AD-A277 139 AGE Control of Contr				Form Approved		
		D-A277 139	IGE	OMB NCI 0704-0188		
March 1, 1994 January 1, 1993-March 1, 1994 A THE AND SUBTITIE Dynamics of Block Poly(styrene-so-vinylpyridine) (SVP) In Solution and on Silica PE-N0014-91 Frank D. Blum, M. Xie, B.R. Sinha, and F.C. Schwab* PE-N0014-91 7 PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) IN PR-1274 University of Missouri-Rolla Department of Chemistry Rolla, MO 65401 ATTN: Frank D. Blum 9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) IN PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) IN PERFORMING ORGANIZATION AGENCY NAME(S) AND ADDRESS(ES) 9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) IN PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 9. TITIS Concept J. INAR 17 1994 11. SPENDENT VIEWER MARENT NUMBER 9. ADDIG STREAM Seconstructure Stream 9. ADDIG STREAM PERFORMING NGANIZATION 11. SPENDENT NUMBER Seconstructure Stream 9. ADDIG STREAM Seconstructure St	Public reporting burc gathering and maint collection of informa		esponse, including the time for reviewing instructions, searching existing ou iformation - Send comments regarding this burden estimate or any other as squarters Services, Directorate for information Concention, and Bennett - 323			
A THLE AND SUBTICLE Dynamics of Block Poly(styrene-so-vinylpyridine) (SVP) a Authon(S) Frank D. Blum, M. Xie, B.R. Sinha, and F.C. Schwab* PE-N0014-91 PR-1274 Prank D. Blum, M. Xie, B.R. Sinha, and F.C. Schwab* 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) University of Missouri-Rolla Department of Chemistry Rolla, MO 65401 ATTN: Frank D. Blum 9. SPONSORMG/MONITORING AGENCY NAME(S) AND ADDRESS(ES) UNR-FDB-35 10. SPONSORMG/MONITORING AGENCY NAME(S) AND ADDRESS(ES) Office of Naval Research - Code 5000 Chemistry Division 800 Quincy Street Arington, VA 22217 ATTN: Kenneth J. Wynne 11. SUPPLEMENTARY NOTES For publication in Polymer Preprints 12. DISTRIBUTION/AVAILABILITY STATEMENT Deuterium NMR relaxation measurements have been used to probe the dynamics of specifica 13. ABSTRACT (Maximum 200 Words) Deuterium NMR relaxation measurements have been used to probe the dynamics of specifica 13. ABSTRACT (Maximum 200 Words) Deuterium NMR relaxation measurements have been used to probe the dynamics of specifica 13. ABSTRACT (Maximum 200 Words) Deuterium NMR relaxation measurements have been used to probe the dynamics of specifica 13. ABSTRACT (Maximum 200 Words) Deuterium NMR relaxation measurements have been used to probe the dynamics of specifica 13. ABSTRACT (Maximum 200 Words) Deuterium NMR relaxation measurements have been used to probe the dynamics of specifica 13. ABSTRACT (Maximum 200 Words) Deuterium NMR relaxation measurements have been used to probe the dynamics of specifica 13. ABSTRACT (Maximum 200 Words) Deuterium NMR relaxation measurements have been used to probe the dynamics of specifica 13. ABSTRACT (Maximum 200 Words) 14. SUBJCT TERMS Dynamics, Block Copolymers, NMR, Polymeric micelles 15. NUMMER OF PAGES 16. PRICE CODC 17. Strongen devented by the second of the dynamics as indicating limited aggregation of the Dord opymer in solution. 14. SUBJCT TERMS Dynamics, Block Copolymers, NMR, Polymeric micelles 15. NUMMER OF PAGES 16. PRICE CODC 17. Strongen deventer opymer Assolution	1. AGENCY USE UNLT (LEAVE A		3. REPORT TYPE A	ND DATES COVERED		
Dynamics of Block Poly(styrene-so-vinylpyridine) (SVP) in Solution and on Silica PE-N0014-91 PR-1274 Frank D. Blum, M. Xie, B.R. Sinha, and F.C. Schwab* PR-1274 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) University of Missouri-Rolla Department of Chemistry Rolla, MO 65401 ATTN: Frank D. Blum B PERFORMING ORGANIZATION REPORT NUMBER 9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) Chemistry Division 800 Quincy Street Arilington, VA 22217 ATTN: Franch J. Blum In SPONSORING/MONITORING AGENCY REPORT NUMBER 9. Optimistry Division 800 Quincy Street Arilington, VA 22217 ATTN: Kenneth J. Wynne In SPONSORING/MONITORING AGENCY REPORT NUMBER 11. SPPLEMENTARY NOTES In SPONSORING/MONITORING AGENCY REPORT NUMBER 12. DISTRIBUTION/AVAILABULITY STATEMENT 94-0857 13. ABSTRACT (Maximum 200 wordd) Deuterium NMR relaxation measurements have been used to probe the dynamics of specifica labelled poly(Styrene-co-vinyl pyridine) in solution and on silica. Of particular interest in his stu was the comparison of the dynamics of the adsorbed polymers on silica with those of the bio copolymer and homopolymer in solution. We found that in toluene, the styrene solutions, it systems tobility orer that in bluene solution. This enhanced mobility does not extend to the other solvent systems tested (CCL and CCL/CH2OH). For the latter systems, I systeme mobility on the surface bound polymer were also made in toluene. These results were interpret through the use of the Hail-Helfand model for chain dynamics as indicating limited aggregation of th block copolymer in solution. 14. SUBJECT TERMS Dynamics, Block Copolymers,		March 1, 1994	January 1,			
in Solution and on Silica PR-1274 Frank D. Blum, M. Xie, B.R. Sinha, and F.C. Schwab* PR-1274 PRAFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) REFORT NUMBER University of Missouri-Rolla Department of Chemistry Rolla, MO 65401 ATTM: Frank D. Blum 9 SPONSDRING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) UMR-FDB-35 ATTM: Frank D. Blum 10. SPONSDRING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 9 SPONSDRING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 9 SPONSDRING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 9 SPONSDRING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING/MONITORING AGENCY NAME(S) 9 SPONSDRING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING/MONITORING AGENCY NAME(S) 9 THI STATE (MARTING NAME AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING/MONITORING AGENCY NAME(S) 9 SPONSDRING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING/MONITORING AGENCY NAME(S) 9 SPONSDRING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING/MONITORING AGENCY NAME(S) 9 SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING/MONITORING AGENCY NAME(S) 11 SUFFLOMMENT SOLUTION (AGENCY NAME AGENCY NAME AGENCY NAME AGENCY NAME AGENCY NAME AGENC	4. HILE AND SUBTILE			S. FUNDING NUMBERS		
