

UNITED STATES AIR FORCE Junitation Office BASE, ALASKA

ENVIRONMENTAL RESTORATION PROGRAM

OPERABLE UNIT 5 REMEDIAL INVESTIGATION/FEASIBILITY STUDY

VOLUME 2 - TEXT AND APPENDICES A - J

FINAL

MARCH 1994

14

DIE CARLES LEADER

DISCLAIMER NOTICE

THIS DOCUMENT IS BEST QUALITY AVAILABLE. THE COPY FURNISHED TO DTIC CONTAINED A SIGNIFICANT NUMBER OF PAGES WHICH DO NOT REPRODUCE LEGIBLY.

UNITED STATES AIR FORCE ELMENDORF AIR FORCE BASE, ALASKA

ENVIRONMENTAL RESTORATION PROGRAM

OPERABLE UNIT 5 REMEDIAL INVESTIGATION/FEASIBILITY STUDY

VOLUME 2 - TEXT AND APPENDICES A - J

FINAL

MARCH 1994

REP	Form Approved OMB No. 0704-0188			
: reporting burden for this collection of information of eveng the collection of information. Send comments of information consistons and Reserve 1.215. Information Deve	estimated to average 1 hour per response, inclut garding this burden estimate or enty other sepact Mathemat State 1204 Adversion VA 2220243	ang the time for reviewing instructions, search t of the collection of information, including an 02 and to the Office of Management and	ching elesting data sources, ge uggestions for reducing this bu	thering and maintaining the data readed, and completing and order. To Washington Headquarters Services, Deactorate for new (0204 0368). Washington (0.0050)
1. AGENCY USE ONLY (Leave bi	USE ONLY (Leave blank) 4. March 1994 2. REPORT DATE 4. March 1994 5. REPORT DATE			T TYPE AND DATES COVERED
4. TITLE AND SUBTITLE				5. FUNDING NUMBERS
Remedial Investigation/Feas Elmendorf AFB, Anchorage	ibility Study, Operable Un , Alaska Vol 2	it 5 TEXT, APPS A	-J	C-F33615-90-D-4013-0017
5. AUTHOR(S) Radian Corporation				
7. PERFORMING ORGANIZATION Radian Corporation P.O. Box 201088 8501 N. Mopac Boulevard Austin Texas 78759	NAME(S) AND ADDRESS(ES	;;}		8. PERFORMING ORGANIZATION REPORT NUMBER
9. SPONSORING/MONITORING A AFCEE/ESRT Building 624 West Brooks AFB, TX 78235-50	10. SPONSORING/MONITORING AGENCY REPORT NUMBER			
128. DISTRIBUTION/AVAILABILIT	12b. DISTRIBUTION CODE			
Unclassified/Unlimited]
This Final Report for Opera Study for (RI/FS) OU 5. T contamination, conceptual r and the effects of the contan identification and screening these technologies, and 4) a evaluation criteria. The alt Based on the analysis, the r	ble Unit 5 (OU 5) is provi he RI portion of the report nodel, and baseline risk assi nination on human health a of potentially applicable te detailed analysis of the mernatives are evaluated account nost cost-effective alternati	ided per the statement of t covers the site backgro sessment. The purpose of and the environment. The exhnologies, 3) a develop ost applicable alternative ording to their combined wes are identified.	f work for the Re ound, field invest of the RI is to de the FS covers: 1 oment and screen es. The analysis I effectiveness, in	emedial Investigation/Feasibility igations, nature and extent of fine the contamination at OU 5) remedial action objectives, 2) a ing of alternatives which combin considers the nine CERCLA nplementability, and cost scores.
14. SUBJECT TERMS	15. NUMBER OF PAGES 2,322			
Remedial Action Objectives Remedial Investigation/Fea	, ARARs, Detailed Analys ibility Study, Elmendorf A	sis of Alternatives, Opera AFB, Alaska	able Unit 5,	16. PRICE CODE
17. SECURITY CLASSIFICATION OF REPORT Unclassified	18. SECURITY CLASSIFIC, OF THIS PAGE Unclassified	ATION 19. SECURITY (OF ABSTRA Unclassifie	CLASSIFICATION	20. LIMITATION OF ABSTRACT

WORK PLAN DISCLAIMER

NOTICE

This report has been prepared for the United States Air Force for the purpose of aiding in the implementation of a final remedial action plan under the Air Force Installation Restoration Program (IRP). As the report relates to actual or possible releases of potentially hazardous substances, its releases prior to an Air Force final decision on remedial action may be in the public's interest. The limited objectives of this report and the ongoing nature of the IRP, along with evolving knowledge of site conditions and chemical effects on the environment and health, must be considered when evaluating this report, since subsequent facts may become known which may make this report premature or inaccurate. Acceptance of this report in performance of the contract under which it is prepared does not mean that the Air Force adopts the conclusions, recommendations, or other views expressed herein, which are those of the contractor only and do not necessarily reflect the official position of the United States Air Force.

Copies of this report may be purchased from:

Government agencies and their contractors registered with the Defense Technical Information Center (DTIC) should direct requests for copies of this report to: Defense Technical Information Center, Cameron Station, Alexandria, VA 22304-6145.

Non-Government agencies may purchase copies of this document from: National Technical Information Service (NTIS), 5285 Port Royal Road, Springfield, VA 22161.

Accession For
NTIS GRA&I
DTIC TAB
Unanno'inced 🗌
Justification
By Distribution/
Dist Stoutes
Nº1

TABLE OF CONTENTS

10.0	DEVI ALTE	OPMENT AND SCREENING OF MEDIA-SPECIFIC
	10.1	lternatives for Water
		0.1.1 Natural Attenuation
		0.1.2 Institutional Action
		0.1.3 Containment
		0.1.4 Passive Extraction, Treatment Using Constructed Wetlands, and
		Discharge
		0.1.5 Active Extraction, Treatment Using Constructed Wetlands, and
		Discharge
		0.1.6 Passive Extraction, Treatment by Activated Carbon and
		Discharge
		0.1.7 Active Extraction, Treatment Using Air Stripping and Activated
		Carbon, and Discharge 10-15
		0.1.8 Permeable Treatment Beds 10-16
		0.1.9 Air Sparging Combined With Soil Vapor Extraction 10-18
	10.2	Remedial Alternatives For Soil
		0.2.1 Natural Degradation
		0.2.2 Institutional Action
		0.2.3 Containment
		0.2.4 Excavation and Disposal 10-24
		0.2.5 Excavation, Biopiling, and Backfill 10-26
		0.2.6 Soil Vapor Extraction/Soil Venting 10-28
		0.2.7 Bioventing 10-30
	10.3	Iternatives Recommended for Detailed Analysis
		0.3.1 Rationale for Retained Water Alternatives
		0.3.2 Rationale for Eliminated Water Alternatives 10-34
		0.3.3 Rationale for Retained Soil Alternatives
		0.3.4 Rationale for Eliminated Soil Alternatives

10.0 DEVELOPMENT AND SCREENING OF MEDIA-SPECIFIC ALTERNATIVES

Remedial action alternatives were developed using the potentially acceptable technologies and representative process options identified in Section 9.0. The potential pathways that are addressed in this feasibility study (FS) are as follows:

- Groundwater;
- Seep discharges;
- Soil, and
- Sediment and surface water in the Snowmelt Pond.

The goal of the FS is to evaluate multi-media alternatives (i.e., grouping of actions that, together, address the three pathways). Even with only a small number of actions that address each pathway, the number of combinations that would address multi-media impacts in different parts of the OU would be very large. Therefore, media-specific alternatives are screened in this section and evaluated in detail in Section 11.0. Multi-media alternatives are developed in the comparative analysis section of Section 11.0. Since the Snowmelt Pond has a presumptive remedy of constructed wetlands, the pond is discussed in detail in Section 11.0.

A building block approach was taken to develop alternatives. Process options were combined into a limited number of alternatives that, based on professional judgement, are most applicable to the setting and contaminants at OU 5. The five basic general response actions for water and soil are shown below, with the process options identified for each action. The alternatives were assembled using different combinations of these process options.

Each alternative was evaluated for effectiveness, implementability, and cost, in a process similar to the evaluation of process options, but evaluating the entire alternative. Alternatives that passed this screening are analyzed in more detail in Section 11.0 (i.e., that analysis evaluates the synergy between the combination of different process options).

Process Options for Water

Process Options for Soil

The definition of each evaluation criterion used in this screening is discussed below.

Effectiveness — The ability of the alternative to protect human health and the environment. "Effectiveness" includes the amount of hazardous material treated and/or destroyed; the amount remaining on site; the degree of expected reduction in mobility, toxicity, or volume of contaminants; the short-term reductions of risk during construction and implementation; and the long-term reduction of risk once the remedial actions are completed. Alternatives that have been shown to achieve remedial action objectives similar to those at Elmendorf AFB are considered effective unless the uncertainty involved calls that effectiveness into question. The judgment of effectiveness is based on literature evaluations of the alternatives at similar sites and on the technical understanding of the type of contamination (chemicals, concentrations, and phase), migration routes, and the geologic/physical setting of OU 5). The alternatives should also protect human health and the environment without compromising the bluff stability and wetlands environment. The alternative should not create a potential environmental impact greater than the potential risks if no action were taken.

Implementability — The technical and administrative feasibility of the alternative, as well as the availability of the various services and materials that would be required. Technical feasibility generally refers to the ability to construct and reliably operate the process until the remedial goal is achieved. The administrative criteria include the ability to secure necessary approvals from the regulating agencies for construction, operation, and disposal of residuals generated by the alternative. Administrative feasibility also considers the availability of treatment, storage and disposal facilities, technical specialists, and any special equipment that may be required. If an alternative requires significant space, piping, or manpower to implement, its implementability is considered marginal. If significant permitting or waivers from potential ARARs are needed, the implementability is further reduced because of the anticipated difficulty or time required to acquire approvals and obtain waivers. For CERCLA projects, permitting is typically not required as long as substantive requirements are met. The evaluation of implementability is based on the current state of the technology development (obtained from literature sources), and the physical/hydrogeologic setting of OU 5. The most important factors are the groundwater flow direction and rate, the geologic stability of the OU, and the space available to implement an alternative. Of equal importance is the permitting required to dispose of waste generated by an alternative.

Cost — Capital and/or lease costs, miscellaneous costs, and annual operations and maintenance (O&M) costs are considered. These costs are broad, order of magnitude estimates obtained from literature and from experience with similar alternatives. The costs are accurate to within 50% less and 100% more than actual costs and are for comparative purposes only. More detailed costs, based on CORA and RACER computer-based estimates, are provided in the detailed analysis (Section 11.0). Cost details are provided in Appendix T.

10.1 <u>Alternatives for Water</u>

The alternatives for water are described and evaluated below. Rationale for both retaining and dropping alternatives is discussed in Section 10.3.

10.1.1 Natural Attenuation

Natural Attenuation

Description — Natural attenuation would take no action at the site and would leave basewide groundwater, seeps and surface water in their current state. Dilution, adsorption, volatilization, and biological breakdown of the contaminant concentration would occur in seeps, natural wetlands, and in the groundwater. In seeps, volatilization and biological breakdown are the primary mechanisms reducing concentrations of organic contaminants. Natural wetlands possess aerobic, anaerobic, and eutrophication environments capable of breaking down aromatic and chlorinated hydrocarbons, and precipitating metals. This alternative would use natural processes to treat seep water and groundwater discharges to the wetlands. In groundwater, natural attenuation occurs through adsorption, biological breakdown, volatilization, dispersion, and dilution. Natural attenuation would allow these processes to continue. This alternative provides a baseline for comparing other alternatives.

Monitoring would include groundwater, seep water, and the wetlands.

Effectiveness — The effectiveness of the natural attenuation alternative depends on the contaminant removal rate of the physical, chemical, and biological processes that are currently occurring. Breakdown rates depend on the temperature, water and soil chemistry, nutrient supply, flow rate, bacterial colonies/populations, and food supply (contaminant concentrations). The rate is generally faster at high concentrations because increased substrate allows for a higher rate of utilization by organisms. Breakdown rates are slower at low concentration, lower temperatures, and low organic content of the soil can also slow natural attenuation. The rate of natural attenuation cannot be accurately predicted at Elmendorf AFB.

Dispersion may have the greatest effect on the concentrations of COCs in groundwater; however, adsorption (often referred to as retardation) and biological breakdown are important factors. It is very difficult to develop any meaningful estimate of the contribution of each component of natural attenuation to the concentrations of organics currently seen in the groundwater and predicted for the future. For these reasons, natural attenuation is best quantified by evaluating concentrations at source areas and the

10-5

concentrations of contaminants at downgradient receptors. This approach considers all natural attenuation processes affecting groundwater quality.

For groundwater that is expressed as seeps in OU 5, prior natural attenuation processes may have already occurred within the bluff. Even though natural attenuation likely has occurred to COCs within the bluff, once seeps express themselves into the wetlands as surface water, further degradation is likely since the natural attenuation processes are much different, e.g., effect of plant uptake, more available oxygen, light, etc.

Although natural degradation rates are difficult to predict, recent studies of the Beaver Pond area (see Appendix R) indicate that natural attenuation can be effective in the wetlands environment of OU 5. The Beaver Pond study revealed that the environmental impacts at the pond are minimal and that Ship Creek is not being affected.

The wetland areas in the western half of OU 5 (in the seep areas) are much smaller than Beaver Pond. These other wetland areas may not have the water retention time needed to naturally treat seep water before natural discharge to surface water in drainage ditches occurs. Environmental impacts at the seeps would not be effectively remediated in the short term by this alternative.

Without combining this alternative with monitoring of groundwater, seeps, and surface water, there would be no measure of the success of the natural processes on the contaminant concentrations. To provide this measure, a monitoring program has been made a part of the natural attenuation alternative. The monitoring would allow for observation of the effectiveness of natural attenuation. If, because of changes in temperature, flow rate, contaminant load, or the other factors described above, the effectiveness is not demonstrated, additional remedial action can be taken.

This alternative would produce no cross-media benefit on soil contamination. Since no access restrictions would be implemented, human and environmental exposures

10-6

would not be prevented during the time period when contaminant concentrations exceed the clean-up criteria.

Implementability — This alternative is readily implemented. The processes for approving natural attenuation are defined and have been implemented at contaminated sites. For the portion of OU 5 near Beaver Pond, this alternative can be implemented. However, an potential ARAR variance for water quality in the wetland may be needed so it can be used to degrade contaminants.

Cost — The monitoring costs associated with natural attenuation would range from \$5,000,000 to \$6,000,000 (present value for 30 years of monitoring).

10.1.2 Institutional Action

Institutional Action

Description — This alternative would implement land use restrictions into the Elmendorf AFB land use plan. City and county land use plans would have to be consulted and potentially, restrictions placed on land not owned by Elmendorf AFB. These restrictions would include prohibiting the extraction and use of groundwater and prohibiting the building of residences in areas affected by contamination. The alternative would include a ground-

water and surface water monitoring program. The water samples would be collected periodically and analyzed for the contaminants of concern. Plants and animals would be observed for signs of impact. The data generated would be used to monitor degradation and provide an early indication of possible impact, allowing for a remedial response to mitigate the impact.

Effectiveness — Institutional actions would protect human health and the environment by monitoring the environment and controlling the potential for exposure to contaminated water. The access restrictions would help prevent potential human exposures to contaminated groundwater, seeps, and springs, but they would not reduce exposures to small terrestrial and burrov \therefore_d animals. The natural contaminant reduction processes present in the no action alternative would continue to operate with implementation of institutional controls. However, the groundwater and surface water monitoring implemented with this alternative would allow tracking of contaminant reduction rates and concentrations.

Implementability — This alternative is implementable and would cause little environmental disruption to the existing ecosystem of the proposed alternatives. The processes for acquiring deed restrictions and restricting groundwater use are defined. Institutional controls have been implemented at contaminated sites.

Cost — The present value of institutional controls, including monitoring, would range from \$5,000,000 to \$6,500,000. Approximately \$100,000 of this cost is for actions such as deed restrictions. The remainder is for monitoring of groundwater, seeps and surface water.

Elmendorf AFB OU 5 RI/FS Report

Containment --> Institutional Containment \rightarrow Collection \rightarrow Treatment \rightarrow Discharge Actions No Treatment No Collection No Discharge Horizontal Monitoring Drains Natural Land Use Extraction Reinjection Restriction Siurry Walls Wells to Aquile Groundwate Collection Uine Trenches Restricti

Containment

Description — Containment could be partially achieved through the use of a vertical slurry wall barrier that would be keyed into the Bootlegger Cove formation to prevent horizontal migration of contaminated groundwater. The slurry wall would be a mixture of cement and bentonite. Seep water would be contained by installing pavement or Gunite[®] in the seep areas. The monitoring of groundwater, seeps, and surface water would be needed to document containment of the plume.

Effectiveness — Containment would protect human health and the environment by reducing the migration of contamination. OU 5 is the area of discharge for basewide groundwater. Containing groundwater at the point of discharge is only temporarily effective because groundwater would build up behind the barrier system and eventually bypass the slurry wall. The pavement over the seep areas is also not likely to be effective in the long term since water would eventually bypass the barrier. Constructing the barrier could cause environmental impacts by backing up groundwater and causing flow of impacted water from the bluff at locations that could not be predicted. Wetlands could be dewatered. Also, the increase in the water table could create pond pressures that could affect the stability of the bluff. There would be no cross-media benefit affecting soil contamination.

10.1.3

Implementability — This alternative is not implementable at OU 5. Containing the large amount of groundwater present at OU 5 would be difficult, because of the access difficulties in constructing a slurry wall and the difficulty in containing large volumes of water with these barriers. The railroad, roads, and buildings in the industrial area all make implementing this alternative difficult.

Cost — The cost of this alternative is estimated to be approximately \$9,000,000 to \$12,000,000. Approximately \$4,000,000 is for groundwater, seeps, and surface water monitoring.

10.1.4 Passive Extraction, Treatment Using Constructed Wetlands, and Discharge

Passive Extraction, Treatment Using Constructed Wetlands, and Discharge

Description — Groundwater and seepage water would be extracted using passive horizontal drains and collection trenches installed in areas of identified seeps. All collected water would be directed toward the constructed wetland built at the Snowmelt Pond. Degradation of organic compounds should occur in the aerobic environment near the root zones, and the anaerobic environment in the eutrophication zones of the wetland system. Metals should be precipitated as insoluble salts (typically sulfides) in the eutrophication zones. The effluent would be discharged to the existing drainage ditch leading from the Snowmelt Pond. Monitoring of the wetland would be required to document that clean-up levels are being attained. Ongoing monitoring of groundwater and surface water would be needed to monitor the possible reductions in impact from treating seep water, and to monitor the natural attenuation of these pathways.

Effectiveness — This alternative protects human health and the environment by eliminating potential for exposures in seep areas, and collects and treats contaminated water from the seeps. Passive extraction of groundwater would only remove water from the top of the aquifer near the water table. Therefore, for the bulk of groundwater flow below the water table this alternative is not effective. However, the alternative would have no negative impact on the environment if implemented and very little impact on bluff stability due to installation of passive drains.

The cold climate may limit the effectiveness of the treatment component of this alternative to the summer months only. Lower temperatures slow biological processes and will slow the degradation rate of organic contaminants. There would be no cross-media benefit affecting soil contamination by implementing this alternative.

Implementability — The alternative is implementable. Passive extraction of groundwater would produce relatively low flows. For the water to be retained in the wetlands system long enough for degradation to occur, 10 to 15 acres of land would be needed. This land would have to be located relatively near the seeps so long pumping distances would not be needed. Since most of the land at the bottom of the bluff south of the seeps is not owned by the Air Force, the constructed wetlands would have to be located on top of the bluff.

Cost — The cost estimates for this alternative range from \$6,000,000 to \$8,000,000. This includes approximately \$4,000,000 for groundwater, seep, and surface

water monitoring. This assumes no cost for the land since the Air Force maintains ownership.

10.1.5 Active Extraction, Treatment Using Constructed Wetlands, and Discharge

Active Extraction, Treatment Using Constructed Wetlands, and Discharge

Description — Extraction wells would be installed in areas of identified seeps and in areas where the risk caused by exposure exceeds 1×10^6 . Collection trenches would be used to supplement the wells in some areas. All collected water would be pumped to the constructed wetlands at the top of the bluff. Degradation of organic compounds should occur in the aerobic environment near the root zones, and the anaerobic environment in the eutrophication zones of the wetland system. Metals should be precipitated as insoluble salts (typically sulfides) in the eutrophication zones. The effluent would be discharged to a reinjection well system in the eastern portion of OU 5. Monitoring of groundwater and surface water would be required to document that clean-up levels are being attained. The only difference between this alternative and the previous one is that substantially more water would be treated. **Effectiveness** — This alternative protects human health and the environment by reducing potential for exposures in seep areas, and collects and treats contaminated groundwater. The cold climate may reduce the effectiveness of this alternative in the winter months only because cold ambient temperatures reduce degradation rates. There would be no cross-media benefit affecting soil contamination by implementing this alternative. The pumping would have a very minor impact on the stability of the bluff; however, the hydrology of wetlands could be negatively affected because of the large volumes of groundwater extracted; groundwater that would normally discharge into the Beaver Pond.

Implementability — The alternative is implementable on a small scale (i.e., treating only water from the seeps), but difficult on a large scale because of the extensive land requirements. Pumping groundwater would result in large flows (2,400 to 3,400 gpm). From 100 to 250 acres would be needed to treat this flow. With limited land at the top of the bluff the flow through the wetland would have to be relatively small, making this alternative not implementable for these large flows because of space limitations at the Snowmelt Pond.

Cost — The cost estimates for this alternative range from \$15,000,000 to \$18,000,000. This cost is for a wetland on top of the bluff since use of the Snowmelt Pond would not be feasible. Monitoring costs of \$4,000,000 are included for monitoring of groundwater, seeps, and surface water.

10.1.6 Passive Extraction, Treatment by Activated Carbon and Discharge

Passive Extraction, Treatment by Activated Carbon, and Discharge

Description — Groundwater and seepage water would be extracted by passive horizontal drains installed in areas of identified seeps. Water would be passively collected and drained to an aqueous activated carbon system at the bottom of the bluff. The activated carbon would remove the contaminants. The water would then be reinjected in the eastern portion of OU 5. Monitoring would be needed for groundwater and treatment effluent to demonstrate that the treatment is effective.

Effectiveness — This alternative protects human health and the environment by reducing the potential for exposure in seep areas by removing and treating contaminated water. Only shallow groundwater near the water table would be removed using horizontal drains. Deeper groundwater would not be captured by a passive system. This alternative would have a very minor, if any, impact on the stability of the bluff and no impact on the hydrology of wetlands.

Implementability — The alternative is implementable; the technology is proven and available. There is sufficient land for this alternative at the bottom of the bluff.

Cost — The cost estimates for this alternative range from \$7,000,000 to \$8,000,000. The monitoring component for groundwater, seeps, and surface water is estimated to be \$4,000,000.

10.1.7 Active Extraction, Treatment Using Air Stripping and Activated Carbon, and Discharge

Active Extraction, Treatment Using Air Stripping and Activated Carbon, and Discharge

Description — This alternative is applicable to groundwater and seeps. Impacted groundwater would be extracted with wells installed in areas of identified seeps and where cancer risks posed by exposure to groundwater exceed 1×10^6 . The collected water would be stripped of volatiles with an air stripper, and the effluent would be discharged via a reinjection well system as with previous alternatives. Volatiles from the air stripper would be captured and treated with activated carbon. Monitoring would be needed for groundwater, surface water, effluent from the treatment system, and air to demonstrate that the treatment is effective.

Effectiveness — This alternative protects human health and the environment by reducing the potential for exposure in seep areas by removing and treating contaminated groundwater. A system could be designed to control the migration of impacted groundwater. By controlling the migration, capturing groundwater, and drying up seeps, potential threats to Ship Creek, human receptors, and the environment are eliminated. Implementing this alternative would have an indirect benefit on surface water quality by preventing contaminated groundwater discharge into the surface water systems. However, decreased volume of water flow to the wetlands could upset the ecology of the system. There would be no negative impact on the stability of the bluff.

Implementability — The alternative is implementable; the technology is proven and available. There is sufficient land for this alternative and systems for controlling emissions are available.

Cost — The cost estimates for this alternative range from \$25,000,000 to \$30,000,000. Monitoring costs of approximately \$4,000,000 are included in this estimate.

10.1.8 Permeable Treatment Beds

Permeable Treatment Beds

Description — This alternative is applicable to groundwater. Seeps could not be controlled by surface treatment beds, since seeps discharge as surface water. A subsur-

face flow-through treatment medium would be constructed to treat groundwater in situ. Treatment beds would be installed through a trench excavated into the saturated zone to intercept shallow groundwater. The trench would be backfilled with granular activated carbon (GAC) to just below the water table, and then the backfill completed with clay to the land surface. The GAC would adsorb any dissolved constituents, and the clay layer should effectively filter or block any floating product from flowing past the trench. Once the adsorptive capacity of the bed has been exhausted, the trench could be re-excavated to remove the spent carbon and any accumulated floating product. The spent GAC could be regenerated off-site at a carbon regeneration facility and the desorbed contaminants could be thermally destroyed. The trench could then be re-installed as before with new or regenerated GAC. Monitoring of groundwater on both the upgradient and downgradient side of the trench would be needed to document its effectiveness.

Effectiveness — This alternative would protect human health and the environment by intercepting and treating contaminated groundwater. The potential for affecting Ship Creek would be reduced. Activated carbon would adsorb most contaminants. Regeneration of the carbon would destroy the contaminants. This alternative would have no negative impact on the stability of the bluff, but could negatively affect wildlife habitat and wetlands (see Implementability).

Implementability — Implementing this alternative would be difficult. The need to remove and replace the activated carbon periodically would result in this alternative being implemented more than once over the life of the project. The multiple implementation could result in damage to the ecology. All flora and fauna and related habitats within the area treated would be detrimentally affected. The railroad, Post Road, and industrial buildings would make installation of a continuous trench very difficult. Excavation and reconstruction will also result in a period of time when groundwater would not be treated. The space available for construction is limited due to the railroad tracks in the western and the wetlands in the eastern part of OU 5.

Cost — The estimated cost for this alternative is estimated to range from \$10,000,000, to \$15,000,000 per implementation, including excavation, carbon, and monitoring costs.

10.1.9 Air Sparging Combined With Soil Vapor Extraction

Air Sparging Combined with Soil Vapor Extraction

Description — This alternative would both volatilize and degrade organic compounds by injecting air into the contaminated groundwater to increase the oxygen content, and thus accelerate the natural degradation processes. Volatized compounds would enter the vadose zone where they would be removed using soil vapor extraction and treated using activated carbon. Aromatic contaminants not volatilized would be broken down by the increase in microbial activity caused by the increased oxygen content of the water. Monitoring of the groundwater, seeps, and surface water would be needed to document the effectiveness of this alternative. Activated carbon would be used to control emissions from the soil vapor extraction wells.

This alternative is generally applicable to groundwater and could have beneficial effects on subsurface soil contamination. Its affect on seeps would be less since the small size of the seeps would make it difficult to accurately target the same area for both seeps and groundwater.

Effectiveness — This alternative would protect human health and the environment by removing volatile contaminants from the groundwater and accelerating the degradation process. The migration of the contaminants remaining in the groundwater is not reduced, so the effectiveness depends upon the distance between the point of sparging and the point of potential exposure. The degradation process would require an unknown period of time and may not be complete by the time impacted water with unstripped contamination reaches potential points of exposure. The lithology of the subsurface would effect system performance as varying migration patterns of air and contaminants in the subsurface could result in uneven performance.

There is a potential for negative influence on surface water quality caused by discharging oxygenated water into the wetlands. The extra oxygen could affect the ecology of the wetland by upsetting the balance between aerobic and anaerobic conditions. This could change the types and population of organisms in the wetlands. There would be no impact on the stability of the bluff.

Implementability — This alternative can be implemented. The technology is proven effective in many environments. Sufficient space is available for air sparging wells. Sparging wells and the geologic formation can be fouled by bacterial action and chemical precipitation. This is especially true in waters with high iron content, such as those in OU 5. Fouled wells may have to be abandoned and new wells constructed.

Cost — The cost is estimated to range from \$25,000,000 to \$30,000,000. The monitoring of groundwater, surface water, and seeps accounts for approximately \$4,000,000 of this estimate.

10.2 <u>Remedial Alternatives For Soil</u>

The remedial alternatives for soil are described and evaluated below. Rationale for both retaining and dropping alternatives is discussed in Section 10.3.

10.2.1 Natural Degradation

Natural Degradation

Description — The natural degradation alternative relies upon natural physical, chemical, and biological processes to reduce contaminant concentrations until cleanup levels are met in soil. Aromatic hydrocarbons are a common food source for naturally occurring bacteria. The bacteria break down the organics to carbon dioxide and water. Hydrocarbons also are adsorbed to organic and clay minerals in soil. These natural processes would act slowly, resulting in a remediation time frame whose length is difficult to predict. A site-specific modeling program would be needed to define degradation rates of contaminants and estimate the time required to naturally achieve cleanup levels. An ongoing soil monitoring program, where soil samples are collected periodically, would be required to confirm predicted degradation rates. This alternative provides a baseline for comparing other alternatives.

Effectiveness — Natural degradation does not result in any immediate reduction in risk; however, the risks associated with exposure to soil are low since the contaminated soils are below the surface and not accessible to direct contact. The speed of remediation depends upon many factors, including temperature, nutrient levels, moisture content, oxygen content, and bacterial activity. The breakdown rate is not known. The modeling program could also estimate the reduction in risk over time. There would be no impact on the stability of the bluff; however, wetlands could be affected in the short term by discharges of groundwater flowing through impacted soil.

Implementability — The alternative is implementable. The processes for implementing natural degradation are known and have been used at other waste sites. Public and regulatory acceptance also must be achieved for this alternative to be implementable.

Cost — The monitoring cost (present value based on 30 years of monitoring) associated with this alternative would range from \$1,000,000 to \$1,500,000.

10.2.2 Institutional Action

Institutional Action

Description — This alternative would involve monitoring soil impacts and would add land use restrictions to the Elmendorf AFB land use plan. The monitoring program would be the same as described under the natural degradation alternative. These restrictions would limit access and prohibit the building of residences and excavations in areas with contamination exceeding cleanup levels. The restrictions would be included on the deed for the property and would be incorporated in the Base Comprehensive Use Plan. The use restriction would be factored into any future decisions to dispose of the property. Monitoring of the soil would be needed to track the natural degradation of the contaminants over time. Any future uses of the impacted areas must be evaluated to make certain that the risk due to these future uses does not exceed acceptable levels.

Effectiveness — This alternative would minimize exposures that could occur from digging in contaminated soil. Risk from exposure to soil would be reduced since the chances for human contact would be reduced. Risks to the environment would not be controlled at seep sites. Animals and vegetation would not be protected by the institutional actions. This alternative is unlikely to affect the stability of the bluff.

