVt; k ++) /* simunlates node D*
for (i =0; i< 1360; i+ +)

mum =rando;

mnumtot =mumtot + mum;
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pvm~recv(tidu(0J, nme+ 1);
pvmupkdouble(data 'flat, didiie2"commjpin, 1);

pvm ecv(tiW3], me+ 1);
vm-upkdouble(dask~, m@ Asize 'commjusin, )

pvmreov(nuste, tme+ 1);
pvm~upkdoul.dalk .mat, disizel *omm~gan, 1);

pvm recv(tiWme-IJ, 20);
pvmLup*double(&go...ow, 1, 1),

if (g-oW <o <0)

dome = 1;
pvm *nWend(PvmD&W~afeut);
pvmypkdoubl.(&,gonow, 1, 1);
pvm~semd(tids[3J, 4);

) * end of whiledone u0 loop

1* Inform the madte I have terminated *
pvminitsend(PMnData~efaut);
pvmjkint(&me, 1, 1);
pvm-send(master, 35);

f* Program finished. Exit PVM before stopping *
pvm..exitO;

}* IEnd of Slave program p4.cI
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Slae, program, for scheduled processor 5

#include -pvin3.h-
#include <stdio.h>
#include < sys/time~h>
#include <tive.h>
Dincluds <systypmsh>
#include <sigal.h>
#include <stdlib.h>

/* CONSTANTS *
0define parenti 2
Ddefine psrmt2 3

mlt i~k,mytid, master.
int tids[20J, my~wt, comgainut
int uproc, fliagype, me;
int mum, rnumtot=O, donemO;
double data mat[ 100001, go now;
FILE *ofp;
int oldintv - 0, newintv - 0, tcalc;
stuc tmeval stm;

1' waroij in pvm */

mytid - pvmn mytidO;
maste = PMvPm.paeto;

pvmkrecv(raswe, 10);
pvm~upkint(&nproc, 1, 1);
pvm~upkint~tids, nproc, 1);
pvm upkint(&mywt, 1, 1);
pvm~upkint(&commjein, 1, 1);

pvmkrecv(nmater, 20 );
pvmupkint(&disizel, 1, 1);
pvm upkint(&disize2, 1, 1);
pvmkupkint(&disize3, 1, 1);
pvm~upkint(&dosize2, 1, 1);
pvm upkint(&dosize4, 1, 1);

for( i-0; i< nproc; i+ +)
if (mytid = - tidsfi] ) ( me - i; break;)

ofp - fopen(/home3/stoneffeais/matllb-files/Sched.out" ,"w
fprintf(ofp,"\n%d",commjain);
fprintf(ofp,'\n%d*,mywt/4);

date _met[O] = 456.33333;
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pvmwscv(Wiu2j, me+ 1);
Ivm 111rdotb"(Coow, I, ý);

while (dam. -0)

pvm pkdoubl.(datauutd, douize2*comm....pin, 1);
pvm umdd.(W0, 1);

pvminatmd(PvmDaWfleAut);
pvm pkdoubie(dstmatnat, dosizo4%commjpin, 1);
pvm uad(tids[2j, 3);

pvmnibamd(PvmDataDefaut)
pvm pkdouble(&go now,, 1, 1);
pvm~amnd(nmasW, me+ 1);

I~slave execution core **
for (k=-O; k <mywyt; k +- ) /* simub" enode A/
for (i -O; i< 1360; i+ +)

rmum - randO;
muumtot - rnumtot + mnum;

damai+l-i + 1;

for (k =0; k <mywt; k ++) I* simulates node B*
for (i-O0; i< 1360; i+ +)

mum = =ado;
rnumlot - rnumtot + mnum;
data matfi + 1] - i + 1;

for (k -0; k <mywyt*2; k ++) I* simulates node C*
for (i =0; i< 1360; i+ +)

mum - randO;
mumitot =mumtot + mum;
data mat~i+lj - i + 1;

gcttimeofday(&sime, (amrut fimeval*)0);
newintv-stirm.tv bec*lO00000+ stime.tv-usec;
tcalc = nowintv-oldintv;

fjvintf(,ofp."\n%d*,tcac);
oldintv - newintv;

pvm~recv(tids[OJ, me+ 1);
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pvm upkdouble(datamant, dfisize2ftommgain, )

pvmrecv(tidstlJ, U3+ 1);

pvm-upkdouble(data-mat, disizc3"commjjain, 1);

pvne~isem+1); omian1)
pvuýupkoube~dtaýmakt, disizel~om i

pvmrecv(tids(2J, mne+ 1);
pvm upkdouble(&go now, 1, 1);

if (go now < 0)