Frank D. Blum, M. Xie, B.R. Sinha, and F.C. Schwab* 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) University of Missouri-Rolla Department of Chemistry Rolla, MO 65401 ATTN: Frank D. Blum 9. SPONSORING MONITORING AGENCY NAME(S) AND ADDRESS(ES) Office of Naval Research - Code 5000 Chemistry Division 800 Quincy Street ArTiny: Frank D. Blum 11. SUPPLEMENTARY NOTES For publication in Polymer Preprints 122. DISTRIBUTION/AVAILABILITY STATEMENT 123. ABSTRACT (Maximum 200 words) Deuterium NMR relaxation measurements have been used to probe the dynamics of specifica alaebled poly(styrene-co-vinyl pyridine) in solution and on silica. Of particular interest in this stuw as the comparison of the dynamics of the adsorbed polymers on silica with those of the bis solution. We found that in toluene, the styrene segments on the surface bound-polymer was lower than those of the corresponding solutions, typected. Thus we conclude that the enhanced mobility probably occurs only in the presence thermodynamically good solvents for styrene. A comparison of lower molecular weight (10 kg/m) biok down and styrene homopolymer were also made in toluene. These results were interpret through the use of the Hall-Helland model for chain dynamics as indicating limited aggregation of thock copolymer in solution. 14. SUBJECT TERMS 15. NUMBER OF PAGEST Dynamics, Block Copolymers, NMR, Polymeric micelles 15. NUMBER O	Dynamics of Block With a Dynamics of Block Wit	Poly(styrene-so-vinylp Silica	yridine) (SVP)	PE-N0014-91		
7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION RAME(S) AND ADDRESS(ES) University of Missouri-Rolla Department of Chemistry Rolla, MO 65401 ATTN: Frank D. Blum 9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) I. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) Office of Naval Research - Code 5000 DTCTFF4 Artington, VA 22217 MAR 17 1994 Unlimited - Approved for unlimited public release 94-08557 Unlimited - Approved for unlimited public release 94-08557 Unlimited - Approved for unlimited public release 01 particular interest in this stu was the comparison of the dynamics of the adsorbed polymers on silica with those of the byo couplimer and homopolymer in solution. We found that in toluene, the styrene segments on the dynamics of the adsorbed polymer so culde that this enhanced mobili does not extend to the other solvent systems tested (CCl4 and CCl4/CH3OH). For the latter systems, thy styrene mobiling y on the surface bound-polymer was lower than those of the corresponding solutions, a system through the use of the Hall-Helfand model for chain dynamics as indicatin	6. AUTHOR(S)			PR-1274		
7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION RAME(S) AND ADDRESS(ES) University of Missouri-Rolla Department of Chemistry Rolla, MO 65401 ATTN: Frank D. Blum 9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) I. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) Office of Naval Research - Code 5000 DTCTTEG Office of Naval Research - Code 5000 DTCTTEG Alling Konney Street Antington, VA 22217 ATTN: Kenneth J, Wonne MAR 17 1994 11. SUPPLEMENTARY NOTES For publication in Polymer Preprints 12a. DISTRIBUTION/AVAILABILITY STATEMENT 944-08557 Unlimited - Approved for unlimited public release Of particular interest in this stu was the comparison of the dynamics of the adsorbed polymers on silica with those of the blo copolymer and homopolymer in solution. We found that in toluene, the styrene segments on the systems tested (CCl ₄ and CCl ₄ /CH ₃ OH). For the latter systems, thy styrene mobility on the surface bound-polymer were also made in toluene. These results were interpret through the use of the Hall-Helfand model for chain dynamics as indicating limited aggregation of the block coopolymer in solution. 14. SUBJECT TERMS 15. NUMBER OF PAGES 17. SECURITY CLASSIFICATION 18. SECURITY CLASSIFICATION 20. LIMITATION OF ABSTRACT	Frank D. Blum, M.)	(ie, B.R. Sinha, and F	.C. Schwab*			
University of Missouri-Rolla Department of Chemistry Rolla, M0 65401 ATTN: Frank D. Blum 9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) Office of Naval Research - Code 5000 Chemistry Division 800 Quincy Street Arlington, VA 22217 ATTN: Kenneth J. Wynne 11. SUPPLEMENTARY NOTES For publication in Polymer Preprints 12a. DISTRIBUTION/AVAILABILITY STATEMENT 12a. DISTRIBUTION/AVAILABILITY STATEMENT 12b. DISTRIBUTION/AVAILABILITY STATEMENT 12a. DISTRIBUTION/AVAILABILITY STATEMENT 12b. DISTRIBUTION/AVAILABILITY STATEMENT 12c. DISTRIBUTION/AVAILABILITY STATEMENT 12b. DISTRIBUTION/AVAILABILITY STATEMEN			······································	8. PERFORMING ORGANIZATION		
Department of Chemistry Rolla, MO 65401 UMR-FDB-35 ATTN: Frank D. Blum UMR-FDB-35 9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) Office of Naval Research - Code 5000 Chemistry Division 800 Quincy Street Arlington, VA 22217 ATTN: Kenneth J. Wynne Is. SPONSORING/MONITORING AGENCY REPORT NUMBER 11. SUPPLEMENTARY NOTES Mark 17 1994 Is. SPONSORING/MONITORING AGENCY REPORT NUMBER 12. ADISTRIBUTION/AVAILABILITY STATEMENT 94-08557 13. ABSTRACT (Maximum 200 words) Is. Solution and on silica. Of particular interest in this stu was the comparison of the dynamics of the adsorbed polymers on silica with those of the blo copolymer had enhanced mobility over that in toluene, the styrene segments on t stratace-bound polymer in solution. We found that in toluene, the styrene segments on t styrene mobility on the surface bound-polymer was lower than those of the corresponding solutions, i expected. Thus we conclude that this enhanced mobility probably occurs only in the presence thermodynamically good solvents for styrene. A comparison of lower molecular weight (10 kg/mm block copolymer in solution. 14. SUBJECT TERMS 15. NUMBER OF PAGES5 Dynamics, Block Copolymers, NMR, Polymeric micelles 15. NUMBER OF PAGES5 16 PRICE CODE	University of Misso	ouri-Rolla		REPORT NUMBER		
RUTIA, MO 05401 ATTM: Frank D. Blum 9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) Office of Naval Research - Code 5000 Chemistry Division 800 Quincy Street Arlington, VA 22217 ATTM: Kenneth J, Wynne 11. SUPPLEMENTARY NOTES For publication in Polymer Preprints 12a. DISTRIBUTION/AVAILABILITY STATEMENT Deuterium NMR relaxation measurements have been used to probe the dynamics of specifica labelled poly(styrene-co-vinyl pyridine) in solution and on silica. Of particular interest in this stu was the comparison of the dynamics of the dobred polymers on silica with those of the block copolymer in solution. We found that in toluene, the styrene segments on the surface-bound polymer had enhanced mobility over that in toluene, the styrene segments on the surface bound-polymer was lower than those of the corresponding solutions, styrene mobility on the surface bound-polymer was lower than those of the corresponding solutions, styrene mobility on the surface bound-polymer were also made in toluene. These results were interpret through the use of the Hall-Helfand model for chain dynamics as indicating limited aggregation of the block copolymer in solution. 14. SUBJECT TERMS 15. SECURITY CLASSIFICATION OF FIN'S PAGE 17. SECURITY CLASSIFICATION OF FIN'S PAGE 19. SECURITY CLASSIFICATION OF ABSTRACT 18. AUMISER OF PAGES 19. SECURITY CLASSIFICATION OF ABSTRACT	Department of Chemi					