Implementability — This alternative is implementable and would cause little environmental disruption to the existing ecosystem of the proposed alternatives. Fences could be easily constructed and maintained without disruption of the environment or operations at Elmendorf AFB. The processes for acquiring deed restrictions and restricting groundwater use are defined. Public and regulatory acceptance would be required for the alternative to be implementable.

Cost — The present value cost would range from \$1,000,000 to \$1,500,000. This cost includes an estimated cost of \$100,000 to implement deed/access restrictions.

10.2.3 Containment

Containment

Description — This alternative includes a bentonite and soil cap and sediment control barriers to contain areas of known surface soil contamination. Capping would also be applied to soil contaminated by seeps. A 2-foot thick bentonite and soil cap with a vegetative cover would be constructed over approximately 3.5 acres on top of the bluff. This design should be adequate to prevent dermal contact with contaminated surface soils and infiltration of water through contaminated vadose zone soil. The cap in the seep areas would be small (approximately 0.1 acres each). Silt fences across known drainage ditches would be constructed to prevent contaminated sediments from washing out into surface water. Periodic monitoring of soil pore water, using suction-type lysimeters, would be needed to document the effectiveness of the cap.

Effectiveness — This alternative would be effective in reducing risk from dermal contact with contaminated soil. However, the risk is currently low. There would be a cross-media benefit on groundwater water and, indirectly, on surface water by reducing migration of contaminants through the soil and into groundwater. Reducing the contaminant load on groundwater will indirectly benefit surface water at the point of discharge. Caps in seep areas would not be effective, even with the attempt at water extraction, because of hydraulic pressure that would build up behind the cap and either rupture the cap or eventually cause water to bypass the cap and contaminate other areas, including surface water and wetlands. Back pressures caused by a cap could lead to instability of the bluff.

Implementability — Capping has limited implementability. The topography of the bluff would not allow for construction of a stable cap, so any capping would be limited to the flat areas at the top of the bluff. The area that would be capped is small, so the loss of use of the capped area should not have an impact on operations at Elmendorf AFB. Public and regulatory acceptance must also be achieved for this alternative to be implementable. The technology is proven and available.

Cost — The cost is estimated to range from 1,000,000 to 2,000,000.

10.2.4 Excavation and Disposal

Excavation and Disposal

Description — This alternative would be applied only in the areas where soil contamination exceeds clean up levels for total fuel hydrocarbons (TFH). Natural degradation would continue to be applied to soils with less than the TFH clean-up levels. A backhoe or front-end loader would be used to excavate overburden with contamination below

clean-up levels. Approximately a 4 foot x 10 foot x 10 foot portion of soil would be excavated for disposal (1,500 cubic yards) in each of the two areas being evaluated in this FS (3,000 cubic yards total). These contaminated soil areas are at depths of approximately 10-12 feet in the western area and 0-2 feet in the central area. The soil would be temporarily placed on plastic, and samples would be collected to determine the concentration of TFH in the excavated soil. These data would be used to obtain authorization to dispose of the soil at an industrial landfill. Samples also would be collected of the sidewall and bottom soil in the excavation to confirm that the soil with a TFH concentration greater than clean-up levels was removed. The depth of the contamination will depend upon the depth of contamination and the technical ability to excavate. The sidewalls would have to be laid back to permit safe entry into the excavation. Roads, utilities, and buildings would limit the size of the excavation, since they could interfere with the excavation residuals. The excavated soil would be transported to an off-site permitted industrial waste landfill. Clean fill would be imported to the site and the excavation backfilled.

Effectiveness — The potential for dermal exposure to contaminated soil is eliminated, and the alternative is permanent. There would be a limited cross-media benefit on groundwater by the removal of near-surface soil with the highest contaminant concentrations. The Air Force would maintain environmental liability after disposal of the soil, since treatment would not have occurred, even if the soil is disposed at a permitted facility. If the facility became a CERCLA site, the Air Force could become a responsible party. This alternative could affect the stability of the bluff if deep excavations were made. Shoring can minimize this impact. No threat to wetlands or other ecological receptors is expected by implementing this alternative.

Implementability — The alternative may not be implementable. Air Force policy is to not select excavation and off-site disposal as the preferred alternative for CERCLA soils. The excavation techniques are available and proven. However, this alternative is limited only to shallow soil (generally less than 10-15 feet). Deeper soil could only be safely obtained by shoring excavations or using caisson excavation methods.

10-25

Disposal of contaminated soil may be difficult. If the soil is hazardous, an out-of-state RCRA landfill would have to be used, and transport of the soil would be difficult. The waste characterization (hazardous/nonhazardous) would have to be determined during a pilot excavation. All current data indicate that the soil would not be hazardous. Public and regulatory acceptance would also be required for this alterative to be implementable.

Cost — Assuming an industrial waste landfill could be used, the cost for this alternative would range from \$800,000 to \$1,200,000.

10.2.5 Excavation, Biopiling, and Backfill

Excavation, Biopiling, and Backfill

Description — A backhoe or front-end loader would be used to excavate soil from the areas of OU 5 where soil contamination exceeds clean-up levels for TFH. The volume of soil to be treated is estimated to be 3,000 cubic yards. The excavated soil would be stockpiled and transferred to the Elmendorf AFB biopile cell for treatment. The existing biopiling area is located at the eastern end of Elmendorf AFB. Clean fill from on base would be used as backfill in excavated areas. Degradation in the biopile occurs because oxidation of the soil stimulates microbial activity, which breaks down the contaminants into carbon dioxide and water. Some volatilization also occurs.

Soil in the biopile would be monitored for temperature, soil pH, nutrient, and contaminant concentrations. Operations would be adjusted for climate to maintain optimal degradation. Soil samples would be collected from sampling points in the center of the biopile and analyzed to determine that the contaminated soil had been treated to acceptable levels.

When cleanup objectives are met, the treated soil would be used on-base as fill.

Effectiveness — The potential for dermal exposure to contaminated soil is eliminated. There may be a limited cross-media benefit on groundwater by the removal of near-surface soil with the highest contaminant concentrations. The effectiveness may be slowed in the winter when degradation rates decrease. The bacterial activity is most effective in warm ambient temperatures. As with the excavation and disposal alternative, this alternative is limited only to shallow soil. Deeper soil could only safely be excavated by shoring excavations or using caisson excavation methods. This alternative creates the same potential impacts to bluff stability and wetlands as the excavation and disposal alternative.

Implementability — The alternative can be implemented but may be restricted to the summer months because of the cold winter climate. The excavation and biopiling techniques are available and a treatability study at Elmendorf AFB is ongoing. Excavation in the western area may be difficult since the depths of contamination (10-12 feet) approach the 15 foot depth limit for excavation without complex methods. The biopiling could be coordinated with the existing biopiling study. The land commitment for the duration of treatment would not affect operations at Elmendorf AFB. Public and regulatory acceptance are required for this alternate to be implemented. Contaminated soil on the side of the bluff in the western portion of the OU will be difficult to reach.

Cost — The estimated cost range for this alternative is \$150,000 to \$300,000. This includes \$30,000 for sampling of soil to document remediation of the soil. Also

Elmendorf AFB OU 5 RI/FS Report

included is excavation and transport to the biopile and backfill (costing in the range of \$15 to \$20/cy [\$45,000 to \$60,000]). The remaining cost is for the biopiling effort.

Containment \rightarrow Excavation \rightarrow Treatment \rightarrow Disposal -> Institutional Actions Matural Degradation No No Action Dispose No No Excavation Containmer Bioplina Monitoring Off-Site Disposal Vecuum Extraction Land Use Soil Cep Soil Venting Backhoe Restrictions On-Site Backfill Bioventing Access Controi

10.2.6 Soil Vapor Extraction/Soil Venting

Soil Vapor Extraction/Soil Venting

Description — Soil vapor extraction (SVE) wells would be installed in the vadose zone and screened in a narrow interval below the soil contamination. The wells would be connected to a vacuum blower via a common header so that a negative pressure would induce air flow through the contaminated soil into the SVE wells. Volatile compounds would partition into the vapor phase where they could be collected by the wells. Activated carbon would be used to adsorb the contaminants from the vapor phase. Periodic regeneration of the carbon would destroy the contaminants. Vapor vacuum monitoring wells would be used to document the radius of influence of the SVE wells. The concentration of organic vapor in the extraction and monitoring wells would be drilled to sample the affected soil to confirm that cleanup levels have been achieved.

Effectiveness — This alternative protects human health and the environment by reducing the volatile contaminant concentrations in soil. There is a cross-media benefit on groundwater by the reduction of contaminants in the soil. Also some induced volatilization from the groundwater could occur as a result of the reduced pressure in the vadose zone.

Soil vapor extraction would not be highly effective on the low volatility contaminants such as diesel and jet fuel. Since these compounds have low volatility, the relative vapor phase equilibrium concentration between the vapor and adsorbed/liquid phase is low. Also, SVE wells would not be highly effective near the bluff face because the vacuum would be lost as fresh air was drawn in through the bluff, thereby reducing the vacuum induced in the vadose zone. The radius of influence (and thus the effectiveness) of the wells will depend upon the permeability of the formation. Radius of influence also affects the number of wells needed to be effective. The formation is predominantly sand and gravel so the effectiveness of each well to extract soil vapor is expected to be high. However, heterogeneity in the lithology and channeling of air could cause this alternative to be less effective in some areas. This alternative would not affect the stability of the bluff or affect wetlands.

Implementability — This alternative can be implemented. There is sufficient land available to install the wells, header system, and treatment systems. The SVE technology is proven and is available; soil vapor treatment with activated carbon is proven and available. Approvals from regulatory agencies would be needed to discharge treated offgas.

Cost — The estimated cost range would be 1,000,000 to 2,000,000.

10.2.7 Bioventing

Bioventing

Description — Bioventing treats organic contaminants by oxygenating the vadose zone, increasing microbial activity and increasing microbial breakdown of the contaminants. Air injection wells would be installed in areas where concentrations of soil contaminants exceed clean-up levels for TFH. The wells would be screened in the vadose zone in a narrow interval within and below the soil contamination. A blower would be connected to the wells via a common header so that a positive pressure would induce air flow into the contaminated soil. The increased amount of oxygen available in the vadose zone would enhance the aerobic biodegradation of organic contaminants by indigenous microorganisms. In addition to oxygen, macronutrients such as nitrogen and phosphorus, in an atomized phase, could be added to stimulate microbial population growth and contaminant destruction. Soil sampling would be needed to document that cleanup levels were being achieved.

Effectiveness — This alternative protects human health and the environment by reducing the contaminant concentrations in soil. It is effective on aromatic compounds and TFH, but is less effective on chlorinated compounds that break down faster in anaerobic environments. There is a cross-media benefit on groundwater and, indirectly, on surface
water, by the reduction of the contaminant concentration in the soil. The effectiveness would depend upon the ambient temperature, moisture content, natural microbial populations, and the permeability of the soil. Bioventing tests in arctic climates have shown that ambient temperatures would be increased by the heat of compression of the inlet air. Bioventing can dry the formation reducing the effectiveness; however, moisture could be added to the inlet air to counteract this negative effect. Effectiveness would also be negatively affected by heterogeneity in lithology and channeling effects. This alternative would not affect the stability of the bluff or wetlands.

Implementability — This alternative can be implemented. The technology is available, and the space needed for bioventing wells is available. However, the rate of breakdown caused by bioventing in cold climates is not fully documented. Bioventing tests are being currently performed at Elmendorf AFB. The results of these tests will demonstrate the effectiveness of bioventing in cold climates and will provide the data needed. Because the soil in the bluff is composed mostly of interbedded sands and gravel with some thin, discontinuous silty zones, the vapors should travel well through the media.

Cost — The estimated cost range would be \$150,000 to \$300,000.

10.3 <u>Alternatives Recommended for Detailed Analysis</u>

Based on the evaluation of alternatives for water and soil, the more promising alternatives were selected for detailed analysis (Section 11). The alternatives selected are shown unshaded below.

Selected Remedial Alternatives for Water

Selected Remedial Alternatives for Soil

The next four subsections (Section 10.3.1 through 10.3.4) discuss the respective rationales for the alternatives that are both retained and eliminated.

10.3.1 Rationale for Retained Water Alternatives

Natural Attenuation

This alternative was retained for both seeps and groundwater as a baseline, for comparison to other alternatives. It is applicable to all areas of OU 5, but is more effective for the main body of groundwater not being expressed as seeps. Natural attenuation can be combined with other alternatives to form cost-effective multi-media alternatives for the different impacted areas of OU 5.

Institutional Action

Institutional action can help prevent exposure for both seeps and groundwater by limiting access to pathways. The monitoring aspects of institutional actions should be combined with any alternative that achieves cleanup levels over a period of time to document the effectiveness of each remedial action.

Passive Extraction With Constructed Wetland Treatment

This alternative was kept for the seeps, but eliminated for groundwater. The alternative can reduce exposures from the seeps and treat contaminants at reasonable costs. Snowmelt Pond would be converted into a constructed wetlands under the presumptive remedy for PCB and sheen contamination. The passive nature of both the extraction and treatment system is beneficial in that the chance of process upsets due to equipment failure is minimized. However, treatment of all groundwater by this method is not practical because the size of the constructed wetlands required to provide adequate retention time for the extremely large volumes of groundwater that would be extracted would not be implementable.

Passive Extraction With Activated Carbon Treatment

This alternative was kept for the seeps, but eliminated for groundwater. Activated carbon is a well-demonstrated technology that can successfully reduce contaminant levels to below clean-up levels. Exposures during both extraction and treatment would be minimal, and contaminants would be removed by the carbon for eventual destruction off site when the carbon is regenerated. The technology can be carried out on minimal space and would be relatively easy to operate. However, treatment of all groundwater by this method is not possible because passive extraction methods cannot remove water below the surface.

Active Extraction With Air Stripping and Activated Carbon Treatment

This alternative was kept for both seeps and groundwater because it involves a well-understood treatment technology that can effectively treat the contaminants of concern. The active extraction, while adding cost, has the added advantage over passive extraction of increasing the amount of contaminated water that can be treated. Contaminants are treated by the carbon and oventually destroyed during carbon regeneration. Chances for exposures are minimal during operation.

Air Sparging With Soil Vapor Extraction

This alternative was kept for the groundwater, but not for the seeps. Air sparging can effectively remove contaminants from the groundwater and treat them with carbon. The technology can also enhance biodegradation and limit plume migration. Both air sparging and soil vapor extraction are well understood technologies and would minimize exposures during treatment. However, this alternative is ineffective on seeps since this water is already at the surface.

10.3.2 Rationale for Eliminated Water Alternatives

Containment

Containment was eliminated because of the difficulty of containing all affected groundwater over the long term. This alternative is only effective in the short-term in preventing exposure by groundwater capture. In the long term, groundwater would bypass any containment structure. Basewide groundwater discharges to OU 5 would eventually overcome any attempt at containment. The environmental costs in the form of damage to the wetlands and bluffs could outweigh the environmental benefits.

Active Extraction With Constructed Wetlands Treatment

Active extraction was eliminated because of the difficulty in implementing a high flow constructed wetlands. The 100 to 250 acres required to construct a high flow wetlands could affect base operations. Also, the wetland would be more complex, require more operations and maintenance, and would produce more water than a smaller scale system.

Permeable Treatment Beds

Because of the need to periodically replace the treatment medium in a permeable, in-situ treatment system, this alternative was eliminated from further consideration. Periodic replacement of the medium would repeatedly disrupt the land, potentially causing slope stability problems in an area where there is little access for the construction equipment (between the bluff and the railroad tracks). The lack of available land owned by the Air Force also makes this alternative undesirable.

The period of treatment would be open-ended because of the potentially large volume of water that flows through OU 5. The number of replacement episodes cannot be predicted because the contaminant load that will pass through the treatment bed at any location can not be predicted. Breakthrough could happen in some areas of the bed and not at others. This would require either partial replacement or a wider trench with more carbon where contaminant loads may be higher. The difficulty in ensuring equal effectiveness across the bed makes this alternative undesirable.

10.3.3 Rationale for Retained Soil Alternatives

Natural Degradation

Natural degradation processes are effective on the type of contaminants found in the soil, i.e., fuel hydrocarbons. While degradation rates must be established by modeling and monitoring programs, and eventual achievement of cleanup levels is not guaranteed, the alternative has the advantage of not exposing surface receptors to contaminated soils and treating soil in place.

Institutional Action

Institutional actions would help reduce exposures to people by reducing potential present and future exposure to impacted soil. This alternative would not be highly effective on protecting the environment because animals and vegetation are not protected. However, institutional controls can be combined with other actions to form multi-media alternatives that would be effective in some areas of OU 5.

Excavation and Treatment With Biopiling

Biopiling is being tested in a treatability study at Elmendorf AFB. The technology is proven in other climates, and the treatability study will define the treatment period needed to achieve cleanup objectives for the contaminants in the soil. Biopiling permanently destroys contaminants, and minimal chances of exposures during treatment are expected. Excavation depths (10-12 feet in the western area and 0-2 feet in the central area) should be shallow enough for excavation to be employed without the use of complex methods required for depths exceeding 15 feet.

Bioventing

Bioventing has been demonstrated to achieve cleanup levels for similar contaminants at other sites. Permanent destruction of contaminants is achieved and minimum chances of exposure during treatment are expected. Sufficient space exists at OU 5 to implement the alternative and vendors are available to supply the needed equipment.

10.3.4 Rationale for Eliminated Soil Alternatives

Containment

Capping would be effective on a small scale at the top of the bluff. However, caps could not be constructed on the face of the bluff because of slope stability problems and the hydraulic buildup that would occur under the cap. The greatest potential for exposure to contaminated soil is near seeps on the bluff, where a cap would be least effective. There-fore, this alternative was eliminated in favor of the in-situ alternatives and ex-situ treatment.

Soil Vapor Extraction and Soil Venting

This alternative was eliminated because soil vapor extraction is not as effective on contaminants which have low volatility. Contaminants at OU 5 such as diesel and jet fuel have low vapor phase equilibrium concentrations which do not allow for effective removal under a vacuum. In addition, much of the vacuum induced by the blower equipment could be lost in the area of the bluff as fresh air from alongside the bluff could be drawn into the extraction zone.

Excavation and Disposal

This alternative was eliminated because it is in conflict with Air Force policy that off-site disposal of excavated CERCLA soils is not a preferred remediation technology.

Additionally, this alternative merely moves the contaminants from Elmendorf AFB to a landfill, which forces the base to maintain liability and does not achieve the remedial action objective of treating contaminants, where possible.

TABLE OF CONTENTS

Page

11.0	DETAILED ANALYSIS OF REMEDIAL ACTION ALTERNATIVES 11-			
	11.1	Assumptions		
		11.1.1 Presence of Upgradient Groundwater Impacts/Affected Media 11-2		
		11.1.2 Upgradient Response Actions		
		11.1.3 Remediation Timeframe/Short-Term Effectiveness		
		11.1.4 Discharge of Treated Water		
		11.1.5 Presumptive Remedy for Snowmelt Pond		
	11.2	Technical Approach for Detailed Analysis		
		11.2.1 Development and Analysis of Multi-Media Alternatives 11-5		
		11.2.2 Evaluation Criteria and Scoring System		
	11.3	Detailed Evaluation		
		11.3.1 Detailed Assessment of Remedial Alternatives for Water 11-12		
		11.3.2 Detailed Assessment of Soil Remedial Alternatives 11-45		
		11.3.3 Constructed Wetland at Snowmelt Pond 11-63		
	11.4	Sensitivity Analysis		
		11.4.1 Sensitivity to a 50% Increase in Volume to be Treated 11-74		
		11.4.2 Order of Magnitude Increase in TFH Concentrations 11-75		
		11.4.3 Order of Magnitude Increase in the Concentration of		
		Chlorinated Compounds		
		11.4.4 Change Significant Risk Level from 10 ⁻⁶ to 10 ⁻⁵ 11-76		
		11.4.5 Change Significant Risk Level from $1 \ge 10^{-6}$ to $10^{-4} \ldots \ldots 11^{-78}$		
		11.4.6 Change Implementation Time From 30 to 5 Years 11-78		
		11.4.7 Change Implementation Time From 30 to 10 Years 11-79		
	11.5	Comparative Analysis 11-79		
		11.5.1 Geographic Areas of OU 5		
		11.5.2 Multi-Media Alternatives Development		
		11.5.3 Comparative Analysis 11-84		
		11.5.4 Limitations of Comparative Analysis 11-91		
		11.5.5 Conclusion of Comparative Analysis		

LIST OF FIGURES

		Page
11-1	Natural Attenuation Alternative (Elevation View)	11-13
11-2	Natural Attenuation Alternative	11-14
11-3	Institutional Control Alternative (Elevation View)	11-19
11-4	Institutional Control Alternative	11-20
11-5	Passive Extraction with Constructed Wetland Treatment Alternative (Elevation View)	11-24
11 -6	Passive Extraction with Constructed Wetland Treatment Alternative	11-25
11-7	Passive Extraction with Carbon Treatment Alternative (Elevation View)	11-29
11 -8	Passive Extraction with Activated Carbon Treatment Alternative	11-30
11-9	Air Sparging with SVE and Activated Carbon Treatment Alternative (Elevation View)	11-34
11-10	Air Sparging with SVE and Activated Carbon Treatment Alternative	11-35
11-11	Active Extraction, Air Stripping, and Activated Carbon Treatment Alternative (Elevation View)	11-40
11-12	Active Extraction, Air Stripping, and Activated Carbon Treatment Alternative	11-41
11-13	Natural Degradation of Contamination in Soil (Elevation View)	11-46
11-14	Natural Degradation of Contamination in Soil	11-47
11-15	Institutional Controls Alternative (Elevation View)	11-50
11-16	Institutional Controls	11-51
11-17	Excavation, Biopiling, Backfill Alternative (Elevation View)	11-54
11-18	Excavation, Biopiling, Backfill	11-55

LIST OF FIGURES (CONTINUED)

		Page
11-19	Soil Bioventing Alternative (Elevation View)	11-60
11-20	Soil Bioventing Alternative	11-61
11-21	Areas Requiring Remediation, Assuming 1 x 10 ⁻⁵ Risk	11- 77
11-22	Geographical Areas of OU 5	11-80

LIST OF TABLES

Page

11-1	Media-Specific and Applicable Pathway Remedial Action Alternatives for OU 5
11-2	Remedial Alternative Evaluation Criteria
11-3	Remedial Alternative Evaluation Criteria Rating System
11-4	Sensitivity Analysis of Remedial Action Alternatives (By Medium) 11-71
11-5	Multi-Media Alternatives
11-6	Comparative Analysis for Media-Specific Remedial Alternatives
11-7	Comparative Analysis for Multi-Media Remedial Alternatives

11.0 DETAILED ANALYSIS OF REMEDIAL ACTION ALTERNATIVES

The objective of the detailed analysis is to identify the best possible remedial alternatives for the Elmendorf OU 5 site using Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) remedial action alternative evaluation criteria. The comparative analysis evaluates the alternatives according to their cost effectiveness. An alternative is selected in the Record of Decision (ROD) after agency and community acceptance are evaluated.

To complete the detailed analysis, several important technical assumptions had to be made; these assumptions are discussed in Section 11.1. Three potential pathways had to be evaluated at OU 5: seeps, the main body of groundwater, and soil. Even with a small number of media-based alternatives, the number of plausible multi-media alternatives is large. The technical approach taken to streamline the analysis, and still evaluate a large number of multi-media alternatives according to the nine CERCLA criteria, is discussed in Section 11.2. The body of the detailed analysis is provided in Section 11.3.

Section 11.5 provides a comparative analysis of multi-media alternatives; this analysis relies on the detailed single-media analysis in Section 11.3. These subjective analyses separate the better alternative combinations from those that are likely to be less successful using the CERCLA criteria. However, the results of the comparisons are limited by the analysis's assumptions discussed in Section 11.1, the subjective nature of the analyses, and other factors discussed in Section 11.5. A precise, objective ranking of multi-media alternatives cannot be determined from the analyses. The "best" alternative may be one that does not receive the highest score when the input from regulatory agencies and the public are incorporated into the selection process.

Since some of the assumptions made in the detailed analysis could affect the effectiveness, implementability, and cost of the alternatives, a sensitivity analysis that varied several parameters was performed (Section 11.4). This analysis identified those evaluation

11-1

criteria that will be most affected for each alternative by changes in the assumed quantities of water and soil potentially requiring remediation, or the level or type of contamination present, and the use of different human health risk objectives.

11.1 Assumptions

Throughout the detailed analysis, it was necessary to make several assumptions about the effects of future contamination on response action, the time it will take to remediate contamination, and the discharge of treated water. The fundamental assumptions that shaped the approach to this analysis are discussed below.

11.1.1 Presence of Upgradient Groundwater Impacts/Affected Media

Investigations of upgradient groundwater contaminant sources and levels of contamination are still ongoing. Therefore, the assumption was made that future or continued upgradient contaminant discharge at OU 5 will occur in the same locations where current groundwater impacts are found and at the concentrations currently found. It was also assumed that the chemicals of concern (COCs) would not change and that there would be no phase change (no soil gas, volatilization/air emissions, free product, or surface water requiring remediation).

11.1.2 Upgradient Response Actions

It was assumed that any upgradient response actions in other OUs would have a beneficial affect on remediation at OU 5. However, the cost reduction that would be associated with any upgradient remedial actions cannot be estimated at this time and was not included in alternative cost estimates. The primary benefit of those actions would be to shorten the time required to achieve remedial action objectives.

11.1.3 Remediation Timeframe/Short-Term Effectiveness

An assumption was made about the estimation of remediation times and the evaluation of an alternative's potential for complying with the chemical-specific ARARs. The assumption has three component factors. First, CERCLA maximum allowable period for remediation of groundwater (30 years) was used because the period of remediation for groundwater cannot be determined as part of this effort. Groundwater from throughout most of Elmendorf AFB will be remediated at OU 5, and the total mass of contaminants to be removed and their rate of migration to OU 5 are not known at this time. For soil, estimates of the time to achieve remediation were made based on the volume or contaminant load.

The second component factor concerns short-term effectiveness. The shortterm effectiveness of an alternative depends upon several factors, the three most important of which are as follows:

- The alternative does not create a secondary hazard during implementation;
- An environmental benefit and a reduction in risk are realized during implementation; and
- The remedial action objectives are achieved quickly.

The speed at which remedial action objectives are attained depends upon the mass of contamination to be removed. Since basewide groundwater is to be managed at OU 5, the timeframe for groundwater remediation is assumed to be 30 years. Given a 30-year window for remediation, all groundwater alternatives would receive a low ranking for short-term effectiveness, when timeframe alone is considered. Because the timeframe is equal for all groundwater alternatives, it was not considered in the detailed analysis. The other two factors of short-term effectiveness are the differentiating factors.

Depending on findings and selected remediation strategies at OU 5 and upgradient operable units, groundwater remediation may be achieved in less than 30 years. A cost sensitivity analysis of shorter remediation timeframes is discussed in Section 11.4.

The third component factor relates to the timeframe in which potential exposures are possible. Remedial response actions that require a long time to achieve remedial action objectives are generally considered to have less short-term effectiveness than alternatives that achieve objectives quickly. This is because the period of potential exposure to humans and the environment is longer with alternatives that require more time. This negative aspect can be offset if the alternative eliminates the exposure potential during remediation.

11.1.4 Discharge of Treated Water

The discharge options for treated water include discharge to Ship Creek, discharge to wetlands, and reinjection. The alternatives involving extraction assumed discharge of groundwater via reinjection. This process option was selected as being representative in lieu of site-specific treatability studies that could show direct discharge is possible to surface water bodies. In actuality, the appropriate discharge method is often dictated by the effectiveness of the treatment and the ability to obtain permits. Reinjection is also preferable to discharge to surface water because several of the key remedial action objectives stress the importance of protecting the water quality of the wetlands areas and Ship Creek. Some discharge of treated water to the beaver pond may be beneficial, to maintain a constant water level.

Treatability studies would be needed to determine achievable cleanup levels for each alternative. If it were determined that an on-site treatment system could be designed to reduce contaminant concentrations to levels allowing direct discharge to Ship Creek or the wetlands, then the costs for alternatives with a discharge component would be reduced.

11.1.5 Presumptive Remedy for Snowmelt Pond

As discussed in Section 9.0, converting Snowmelt Pond into a constructed wetland is the presumptive remedy for sediment contamination and surface sheens. The presumptive remedy is considered an element of every multi-media alternative, not just the one involving constructed wetlands. Its cost are included in the total costs that appear in Section 11.5.

11.2 <u>Technical Approach for Detailed Analysis</u>

The first part of this section describes the approach taken to develop and evaluate multi-media alternatives for OU 5. The criteria and the numerical weighting system used to evaluate the alternatives is discussed in the second part of the section.

11.2.1 Development and Analysis of Multi-Media Alternatives

The six water and four soil remedial action alternatives selected for detailed analysis are shown on Table 11-1. However, any remedial action alternative evaluated in the Feasibility Study (FS) must address all of the contamination in the operable unit. In the case of OU 5, that means developing multi-media alternatives that each address the main body of impacted groundwater, seeps, and soil. Seeps include the discharges of impacted groundwater along the bluff. Small surface water channels and ditches along the bluff are not considered as part of the seeps because, if the seeps are remediated, there will be no impact to these face features. As conditions exist now, the main body of groundwater refers to the groundwater flowing under OU 5 that does not discharge as seeps. This includes all groundwater that discharges into the wetlands and Ship Creek. Even with only a few remedial alternatives for each medium, the potential plausible combinations of multi-media alternatives is very large. Examples of two assembled multi-media alternatives are:

11-5

Table 11-1

Media-Specific and Applicable Pathway Remedial Action Alternatives for OU 5

WATER TREATM	ENT ALTERNATIVES	Groundwater	Scope	SOIL TREATMENT ALTERNATIVES	
Alternative #1 -	Natural Attenuation	1	1	Alternative #7 - Natural Degradation	
Alternative #2 -	Institutional Controls	1		Alternative #8 — Institutional Controls	
Alternative #3 —	Passive Extraction with Con- structed Wetlands Treatment		-	Alternative #9 — Excavation, Biopiling Backfilling	; and
Alternative #4 —	Passive Extraction with Carbon Treatment		1	Alternative #10 Bioventing	
Alternative #5 —	Air Sparging with Soil Vapor Extraction	1	•		
Alternative #6 —	Active Extraction with Air Stripping and Carbon Treatment	1	1		

Elmendorf AFB OU 5 RI/FS Report

Multi-Media Alternative #1

MEDIUM ALTERNATIVE

Groundwater	Natural attenuation combined with institutional controls
Seeps	Passive extraction with activated carbon treatment
Soil	Natural degradation combined with institutional controls

Multi-Media Alternative #2

MEDIUM ALTERNATIVE

Groundwater	Natural attenuation combined with institutional controls
Seeps	Passive extraction with activated carbon treatment
Soil	Bioventing

As can be seen, the differences between alternatives can be subtle and descriptions of the multi-media alternatives would be very repetitive. It is important to evaluate all realistic combinations of the 10 media-specific alternatives for different areas within OU 5. To reduce the number of repetitive alternative descriptions, an approach was developed where the media-based alternatives were evaluated individually according to the mine CERCLA criteria using a numerical scoring system. Multi-media alternatives were then developed; the multi-media scores for each CERCLA criterion were calculated from the individual component scores for a total comparative score.