/* a~nd ofwhile done 0 rnloopI

/* Inform the master I have terminated *

pvminitsend(PvmDataefault)
pvmjpidnt(&me, 1, 1);
pvmu~end(mafter, 35);

/* Program finished. Exit PVM before stopping *

pvnkexitO;

} * End4 of Slave program pS.c *

1*done = pvm~probe(inaster, done tag);*I
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APPENDIX F - HARDWARE MULTICAST NODE PROCESSING PROGRAMS

MAST7ER-PROGRAM (PROCESSOR 1):

Scedld uier program usig hardware implemented message multicasts

Ninclude -pvm3.h-
linclude <stdo.h>
#include <sys/time.h>
#includs <tiine.h>
Dinclude <sys/ypes.h>
#include <stdlib.h>

I' CONSTANTS *
#define done-ip 1000
#define sal 400

/* GRAPH TIME VARL4ABLES *
int plout =300 +300 +300+ 300+300;
int p2out - 350+350 + 350+350 + 300;
int p3out - 525 + 300+525;
int p4out -350 +400+350 + 350;
int p5out.= 300 +900;
int id num = 55000;

/* GLOBAL VARIABLES *
int nproc -4;
mnt mytid; /* my task id *1
int tidaf 20]; /* slave task ids *
int who, done = 0;
double data,_mat[ 11000], go now;

mainO

int i, k,rnum, rnumtot;
int snproc = 3, stids[5], wnl =0, ml done =0;

struct itimerval trerval;
int commjamn, my~wt;

printf(*\nComm wt = )
scanf(" %d", &commjain);
printf(O\Ex wt =*)
scanf("%d*, &nxywt);
mywyt -my_.wt*4;

printf('With NET loading typ 1, without NET loading type 2: )
scn(w %d", &wnl);

/* initialize matices *
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for(k'uO; k< ISM0 k+ +)
data,_mafkJ-(doubls)k+5.66666;

I* enroll in pvm */
mytid - pvui..ytido;

/* start up slave task *1
pvma~awn(up2h", NULL, 1, sun3m, 1, &tids[0J);
pvmupeawn(mp3hm, NULL, 1, "sunm, 1, &tids[1J);
pvm..spawn('p4h", NULL, 1, 'aun9*, 1, &tids[2D);
pvnkpawn(*pSh', NULL, 1, 0=n20% 1, &tids[31D;

pibm_*d(PvmDat*Deh~It);
pvm pkint(&nproc, 1, 1);
pvmn pkintfids, nproc, 1);
p'vm~pkint(&my~wt, 1, 1);
pvmjkidnt(&comnijain, 1, 1);
pvný_icasttids, uproc, 10);

pvm~initsend(Pvmat~e~failt)
pvm pkint(&plout, 1, 1);
pvm pkint(&p2out, 1, 1);
pvmusend~tids[O], 20);

pvmjnitsend(PvmData~efault);
pvm~pkint(&p2mAz, 1, 1);
pvmjpicint(&p3out, 1, 1);
pvmksead(tids[1J, 20);

pvmRinitsend(PvmDaWa~fcut);
pvmpkidnt(&p3out, 1, 1);

pvmpknt(&p4out, 1, 1);
pvmasend(tids[2J, 20);

pvrniunisdaPvData~cfault)
pvm~pkint(&p4out, 1, 1);
pvm..pkint(&.p5out, 1, 1);
pvm~send~ids[3J, 20);

if (wnl =- 1)

pvmuspxwn('sV, NULL, 1, "sun3', 1, &stids[O]D;
pvm-spawn(as2", NULL, 1, wsu2O", 1, &stidalll]);
pvmnspxwn(*sY, NULL, 1, ssun8, 1, &stids[2]);

pvm_*tsend(PvmData~efault);
pvm~pidnt(&snproc, 1, 1);
pvmykilnt(stids, snproc, 1);
pvmkmca~stdtds, snproc, 62);
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/* Begin User Progra *

for (does-0;dam < donejp; dam ++)

if (done =ual&& wnJI 1)

pvm *wnisd(PvmDaWt-auc1Qut;
pvm~pkint(&14d mum, 1, 1);
pvm, eod(stids[O], 22);

if (done - doomjp - 1)
data matfOl - -444.555;

pvm. WnmIPvmDaDefaut);
pvmupkdouble(datk mat, plout'coimjain, 1);
pvmasend(tids[O], 12);

