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MONOENERGETIC NEUTRAL PARTICLE TRANSPORT

IN SEMI-INFINITE MEDIA

B. Ganapolt

Department of Nuclear Engineering

University of Arizona

Abstract- A large class of half-space transport problems for neutral particles

is considered including single and adjacent half-space geometries. Localized

and distributed sources emitting particles either in a particular direction,

isotropically or with a given angular distribution are considered. All so-

lutions are based on the solution to the well-known albedo problem. A

numerical Laplace transform inversion is used to generate highly accurate

benchmark solutions which can be used to assess the error incurred by nu-

merical transport algorithms.

I. INTRODUCTION

Particle transport theory had its inception with the establishment of the

Boltzmann equation by Ludwig Boltzmann in the late nineteenth century'.

In its most general form, the equation, which serves as the basis for many

fields of physics, has evaded analytical solution. Only for special cases, i.e.,

the linear or linearized forms and simplified non-linear collision models, have

t Work performed for CALSPAN Expert Science and Engineering Task
No. S-1-7543 D.O. No.53.



analytical solutions been obtained. With today's computational power, how-

ever, the numerical solution to the Boltzmann equation for physically inter-

esting cases in the linear and non-linear formulations can be obtained rela-

tively easily. Various methods such as discrete ordinates, Legendre and other

polynomial expansions, the FN method, direct simulation Monte Carlo and

other approximate methods have proven to provide adequate numerical so-

lutions for certain applications. These methods, however, contain numerical

approximations in various forms. The effect of these numerical errors usually

goes unassessed and their influence on the desired result remains uncertain.

In 1953, the first comprehensive tool 2 attempting to provide standards

to allow the assessment of numerical errors associated with approximate so-

lutions to the linear neutral particle transport equ,,tion was published. This

compilation is a collection of analytical solutions complete with numerical e-

valuations (some of which are unfortunately inaccurate) which could be used

as standards or benchmarks to which approximate solutions could be com-

pared. Infinite medium problems were emphasized in this collection because

standard numerical methods at that time were considered reliable enough to

adequately evaluate the analytical representations obtained for this class of

problems.

It is now the nineties, almost 50 years since the first analytical bench-

mark compilation appeared. During that time there has been enormous

progress made in the areas required for the generation of transport bench-

marks, namely, in analytical and numerical methods development and com-

putational power. This report is concerned with the development of the

,components required specifically for the generation of transport benchmarks

in one-dimensional semi-infinite (half-space) plane geometry.

A fundamental problem in neutral particle transport theory concern-

s the collision of neutral particles with stationary scattering centers and
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the subsequent streaming between collisions in a semi-infinite medium. The

semi-infinite homogeneous medium is infinite in extent bordering either on

a vacuum or another half-space of a different material. In general, upon

collision with a scattering center (usually a molecule or nucleus), a particle

will lose energy elastically or inelastically. For our purposes, we will consider

only monoenergetic neutral particle transport which ignores inelastic scat-

tering and assumes heavy scattering centers that can absorb an unlimited

amount of momentum. For this case, neutral particles scatter and move be-

tween collisions with a constant velocity. Energy transfer considerations are

usually handled through the multigroup formulation of which monoenergetic

transport is a special case. In addition to the assumption of monoenergetic

transport, we will assume that the neutral particle leaves a collision with no

preferred direction which is the assumption of isotropic scattering.

Half-space transport problems first appeared in connection with photon

transport in planetary atmospheres in the form of the Milne problem 3 -. For

this case, a source embedded deep within the interior of a star continuously

emits an unlimited supply of photons, a portion of which exit the star's

atmosphere. The curvature of the atmospheric surface can be neglected in

comparison to the photon mean free path which allows a plane geometry

approximation to be used. Variations based on the Milne problem soon

appeared in the literature as part of neutron transport theory6 where the

source was moved to the free surface (called the albedo problem). Because

of its simplicity and the fact that this problem contains the essential nature

of neutral particle transport theory, the half-space problem has achieved For

prominance in the field. For this reason, monoenergetic neutral particle

transport in a semi-infinite medium will be studied here and a collection of :

benchmarks will be presented.

L..2I strlbutior,
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One of the major themes of this investigation is the establishment of half-

space solutions based solely on the solution to the single half-space albedo

problem for an entering beam. It is remarkable that almost all solutions to

half-space transport problems, including those for two dissimilar half-spaces,

can be obtained from this one basic solution. Another pervasive theme found

here is the ease with which truly accurate benchmarks can be generated. The

key to the accuracy of the numerical evaluation is the numerical Laplace

transform inversion which has recently been developed to solve the types of

transport problems to be considered.