Each media-specific alternative was first individually subjected to detailed analysis before plausible multi-media combinations were defined and analyzed. The protection provided to human health and the environment, compliance with the remedial action objectives and potential ARARs, the effectiveness, and the implementability of each mediaspecific alternative were evaluated in detail. This way, only 10 alternative descriptions were needed. Multi-media alternatives were then developed. The scores for each CERCLA criterion for each component of the alternative was averaged, for a total comparative score. The relative synergy achieved by different combinations of seep, groundwater, and soil alternatives is not accounted for by averaging the individual component scores. However, synergistic affects are expected to be minimal because the primary contaminants vary between media, e.g., groundwater with VOCs, soil with relatively nonvolatile total fuel hydrocarbons (TFH). For example, a combined multi-media alternative might be:

- Passive extraction and activated carbon treatment for seeps;
- Bioventing for soil; and
- Natural attenuation with institutional controls for groundwater.

If the long-term effectiveness scores for these components are 4, 5, and 3 the average score for the long-term effectiveness of this multi-media alternative would be 4 ($12 \div 3$). The average scores for the multi-media alternatives are evaluated in the comparative analysis section of this report. This approach streamlines the detailed analysis effort by not creating repetitive analyses for similar combinations of alternatives.

11.2.2 Evaluation Criteria and Scoring System

Criteria

The evaluation criterin used in the detailed analysis are divided into three categories: threshold factors, balancing factors, and modifying considerations. Threshold factors are those conditions that must be met for the alternative to be viable and relate directly to statutory findings that will be made in the Record of Decision (ROD); these criteria must be met. Balancing factors are the conditions that are the primary basis for comparing alternatives; these criteria relate the alternative to the site-specific conditions. Modifying considerations factor in agency and community concerns: an alternative could be effective and technically implementable, but not viable based on these considerations. The nine evaluation criteria used in the detailed analyses, and brief definitions of each are shown on Table 11-2. The detailed evaluations focus on the threshold and balancing factors. Cost depends upon the assembly of media-specific alternatives; therefore, cost is evaluated in the comparative analysis portion of the detailed analysis, where multi-media alternatives are

Table 11-2

Remedial Alternative Evaluation Criteria

Criterion Type	Evaluation Criterion	Definition	
Threshold Factors	Protective of human health and the environment ^e	Protection of both human health and the environment is achieved through the elimination, reduction, or control of contaminated media. All migration pathways must be addressed.	
	Compliance with appropriate ARARs ^a	Complies with applicable or relevant and appropriate requirements of RCRA, CWA, SDWA, TSCA, state and local regulations and codes, and TBCs.	
Balancing Factors	Long-term effectiveness and permanence ^a	Protects human health and the environment after the remedial objectives have been met.	
	Reduction in toxicity, mobility, and volume through treatment ^a	Treats the media and reduces the toxicity, mobility, and/or volume of the contaminated media.	
	Short-term effectiveness ^a	Protects human health and the environment during con- struction and implementation. Degree of threat and the time period to achieve remedial action objectives are also considered.	
	Implementability	There are no administrative barriers (no permits, zoning limitations). The availability of materials and personnel, site features such as available space and topography, and impacts upon on-going operations are considered. The technical status of alternatives is also considered; theoreti- cal technologies with only limited bench-scale evaluation are considered less implementable than fully proven processes.	
	Cost	Costs include design, construction, start-up, monitoring, and maintenance. Accuracy to within -30% and $+50\%$.	
Modifying Considerations	State acceptance	The state's (or other regulatory agency's) preference among or concern about alternatives.	
	Community acceptance	The community's apparent preferences among or concerns about alternatives.	

* Effectiveness criteria used to determine the effectiveness-to-cost quotient.

developed and compared. Costs are calculated to an accuracy of -30% to +50%. Modifying considerations (agency and community acceptance) will be evaluated in the Proposed Plan.

Scoring System

To measure the degree that the alternatives fulfill each evaluation criterion, a relative numerical rating system was used (see Table 11-3). The numerical values reflect the relative completeness that a criterion is fulfilled by the alternative. As shown, the rating can be one of three possibilities: the criterion is fully met, partially met, or is not met. Table 11-3 describes subjective factors used to evaluate how well the evaluation criteria are met by the alternatives. The number assigned (5, 3, or 0) does not necessarily reflect the degree of meeting the criterion. For example, an alternative which scores a "3" on "implementability" is not necessarily 60% as implementable as an alternative that scores a "5." However, the assigning of these numerical rankings can serve to provide a preliminary ranking of sites that can be used in the comparative analysis. It is difficult to always fully meet a criterion. For the cost criterion, one of four scores was selected, depending on the total present worth of costs associated with the alternative. The selection of an alternative in the ROD is based on an evaluation of the trade-offs between the costs, benefits, and impacts of any remedial response. The scoring system is designed to numerically represent the trade-offs between the different alternatives. Another assumption is that this rating system assumes that each of the CERCLA criteria are equally important, since each are numerically weighted the same. Again, this is not always representative in that certain criteria can have more importance, depending on circumstances. For example, threshold factors must be achieved and therefore might be seen as more important than a balancing factor, such as implementability, that might be of less importance. This scoring system was selected as a reasonable compromise to reflect the inclusion of all applicable CERCLA criteria.

Table 11-3

Remedial Alternative Evaluation Criteria Rating System

Evaluation Criterion	Condition	
Protective of Human Health and	Is protective	
the Environment	Potentially or contingent protection	3
	Is not protective	0
Compliance with appropriate	Complies with appropriate ARARs	5
ARARs	Complies with most appropriate ARARs or waivers needed	3
	Does not comply	0
Long-Term Effectiveness and	Once cleanup is completed, there is no recurrence potential	5
Permanence	Contaminants transferred, future re-release possible	3
	Contaminants not removed or destroyed	0
Reduction in Toxicity, Mobility,	Eliminates toxicity, mobility, and volume	5
and Volume through Treatment	Reduces toxicity, mobility, and volume	3
	No reduction or no treatment	0
Short-Term Effectiveness	Short-term environmental improvement protects human health and the environment. Minimal risks created by implementa- tion	5
	Limited short-term improvement in environment. Limited risks created by implementation of alternative	3
	No short-term environment improvement. Risks created by implementation	0
Implementability	Alternative proven, all materials and personnel available, permitting available or in place, little effect on operations in OU 5 or surrounding area	5
	Alternative requires significant space, some action-specific ARAR compliance issues, some effect on operations in OU 5 or surrounding area, or slope stability may limit application.	3
	Uncertain permitting, major impact on operations in OU 5 or surrounding area	0
Cost	<\$1.5 million	5
	\$1.5 to 5 million	3
	\$5 to 10 million	1
	>\$10 million	-1
State Acceptance*	To be determined	NA
Community Acceptance*	To be determined	NA

These final two criteria are typically evaluated following comment on the RI/FS report and the proposed plan. They will be addressed when the Record of Decision (ROD) is prepared.

11.3 Detailed Evaluation

11.3.1 Detailed Assessment of Remedial Alternatives for Water

Alternative #1 — Natural Attenuation

For the natural attenuation alternative, the water medium was divided into the seeps along the bluff north of Ship Creek (seeps) and the bulk of the groundwater above the Bootlegger Cove formation (groundwater). The effectiveness of this alternative depends on whether seeps or groundwater are being evaluated.

Description — Natural attenuation uses natural processes to treat contaminant concentrations to cleanup levels. Schematic representations of this alternative in elevation and plan view are shown on Figures 11-1 and 11-2. Natural attenuation would occur in wetland areas, within the groundwater body, and as seeps are exposed to the atmosphere. Wetlands commonly are anaerobic with aerobic environments in the root zone. In wetlands, natural attenuation consists of volatilization and the indigenous breaking down of contaminants by microbial species and common chemical mechanisms. Adsorption of fuel hydrocarbons, halogenated solvents, and metals also occurs. Filtration, dispersion, and dilution also are important mechanisms of natural attenuation in wetland environments.

In groundwater, the primary natural attenuation processes are adsorption/ retardation, dispersion, microbial breakdown, dilution, and volatilization. This option would continue to use these processes for groundwater. Organic constituents have been shown to naturally attenuate in groundwater. Factors affecting the rate of natural attenuation include the groundwater discharge/recharge balance, flow rate, temperature, areas of recharge, the mineralogy of the soil (silt and clay soil having greater adsorption and retardation effects), the concentration of the contaminants, and the type of contaminants. Metals and aromatic hydrocarbons tend to adsorb relatively quickly, and aromatics are typically broken down by microbial action relatively fast. Chlorinated organics are more mobile and adsorb to a lesser

Elmendorf AFB OU 5 RI/FS Report

ELMS ALTNATS VRL SAC 02/2/94

degree. They also are broken down biologically at a slower rate than aromatic hydrocarbons.

Natural attenuation processes in seeps include volatilization, oxidation, and microbial breakdown. Groundwater discharging as seeps becomes oxygenated when exposed to the atmosphere. The microbial activity would increase degradation of the aromatic hydro-carbons. Exposure to the atmosphere and sunlight would increase the volatilization of aromatic and halogenated hydrocarbons.

The effectiveness of natural attenuation would be monitored by collecting and analyzing samples of groundwater and seep water on a regular basis. Monitoring may include sampling the outfalls from the wetlands into Ship Creek, and continued evaluation of stressed vegetation and monitoring of terrestrial and aquatic wildlife.

Effectiveness

Criterion	Sceps	Gmandwater
Protection of Human Health and the Environment	0	3
Compliance with appropriate ARARs	3	3
Long-Term Effectiveness and Permanence	3	3
Reduction in Toxicity, Mobility, and Volume through Treatment	0	0
Short-Term Effectiveness	0	3
Implementability	. 5	5

CERCLA CRITERIA SCORING RESULTS NATURAL ATTENUATION

Protection of Human Health and the Environment. This alternative is considered partially protective of human health and the environment. While there is no current threat and natural attenuation to date has been effective, the potential exists for impacts to occur if current conditions change. If groundwater use changed or there were an unattenuated discharge to a human receptor pathway, this alternative could not be adjusted to provide protection of human health and the environment under the changing conditions. Currently, there is no potential for human exposure to groundwater because all known wells in the upper aquifer have been capped. Animal and plant life are not currently exposed to groundwater. The monitoring will provide a mechanism to ensure that action can be taken before potential impacts to human health and the environment occur from changes in conditions.

For seeps, natural attenuation does not reduce the risk to environmental receptors (there are no known current human receptors). Vegetation is stressed and the potential for impact to surface and aquatic animals exist from the seeps. Natural attenuation of the seeps, once the water is discharged, will not protect environmental receptors. Since this is the "no action" alternative, no comparison between the health and environmental risks is necessary if no action were taken and no potential impacts were caused by response actions.

Compliance with Appropriate ARARs. This alternative does not presently comply with potential contaminant-specific ARARs, including Maximum Contaminant Levels (MCLs) (for benzene and TCE) and the Alaska Surface Water Quality Standard of no visible oil sheens. Potential action-specific ARARs are not applicable since no action is taken. The potential location-specific ARAR for wetlands is not achieved since contaminated groundwater naturally discharges into Beaver Pond. However, current chemical analysis of outflow from the wetlands indicate that water quality standards are being met, so this potential location-specific ARAR is partially met. In the long term, contaminant concentrations should decline and, potentially, MCLs or other potential water quality standard ARARs could be achieved. Measuring of the breakdown rate, taking into account sitespecific and upgradient conditions, would be needed to determine if potential ARARs could be achieved in the 30-year time period for remediation. It may be necessary to obtain a waiver from the National Primary Drinking Water Regulations and the Alaska State Drinking Water Standards to permit natural attenuation of the groundwater to continue.

Long-Term Effectiveness and Permanence. This alternative is considered to be partially effective in the long term given the uncertainty of achieving cleanup levels. For groundwater, indigenous aerobic and anaerobic organisms usually break down organic species and naturally occurring geochemical reactions typically degrade organic constituents. The time required to attenuate contaminant concentrations naturally and to achieve final concentrations are not known (for the 30-year period). The monitoring component of the alternative is designed to determine the effectiveness. The monitoring would provide a measure of protection of human health and the environment, allowing action to be taken if conditions change or if cleanup levels are not being achieved.

Reduction in Toxicity, Mobility, and Volume Through Treatment. There is no active treatment performed; therefore, according to the CERCLA guidance, the toxicity, mobility, and volume of organic contamination in groundwater and seepage are not reduced.

Short-Term Effectiveness. This alternative would be effective for groundwater in the short term if the following conditions remain:

- No use of the shallow aquifer;
- No increase in migration rate; and
- No significant increase in contaminant concentrations.

Because of the conditional nature of the effectiveness a score of partially effective was assigned.

For seeps, this alternative is not effective in the short term since there is no action taken to restore stressed vegetation and restrict access and contact with contamination by humans and animals.

Implementability. This alternative is implementable for both seeps and groundwater and will not affect operations at Elmendorf AFB. However, administrative implementability may be complicated by the need to obtain potential ARAR waivers.

Alternative #2 — Institutional Controls

This alternative involves access controls in the areas where groundwater discharges (the Beaver Pond) and in the seep areas, and groundwater use restrictions.

Description — Access restrictions could include fences with notices posted indicating potentially hazardous contaminants. Deed restrictions may include prohibition of the use of shallow groundwater for domestic purposes (drinking, bathing, cooking etc.) and restrictions on the use of the land. Restrictions on the use of groundwater will eliminate one potential pathway of potential exposure. Restrictions on land use would be needed to ensure that exposure to groundwater did not occur during excavation or construction projects. Construction projects could require dewatering local areas within the lower bluff area. Disposal of the discharged water would have to be controlled so inadvertent discharge to surface water or ditches did not occur.

The monitoring of water and seeps would be performed as part of this alternative. An elevation and plan schematic of this alternative is shown on Figures 11-3 and 11-4.

Figure 11-3. Institutional Control Alternative (Elevation View)

Elmendorf AFB OU 5 RI/FS Report

ELMS ALTCONS VRL SAC 2/02/91

Effectiveness

Criterios	Groundwater
Protection of Human Health and the Environment	3
Compliance with appropriate ARARs	5
Long-Term Effectiveness and Permanence	3
Reduction in Toxicity, Mobility, and Volume through Treatment	0
Short-Term Effectiveness	3
Implementability	5

CERCLA CRITERIA SCORING RESULTS INSTITUTIONAL CONTROLS

Protection of Human Health and the Environment. This alternative was considered partially protective of human health and the environment because of the potential for environmental impact. The environment is not fully protected because institutional controls will not prevent the stressed vegetation in the seep areas (there are no known current human receptors). Also, access restriction would not prevent small terrestrial animals and birds from coming in contact with the seep water. However, this alternative is protective of human health because potential exposure pathways are removed and monitored.

This alternative will not prevent exposures to groundwater; animal and plant life are not currently exposed to groundwater. Overall, the risk to human health is small because major exposure is unlikely. This alternative achieves minor reductions in human health risk while potentially restricting access of some wildlife to wetlands habitat. Bluff stability is unlikely to be compromised by this alternative.

Compliance with Appropriate ARARs. By removing groundwater as a potential drinking water supply, this alternative will comply with water quality potential ARARs. Potential action-specific ARARs protecting workers during construction of fences would apply.

Long-Term Effectiveness and Permanence. This alternative was given a score of partially effective for this criterion because of the conditional nature of the effectiveness. If conditions remain constant, the institutional controls will be effective in the long term for protecting human health. Since the Air Force is a branch of the federal government, the permanence of maintaining institutional controls is assumed (compared to a relatively small commercial operation that may move or go out of business). Institutional controls are not effective in the long term for the environment since the environment has been affected in the seep areas, and little environmental protection is provided by institutional controls in these areas.

Reduction in Toxicity, Mobility, and Volume Through Treatment. There is no active treatment performed; therefore, according to the CERCLA guidance, the toxicity, mobility, and volume of organic contamination in groundwater and seepage are not reduced.

Short-Term Effectiveness. This alternative was given a score of being partially effective for this criterion. The short-term effectiveness analysis is similar to the long term analysis. This alternative is effective in the short term since institutional controls remove the groundwater from the exposure pathways, thereby protecting human health. However, little environmental protection is provided.

Implementability. Institutional controls can be easily implemented at OU 5. There are no current uses of shallow groundwater so implementing groundwater use restrictions would not require finding alternative water sources. Deed restrictions can be prepared and enforced. If Elmendorf AFB were to close, Air Force policy requires that seconded parcels be remediated to cleanup levels appropriate for intended future use. Any deed restrictions would be considered when planning reuse of the parcels. Implementing access controls would not be significantly affected by topography or physical access to the seep or Beaver Pond area. There are no known missionrelated obstacles related to restricting access to these areas.

Alternative #3 — Passive Extraction with Constructed Wetlands

This alternative would consist of eliminating the seeps by intercepting the groundwater before it emerges on the face of the bluff and treating the diverted flow in a constructed wetland. Constructed wetlands use the same mechanisms as natural wetlands to reduce contamination. The difference is the parameters affecting treatment can be more effectively controlled within a constructed wetland. This alternative is only applicable to seeps since passive extraction would capture a much smaller percentage of the overall groundwater flow. The bulk of the groundwater would continue to be affected by natural attenuation (Alternative #1).

Description — Water would be collected in horizontal drains installed in the face of the bluff and pumped into the constructed wetland. Schematics of the alternative in elevation and plan view are provided on Figures 11-5 and 11-6. Wetlands are commonly anaerobic environments with an aerobic environment near the root zone. The constructed wetland would contain both anaerobic and aerobic zones to mimic the natural wetland environment. The constructed wetland may have to be covered with netting to prevent wildlife from entering. The Snowmelt Pond area is proposed as the location for the constructed wetlands. A detailed analysis of the wetland treatment portion of this alternative is provided in Section 11.3.3.

Figure 11-5. Passive Extraction with Constructed Wetland Treatment Alternative (Elevation View)

Effectiveness

Criterian	Seega
Protection of Human Health and the Environment	5
Compliance with appropriate ARARs	5
Long-Term Effectiveness and Permanence	5
Reduction in Toxicity, Mobility, and Volume through Treatment	5
Short-Term Effectiveness	5
Implementability	3

CERCLA CRITERIA SCORING RESULTS PASSIVE EXTRACTION WITH CONSTRUCTED WETLANDS TREATMENT

Protection of Human Health and the Environment. This alternative is protective of human health and the environment by eliminating the seeps, thereby eliminating the potential for human, animal, and plant exposure. The installation of the drains would eliminate the exposure routes for the seeps to animal and plant receptors.

The bulk of the groundwater would continue to be affected by natural attenuation. Groundwater, which would not be treated, is not currently a route for exposure to plants, animals, or human receptors. The system can be installed without damaging the wetland environment and with only minor damage to the bluff stability. However, damage to bluff stability is more than offset by the overall risk reduction resulting from this alternative.

Compliance with Appropriate ARARs. This alternative complies with potential chemical- and location-specific ARARs for the seepage. Potential action-specific ARARs may result in the need for a permit or approval for discharge from the wetlands, depending upon the attainable cleanup levels. An NPDES permit or waivers may be needed, depending on the level of residual contaminants in the effluent. Currently, it is assumed that waivers will not be needed and approvals can be obtained. This assumption is based on the low concentrations of COCs expected in the treated effluent. A treatability study would be needed to confirm this assumption. Potential action-specific ARARs designed to protect workers drilling the extraction wells and operating the wetland would have to be complied with. Some volatilization of organics would occur, and they would enter the atmosphere. Volatile loading would be very small, so emissions should be low. A treatability study would be needed to see if potential air quality ARARs apply.

Long-Term Effectiveness and Permanence. This approach would reduce contaminant levels in the seepage. Once all contamination is removed, seepage concerns should be permanently eliminated. The time required for treatment cannot be determined, but was assumed to be 30 years. When the treatment is complete, there would be no threat to either human health or the environment from the seeps.

Reduction in Toxicity, Mobility, and Volume Through Treatment. For seeps, the toxicity and volume of contamination are reduced by treatment in the constructed wetland. There is no active treatment of the groundwater, so there is no reduction in these parameters.

Short-Term Effectiveness. This alternative is effective in the short term. All seeping groundwater would be collected, removing any short-term exposure concerns. To document the effectiveness of the treatment system, monitoring of the effluent would be performed.

Emissions to the air are expected to be small, posing little risk to workers near the wetland or pedestrians. A treatability study would be necessary to confirm this assumption.

The potential occupational exposure to workers constructing the wells in the seep area is expected to be small. Risks can be managed by taking appropriate health and safety measures.

Implementability. Though this alternative is implementable, treatability tests would be required to determine biological and physical requirements and the effects of winter climate. However, in the eastern area, it would be difficult to install passive extraction systems because the pond is located close to the bluff. Access for equipment will also be limited. This difficulty in the eastern area will be considered when evaluating preferred multi-media alternatives for that area.

Alternative #4 — Passive Extraction with Activated Carbon Treatment

This alternative uses passive horizontal drains and pumps the extracted water to an activated carbon treatment system. Effluent from the treatment facility would be reinjected into the shallow aquifer upgradient from Ship Creek. The fuel hydrocarbons or VOCs are adsorbed onto the carbon and destroyed during regeneration of the carbon. Schematics of this alternative in elevation and plan view are shown on Figures 11-7 and 11-8. This alternative will not affect the bulk of the groundwater flow, which will continue to be affected by natural attenuation.

Description — Passive drains would be installed into the bluff where there are seeps. The seep water would be drained by gravity from the bluff into a flow control holding tank. A particulate filter would prevent sediment accumulation in the tank. The water would be treated using aqueous-phase carbon adsorption. A single treatment system was used as the basis for evaluation of this alternative (see Figure 11-8). The effluent would be discharged to a flow control tank and into a reinjection system. In general, iron and manganese concentrations are low and unlikely to cause significant fouling of the carbon system. However, if periodic monitoring of the treatment system suggests metals would reduce the efficiency of the carbon system, some method of pretreatment could be considered, depending on the additional costs versus higher carbon replacement rates. The determining variable is the average concentration of iron and manganese in the seep water before carbon treatment. The extraction wells would be monitored to determine the extent of mineral precipitation in the extraction system.

Figure 11-7. Passive Extraction with Carbon Treatment Alternative (Elevation View)

Elmendorf AFB OU 5 RI/FS Report

11-30

Effectiveness

CERCLA CRITERIA SCORING RESULTS PASSIVE EXTRACTION WITH CARBON TREATMENT

Criterion	Seeps
Protection of Human Health and the Environment	5
Compliance with appropriate ARARs	5
Long-Term Effectiveness and Permanence	5
Reduction in Toxicity, Mobility, and Volume through Treatment	5
Short-Term Effectiveness	5
Implementability	5

Protection of Human Health and the Environment. This alternative is protective because it eliminates potential exposure to contamination. The installation of the drains and treatment system would eliminate the exposure routes for the seeps to animal and plant receptors. The seepage would be fully contained until contamination is removed. There would be no exposures to either humans or wildlife. The bulk of the groundwater would continue to be affected by natural attenuation; however, there is currently not an exposure pathway for groundwater to human, plant, or animal receptors. Installing the passive extraction wells could cause some slope instability. Overall, the risk to human health and the environment from seeps would be eliminated with minor, if any, damage to the environment.

Compliance with Appropriate ARARs. This alternative complies with potential ARARs for the seeps. Treatment with activated carbon can remove all the contaminants detected in OU 5 groundwater to levels below those listed in the National and Alaska State Drinking Water Standards. Compliance with potential ARARs for effluent disposal will be dependent on locating suitable reinjection well sites. Carbon regeneration facilities are not available in the Anchorage area. Therefore, spent carbon would be transported out of state for regeneration. Analysis of the spent carbon would be required before shipment to determine manifest requirements.

Elmendorf AFB OU 5 RI/FS Report

Long-Term Effectiveness and Permanence. This alternative is effective for seeps because contaminants are removed and destroyed. The timeframe for remediation cannot be determined, but is assumed to be 30 years. Once remediation goals are achieved there would be no threat to human health and the environment from seeps.

Reduction in Toxicity, Mobility, and Volume Through Treatment. The activated carbon treatment will reduce the toxicity, mobility, and volume of contaminant concentrations in seeps, by adsorption onto activated carbon. Contaminants would later be destroyed by thermal regeneration of the carbon.

Short-Term Effectiveness. This alternative is effective in the short term. All seeping groundwater would be collected, removing any short-term exposure concerns. To document the effectiveness of the treatment system, monitoring of the effluent would be performed.

Operation of the treatment system should pose little risk to human health and the environment. The treatment system should have no by-product that could affect people or wildlife. The potential occupational exposure to workers installing the drains and treatment system is expected to be small. Risks can be managed by taking appropriate health and safety measures.

During operation, the carbon would have to be changed out approximately once a year. The facility would be taken off line for no more than eight hours during changeout, so there would be little down time.

Implementability. Activated carbon treatment of seepage is both technically and administratively feasible. The system would have to be designed to handle seasonal variation in flows as well as winter conditions. Activated carbon has been used extensively in similar applications and has achieved the necessary cleanup levels. The treatment system would require little space (approximately 400 square feet, depending upon flow and contaminant loading). The small land commitment should not interfere with operations at Elmendorf AFB. If care is taken when installing the extraction wells, slope stability will not be compromised. However, in the eastern area installation of passive extraction systems may be difficult in that area as discussed under Alternative #3.

Alternative #5 — Air Sparging and Soil Vapor Extraction (SVE)

In this alternative, compressed air would be injected into the subsurface to strip contaminants from soil and groundwater. The resulting vapor would be extracted and treated prior to discharge to the atmosphere. When air is injected below the surface of contaminated groundwater (air sparging), it strips VOCs from the water and the adsorbed contaminants from the soil by volatilization. The volatilized compounds are carried up into the unsaturated soil where they can be captured by soil vapor extraction. In addition, the air supplies oxygen to indigenous microbes in the saturated and vadose zones, resulting in increased biological degradation of groundwater and soil contaminants. From the injection point the air tends to move upward and outward, and influences a large area. The combination of SVE and air sparging can provide several advantages over air sparging or SVE alone, including the ability to act as a barrier to limit plume migration, enhanced biodegradation, better control of air flow through the soil resulting in more concentrated offgas for treatment, and reduced remediation time.

Description — At OU 5 several air sparging and SVE wells would be installed in the areas where the excess cancer risk from exposure to groundwater is greater than 1×10^{-6} . The wells would be horizontal to maximize their effectiveness. Horizontal wells have been shown to be more effective than vertical wells because of the greater screen surface area per horizontal well and the resulting influence in the subsurface soils and groundwater. A schematic of the alternative in elevation and plan view is shown on Figures 11-9 and 11-10.

Elstendorf AFB OU 5 RI/FS Report

ELMS ALTASVES VRL SAC 2-12 94

The sparging wells would be connected to a blower, capable of injecting air into the aquifer. The SVE wells would be connected to a vacuum pump that discharges vapor to activated carbon canisters to remove contaminants prior to discharge to the atmosphere. Pilot testing would be needed to determine design flows, determine radius of influence, and to size carbon canisters.

Effectiveness

Criterion	Groundwater	Seeps
Protection of Human Health and the Environment	5	5
Compliance with appropriate ARARs	5	5
Long-Term Effectiveness and Permanence	5	5
Reduction in Toxicity, Mobility, and Volume	5	5
Short-Term Effectiveness	3	3
Implementability	3	3

CERCLA CRITERIA SCORING RESULTS AIR SPARGING WITH SOIL VAPOR EXTRACTION

Protection of Human Health and the Environment. This alternative is protective of both human health and the environment for all groundwater. Stripping volatiles would remove both aromatic and chlorinated compounds from the shallow groundwater, including water that is discharged as seepage along the bluff. Therefore, clean water would be discharged in the seeps, which would protect the plants and animals that are exposed to these seeps.

Groundwater deeper in the shallow aquifer would also be treated; however, groundwater is currently not a pathway for human, plant, or animal contact. The units can be installed in a variety of sites below the bluff with a minimum disruption of the environment. They can be installed above the bluff without compromising slope stability. Overall, there is little potential for additional damage to the environment that would offset this alternative's risk reduction.

Compliance with Appropriate ARARs. Air sparging in conjunction with soil vapor extraction and activated carbon treatment would be in compliance with potential ARARs. Air sparging in conjunction with soil vapor extraction has been proven effective in the removal of volatile organics from groundwater and enhancing biodegradation of fuel hydrocarbons and VOCs, thus complying with potential chemical-specific ARARs. Potential actionspecific ARARs include control of air emissions and waste disposal. Potential ARARs for air emissions would be met by activated carbon treatment of extracted vapor. Carbon regeneration off site would require a manifest.

Long-Term Effectiveness and Permanence. This alternative would be effective in treating the groundwater over the long term. Contaminants would be removed from the groundwater and soil, and then would be destroyed during regeneration of the activated carbon. The timeframe for remediation is not known, but is assumed to be 30 years.

Reduction in Toxicity, Mobility, and Volume Through Treatment.

Reduction in the toxicity, mobility, and volume of contaminants in the groundwater would be achieved. This alternative would also aid in reducing VOC and fuel hydrocarbon contamination in the vadose zone through increased biodegradation and soil vapor extraction.

Short-Term Effectiveness. This alternative would be effective in the short term for treating groundwater in the upper bluff area. The effectiveness of SVE may be limited in the lower bluff area. The shallow groundwater (<10 feet) could result in breakthrough of the vacuum from the land surface, requiring a large number of closely spaced vapor extraction wells. Incomplete capture of contaminants stripped from the groundwater could result in a short-term increase in fugitive VOC emissions.

Problems with preferential air pathways, biofouling of wells, and mineral precipitation have been encountered during sparging tests at other sites both in Alaska and the continental United States. Preferential air pathways could lessen the effectiveness of this alternative by allowing the possibility that groundwater might pass by the sparging well untreated or contaminated air may not be captured by the SVE extraction well(s). Both biofouling and mineral precipitation could lead to inefficient system operation, which would also lessen the effectiveness of this alternative. Efficient system operation is dependent on the performance of routine maintenance of the air sparging, soil vapor extraction, and carbon treatment systems, including regeneration of the carbon. Periodic monitoring of the groundwater and carbon treatment system effluent would be necessary to determine system efficiency and effectiveness.

Oxygenation of groundwater could affect biosystems in wetland areas that receive groundwater discharge. The effect an increase in oxygen would have on the current habitat balance in the wetland is not known. Increased oxygen in the water could shift the wetland environment away from an anaerobic environment towards an increased aerobic environment. Relatively small increases in oxygen could influence the wetland by creating more plant/animal diversity that could increase the effectiveness of the systems that naturally attenuate groundwater impacts in area of the wetland. If there were large changes in the nutrient balance, excessive plant growth could occur, potentially impacting the environment.