	Rolla, MO 65401	-		UNK-FDE-35		
Office of Naval Research - Code 5000 Chemistry Division 800 Quincy Street Arlington, VA 22217 ATIN: Kenneth J, Wynne Arlington, VA 22217 ATIN: Kenneth J, Wynne 11. SUPPLEMENTARY NOTES For publication in Polymer Preprints 12a. DISTRIBUTION/AVAILABILITY STATEMENT 94-08557 Unlimited - Approved for unlimited public release 94-08557 13. ABSTRACT (Maximum 200 words) Image: State	ATIN: Frank D. Blum	1				
Office of Naval Research - Code 5000 Chemistry Division 800 Quincy Street Arlington, VA 22217 ATIN: Kenneth J, Wynne 11. SUPPEMENTARY NOTES AR 17 1994 120. DISTRIBUTION/AVAILABILITY STATEMENT 94-0857 120. DISTRIBUTION/AVAILABILITY STATEMENT 94-0857 121. Suppresent Address 94-0857 122. DISTRIBUTION/AVAILABILITY STATEMENT 94-0857 123. ABSTRACT (Maximum 200 words) 94.000000000000000000000000000000000000	9. SPONSORING / MONITORING	AGENCY NAME(S) AND ADDRESS	ES)	10. SPONSORING / MONITORING		
Chemistry Division 800 Quincy Street ATIN: Kenneth J. Wynne MAR 17 1994 ATTN: Kenneth J. Wynne MAR 17 1994 Itt SUPPLEMENTARY NOTES 94-0857 For publication in Polymer Preprints 94-0857 Unlimited - Approved for unlimited public release 94-0857 Its Jupple Mentary NOTES 94-0857 Dulimited - Approved for unlimited public release 94-0857 Its AbstRACT (Maximum 200 words) Its adsorbed polymers on silica with those of the blocopolymer and homopolymer in solution. We found that in toluene, the styrene segments on the blocopolymer had <i>enhanced</i> mobility over that in toluene, the styrene segments on the styrene mobility on the surface bound-polymer was lower than those of the corresponding solutions, a styrene mobility on the surface bound-polymer was lower than those of the corresponding solutions, a styrene mobility on the surface bound-polymer were also made in toluene. These results were interpret through the use of the Hall-Helfand model for chain dynamics as indicating limited aggregation of the block copolymer in solution. MAR 17 1994 15. NUMBER OF PAGES Max 10 10 10 10 10 10 10 10 10 10 10 10 10			TIL.			
800 Quincy Street Arlington, VA 22217 ATTN: Kenneth J. Wynne 11. SUPPLEMENTARY NOTES For publication in Polymer Preprints 94-0857 123. DISTRIBUTION / AVAILABILITY STATEMENT 94-0857 Unlimited - Approved for unlimited public release 13. ABSTRACT (Maximum 200 words) Deuterium NMR relaxation measurements have been used to probe the dynamics of specifical labelled poly(styrene-co-vinyl pyridine) in solution and on silica. Of particular interest in this stu was the comparison of the dynamics of the adsorbed polymers on silica with those of the blo copolymer and homopolymer in solution. We found that in toluene, solution. This enhanced mobility does not extend to the other solvent systems tested (CCl4 and CCl4/CH3OH). For the latter systems, the styrene mobility on the surface bound-polymer was lower than those of the corresponding solutions, a expected. Thus we conclude that this enhanced mobility occurs only in the presence thermodynamically good solvents for styrene. A comparison of lower molecular weight (10 kg/mc block copolymer and styrene homopolymer were also made in toluene. These results were interpret through the use of the Hall-Helfand model for chain dynamics as indicating limited aggregation of th block copolymer in solution. 14. SUBJECT TERMS 15. NUMBER OF PAGES 15. NUMBER OF PAGES 15. NUMBER OF PAGES 16. PRICE CODE 17. SECURITY CLASSIFICATION OF REPORT						
Arlington, VA 22217 ATIN: Kenneth J. Wynne For publication in Polymer Preprints Por publication in Polymer Preprints 12a. DISTRIBUTION/AVAILABILITY STATEMENT Unlimited - Approved for unlimited public release 13. ABSTRACT (Maximum 200 words) Deuterium NMR relaxation measurements have been used to probe the dynamics of specifical labelled poly(styrene-co-vinyl pyridine) in solution and on silica. Of particular interest in this stu was the comparison of the dynamics of the adsorbed polymers on silica with those of the blo copolymer and homopolymer in solution. We found that in toluene, the styrene segments on t surface-bound polymer had enhanced mobility over that in toluene solution. This enhanced mobility does not extend to the other solvent systems tested (CCl ₄ and CCl ₄ /CH ₃ OH). For the latter systems, the styrene mobility on the surface bound-polymer was lower than those of the corresponding solutions, is expected. Thus we conclude that this enhanced mobility probably occurs only in the presence thermodynamically good solvents for styrene. A comparison of lower molecular weight (10 kg/mm block copolymer in solution. 14. SUBJECT TERMS Dynamics, Block Copolymers, NMR, Polymeric micelles 15. NUMBER OF PAGES Dynamics, Block Copolymers, NMR, Polymeric micelles 16. PRICE CODE 17. SECURITY CLASSIFICATION OF THIS PAGE Unclassified 19. SECURITY CLASSIFICATION 10. SECURITY CLASSIFICATION 11. SUBJECT TERMS Dynamics, Block Copolymers, NMR, Polymeric micelles 11. Number OF PAGES 12. OLIMITATION OF ABSTRACT Unclassified 13. Maximum 200 20. UMITATION OF ABSTRACT 20. UMITATION OF ABSTRACT 20. UMITATION OF ABSTRACT 21. Unclassified	5	7 7 +				
11. SUPPLEMENTARY NOTES For publication in Polymer Preprints 12a. DISTRIBUTION/AVAILABILITY STATEMENT Unlimited - Approved for unlimited public release 13. ABSTRACT (Maximum 200 words) Deuterium NMR relaxation measurements have been used to probe the dynamics of specifical labelled poly(styrene-co-vinyl pyridine) in solution and on silica. Of particular interest in this stu was the comparison of the dynamics of the adsorbed polymers on silica with those of the blo copolymer and homopolymer in solution. We found that in toluene, the styrene segments on the surface-bound polymer had enhanced mobility over that in toluene solution. This enhanced mobility does not extend to the other solvent systems tested (CCl4 and CCl4/CH3OH). For the latter systems, thermodynamically good solvents for styrene. A comparison of lower molecular weight (10 kg/mm block copolymer and styrene homopolymer were also made in toluene. These results were interprete through the use of the Hall-Helfand model for chain dynamics as indicating limited aggregation of the block copolymer in solution. 14. SUBJECT TERMS 15. NUMBER OF PAGES 14. SUBJECT TERMS 15. NUMBER OF PAGES 17. SECURITY CLASSIFICATION of THIS PAGE 19. SECURITY CLASSIFICATION of ABSTRACT 20. LIMITATION OF ABSTRACT		.7	MAR 1 7 1994			
