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1.0 INTRODUCTION

A frequently observed characteristic of Synthetic Aperture Radar (SAR) imagery
of moving ships is an area of increased backscatter immediately behind the ship and
extending for approximately one ship length. The region causing these signatures has
been termed the near-field disturbed water (NFDW) region of the ship. As part of
the Wakes program we have characterized the SAR signatures of this region under a
variety of ship and environmental conditions (Malinas, 1992), and have begun a
modeling effort with the goal of being able to predict the appearance of these NFDW
returns. The model we have developed is based on & Fourier transform solution of
the linearized boundary conditions with an applied pressure field. A procedure was
developed for calculating the pressure field for a given hull shape and ship speed, and
this pressure field was used for calculating the near-field Kelvin wake, A wave
breaking criterion was then applied to the vertical acceleration computed from this
model in order to estimate the extent of the breaking regions. The fluid velocities
within the breaking regions were computed, and the radar cross section was assumed
to be proportional to the breaking area. The radar cross section and fluid velocity
were used to gencrate a simulated SAR image which can then compared with an
actual SAR image. A description of the data set used in this analysis is given in
Section 2. In Section 3 a model for the NFDW returns is presented and the model
predictions are analyzed and compared with SAR measurements in Section 4.
Finally, in Section 5 conclusions are made and a recommended course of action is
presented.
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2.0 BACKGROUND

SAR ouservations of range travelling ships are useful for investigating the
NFDW signature because the ship is displaced from the wake thus allowing an
analysis of the wake feature without significant interference from the ship retur.
These images are also interesting because an azimuthal displacement of the wake itsell
has been observed, indicating that relatively large Doppler shifts or scatterer velocities
occur within the NFDW. For the work described in this report, on¢ : ‘rticular data
set of this type was chosen and additional parametric variations were considered.

SAR data were collected by the ERIM/NAWC P-3 during the 1989 ONR Shiy
Wake Experiment (Lyden, 1989) under a range of operating and imaging conditions.
The SAR imagery for FFG Run 7-2 (Figure 1) was collected with the ship traveling
in the range direction at 17 knots and at a relatively large incidence angle (65
degrees). In this data the ship is displaced in azimuth due to the doppler shift
associated with the ship’s velocity. Bright returns arc located in range near the bow
and stern of the ship extending in azimuth from the actual ship position toward the
displaced ship position. Thus, these returns appear to have doppler shifts ranging
from nearly zero up to a maximum value which is near the ship speed. Furthermore,
the features are slightly tilted, indicating that the doppler shift appears to decrease
with distance aft, Measurements of the apparent wake velocity are presented in
(Malinas, 1992) for this particular case and other range traveling cases as well.
These measurements correspond to the maximum observed velocities of the wake
feature for each range cell.

Because of the range locations of these bright returns, it seems reasonable to
associate them with the breaking bow (or shoulder) and stern /aves. Figure 2
contains aerial photos of frigates traveling at two speeds illustrating these breaking
waves. The return near the stern is brighter and extends to larger Doppler shifts than
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the return near the bow. We have undertaken a modeling effort in order to try to
predict at least some aspects of the observed signature. The region near the ship hull
is extremely complex and difficult to model adequately, and we realize that the work
presented here represents a simplified and perhaps overly simplistic treatment of the
problem. However, we hope that this preliminary study will provide some basis or
motivation for additional investigations in this area.
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3.0 WAKE MODEL
The model used in this study is based on a Fourier transform solution of the
linearized boundary conditions with an applied pressure field

p(xy)= p,+ pfixy)e (1)

in a coordinate system moving with the ship, where the exponential growth term is
used as a device to satisfy the radiation condition (Whitham, 1974). The velocity
potential is assumed to be of the form

¢=-Ux-Ult+® @)
where U, is the ship speed (in the +x direction) and @ is the perturbation potential
induced by the ship. The linearized boundary conditions are then

n,-Um,-®,=0

Gt— UIGS +gn=-Axy)e* @

at =0, The velocity potential must also satisfy Laplace's equation, of course. A
Fourier transform solution of this set of equations can be written as

NGy =e[ [Alk ke " dk, dk, O

and

Q(yz)=e [ [Blk ke 5" " ak d, 0]

where k-\/kf +Ic,2 . Substituting these into the boundary conditions yields

A(k’k’)._k_p(k_*'kﬁ__ ©)

(kU +ie)*~gk
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and

(e-ik,U)F(k k)
B(k k)=
g (k,U, +ie)*-gk

™

where F(kk,) is the Fourier transform of Ax.).