Implementability. This alternative can be easily implemented in the upper bluff area at OU 5. Because the soil in the bluff is composed mostly of interbedded sands and gravel with some thin, discontinuous silty zones, the vapors should travel well through the media. The alluvial deposits should serve as an adequate medium for this alternative. In the lower bluff area, the implementability is reduced because some of the land is not owned by the Air Force and barriers to siting wells. Constructing the additional wells would be affected by existing buildings, roads, utilities, and wetlands in the lower bluff area. Also, because of potential vacuum breakthrough, SVE well placement would need to be evaluated to assure capture of sparged vapors. More than one system would be needed for OU 5 to reduce the amount of piping that would be required. Additional equipment or chemical additives may be necessary to ensure that biofouling or mineral precipitation does not occur. A treatability study is recommended before implementation to determine viability of this technology and if the increased oxygen content in the groundwater due to air sparging would have an adverse effect on down gradient ecology.

Alternative #6 — Active Extraction with Air Stripping and Carbon Treatment

This alternative would involve installation of groundwater extraction wells and construction of an air stripper with activated carbon treating the off gases. Figures 11-11 and 11-12 show a schematic of this alternative in elevation and plan view.

Description — The evaluation of this alternative is based on three extraction and treatment systems. Three systems are considered because the groundwater plume areas where the contaminant concentrations pose an excess lifetime cancer risk of greater than 1×10^{-6} are located in three areas approximately 2,500 feet apart. Five wells with a combined flow of 400 to 1,000 gallons per minute (gpm) are estimated to be needed in the western portion of the OU. Four wells with a combined flow of 1,900 to 2,300 gpm would be needed in the eastern portion of the OU. Three additional extraction wells with a combined flow of 80 to 100 gpm and a low flow (50 to 100 gpm) extraction system would be located in the center of OU 5 (Figure 11-12). The low flow extraction system would be located near seeps that are not associated with a groundwater impact with an excess cancer risk of 1×10^{-6} . These flow rates have been assumed (based on preliminary calculations) to capture the entire leading edge of the plumes and to drain the seeps. Contaminated groundwater which has already passed the bluff area would not be captured in this alternative.

11-39

Figure 11-11. Active Extraction, Air Stripping, and Activated Carbon Treatment Alternative (Elevation View)

In each of the plume areas, groundwater would be pumped from the wells and fed, through a header system, to a flow control holding tank. From the tank the water would be pumped through an air stripper. Volatiles would be stripped from groundwater and the effluent would be discharged to horizontal reinjection wells located at the base of the bluff. Because the groundwater is shallow in the reinjection area (<10 feet), there is little vadose zone storage capacity. Therefore, horizontal reinjection wells are best suited for this alternative. A hydrogeologic model would be needed to locate reinjection wells followed by close flow monitoring to ensure that there is no adverse effect.

Offgases from the stripper would be treated with activated carbon. At least two canisters would be used so one could be changed out without shutting down the system.

Effectiveness

CERCLA CRITERIA SCORING RESULTS ACTIVE EXTRACTION WITH AIR STRIPPING AND CARBON TREATMENT

Criterion	Commence	Corre
Protection of Human Health and the Environment	3	3
Compliance with appropriate ARARs	5	5
Long-Term Effectiveness and Permanence	5	5
Reduction in Toxicity, Mobility, and Volume	5	5
Short-Term Effectiveness	3	3
Implementability	3	3

Protection of Human Health and the Environment. This alternative protects human health and the environment from exposure to groundwater impacts. Migration of the plumes is stopped, preventing additional groundwater impact in the lower bluff area (the cancer risk in the lower bluff area is currently less that 1×10^{-6}). The seeps would be stopped, depressing the groundwater below their exit points to the surface. Removal of the seeps would protect receptors.

In the eastern portion of OU 5, the removal of the seeps and possible local lowering of the water table could upset the hydrology of the wetlands environment. In the west and central portions of OU 5, the effect of drying up the seeps would be small because there are fewer wetlands environments. Water for the wetlands in OU 5 comes from a combination of precipitation, runoff, seeps, and groundwater. Compared to the "no action" alternative, this alternative imposes significant environmental costs to achieve risk reduction in some portions of OU 5.

Compliance with Appropriate ARARs. This alternative meets potential chemicalspecific ARARs. Potential action-specific ARARs affect air emissions and the discharge of treated water. The alternative complies with potential emission-related ARARs by treating the offgases. Compliance with potential ARARs for reinjection is dependent on the treatment system efficiency and identification of an appropriate reinjection site. A treatability study would be needed to determine organic concentrations in the effluent. Groundwater modelling would be needed to locate the reinjection sites.

Long-Term Effectiveness and Permanence. Groundwater extraction and treatment is an effective long-term solution to groundwater contamination. The timeframe for treatment is not known. It was assumed to be 30 years. Once cleanup levels have been achieved at OU 5 and upgradient, the remediation is permanent. Contaminants are destroyed when the carbon is regenerated. This alternative will not produce toxic by-products.

Reduction in Toxicity, Mobility, and Volume Through Treatment. Reduction in the toxicity, mobility, and volume of contaminants in the groundwater would be achieved with this alternative. The contaminants would be removed from the groundwater through the air stripper and carbon adsorption units and destroyed during carbon regeneration.

Short-Term Effectiveness. This type of system would be effective in the short term. Efficient operation is dependent on the performance of routine maintenance,

including the regeneration of the activated carbon. Monitoring of the groundwater would be necessary to determine the systems efficiency and effectiveness.

Possible adverse effects on the natural ecology may result downstream from the reinjection wells due to increased oxygen content in the water. The Beaver Pond is fed by water from Ship Creek and groundwater. Extracting up to 2,300 gallons per minute upgradient from the Beaver Pond area could affect the water balance in the pond. However, this balance would be restored by the reinjection of treated water. Additionally, the treated water would be oxygenated. As with the other alternatives that potentially aerate the groundwater, reinjection may alter the natural ecology where groundwater discharges into wetlands. Modelling would be needed to determine if the water balance in the wetlands is adversely affected.

Implementability. This alternative can be implemented. The technology is proven for the contaminants found in the groundwater at OU 5 and the necessary equipment is readily available. The pipes leading from the seeps in the center of OU 5 to the treatment system at the top of the bluff would be required. This is also true for the pipes leading from the air stripper to the reinjection system. The slopes of the bluff have shown signs of failure in the past, and are considered unstable. Slope failure in the future could sever pipes. Special engineering would be needed to ensure system shutdown in the event of a pipeline failure.

The implementability score was reduced because reinjection of 2,500 to 3,500 gpm into the aquifer in the lower bluff area would be difficult. The shallow aquifer allows for little vadose zone storage capacity. Therefore, reinjection would have to be done over a wide area to accommodate the flow. Constructing such a large injection system would be complicated by roads, utilities, and buildings. Also, the current and future use of the land may be limited, because of the reinjection system. Nothing could be constructed that would interfere with the flow (large buildings requiring deep foundations etc.).

11.3.2 Detailed Assessment of Soil Remedial Alternatives

Alternative #7 — Natural Degradation

Description — This alternative provides a baseline for comparing other alternatives. Natural degradation relies upon natural physical, chemical, and biological processes to reduce contaminant concentrations to cleanup levels. The remediation time is not known. A site-specific modeling program would be needed to define degradation rates and estimate the time required to achieve cleanup levels. Monitoring of the soil, vegetation, and animals affected by contamination of soil in the seep areas would be part of this alternative. A schematic of this alternative in elevation and plan view is shown on Figures 11-13 and 11-14.

Effectiveness

Criterion	Soll
Protection of Human Health and the Environment	3
Compliance with appropriate ARARs	3
Long-Term Effectiveness and Permanence	5
Reduction in Toxicity, Mobility, and Volume through Treatment	0
Short-Term Effectiveness	0
Implementability	5

CERCLA CRITERIA SCORING RESULTS NATURAL DEGRADATION

Protection of Human Health and the Environment. This alternative is considered to be partially protective of human health and the environment. Currently, there are no known human impacts from soil contamination, so this alternative is protective of human health in the short-term. For most of OU 5, natural degradation is also protective of the environment; however, surface contamination is present in two isolated areas in the seep zones. It is thought that the contamination is from the seeps. In these areas, vegetation is

Figure 11-13. Natural Degradation of Contamination in Soil (Elevation View)

Elmondorf AFB OU 5 RI/FS Report

ELMS ALTMONS VRL SAC 2/02/94

stressed and human and animal exposure to soil contamination is possible. Natural degradation may ultimately provide protection to receptors, but only if the degradation processes can be proven to be effective. Since this is the no action alternative, no comparison between the health and environmental risks is necessary if no action were taken and no potential impacts were caused by response actions.

Compliance with Appropriate ARARs. This alternative may not comply with potential ARARs if soil cleanup levels cannot be achieved. Also, soil contamination could contribute to groundwater contamination. While the contaminants of concern from the sites with OU 5 (mainly diesel and jet fuel) are known to degrade naturally over time; the achievable cleanup levels via natural degradation are not known. Monitoring of the soil in the seep areas would help establish a degradation rate and achievable cleanup levels could be estimated.

Long-Term Effectiveness and Permanence. This alternative may be effective in the long term. Natural degradation processes are known to effectively reduce fuel hydrocarbon contamination over time; however, the length of time required to comply with potential ARARs has not been determined. Eventually, the contaminants would break down and the remediation would be permanent.

Reduction in Toxicity, Mobility, and Volume through Treatment. This alternative does not achieve any reduction in toxicity, mobility, and volume through treatment. However, some reduction in toxicity and volume through natural biological degradation is provided. CERCLA does not consider natural reduction to fulfill this criterion.

Short-Term Effectiveness. This alternative is not effective in the short term. The exposure of vegetation and animals to the contaminated soil in the seep areas would continue in the short term. Although no additional risk of exposure will occur as a result of implementation, the contaminated soil near the water table could serve as a source of groundwater contamination. **Implementability.** This alternative is implementable. The processes for implementing natural degradation are known and have been used at other sites. A waiver of some potential ARARs may be required for implementation. The implementability may be complicated by the need to acquire waivers and may negatively affect the implementability of this alternative.

Alternative #8 -- Institutional Controls

Institutional controls including fencing, administrative, limiting access, and deed restrictions would be implemented.

Description — Cyclone fencing, a minimum of 6 feet high with locked gates, would be installed around areas with contaminated surface soils. Signs would be posted to alert personnel of threats to their health and safety and to the environment. In addition, administrative controls would limit access to these sites to authorized personnel only. Deed restrictions would limit future development including excavation and earthwork. A schematic of this alternative is shown on Figures 11-15 and 11-16.

Effectiveness

CERCLA CRITERIA SCORING RESULTS
INSTITUTIONAL CONTROLS

Criterios	Sol
Protection of Human Health and the Environment	3
Compliance with appropriate ARARs	3
Long-Term Effectiveness and Permanence	5
Reduction in Toxicity, Mobility, and Volume through Treatment	0
Short-Term Effectiveness	3
Implementability	3

Figure 11-15. Institutional Controls Alternative (Elevation View)

Protection of Human Health and the Environment. Because of the potential for environmental impact this alternative was considered partially protective of human health and the environment. This alternative is partially protective of human health because direct potential exposure pathways are removed and monitored. However, migration of contaminants to groundwater may occur, which could impact human and environmental pathways. Additionally, the environment is not fully protected because institutional controls will not prevent the stressed vegetation in the seep areas. Also, access restriction would not prevent small terrestrial animals and birds from coming in contact with soil in the seep areas. The only potential environmental damage associated with this alternative would be minor potential for slope stability problems when fencing is installed on the bluff face. Overall, risk reduction is achieved with little offsetting impacts on the environment.

Compliance with Appropriate ARARs. This alternative may not comply with soils clean-up levels for hydrocarbons. The only potential action-related ARAR would be worker health and safety for the construction of the fences.

Long-Term Effectiveness and Permanence. The long-term effectiveness of institutional controls depends upon conditions not changing. If conditions do not change, the institutional controls will be effective in the long term for protecting human health. Since the Air Force is a branch of the federal government, the permanence of maintaining institutional controls is assumed (compared to a relatively small commercial operation that may move or go out of business). Institutional controls are not effective in the long term for the environment since vegetation and animal impacts from exposure to soil in the seep areas is not eliminated by institutional controls. Because of the conditional nature of the effectiveness, this alternative was given a score of being partially effective for this criterion.

Reduction in Toxicity, Mobility, and Volume Through Treatment. There is no active treatment performed; therefore, by the CERCLA guidance, the toxicity, mobility, and volume of organic contamination in soil is not reduced. Short-Term Effectiveness. This alternative was given a score of being partially effective for this criterion. The analysis of short-term effectiveness is similar to the longterm analysis. This alternative is effective in the short term since institutional controls remove pathways thereby protecting human health. However, little environmental protection is provided.

Implementability. Institutional controls can be easily implemented at OU 5, but only if the base maintains control over land use. Contaminated soil is close to base property boundaries. Implementation of off-base institutional controls will require coordination with private parties and legal issues could be involved. Although this requirement could be met, it reduces the implementability of this alternative. If Elmendorf AFB were to close, Air Force policy requires that parcels that are to be sold or otherwise divided be remediated to cleanup levels appropriate for intended future use. Any deed restrictions would be considered when planning reuse of the parcels.

Implementing access controls would not be significantly affected by topography. There are no known mission related obstacles related to restricting access to these areas.

Alternative #9 — Excavation, Biopiling, and Backfilling

This alternative would be applied to areas where contamination in shallow soils exceeded clean-up levels for hydrocarbons. This alternative would not be applicable to soils that could not be easily excavated, i.e., below depths of 10-12 feet. This is not a problem for the presently identified soil area in the central area, which is very close to the surface, but may be a problem in the soil identified in the western area, which, at 10-12 feet below the surface, may be difficult to excavate. A schematic of this alternative in elevation and plan view is shown on Figure 11-17 and 11-18.

Figure 11-17. Excavation, Biopiling, Backfill Alternative (Elevation View)

Elmondorf AFB OU 5 RI/FS Report

Description — A backhoe, front-end loader, or other equipment would be used to excavate soils. Each of the two soil volumes to be remediated are estimated to have dimensions of 100 feet by 100 feet by 4 feet deep, for a volume of 1,500 cubic yards each. The excavated areas would be backfilled with treated soil or available clean soil from on base. The excavated soil would be transported to an existing biopiling area at the eastern end of Elmendorf AFB. A new biopiling system would be constructed, consisting of two lifts of 4 feet each, over a 100-square-foot area. Each lift would have piping to supply air and any required nutrients. The soil would be stockpiled until it can be transferred to the treatment cells. Degradation of contaminants would be monitored to document the breakdown rate and confirm that clean-up levels are being met. Monitored parameters would include temperature, soil, pH, nutrients, and contaminant concentrations. The treated soil would be used on base for fill after clean-up levels are achieved.

Effectiveness

CERCLA CRITERIA SCORING RESULTS EXCAVATION, BIOPILING, AND BACKFILLING

Criterion	Soil
Protection of Human Health and the Environment	3
Compliance with appropriate ARARs	3
Long-Term Effectiveness and Permanence	5
Reduction in Toxicity, Mobility, and Volume through Treatment	3
Short-Term Effectiveness	3
Implementability	3

Protection of Human Health and the Environment. This alternative is partially protective of the human health and the environment for shallow soil. This alternative will reduce surface contamination to less than the remedial action objectives and the risk of exposure to contaminated soil where surface contamination is present. However, this alternative does not address contaminated soil near the water table which will remain and continue to pose a risk to downgradient environmental receptors via groundwater flow and

Elmendorf AFB OU 5 RI/FS Report

seeps. Removal of these deep soils may be difficult because of the need to excavate on the bluff in the western area, which may require expensive shoring to prevent slope failure. Small land animals and birds could be exposed to contamination in the soil. Furthermore, the risk of slope stability problems while excavating along the bluff face may be greater than the risks associated with the "no action" alternative.

Compliance with Appropriate ARARs. This alternative has been given a score of partially compliant. It will likely comply with clean-up levels for hydrocarbons for the soil excavated for treatment. The only potential action-specific ARARs are for worker protection and air emissions. Worker protection can be provided by accepted health and safety practices. Air emissions are expected to be low because the principal contaminants, diesel and jet fuel, are not highly volatile. The rate of treatment can be varied to minimize volatilization, so potential air-related ARARs are complied with.

Long-Term Effectiveness and Permanence. This alternative is considered effective and permanent in the long term for the soils that are excavated and treated because contaminants are destroyed. For the deep contamination near the seeps, the potential exists for media cross contamination between the soil and groundwater. Therefore, to be effective in the long term, this alternative will have to be combined with a seep remediation alternative. While this alternative is not effective in the long term, the potential impacts are considered to be low. In the long term, the contaminants should degrade naturally; however, the time required to meet cleanup goals is not known.

Reduction in Toxicity, Mobility, and Volume Through Treatment. This alternative reduces the toxicity, mobility, and volume of contaminants through treatment for the excavated soil. In this alternative, un-excavated soils are not affected by this treatment. However, natural degradation should reduce the toxicity and volume of the unexcavated contamination. Short-Term Effectiveness. This alternative is partially effective in the shortterm. Technologies for safely excavating and handling hydrocarbon contaminated soils are well established and result in minimal exposure risk during implementation. Potential impacts for the biopiling can be managed by using liners and controlling emissions and surface water drainage from the pile. The alternative would only be at maximum effectiveness in the summer months. Cold temperatures will reduce the effectiveness in the winter by reducing the biological activity.

Excavation of the shallow soil is quick so the potential window for exposure is very short. The alternative does not address contaminated soil near the water table, which will continue to serve as a source of groundwater contamination in the short term.

Implementability. This alternative is partially implementable. The excavation and soil handling techniques required are available and proven. The land commitment is small and should not affect base operations. Processes for implementing biopiling of contaminated soil are known and have been used at Elmendorf AFB and other sites. However, the alternative would be limited to shallow soils, and slope stability concerns in the vicinity of the bluff may reduce the overall quantity of soil which can be excavated. In addition, the treatment would be limited to the summer months because of the cold winter climate, which would increase the implementation period. Care must be taken when excavating soils near the groundwater table since excavation could cause releases to the groundwater. A waiver of some potential ARARs may be required for those soils which remain in place.

Alternative #10 — Bioventing

Description — Bioventing adds oxygen to the soil pore space, enhancing the growth of natural microbial populations and increasing the breakdown rate of organic contaminants. Air injection wells would be installed in areas where concentration of soil contaminants are above clean-up levels. The wells would be screened in the vadose zone in a narrow interval below the soil contamination. A blower would be connected to the wells

via a common header so that a positive pressure would induce air flow into the contaminated soil. The increased amount of oxygen available in the vadose zone would enhance the aerobic biodegradation of organic contaminants by indigenous microorganisms. In addition to oxygen, macronutrients, such as nitrogen and phosphorus, could be added in an atomized phase to stimulate population growth and contaminant destruction or nutrients and water could be added at the surface and allowed to percolate down to the contaminated soil. Soil sampling would be needed to document that cleanup levels were being achieved. Schematics of this alternative in elevation and plan view are shown in Figures 11-19 and 11-20.

Effectiveness

BIOVENTING	
Criterion	Sola
Protection of Human Health and the Environment	5
Compliance with appropriate ARARs	5
Long-Term Effectiveness and Permanence	5
Reduction in Toxicity, Mobility, and Volume through Treatment	5
Short-Term Effectiveness	3
Implementability	3

CERCLA CRITERIA SCORING RESULTS BIOVENTING

Protection of Human Health and the Environment. The alternative is protective of human health and the environment by reducing the contaminant concentrations in both surface and deep soils. By treating surface soil, the potential exposures to animals, plants, and humans through direct contact are eliminated. Vegetation and animal impacts from soil in the seep areas would be eliminated. Deep soil would be treated, eliminating the potential for future migration of VOCs to the groundwater and the seeps. These seeps could impact receptors, such as plants and small animals. Short-term effectiveness may be limited until the system can be properly adjusted for the climate and media. This alternative

ndorf AFB OU 5 RI/FS Report

11-60

END3.DRW - 10/6/93 SAC

Elmondorf AFB OU 5 RI/FS Report

11-61

ELMS ALTBIOS VEL SAC 02/2/94

achieves major risk reduction when compared to the "no action" alternative without adding major risk of slope instability and damage to the wetlands.

Compliance with Appropriate ARARs. This alternative will comply with potential contaminant-specific ARARs for soil and protect groundwater where soil contamination is present. The only potential action-specific ARARs would affect workers installing the bioventing wells. Accepted health and safety practices can be followed to comply with this potential action-specific ARAR.

Long-Term Effectiveness and Permanence. Bioventing has been shown to reduce contaminants to clean-up levels. The remediation is permanent.

Reduction in Toxicity, Mobility, and Volume Through Treatment. This alternative will reduce the toxicity, mobility, and volume through treatment. The technology reduces the toxicity and volume of contamination by enhancing the biodegradation of the contaminants by aerobic soil microorganisms. With proper implementation of this alternative, the mobility of contaminants will also be reduced. However, while the byproducts of microbial degradation may be more mobile than the original hydrocarbons; their toxicity will be reduced and should not represent a risk to human health or the environment.

Short-Term Effectiveness. This alternative was considered partially effective. Bioventing will not result in an adverse short-term impact because the technology will not result in increased emissions of contaminated dust, fugitive volatile emissions, and transfer of contaminants to the groundwater. There will be very limited exposure to construction workers during well installation.

However, in the short term, the contaminants break down effectiveness is not fully demonstrated for cold climates. The effectiveness depends upon the temperature and sitespecific conditions such as microbial population, moisture content, and available nutrients. Field tests of bioventing have been done in Alaska, and the technology looks promising. The heat of compression of the inlet air does help offset the cold ambient temperatures in the soil. Treatability tests are being done at Elmendorf AFB to determine the effectiveness of this technology. The data generated will help determine if this alternative will be effective at OU 5.

Implementability. This technology can be implemented. The procedures for implementing bioventing are known and the technology has been implemented at other sites. There is sufficient space available to implement the technology and equipment is available from several vendors. Inlet air heating may be required to sustain bioventing during winter months. The air should travel well through the soil to the contaminants because the bluff is composed mostly of gravels and embedded sands. Implementation may not be possible for some soils below the water table without first dewatering those zones. This alternative can be implemented without endangering slope stability because the wells would be placed at the top of the bluff.

11.3.3 Constructed Wetland at Snowmelt Pond

Description — This alternative would isolate PCB sediment from potential receptors by adding a layer of gravel across the bottom of the pond. The water level would be controlled to allow growth of wetland vegetation across the whole Snowmelt Pond area. The wetland would be channelized to ensure retention time and to allow for monitoring effectiveness across the wetland.

The location for the proposed wetland system includes Snowmelt Pond and the adjoining marsh area. The seeps would be intercepted and contained at their point of occurrence by a passive collection system and conveyed to the inlet of the treatment system. A wetland treatment system will use physical, chemical, and biological mechanisms to degrade hydrocarbons dissolved in the seep flow.

The wetland would be used to treat seep water collected in the passive extraction alternative. An inlet would be constructed somewhere along the bluff. The inlet would also be of wetland-type construction with gravel and wetland vegetation. Cascades and pools may be needed to increase treatment and retention time. Discharge from the wetland would enter existing drainage ditches.

The constructed wetland is a single presumptive remedy for PCBs in the Snowmelt Pond and would clearly be effective in isolating the sediment. However, the wetland is also to be used to possibly treat seep water. The treatment of seep water by a wetland is not fully proven for this application in the Anchorage climate; therefore, an evaluation of its technical effectiveness was done. The Snowmelt Pond area is appropriate for a constructed wetland due its location, site hydrology, and proven ability to support aquatic plants and a wetland environment. The location of the proposed wetland system includes roughly 1.5 acres of open water and 1 acre of marsh, and is relatively secluded from other Base activities. This would allow the wetland system to develop and treat water without being disturbed or interfering with other land uses. The site is close to many of the contaminated seeps, which allows conveyance of seep water to the treatment system. The lowlying site and existing open water appear to indicate a high water table that is capable of maintaining hydric soils and moist conditions necessary for wetland development. The existing topography and availability of a receiving stream make the discharge of treated effluent possible. The emergent vegetation suggests the presence of sufficient soil nutrients and climate conditions to support aquatic plants that are typical to a wetland environment.

Wetlands often act as sediment sinks. Wetland plants tend to filter out sediment, and the relatively low flow velocities through wetlands allow suspended particles to settle out. As new sediments are deposited, they will bury and stabilize the existing contamination. Additionally, aquatic plants often have an extensive root system that can also stabilize the sediments. Aerobic and anaerobic zones exist in wetland soils, providing areas for the potential degradation of hydrocarbon-contaminated sediments. The rhizomes, or roots, of wetland plants transmit oxygen to the root tips. This oxygen can be used by aerobic bacteria for degradational processes. Anaerobic zones create reducing conditions that have a tendency to facilitate sorption reactions and thus stabilize contaminants. Additionally, anaerobic bacteria are capable of hydrocarbon degradation.

The analysis of constructed wetland treatment capacity is based on work performed by Gelb, 1992. Gelb studied an overland flow and wetland system used for the treatment of oilfield-produced water. The overland flow component consisted of a treatment cell 50 feet wide by 100 feet long, excavated to a 3% grade, covered with 1 to 3 inches of gravel, and included four 12-inch high cascades. The wetland component followed the overland flow cell and covered approximately 0.75 acres. Flow channels were approximately 35 feet wide and included sedges, rushes, and cattails.

Gelb examined the removal of many produced water compounds. Those examined in this report include BTEX and total phenolics. Influent flow rates to the overland flow/wetland system ranged from 29 to 232 GPM. Influent concentrations averaged 28.5 μ g/L benzene, 48.2 μ g/L toluene, 17.5 μ g/L ethylbenzene, 36.0 μ g/L xylenes, and 0.131 mg/L total phenolics. Gelb observed 68 to 100% removal of all BTEX compounds in the overland flow cell and 100% BTEX removal in the wetland.

Total phenolics concentrations were measured through the system to model the removal of more persistent hydrocarbons. Zero to 15% of the total phenolics were removed in the overland flow cell and 9 to 100% were removed in the wetland. The average removal through the wetland was 40% and the average wetland influent concentration was 0.079 mg/L. Phenolics mass removal through the wetland ranged from 6.4 to 47.7 g/day.

Gelb developed a treatment system design method based on the results of his study. The method determines the system area required for a desired contaminant

concentration reduction, given a flow rate and influent contaminant concentration. The design method includes a procedure for total phenolics treatment, and is used here to conservatively model BTEX and TCE removal from seep flows. No design method was available for BTEX compounds.

The following assumptions were used to perform design calculations and estimate the effectiveness of the system:

- A single wetland component was selected as the system type;
- The area available for the system is 2 acres or 87,120 ft²;
- The influent flow rates considered are 10, 50, and 100 GPM; and
- The contaminant concentrations considered are 0.01, 0.1, and 1.0 mg/L.

The design method was applied in two ways. First, the area required for 100% contaminant removal at the three flow rates specified was determined. The second approach predicted the percent contaminant removed when the treatment system area was conservatively estimated to be 2 acres. The first application of the design method yielded a required system area of 1.6 acres at an influent flow rate of 10 GPM, 7.7 acres at 50 GPM, and 15.7 acres at 100 GPM. The areas calculated were the same for all three influent concentrations examined. The results of the second design approach, assuming a 2-acre system, indicate 90% contaminant removal at 10 GPM, 40% removal at 50 GPM, and 28% removal at 100 GPM.

These results indicate that substantial contaminant removal can result from a constructed wetland of modest size. Since the design method was performed for total phenolics, the results should be viewed as conservative for less persistent hydrocarbons. As explained by Gelb, treatment of BTEX compounds using a system designed with total phenolics data would result in substantially greater contaminant removal. Also, the design

evaluated here considered only wetland treatment. Gelb observed greater contaminant removal when both overland flow and wetland treatment components were applied together.

Many system features and configurations may be used to enhance treatment system performance. Systems can be designed with open water surface flow, subsurface flow, or a combination of both. The particular strategy used will depend on whether aerobic or anaerobic reactions will facilitate the greatest contaminant removal.

Flow conditions through the system can be manipulated by the excavation of the site. Excavated baffles and wide channels cause flow to move in a sinuous pattern at low velocity, thus increasing hydraulic residence time. Narrow, rock-lined channels cause high flow velocities and turbulent mixing for gas transfer and contaminant stripping.

An overland flow component can be included to increase the dissolved oxygen content of the water or air strip volatile contaminants. The overland flow might take place upstream of the wetland to potentially remove toxic compounds, in the middle of the wetland to boost depleted dissolved oxygen levels, or prior to discharge to polish the effluent.

Soil amendments can be added at the time of construction to supplement deficient nutrients or encourage particular chemical reactions. Native plant species, appropriate for the regional climate and providing the best treatment environment, should be used to establish the wetland vegetation. Beaver Pond and the marsh area at Snowmelt Pond may be potential sources for acclimated transplants.

Based on site conditions and expected treatment performance, a constructed wetland is a feasible alternative for the treatment of hydrocarbon contamination present in the groundwater seeps of OU 5 and would be effective if the flow were limited. The exact flow and the number of seeps that could be effectively treated could only be estimated based on a treatability study.

Further evaluation of the seeps and the Snowmelt Pond site are recommended to better understand the application of this treatment method. The flow rates and contaminant concentrations of the seeps must be identified. Potential climate effects on a constructed wetland could be monitored at Beaver Pond. The particular plant species and microbes best suited for this application should be determined. Regulatory concerns and applicable permitting requirements for this site should be investigated. Additional work should be performed to evaluate the feasibility of intercepting and transporting seep flow to the treatment system.

Effectiveness

CERCLA CRITERIA SCORING RESULTS CONSTRUCTED WETLANDS AT SNOWMELT POND

Criterion	Sol
Protection of Human Health and the Environment	5
Compliance with appropriate ARARs	5
Long-Term Effectiveness and Permanence	3
Reduction in Toxicity, Mobility, and Volume through Treatment	3
Short-Term Effectiveness	3
Implementability	5

Protection of Human Health and the Environment. This alternative would be protective of human health and the environment. Seep water would be collected, thus reducing the potential for ecological impacts, and PCBs are isolated, which reduces the potential for exposure. Implementing this alternative would not impact the bluff stability. Some natural wetland in Snowmelt Pond would be dedicated to treat seep water. Fencing and netting may be needed to keep animals out of the wetland's treatment area. **Compliance with Appropriate ARARs.** This alternative will comply with potential contaminant and action-specific ARARs. An NPDES permit to discharge water from the wetland may be needed.

Long-Term Effectiveness and Permanence. For seep water, this alternative would be effective. However, the PCBs would be degraded very slowly by this alternative. The alternative would only be effective if the sediments always remained covered.

Reduction in Toxicity, Mobility, and Volume Through Treatment. This alternative would not actively treat the PCBs. However, the sheens would be actively treated in the wetland.

Short-Term Effectiveness. The treatment rates would be slower in the winter; otherwise, this alternative would be effective in the short term. There would be no secondary impacts from implementing this alternative.