Single half-space problems including the albedo, Milne, and spatially-

distributed sources will be considered in § II. The preferred method of so-

lution is the Laplace transform and its inversion. The motivation for this

choice is the desire to obtain useable numerical results rather than simply

analytical representations. The solution representation for the angular and

scalar (angularly integrated) fluxes can, in general, be expressed as contour

integrals which can further be manipulated by analytic continuation if the

singularities in the complex plane are known. Finding these singularities

usually requires a significant computational effort which is avoided in the in-

version procedure that has been developed. The numerical inversion is also

applied to adjacent half-space problems which are considered in § III. Final-

ly, in § IV the numerical implementation and demonstration of the solution

technique is presented.
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II. SINGLE HALF-SPACE SOLUTIONS

A single half-space bordering a vacuum will now be considered. The

medium is assumed to be homogeneous and to contain scattering centers

that scatter neutral particles isotropically. Physically, the assumption of

isotropic scattering means that the direction of the "outgoing" particle after

collision is randomly oriented and has no correlation with the direction of the

"incoming" particle initiating the collision. In addition, as discussed in the

introduction, the scattering interation does not change the particle energy (or

velocity). Various source configurations will be considered including surface

and spatially distributed sources and an embedded source infinitely far from

the surface.

The single half-space problem is one of the fundamental problems of

transport theory. It not only is of pedagogical interest but also has practical

significance. In the non-destructive analysis of materials with high mass

numbers, the reflected beam resulting from an impinging neutral beam can

be used to infer material properties. The monoenergetic single half-space

problem provides a first approximation to the reflected beam and can help

guide the solution to the inverse problem from which the desired scattering

characteristics of a medium can be inferred.

II.1 The Albedo Problem

For this problem, the source configuration is assumed to be particles

impinging on the free surface of a homogeneous semi-infinite medium. If any

absorption exists in the medium, then infinitely far from the surface the flux

will vanish. However, if no absorption exists, then the flux will remain finite.

Thus, for the following albedo problems considered for a variety of source

angular distributions, the condition at infinity will be

5



lim 4(x,j P) < 00, 0 < c < 1

where O(x, 1) is the directed or angular flux, c is the number of secondary

(scattered) particles resulting from a collision and i6 explicitly given by

c = (E., + V2 1)/Et

E, represents the cross section (fractional probability per pathlength of trav-

el) for process r where

r = s scattering

r = a absorption

r = f fission

r =t total (Et =E,+ E,).

Fission is included for the case of neutrons with v representing the number

of neutrons produced in a fission.

The transport equation to be solved for the classic albedo problem is

=] -) du'O (x, p') (1a)

00, Y) = f(G) , Pi > 0 (1b)

lim O(x, P) < co (lc)

6



where x is the position measured in units of rmean free paths (x = zEt, z =

actual position), p is the ]particle direction cosine (referred to as the direc-

tion) and f(p) is a general source distribution to be specified in the following

subsections.

L.a. Entering Beam Flux

The solution to the albedo problem for a beam source serves as the basis

for the solution to problems with the source configurations to follow. For this

reason, the solution to the beam albedo problem will be presented in detail.

For a beam source,

f( ) = 601 -PO), (2)

where the source is specified to be in direction po (which is actually a "cone"

of incoming particles in the azimuthally symmetric plane geometry assumed).

i. Exiting flux

The exiting or reflected flux is likely to be the most important quantity

to be determined. It also serves as the nucleus for the determination of the

interior scalar flux as well as the angular flux. A sketch of the determination

of an analytical expression for the exiting flux will now be given.

The procedure begins with the reformulation of eqs.(1) by following the

particle along its trajectory to give for p > 0

/(Xit;P) = (P- PO)e-_x/ °O + - I dx'e-(r-'1)/Pk(x';#o) (3a)

and

7



where the scalar flux is defined as

V)(X; .o) = d•I'O(xqu'; jA) (4)

and the dependence on 1Ao has been included for clarity. Then integrating

eqs.(3a) and (3b) over , on [0, 1] gives the following integral equation:

W(X;po) = e-"/ +c dx'EZ(I x --x' )w(z': jo) (5)

where E, is the exponential integral defined by

E1 (x) = j .Le-'1 .