3.1 NUMERICAL KELVIN WAKE CALCULATIONS

During the first phase of this project, we used a very crude approximation for
the pressure distribution, namely, the hydrostatic pressure on a rectangular hull,
These results provided encouraging agreement between the modeled locations of the
breaking regions and the observations from the aerial photographs. During the
second phase we made two improvements. First, we used a better approximation {o
the hull shape by digitizing an aerial photograph of the ship and applying a taper
along and across the hull. Secondly, we implemented a procedure for calculating the
applied pressure distribution required to produce a surface displacement corresponding
to the assumed hull shape. Figure 3 outlines the algorithm implemented for this
modeling activity. The complete end-to end simulation is performed through three
programs; wakel, wake2, and sarwakesim. This modeling procedure is as follows.

The surface elevation is calculated for a deita-function pressure distribution
using the equation

ke ke wuge,
k(x,y)-.é_x_Al f f _!E.‘_./__J"r""»") dk gk ®)
@x);_ i (U, +iey-gk ¢

where k  =n/Ax, k _=x/Ay, and Ax and Ay are the grid spacings in the along-

track and across-track directions. The phase term involving & =/gk,, was added to

compensate for a shift in the surface elevation pattern which occurs when the wake is
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computed on a finite grid and with a finite value of e (see below).
The surface elevation is specified at N points on the ship hull and the pressure
at these locations is obtained by solving the set of N equations

N
H(xpy,0™ ;1; 2 Pty Jh 2 +3) ®

for the pressure p(x.,3,). This set of linear equations is solved by re-writing Eq.(9)
as a matrix equation involving the point source elevation matrix, &, and inverting the
equation by multiplying both sides by 471, i.e.

7 = ki 10

where the j* element of # and # corresponds to the location (x, ,%,) on the ship
hull, and lnu is the surface elevation at the location (x »Y;) due to a point source at
the location (x;,y,). The solution of k! is calculated using LU decomposition with
forward and back substitution (Press et. al., 1986). Note that for U,=0, k becomes a

diagonal matrix and J, reduces to the hydrostatic pressure on the hull,

The Fourier transform of the pressure distribution obtained by this procedure
was calculated and the result was used to calculate the surface elevation and the
velocity potential function outside the hull region, i.c.

n(x.y)-% [f _LBEE) sy dk dk, (1)

kU, +ie)*-gk

and

10
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1 U+ BUE) prky
(] el L4 dk 12
- ff it Ak, (12)

where

-hUje,
Bl k)= S——— [ [peye ™ audy (13)
@n)
The fluid velocity and the apparent vertical acceleration in an earth-fixed coordinate
system were then calculated from the velocity potential as
V=0, +U,=®, v=b=0 v=$~0, (14
and
6=~ Ud,=0,-U,®,. as
The wake obtained from this procedure depends on the hull shape or pressure

distribution, of course, but also on the value of the parameter ¢. In the analytic

theory, this parameter is allowed to approach zero, but in the numerical procedure a
finite value must be used in order to avoid wraparound in the FFT domain. From
equations (8), (11) and (13), the energy spectrum is equal to the product of the energy

spectrum of the impulse response function A(x,y) and the spectrum of the pressure

dirtribvtion p(x,y). The spectrum of A(x,y) is confined to a small region surrounding
the hourglass-shaped curve defined by

kU2 =gk (16)
which has a minimum wavenumber (where k,=0) given by k.-gIU,z. Note that

Eq.(16) is for a ship traveling in the x direction. The spectrum of A(x,y) will rotate

11
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as the ship direction changes. Figure 4 illustrates the spectral shape of a Kelvin wave
and its velocity dependence (again for a ship traveling in the x direction).
The spectral energy density along this curve is given by

k 2.__££__._8!_ 1
el e+ 46 an

and the 3-dB width of the spectrum in the k,-direction is approximately

2
bk =Sk

T as
U032 ’