Implementability. The only difficulty in implementation is that the Snowmelt Pond is not on Air Force property. An agreement will have to be reached with the railroad to allow access to construct and operate the wetland.

The site proposed is suitable for a constructed wetland. The land is available, is near the contaminated seeps and a receiving stream, and should remain undisturbed by other land use activities. The hydrologic setting appears to support hydric soil conditions and aquatic vegetation. Beaver Pond and the Snowmelt Pond marsh area provide two potential areas for vegetation transplants. The reported success of the ecosystem at Beaver Pond indicates that a wetland environment can survive and prosper in this climate and geographical location.

11.4 Sensitivity Analysis

The scores for the evaluation criteria assigned to each remedial action alternative are based on assumptions regarding the volume of contaminated soil and water to be managed, the anticipated type and concentration of contaminants to be controlled or treated, and the length of time required to implement the alternatives. The actual circumstances of the remediation can only be determined after treatability studies and pilot systems are constructed. The ranking of alternatives could change depending upon how sensitive the alternative is to changes in the assumptions made. This sensitivity analysis identifies how the effectiveness, implementability, and cost of each alternative is affected by the following changes:

- 50% increase in volume of soil or water to be treated;
- Order of magnitude increase in TFH concentrations in the soil or water;
- Order of magnitude increase in the concentration of chlorinated compounds in the water;
- Change the significant risk level from 10⁻⁶ to 10⁻⁵;
- Change the significant risk level from 10^6 to 10^4 ;
- Change the time required to implement the alternative from 30 years to 5 years; and
- Change the time required to implement the alternative from 30 years to 10 years.

The sensitivity of the alternatives to these factors is shown on Table 11-4. A discussion of the sensitivity is provided below.

Table 11-4

Sensitivity Analysis of Remedial Action Alternatives (By Medium)

	See lase	and Batraction	Wetness	Order of	Maguitada Barrad Ganzariradom	HAL #	Concentration	Munderle land of Statements	
	Effection and an	laukase Atany	J		langkanan takihiy	3	E.Keetive-	laupines. Labitity	Cont
WATER									
Natural Attenuation	No change	No change	No change	Reduced	No change	No change	Rednord effectivences	No change	No change
Institutional Controls	No change	No change	No change	No change	No change	No change	No change	No change	No change
Passive Extraction Constructed Wetland Treatment	No change	Rocknood Implement Initiky		Rahund	Ratural	30 8 00 10 10 10 10 10 10 10 10 10 10 10 10 1	No bager affective	Rochered implemen- tability	٧N
Passive Extraction Activated Carbon Treatment	No change	No change	11× 11	No change	No change	2415 CAR	No change	No change	44.6% 004 boose
Active Extraction, Air Stripping, Activated Carbon Treatment	No change	Rectaced implemen- tability	40 % OF	No change	No change		No change	No change	258 00
Air Sparging and SVE/Activated Carbon	No change	No change	38,5 cont Broncess	Rathord effectiveness	No change	320 % Com	No change	No change	19% cost increase
SOIL									
Natural Degradation	No change	No change	No change	Radianel El Bassive-	No change	No change	VN	VN	VV
Institutional Controls	No change	No change	No change	Reduced	No change	No change	٧N	٧N	NA
Excavation, Biopiling, Backfill	No change	Rathanat implement- ability	19 % cost burners	No change	No change	No change	٧N	۷۷	٧N
Bioventing	No change	No change	6% cost increase	No change	No change	No change	٧N	۷N	٧N

Table 11-4 (Continued)

		Base on 10 ⁴ Bisk			Base on 10 ⁴ Risk	
Alternative	Restrates	Emplemental bills	Cost	Billeritynmens	I suplement a titley	Cast
WATER						
Natural Attenuation	No change	No change	No change	No change	No change	No change
Institutional Controls	No change	No change	No change	No change	No change	No change
Passive Extraction Constructed Wetland Treatment	No change	No change	No change	No change	No change	No change
Passive Extraction Activated Carbon Treatment	No change	No change	No change	No change	No change	No change
Active Extraction, Air Stripping, Activated Carbon Treatment	Reduced affective-	Increased implementability	13% oost redusion	Radaced effective- name	Increased implements ability	100% dermae
Air Sparging and SVE/Activated Carbon	Returned affective- seas	Increased implementability	7% cost reducion	Radinaci effective next	lacreased inquanents ability	100% decrease
SOIL						
Natural Degradation	No change	No change	No change	No change	No change	No change
Institutional Controls	No change	No change	No change	No change	No change	No change
Excavation, Biopiling, Backfill	No change	No change	No change	No change	No change	No change
Bioventing	No change	No change	No change	No change	No change	No change

Table 11-4

(Continued)

					fant inpicaciation	
Abstractive	Effectiveness	i urgiananta hilito	Caet	Effectiveness	i ni olenenia hilio	Cast
WATER						
Natural Attenuation	No change	No change	66 % cost toductor	No change	No change	65% post reduction
Institutional Controls	No change	No change	63% cost reduction	No change	No change	42.5 and reducing
Passive Extraction Constructed Wetland Treatment	No change	No change	51% con reduction	No change	No change	33% and induction
Passive Extraction Activated Carbon Treatment	No change	No change	Soft cost reduction	No change	No change	37% ook reduction
Active Extraction, Air Stripping, Activated Carbon Treatment	No change	No change	61% cost reductos	No change	No change	39% con relation
Air Sparging and SVE/Activated Carbon	No change	No change	60% and reductor	No change	No change	39% cost reduction
SOIL						
Natural Degradation	No change	No change	ST & cost production	No change	No change	43.5 cos reduction
Institutional Controls	No change	No change	the seal relation	No change	No change	2.5 and metaling
Excavation, Biopiling, Backfill	No change	No change	10.5 and reducing	No change	No change	32.5 and radiation
Bioventing	No change	No change		No change	No change	365 con reduction

 Indicates alternative sensitive to the variable.
 Not applicable. ž

11.4.1 Sensitivity to a 50% Increase in Volume to be Treated

An increase in the groundwater and seep extraction rates will affect the treatment and effluent management requirements of alternatives with an extraction component. Generally, the effectiveness of the alternatives are not affected because the treatment technologies can be sized for the increased flow. However, implementability of extraction alternatives is affected because effluent management becomes more difficult with increased flows. The implementability of treatment with constructed wetlands is reduced because approximately 50% more land area would be needed to construct wetlands, and there may already be insufficient land space available for the anticipated flow. The implementability of the active extraction alternative is reduced because of the large volume of water that must be discharged. Reinjection of treated water is also less feasible with larger volumes because the shallow depth to groundwater downgradient of OU 5 provides little storage capacity in the vadose zone. Therefore, reinjection would have to be done over a large area south of OU 5. The adverse environmental impacts on existing wetlands from increased groundwater pumping will be increased because less flow will enter these wetlands.

An increase in the volume of contaminated soil should not affect the effectiveness of the remedial alternatives. An increase in soil volume will generally affect the implementability of the biopiling alternative because more widespread and potentially deeper excavation is required. As shown in Sections 9.0 and 10.0, the implementability of the excavation alternative will be affected by slope stability concerns and the potential that buildings, roads, and utilities will limit the extent of excavations. The implementability of in situ treatment options should not be affected.

Any increase in extraction rate and volume will increase costs for all alternatives other than the natural attenuation/degradation alternatives (it is assured that increased monitoring will not be required). The active extraction and excavation alternatives are most sensitive to volume changes because of the large treatment/disposal component of the alternatives.

11.4.2 Order of Magnitude Increase in TFH Concentrations

Increasing the TFH concentration of the soil or water reduces the effectiveness of the natural attenuation/degradation alternatives and the constructed wetland treatment alternative. The natural processes used by these alternatives will be less likely to reduce contaminant transport to human and environmental receptors. The natural attenuation and degradation processes will also require more time to achieve cleanup objectives; therefore, shortterm effectiveness is reduced because the time for potential exposure is increased. The effectiveness of those alternatives that have an active treatment component should not be affected because the treatment systems can be designed for the higher concentrations. The exception is air sparging with SVE, which may not be able to reduce the TFH concentrations to acceptable levels because of the increase in nonvolatile components.

Only the implementability of the constructed wetland treatment alternatives is reduced due to an increase in TFH concentration. More land area would be needed for the constructed wetlands because an increase in the retention time of the water in the wetland system would be required to achieve the cleanup goals.

An increase in TFH concentrations increases the cost of all alternatives except the natural attenuation/degradation alternatives. The cost increase is due either to increased carbon use or longer treatment times required to achieve cleanup levels. The active extraction alternatives are affected the most by an increase in TFH because of the higher extraction and treatment volumes.

11.4.3 Order of Magnitude Increase in the Concentration of Chlorinated Compounds

Chlorinated compounds are not contaminants of concern for the soil and increases in groundwater concentrations should not affect the soil alternatives.

An increase in the concentration of chlorinated compounds in the groundwater or seeps will decrease the effectiveness of the alternatives where biological processes reduce the concentration of the contaminants of concern. Because chlorinated compounds are broken down slowly by biological processes. The constructed wetlands alternative will no longer be effective since these high levels of chlorinated compounds do not allow the treatment biota to survive.

The effectiveness of air sparging alternative will not be affected because these compounds will remain at relatively low concentrations and the physical processes used to remove the compounds from the water will not be rate limited.

The implementability of the constructed wetlands alternative is reduced because larger wetlands would be needed for the increased retention time necessary to break down the higher concentrations of chlorinated compounds. Locating larger wetlands would be difficult since any constructed wetland must not interfere with the operations of the Air Force Base, and there is limited area available near the bluff area.

An increase in the concentration of chlorinated compounds increases the cost of all alternatives except for the natural attenuation alternative. The active extraction and air sparging with SVE alternatives are affected the most because of their high flow rates and the large percentage of the total cost that is represented by carbon costs.

11.4.4 Change Significant Risk Level from 10⁻⁴ to 10⁻⁵

The acceptable CERCLA range of risk is 1×10^4 to 1×10^6 . If the less conservative value of 10^{-5} is used instead of 10^{-6} , the volume of groundwater required to be remediated will decrease, since fewer areas have contamination that drive a 10^{-5} risk. Figure 11-21 indicates how the plume would shrink to represent 1×10^{-5} risk. The main change is that groundwater in central OU 5 would not be remediated because risk is at an acceptable (1×10^{-5}) level. The only remedial alternatives affected are active extraction and air sparging

11-76

Elmondorf AFB OU 5 RI/FS Report

of groundwater. All other alternatives remediate either seeps or soil, neither of which would not be affected by the change from 1×10^{-6} to 1×10^{-5} . Total air sparging costs for 1×10^{-5} would drop 7%. Active extraction costs would drop 13%. The only other change would be a slight decrease in effectiveness and increase in implementability, since the remediation would be a smaller system that would have less effect.

11.4.5 Change Significant Risk Level from 1 x 10⁻⁴ to 10⁻⁴

The change here has the same effect as 1×10^{-5} except that in this case no groundwater would require treatment, since no area of groundwater drives a 1×10^{4} risk. This would eliminate all costs of treating groundwater under the air sparging and active extraction alternative. Seeps would still have to be treated since these seeps cause ecological risks (e.g., visible sheens) that would not be affected by this change in health risk.

11.4.6 Change Implementation Time From 30 to 5 Years

In the alternatives analysis, it was generally assumed that a 30-year period would be required to achieve remediation objectives when implementation of each alternative began. Thirty years is commonly used in feasibility studies to compare alternatives. The actual time to achieve clean-up levels can vary, depending on the success of the treatment method employed. This analysis assumed that all remedial objectives can be achieved in five years. This assumes that no additional COCs in groundwater upgradient from OU 5 require treatment after the five-year period. This analysis also assumes no further need to monitor soil and groundwater after the five years. The analysis concluded a cost reduction of 49 to 68% for the alternatives. The savings is from reduced long-term monitoring costs. Also, alternatives with expensive O&M (active extraction) also have larger cost savings. Low monitoring and O&M alternatives have smaller cost savings.

11.4.7 Change Implementation Time From 30 to 10 Years

This analysis is the same as above except that 10 years instead of 5 years is selected for the treatment period. The cost reductions range from 32 to 45%. The relationship to monitoring and O&M are the same as above.

11.5 <u>Comparative Analysis</u>

The comparative analysis was performed in a three-step process:

- To help address the affected areas of impact at OU 5, the OU was divided into three geographic areas;
- The multi-media alternatives were developed for each area; and
- The multi-alternatives were evaluated and compared to each other using the CERCLA criteria.

While most multi-media alternatives are applicable to all three areas, some alternatives are not applicable to specific areas; and the cost for each alternative varies by area. Brief descriptions of the geographic areas are provided below.

11.5.1 Geographic Areas of OU 5

Evaluating the effectiveness, implementability, and cost of remedial alternatives depends upon the type and the physical setting of the contaminated media (soil, groundwater, or seeps) within the different geographic areas of OU 5. The OU can be roughly divided into three geographic areas, labeled Western, Central, and Eastern, as shown on Figure 11-22. Each of these areas are discussed below. While each of the geographic areas had soil, groundwater, and seep water to be remediated, the volumes and locations of the contaminated media are different within each area.

Elmondorf AFB OU 5 RI/FS Report

11-80

Western Area

The physical aspects of the Western Area include a steep bluff leading to a flat area just north of a railroad. The bluff shows signs of slope failure in the past. The industrial area is located immediately to the south of the railroad tracks. Ship Creek is located over 600 feet south of this area.

Groundwater impacts in this area result in an excess lifetime cancer risk of greater than $1 \ge 10^{-6}$ with the plume estimated to exceed 1,000 feet in width. There is also an area where hydrocarbons exceed soil clean-up levels, and where there are numerous seeps along the face of the bluff. Soil contamination exists at the 10- to 12-foot depth below the surface. The soil and groundwater contamination are collocated within the Western Area.

Central Area

Central OU 5 has features similar to the Western Area: a steep bluff with railroad tracks at the toe of the slope. The bluff shows signs of slope failure in the past. A snowmelt water retention pond is located in this area. Ship Creek is located approximately 250 feet south of the central part of the Central Area.

There are some seeps along the face of the bluff in the central part of this area (see Figure 11-22). A relatively small area of TFH contamination is found near the seeps. There are also two groundwater contaminant plumes with excess lifetime cancer risk greater than 1×10^{-6} within the Central Area. The groundwater contaminant plumes are relatively narrow compared to the Western Area and appear physically separated from the areas of soil contamination.

Eastern Area

Eastern OU 5 includes the beaver pond. The bluff in this area is more gently sloping than in the other areas. The area at the toe of the bluff is a wetland consisting of cascading ponds in the beaver pond area. Ship Creek is located approximately 50 feet south of the beaver pond.

In the Eastern Area, there are no areas where the TFH contamination in soil exceeds soil clean-up levels. Northeast of the beaver pond is an area where the groundwater contamination results in an excess lifetime cancer risk of greater than 1×10^6 . The plume is estimated to be in excess of 1,000 feet in width. There are also seeps at three locations along the bluff.

11.5.2 Multi-Media Alternatives Development

The water and soil alternatives have been combined into multi-media alternatives as shown in Table 11-5. This table was developed taking into consideration which individual alternatives would be applicable for each geographic area.

Western Area

All multi-media combinations, except one, are applicable to the Western Area, which has contaminant concerns for seeps, groundwater, and soil (10-to 12-foot depth). Air Sparging with Soil Vapor Extraction and Bioventing are not combined in the Western Area because the soil and groundwater contamination are collocated in this area. Air sparging provides the moisture and oxygen required by bioventing without additional cost or facilities, and vapor extraction will remove volatile contaminants from the soil before significant biological degradation can occur.

Table 11-5

Multi-Media Alternatives

Water A	Iternatives		proteining.	Soil Alternativ	*65	
Sceps	Groundwater	No Action	Natural Degradation	Natural Degradation with Institutional Controls	Excavation, Biopiling, and Backfilling	Bioventing
Natural Attenuation	Natural Attenuation	E	Baseline W,C	W,C	W,C	w,c
	Natural Attenuation with Institu- tional Controls	Е	W,C	W,C	w,c	w,c
Passive Extraction	Natural Attenuation	E	W,C	W,C	W,C	W,C
with Wetlands Treatment	Natural Attenuation with Institu- tional Controls	E	w,c	w,c	w,c	w,c
Passive Extraction,	Natural Attenuation	E	W,C	W,C	W,C	W,C
Activated Carbon Treat- ment	Natural Attenuation with Institu- tional Controls	Е	W,C	W,C	w,c	W,C
Air Sparging w Extraction and Treatment	ith Soil Vapor Activated Carbon	E	W,C	W,C	W,C	С
Extraction with and Activated (Air Stripping Jarbon Treatment	E	W,C	W,C	W,C	W,C

W = Western Area

C = Central AreaE = Eastern Area

Central Area

All multi-media combinations are applicable to the Central Area, which has contamination concerns for seeps, groundwater, and shallow soil (<10 feet BGS).

Eastern Area

Soil contamination was not identified as a contaminant concern in the Eastern Area; therefore, soil treatment alternatives are not applicable to this area.

11.5.3 Comparative Analysis

A comparative analysis of the media-specific alternatives is shown in Table 11-6. The relative numerical values for each of the first six criteria are shown; the seventh criterion, cost, expressed in millions of dollars, is shown separately for each geographic area. The numerical values were developed in Sections 11.3 which discussed the strengths and weaknesses of each alternative for remediation of water and soil.

Table 11-7 shows the comparison of all possible combinations of multi-media alternatives for each geographic area. As shown, the alternatives for seeps and groundwater apply to all three areas of OU 5. The soil alternatives only apply to the western and central areas. However, for comparative purposes, the analysis was performed for the eastern area using "no action" for the soils. The relative numerical values given for each of the seven criteria (except cost) are an average of the media-specific alternative values which have been combined. For instance, in Table 11-7, the score for protection of human health and the environment for the natural attenuation/degradation for seeps, groundwater, and soil (2) is an average of the seep (0), groundwater (3) and soil (3) scores. For costs, the total cost of the multimedia alternative was used to determine the ranking. The absolute value of cost (to within \$100,000) is shown next to each cost score. Table 11-6

Comparative Analysis for Media-Specific Remedial Alternatives

			Effectiveness Calver				చే	t (S Million	(*
B B B	Presiden of Market and Barketannen	Complement with ARAR	Leagues Decisions and Pressions		Short-term Effectivenen		Week	Central	jş
Oroundwater, Seepe, Surface Water Alternatives									
Natural Attenuation									
Seeps Groundwater	0 m	6 6	с с	00	0 m	s s	\$0.5 \$1.4	\$0.5 \$1.4	\$0.5 \$1.4
Natural Attenuation with Institutional Controls for Groundwater	e	s.	3	0	e	s.	\$1.5	\$1.5	\$115
Passive Extraction with Constructed Wetlands	s	S	Ś	Ś	v	£	\$ 0.7	\$0.7	\$0.7
Passive Extraction and Treatment Using Activated Carbon Treatment	S	S	Ś	s	S	s.	\$0.9	\$ 0.9	\$ 0.9
Air Sparging with Soil Vapor Extraction/Activated Carbon Treatment	۳١	Ś	S	\$	e.	en.	\$10.4	\$5.4	\$7.4
Extraction/Air Stripping/Activated Carbon Treatment	3	\$	\$	5	3	3	\$8.7	6 .5 \$	\$14.4
Soil Alternatives							84 V		
Natural Degradation		3	S	0	0	s	\$ 0.9	5 0.3	٧N
Natural Degradation with Institutional Controls	m	ũ	Ś	0	3	e	\$ 0.9	\$ 0.3	VN
Excavation/Biopiling/Backfilling	¢,	3	S	£	9	£	1.12	\$0.5	٧N
Bioventing	5	\$	5	5	3	3	\$1.1	\$ 0.5	NA

Criteria for Agency and Community Acceptance have not been evaluated at this time. These criteria will be evaluated in the Record of Decision. Notes:

Key:

 Meets or exceeds definition/intent of criteria.
 Partially meets definition/intent of criteria.
 Does not meet definition/intent of criteria. Criteria Except Cost 5 = Meeta or exce 3 = Partially meet 0 = Doea not mee

Table 11-7

Comparative Analysis for Multi-Media Remedial Alternatives

	Remodial Alt	aradive		EU	activeness C	ritoria			3	te		
stors	Part and a second se	Ilos	Protection of Human Health and the Environment	Compliance with ARARs	Long-term Effectiveness and Permanence	Reduction in Toxicity, Mobility, and Volume through Treatment	Effectiveness Short-term	l mplementa bility	Score	(smolilitvi) \$	store later	Cost Quoticat to
Nat Att	Nat Att	Nat Deg (W+C) No Action (E)	2 1.5	e e	3.7 3	00	- <u>.</u>	νv	8 = 3 5 = 5 5 = 5	2.8 2.2 1.9	17.7 17.7 17.0	3.5 4.4 4.7
Nat Att	Nat Att	Nat Deg, Inst Cont	2	e	3.7	0	7	6 ,4	V = 3 C = 3 E = NA	2.8	18.0 18.0	3.8 4.9
Nat Att	Nat Att	Biopiling	2	e	3.7	1	7	6 .4	V = 3 C = 3 E = NA	3.0	19.0 19.0	3.9 4.9
Nat Att	Nat Att	Bioventing	2.7	3.7	3.7	1.7	6	4 .3	V = 3 C = 3 E = NA	3.0	21.1 21.1	4.6 5.8
Nat Att	Nat Att Inst Cont	Nat Deg (W+C) No Action (E)	2 1.5	3.7 4	3.7 3	00	1.5	~~~	E C K	2.9 2.3 2.0	18.4 18.4 18.0	3.6 4.5 5.0
Nat Att	Nat Att Inst Cont	Nat Deg Inst Cont	7	3.7	3.7	0	7	4 .3	W = 3 C = 3 E = NA	2.9 2.3	18.7 18.7	3.9
Nat Att	Nat Att Inst Cont	Biopiling	7	3.7	3.7		7	4 6.	W = 3 C = 3 E = NA	3.1 2.5	19.7 19.7	4.0
Nat Att	Nat Att Inst Cont	Bioventing	2.7	4.3	3.7	1.7	7	4.3	V = 3 C = 3 E = NA	3.1 2.5	21.7 21.7	4 .6 8 .8

Eimendorf AFB OU 5 RI/FS Report

Table 11-7 (Continued)

	edial Alter	adte		Effe	activeness C	riteria			Š			
Groundwater		BPS	Protection of Haman Health and the Barironment add	Compliance with ARARs	Long-term Effectiveness and Dermanence	Reduction in Toxicity, Mobility, and Volume through Treatment	Sbort-term Effectiveness	Implementsbillty	Score	(enoilliiM) \$	store latoT	Effectiveness to Cost Quotient
N at	Ŧ	Nat Deg (W+C) No Action (E)	3.7	3.7 4	4.3 4	1.7 2.5	2.7	nn	К К П П П П П П	3.0 2.4 2.1	24.1 24.1 26.5	5.4 6.7 8.8
Nac	Att	Nat Deg (W+C) No Action (E) Inst Cont	3.7	3.7	4.3	1.7	3.7	3.7	W = 3 C = 3 E = NA	3.0 2.4	23.8 23.8	5.7 7.1
ž	t Att	Biopiling	3.7	3.7	4.3	2.7	3.7	3.7	W = 3 C = 3 E = NA	3.2 2.6	24.8 24.8	5.7 7.0
z	ıt Att	Bioventing	4.3	4.3	4.3	E.E	3.7	3.7	W = 3 C = 3 E = NA	3.2 2.6	26.6 26.6	6.2 7.7
	t Att t Cont	Nat Deg (W+C) No Action (E)	3.7 4	4.3 5	4.3	1.7 2.5	2.7	4.3	E = 3 E = 3	3.1 2.5 2.2	24.0 24.0 26.5	5.4 6.7 8.9
Z Z	at Att t Cont	Nat Deg (W+C) No Action (E) Inst Cont	3.7	4.3	4.3	1.7	3.7	3.7	W = 3 C = 3 E = NA	3.1 2.5	24.4 24.4	5.7 7.1
<u>Ž</u> Ž	at Att t Cont	Biopiling	3.7	4.3	4.3	2.7	3.7	3.7	V = 3 C = 3 E = NA	3.3 2.7	25.4 25.4	5.7 6.9
Ž Ž	at Att t Cont	Bioventing	4.3	Ś	4.3	6 .6	3.7	3.7	C = 3 C = 3 E NA	3.3	27.3 27.3	6.3 7.6

Table 11-7 (Continued)

Groundwater	IPS.	Protection of Human Health and the Environment	Compliance with ARARs	Long-term Effectiveness and Permanence	Reduction in Toxicity, Mobility, and Volume through Treatment	Effectiveness Short-term	Implementa bility	2005	(enoillilM) \$	Fotal Score	Effectiveness to Cost Quotient
ss Extrac Nat / stiv Carb	Att Nat Deg (W+C) No Action (E)	3.7 4	3.7	4.3 4	1.7 2.5	2.7	s n	G E E C E E C E E C E E C E	3.2 2.6 2.3	24.1 24.1 26.5	5.0 8.0 8.0
ss Extrac Nat / tiv Carb	Att Nat Deg (W+C) No Action (E) Inst Cont	3.7	3.7	4.3	1.7	3.7	4.3	W = 3 C = 3 E = NA	3.2 2.6	24.4 24.4	5.3 6.6
ss Extrac Nat / stiv Carb	Att Biopiling	3.7	3.7	4.3	2.7	3.7	4.3	V = 3 C = 3 E = NA	3.4 2.8	25.4 25.4	5.3 6.5
ss Extrac Nat / xiv Carb	Att Bioventing	4.3	4.3	4.3	3.3	3.7	4.3	W ≡ 3 C = 3 E = NA	3. 4. 8.	27.2 27.2	5.9 7.1
ss Extrac Nat / stiv Carb Inst C	Att Nat Deg (W+C) ont No Action (E)	3.7	4.3 5	4.3	2.5	2.7	~ ~	E = 3	3.3 2.7 2.4	24.7 24.7 27.5	5.1 6.2 8.1
ss Extrac Nat / stiv Carb Inst C	Att Nat Deg (W+C) ont No Action (E) Inst Cont	3.7	4.3	4.3	1.7	3.7	4.3	V = 3 C = 3 E NA	3.3 2.7	25.0 25.0	5.4 6.6
ss Extrac Nat / stiv Carb Inst C	Att Biopiling ont	3.7	4.3	4.3	2.7	3.7	4.3	V = 3 C = 3 E = NA	3.5 2.9	26.0 26.1	5.3 6.4
ss Extrac Nat / ctiv Carb Inst C	Att Bioventing ont	4.3	Ś	4.3	3.3	3.7	4.3	W = 3 C = 3 E = NA	3.5 2.9	27.9 27.9	5.9 7.1
ir Sparg Activ Ca oil Vap Ext	rb Trt Nat Deg (W+C) No Action (E)	4.3 5	4.3 S	8 N	3.3 5	3	3.7 3	W = -1 C = 1 E = 1	11.3 5.7 7.4	21.6 23.6 27.0	1.7 3.3 3.1

Table 11-7

(Continued)

							···	
	Effectiveness to Cost Quotient	1.8 3.5	1.8 3.5	8.9 3.9	1.8 4.2 1.5	1.9 4.3	2,0	2.2 4.9
	Total Score	21.9 23.9	22.9 24.9	NA 27.0	22.3 24.3 23.0	21.9 23.9	23.6 25.6	25.7 27.7
	(enoilliM) \$	11.3 5.7	11.5 5.9	8.9 5.9	9.6 4.2 14.4	9.6 4.2	9.8 4.4	9.8 4.4
3	Score	W = -1 C = 1 E = NA	W = -1 C = 1 E = NA	W = NA C = 1 E = NA	C = 3 C = 3 E = -1	W = 1 C = 3 E = NA	W = 1 C = 3 E = NA	W = 1 C = 3 E = NA
	lmplementability	e	ŝ	ę	3.7 3	n	ŝ	e
	Sbort-term Effectiveness	m	ŝ	e	3	e.	Ċ,	e
	Reduction in Toxicity, Mobility, and Volume through Treatment	3.3	4.3	Ś	3.3 5	3.3	4.3	\$
	Permanence Effectiveness and Permanence	Ś	Ś	Ś	~ ~	4.3	Ś	s
	Compliance with ARARs	4.3	4.3	Ś	4.3 5	4.3	4.3	\$
	Protection of Human Health and the Environment	6.4 C	4.3	Ś		e	n	3.7
	Uos	Nat Deg (W+C) No Action (E) Inst Cont	Biopiling	Bioventing	Nat Deg (W+C) No Action (E)	Nat Deg (W+C) No Action (E) Inst Cont	Biopiling	Bioventing
	Сгонифинст	Activ Carb Trt	Activ Carb Trt	Activ Carb Trt	Extract Air Strip Activ Carb	Extract Air Strip Activ Carb	Extract Air Strip Activ Carb	Extract Air Strip Activ Carb
	Sceps	Air Sparg Soil Vap Ext	Air Sparg Soil Vap Ext	Air Sparg Soil Vap Ext	Extract Air Strip Activ Carb	Extract Air Strip Activ Carb	Extract Air Strip Activ Carb	Extract Air Strip Activ Carb

Criteria for Agency and Community Acceptance have not been evaluated at this time. These criteria will be evaluated in the Record of Decision. **ค**ลค Notes:

The total score is the sum of the seven effectiveness, implementability and cost scores. The Effectiveness/Cost Quotient provides an indication of the benefit provided in relation to the cost of each alternative. The effectiveness numerator is the sum of the five effectiveness scores. The cost denominator is the total estimated cost of each alternative, in \$ million. The four top scores for effectiveness/cost quotient, for each area, have been highlighted along with the corresponding remedial alternative. Ŧ

Table 11-7 (Continued)

Key:	Criteria Excer 5 = Mecta 1.4 = Partial 0 = Doses	<u>A Cost</u> or excoods definition/intent of criteria. Iy meets definition/intent of criteria. do not meet definition/intent of criteria.	$\frac{Cost}{5} = <\$1.5 \text{ million}$ $3 = \$1.5 \text{ to } 5 \text{ million}$ $1 = \$5 \text{ to } 10 \text{ million}$ $-1 = >\$10 \text{ million}$
	×	= Western Area	
	с С	= Central Area	
	ш	= Eastern Area	
	Nat Att	= Natural Attenuation	
	Nat Deg	= Natural Degradation	
	Inst Cont	= Institutional Controls	
	Pass Ext	= Passive Extraction	
	Const Wets	= Constructed Wetlands	
	Activ Carb	= Activated Carbon	
	Air Sparg	= Air Sparging	
	Soil Vap Ext =	= Soil Vapor Extraction	
	Air Strip	= Air Stripping	
	Extract	= Extraction	
	۷V	= Not Applicable	

Elmendorf AFB OU 5 RI/FS Report

To aid in comparing alternatives, Table 11-7 also includes the total score and effectiveness to cost quotients for each multimedia alternative. The total score is the sum of the seven criteria scores. The effectiveness-to-cost quotient is the sum of the five effectiveness criteria divided by the total cost (in million dollars). The higher the cost quotient, the more cost effective the alternative. To assist in identifying preferred alternatives, effectiveness-to-cost quotients provide a qualitative comparison of the ability of the alternative to provide remediation versus the cost required to achieve the remedial goals. Although Protectiveness of Human Health and the Environment is a summary of long-term effectiveness, short-term effectiveness, and compliance with ARARs, it is used as a separate factor to emphasize the importance of the three individual factors. The EPA CERCLA Manual indicates that all nine criteria should be separately evaluated.