For publication in Polymer Preprints 94-0857 12a. DISTRIBUTION/AVAILABILITY STATEMENT Unlimited - Approved for unlimited public release Image: Colspan="2">94-08557 Image: Colspan="2">Image: Colspan="2" Image: Colspa	ATTN: Kenneth J. Wy	<u>(nne</u>	MIND -			
12a. DISTRIBUTION / AVAILABILITY STATEMENT Unlimited – Approved for unlimited public release 94-0857 Unlimited – Approved for unlimited public release 13. ABSTRACT (Maximum 200 words) Deuterium NMR relaxation measurements have been used to probe the dynamics of specifical labelled poly(styrene-co-vinyl pyridine) in solution and on silica. Of particular interest in this sture was the comparison of the dynamics of the adsorbed polymers on silica with those of the blo copolymer and homopolymer in solution. We found that in toluene, the styrene segments on the surface-bound polymer had <i>enhanced</i> mobility over that in toluene solution. This enhanced mobilit does not extend to the other solvent systems tested (CCl4 and CCl4/CH3OH). For the latter systems, the styrene mobility on the surface bound-polymer was lower than those of the corresponding solutions, is expected. Thus we conclude that this enhanced mobility probably occurs only in the presence thermodynamically good solvents for styrene. A comparison of lower molecular weight (10 kg/mt block copolymer and styrene homopolymer were also made in toluene. These results were interprete through the use of the Hall-Helfand model for chain dynamics as indicating limited aggregation of the block copolymer in solution. 14. SUBJECT TERMS Dynamics, Block Copolymers, NMR, Polymeric micelles 15. NUMBER OF PAGES Dynamics, Block Copolymers, NMR, Polymeric micelles 16. PRICE CODE 17. SECURITY CLASSIFICATION OF THIS PAGE Unclassified 18. SECURITY CLASSIFICATION OF THIS PAGE Unclassified 19. SECURITY CLASSIFICATION OF THIS PAGE Unclassified	11. SUPPLEMENTARY NOTES					
12a. DISTRIBUTION / AVAILABILITY STATEMENT Unlimited - Approved for unlimited public release 13. ABSTRACT (Maximum 200 words) Deuterium NMR relaxation measurements have been used to probe the dynamics of specifical labelled poly(styrene-co-vinyl pyridine) in solution and on silica. Of particular interest in this stu was the comparison of the dynamics of the adsorbed polymers on silica with those of the blo copolymer and homopolymer in solution. We found that in toluene, the styrene segments on th surface-bound polymer had enhanced mobility over that in toluene solution. This enhanced mobilit does not extend to the other solvent systems tested (CCl4 and CCl2/CH3OH). For the latter systems, th styrene mobility on the surface bound-polymer was lower than those of the corresponding solutions, a expected. Thus we conclude that this enhanced mobility probably occurs only in the presence thermodynamically good solvents for styrene. A comparison of lower molecular weight (10 kg/md block copolymer and styrene homopolymer were also made in toluene. These results were interprete through the use of the Hall-Helfand model for chain dynamics as indicating limited aggregation of th block copolymer in solution. 14. SUBJECT TERMS Dynamics, Block Copolymers, NMR, Polymeric micelles 15. NUMBER OF PAGES 3 16. PRICE CODE 17. SECURITY CLASSIFICATION OF THIS PAGE Unclassified 19. SECURITY CLASSIFICATION OF THIS PAGE Unclassified 19. SECURITY CLASSIFICATION OF THIS PAGE Unclassified	For publication in	Polymer Preprints				
94-0857 Unlimited - Approved for unlimited public release Interview of the unlimited public release Interview of the unlimited public release Deuterium NMR relaxation measurements have been used to probe the dynamics of specifical labelled poly(styrene-co-vinyl pyridine) in solution and on silica. Of particular interest in this stuw was the comparison of the dynamics of the adsorbed polymers on silica with those of the blo copolymer and homopolymer in solution. We found that in toluene, the styrene segments on the surface-bound polymer had enhanced mobility over that in toluene solution. This enhanced mobili does not extend to the other solvent systems tested (CCl4 and CCl4/CH3CH). For the latter systems, the styrene mobility on the surface bound-polymer was lower than those of the corresponding solutions, a expected. Thus we conclude that this enhanced mobility probably occurs only in the presence thermodynamically good solvents for styrene. A comparison of lower molecular weight (10 kg/mcblock copolymer and styrene homopolymer were also made in toluene. These results were interprete through the use of the Hall-Helfand model for chain dynamics as indicating limited aggregation of the block copolymer in solution. 14. SUBJECT TERMS Dynamics, Block Copolymers, NMR, Polymeric micelles 15. NUMBER OF PAGES 14. SUBJECT TERMS 18. SECURITY CLASSIFICATION OF ABSTRACT 19. SECURITY CLASSIFICATION OF ABSTRACT 17. SECURITY CLASSIFICATION OF THIS PAGE 19. SECURITY CLASSIFICATION OF ABSTRACT 20. LIMITATION OF ABSTRACT 18. Unclassified U				·		
Unlimited - Approved for unlimited public release Deuterium NMR relaxation measurements have been used to probe the dynamics of specifical labelled poly(styrene-co-vinyl pyridine) in solution and on silica. Of particular interest in this stu- was the comparison of the dynamics of the adsorbed polymers on silica with those of the blo copolymer and homopolymer in solution. We found that in toluene, the styrene segments on thi surface-bound polymer had <i>enhanced</i> mobility over that in toluene, solution. This enhanced mobili does not extend to the other solvent systems tested (CCl ₄ and CCl ₄ /CH ₃ OH). For the latter systems, th styrene mobility on the surface bound-polymer was lower than those of the corresponding solutions, a expected. Thus we conclude that this enhanced mobility probably occurs only in the presence thermodynamically good solvents for styrene. A comparison of lower molecular weight (10 kg/mc block copolymer and styrene homopolymer were also made in toluene. These results were interpret through the use of the Hall-Helfand model for chain dynamics as indicating limited aggregation of th block copolymer in solution. 14. SUBJECT TERMS Dynamics, Block Copolymers, NMR, Polymeric micelles 15. NUMBER OF PAGES Dynamics, Block Copolymers, NMR, Polymeric micelles 16. PRICE CODE 17. SECURITY CLASSIFICATION OF THIS PAGE Unclassified Unclas		IT STATEMENT		04 00E7		