The total energy in the spectrum of k(x,y) is then approximately given by the product
of the peak spectral density and the spectral width, integrated in the k, direction.
This product turns out to be independent of the ship speed, provided that we choose:
(1) 8k =2Ak =4x/L , in order to have two discrete wavenumber samples within the

support region of A(k,k,);

(2) L, =128, where A =2xU}/g, in order to keep the same rumber of transverse
Kelvin wavelengths within the computational domain; |
(3 k =k_/10 in order to keep the spectrum within the FFT domain, i.e. to have an
adequate sample spacing relative to the transverse Kelvin wavelength,

The spectrum of p(x,y) has two components; one corresponding to the
hydrostatic pressure or hull shape, which is assumed not to change with ship speed,

and the other due to the dynamic pressure which increases roughly as the square of
the ship speed. The spectrum of the hydrostatic pressure is expected to have an

oscillatory structure (depending on the hull siz¢) superimposed on a roughly &2 to

12
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of 12, 18, and 25 Knots.

13




. . . i ~ . [

@ZFITHVI

k- falloff (depending on the hull shape). For example, a rectangular hull with
dimensions D, and D, would produce a hydrostatic pressure spectrum of the form

1B,k k) [* = sinc?(k D J2)sinc(k,DJ2) (19)

which falls off like k2, while a triangular hull with the same dimensions at the
waterline would produce a hydrostatic pressure spectrum of the form

|6,k k)P o sinc(k D J4)sinc (kD Jj4) (20)

which falls off like k™. Since the wavenumber location of the support region for
htk k) scales as glU}, the wavenumber falloff of the hydrostatic component implies

that the wake energy generated by this component is proportional to U,‘ for the

rectangular hull and U,' for the triangular hull. The wave drag D, which is given
by the total wake energy divided by the length of the computational domain, is then

proportional to U,2 and U,‘ for these two cases, and the normalized wave resistance
coefficient

C D, (1)
Y

is independent of ship speed for the rectangular hull and proportional to U,‘ for the

triangular hull. The dynamic pressure, on the other hand, is nearly a delta-function in
the spatial domain and thus its wavenumber spectrum is nearly flat. Since the

magnitude of this pressure spike is proportional to U,’, its spectrum and the wave

14
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‘energy produced by this component are both proportional to U,*, implying that the

wave resistance coefficient is independent of ship speed for this component.

3.2 BREAKING WAVE PREDICTIONS

The next stage in the modeling effort was to use the Kelvin wake model
described above to predict regions in the near field region where wave breaking is
expected to occur. This is a somewhat controversial subject, and is open to the
fundamental criticism that it is inconsistent to use linear wave theory to attempt to
predict the highly nonlinear phenomenon of wave breaking (this point is addressed by
Longuet-Higgins, 1969). Nonetheless, encouraging results have been presented by
several investigators suggesting that the approach may have merit despite these
conceptual difficulties.

It is well known that water waves have a limited range of amplitudes, beyond
which the wave "breaks" and the motion becomes chaotic in the region of the
breaking wave crest. Exact solutions of the wave equations exist for the steady-state
case, which show that the wave crest becomes sharper as the wave approaches its
limiting amplitude. However, the conditions required for the onset of breaking are
not well understood, particularly in the general time-dependent case when a broad
spectrum of wavelengths is present. Phillips (1958) suggested that waves break when
the vertical acceleration at the crest exceeds the gravitational acceleration g, while
Longuet-Higgins (1969) argued for the value g/2, which is the maximum downward
acceleration at the crest of a Stokes wave. Snyder and Kennedy (1983) used this
criterion to predict the occurrence of whitecaps and found reasonable agreement with
limited field data.

An empirical wave breaking criterion was determined from a set of laboratory
measurements by Ochi and Tsai (1983), and these results were reinterpreted by
Srokosz (1986) as being consistent with a limiting downward acceleration of 0.4g.