This integral equation can be put in the more compact notation

(1 - L,)O(x'; 0o) = e-z/A° (6a)

where the operator L. is

L j = dx'E(I x - x'I)() (6b)

Differentiating eq.(6a) with respect to x yields

(-L,) ý7 +-h (x'; po) = cE1 (x)0(0; jo)

and also manipulating eq.(6a) gives

8



El(x) = (1 - L.j) P(x';it'). (8)

From eqs.(7) and (8), it is seen that the following expression is in the null

space of the operator 1 - L.:

+ -] 0k(x;P.) = ,(0; PO) -- /V(X;P'). (9)

The reciprocity relation,

POO,= Pi0=P(0,-O--y0;i), (10)

obtained from the self-adjointness of Lx, can be introduced into the result of

multiplying eq.(9) by e-/4S and integrating over x to give [after liberal use

of eq.(3b) with x = 0]

0(0,-1; 0) = c PO_ •,(0;•0)k(0;.t). (11)

When this expression is introduced into the following reprcsentation of the

scalar flux at x = 0 [eq.(4) with x = 0]

0(0;P0) = 1 + dpt(0,-P; Pu) (12)

and defining the H-function by

H(p) = 0(0; p), (13)

there results for the exiting flux

9



0(0O,-tl;YO) = c + 0 H(po)H(p) (14)

The Chandresekhar H-function4 can be shown to satisfy the following non-

linear integral equation

, 1 H(p')
H (p) = 1 + 2 1AH (p) 1 d ' IL +15)

which will serve as the basis for the numerical evaluation to be presented in

§ IV.

ii. Scalar flux

An expression is most easily obtained for the interior scalar flux Vk(x)

using eq.(3b) with x = 0

v)(0, -i'; P0) = - dx' e-/11,(xP; (L) (16)

Noting that if p is extended to the complex variable 1/s, eq.(16) becomes a

Laplace transform with the inversion

Vb(x;PO) = 2 C.-['(o,_-1/s;Po)lS] (17)
C

where £-1 is the inverse Laplace transform operator

£ •- 1 _ 7 i • i • d s e " z( .) .

Since an analytical expression for the exiting flux already exists [eq.(14)],

eq.(17) becomes

10



O(x; po) = poH(Po)L•' [(.) (18a)

with

H(I/s) = - cI di.' (18b)

as obtained from eq.(15). Eq.(18a) can further be expanded by analytical

continuation into the complex s-plane lead'ng to contributions from pole

and branch point singularities if desired. This will not be done here since

the numerical inversion given in § IV will be applied directly to eq.(18a).

iii. Angular flux

The most straightforward way to obtain the angular flux is to apply the

Laplace transform in x to the original transport equation [eqs.(1)] to give

c -

(1 + Ps)4(s,it;0o) = ý(s; 0o) +•M(0,P; PO). (19)

From eq.(17), by application of the Laplace transform, we have

2,O(S; Po) = 2-0(0,-1/S;Po)1S, (20)
C

resulting in the transformed angular flux from eq.(19):

(,;o) = -- •1 +�[(O,-1/s;POV)/s + O(O,;0)] P (21)

Thus, for p > 0

11



kAo b( _ PO) c[ + poH(po)H(1/s) (22a)
1+ POS 2 (1 + ps)(1 +pos)

and

ik(S -JA; PO) = cpoH(po) [ 1 H (11s) _ H(p) (22b)
2 1-PS 1+pos 1 + PO//J

The angular flux is therefore given by the inversion

4'(x,,;p) = I;' '[(s, P; Po)] (23)

Again further manipulation is possible using analytical continuation into the

complex s-plane but is not required in order to obtain reliable numerical

results as will be shown.

1.b Entering Isotropic Flux

For an isotropic source, the boundary condition is

0(0,'P)-= 1, P > 0. (24)

where the entering flux has been normalized to 1.

i. Exiting flux

The exiting flux for this case is obtained by integrating the result for

the albedo problem over po on [0, 1]

12



O(x,P) = j dpoO(x, y;yo) , (25)

to give

V)(0, -y) = 1 - v'i -c H(p) (26)

where the relation given by eq.(A.2) in Appendix A has been used.

ii. Scalar flux

At x = 0, the scalar flux is

V)(0) = [ dpoH(so) = 2(1- /1--c (27a)Jo) C

using eq.(A.1). For x > 0, the scalar flux is obtained by integrating eq.(18a)

over p0 and using eq.(A.2) with p replaced by 1/s to give

u(x) = 2. v-7 [(1-v-cgH(1/s))/s] (27b)

iM. Angular flux

Integrating eq.(21) over po gives

1
0(s, A) = I' [40(O,-1/s)/s + PS(O,S)] ; (28)

and, therefore, for y > 0 using eq.(26) as is and also with M replaced by 1/s,

we have the transforms

13



( +- 1 [1 - vi--c H(1/s)] (29a)

14'(s, -*) = 1 ----- {((l/s - s) -VF - clg(l/s)/Is -iH(p)] } (29b)

which are to be inverted.

1.c Entering Angularly Distributed Flux

For a general angularly distributed entering flux, the boundary condition

is

V)(0, p) = f()), for p > 0.