1* Slave execution cores for PIA, PIB, and PIC '
for (k = 0; k < mywt*2; k+ +)
for (i =0; i< 1360; i+ +)

mum = rondo;
mnumtot = mumtot + mum;

dtmai+1=i + 1;

for (k=-O; k < my~wt; k ++)
for 0i=0; i< 1360; i++)

mnum = rondo;
Mumtot = rnumtot + maum;
datak mat[i + 1] + 1;

for (k=-0; k < myyt; k ++)
for (i =0; i< 1360; i+ +)

mum = rondo;
rnumtot - rnumtot + mum;
data mat~i + 1 = i + 1;

printf(*\nOn loop number %d\n',done);

iftdatamatfo]> =0)

pvm~recv(tids[3], 51);
pvqukdouble(data mat, p5out*comm__ain, 1);
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* amnd of fbrloop"'

prind("\n~h loop is donoen*);

/* Eunse &Ul slaves have quit prior to termination *
for(i-O; i <nproc; i ++)

pvm~rev(-1, 35);
pvmupkint(&who, 1, 1);

printf(*\Program m2h.c cwt - %,ewt - %dis done\no, comanjain, mywýt/4);

Program Finished exit PVM before stopping
pvmext0;

/d*END OF MAIN PROGRAM ~
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THE INDIVIDU.AL SLAVE PROGRAMIS:

Slave program for scheduled w/ hardware niulticast for Processor 2

#include 'pvm3.h-
Dinclude <utdio.h>
Ninclude <syu/time.h>
#include <tiWeb>
#include <Sys/type.h>
Ninclude <stdlb.h>

maino

int tidsf 201, my~wt, commjjam,
mnt uproc, msgtype, me, i,k,mytid, master;
int mum, mnumtot-O, donesO;
double data mat[1 1000];
mnt plout, paout, p3out, p4out, p5out;

/* enrll in pvEm /
mytid =pvm~mytid0;

master =pvinJNUretO;

pvmrecv(master, 10);
pvmupkint(&nproc, 1, 1);
pvmkupkint(tids, nproc, 1);
pvmkupkint(&mywt, 1, 1);
pvmýupkint(&comm,_ain, 1, 1);

pvmrjecv(master. 20);
pvm upkint(&plout, 1, 1);
pvmkupkint(&p2out, 1, 1);
for (i-0; i<nproc; i+ +)

if (mytid - = tids[i]) me - i; break;)
pvmýrecv(master, 12);
pvm ~upkdouble(datk mat, plout*commj~ain, 1);

while (done =0)

pvmkinitsend(PvmData~eftult)
pvnipkdouble(data mat, p2out*commg~ain, 1);
pvnmsend(tids[l], 23);

/*slave execution core ~*I
fbr (k=-0; k <mywt; k+ +) /* simaulates node A*

for (i=-0; i< 1360; i+ +)

maum = rando;
rnumtot = rnumtot + mum;
data ~matfi + 1] - i + 1;
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}7

for (k -O; k <my.wt; k ++) /* simulates node B'h
for (i =0; i< 1360; i+ +)

MUM = randO;
mumtot - mumlot + MUM;

daam~+J-i + 1;

for (k -O; k <mywtAk+ +) /* simulates node C/
fbr 0 -0; i< 1360; i+ +)

MUM - raNdO;
Mumtot = mumatot + mum;
data mat[i + 1 = i + 1;

for (k -O; k <mywt; k+ +) I* simulates node DI
for0i=O0; i< 1360; i++)

mnum = rando;
mnumtot = mumtot + mum;
data_mati + 1J = i + 1;

pvm~recv(maste, 12);
pvmupkdouble(data..mat, plout~oommjgain, 1);
if (data mat 0] < 0)

done - ;
pvMinitsend(PvmDataDefault);
pvmjpkdouble(data mat, p2out4 'comm...gain, 1);
pvm-end(tidstlj, 23);