15
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However, it was pointed out by Longuet-Higgins (1985) that for finite-amplitude
waves there is a distinction between the apparent acceleration, as measured by a wave
probe at a fixed location, and the real or Lagrangian acceleration experienced by a
given parcel of water. In addition, he showed that the apparent vertical acceleration
is theoretically unlimited but the real acceleration for steady waves is always less than
0.4g. However, he also argued that for a superposition of waves with different
wavelengths the real downward acceleration could conceivably attain a value of g.
Observations by Ewing et al. {1987) showed a maximum real downward acceleration
of about 0.38g and apparent downward accelerations as large as 1.6g, but there was
no indication as to whether these waves were breaking.

For our application, the apparent vertical acceleration was computed by noting
that in an earth-fixed coordinate system the velocity potential function becomes

O/(xy ) =0(x-U ty,50) 2)
so that the vertical acceleration in this coordinate system is given by
a,= @ ®,-U,0 = [ [Ke -k, UBk ke "k g, . @3)

This equation was used to calculate the vertical acceleration at each point in the
scene, and a threshold was applied to select the pixel locations where wave breaking
is predicted to occur on the basis of this criterion. In the following, unless otherwise
noted, a threshold of g/2 is used as the breaking criterion,

The effect of breaking is to produce foam and small-scale surface roughness,
both of which are assumed to decay exponentially, with different time constants. The
reflectivity resulting from the production and exponential decay of foam and/or
surface roughness can be modeled as

16
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1 f)=r b))+ ar(+1,)) @4)

where { and J/ are position indices in the along-track and across-track directions,
respectively, r, is the reflectivity of actively breaking regions, b(i,j) is a breaking
index which is equal to 1 if a,<-g/2 and O elsewhere, and

o me ~PAU, L)

where P is the temporal decay rate of the foam or surface roughness. This
expression must be evaluated by stepping through the grid from right to left, i.e. from
larger to smaller values of i .

The reflectivity of breaking waves seems to be on the order of 0.5 for
electromagnetic radiation with wavelengths shorter than a few centimeters (Lewis and
Olin, 1980; Jessup et al, 1991). This has also been confirmed by recent X-band
laboratory measurements at the University of Michigan (Walker et al, 1993).
Therefore, the same equation was assumed to apply, with possibly different values of
B, for both visible and radar backscatter. In the simulations to be described, a value

of =0.5 Hz was used.

3.3 SAR SIMULATIONS

SAR images are dependent on both the reflectivity and the motion of the ocean
surface. This dependence is described by the SAR impulse response function, which
is proportional to the finite-resolution Doppler spectrum of the backscattered signal,
i.e. the Doppler spectrum as computed over a time interval equal to the SAR
integration time (Hasselmann ef al, 1985; Lyzenga, 1986). Thus, a collection of

scatterers located at the along-track position x is mapped into a region of the image

17

.
) l




9Z“E'RIM
centered at the along-track position x/ =x +§V,(x) and 'saving a width 8x= % o,

where R is the range, V is the platform velocity, V,(x) is the mean radial velocity or

the centroid of the Doppler spectrum for the scatterers at the location x, and o, is

the standard deviation of these velocities, or the width of the Doppler spectrum.

In order to simulate the SAR image of the near-field disturbed water, the
reflectivity and the surface velocity was computed at each grid cell as discussed in the
previous sections. The mean radial velocity was computed as

V, = ¥,coudein® + V, sindeind +V,cosd 26)

where 8 is the incidence angle and ¢ is the SAR look direction, defined such that
¢=0 if the ship is moving toward the SAR, i.e. the x-axis points toward the SAR
ground track, and ¢==/2 if the y-axis points toward the ground track. A nominal
value of 0,=0.5 m/s was assumed, and the reflectivity was distributed over the SAR
image using the mapping procedure described above. For comparison with data
collected by the ERIM/NAWC P-3 SAR, the Doppler spectrum was cut off at a
frequency of 0.92m! in order to account for the effect of the presum filter, A more

detailed description of the attenuation effects of the presum filter is presented in
(Malinas, 1991).