The multi-media alternatives (Table 11-7) are typically grouped into sets of four alternatives to aid in review of the information presented. Each grouping has a consistent set of seep and groundwater alternatives; only the soil alternative varies within the group.

11.5.4 Limitations of Comparative Analysis

The comparative analysis is limited by several assumptions. First, it assumes that all three pathways are of equal importance. Similarly, it assigns equal importance to each CERCLA criteria over another rather than trying to rank one above another. The analysis also does not quantify synergistic effects between combinations of soil, seep, and groundwater alternatives. Finally, the comparative analysis relies on the five subjective, not objective, scores for the balancing factors for each media-specific alternative.

The best overall remedial approach for OU 5 may not necessarily include the "best" or highest scoring remedial alternative for all three geographical areas. Ultimately, the Air Force, regulatory agencies, and the community must determine which alternative, or

set of alternatives, is most desirable based on effectiveness, implementability, acceptability, and cost.

11.5.5 Conclusion of Comparative Analysis

Below is provided a summary discussion of how each of the various alternatives rate for criteria, as well as for the "total score" and "effectiveness to cost quotients."

Protection of Human Health and the Environment. An important consideration for this criterion is that there are no current receptors exposed to groundwater. Notwithstanding this current setting, protection of human health and the environment scores are higher for alternatives that actively treat the water. Alternatives that do not provide for treatment of either seeps or groundwater score lowest because they do not provide protection from contact with seep contamination and because of the potential for discharge of contaminants from both seeps and groundwater to natural wetlands and Ship Creek. The use of institutional controls does not provide additional protection of human health and the environment. The use of passive extraction to collect seep water for treatment improves protection, although the method of treatment, wetlands versus activated carbon, does not effect protectiveness. Active groundwater treatment alternatives (i.e., air sparging with soil vapor extraction and extraction with air stripping) provide the highest levels of protection because they provide protection through interception and treatment of contaminants in both the seeps and groundwater. Similarly, the use of bioventing to treat all soil improves protection over the use of natural degradation or biopiling alternatives because bioventing should reduce contamination in all soil (both shallow and deep) to levels considered protective.

Compliance with Appropriate ARARs. Potential ARARs scores are higher for alternatives that either actively treat groundwater (and therefore seeps) or which provide institutional controls that limit use of groundwater. Alternatives that actively treat the groundwater, such as air sparging or extraction with air stripping, or that provide passive extraction of seeps and institutional controls to limit use of the groundwater, provide the highest level of compliance with potential ARARs. Some level of compliance with potential ARARs is achieved for those alternatives that treat seeps (e.g., passive extraction) but do not provide institutional controls for groundwater; these alternatives will reduce contaminant levels in seeps to acceptable levels. Similarly, those alternatives that do not treat seeps, but which provide institutional controls for groundwater, provide some level of compliance with potential ARARs because they limit use of the groundwater. Bioventing of soil improves compliance with potential ARARs for all alternatives because it should reduce contaminants in all soil to acceptable levels.

Long-Term Effectiveness and Permanence. These scores are all relatively similar, since all alternatives should be substantially effective in the long term. None of the alternatives is expected to produce toxic by-products, assuming carbon treatment alternatives use thermal regeneration to destroy contaminants collected by the carbon. Alternatives relying solely on natural attenuation and degradation processes may be the least effective because there may be insufficient residence time to successfully degrade the contaminants before discharge to natural wetlands and Ship Creek. The highest level of long-term effectiveness and permanence is achieved by those alternatives that actively extract and treat both groundwater and seeps.

Reduction in Toxicity, Mobility, and Volume through Treatment. Those alternatives that provide for active treatment of the groundwater and soil provide the greatest reductions in toxicity, mobility, and volume because all contaminant sources are treated; these alternatives will by their nature also treat the seeps. Those alternatives that only provide for treatment of seeps and soil are less effective at reducing the toxicity, mobility, and volume of the contaminants because contaminants in the groundwater are not actively treated. Alternatives that treat only seeps or soil, but not both, provide little reduction; while alternatives that rely on natural attenuation and degradation for all media, by definition, provide no reduction through treatment. Short-Term Effectiveness. Short-term effectiveness is primarily affected by whether water treatment is provided. Those alternatives that treat either the seeps or groundwater are effective in the short term because they will immediately begin to reduce the potential for contact with contaminated water. Providing either institutional controls or treatment for soil increases the short-term effectiveness. Alternatives that rely solely on natural attenuation and degradation for the water and soil are the least effective in the short-term because the potential for contact with contaminated media will remain.

Implementability. All alternatives should be implementable. Some reduction in implementability may occur for biopiling, bioventing, and wetlands treatment alternatives because the cold climate may reduce the ability to implement these alternatives during winter months. Alternatives that actively treat the groundwater may be difficult to implement due to reinjection system limitations.

Cost. Cost estimates are primarily affected by selection of water treatment alternative. Soil alternative treatment costs are negligible, compared to soil monitoring costs, since volumes are small. Alternatives that rely on natural attenuation for the seeps and groundwater are the least expensive; they are estimated from \$2.8 to \$3.0 million in the Western Area, and from \$1.9 to \$2.4 million in the Central and Eastern Areas. The use of passive extraction and activated carbon to treat seeps is estimated to increase costs by approximately \$0.4 million over the baseline cost in all areas; the additional costs are for construction of the extraction system and carbon usage. The use of passive extraction and constructed wetlands to treat seeps is estimated to increase costs by approximately \$0.2 million over the baseline cost in all areas; the additional costs are for construction of the extraction system and wetlands. This alternative has a major benefit in that the constructed wetlands already planned as the presumptive remedy for the Snowmelt Pond also serves as the remedy for treating all water from seeps. Since the Snowmelt Pond-constructed wetlands are included as a cost in every alternative, this greatly reduces overall costs for the constructed wetlands alternative. Alternatives that actively treat all groundwater are substantially more expensive, especially in the Western and Eastern Areas, because of the

11-94

larger volumes of water handled. Active extraction with air stripping and carbon treatment is estimated to increase costs over the baseline by \$6.8 million in the Western Area, \$12.5 million in the Eastern Area, and \$2.0 million in the Central Area. Air sparging with soil vapor extraction and activated carbon treatment is estimated to increase costs over the baseline by \$8.5 million in the Western Area, \$3.5 million in the Central Area, and \$5.5 million in the Eastern Area. The use of biopiling and bioventing to treat surface soil increases cost only slightly (<\$200,000) over the baseline of \$2.8 million in the Western Area.

Total Score. Total scores are primarily affected by the level of treatment provided and cost. Alternatives providing treatment of seeps and/or groundwater score higher than those which use natural attenuation; however, the higher cost of actively treating all groundwater tends to off-set the increased effectiveness of these alternatives. The use of bioventing to treat all soil also increases the total score substantially over natural degradation or biopiling alternatives because of increased effectiveness. The use of institutional controls for groundwater and soil, as well as biopiling of soil, provide only a marginal increase in total score.

Cost-Effectiveness. The effectiveness-to-cost quotients are primarily affected by increased effectiveness for treatment of seeps over natural attenuation, the difference in cost between activated carbon (cheaper) and constructed wetlands (more expensive) for treatment of seeps, and high costs for active treatment of groundwater; soil alternatives have less effect on the overall effectiveness-to-cost quotient. The highest quotients in all three areas of OU 5 are for alternatives that treat seeps using activated carbon. The increased effectiveness of treating seeps, using constructed wetlands over the use of natural attenuation, is partially offset by the increased cost. The high cost for active groundwater treatment alternatives in the Western and Eastern Areas, where there are large groundwater contaminant plumes, reduces the cost effectiveness of these alternatives when compared with all other alternatives. The Central Area has smaller groundwater plumes which require less cost to treat, resulting in active treatment being more cost effective than natural attenuation, but less cost effective than passive extraction of seeps. When selecting preferred alternatives, consideration should be given to including institutional controls. For groundwater, the use of institutional controls when selecting natural attenuation of the groundwater increases the cost effectiveness of all alternatives using natural attenuation or passive extraction of seeps. However, it is difficult to fully evaluate the cost for institutional controls. Currently the water is not used; providing a replacement water source should a future user arise could increase costs.

As with water alternatives, the use of institutional controls for soil provides an increase in the effectiveness-to-cost quotient because of the low estimated cost. The use of bioventing and biopiling appears to have a positive effect on the effectiveness-to-cost quotient since only a small area of soil contamination requires remediation.

Summary

While the purpose of this FS is not to recommend the "best" remedial alternative, an analysis of effectiveness/cost quotient can give an indication of the most promising alternatives. Below are indicated the four alternatives that sco.ed highest for each area, with their attendant effectiveness/cost quotients.

Western Area

Effectiveness/Cost Ouotient

- 6.3 Passive extraction with constructed wetlands for seeps/natural attenuation with institutional controls for groundwater/bioventing for soils.
 6.2 Passive extraction with constructed wetlands for seeps/natural attenuation for groundwater/bioventing for soils.
 6.2 Passive extraction with constructed wetlands for seeps/natural attenuation for groundwater/bioventing for soils.
- 3) 5.9 Passive extraction with activated carbon for seeps/natural attenuation with institutional controls for groundwater/bioventing for soils.
5.9 Passive extraction/activated carbon treatment for seeps, natural attenuation with institutional controls for groundwater, and bioventing for soil.

Central Area

Effectiveness/Cost Ouotient

- 1) 7.7 Passive extraction with constructed wetlands for seeps/natural attenuation for groundwater/bioventing for soils.
- 2) 7.6 Passive extraction with constructed wetlands for seeps/natural attenuation with institutional controls for groundwater/bioventing for soils.
- 3) 7.1 Four multimedia options tied, all of which include passive extraction with either constructed wetlands or activated carbon.

Eastern Area

Effectiveness/Cost Ouotient

1) 8.9 Passive extraction with constructed wetlands for seeps/natural attenuation with institutional controls for groundwater. 2) 8.8 Passive extraction with constructed wetlands for seeps/natural attenuation for groundwater. 3) 8.1 Passive extraction with activated carbon for seeps/natural attenuation with institutional controls for groundwater. 4) 8.0 Passive extraction with activated carbon for seeps/natural attenuation for groundwater.

In all three areas, the alternative using passive extraction of seeps with treatment by constructed wetlands scored highest. Constructed wetlands scored highest because the sunk cost of the presumptive remedy for the Snowmelt Pond (also a constructed wetlands), which is included as an element of each alternative, does not have to be included twice in this alternative. The use of institutional controls or natural attenuation for the groundwater and bioventing for the soil is also frequently indicated as a component of these higher ranking alternatives. These consistent approaches result because the current threats to human health and the environment are limited in OU 5 and because of assumptions used in the analysis of alternatives. Both groundwater and soil are not considered significant threats to human health because the groundwater is not currently used and because there is limited potential for contact with contaminated soil on base. In addition, the soil contamination is primarily a concern for groundwater contamination rather than a toxic threat to humans. Therefore, it is assumed that using institutional controls to prevent future uses of the groundwater and soil will provide the necessary protection and compliance with potential ARARs for these pathways. On the other hand, seeps pose a potential threat to vegetation on the bluffs, the wetlands south of OU 5, and serves as a potential pathway for human contact. This results in the selection of alternatives which treat seeps in order to be effective solutions.

Treatment of soil by either bioventing or biopiling (which scored just behind bioventing) is indicated as preferable to natural degradation or institutional controls for the Western and Central Areas. The relatively small volumes of soil make treatment costs low, compared to the high costs of on-going monitoring. The soil in the Central Area is likely more effectively treated by biopiling, since it is very close to the surface and easily excavated. The soil in the Western Area is deeper (10 to 12 feet deep) and may be more effectively biovented. A depth of 10–12 feet is borderline for easy excavation, especially in a bluff area. This may make excavation of the Western Area soils for biopiling difficult to implement.

Natural attenuation of seeps in the eastern area is preferable over constructed wetlands alternatives because of the demonstrated natural attenuation ability of the Beaver Pond. Also, though passive extraction is an implementable option in OU 5, it would be less implementable in the eastern area because of the close proximity of the Beaver Pond to the bluff. The scoring approach was based on applying the alternatives across the entire OU, so this localized difficulty of implementing passive extraction in the Beaver Pond is not totally reflected in the effectiveness to cost quotient.

As stated earlier, the evaluation of alternatives by using effectiveness/cost quotients cannot be relied on to select the "best" alternative due to the numerous assumptions made (e.g., assigning equal weight to each criteria). However, it can provide a useful cut of the more preferable alternatives. The remainder of the CERCLA process (i.e., Proposed Plan, agency/public input, and Record of Decision) will determine the preferred alternative.

12.0 REFERENCES AND BIBLIOGRAPHY

References

18 AAC 70. 1991. "Water Quality Standards." Alaska Administrative Code. Juneau, Alaska.

40 CFR 261. 1992. U.S. Environmental Protection Agency, "Identification and Listing of Hazardous Wastes: Subpart C-Characteristics of Hazardous Wastes." U.S. Code of Federal Regulations.

36 FR 22384. November 25, 1971. National Primary and Secondary Ambient Air Quality Standards. *Federal Register*.

45 FR 79318. November 28, 1980. Water Quality Criteria; Availability of Documents. *Federal Register*.

49 FR 5831. February 15, 1984. Water Quality Criteria; Availability of Documents. *Federal Register*.

50 FR 30784. July 29, 1985. Water Quality Criteria; Availability of Documents. Federal Register.

51 FR 22978. June 24, 1986. Water Quality Criteria; Extension of Public Comment Period. Federal Register.

51 FR 43665. December 3, 1986. Availability of Quality Criteria for Water 1986. Federal Register.

52 FR 6213. March 2, 1987. Water Quality Criteria; Availability of Documents. Federal Register.

53 FR 177. January 5, 1988. Water Quality Criteria; Availability of Documents. Federal Register.

53 FR 19028. May 26, 1988. Water Quality Criteria; Availability of Documents. Federal Register.

53 FR 33177. August 30, 1988. Water Quality Criteria; Request for Comments. Federal Register.

55 FR 19986. May 14, 1990. Ambient Water Quality Criteria. EPA. Federal Register.

Alaska Department of Environmental Conservation (ADEC). 1991. Interim Guidance for Non-UST Contaminated Soil Cleanup Levels. Guidance Number 001; Revision Number 1. ADEC, Juneau, Alaska.

Albers, P. H. 1991. Oil spills and the environment: A review of chemical fate and biological effects of petroleum. Pages 1-11. White, J.W., ed. The Effects of Oil on Wildlife. Sheridan Press, Hanover, Pennsylvania.

Albers, P. H., and M. L. Gay. 1982. Unweathered and Weathered Aviation Kerosene: Chemical Characterization and Effects on Hatching Success of Duck Eggs. Bull. Environ. Contam. Toxicol. 28:430-434.

Ambrose, A. M., P. S. Larson, and J. F. Borzelleca. 1976. Long-Term Toxicologic Assessment of Nickel in Rats and Dogs. J. Food Sci. Technol. 13:181-187.

Aughey, E., L. Grant, and B. I. Furman. 1977. The Effects of Oral Zinc Supplementation in the Mouse. J. Comp. Pathol. 87:1-14.

Azar, A., H. J. Trochimowicz, and M. E. Maxfield. 1973. Review of Lead Studies in Animals Carried Out at Haskell Laboratory: Two-Year Feeding Study and Response to Hemorrhage Study. In: Barth, D., A. Berline, and R. Engel (eds). Environmental Health Aspects of Lead: Proceedings, International Symposium. October 1972. Amsterdam, The Netherlands. Luxembourg: Commission of the European Communities. Pp. 199-210.

BEIA. 1989. The Installation Restoration Program Toxicology Guide. Volumes I-IV. BEIA Health and Safety Research Division, Oak Ridge National Laboratory.

Biomedical and Environmental Information Analysis. 1989. The Installation Restoration Program Toxicology Guide, Vol. 1, 2, 3, and 4. Oak Ridge National Laboratory. Prepared for Harry G. Armstrong Aerospace Medical Research Laboratory, Aerospace Medical Division, Air Force Systems Command, Wright-Patterson AFB, Ohio.

Black & Veatch. 1990. Installation Restoration Program, Stage 3, Remedial Investigation/ Feasibility Study, Elmendorf AFB, Alaska, Volumes 1 through 6. Prepared for Headquarters Alaskan Air Command, Elmendorf Air Force Base, Alaska.

Blaylock, A. D., V. D. Jolley, J. C. Brown, T. D. Davis, and R. H. Walser. 1985. Ironstress Response Mechanism and Iron Uptake in Iron-efficient and -Deficient Tomatoes and Soybeans Treated with Cobalt. J. Plant Nutr. 8:163-176.

Bodek, I., et al. (ed.). 1988. Environmental Inorganic Chemistry. Pergamon Press, New York.

Bouwer, H. 1989. "The Bouwer and Rice Slug Test—An Update," Ground Water, Vol. 17, No. 3, pp. 304-309.

Bouwer, H. and R. C. Rice. 1976. A Slug Test for Determining Hydraulic Conductivity of Unconfined Aquifers with Completely or Partially Penetrating Wells. *Water Resources Research.* Vol. 12, pp. 423-428.

Byron, W. R., G. W. Bierbower, and J. B. Brouwer. 1967. Pathological Changes in Rats and Dogs from Two-Year Feeding of Sodium Arsenite or Sodium Arsenate. Toxicol. Appl. Pharmacol. 10:132-147.

Canadian Council of Ministers of the Environment (CCME). 1991. Interim Canadian Environmental Quality Criteria for Contaminated Sites. Water Quality Branch, Environment Canada, Ottawa, Ontario.

Carey, A. E., and E. L. R. Barrett. 1990. A Summary of Background Concentrations for 17 Elements in North American Soils. Prepared for the Forest Service, U.S. Department of Agriculture. February.

Cederstrom, D. J., F. W. Trainer, and R. M. Waller. 1964. Geology and Groundwater Resources of the Anchorage Area, Alaska. U.S. Geological Survey Water Supply Paper 1773.

CH2M HILL. 1992a. Elmendorf Air Force Base, Alaska, Basewide Background Sampling Report. Prepared for U.S. Air Force, 21 CSG/DEEV, Elmendorf Air Force Base, Alaska, and Battelle EMO, Richland, Washington.

CH2M HILL. 1992b. Elmendorf Air Force Base, Alaska, Basewide Investigation Work Plan. Prepared for U.S. Air Force, 21 CSG/DEEV, Elmendorf Air Force Base, Alaska, and Battelle EMO, Richland, Washington.

CH2M HILL. 1992c. Elmendorf Air Force Base, Alaska, Ecological Survey. Prepared for U.S. Air Force, 21 CSG/DEEV, Elmendorf Air Force Base, Alaska.

CH2M HILL. 1992d. Elmendorf Air Force Base, Alaska, Management Plan Operable Unit 5. Prepared for U.S. Air Force, 3 SPTG/DEEV, Elmendorf Air Force Base, Alaska, and Battelle EMO, Richland, Washington.

CH2M HILL. 1992e. Elmendorf Air Force Base, Alaska, Final Operable Unit 4 LFI Report. Prepared for U.S. Air Force, 21 CSG/DEEV, Elmendorf Air Force Base, Alaska, and Battelle EMO, Richland, Washington.

CH2M HILL. 1991. "Standard Procedures for Logging of Soil Borings." Section 3 in *Technical Guidelines for the Geosciences*, Vol. 1.

Clarkson, T. W. 1979. Effects—General Principles Underlying the Toxic Action of Metals. Pages 99-117. Handbook on Toxicology of Metals. L. Friberg et al., ed. Elsevier/North-Holland Biomedical Press, New York.

Cousins, R. J., A. K. Barber, and J. R. Trout. 1973. Cadmium Toxicity in Growing Swine. J. Nutr. 103:964-972.

Dames & Moore. 1986. Installation Restoration Program, Phase II, Confirmation/ Quantification, Stage 1, Elmendorf Air Force Base, Alaska. Prepared for Alaskan Air Command, Elmendorf Air Force Base, Alaska.

Dames & Moore. 1988. Installation Restoration Program, Phase II, Confirmation/Quantification, Stage 2, Elmendorf AFB, Alaska. Final Report prepared for Alaskan Air Command, Elmendorf Air Force Base, Alaska, and Battelle EMO, Richland, Washington.

Dearborn, L., and G. Freethey. 1974. Water Table Contour Map, Anchorage Area, Alaska. U.S. Geological Survey Open-File Report. Anchorage, Alaska.

Department of Defense. 1991. User's Manual for the Defense Priority Model. Prepared by the Earth Technology Corporation. 1991.

Department of Environmental Conservation. (DEC). 1991. Alaska Water Quality Standards Workbook. DEC Water quality Management. Juneau, Alaska.

Dobrovolny, E. and R. D. Miller. 1950. Descriptive Geology of Anchorage and Vicinity, Alaska. U.S. Geological Survey Open-File Report.

Dobrovolny, E., and H. R. Schmoll. 1974. Slope Stability Map of Anchorage and Vicinity, Alaska. U.S. Geological Survey, Miscellaneous Investigations Map I-787E.

Dollarhide, J. S. 1992. Memorandum to Carol Sweeney, U.S. EPA Region 10, Subject: Oral reference doses and oral slope factors for JP-4 (CAS No. not identified), JP-5 (CAS No. not identified; similar to Kerosene, CAS No. 8008-20-6), diesel fuel (CAS No. 68334-30-5), and gasoline (CAS No. 8006-61-9) (AVGAS) (McChord AFB [Wash Rack/Treatment]/Tacoma, Washington), dated March 24. U.S. EPA Environmental Criteria and Assessment Office, Cincinnati, Ohio.

Doyle, J. J., W. H. Pfander, S. E. Grebing, and J. O. Pierce II. 1974. Cadmium Absorption and Cadmium Tissue Levels in Growing Lambs. J. Nutr. 104:160-166.

Drinker, K. R., P. K. Thompson, and M. Marsh. 1927. An Investigation of the Effect Upon Rats of Long-Continued Ingestion of Zinc Compounds, with Special Reference to the Relation of Zinc Excretion to Zinc Intake. Amer. J. Physiol. 81:284-306.

Earth Technology Corporation, The. 1991. User's Manual for the Defense Priority Model. For the Department of Defense, Washington, D.C. Eisler, R. 1988a. Arsenic Hazards to Fish, Wildlife, and Invertebrates: A Synoptic Review. U.S. Fish and Wildlife Service Biological Report 85 (1.12), Washington, D.C.

Eisler, R. 1988b. Lead Hazards to Fish, Wildlife, and Invertebrates: A Synoptic Review. U.S. Fish and Wildlife Service Biological Report 85 (1.14), Washington, D.C.

Eisler, R. 1987a. Mercury Hazards to Fish, Wildlife, and Invertebrates: A Synoptic Review. U.S. Fish and Wildlife Service Biological Report 85 (1.10), Washington, D.C.

Eisler, R. 1987b. Polycyclic Aromatic Hydrocarbon Hazards to Fish, Wildlife, and Invertebrates: A Synoptic Review. U.S. Fish and Wildlife Service Biological Report 85 (1.11), Washington, D.C.

Eisler, R. 1986. Chromium Hazards to Fish, Wildlife, and Invertebrates: A Synoptic Review. U.S. Fish and Wildlife Service Biological Report 85 (1.6), Washington, D.C. Eisler, R. 1985a. Cadmium Hazards to Fish, Wildlife, and Invertebrates: A Synoptic Review. U.S. Fish and Wildlife Service Biological Report 85 (1.2), Washington, D.C.

Eisler, R. 1985b. Selenium Hazards to Fish, Wildlife, and Invertebrates: A Synoptic Review. U.S. Fish and Wildlife Service Biological Report 85 (1.5), Washington, D.C.

Engineering-Science. 1983. Installation Restoration Program, Phase I Records Search, Elmendorf AFB, Alaska. Prepared for the U.S. Air Force, AFESC/DEV, Tyndall Air Force Base, Florida; and Alaskan Air Command, Elmendorf Air Force Base, Alaska.

Environmental Science & Engineering, Inc.; Harland Bartholomew & Associates, Inc.; and Aeromap US, Incorporated. 1991. *Elmendorf Air Force Base Comprehensive Plan*. Prepared for U.S. Air Force. F65501-86-C0089.

EPA (See U.S. Environmental Protection Agency.)

Erkama, J. 1950. Trace Elements in Plant Physiology. The Chronica Botanica Co. Waltham, Massachusetts.

Freethey, G. W., et al. 1976. Preliminary Report on Water Availability in the Lower Ship Creek Basin, Anchorage, Alaska. U.S. Geological Survey, Water Resources Division. Anchorage, Alaska.

Friberg, L. G., F. Nordberg, and V. B. Vouk. 1979. Handbook on the Toxicology of Metals. Elsevier/North-Holland Biomedical Press, New York.

Fry, D. M., R. Boekelheide, J. Swenson, A. Kang, J. Young, and C. R. Grau. 1985. "Long-term Responses of Breeding Seabirds to Oil Exposure." *Pacific Seabird Group Bulletin* 12:22. Fry, D. M., J. Swenson, L. A. Addiego, C. R. Grau, and A. Kang. 1986. "Reduced Reproduction of Wedge-tailed Shearwaters Exposed to Weathered Santa Barbara Crude Oil." *Arch. Environ. Contam. Toxicol.* 15:453-463.

Fry, D. M., And L. J. Lowenstine. 1982. "Insults to alcids: Injuries Caused by Food, by Burrowing, and by Oil Contamination." *Pacific Seabird Group Bulletin* 9:78-79.

Fry, D. M., and L. J. Lowenstine. 1985. "Pathology of Common Murres and Cassin's Auklets Exposed to Oil. Arch. Environ. Contam. Toxicol. 14:725-737.

Gelb, D. (1992) "Oilfield Produced Water Treatment Using Constructed Surface Flow and Wetland Systems." Master of Science thesis: Colorado School of Mines, 1992.

Ghosh, A. K., A. K. Shrivastava, K. Singh, and Y. R. Saxena. 1987. Iron Uptake and its Partitioning in Sugarcane as Affected by Manganese Concentrations. J. Nuclear Agric. Biol. 16: 73-77.

Gough, L. P., H. T. Shacklette, and A. A. Case. 1979. *Element Concentrations Toxic to Plants, Animals, and Man.* U.S. Geological Survey Bulletin 1466, Washington, D.C.

Grau, C. R., T. Roudybush, J. Dobbs, and J. Wathen. 1977. "Altered Egg Yolk Structure and Reduced Hatchability of Eggs From Birds Fed Single Doses of Petroleum Oils." *Science* 195:779-781.

Harding Lawson Associates. 1988a. Installation Restoration Program, Integrated Remedial Investigation/Feasibility Study, Quality Assurance Project Plan for Elmendorf AFB, Alaska. Prepared for Alaskan Air Command, Elmendorf Air Force Base, Alaska.

Harding Lawson Associates. 1988b. Installation Restoration Program, Integrated Remedial Investigation/Feasibility Study, Work Plan for Elmendorf AFB, Alaska. Prepared for Alaskan Air Command, Elmendorf Air Force Base, Alaska.

Hedtke, S. F., and F. A. Puglisi. 1982. Short-term Toxicity of Five Oils to Four Freshwater Species. Arch. Environ. Contam. Toxicol. 11:425-430.

Hejtmancik, M. A., A. C. Peters, and J. D. Toft. 1987a. The Chronic Study of Manganese Sulfate Monohydrate in F344 Rats. Report to National Toxicology Program, Research Triangle Park, North Carolina by Batelle Columbus Laboratories, Columbus, Ohio.

Hejtmancik, et al. 1987b. The Chronic Study of Manganese Sulfate Monohydrate in B6C3F1 Mice. Report to National Toxicology Program, Research Triangle Park, North Carolina by Batelle Columbus Laboratories, Columbus, Ohio.

Hue, N. V., R. I. Fox, and W. W. McCall. 1988. Chlorosis in Macadamia as Affected by Phosphate Fertilization and Soil Properties. J. Plant Nutr. 11: 161-173.

Elmondorf AFB OU 5 RI/FS Report

Ingles, L. G. 1965. *Mammals of the Pacific States*. Stanford University Press, Stanford, California.

Jacobs Engineering Group, Inc. 1992a. Operable Unit 1 Management Plan. Prepared for 3rd Wing/Environmental Management. Elmendorf Air Force Base, Alaska.

Jacobs Engineering Group, Inc. 1992b. Operable Unit 2 Management Plan. Prepared for 3rd Wing/Environmental Management. Elmendorf Air Force Base, Alaska.

Jacobs Engineering Group, Inc. In Association with Harding Lawson Associates. 1991. Installation Restoration Program (IRP), Stage 4, Sampling and Analysis Plan. Revision 1. Prepared for Headquarters, 11th Air Force, Elmendorf Air Force Base, Alaska. July.

James Montgomery Consulting Engineers, Inc., and Harza Environmental Services, Inc. 1988. Elmendorf AFB Restoration Project, Remedial Investigation: Field Activities and Data Analysis.

Volumes I and II. September.

Kabata-Pendias, A. and H. Pendias. 1992. Trace Elements in Soils and Plants. 2nd ed. CRC Press, Boca Raton, Florida.

Kapustka, L.A. and M. Reporter. 1991. "Evaluating Exposure and Ecological Effects with Terrestrial Plants. Proceedings of a Workshop for the U.S. Environmental Protection Agency Exposure Assessment Group, EPA Region 10, Seattle, Washington.

Klaassen, C. D., M. O. Amdur, and J. Doull, eds. 1991. Casarett and Doull's Toxicology: The Basic Science of Poisons. 4th ed. Pergamon Press, New York.

Kopp, S. J., T. Glonek, and H. M. Perry. 1982. Cardiovascular Actions of Cadmium at Environmental Exposure Levels. Science 217:837-839.

Kowalski, M. 1988. The Effect of Vanadium on Lung Collagen Content and Composition in Two Successive Generations of Rats. Toxicol. Lett. 41:203-208.

Krasovskii, G. N., and S. A. Fridlyand. 1971. Experimental Data for the Validation of the Maximum Permissible Concentration of Cobalt in Water Bodies. Hygiene Sanit. 36:277-279.

Larsson, P. 1984. "Transport of PCBs from Aquatic to Terrestrial Environments by Emerging Chironomids." *Environmental Pollution* (Series A) 34:283-289.

Leslie, L. D. 1989. "A Compilation of Long-Term Means and Extremes at 478 Alaskan Stations." *Alaska Climate Summaries*. Alaska Technical Note No. 5, 2nd ed., Arctic Environmental Information and Data Center, University of Alaska.