13. ABSTRACT (Maximum 200 words) 14. Subject term object 15. NUMBER OF PAGES 16. PRICE CODE 17. SECURITY CLASSIFICATION OF REPORT 18. SECURITY CLASSIFICATION OF REPORT 19. SECURITY CLASSIFICATION OF REPORT 19. SECURITY CLASSIFICATION OF REPORT 19. SECURITY CLASSIFICATION OF REPORT 10. UNCLASSIFIED 11. SUBJECT TERMS 12. UNCLASSIFIED				M44=HX7/		
13. ABSTRACT (Maximum 200 words) 14. Subject term 15. Number of pages 16. PRICE CODE 17. SECURITY CLASSIFICATION OF REPORT 18. SECURITY CLASSIFICATION OF REPORT 19. SECURITY CLASSIFICATION OF REPORT 19. SECURITY CLASSIFICATION OF REPORT 10. UNCLASSIFIED 11. SECURITY CLASSIFICATION OF REPORT 11. UNCLASSIFIED				JT 0007		
Deuterium NMR relaxation measurements have been used to probe the dynamics of specifical labelled poly(styrene-co-vinyl pyridine) in solution and on silica. Of particular interest in this stu- was the comparison of the dynamics of the adsorbed polymers on silica with those of the blo copolymer and homopolymer in solution. We found that in toluene, the styrene segments on the surface-bound polymer had <i>enhanced</i> mobility over that in toluene solution. This enhanced mobili does not extend to the other solvent systems tested (CCl ₄ and CCl ₄ /CH ₃ OH). For the latter systems, the styrene mobility on the surface bound-polymer was lower than those of the corresponding solutions, a expected. Thus we conclude that this enhanced mobility probably occurs only in the presence thermodynamically good solvents for styrene. A comparison of lower molecular weight (10 kg/me block copolymer and styrene homopolymer were also made in toluene. These results were interprete through the use of the Hall-Helfand model for chain dynamics as indicating limited aggregation of the block copolymer in solution.	Unlimited - Approve	ed for unlimited public	: release			
Deuterium NMR relaxation measurements have been used to probe the dynamics of specifical labelled poly(styrene-co-vinyl pyridine) in solution and on silica. Of particular interest in this stu- was the comparison of the dynamics of the adsorbed polymers on silica with those of the blo copolymer and homopolymer in solution. We found that in toluene, the styrene segments on the surface-bound polymer had <i>enhanced</i> mobility over that in toluene solution. This enhanced mobili does not extend to the other solvent systems tested (CCl ₄ and CCl ₄ /CH ₃ OH). For the latter systems, the styrene mobility on the surface bound-polymer was lower than those of the corresponding solutions, a expected. Thus we conclude that this enhanced mobility probably occurs only in the presence thermodynamically good solvents for styrene. A comparison of lower molecular weight (10 kg/me block copolymer and styrene homopolymer were also made in toluene. These results were interprete through the use of the Hall-Helfand model for chain dynamics as indicating limited aggregation of the block copolymer in solution.	Unlimited - Approve	ed for unlimited public	: release			
Tabelled poly(styrene-co-vinyl pyridine) in solution and on silica. Of particular interest in this sturwas the comparison of the dynamics of the adsorbed polymers on silica with those of the blo copolymer and homopolymer in solution. We found that in toluene, the styrene segments on the surface-bound polymer had enhanced mobility over that in toluene solution. This enhanced mobilid does not extend to the other solvent systems tested (CCl4 and CCl4/CH3OH). For the latter systems, the styrene mobility on the surface bound-polymer was lower than those of the corresponding solutions, a expected. Thus we conclude that this enhanced mobility probably occurs only in the presence thermodynamically good solvents for styrene. A comparison of lower molecular weight (10 kg/ma block copolymer and styrene homopolymer were also made in toluene. These results were interprete through the use of the Hall-Helfand model for chain dynamics as indicating limited aggregation of the block copolymer in solution. 14. SUBJECT TERMS 15. NUMBER OF PAGES 17. SECURITY CLASSIFICATION OF REPORT 18. SECURITY CLASSIFICATION OF THIS PAGE 19. SECURITY CLASSIFICATION OF ABSTRACT 17. SECURITY CLASSIFICATION OF THIS PAGE 19. SECURITY CLASSIFICATION OF ABSTRACT 20. LIMITATION OF ABSTRACT	Unlimited - Approve	ed for unlimited public	release			
Tabelled poly(styrene-co-vinyl pyridine) in solution and on silica. Of particular interest in this sturwas the comparison of the dynamics of the adsorbed polymers on silica with those of the bloc copolymer and homopolymer in solution. We found that in toluene, the styrene segments on the surface-bound polymer had enhanced mobility over that in toluene solution. This enhanced mobilit does not extend to the other solvent systems tested (CCl4 and CCl4/CH3OH). For the latter systems, the styrene mobility on the surface bound-polymer was lower than those of the corresponding solutions, a expected. Thus we conclude that this enhanced mobility probably occurs only in the presence thermodynamically good solvents for styrene. A comparison of lower molecular weight (10 kg/mod block copolymer and styrene homopolymer were also made in toluene. These results were interprete through the use of the Hall-Helfand model for chain dynamics as indicating limited aggregation of the block copolymer in solution. 14. SUBJECT TERMS 15. NUMBER OF PAGES 17. SECURITY CLASSIFICATION OF REPORT 18. SECURITY CLASSIFICATION OF THIS PAGE 19. SECURITY CLASSIFICATION OF ABSTRACT 17. SECURITY CLASSIFICATION OF THIS PAGE 19. SECURITY CLASSIFICATION OF ABSTRACT 20. LIMITATION OF ABSTRACT		<u></u>	release			
Dynamics, Block Copolymers, NMR, Polymeric micelles 3 17. SECURITY CLASSIFICATION OF REPORT 18. SECURITY CLASSIFICATION OF THIS PAGE 19. SECURITY CLASSIFICATION OF ABSTRACT 20. LIMITATION OF ABSTRACT Unclassified Unclassified Unclassified Unclassified	13. ABSTRACT (Maximum 200 w	ords)				
Dynamics, Block Copolymers, NMR, Polymeric micelles 13. NUMBER OF PAGES 17. SECURITY CLASSIFICATION OF REPORT 18. SECURITY CLASSIFICATION OF THIS PAGE 19. SECURITY CLASSIFICATION OF ABSTRACT 20. LIMITATION OF ABSTRACT Unclassified Unclassified Unclassified Unclassified	Deuterium NMR labelled poly(styrene-co was the comparison of copolymer and homopo surface-bound polymer does not extend to the o styrene mobility on the s expected. Thus we co thermodynamically good block copolymer and sty through the use of the l	relaxation measurements having pyridine) in solution the dynamics of the ads lymer in solution. We for had enhanced mobility ov ther solvent systems tested surface bound-polymer was include that this enhanced a solvents for styrene. A rene homopolymer were al Hall-Helfand model for chai	ave been used to pro and on silica. Of orbed polymers on und that in toluene, er that in toluene so (CCl ₄ and CCl ₄ /CH ₃ d lower than those of mobility probably o comparison of lower so made in toluene.	obe the dynamics of specifical particular interest in this stur- silica with those of the blo- the styrene segments on the lution. This enhanced mobilion OH). For the latter systems, the the corresponding solutions, a foccurs only in the presence molecular weight (10 kg/mod These results were interpret		