} /* adofwhie dn e 0 lOoop*
1* Inform the master I have terminated *

pvm initsend(PvmDataDefault);
pvm~pkint(&me, 1, 1);
pvm~sead(master, 35);

1* Program finished. Exit PVM before stopping *
pvm-exito;

} I" End of Slave program p2.c *



Slave program for scheduiled hardware multicast for Processor 3

#includo -pvm3.h-
iAnclude <stdio.h>

#include <sys/time.h>
#include < time.h >
#include < sys/types.h >
Dinclude < sigual.h >
#include <stdlib.h>

mainQ

int i,k,mytid, master, uproc, msgtype, me;
int tids[201, stids[20J, my~wt, commjain;
int mum, rnumtot=0, done=0;
double data mait[II000], go now = 55.55;
int plout, p2out, p3out, p4out, p~out, iniproc;

1* enroll in pvm /
mytid -pvmMytidO;

master =pvm-parento;

pimrecv(master, 10 );
pvmupkint(&nproc, 1, 1);
pvmjiupkintftids, nproc, 1);
pvm-upkint(&ny-wt, 1, 1);
pvmkupkint(&commjain, 1, 1);

pvm~recv(master, 20 );
pvmkupkint(&p2out, 1, 1);
pvmnupkint(&p3ovt, 1, 1);

for( i-0; i<nProc; i++ )
if (mytid - - tidsfil) (me = i; bresk;)

pvmkrecv(tids[0J, 23);
pvm ~upkdouble(datamamt, p2out~comm gain, 1);

while (done = 0)

pvm Wtaend(PvmDataDefaut);
pvmjpkdouble(data nut, p3out*comm~gain, 1);
pvmLsend(tids[2], 34);

**slave execution core
for (k=-O; k <myt; k ++) I* simulates node A*

for (i -0; i< 1360; i+ +)

mum - rando;
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mumtot - rnumtot + rnum;

for (k -0;k <mywt; k+ +) /* simulates node B*

f;(i ;i<16;i++
mum = rando;
rnumtot - mumtot + mum;

for (k -O; k <mywt*2; k ++) I* simulates node C*
for (i -O; i< IMO0;i+ +)

mnum, = rando;
mumtot - nUEmto + mum;

datamati+1J= i+ 1;

pvmLrecv(tids[OJ, 23);
pvm upkdouble(data mat, p2out~comm~gain, 1);

if (data matfO] < 0)

done-i1;
pvm__*tsead(PvmDataDefmult;
pvmnpkdouble(data ~mat, p3out*commjjain, 1);
pvmspend(tids[21, 34);

* a~nd of whiledone0 loopI

1* Inform the master I have terminated *
pvminitsend(PvmData~ehult);
pvmpkint(&me, 1, 1);
pvm~send(master, 35);

/* Program finished. Exit PVM before stopping *
pVM-exitO;

)/* End of Slave program p3h.c *
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Slave popa for scheduled hardware nwIuticust for Processor 4/

Dinclud. 'pvm3.h'
Ninchide <uldiobh>
IAnlude <qsys/iae~h>
hinclude <dmn.h>
Oinclude <sys/ypeh>
Oinclude <signa.h>
#incude <stdlib.h>

int i,k,mytid, terw, aproc, nasgtype, me;
int tads(20J, MywtA, commgapin;
int mum, moutot-0, dom.-0;
double data uvmf 10000, so-pow;
int p3out. p4out;

/* enroll in pvmI*
mytid =pvnmytfidO;

- -te pvmjpareto;

pvm~recv(master, 10);
pvm~upkint(&nproc, 1, 1);
pvmkupkInt~tids, nproc, 1);
pvm-upkint(&mywt, 1, 1);
pvm upkint(&comm ain, 1, 1);

pvm rev(raster, 20 );
pvm upldnt(&p3out, 1, 1);
pvm-upkint(&p4out, 1, 1);

for (i-0; i<nproc; i++ )

if (mytid == tidsli] ){(me = i; break;)

data mmt[O] 456.3333;

pvm Tcv(tids[1J, 34);

pvm ~upkdouble(data _mat, p3out*commjgain, 1);

while (done =0)

pvminitsend(PvmDataDefault)
pvmjkdouble(dataýmat, p4out~comm pin, 1);
pvmsend(tids[3), 45);

if (data matf 0] < 0)
done = 1;