Lewis. R. J. Sr. 1992. Sax's Dangerous Properties of Industrial Materials. Eighth Edition. Van Nostrand Reinhold, New York.

Little, Arthur D., Inc. June 1987. The Installation Restoration Program Toxicology Guide. Vol. 3. Cambridge, Massachusetts.

Luckey, T. D., and B. Venugopal. 1977. *Metal Toxicity in Mammals, Vol. 1*. Plenum Press, New York.

Mackenzie, K. M. and D. M. Angevine. 1981. Infertility in Mice Exposed in Utero to benzo(a)pyrene. Biol. Reprod. 24:183-191.

Massie, H. R., and V. R. Aiello. 1984. Excessive Intake of Copper: Influence on Longevity and Cadmium Accumulation in Mice. Mech. Aging Dev. 26:195-203.

McFarland, H. N., et al. 1984. A Chronic Inhalation Study with Unleaded Gasoline Vapor. J. Amer. Coll. Toxicol. 3:231-248.

McGrath, E. A., and M. M. Alexander. 1979. Observations on the Exposure of Larval Bullfrogs to Fuel Oil. Pages 45-51. Transactions of the Northeast Section of the Wildlife Society.

McGrath, S. P., and S. Smith. 1990. "Chromium and Nickel." In *Heavy metals in Soils*, ed. B. J. Alloway. pp. 125-150. J. Wiley and Sons, Inc.

Miller, J. F. 1963. Probable Maximum Presipitation and Rainfall-Frequency Data for Alaska. U.S. Department of Commerce. Technical Paper 47.

Miller, R. D., and E. Dobrovolny. 1959. Surficial Geology of Anchorage and Vicinity, Alaska. U.S. Geological Survey Bulletin 1093.

Murphy R. L., S. Lal, and D. K. Saxena. 1981. Effect of Manganese and Copper Interaction on Behavior and Biogenic Amines in Rats Fed a 10 Percent Casein Diet. Chemical Biological Interaction 37:299-308.

National Academy of Sciences (NAS). 1980. *Mineral Tolerance of Domestic Animals*. Committee on Animal Nutrition, National Research Council, National Academy of Sciences, Washington, D.C.

National Oceanic and Atmospheric Administration (NOAA). 1990. Preliminary Natural Resource Survey Findings of Fact, Elmendorf Air Force Base, Alaska.

Nelson, G. L. 1982. Vertical Movement of Ground Water Under the Merrill Field Landfill, Anchorage, Alaska. USGS Open File Report 82-1016. U.S. Geological Survey, Anchorage. Nomiyama, K., C. Sato, and A. Yamamoto. 1973. Early Signs of Cadmium Intoxication in Rabbits. Toxicol. Appl. Pharmacol. 24:624-635.

Norton, G. A., E. L. DeKalb, and K. L. Malaby. 1986. "Elemental Composition of Suspended Particulate Matter from the Combustion of Coal and Coal/Refuse Mixtures." Environmental Science Technology Vol. 20(b):604-609.

O'Hara, P., V. Cole, and P. Willingham. 1985. Knik, Matanuska, Susitna: A Visual History of the Valleys.

Ohlendorf, H. M. 1989. Bioaccumulation and Effects of Selenium in Wildlife. Selenium in Agriculture and the Environment. L. W. Jacobs, ed. SSSA Special Publication No. 23, American Society of Agronomy and Soil Science Society of America, Madison, Wisconsin.

O'Neill, P. 1990. "Arsenic." In *Heavy Metals in Soils*, ed. J. J. Alloway. pp. 83-99. J. Wiley and Sons, Inc.

Patrick, L. D. et al. 1989. Simulation of Ground-Water Flow at Anchorage, Alaska, 1955-1983. USGS Water-Resource Investigation Report 88-4139.

Paustenbach, D. P., H. P. Shu, and F. J. Murray. 1986. A Critical Examination of Assumptions Used in Risk Assessment of Dioxin Contaminated Soil. Regl. Toxical. Pharmacol. 6:284-307.

Perry, H. M., M. W. Erlanger, and E. F. Perry. 1988. Increase in the Blood Pressure of Rats Chronically Fed Low Levels of Lead. Environ. Health Perspect. 78:107-111.

Plaskin, et al. 1989. Rapid Bioassessment Protocols (RBP) for Use in Streams and Rivers.

Poschentieder, C., M. D. Vazquez, A. Bonet, and J. Barcelo. 1991. Chromium III-Iron Interaction in Iron Sufficient and Iron Deficient Bean Plants. II. Ultrastructural Aspects. J. Plant Nutr. 14: 415-428.

Power, T., K. L. Clark, A. Harfenist, and D. B. Peakall. 1989. A Review and Evaluation of the Amphibian Toxicological Literature. Technical Report No. 61, Canadian Wildlife Service Headquarters.

Reimer, D. N. 1984. Introduction to Freshwater Vegetation. Department of Soils and Crops, Rutgers University, New Brunswick, New Jersey.

Robbins, C. T. 1983. Wildlife Feeding and Nutrition. Academic Press, New York.

Romanoff, A. L. 1972. Pathogenesis of the Avian Embryo. Wiley-Interscience, John Wiley & Sons, Inc., New York.

Elmendorf AFB OU 5 RI/FS Report

Rothe, T. C., et al. 1983. Natural Resource Inventory of Elmendorf AFB, Alaska. Prepared by the U.S. Fish and Wildlife Service for the U.S. Air Force, 21 CSG/DEEV, Elmendorf Air Force Base, Alaska. Sax, N. I. 1984. Dangerous Properties of Industrial Materials.

Scheuhammer, A. M. 1987. The Chronic Toxicity of Aluminium, Cadmium, Mercury, and Lead in Birds: A Review. *Environ. Pollut.* 46:263-295.

Schmoll, H. R. and E. Dobrovolny. 1972a. Generalized Geologic Map of Anchorage and Vicinity, Alaska. U.S. Geological Survey Miscellaneous Investigations Map I-787-A. Washington, D.C.

Schmoll, H. R. and E. Dobrovolny. 1972b. Generalized Slope Map of Anchorage and Vicinity, Alaska. U.S. Geological Survey Miscellaneous Investigations Map I-787-B.

Schroeder, H. A., J. J. Balassa, and W. H. Vinton, Jr. 1965. Chromium, Cadmium, and Lead in Rats: Effects on Life Span Tumors and Tissue Levels. J. Nutrit. 86:51-66.

Schroeder, H. A., and M. Mitchener. 1975a. Life-Term Effects of Mercury, Methyl Mercury, and Nine Other Trace Elements on Mice. J. Nutr. 105:452-458.

Schroeder, H. A., and M. Mitchener. 1975b. Life-Term Studies in Rats: Effects of Aluminum, Barium, Beryllium, and Tungsten. J. Nutr. 105:421-427.

Schroeder, H. A., M. Mitchener, and A. P. Nason. 1970. Zirconium, Niobium, Antimony, Vanadium and Lead in Rats Life-Term Studies. J. Nutrit. 100:59-68.

Selkregg, L. L. et al. 1972. Alaska Regional Profiles, Southern Region. University of Alaska Arctic Environmental Information and Data Center, Anchorage, Alaska.

Society of Environmental Toxicology and Chemistry (SETAC). November 3, 1991. Short course on Soil and Plant Toxicity Assessment. Seattle, Washington.

Sommers, D. A. and M. V. Mardner. 1965. Water Resources Appraisal of the Anchorage Area, Alaska. U. S. Geological Survey Open-file Report.

Thornwaite. 1968. Potential Evaporation and Climate in Alaska. For the U.S. Department of Agriculture.

Ulery, C. A., and R. G. Updike. 1983. Subsurface Structure of the Cohesive Faces of the Bootlegger Cove Formation, Southwest Anchorage, Alaska. Alaska Division of Geological and Geophysical Surveys Professional Report 84, 5 p.

USKH. June 12, 1992. Repair Underground Storage Tanks, Project Definition Phase, Elmendorf AFB. Prepared for U.S. Army Corps of Engineers, Alaska District, Anchorage, Alaska.

Underwood, E. J. 1977. Trace Elements in Human and Animal Nutrition, 4th ed. Academic Press, New York.

U.S. Air Force (USAF). 1991. Handbook to Support the Installation Restoration Program (IRP) Statements of Work. Volume 1—Remedial Investigation/Feasibility Studies (RI/FS). Prepared by IRP Division Staff, Human Systems Division, Brooks Air Force Base, Texas.

U.S. Army Corps of Engineers. 1991. Groundwater Monitoring Network, Fort Richardson, Alaska.

U.S. Army Corps of Engineers. 1979. Soils of the Anchorage Area, Alaska. Vol. 7. Metropolitan Anchorage Urban Study. Anchorage, Alaska.

U.S. Department of Commerce. 1963. Probable Maximum Precipitation and Rainfall Frequency Data for Alaska. Technical Paper 47.

U.S. Department of the Interior (USDI). June 13, 1990. Letter from Jonathan P. Deason, Director, Office of Environmental Affairs, to Michael Slater, Regional Project Officer, EPA Region 10, concerning Preliminary Natural Resources Survey of Elmendorf Air Force Base. Office of the Secretary, Washington, D.C.

U.S. Environmental Protection Agency (EPA). 1992a. Dermal Exposure Assessment: Principles and Applications, Interim Report. EPA/600/8-91/011B.

EPA. 1992b. Framework for Ecological Risk Assessment. Risk Assessment Forum, USEPA, Washington, D.C. EPA/630/R-92/001.

EPA. 1992c. Guidance on Risk Characterization for Risk Managers and Risk Assessors. Memorandum from F. Henry Habicht II, February 26, 1992.

EPA. 1992d. Health Effects Assessment Summary Tables: Annual Update 1992. Office of Emergency and Remedial Response.

EPA. 1992e. Integrated Risk Information System. Office of Research and Development. Cincinnati, Ohio.

EPA. 1992f. Supplemental Guidance to RAGS: Calculating the Concentration Term. Office of Solid Waste and Emergency Response. Publication 9285.7-081. Washington, D.C.

EPA. 1991a. Human Health Evaluation Manual, Part B: "Development of Risk-Based Preliminary Remedial Goals." Office of Solid Waste and Emergency Response. OSWER Directive 9285.7-01B.

EPA. 1991b. Human Health Evaluation Manual, Supplemental Guidance: Standard Default Exposure Factors. OSWER Directive No. 9285.6-03.

EPA. 1991c. Role of the Baseline Risk Assessment in Superfund Remedy Selection Decisions. OSWER Directive No. 9355.0-30.

EPA. 1991d. Supplemental Guidance for Superfund Risk Assessments in Region 10. USEPA, Seattle, Washington, August 23, 1991.

EPA. 1991e. Update on OSWER Soil Lead Cleanup Guidance. Memorandum from Don R. Clay.

EPA. 1991f. Health Effects Assessment Summary Tables. Annual Update. Office of Emergency and Remedial Response.

EPA. 1990. 40 CFR Part 300: National Oil and Hazardous Substances Pollution Contingency Plan, Proposed Role.

EPA. 1989a. Exposure Factors Handbook. Office of Health and Environmental Assessment. EPA/600/8-89/043.

EPA. 1989b. Risk Assessment Guidance for Superfund: Volume 1, Human Health Evaluation Manual, Part A, Interim Final. Office of Solid Waste and Emergency Response. EPA/540/1-89/002.

EPA. 1989c. Risk Assessment Guidance for Superfund: Volume II, Environmental Evaluation Manual. Office of Emergency and Remedial Response, EPA, Washington, D.C. EPA/540/1-89-001.

EPA. 1988a. Guidance for Conducting Remedial Investigations and Feasibility Studies Under CERCLA, Interim Final.

EPA. 1988b. Draft Laboratory Data Validation Functional Guideline for Evaluating Inorganics Analyses.

EPA. 1988c. Draft Laboratory Data Validation Functional Guideline for Evaluating Organics Analyses.

EPA. 1988d. Interim Sediment Values for Non-Polar Hydrophobic Organic Contaminants. U.S. EPA Office of Regulations and Standards, Criteria and Standards Division, Washington, D.C. SCD No. 17. EPA. 1988e. Thirteen-week Mouse Oral Subchronic Toxicity Study. Prepared by Toxicity Research Laboratories, Ltd., Muskegon, MI for the Office of Emergency and Remedial Response, EPA, Washington, D.C.

EPA. 1987a. Data Quality Objectives for Remedial Response Activities, Developmental Process. EPA/540/G-87/003.

EPA. 1987b Health Assessment Document for Beryllium. Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office. Research Triangle Park, North Carolina. EPA-600/8-84-026F.

EPA. 1986a. "Guidelines for Carcinogen Risk Assessment." Federal Register, Vol. 51 33992-34013.

EPA. 1986b. "Guidelines for Estimating Exposure." Federal Register, Vol. 51 34042-34005.

EPA. 1986c. "Guidelines for the Health Risk Assessment of Chemical Mixtures." Federal Register, Vol. 51 34014-34041.

EPA. 1986d. Quality Criteria for Water 1986. Office of Water Regulations and Standards. EPA/440/5-86-001.

EPA. 1986e. Superfund Public Health Evaluation Manual. Office of Emergency and Remedial Response. EPA/540/1-86/060. OSWER Directive 9285.4-1.

U.S. Geological Survey (USGS). 1981. Water Resources Data for Alaska Water Year 1980. USGS Water Data Report. AK-80-1. Anchorage, Alaska.

USGS. 1976. Water Resources Data for Alaska Water Year 1975. USGS Water Data Report. AK-75-1. Anchorage, Alaska.

Venugopal, B. and T. D. Luckey. 1978. Metal Toxicity in Mammals, Vol. II. Plenum Press, New York.

Verschueren, K. 1983. Handbook of Environmental Data on Organic Chemicals. Van Nostrand Reinhold, New York.

Wahrhaftig, C. 1965. *Physiographic Divisions of Alaska*. U.S. Geological Survey Professional Paper 482.

Waller, R. M. 1964. Hydrology and the Effects of Increased Ground-Water Pumping in the Anchorage Area, Alaska. Prepared in cooperation with the Alaska Department of Health and Welfare and the City of Anchorage. U.S. Geological Survey Water-Supply Paper 1779-D.

Weeks, J. B. 1970. The Relationship Between Surface Water and Groundwater in Ship Creek Near Anchorage, Alaska. U.S. Geological Survey Professional Paper 700-B, pp. B224-B226.

Wetzel, R. G. 1975. Limnology. Saunders College Publishing. Philadelphia, Pennsylvania.

Whitaker, J. O., Jr. 1980. The Audubon Society Field Guide to North American Mammals. Alfred A. Knopf, New York.

Wolfe, J. L., and R. J. Esher. 1981. Effects of Crude Oil on Swimming Behavior and Survival in the Rice Rat. Environ. Res. 26:486-489.

World Health Organization (WHO). 1989. Environmental Health Criteria 85: Lead-Environmental Aspects. World Health Organization. Geneva. 106 pages.

Yehle, L.A., and H. R. Schmoll. 1987a. Surficial Geological Map of the Anchorage B-7 NE Quadrangle, Alaska. U.S. Geological Survey Open-File Report 87-416.

Yehle, L. A., and H. R. Schmoll. 1987b. Surficial Geological Map of the Anchorage B-7 NW Quadrangle, Alaska. U.S. Geological Survey Open-File Report 87-168.

Yehle, L. A., and H. R. Schmoll. 1988. Surficial Geological Map of the Anchorage B-7 SE Quadrangle, Alaska. U.S. Geological Survey Open-File Report 88-381.

Yehle, L. A., and H. R. Schmoll. 1989. Surficial Geological Map of the Anchorage B-7 SW Quadrangle, Alaska. U.S. Geological Survey Open-File Report 89-318.

Yehle, L. A., H. R. Schmoll, and E. Dobrovolny. 1990. Geological Map of the Anchorage B-8 SE and Part of the Anchorage B-8 NE Quadrangles, Alaska. U.S. Geological Survey Open-File Report 90-238.

Yehle, L. A., H. R. Schmoll, and E. Dobrovolny. 1991. Geological Map of the Anchorage B-8 SW Quadrangle, Alaska. U.S. Geological Survey Open-File Report 91-143.

Bibliography

Edmisten, G. E. and J. A. Bantle. 1982. Bull. Environ. Contam. Toxicol. 29:392-399.

Hardin. B. D., et al. 1981. Testing of Selected Workplace Chemicals for Teratogenic Potential. Scand. J. Work Environ. Health. 7(suppl. 4):66-75.

National Library of Medicine. November 1992. Hazardous Substance Databank (CD-ROM Version). Micromedex, Inc., Denver, Colorado.

National Technical Information Services (NTIS). December 1990. Toxicological Profile for Total Xylenes. Agency for Toxic Substances and Disease Registry, Atlanta, Georgia. PB91-181552.

National Technical Information Services (NTIS). May 1989. Toxicological Profile for Benzene. Agency for Toxic Substances and Disease Registry, Atlanta, Georgia. PB89-209464.

National Institute for Occupational Safety and Health (NIOSH). 1973. Criteria for a Recommended Standard...Occupational Exposure to Toluene. DHEW Publication No. (HSM) 73-11023.

Prendergast, J. A., et al. 1967. Toxicol. Appl. Pharmacol. 10(2):270-289. As cited in TOXNET, Hazardous Substance Data Base.

Siegel, J. 1971. Toxicol. Appl. Pharmacol. 18:168-174. As cited in TOXNET, Hazardous Substance Data Base.

Syed, I. B., and F. Hosain. 1972. "Toxicity of Lesser-Known Metals to Laboratory Animals." Journal 22:150-152.

Appendix A

LABORATORY RESULTS ON POTABLE WATER SUPPLY FOR EQUIPMENT DECONTAMINATION

ROY F. WESTON INC.

INORGANICS DATA SUMMARY REPORT 08/21/92

CLIENT: ELMENDORF AFB OUI WORK ORDER: 0000-00-00-0000

WESTON BATCH #: 92085517

SAMPLE	SITE ID	ANALYTE	RESUL	T	UNITS	REPORTING LIMIT
-001	HYDRANT#1			z 2 te		
		Alundoum Totol	0.010	U	MG/L	0.010
		Alumanum, lotal	0.28		MG/L	0.20
		Arsenic, lotal	0.30	ų	MG/L	0.30
		Barium, lotal	0.10	U	MG/L	0.10
		Beryllium, Total	0.0050	u	NG/L	0.0050
		Calcium, Total	19.6	-	MG/L	1 0
		Cadmium, Total	0.0050	U	MG/L	0 0050
		Cobalt, Total	0.050	н	HG/I	0200.0
		Chromium, Total	0.010		HG/I	0.030
		Copper, Total	0.050	ŭ	MG/I	0.010
		Iron, Total	0.28		MG/I	0.050
		Mercury, Total	0 0010	45		
		Potassium, Total	5 0		MC/L	0.0010
		Magnesium, Total	2.0	ų	MC/L	5.0
		Manganese, Total		••		1.0
		Molyhdenum Total	0.015	u	1997 L.	0.015
_		Sodium Total	0.10	ų	.14/L	0.10
		Nickal Total	3.0		MG/L	1.0
		land Takal	0.040	U	MG/L	0.040
		Leeg, Iotal	0.050	ų	MG/L	0.050
		Antimony, lotal	0.060	u	MG/L	0.060
		Selenium, lotal	0.10	U	MG/L	0.10
		inaritum, Total	0.10	U	MG/L	0.10
		Vanadium, Total	0.050	u	MG/L	0.050
		Zinc, Total	0.066		MG/L	0.020

Note: Laboratory results for potable water supply used for equipment decontamination. HYDRANT #1 is the Elmendorf AFB fire hydrant located at intersection of Cedar and Prune Sts. Sampling was performed by Jacobs Engineering in August, 1992.

ROY F. WESTON INC.

INORGANICS DATA SUMMARY REPORT 08/21/92

CLIENT: ELMENDORF AFB OU1 WORK ORDER: 0000-00-00-0000

(

and the second second

•

At the second second

WESTON BATCH #: 92085517

					REPORTING
SAMPLE	SITE ID	ANALYTE	RESULT	UNITS	LIMIT
These	Ê ki za a FRN BRE ki za ze FRI B	₽₽₽≈≈≈≠₽€₩₩₩₽₽₽₩₩₽₽₽	###¥¥###	******	
-001	HYDRANT#1	Petroleum Hydrocarbons	1.1 U	MG/L	1.1

TEL:

RFM tch Number:	92085517	Ser Client: EL	mivelations by MENDORF	GC/MS, HSL List Nork	0rder: 0000-00-00-0000 0ate: 13:00	
)	Cust 10:	HYDRANT#1	SBLK	SBLK BS		
Sample Information	RFWF: Matrix: D.F.: Units:	001 KATER 1.00 ug/L	92SE1009-MB1 VATER 1.00 ug/L	925E1009-MB1 WATER 1.00 ug/1		
Surrogate 2 Recovery 2,4,6	Nitrobenzene-d5 -Fluorobiphenyl Terphenyl-d14 Phenol-d5 2-Fluorophenol -Tribromophenol	~ 69 6 9 6 9 6 9 6 9 6 9 6 9 6 9 6 9 6 9	55252 55252 55252 55252 55252 55252 5525 5555 5555 5555 5555 5555 5555 5555 5555	8862383 ******		TEL :
Phenol bis(2-Chloroethyl) 2-Chlorophenol 1,3-Dichlorobenzen 1,4-Dichlorobenzen Benzyl alcohol 1,2-Dichlorobenzen 2-Methylphenol bis(2-Chlorotsoprop	ethere ee py1)ether	22222222222222222222222222222222222222	>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>	6080400000 6080400000		
N-Nitroso-di-n-proj Hexachloroethane Nitrobenzene Isophorone 2-Nitrophenol 2.4-Dimethylohenol	pylandne	2222222	2000000	299999		Sep O1
Benzofc acid bis(2-Chloroethoxy 2,4-Dichlorophenol 1,2,4-Trichlorobenz Naphthalene	methane cene	222222	285555	992969 992969 992969 9929 9929 9939 9939		92 16:0
4-Chloroaniline Hexachlorobutadien 4-Chloro-3-methylpl 2-Methylnaphthalen Hexachlorocyclopen *= Outside of Advi:	e henol E tadiene sory limits.	>>>>> 22222	00000 00000 00000	10 C 57 C C 10 C		0 No.004 P.0
						03

.

T		2										* =		20		2	2)	2	2	2	ĸ	2	2	2	כ	×	2	2				5		0	2	7	9	2	its.		
92SE1009-HB	10	20	10	05	10		9		E A	5			54	10	01	01	50	20	01	91	10	6	01	01	10	01	15	0	20	0	9			2		9	2	9	01	Advisory 11m		
925E10 .HB1	10 U	2 2 2	10 U	50 U	N DI	10 01		50 0					10	10 01	10 C	D 07	50 C	50 U	10 N	70 N	10 N	50 U	N 01	10 0	10 N	D 01	10 U	10 N	20 N						7 OI	10 V	10 01	10 N	10 N	*= Outside of /		
100	10 1	20 C	10 01	50 U	10 N		10 1	20 11		> = 2 2 2	202		10	0	10 0	10 U	50 U	50 U	10 N	10 U	0 10	50 U	10 C	10 N	10 N	10 K	10 N	10 N	20 N							10 U	D	10 C	10 N	enylamine.		
RFW# :	2,4,6-Trichlorophenol	2.4.5-Trichlorophenol	2-Chloronaphthalene	2-Nitroaniline	Dimethylohthalate	Acenaphthylene	2.6-Dinttratoluene	3-Nitroaniline	Aronanhthene	2.4.Dinitronhandi	4.Nitrohonol	Dibenzofuran	2.4-Dinitrotaluene	Diethylphthalate	4-Chlorophenyl-phenylether	Fluorene	4-Nitroaniline	4,6-Dinitro-2-methylphenol	M-Nitrosodiphenylamine (1)	4-Bromophenyl-phenylether	Hexachlorobenzene	Pentachl orophenol	Phenanthrene	Anthracene	Di-n-butylphthalate	Fluoranthene	Pyrene	Buty benzy phtha ate	3, 3' -Dichlorobenzidine	Benzo(a) anthracene	Curysene	Dis(2-Ltnyinexyi)putnalate	Ul-n-octylphtnalate	benzo(b) 7 luoranthene	Benzo(k)†luoranthene	Benzo(z)pyrene	Indeno(1,2,3-cd)pyrene	Dibenz(a,h)anthracene	Benzo(g,h;i)perylene	(1) - Cannot be separated from Diphe		

•

i

• • • • • • • •

TEL:

				·
	VBLKA177 BS	925NA177-NB2	89 20 20 20 20 20 20 20 20 20 20 20 20 20	
	VBLCA177	925KA177-NB2	עיטיטיט גייס פיב גיב	
·	k Order: 0000-1 BASE TRIFFI	004 NSD	113 20 20 20 20 20 20 20 20 20 20 20 20 20	
	BASE TRIPAL	004 NS	9 02 05 0 0 5 0 8 8 8 8 8 8 8 8 8 8 8 8 8 8	
	BASE TRIPPI	004	~~~~~	
	Client: ELM HYDRANT#1	100	, , , , , , , , , , , , , , , , , , ,	
	IFW Batch Number: 92005517 Cust ID:	RFW#:	oluene chlorobenzene chylbenzene tyrene ylene (total) - Outside of Advisory limits.	

Sep 01 92 16:01 No.004 P.05

TEL:

		8	
		Date:	8
		ort	8-0
		Rep	8
			80
	ک		er: (
	ator		B
	abor.	st	X
	 8	ב ר	
	tyo	E.	
	Š	Ę	
(3	S
	Ľ	es b	F
	Ē	t I I	L L L L L L L L L L L L L L L L L L L
	lesto	Vola	
	<u>ک</u>		Ξ
	20		ent
			3

Ļ

•

(

RFW Batch Number: 920855	517	Client: ELN	olatiles by GC DOORF AFB OUL	MS, HSL List Mor	k Order: 0000-	Report Date: 00-00-0000	08/21/9. Pai
	Cust ID:	HYDRANT#1	BASE TRIPPI	BASE TRIPUL	BASE TRIPPI	VBLKA177	VIALKAU?
Sample Information	RFW#: Matrix: D.F.: Units:	001 NATER 1.00 ug/L	004 MATER 1.00 ug/L	004 MS WATER 1.00 Ug/L	004 NSD NATER 1.00 Ug/L	925MA177-MB2 WATER 1.00 ug/L	925MA177-NB2 VATER 1.00 Ug/L
Surrogate Bromoflue Recovery 1,2-Dichloro	[o] u ene -d8 o rob en zene oethane-d4	111 * 106 * 112 *	100 % 102 % 115 %	103 101 108 108 108 108 108 108 103 103 103 103 103 103 103 103 103 103	109 x 103 x 112 x	102 103 101 101	102 102 102 102
Chloromethane		10 0		10 0	10 N	10 0	10 N
Bromomethane		01 01	10 10 1	> 01	n 01	10 10	0 0 1
Vinyl Chloride			01				
Methylene Chloride		ם ם קיני קיני	S S S S S S S S S S S S S S S S S S S	17 8	19 8	9 U 2 U 7 C	17 8
Acetone		0 0 1	2	0 0	10 10	10 10) 0
Larvon Uisuiriue		20	2 2 2 2	103	112 %	0 0 19	106 4
1, 1-Dichloroethane		5 ý 2 í	5 S 2 S	2 <u>6</u> 2 :	5.5	200	5 ç
2-Chloroethylvinylether Chlomform		20 0	10	9 1 9	200	200	22
1, 2-Dichloroethane		ۍ ا ح	2	2	2	2	2
2-Butanone			9 - 1 0 - 1	0 0 1 2		01 10)
1,1,1-Iriculoroetnane Carbon Tetrachloride		0 10 C C C	2 2	ם כ	с с м м	с с п и	
Vinyl Acetate		10 0	10 01	10	10 0		10
Bromodich loromethane		ש בי ע ע		2 = 2) 1 1 1 1	א ה ב	5 2
cis-1, 3-Dichloropropene		כמ	20	20	9 D	20	2
Trichloroethene		יי סי	: * 1	7 *	75 %	9 : S 1	20 00 1
Ultromochioromethane		0 10 0 10	0 0 0 0	כ כ מי ח	с с 0 и 0	. 9 9	с с N N
Benzene		5 2 2	2: 2:	31 ⁻	90 74	2:	91 , x
trans-1,3-Dichloroproper Bromoform	Je	Ω Ξ	9 9 9 9	5 5 0 4	2 2 2		22
4-Methyl-2-pentanone		10 U	10	10 0	10 n	2 2 2	10 6
2-Hexanone		01 01		01 01	0 0 1	ລ: <u>ດ</u> ູ	a : 01
Tetrachloroethene	3	2 2 9 9	2 2 0 10	9 9 9 9	ר כ מי ש	0 0 0 0	
- Outside of Advisory	limits.	•			•	•	

TEL:

Sep 01 92 16:02 No.004 P.06 Appendix B

SOIL BORING LOGS

PROJECT	NUMBER
ANC 31026	.H3.60

BORING NUMBER 0U5SB-18

SHEET 1 OF 2

SOIL BORING LOG

PROJECT Elmendorf AFB - 005

LOCATION S.E. Corner of Corps Building/EAFB

ELEVATION ____

DRILLING CONTRACTOR Denali DRILLING METHOD AND CONTRACT HSA. B61 Mobile Drift Rig. 4.25" ID Augers

UNITEING WEIHOR AND FRANKEN!	TIGH, DOI HOURE DIR MIG, 4.2.5 ID AUGEIS
11 TTT 1 TUT - 34 2' OD 8/12/02	0/10/00 00/5

WATER	LEVEL	S <u>34.2</u>	on 8/12	/92	START 8/12/92 0815 FINISH 8/12/1	92 1600 LOGGER Rob Crotty
3Ê		SAMPLE		STANDARD	SOIL DESCRIPTION	COMMENTS
DEPTH BELC SURFACE (F	INTERVAL (FT)	TYPE AND NUMBER	RECOVERY (FT)	TEST RESULTS 6" -6" -6" -6" (N)	SOIL NAME, USCS GROUP SYMBOL, COLOR, MOISTURE CONTENT, RELATIVE DENSITY OR CONSISTENCY, SOIL STRUCTURE, MINERALOGY	DEPTH OF CASING, DRILLING RATE DRILLING FLUID LOSS TESTS AND INSTRUMENTATION
-	-	1-GRAB	NA	NA	ORGANIC MATERIAL (PT), to 2.0',SILI, (ML),light brown, dry, soft to firm, no dry strength, non plastic; ocassionally organics including rootlets, debris-filled cavities.	Note: No product odor from 0 to 35'. Strong product odor at 35'. HNu=190 ppm Cuttings collected and inspected from flights from 0 to 5'.
	5.0					
5.0 -	7.0	2-SH	2.0	7-24-14-23 (38)	From 5.0 to 11.1' <u>POORLY GRADED GRAVEL WITH SAND</u> , (GP), brown, dry becoming moist at 3.2', medium dense, subrounded gravel to 3'' diameter	
	•				with fine to medium subangular sand, trace nonplastic silt and occasional subrounded cobble and occasional organic layers to 1".	
	10.0				-	-
10.0	10.0	3-SH	1.8	34-26-20-22 (46)	From 11.1 to 16.0' <u>POORLY GRADED SAND</u> , (SP), brown, moist, medium dense, fine to coarse subangular cood with trace population cit	5SB18-10A is field duplicate of 5SB18-10.
-	12.0					
15.0 —	15.0				-	-
-	17.0	4-SH	2.0	14-46-55-72 (101)	From 16.0' <u>POORLY GRADED GRAVEL WITH SAND.</u> (GP). brown, moist, very dense, subrounded -	Increasing gravel fraction.
					gravel to 2" diameter, fine to medium subangular sand with trace non plastic silt, occasional coal seams to 2" thick. 	
	20.0					
20.0	22.0	5-SH	2.0	10-25-35-40 (60)	<u>POORLY GRADED GRAVEL WITH SAND</u> , (GP), same as above.	
					-	
	25.0				-	1 1
25.0 —	25.0	6-SH	2.0	23-44-63-69 (107)	POORLY GRADED GRAVEL WITH SAND, (GP), same as above.	
	27.0				-	-
					-	4
					-	
	30.0					