3.4 MODEL PARAMETERS

Runs of the model were performed to observe the parametric dependencies of
hull structure and ship speed and for comparison to aerial photos and SAR data. The
hull structures used, aithough more complicated than the rectangular box shape
described earlier, are still very simple structures, Detailed hull structures are
available for several ship types (Kuhn, 1992 , Hoekstra, 1991), however, the simple

18
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hull structures used in this analysis are adequate for observing first order
dependencies. The hull structures are defined by three characteristics; (1) the hull
shape of the ship at the water line from an overhead view ; (2) the sub-surface along-
hull shape and (3) the sub-surface cross-hull shape. The waterline hull shape was
obtained by digitizing an aerial photograph of a frigate class ship (Figure 5). Three
types of taper were considered for the sub-surface cross-hull; rectangular, triangular,
and semi-circular (Figure 6). These tapers extend from bow to stern on the ship.

For example, the triangular hull has a constant draft down the middle of the ship from
bow to stern, regardless of the cross-track position. The along-hull taper was limited
to three possible cases; (1) no taper at all and (2) a slight tapering at the bow and
stern of the ship and (3) a taper at the bow only, Modifications to the code for other
structures is trivial, however, these simple structures provide a means for observing
the effect of hull shape on the amount of wave breaking predicted by the model.

Note that any hull structure may be input into the mode! with the single limitation that
only one elevation may be specified under the ship hull for each location. Thus,
bulbous bows currently cannot be implemented, This limitation results from the
algorithm which calculates the pressure distribution and can be avoided by specifying
the pressure distribution directly. In the next section an analysis of the results
produced by this model is provided.

19
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4.0 RESULTS AND DISCUSSION
In this section an examination of the model results as a function of speed and
hull shape is presented. First an example run illustrating the model outputs will be
shown in Section 4.1 and then comparisons between the trends predicted by theory
and those observed in actual SAR images will be made in Section 4.2,

4.1 MODEL OUTPUT EXAMPLE

Figure 7 shows the output cf the program wakel (refer to Figure 3). The hull
shape in this example has a waterline outline of a frigate shape with a constant §
meter draft at all hull locations. The upper left image shows the surface elevation for
a point source moving at 9.5 m/s and in the upper right is the calculated pressure
distribution for the same speed. For the most part, the pressure is flat across the hull.
There is a notable increase in the pressure, however, at the bow region which appears
to correspond to the dynamic pressure discussed in section 3.1. The lower left image
is the resulting surface elevation for the ship hull and the lower right shows a scan
through the ship center in the along track direction., Within the defined region of the
ship, the surface elevation values are equal to the specified ship draft. Modifications
to this hull shape will be discussed in Section 4.2. In this example, the sample
spacing of the domain was 2.9 m in both the along-track and cross-track directions.
Recall from Section 3.1 that the sample spacing in the along-track direction is
dependent upon the ship speed, however the cross-track sample spacing is arbitrary.

Figure 8 shows the different output files which are generated by the programs
wake2 and sarwakesim. This result is for a frigate water line shape but this time with
a triangular sub-surface shape in the cross-huil direction. Again the modeled ship is
traveling at 9.5 m/s. The top left is the surface elevation file which is generated by
wakel, The top right image is the radial velocity which is derived from the velocity
potential. The lower left image is a map illustrating the locations of the breaking
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regions determined by comparison of the vertical acceleration at each point with the
acceleration threshold g/2. This map can be compared to the aerial photographs in
Figure 2 where many similarities exist between the structure of the breaking region
and the white foam in the photo. Two particular features stand out; (1) the bow (and
shoulder) breaking regions and (2) the stern breaking region which fans out. The
bottom center image is the reflectivity which is generated by assuming a radar cross
section for a breaking cell and applying an exponential decay. Lastly, the lower right
image is the SAR simulation which is generated by applying the SAR impulse
response function to the radar cross section. Observe that the ship appears at the
bottom of the image, displaced due to its radial motion. If the ship were traveling in
the same direction as the SAR platform, much smaller Doppler shifts would result and
the wake signature would be concentrated nearer to the ship track. Note that no SAR
modeling of the ship return itself is taking place other than shifting its position based
upon its radial velocity.

42 PARAMETRIC MODEL EXAMPLES

Up to this point, we have provided an overview of the model execution and
outputs but have not yet compared the results with theory and SAR observations. In
this section we provide a few examples to illustrate the dependence of the breaking
regions on hull structure and ship speed and make comparisons to SAR data
observations.