17. SECURITY CLASSIFICATION OF REPORT 18. SECURITY CLASSIFICATION OF THIS PAGE 19. SECURITY CLASSIFICATION OF ABSTRACT 20. LIMITATION OF ABSTRACT Unclassified Unclassified Unclassified Unclassified	Deuterium NMR labelled poly(styrene-co was the comparison of copolymer and homopo surface-bound polymer does not extend to the o styrene mobility on the s expected. Thus we co thermodynamically good block copolymer and sty through the use of the l block copolymer in solu	relaxation measurements having pyridine) in solution the dynamics of the ads lymer in solution. We for had enhanced mobility ov ther solvent systems tested surface bound-polymer was include that this enhanced a solvents for styrene. A rene homopolymer were al Hall-Helfand model for chai	ave been used to pro and on silica. Of orbed polymers on und that in toluene, er that in toluene so (CCl ₄ and CCl ₄ /CH ₃ d lower than those of mobility probably o comparison of lower so made in toluene.	obe the dynamics of specifical particular interest in this stur- silica with those of the blo the styrene segments on the lution. This enhanced mobil OH). For the latter systems, the the corresponding solutions, a occurs only in the presence r molecular weight (10 kg/mo These results were interprete ating limited aggregation of the		
OF REPORT OF THIS PAGE OF ABSTRACT Unclassified Unclassified Unclassified	13. ABSTRACT (Maximum 200 w Deuterium NMR labelled poly(styrene-co was the comparison of copolymer and homopo surface-bound polymer does not extend to the o styrene mobility on the s expected. Thus we co thermodynamically good block copolymer and sty through the use of the l block copolymer in solu	relaxation measurements his-vinyl pyridine) in solution the dynamics of the ads lymer in solution. We for had enhanced mobility ov ther solvent systems tested surface bound-polymer was include that this enhanced i solvents for styrene. A rene homopolymer were al Hall-Helfand model for chait tion.	ave been used to pro and on silica. Of orbed polymers on and that in toluene, er that in toluene so (CCl ₄ and CCl ₄ /CH ₃ (lower than those of mobility probably o comparison of lower so made in toluene. n dynamics as indica	obe the dynamics of specifical particular interest in this stur- silica with those of the blo the styrene segments on the lution. This enhanced mobil OH). For the latter systems, the the corresponding solutions, a occurs only in the presence r molecular weight (10 kg/mo These results were interprete ating limited aggregation of the 15. NUMBER OF PAGES		
Unclassified Unclassified Unclassified	Deuterium NMR labelled poly(styrene-co was the comparison of copolymer and homopo surface-bound polymer does not extend to the o styrene mobility on the s expected. Thus we co thermodynamically good block copolymer and sty through the use of the l block copolymer in solu	relaxation measurements his-vinyl pyridine) in solution the dynamics of the ads lymer in solution. We for had enhanced mobility ov ther solvent systems tested surface bound-polymer was include that this enhanced i solvents for styrene. A rene homopolymer were al Hall-Helfand model for chait tion.	ave been used to pro and on silica. Of orbed polymers on and that in toluene, er that in toluene so (CCl ₄ and CCl ₄ /CH ₃ (lower than those of mobility probably o comparison of lower so made in toluene. n dynamics as indica	obe the dynamics of specifical particular interest in this stu- silica with those of the blo the styrene segments on the lution. This enhanced mobil OH). For the latter systems, the the corresponding solutions, a foccurs only in the presence of molecular weight (10 kg/mon These results were interprete ating limited aggregation of the 15. NUMBER OF PAGES 3		
	13. ABSTRACT (Maximum 200 w Deuterium NMR labelled poly(styrene-co was the comparison of copolymer and homopo surface-bound polymer does not extend to the o styrene mobility on the s expected. Thus we co thermodynamically good block copolymer and sty through the use of the I block copolymer in solu	relaxation measurements his-vinyl pyridine) in solution the dynamics of the ads lymer in solution. We for had enhanced mobility ov ther solvent systems tested surface bound-polymer was include that this enhanced i solvents for styrene. A rene homopolymer were al Hall-Helfand model for chait tion.	ave been used to pro and on silica. Of orbed polymers on and that in toluene, er that in toluene so (CCl ₄ and CCl ₄ /CH ₃ Cl lower than those of mobility probably o comparison of lower so made in toluene. n dynamics as indica	obe the dynamics of specifical particular interest in this stur- silica with those of the blo- the styrene segments on the lution. This enhanced mobil OH). For the latter systems, the the corresponding solutions, a foccurs only in the presence r molecular weight (10 kg/mo These results were interprete ating limited aggregation of the 15. NUMBER OF PAGES 3 16. PRICE CODE		
	Deuterium NMR labelled poly(styrene-co was the comparison of copolymer and homopo surface-bound polymer does not extend to the o styrene mobility on the s expected. Thus we co thermodynamically good block copolymer and sty through the use of the I block copolymer in solu	relaxation measurements ha- vinyl pyridine) in solution the dynamics of the ads lymer in solution. We for had enhanced mobility ov ther solvent systems tested surface bound-polymer was include that this enhanced i solvents for styrene. A rene homopolymer were al Hall-Helfand model for chait tion. polymers, NMR, Polymer 18. SECURITY CLASSIFICATION OF THIS PAGE	ave been used to pro and on silica. Of orbed polymers on und that in toluene, er that in toluene so (CCl ₄ and CCl ₄ /CH ₃ d lower than those of mobility probably o comparison of lower so made in toluene. n dynamics as indica	obe the dynamics of specifical particular interest in this stur- silica with those of the blo the styrene segments on the lution. This enhanced mobil OH). For the latter systems, the the corresponding solutions, a foccurs only in the presence r molecular weight (10 kg/mo These results were interprete ating limited aggregation of the 15. NUMBER OF PAGES 3 16. PRICE CODE		