This case, as for the previous case, is handled by noting that for an entering

beam the flux is actually the "angular" (partial) Green's function; thus,

O(XP) = i dp'f(y')O(xy;fi'). (30)

i. Exiting flux

Using eq.(14), the exiting flux simply becomes

= 2Hp) d' IL + (')H(y') (31)

ii. Scalar flux

For x = 0,

14



0(0) = jdp'f(p')H(p'); (32a)

and for x > 0 from eqs.(30) and (18a)

= £r1 H(1Is) d,' 1 +", f(it')H(1A') (32b)

iii. Angular flux

Integrating eqs.(22) over po on [0, 11 weighted by f yields for IA > 0

¢b(s, t) - f ++i)s dpi'l + , f (p')H(p') (33a)
1 + [Hs_2lls) H t)

P) C 1 1I I AV[,Hp)H(11s) Hp 3biJb(s,-) - 2 1 ~ -, Jo dit't' f(,u')H(pt') 1(33b)
2 [ 1 + pt's 1+ it/Y]

with the inversion providing the angular flux as

7*,1) = C;.' [W(S,IA)] . (34)

11.2 The Milne Problem

The Milne problem is one of the first half-space problems ever attempted.

This problem found application in the determination of the photon current

exiting the atmosphere of a star where the source is deeply embedded within

the star's interior. For this case, the source is at infinity and must be of

infinite strength itself in order to support a current infinitely far away exiting

15



the surface. The traditional condition taken at infinity is that the flux varies

as the discrete eigenmode of the transport operator

((x,p)) eZ/VO , as x -- oc (35a)

where

0c V (35b)

and VO is the solution to the dispersion relation

1- ýVo In = 0 (35c)

The transport equation to be solved is therefore

±+ 1 O(x, A)= C dy'¢(x, y') (36a)

0(0,' ) = 0, pA>0 (36b)

O(x, 1)-+ 0)o(-/p)eZ/vO , as x -+ oo (36c)

which is recast into a more convenient form by the substitution

(,)= ¢ 0 (-p)e6/iO - (x,p) (37)

yielding

16



S+ 1] O(XdP) = 2 d't(x, p') (38a)

0'(0,P) = 4,(-/s), p > 0 (38b)

lim ?(x, P) = 0 (38c)

It is this half-space problem which is to be solved based on the solution for

the general angularly distributed entering flux found in § II.1.c.

2.a. Exiting flux

Since eqs.(38) represent a half-space problem with

AP() =

eq.(31) can be used directly to give

0(o.-P) = () voH(p) d1 ' +1')H(z') (39)

Employing the identity

(P + P')(VO + A') P -V Po,'+P P, + Vol

and the integral equation for the H- function [eq.(15)] gives the following

(after some algebra):

0(0,-) = 4a,(Is) PVo Hg() (40)

2 vo - 7 H(vo)

17



which when substituted into eq.(37) (with x = 0) yields the desired exiting

flux

0c V- H()) (41)
2 vo - it H(vo)

2.b. Scalar flux

From integral transport theory, as found in § I1.1,

0(0, -P) = - dx' e-'/I1(xI) (42)

from which results (as previously noted)

O =2W'q7 [-,(O, -1/s)/s.
C

Thus, form eq.(40)

OW(x = ex - __ -I rH(1/s)]H(vo) 'lv [o-1 (43)

and from eq.(37), integrated over / noting that

J] d.s't1•o(-t*') = 1,

there results

O(X) Vo L [H(1Ls) (44)
H(vo)-' ts•0-l1

2.c. Angular flux

18



As before, the spatial transform of O(x, p) is given by eq.(28) with V

replaced by € leading to for p > 0

$(sp) = c H(1/s)
2(1 + ps)(svo - 1) H(vo)

- = -H(1/s - (45b)
€(s -/') =•2 H(vo)(l - •s) [sio - 1 1./ - , J

with the angular flux again given by

¢(x,P) = .;1 P(s,p)] .(46)

11.3 Spatially Distributed Sources

The half-space problem with a spatially distributed isotropically emit-

ting source will be considered in this section. The appropriate transport

equation to be solved is:

-rda'¢(., f) Q+ x (47a)

ý + 'I ¢(X, to)= 2 dpl (xp') + 2

0(0,p 1) = 0, p > 0 (47b)

lim 4(x, p) < co. (47c)

The solution will again be obtained using the results of § II.L.a.

Starting with eqs.(1) for an entering beam flux and separating the un-

collided from the collided contribution, we have

O(x,P;pO) = O0(x,P;pO) + 0'(XA;/0) ; (48)

19



and, therefore,

± 11 ds'C¢xpxps)'; 0)

X+ = c ±'; 2X + e 4

Ob(x,/i; PO) = 0, P>0 (49b)

lira Oc(x, S; p) < o . (49c)
Z -- 00

If po is extended to the complex p-plane by replacing So by -i/p and eqs.(49)

are operated on by

1 ,,+ioicc dp Q(p)(.) (50)

eqs.(49) become eqs.(47) with (from the uniqueness of the solution)

1 1 'j+,oQ
O(x,A) = -ci dp Q(p) bc(x,S;-1/p) (51)

where the Laplace transform of the source, Q(p), is assumed to only have

singularities in the left half-plane for simplicity. It is this relation to the

beam albedo problem that will be exploited in order to derive the results to

follow.