Figure 9 shows a comparison of the modeled breaking regions and SAR
intensity data for the frigate example shown in Figure 1. Results for both X- and L-
bands are shown, The determination of the breaking region is independent of
electromagnetic considerations, but a frequency dependence is introduced into
sarwakesim by the presum filter effect discussed in Section 3.3, Because the Doppler
frequency shift due to radial motion is inversely proportional to wavelength, the ship
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SRy
displacement varies along with the huli shape in the examples shown. One would
expect an increase in displacement to cause an increase in the amount of breaking
independently of the hull shape, and the two effects are combined in these examples.

We next consider the effects of ship speed on the amount and distribution of
wave breaking. Figure 11 shows an example of the frigate case where the triangular
cross-hull taper and full taper along-hull were applied. Because we are making
comparisons at different speeds, the sample spacing normalization described in
Section 3.1 has been applied. Thus, the slower the ship speed, the smaller the sample
spacing in the along-track direction and the larger the number of samples within the
ship hull. In all 2xamples a sampie spacing of 1 meter in the cross-track direction
wasg used. This figure shows that as the speed of the ship increases, the breaking area
increases roughly in proportion to the ship speed. This dependence is in agreement
with L-band SAR observations (Malinas, 1991) which show an increase in the NFDW
radar cross section of about 0.3 dBsm per knot., This comparison tends to support
our model, at least under assumption that the radar cross section is proportional to the
breaking area.

The last hull characteristic to be considered is the hull outline at the water
level. In all the previous examples, a frigate outline was used for illustration.
Modifications to this outline are considered in this next example. Four different hull
outlines are implemented in this current model. All have the bow of a frigate and a
stern which is selectable. The options for the stern shape are (1) rectangular, (2)
triangular, (3) ellipticzl, and (4) circular. Figure 12 illustrates these hull forms and
the sample spacing usid for the 18 knot case.

A comparison of the model output for three of these hulls is shown in Figure
13. The predicted dspendence upon stern hull shape is very strong and perhaps
counterintuitive, with the triangular hull shape producing more than 10 times as much
breaking as the rectangular hull. This phenomenon results from the fact that the
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spectrum of the pressure distribution for the rectangular stern is concentrated near the

k. -axis, and the spectral density in the cross-track direction falls off more rapidly for

the rectangular than the non-rectangular shapes, as shown in Figure 14, The higher
spectral density at large wavenumbers for the non-rectangular stern shapes is evideit
in the short wavelength of the breaking waves shown in Figure 13,

This figure also illustrates a general shortcoming of our model which arises
from the neglect of energy dissipation due to wave breaking. Because there is no
dissipation, waves which break near the hull continue to propagate and break at larger
distances from the ship than is physically possible or realistic. That is, if we
incorporated an energy dissipation due to breaking waves, most of the breaking would
be confined to a region much closer to the ship than is indicated in Figure 13. This

would also enforce a stronger wavenumber falloff, presumably as k™, in the wake

spectrum,
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5.0 CONCLUSIONS AND RECOMMENDATIONS

A modcl has been developed for prediction of the near-field disturbed water
region for a traveling ship. This model utilizes a Fourier transform solution for the
Kelvin wake along with a numerical procedure for calculating the hull pressure
distribution, The model appears to predict the breaking regions more or less correctly
for ship hulls having a rectangular stern, but overpredicts the extent of the breaking
regions for non-rectanguiar stern shapes. This limitation is apparently due to the fact
that we have not included energy dissipation due to wave breaking.

We have used the outputs of our NFDW modei io simulate the SAR image of
this region and found encouraging agreement between the appearance of the simulated
and actual SAR images. Furthermore, the dependence of the total radar cross section
of the NFDW on ship speed is in agreement with observations,

Possible improvements to this model would include the incorporation of energy
dissipation due to wave breaking, as mentioned above, and the development of a more
detailed breaking wave reflectivity model based on laboratory measurements of the
microstructure of breaking waves. Additional exercise of the model with more
realistic hull shapes is also recommended.
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