I~~slave execution core "
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for (k -0; k <mywt; k+ +) /* simulates node A/
for (i -0; i < 1360; i ++)

rmum = randO;
Mumtot - mumlot + mum;
data _mat[i+ 1] - i + 1;

for (k =0; k <myyt; k++) /* simulates node B/
for0 -0; i< 1360; i+ +)

mum = rando;
rmumtot - mumtot + mum;
data mat(i +1] = i + 1;

for (k -0; k <my-wtk+ +) I* simulates node CI
for (i =0; i< 1360; i+-i-)

mum = rando;
Mumtot = mumtot + mum;
datanmati + 11 = i + 1;

for (k -0; k <my~wt; k ++) I* simulates node DI
for (i = 0; i < 1360; i+ +)

mnum = rando;
mumtot - rmumtot + Mum;
data mat(i+l] = i + 1;

pvmrecv(tids[1], 34);

pvm~upkdouble(datamat, p3out*commjgain, 1);

if (dlata mat[O] < 0)

done = 1;
pvm_*tsend(PvmDataDcfaut);
pvm-pkdouble(data-mat, p4out~comm-sain, 1);
pvm~saad~ids(31, 45);

}/* endof while done 0Oloop*

/* Inform the master I have terminated *

pvminitsead(PvmDataeeault);
pvmpkint(&me, 1, 1);
pvm~send(master, 35);

/* Program finished. Exit PVM before stopping *
pvmnexitO;

} I* End of Slave program p4h.c *
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Siam program for scheduled hardware inualicast fiw Processor 5

linclude -pvmi.h-
Dinclude <stdiokh>
#include .Cuy/tim.h>
Dinclude < tims.h >
#include <syutypes.h>
Dinclude <stdlib~h>

mainO

Wt i~kmytid, master, sproc, msgtype, me;
int tidsf2O], mywyt, commjgazn;
int mum, mumtot-0, domnO;0
double data nmal 0000, So now;
int oldintv - 0, ncwintv - 0, Icalc, p4out, p5out;
MIE %ofp;

struct timeval slimne;

1* enroll in pvm */
mytid - pvm mytido;
inaster m pvm-JNWreto;

pvmirecv(master, 10);
pvm~upkint(&uproc, 1, 1);
pvm~upkint(tids, uproc, 1);
pvm upkint(&mywyt, 1, 1);
pvm~upkInt(&commjgain, 1, 1);

pvmrecv(maste, 20 );
pvmqupkint(&p4out, 1, 1);
pvm~up~int(&p~out, 1, 1);

for (i=0; i <nproc; i+ +)
if (mytid = - tidsfi] ){(me = i; break;)

ofjp - fopen("/home3/5tonefThesis/Matlab files/Sched-hs.out', win);
data matfO] - 456.33333;

pvmFwv(tids[2J, 45);
pvm upkdoublc(datm,_mat, p4out*commjgain, 1);

while (done= 0)

pvm initsead(PvmDataDefiult)
pvmjpkdouble(data maAt, psout*comm..gain, 1);
pvm send(umater, 51);

**slave execution core **
for (k -0; k <inywt; k ++) I* simulates node A*

fori 0 0; i < 1360; i+ +)
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mum - rnudO;
mumtot - munitot + mum;

fr (k -0;k <myywt;k+ +) I* simudats node BI
for (i = 0; i< 1360; i+ +)

mnum = randO;
mumatot - mumtot + mum;
data ma4i + 11 -i + 1;

for (k-O0; k <myw"2; k+ +) /* simulates node C/
foriw 0-O; i< 1360; i+ +)

mum = rando;
Mumtot - Mumiot + mum;
data matfi+1] 1 + 1;

gettimeofdlay(&stime' (strut tiMeva*)O);
newintv -.stime.tvsec*1000000+stiin.tv usec;
tcalc = newintv-oldintv;
trntf(ofp,u~n%d",tcalc);

oldintv = newintv;

pvmrecv(tids[2], 45);
pvm upkdouble(data mat, p4out*cormmjpin, 1);

if (data _matlil < 0)
done - 1;
)/* endof while dofe=O0 loop

fclose(ofp);
/* Inform tie master I have terminated *
pvminiftend( PvmDatdea~eUt)
pvmjpidnt(&me, 1, 1);
pvmasend(master, 35);

I' Program finished. Exit PVM before stopping *
pvM-exitO;
* Endof Slave program p5.c*
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