3.a. Exiting flux

From eq.(51) with x = 0 and p replaced by -p and from eq.(14) with

po replaced by -1/p (note that the uncollided contribution is zero at x = 0),

Ok0-Pw-ip) = c H(p)H(-1/p) (52)

2 1 -0P

20



there results

1 ( _oo dp Q(p) H(-I/p) (53)
4(0,-•) -- 21ri 2 f dQo 1- p

For the special case of an exponential source, we find

Q(x) e-" ,a > 0, (54a)

which implies

-1

Q(p (54b)

Eq.(53) becomes upon evalution of the contour integral [H(-l/p) has singu-

larities in the right-half plane]

0(0,-1 )= 1 H(y)H(1/a) (55)2 1+ ap

3.b. Scalar flux

From integral transport theory applied to eqs.(47), we find

(0, -s) = j dx' e-&'/Is(x,) + j dx' -J'/"IQ(x') (56)

Thus,

O(x) = 2 ';1 [W(O, -1/S)/S] - Q(x) (57)
C C

21



with 0(0, -1s) given by eq.(55); for the particular case of an exponential

source

O(X) H(1/a);" H({1s) - e- ] (58)

3.c. Angular flux

Taking a Laplace transform of eqs.(47) yields

- c ¢(s) + 1 Q(s) + ¢(0,q). (59)
21+ps 21+ ps 1+Ps

Since from eq.(57)

q(S) = 0(0o,-1/s)/ Q(S)
c C

eq.(59) becomes

=(s, ) + 1 [0(O,-1/s)/s + PO4(MP)] (60)

and, therefore, for M > 0

¢(s,p) = 0(O,-1/s)/(s(1 + ps)) (61a)

1
T (s,-1 P= [4(O, -1/s)/s - p¢(O,-j)] . (61b)

For an exponential source again using eq.(55) for p > 0

1 H(1/a)H(1/s) (62a)

(s,/)2 = 2(1+ ps)(s+ a)

22



1 H(l/a) "H(l/s) H(M)] (62b)
0(,- -P = 2 1 -jus I S+7 a+ (2J

with the angular flux recovered from eq.(46).

23



III. ADJACENT HALF-SPACE PROBLEMS

For some physical situations, especially in electron transport, interfa-

cial effects between two media axe important. For this reason, the adjacent

half-space configui.Aion will be investigated. The geometry consists of two

adjacent half-spaces of differing scattering and absorbing properties. Several

of the source configuratons of the previous section will be considered. Again

the analytical solution are based on the solution to the beam albedo problem

of § II.L.a.

III.1 Interfacial Flux Source

The spatial domain is extended to negative positions measured in units

of the mean free paths of each medium, The transport equation to be solved

in each medium (j=1,2) for an interfacial flux source is:

[r~ + 1]j,•)=
+ ._] d1a'¢5(x,u') (63a)

01(0,P)= 2 (0,/1) + f(PI) (63b)

lim € 1(x, A) < oo, lim ¢ 2(x, P) < 0o. (63c)
X-00* ZOX-00--O

The half-spaces are positioned as shown in Fig.1. Several flux source condi-

tions [f(p)] at x = 0 will be considered in the following sections.

Medium 2 Medium 1

Figure 1
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L.a Beam Interfacial Source

The analysis follows for a beam flux directed into medium 1:

f(A) = 6 (p- Po), Po > o. (64)

i. Exiting flux

The analysis begins by reformulating eqs.(63) in terms of the collided

and uncollided flux components. Thus, if

Oj(x, fto) = Oj,o(x,If;py) + Ojo(Xw,;0o), (65)

then

Oj'o(X',;t'o) = Sj, 1 ez1/'06(p- Po) (66)

and

a +•¢~ox Oj';X F;Po)= C
'Ox + 1>CJ,c(x,/I;#uo) + 2, b

+ bj l -z--/Io (67a)
2

¢2,c(O,/P;PO) = ¢,c(O, P;iUO) (67b)

lim €1,c(X, P; 90) < 00, lim 02,c(X, ; PO) < 00. (67c)

The results of Prinja7 are central to the analysis to follow. The solution-

s found in ref.7 are based on the solution to an integral equation formed
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by considering each half-space separately with eq.(63b) serving as the con-

nection. Eq.(30), with an appropriately defined f(pi) for each half-space,

then provides a set of integral equation to be solved. The solution to these

equations [letting p = 1/po in eq.(48) of ref.71 for the exiting flux is

c1 c2  cl H, (po)HI(/)] I (68a)¢l(,-/;/t)-2(C2 - C) C-2-H-o2(P)2f) 1 + U/PO(6)

2(OP;PO) C CIc2 [1 HI(/o)H 2(/t) - 1 (68b)¢•(,K(C2o - CI)I 2-p)H () 1 1 •(-J p /tlgo*

In addition, a set of integral equations for Oj (0, p; p0) can be directly

established by considering the incoming flux for each half-space to be known.