• .

OFFICE OF NAVAL RESEARCH

3

Grant N00014-91-J-1274

R&T Code 413m005---04

Technical Report # UMR-FDB-35

Dynamics of Block Poly(styrene-co-vinylpyridine) (SVP) in Solution and on Silica

by

Frank D. Blum, M. Xie, B.R. Sinha, and F.C. Schwab*

Department of Chemistry and Materials Research Center University of Missouri-Rolla Rolla, MO 65401

(314) 341-4451

* Mobil Chemical Co. PO Box 240 Edison, NJ 08818

Prepared for Publication in

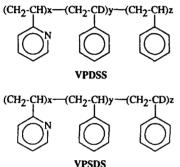
Polymer Preprints

	1
Accesion For	1
NTIS CRA&I	
By Dist: ibution [
Availability Codes	-
Dist Avail and for Special	
A-1	

March 1, 1994

Reproduction in whole, or in part, is permitted for any purpose of the United States Government.

This document has been approved for public release and sale: its distribution is unlimited.

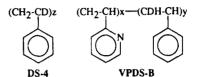

Dynamics of Block Poly(styrene-co-vinyl pyridine) (SVP) in Solution and on Silica

Frank D. Blum¹, Ming Xie¹, Brijnaresh Sinha¹⁻², and Fred C. Schwab³

- 1. Department of Chemistry, University of Missouri-Rolla, Rolla, MO 65401.
- 2. current address: Union Carbide Corporation, South Charleston, WV 25303.
- 3. Mobil Chemical Co., P.O. Box 240, Edison, NJ 08818.

Introduction

We are continuing our studies of the dynamics of block copolymers on surfaces and in solution using NMR spectroscopy. Of special interest to us has been the behavior of copolymers (or terpolymers) made from styrene and vinyl pyridine. We have previously shown that in toluene, poly-(styrene-co-vinyl pyridine) adsorbs to silica via the vinyl pyridine groups.[1] Furthermore, in toluene, the styrene segments are extended into the solution at about 4x their normal radius of gyration in agreement with previous surface forces measurements.[2] The density profile was also in agreement with the parabolic one presented by Milner, et al. [3] This work was based on the use of deuterium NMR on the VPDSS and VPSDS block (ter)polymers shown below. These polymers have deuterium labels on the backbone of the styrene segments.


More recently we have extended these studies to different solvent systems where the thermodynamic quality of the solvent is poorer for styrene. Specifically, we have probed the NMR behavior in carbontetrachloride and carbontetrachloride/methanol mixture.[4] While the presence of methanol gives additional motional freedom to the bound - VP segments, both solvent systems were found to significantly limit the motional freedom of the styrene segments, as compared to their behavior in toluene.

In the present paper, we focus on the motional dynamics of the polymers as measured through deuterium NMR spectroscopy. Specifically, we compare the dynamics of the adsorbed polymers on silica with the behavior of block copolymers and homopolymers in solution. Both higher and lower molecular weight homopolymers have been probed.

Experimental

The synthesis of the VPSDS and VPDSS terpolymers have already been described.[1] The monomers, α -deuteriostyrene and β -deuteriostyrene were prepared from α - bromostyrene or β -bromostyrene by adding D₂O to a Grignard product with Mg metal. The yields of the products were 70-80%. The level of deuteration was typically 80-90% as determined by deuterium and proton NMR.

Both α -deuteriopolystyrene(α -DS) and β -deuteriopoly-(styrene-co-2-vinylpyridine) (β -DSVP) were prepared by anionic polymerization. Synthesis of α -deuteriopolystyrene was conducted in a solution of cyclohexane using secbutyllithium as initiator with 30 wt% monomers at 0 °C for lhr. β -deuteriopoly(styrene-co-2-vinylpyridine) was made in THF instead of cyclohexane because of the insolubility of 2vinylpyridine in cyclohexane. The reaction was initiated at room temperature then cooled down to -78 °C, β -deuteriostyrene was added first followed by 2-vinylpyridine. The resulting polymers are shown along with their designation. We note that the VPDS is labelled in the methylene position.

The molecular weights of polymers as determined by GPC are given in Table I and are based on polystyrene standards.

Table I. Molecular Weights of Polymers					
<u>Polvm.*</u>	<u>Mw (kg/mol)</u>	PD	<u>wt. %S</u>		
DS	265.5	2.5	100		
DS-4	10.0	1.15	100		
VPDSS	19.2	1.5	37.5D/37.5H		
VPSDS	21.3	1.4	37.5D/37.5H		
VPDS-B1	9.8	1.76	77		
	and the second	41	I have a set of the		

*where the B designation denotes that the deuteron is in the β -position (the others are all α).

Solutions for NMR studies were prepared using distilled solvents. Degassing was not necessary because of the shortness of the relaxation times. Deuterium NMR T₁, T₂ measurements were performed on a Varian VXR-200 spectrometer at 30.7 MHz for deuterons. In all cases, the decay curves could be characterized by a single-exponential relaxation time. The relaxation times were calculated from signal heights using a log linear least-squares fit, the experimental errors in the relaxation time measurements were estimated to be less than 5%.

NMR Relaxation

Before discussing the NMR data, it is appropriate to note that the deuteron relaxation rates are due to the reorientation of the deuterium nucleus relative to its principal electric field gradient axis. Fortunately, this is along the C-D bond axis so that the relaxation rates give information directly on the C-D reorientation. The general expression for the deuterium quadrupolar relaxation in liquids is well-known [5] and given by:

$$1/T_1 = (3\pi^2/20)(e^2qQ/h)^2 [J_1(\omega_0) + 4J_2(2\omega_0)]$$
(1)
and

 $1/T_2 = (3\pi^2/40)(e^2qQ/h)^2 [3J_0(0) + 5J_1(\omega_0) + 2J_2(2\omega_0)]$ (2) where e^2qQ/h is the quadrupole coupling constant, 165KHz based on the solid-state deuterium spectrum of bulk polystyrene-d.

In order to interpret the relaxation times in terms of a motional mechanism, the Hall-Helfand (HH) [6] model has been used with some success and the spectral density given by [7]:

 $J(\omega) = 2A(\omega) \left[\left[\lambda_0 (\lambda_0 + 2\lambda_1) \cdot \omega^2 \right]^2 \right]^2$

+
$$[2(\lambda_0 + \lambda_1)\omega]^2$$
 -0.25 (3)

where

 $A(\omega) = \cos\{0.5\tan^{-1}[(2(\lambda_0+\lambda_1)\omega)/(\lambda_0(\lambda_0+2\lambda_1)-\omega^2)]\}.$ (4) where λ_0 is the single-bond conformational transition rate, λ_1 is the cooperative conformational transition rate which involves several bonds.