For Io > 0 and using eq.(31) in medium 1 with

f (P) = 6(P - Po) + 02(0, /; PO) (69)

and in medium 2 with

f(/i) = qi(0, -/to) (70)

gives

(0,-P;0)= I PO Hi(po)Hj(pt)+
2 pt + o

+ L'H,(0t) dpl Y H tS(P') )02(0,/ P; Po) (71a)
ci o /_____2_2 Jo /1+/I

02(0,XP;IO) = L--H2(P) d'+ P, H2(/p')0j(0,-/p';/po) • (71b)
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This set of integral equations is numerically convenient as an alternative so-

lution especially for I = po and c, = c2 when eqs.(68) become indeterminant

and therefore difficult to evaluate. Also eqs.(71) can be used to generate the

interfacial distributions for a general interfacial source f(p)O(p) with ease:

01(0, -p)= 2-H,(p) dy', If(/')Hl(y') +

C1 ~ PI

+ -HI(,) dp' +,H,(P') 02 (0,P') (72a)
C2 101 P A + /-, 1

02(0,-p) = C2-H 2 (P) di'- -II H 2 (t')01(0, -p') (72b)

ii. Scalar flux

When eqs.(63) for the beam flux source are reformulated using integral

transport theory, there results at x 0

01(0, -ti; o) = ft j dx' e-x'•/li(xI; po) (73a)
C2p-

02(o,P;o1) = 3-2 dx' ex'/.¢2 (-xI;Po) (73b)

which implies

l(X; Po) =2C- 01 (0, -- 1/S; tZ0)/] (74a)
Cl

0 2 (-x; PO) = 2, [,)2(0,1/s; po)/s1 (74b)
C2

where Oj(O, :F1/s;po) are given by eqs.(68) or (71).
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iii. Angular flux

From the Laplace transform of eqs.(63) for 0 < x when j = 1 and x < 0

when j = 2 respectively, we have

OAS, = P; Y[) k i(s;so) + P•(o,A;Po)J (75)

where

1 (s,Ps;Po) - dx e-,z 1(x, ;y;so)

¢2(s,A;YO) dx e-"'02(-Xt;Po)

with

2

O,(s; Po) =-Oj(0,:l/-; Po)Is (76)
ci (6

where F(-, +) is for j = 1, 2 respectively, and eq.(75) becomes

Oj(,SP;So) +-- [Oj(O,:1/s;So)/s + Ysj(0O,S;So)] • (77)

The inversion is then given by eq.(46) to provide the angular flux in each

half-space.

111.2 Milne Problem

Because the adjacent half-space Milne problem is well documented in

the literature8 , only the results will be presented in this section.
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i. Interfacial flux

For this case the source is assumed to be at infinity in medium 1 yielding

€(0,_-P) = C.l "0, HI(p) H2(vo, ) (78a)
2 vo,I - I H 2 (p)) H,(vo. ()

02(0,U) -= c2  VoJ, H2(p) H 2 (vo,I) (78b)2 vo,1 + p Hi(p) HI(vo,i)

where vo,i satisfies eq.(35c) with c replaced by cl.

ii. Scalar flux

Again form integral transport theory, one finds

01(W) = 2 X' [0(o,-1/s)/sl (79a)
Cl

02(-x) = 2 Cz,1 [02(0, 1/s)/I . (79b)
C2

with oj(O, =F1/s) given by eqs.(78).

iii. Angular flux

As in the previous case, eqs.(77) apply for p > 0

Oj(sP) =-[+p [(O,{:F/s)/•s + P€•(0,i)1 (80)

and the angular flux is obtained by Laplace transform inversion.
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11.3 Spatially Distributed Source

Here, we assume a spatially distributed isotropic source exists in the

right half-space (j - 1) only. Thus, the transport equation to be solved is

a -]- ) - dy'Ok(x,,u') + j,, (81a)lX• C~~) 2 -1 2

01(0,p) = 02(0, P) (81b)

lim ¢I(X,IA) < 00 , lim 02 (X,/1) < 00 (81c)

For po > 0, the transport equations for a beam flux source for the collided

contribution are given by eqs.(67). As for the single half-space case, if [to

is replaced by -1/p and eqs.(67) are operated upon by eq.(50) where Q(p)

has singularities only in the left-half of the complex p-plane, then it can be

shown that for j = 1, 2

1 ioo
j(X, P) i dp Q(p)Oj,.(x,p,-lp) (82)

satisfies eqs.(81). The exiting scalar and angular flux for this case will be

obtained for an exponential source only [see eqs.(54)].

i. Exiting flux

Since

Q(p) - , (83)

the contour integration in eqs.(82) yields for y > 0
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c€i(0. -is) = (i.d0.-p; 11/a)/ci (84a)

02(0,P) = 02,c(O,0 11a)1c1 (84b)

where j,(0 f, 1 /a) for j = 1, 2 are given by eqs.(68) or (71) with iso replaced

by 1/a.

ii. Scalar flux

As in § III.l.a.ii and II.3.b

01(W) 1 = 2 { x1 [01,,(0,-1/s; 1/1)/s] - e-"L (85a)

0 2(-x) 2 £ 1 [2,,(0, 1/s; l/a)/s] (85b)
ClC2

iii. Angular flux

The transform of the angular flux is given by

Oj(s'i) = 1 - [Oj,c(O, Fl/s; 1/a)/s + p€j,c(O,i; 1/a)j (86)
1 + JAs

and finally the inversion is obtained from eq.(46) in each half-space.

31



IV. Numerical Implementation and Demonstration

At the heart of the numerical evaluation of the exiting, scalar and angu-

lar flux lies the evaluation of the H-function. Currently, there exists several

methods for evaluating the H-function including the evaluation of

- the analytical representation as provided by the Wiener-Hopf

solution

to eq.(15)

- the multiple collision solution to eq.(15)

- approximate representions

- eq.(15) directly by iteration.

It is the last method which has proven to be the most reliable as well as most

efficient.

The method begins with the discretization of the y variable using the

Gauss-quadrature9 . By approximating the integral in eq.(15) with a shifted

Legendre-Gauss quadrature of order Lm, and evaluating the resultant equa-

tion at the quadrature abcissae, the following iteration scheme results:

Hk 2Lm H (87)

where

H k - Hk(Pm), H +. Hk2 H m+). (88)

The full iteration step is accomplished via satisfying the zeroth moment:

Hk&l k + .1 H (89)

with
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Lm&0o - • HM (90)
m=1

The second numerical procedure of importance is the numerical Laplace

transform inversion. The numerical inversion is obtained through the follow-

ing steps:

- transformation of the Bromwich contour formulation

f(t) ' 2 - ds e t f(s), (91)

where y is greater than the largest real part of any singularity of the

image function f(s), into the cosine integral

f (t) = - dw 3 {f(7 + iw/t)) cos(w) (92)

- reformulation of the infinite integral into an infinite series

00 7

f(t) = E (-1)k / dw R{f(17 + (w + ikir)/t)} cos(w) (93)
k=0 J

- evaluation of the integral in eq.(93) with the Romberg integration

rule10

- acceleration of the convergence of the infinite series through either the

epsilon or the Euler-Knopp 9 acceleration algorithm.

Finally, in some cases, it is desirable to solve the integral equations

given by eqs.(71) rather than use the analytical expressions of eqs.(68). This

is simply done by discretization and subsequent matrix inversion.

Figures 2-6 are presented as a demonstration of the evaluation of the

scalar flux for a selected set of problems. While only curves are presented
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here, the scalar fluxes for all cases considered in this report can be obtained to

5-place accuracy or better. Thus, the numerical Laplace transform inversion

represents a true analytical benchmark.

Figure 2 gives the flux for the albedo problem for a normally inci-

dent beam flux. The number of secondaries c has been specified to be

c = 0.1(0.2)0.9. Note the exponential decrease far form the surface, as one

would expect, and the change of the sign of the derivative with c at x = 0.

Figure 3 provides the flux for the same variation of c for the Milne problem.

This time the flux increases exponentially at large distances and deviates

from exponential behavior near the medium surface. Figure 4 shows the be-

havior of the scalar flux for a spatially dLstributed exponential source given

by eq.(54a) with a = 0.0(0.5)2.0. For a = 0, the source is uniform and the

flux can be shown to asymptotically approach 1/(1 - c) which, in this case,

is 10.

Finally, Figs.5 and 6 give the scalar flux in two adjacent half-spaces. Fig-

ure 5 depicts the flux for the Milne problem for a variation of c2 = 0.1(0.2)0.9

in medium 2 and cl = 0.9 in medium 1. Note the strong purturbation of

the flux near the interface. Figure 6 gives the scalar flux for a uniformly

distributed source (a = 0 in medium 1) for a variation of c2 = 0.1(0.2)0.9.