Results and Discussion

Surface and Solution States Carbon-13 NMR spectra of the VPDSS and VPSDS polymers on silica show narrow resonances for styrene and broader resonances for the vinyl pyridine groups for the surface-bound material when swollen with toluene. This is indicative of the mobilities in the two different groups in the polymer. Deuterium NMR relaxation times on the surface bound systems provide a way to quantify this phenomena in terms of rates for segmental reorientation through the HH terms of rates for segmental reorientation through the rate model. However, there is a simpler way to compare the behavior of these polymers. Namely, by taking the ratio of the relaxation times T₁ and T₂. For small molecules which move isotropically, the T₁/T₂ ratio is typically 1. For high molecular weight polymers dominated by local segmental motions, the ratio can be much greater than one.[7] Listed in Table II are these values for the VPSDS and VPDSS polymers on the surface and in solution at 18°C on the surface and in solution at 18°C.

Table II. Relaxation Time Values for VPDSS and VPSDS Polymers at 18 °C					
<u>Polym, Soly,</u>	T ₁ (ms)	T ₂ (ms)	T₁/T₂	<u>State</u>	
VPDSS					
toluene	3.63	3.38	1.07	surfacea	
toluene	3.63	2.75	1.32	solutiona	
CCl4/CD30D		1.83	1.45	surfaceb	
CCla	3.05	1.78	1.71	surfaceb	
VPSDS	5.05	1.70		52.1400	
toluene	3.94	3.60	1.09	surfacea	
toluene	3.94	3.25	1.21	solutiona	
CCl4/CD3OD	3.44	2.89	1.19	surfaceb	
CCl4	3.30	2.02	1.63	surfaceb	
^a From reference 1.					

b Interpolated to 18 °C from temperature-dependent data.

As is evident from Table II, the lowest ratio is for the surface systems swollen with toluene. In fact the ratio for this system is even higher than in solution. This means that compared to solution, the mobility of the surface-bound styrene segments is greater in toluene. The enhanced mobility on the surface does not extend to the other solvent systems as their ratios on the surface are greater than those in solution.[4]

Homopolymer and Block Copolymer in Solution The results of deuterium NMR relaxation studies on the DS-4 and VPDS-B1 at 25 °C are reported in Table III. To date, only a limited concentration range has been studied. We note that these are low molecular weight species (ca. 10 kg/mol) and that the relaxation time ratios are closer to 1 than for the higher molecular weight polymers previously studied.

Table III. Solution Relaxation Data for Deuterated Copolymers in Toluene.					
<u>Polym.</u>	Conc.(wt%)	$T_1(ms)$	$T_2(ms)$	T_1/T_2	
DS-4	6.59	5.10	4.77	1.07	
	14.18	4.63	4.27	1.08	
	20.35	4.29	3.90	1.10	
	26.07	4.01	3.61	1.11	
	34.16	3.57	3.11	1.15	
VPDS-B1	7.74	4.56	4.13	1.10	
	14.91	4.21	3.72	1.13	

The relaxation data for both homopolymer and block copolymer decrease with increases in concentration. The concentration dependence for T_2 is greater than that for T_1 . It is interesting to note that the two kinds of polymers have small, but measurable differences with the block copolymer of similar molecular weight and concentration having the shorter

relaxation times. In this regime, a shorter relaxation time is indicative of more restricted motion. We believe that this is due to the tendency of the block copolymer to associate, possibly even in micelles. However, for these molecular weights, the effect is small. Aggregation of the VP groups would be consistent with their thermodynamically poorer interaction with toluene.

Table IV. Hall-Helfand Parameters for the Low Molecular Weight Polymers in Toluene.						
Mo	olecular V	Veight P	olymers in	Tolue	ne.	, ,,
Conc.(wt%)	$10(\omega)^{a}$	11(m) _a	$J_2(2\omega)^*$	χõρ	<u>γ</u> 1 _p	<u>y1/y0</u>
DS-4			_			
6.59	10.9	10.5	9.5	6.30	23.8	3.8
14.18	12.2	11.7	10.5	5.62	20.9	3.7
20.35	13.5	12.8	11.2	5.07	18.9	3.7
26.07	14.7	13.8	12.0	4.78	16.9	3.5
34.16	17.5	16.1	13.4	3.97	14.5	3.6
VPDS-B1						
7.74	12.8	12.1	10.6	4.89	22.4	4.6
14.91	14.5	13.4	11.4	4.19	20.6	4.9
a in units of 10-10s.						
^b in units of 10+8 s ⁻ 1.						

In order to quantify the dynamics of these species, we have fit the relaxation data to the HH model to describe the motions of the polymers and the results are shown in Table IV. Space does not permit the detailed description of the spectral density results. Instead, we focus on the transitional probabilities given by λ_0 (single-bond conformational transition rate) and λ_1 (cooperative conformational transition rate involving several bonds). The ratio λ_1/λ_0 for the block copolymer samples are greater than that for homopolymer samples are greater than that for homopolymer samples. samples. We believe that this is indicative of slower long range motions in the block copolymer consistent with the notion that these polymers aggregate. Further studies need to be performed to determine the extent of this aggregation and its dependencies on system variables.

Conclusions

The styrene segments on the block copolymer bound to silica, swollen with toluene, exhibit enhanced mobility over the same material in solution. This unexpected behavior appears to be limited to the thermodynamically good solvent and does not occur in the other solvent system studied. In solution, the NMR relaxation time measurements are consistent with aggregation of the copolymers even at these relatively low molecular weights.

References

5.

- 1. F.D. Blum, B.R. Sinha, F.C. Schwab, *Macromolecules*, 23, 3592 (1990).
- G. Hadziiaonnou, S. Patel, S. Granick, M. Tirrell, J. Am. Chem. Soc., 108, 2869 (1986). S.T. Milner, T.A. Whitten, M.E. Cates, Macromolecules. 2.
- 3. 21, 2610 (1988)
- 4. B.R. Sinha, F.D. Blum, F.C. Schwab, Macromolecules, in Press
 - A. Abragam, The Principles of Nuclear Magnetism,
- 6.
- Claredon Press, Oxford, 1961. C.K.Hall, E. Helfand, J. Chem. Phys., 77, 3275, (1982). J. J. Connolly; E. Gordon; A.A. Jones, Macromolecules, 7. 17, 722 (1984).
- 8. F. Heatley, Prog. NMR Spectros., 13, 47 (1979).

Acknowledgements

The authors would like to thank Robert D. O'Connor for writing the computer program to calculate the parameters for the HH model. This work was funded through the Office of Naval Research.