Again the scalar flux approaches 1/(1 - cl) asymptotically.
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APPENDIX A

Some Useful Relations for the H-Function

There exists several useful relations satisfied by the H-function which

are required to perform H-function calculus. These include:

A.1 Zeroth moment

a0 = = 2 [1 - VIc (A..1)
Jo C

A.2 An integral relation

_ c 1 1 I- -I, =C-H(/)j d p( ,H(p') = 1- VV7-cH(p) (A.2)

2 1 /1+ UIi

APPENDIX B

Description of SEMI1 Program for the Determination

of

Fluxes in a Semi-infinite Medium

B.1 General Description

The SEMI1 program (version 1) has been developed to treat neutral

particle transport in a semiinfinite medium. The analytical solution to the

transport equation for single and two half space geometries for a variety of

sources is evaluated numerically. The angular flux at x = 0 is evaluated us-

ing expressions derived from Chandrasekhar's Principles of Invariance. The

scalar flux in the interior is evaluated using these expressions as image func-

tions for a Laplace transform inversion performed numerically as discussed

above. Six source configurations are considered for each half-space geometry.

B.2 Specific Description

B.2.1 Input
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The input to the program is as follows:

input description(free format)
line 1

nc number of cases
line 2

lj number of terms in inversion series (<100)
lg number of iterations of bromwich contour (<10)
gt to determine starting contour gamO (0.1)

line 3
xA initial edit position from x=0
xl final edit position from x=0
nx number of intervals between xA and xl (<m2)
iflux 0 exiting angular flux only

1 interior scalar flux only
2 both exiting angular and scalar fluxes

anl limiting direction for angular edit (-anl,anl)
mx number of edit points (<ml)

note: repeat line 4 for the nc cases
single half-space geometry:

line 4 is 1 beam source
2 isotropic source
3 Milne problem
4 uniformly distributed isotropic source
5 distributed isotropiexponential source
6 general angular distribution at surface

two half-spaces geometry:
51 beam flux at interface
52 half range source at interface
53 Milne problem
54 uniformly distributed source

in right half-space
55 distributed isotropic exponential source

in right half-space
56 general angular distribution at interface

qO source normalization
al exponent of exponential source
be exponent for general angular source

(ff=e**(-be/(1-mu**2)))
cl number of secondaries in right-space
c2 number of secondaries in left-space
amO source direction
lm Gauss-Legendre quadrature order(<ml)
err desired relative error

a) Notes:

1) The number of cases nc considered is unlimited.
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2) The number of spatial and angular edit points nx,mx is currently lim-

ited to 100 for the single half-space and 200 for two half-spaces but can

be changed by specifying ml and m2 in the program.

3) lj is the maximum number of terms allowed in the inversion series; while

Ig specifies the maximum number of contours on which the inversion is

evaluated in order to achieve convergence.

4) gt specifies the Bromwich contour -t = -t + gt/x when x is less than 0.1

and is the initial contour otherwise. -y, is an approximation to the real

part of the rightmost singularity.

5) The general angularly dependent source currently used is

f(J) = Qoe-#/(l-A 2)

where 3 is input as be and Q0 is determined from normalization.

6) The maximum Gauss-Legendre quadrature order is ml

B.2.2 Output

The exiting or interfacial angular flux and the interior scalar flux are

output on files eang and seal respectively. Diagnostic messages found on file

o3 are as follows:

tape23 (o3) diagnostic messages:
a) error 0: h-function iteration did not converge
b)error la,b: search for zero of infinite medium

dispersion relation did not converge
c) error 2: x=aaaaa err=bbbbb:

inversion series did not converge at x=aaaaa
with error estimate err=bbbbb

d) error 3: possible loss of accuracy in inversion series
e) error 4: j=iiiii x=aaaaa err=bbbbb:

Romberg integration did not converge at term j
and x=aaaaa with error estimate err=bbbbb

f) error 5: x=aaaaa err=bbbbb:
contour iteration did not converge at x=aaaaa
with error estimate err=bbbbb

g) error 6: search for zeros of the Legendre polynomial failed

41



while files o4 and o5 are plot files for the interior scalar flux and angular flux

at x = 0 respectively. The number of contours for convergence is monitored

on the screen. The completion of each case is signaled by an indication of

the files which have been written.

B.2.3 Program Notes

1) Loss of accuracy

Since the inversion is performed by summing a series, there is always

the possibility of loss of accuracy. To partially offset this difficulty, an

iterative procedure has been introduced. If such a loss is sensed by the

sum being less than any one term, the error in the Romberg integration

is reduced to obtain more accuracy for the terms of the series. The

computation is then repeated.

2) Nonconvergence

If the inversion does not converge for small x (x < 0.1), gt should be in-

creased in an attempt to achieve convergence. In general, the inversion

cannot give values smaller then machine accuracy. Sometimes by judi-

cious a choice of the contour, smaller values can be obtained however.
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