BORING NUMBER 0U5SB-18

SHEET 2 OF 2

SOIL BORING LOG

PROJECT Elmendorf AFB - 005

LOCATION S.E. Corner of Corps Building/EAFB

ELEVATION _____

____ DRILLING CONTRACTOR Denali DRILLING METHOD AND EQUIPMENT HSA, B61 Mobile Drill Rig. 4.25" ID Augers

WATER	LEVELS	34.2'	on 8/12	/92	START 8/12/92 0815 FINISH 8/12/1	92 1600 LOGGER Rob Crotty
3Ê-		SAMPLE		STANDARD	SOIL DESCRIPTION	COMMENTS
DEPTH BELO SURFACE (F	INTERVAL (FT)	TYPE AND NUMBER	RECOVERY (F1)	TEST RESULTS 6* -6* -6* -6 (N)	SOIL NAME, USCS GROUP SYMBOL, COLOR, MOISTURE CONTENT, RELATIVE DENSITY OR CONSISTENCY, SOIL STRUCTURE, MINERALOGY	DEPTH OF CASING, DRILLING RATE DRILLING FLUID LOSS TESTS AND INSTRUMENTATION
-	30.0 31.5	7-SH	1.5	62-90-100/6"	POORLY GRADED GRAVEL WITH SAND, (GP), same as above with occasional subround cobble to 4" diameter.	Split-spoon refusal encountered at 31.5', augered through it.
	35.0				Becomes wet at 34.2 '	Freewater encountered at 34.2'
-		8-SH	2.0	32-53-43-33	POORLY GRADED GRAVEL WITH SAND, (GP), same as above, gray, wet, hydrocarbon stain and sheen on gravel	reads 190 ppm.
-	37.0		<u>_</u>		END OF BORING AT 36.0'	grout mixed at a ratio of 0.5gal H20/11b. cement/.05lb. bentonite.
-	•				SH=2.5" sampler.	ORS oil/water interface probe usedno - free product.
40.0 —					-	
-					-	
					-	-
450					-	
-					-	
-					-	_
-						
50.0 —					-	_
-					-	
-						
-					-	-
55.0					-	-
_						
-						-
-	1					1

CHM HILL

_		
1	ROFCT	NUMBER
1.	NOVECT	NONDEN
1 4	NC31026	6 H3 60
	NC31026	6.H3.60

BORING NUMBER 0U5SB-19

SHEET 1 OF 2

SOIL BORING LOG

PROJECT Elmendorf AFB - 005

____LOCATION EAFB

ELEVATION _

DRILLING CONTRACTOR Denali OBILLING METHOD AND EDUTEMENT HSA. B61 Mobile Drill Rig. 4.25" ID Augers

ORILLING METHOD AND EQUIPMENT	HOA, BOT MODILE UTILI HIG, 4.25 ID AUGETS	

WATER	LEVELS	39.0	01 6/1	J/92	START 8/10/92 1015FINISH 8/11/9	2 1815 LOGGER HOD LIGITY
JE .		SAMPLE		STANDARD PENETRATION	SOIL DESCRIPTION	COMMENTS
DEPTH BELO SURFACE (1	INTERVAL (FT)	TYPE AND NUMBER	RECOVERY (FT)	TEST RESULTS 6" -6" -6" -6" (N)	SOIL NAME, USCS GROUP SYMBOL, COLOR, MOISTURE CONTENT, RELATIVE DENSITY OR CONSISTENCY, SOIL STRUCTURE, MINERALOGY	DEPTH OF CASING, DRILLING RATE DRILLING FLUID LOSS TESTS AND INSTRUMENTATION
-	2.5	I-SS	2.4	12-17-24-41 (41)	ORGANIC MATERIAL. (PT), to 0.1' From 0.1 to 2.0' SANDY SILT. (ML), light brown, dry, dense. nonplastic silt with very fine to medium sand; trace organics including rootlets and	HNu background=2 ppm Note: No product odor, HNu=1ppm, LEL=0%
	5.0	2-SH	2.5	24-67-73-65 (140)	cavities throughout. From 2.0 to 7.0' <u>SILTY GRAVEL WITH SAND.</u> (GM), light brown, dry becoming moist, dense to very dense; subrounded gravel to 2.0" diameter with oppolatic silt and very fine to redium	Increasing gravel fraction in cuttings. Note: Additional 0.5' material collected in sampler after driving and counting
		3-SH	2.4	6-29-37-51 (66)	subangular sand; trace organics including rootlets and cavities from 2.0 to 3.5 ft.	is driven 2.5".
	7.5	4-SH	2.5	15-27-35-40 (62)	brown, moist dense: subround gravel to 3.0" diameter with fine to coarse subangular sand and trace nonplastic silt. POORLY GRADED GRAVEL WITH SAND (GP)	Slight weathered hydrocarbon odor from 7.3 to 15.0'. HNu reads 12.0 ppm.
10.0 -	10.0	<u>с си</u>	<u>.</u>	4-36-89-100	same as above.	
	12.5 13.0	5-5н (6-5н	0.5	(125)	From 12.5 to 13.0'	Sampler refusal at 6" interval from 12.5
-	15.0				same as above with occasional subround cobble to 4" diameter.	HNu reads 3.0 ppm at 12.5' to 15.0'.
	17 5	7-SH	0.7	6-14-50-100 (64)	From 15.0' to 17.5' <u>POORLY GRADED GRAVEL WITH SAND</u> , (GP). same as above	HNu reads 20.0 ppm at 15.0° to 17.0°
-	17.5				No sample taken in 17.5' to 20.0' interval. -	Poor recovery from 15.0 to 17.5. Chasing a large cobble that is affecting recovery; therefore, 1. drill to 20.0' and begin drive, 2. Log cuttings from 17.5 to
20.0	20.0	8-SH	2.5	17-59-62-51 (121)	From 20.0' to 25.5' <u>POORLY GRADED SAND WITH GRAVEL.</u> (SP), brown, moist, very dense, medium to coarse subangular sand with subrounded gravel to 2" diameter, 1" coal lens at 21.2'.	20.0'.
	25.0	9-SH	2.5	16-29-31-50 (60)		
	27.5	10-SH	2.5	7-25-36-39 (61)	From 25.5' to 41.0 WELL GRADED SAND, (SW), brown, moist, medium dense, medium subangular sand with occasional subrounded gravet to 0.2" diameter and 1-2" coal lens.	
	30.0	11-SH	2.5	23-36-33-56 (69)	-	HNu reads 42.0 ppm at 27.5'to 30 0' Note. "Hit" could be due to coal.

BORING NUMBER 00558-19

SHEET 2 OF 2

SOIL BORING LOG

PROJECT Elmendorf AFB - OUS

__LOCATION EAFE

ELEVATION ___

DRILLING CONTRACTOR Denali

DRILLING METHOD AND EQUIPMENT HSA, B61 Mobile Drill Rig, 4.25" ID Augers 30 **0** /

WATER	LEVELS	39.0	on 8/1	0/92	START 8/10/92 1015 FINISH 8/11/9	92 1815 LOGGER Rob Crotty		
зĤ		SAMPLE		STANDARD	SOIL DESCRIPTION	COMMENTS		
EPTH BELO JRFACE (F	ITERVAL T)	YPE AND JMBER	ECOVERY T)	TEST RESULTS 6" -6" -6" -6"	SOIL NAME, USCS GROUP SYMBOL. COLOR, MOISTURE CONTENT, RELATIVE DENSITY OR CONSISTENCY, SOIL STRUCTURE, MINERALOGY	DEPTH OF CASING, DRILLING RATE DRILLING FLUID LOSS TESTS AND INSTRUMENTATION		
ភ្ល	<u>≍</u> ≞ 30.0	μž	8 F					
-	32.5	12-SH	2.5	6-16-32-50 (48)	<u>WELL GRADED SAND</u> , (SW), same as above. - -	-		
-	35.0	13-SH	2.5	12-13-32-56 (45)	W <u>ELL GRADED SAND</u> , (SW), same as above			
35.0 -	37.5	14-SH	2.5	12-16-16-22 (32)	WELL GRADED SAND, (SW), same as above.	Note: Change to 300 lb. hammer drive		
-	40.0	15-SH	2.5	10-12-12-20 (24)	<u>WELL GRADED SAND,</u> (SW), same as above, becomes wet at 39.0°. -	Free water encountered at 39.0		
40.0	42.5	16-SH	2.5	7-10-11-17 (21)	From 41.0' to 45.0' <u>POORLY GRADED SAND WITH GRAVEL</u> , (SP). Drown, wet, medium dense, medium to coarse subround sand with subangular gravel to 0.4" diameter, occasional			
-	45.0	17-SH	2.5	13-26-27-39 (53)	fractured coal particles throughout.	Potable water added to HSA center rod annulus to counteract heave for 17-SH.		
45.0	47.5	18-SH	2.5	6-13-24-32 (37)	From 45.0' to 51.5' <u>POORLY GRADED SAND WITH GPAVEL</u> , (SP), brown, wet, medium dense, medium to coarse subangular sand with trace subround gravel to 0.3" diameter,	Again, potable water added to HSA/center rod annulus to counter heave in 18-SH.		
-	50.0	19-SH	2.5	16-20-37-30 (57)	throughout			
- 50.0	52.5	20-SH	2.5	8-10-12-16 (22)	From 51.5' to 52.5' <u>SILTY CLAY,</u> (CL/ML), olive gray, dry to wet, fat clay with slightly plastic silt, thixotropic.	Bootlegger cove formation. 		
-					END OF BORING AT 52.5'	End of boring at 52.5° Grouted back 8/12/92.		
55.0 — - -					-			
-					-			

SOIL BORING LOG

PROJECT Elmendorf AFB - 005

LOCATION Operable Unit 5 EAFB

ELEVATION _____

DRILLING CONTRACTOR Denali

ORILLI	ORILLING METHOD AND EQUIPMENT HSA. B61 Mobile Drill Rig.4.25" ID Augers							
WATER	LEVELS	35.2	on 8/6	/92	START 8/6/92 0956 FINISH 8/6/9	2 1750 LOGGER Rob Crotty		
зÊ		SAMPLE		STANDARD PENETRATION	SOIL DESCRIPTION	COMMENTS		
DEPTH BELC SURFACE (F	INTERVAL (FT)	TYPE AND NUMBER	RECOVERY (FT)	TEST RESULTS 6" -6" -6" -6" (N)	SOIL NAME, USCS GROUP SYMBOL, COLOR, MOISTURE CONTENT, RELATIVE DENSITY OR CONSISTENCY, SOIL STRUCTURE, MINERALOGY	DEPTH OF CASING. DRILLING RATE DRILLING FLUID LOSS TESTS AND INSTRUMENTATION		
-	2.0	1-SS		4-6-18-26 (24)	ORGANIC MATERIAL AND PEAT, (PT), to 0.4. From 0.4' to 20.0' SILT, (ML), light brownish buff, dry, medium stiff, nonplastic.	HNu background = 2ppm -		
-						Drilling action becomes harder. Gravel in cuttings.		
50 -	5.0							
-	7.0	2-SS		24-24-36-17 (60)	From 5.0' to 7.0' <u>SILTY GRAVEL WITH SAND</u> , (GM), dark brown, moist, medium dense to dense, subround gravel to 3.0" diameter with medium to coarse subangular sand, trace nonplastic silt			
-						-		
10.0 -	10.0	3-SH	0	10-15-i6-17 (31)	From 10.0' to 12.0' <u>POORLY GRADED GRAVEL WITH SAND</u> , (GP), dark brown, moist, medium dense to dense, subround gravel to 3.0" diameter with			
-	13.0	4-SH	1.0	20-26-107/0"	nonplastic silt.	OVM reads 5.0 ppm at 12.0' to 14.0'.		
-	13.0				From 12.0' to 13.0' - <u>POORLY GRADED GRAVEL WITH SAND</u> (GP). same as above	-		
15.0	15.0				From 15.0' to 17.0'	_		
-	17.0	5-SH		36-24-27-28 (51)	POORLY GRADED GRAVEL WITH SAND, (GP), same as above.			
-						-		
-	20.0					-		
- 20.0	22.0	6-SH	2.0	4-47-49-54 (96)	From 20.0' to 21.0' <u>POORLY GRADED SAND</u> , (GP), same as above.	HNu = 1 ppm at 1130 OVM reads 2.0 ppm at 20.0' to 22.0'		
	22.0				From 21.0' to 22.0' <u>POORLY GRADED SAND</u> , (SP), brown, moist, very dense, medium to coarse subsubangular sand with occasional	-		
-	or 0				subangular gravel to 0.4" diameter. Coal seam from 20.5' to 20.8'.			
25.0	25.0				From 25.0' to 27.0'	OVM reads 2.0 ppm at 25.0' to 27.0'		
-	27.0	7-SH		20-70-77-84 (147)	POORLY GRADED SAND, (SP), same as above.	-		
	29.0	8-SH		72-89-77-80 (166)	From 27.5' to 29.0' <u>POORLY GRADED SAND WITH GRAVEL</u> , (SP). brown, moist, dense becoming very dense, medium to coarse subround sand with			
					subround gravel to 2" diameter, coal seam at 28,7" to 29,0".			

BORING NUMBER 00558-20

SHEET 2 OF 2

SOIL BORING LOG

PROJECT Elmendorf AFB - OUS

LOCATION Operable Unit 5 EAFB

ELEVATION ____

DRILLING CONTRACTOR Denali

DRILLING METHOD AND EQUIPMENT HSA, B61 Mobile Drill Rig.4.25" ID Augers

у
RATE
-
5.2'.
-
-
-
-
-
-
-

					PROJECT NUMBER	BORING NUMBER
CHM	HILL				ANC31026.H3.60	OU5SB-21 SHEET 1 OF 2
					SOI	L BORING LOG
ROJEC	Eime	ndorf A	FB - 0	U5	10	CATION SW of EAFB Power Plant
	TION				DRILLING CONTRACTOR Denali	
RILLI			D EQUI	PMENT HSA, B6	1 Mobile Drill Rig, 4.25" ID Augers	
ATER	LEVELS	<u>33.8 '</u>	on 8/1	2/92	START 8/12/92 1700 FI	NISH 8/13/92 1705 LOGGER Rob Crotty
зÊ		SAMPLE		STANDARD	SCIL DESCRIPTION	COMMENTS
	L L	ç	RY	TEST	SOIL NAME, USCS GROUP SYMBOL, CO	
H H	RV I	E AN BER	OVE.		MOISTURE CONTENT, RELATIVE DEN OR CONSISTENCY, SOIL STRUCTURE.	SITY DEFTH OF CASING, DRILLING RATE DRILLING FLUID LOSS
SUR	IN I	T Y PE NUM	FT)	(N)	MINERALOGY	TESTS AND INSTRUMENTATION
-	2.5	1-SH	1.9	12-23-30-32 (53)	ORGANIC MATERIAL. (PT), to 0.2'. From 0.2 to 8.2 POORLY GRADED GRAVEL WITH SAN brown, moist, medium dense, subroun gravel to 2" diameter with fine to mi subpondar sand and trace populat	Additional 0.5' collected in drive afte driving and counting blows for 2.0'. Each sampler contains a 2.5 foot driv ded edium is sit
-		2-SH	1.8	48-32-34-30 (66)		
5.0 —	5.0					OVM reads 3.0 ppm at 5.0' to 7.5'
-		3 611		39-22-22-18		
-		J-2H	1.0	(44)		
	7.5					OVM reads 10.0 ppm at 7.5' to 10.0'
-	1 •	4-SH	20	8-15-16-20	From 8.2' to 11.0'	
-	1		2.0	(31)	SAND (GP-GM), brown, moist, medium	
10.0 —	10.0				with fine to medium subangular sand	and
-	1	5-SH	2.0	11-12-11-10	From 11.0' to 16.0'	-
-	12.5			(23)	SILT WITH GRAVEL, (ML), brown, dry moist, very stiff, low to no dry stren	/ to
-					nonplastic, occasional subangular gi to 0.1" diameter, loess.	ravel OVM reads 30.0 ppm at 12.5' to 15.0'
-		6-SH	2.0	3-8-9-0		
16.0 _	15.0			(,,,,,		
13.0						OVM reads 3.0 ppm at 15.0' to 17.5'
-	1	7-SH	0.7	6-8-10-12 (18)	From 16.0' to 18.0' <u>SILTY GRAVEL</u> (GM), brown, moist.	1
-	17.5			L	subround gravel to 0.5" diameter will dry strength, nonplastic silt.	th low -
-	1				From 18.0' to 25.5'	4
-	4	8-SH	2.0	(49)	POORLY GRADED GRAVEL WITH SAN brown, moist, medium dense, subandi	ID. (GP). ular to
20.0	20.0				round gravel to 2" diameter with me subangular sand and trace nonplast	dium OVM reads 7.0 ppmat 20.0' to 22.5'
-				17-28-33-40	occasional coal seam to 2" thick.	Note: High OVM reading at 20.0 ' to 2 possibly due to coal.
_		a-2H	1.5	(61)		
	22.5					
-	1	10-54	13	33-32-53-43		1
-	1 25 0			(85)		
25.0 —	25.0	<u> </u>				
-	{	11-SH	2.0	12-26-50-52	From 25.5 to 30.5 POORLY GRADED SAND, (SP), light b	rown,
-	27.5			(76)	moist, dense, uniform medium subang sand, occasional coal lens to 0.5" t	jular hick. –
-		<u> </u>		t		4
-		12-SH	2.0	11-35-52-56		
_	1	1	1	1 (0/)		

 \wedge

BORING NUMBER 00558-21

SHEET 2 OF 2

SOIL BORING LOG

PROJECT Elmendort AFB - 005

LOCATION SW of EAFB Power Plant

ELEVATION ___

DRILLING CONTRACTOR Denal

ORILLI	RILLING METHOD AND EQUIPMENT HSA, B61 Mobile Drill Rig, 4.25" ID Augers							
WATER	LEVELS	33.8	on 8/12	2/92	START 8/12/92 1700 FINISH 8/13/9	2 1705 LOGGER Rob Crotty		
æÊ		SAMPLE		STANDARD	SOIL DESCRIPTION	COMMENTS		
DEPTH BELC SURFACE (F	INTERVAL (FT)	TYPE AND NUMBER	RECOVERY (FT)	TEST RESULTS 6* -6* -6* -6* (N)	SOIL NAME, USCS GROUP SYMBOL, COLOR. MOISTURE CONTENT, RELATIVE DENSITY OR CONSISTENCY, SOIL STRUCTURE, MINERALOGY	DEPTH OF CASING, DRILLING RATE DRILLING FLUID LOSS TESTS AND INSTRUMENTATION		
	30.0 32.5	13-SH	2.0	12-35-50-57 (85)	From 30.5'to 33.8' Interlayered <u>POORLY GRADED SAND WITH</u> - <u>GRAVEL</u> , (SP), brown, moist, very dense, uniform medium subangular sand, gravel is - subround to 2" diameter.	OVM reads 4.0 ppm at 32.5' to 35.0'		
- 35.0 —	35.0	14-SH	2.0	15-23-30-31 (53)	From 33.8' to 36.0 <u>-</u> <u>POORLY GRADED SAND WITH GRAVEL</u> (SP) same as above, except becomes wet at	Freewater encountered at 33.8'.		
-	37.5	15-SH	2.0	30-25-30-40 (55)	From 36.3' to 46.0' P <u>OORLY GRADED SAND.</u> (SP), brown, wet, dense, medium to coarse subangular sand.			
-	40.0	16-SH	2.0	43-31-50-51 (81)	-			
40.0	425	17-SH	2.0	23-30-33-35 (63)		OVM reads 9.0 ppm at 40.0' to 42.5'.		
-	42.5	18-SH	2.0	3-38-30-47 (68)	- -	OVM reads 10.0 ppm at 42.5' to 45.0'. -		
45.0	45.0	10-54	10	24-100/6"	-	-		
-	46.0 47.5	19-21	1.0		From 47.5° to 48.0° <u>POORLY GRADED SAND</u> , (SP) same as above.	Split-spoon sampler refusal at 46.0'. OVM reads 3.0 ppm at 45.0' to 46.0'. Bootlegger cove formation.		
-	50.0	20-SH	2.0	26-40-55-100 (95)	From 48.0° to 50.0° <u>SILTY CLAY</u> (CL), olive gray, moist to wet. hard.	No nee product encountered.		
50.0 — - -	50.0				END OF BORING AT 50'	-		

PROJECT NUMBER

BORING NUMBER

SHEET 1 OF 1

SOIL BORING LOG

PROJECT ELMENDORF AFB IRP OUS

LOCATION ANCHORAGE, ALASKA

ELEVATION ____

DRILLING CONTRACTOR DENALI DRILLING

ORILLING METHOD AND EQUIPMENT MOBILE DRILL 8-61, TRUCK MOUNT, 4.25-INCH ID AUGER

WATER	LEVELS	<u>31.5 f</u>	t bgs. o	n 8/28/92	START _8/28/92 FINISH _8/28/	92 LOGGER D. KUNKEL	
1==		SAMPLE			SOIL DESCRIPTION	COMMENTS	
DEPTH BELON SURFACE (F1	INTERVAL (FT)	TYPE AND NUMBER	RECOVERY (FT)	BLOWCOUNT 6° -6° -6° -6° (N)	SOIL NAME, USCS GROUP SYMBOL, COLOR, MOISTURE CONTENT, RELATIVE DENSITY OR CONSISTENCY, SOIL STRUCTURE, MINERALOGY	DEPTH OF CASING, DRILLING RATE DRILLING FLUID LOSS TESTS AND INSTRUMENTATION	
5.0 - - - - - - - - - - - - - - - - - - -	5.0 7.0 10.0	5822-5 5822-10	1.2	19-32-18-25	From 5.0 to 7.0 ft. <u>POORLY GRADED SAND</u> <u>WITH GRAVEL</u> , (SP) poorly-graded sand with gravel, gray-brown, dry, dense, fine to medium sand with subangular to subrounded gravel, and minor amounts of non-plastic silt. Some cobble fragments. From 10.0 to 12.0 ft. <u>POORLY GRADED</u> <u>SAND WITH GRAVEL</u> , (SP) As above.		
- - 15.0 -	15.0	5B22-15	1.1	10-18-28-29	From 15.0 to 17.0 ft. <u>PDORLY GRADED</u> S <u>AND WITH GRAVEL</u> (SP) As above.	-	
- - 0.02 -	20.0 22.0	SB22-20) 1.3	12-25-20-33	From 20.0 to 22.0 ft. <u>POORLY GRADED</u> SAND WITH GRAVEL. (SP) As above.	-	
25.0 — -	25.0 27.0	5B22-2	1.3	15-26-31-35	From 25.0 to 27.0 ft. <u>POORLY GRADED</u> SAND WITH GRAVEL. (SP) As above.	-	
30.0	30.0 32.0	5B22-30) 1.3	10-25-28-23	From 30.0 to 32.0 ft. <u>POORLY GRADED</u> SAND WITH GRAVEL (SP) As above Free water encountered at 31.5 ft. bgs No discernible floating product.	-	
36.0	35.0 37.0	5B22-3	5 1.4	12-19-21-20	From 35.0 to 37.0 tt. <u>POORLY GRADED</u> SAND WITH GRAVEL. (SP) As above. END OF BORING AT 37.0 FT. BGS	-	
]				-		

BORING NUMBER 0U5SB-23

SHEET 1 OF 2

SOIL BORING LOG

PROJECT Elmendorf AFB - 005

-LOCATION Operable Unit 5 EAFB

ELEVATION ____

____ DRILLING CONTRACTOR Denali CONTRACT HSA B61 Mobile Drill Rig 4 25" ID Augers

DRILLING METHOD AND EQUIPMENT	HSA B61 Mobile Drill Rig, 4.25" ID Augers	
40.5 op 8/18/02	8/18/02 1035	

WATER	ATER LEVELS 40.5 on 8/18/92				START 8/18/92 1035 FINISH 8/21/9	12 1432 LOGGER Rob Crotty
жĤ		SAMPLE		STANDARD	SOIL DESCRIPTION	COMMENTS
DEPTH BELO SURFACE (F	INTERVAL (FT)	TYPE AND NUMBER	RECOVERY (FT)	TEST RESULTS 6' -6' -6' -6' (N)	SOIL NAME, USCS GROUP SYMBOL, COLOR, MOISTURE CONTENT, RELATIVE DENSITY OR CONSISTENCY, SOIL STRUCTURE, MINERALOGY	DEPTH OF CASING, DRILLING RATE DRILLING FLUID LOSS TESTS AND INSTRUMENTATION
	0.3				From 0.0' to 0.3' ORGANIC MATERIAL (PT)	*Surface sample S5B23-0 taken from Sample 1-SH from 0 to 0.5
-	2.5	1-Sh	2.0		From 0.3 to 2.5 SILI (ML), brown, dry to moist, firm, nonplastic with trace very fine sand,	*Additional 0.5 material collected in each drive, therefore total drive is 2.5'.
-					organics, rootiets and cavities throughout.	Silt appears to be loess, eolian deposition.
5.0 —	5.0				From 5.0' to 7.0' POORLY GRADED GRAVEL WITH SILT AND SAND. (GP-GM), light brown to brown, dry SAND. (GP-GM), control of a discount discount of the second	-
-	7.0	2-SH	2.0	45-26-37-38 (63)	3" diameter with very fine to medium 3" diameter with very fine to medium subangular sand and nonplastic silt, trace organics.	-
-	95	3-SH		10-11-29+40 (40)	From 7.0 to 14.0' Interbedded <u>POORLY GRADED SAND</u> , (SP) and <u>POORLY GRADED SAND WITH</u> <u>GRAVEL</u> , (SP), brown, moist, medium dense, sand layers consist of uniform coarse	-
00 -	10.0				subround sand, gravely sand layers	SER23-10 collected from 10.0' to 12.5'
-	12.5	4-SH	2.0	12-30-39-45 (69)	subround gravel to 1" diameter, sand and gravelly sand beds range to 1' in - thickness.	
	12.5				_	
-	15.0	5-SH	2.0	27-40-45-68 (85)	From 14.0 to 20.0' POORLY GRADED GRAVEL WITH SAND, (GP).	
1 5.0 	17.5	6-SH	2.0	62-60-60- 30 (120)	brown, moist, dense, subround gravel to — 2-inch diameter with medium to coarse subround sand, occasional coal seam to _ 3". -	
-	20.0	7-SH	2.0	4-17-21-30 (35)		
20.0 -	20.0	8-SH	2.0	13-37-67-100 (104)	From 20.0 to 32.0 Interbedded <u>POORLY GRADED SAND</u> , (SP), and <u>POORLY GRADED GRAVEL WITH</u> <u>SAND</u> , (GP), brown, moist, medium dense, fine to coarse grained sand in beds 2'	
-		9-5H	2.0	22-33-44-38 (7 ⁻)	chick, subround graver with medium to coarse subangular sand in beds to 1'thick. Occasional cobbles to 4" diameter with occasional coal seams to 2".	
25.0 -	25.0	L		_	-	S5823-25 collected from 25.0 to 27.5
		10-SH	21	21-49-99-90 (143)		
	27.5	11-5н	2.0	16-49-79-72 (125)	Interbedded <u>POORLY GRADED SAND</u> , (SP). and <u>POORLY GRADED GRAVEL WITH</u> <u>SAND</u> , (GP), same as the above, dense.	
	1 30.0	L	i	<u> </u>		<u> </u>

BORING NUMBER 00558-23

SHEET 2 OF 2

SOIL BORING LOG

PROJECT Elmendorf AFB - 005

LOCATION Operable Unit 5 EAFB

ELEVATION __

_____ DRILLING CONTRACTOR Denali

OUTCEINO	 	00	~		Laot	r mc
	 _	۸n	5	~~	8/18	102

DRILLING METHOD AND EQUIPMENT HSA B61 Mobile Drill Rig. 4.25" ID Augers 8/18/02 1035

WATER	TER LEVELS 40.5 on 8/18/92				START 8/18/92 1035 FINISH 8/21/5	2 1432 LOGGER Rob Crotty
F	SAMPLE STANDARD				SOIL DESCRIPTION	COMMENTS
DEPTH BELO SURFACE (F	INTERVAL (FT)	TYPE AND NUMBER	RECOVERY (FT)	TEST RESULTS 6°, -6° -6° -6° (N)	SOIL NAME, USCS GROUP SYMBOL, COLOR, MOISTURE CONTENT, RELATIVE DENSITY OR CONSISTENCY, SOIL STRUCTURE, MINERALOGY	DEPTH OF CASING, DRILLING RATE DRILLING FLUID LOSS TESTS AND INSTRUMENTATION
-	30.0 32.5	12-SH	2.0	16-40-45-60 (85)	From 32.0 to 40.5' POORLY GRADED SAND, (SP), brown, moist,	
	35.0	13-SH	2.0	20-21-48-59 (69)	sand, occasional subround gravel lenses and coal lenses to 3".	-
-	37.5	14-SH	2.0	12-27-77-58 (64)	-	-
-	40.0	15-SH	2.0	26-31-41-67 (72)	-	Free water encountered at 40.5' at 1655 on 8/18/92.
-	42.5	16-SH	2.0	33-41-42-34 (83)	POORLY GRADED SAND, (SP), same as above, wet at 40.5°.	-
-	45.0	17-SH	2.0	9-22-22-29 (44)	From 42.5 to 47.5' <u>POORLY GRADED GRAVEL WITH SAND</u> , (GP), - brown, moist, medium dense, medium to coarse grained sand with subround gravel to 3" diameter with occasional coal seams to 1".	HNu= 39 ppm at 42.5 to 45.0' End drilling on 8/18/92 - Begin at 42.5 on 8/21/92. Change to 3001b. hammer at 42.5'
-	47.5	18-SH	2.0	9-22-33-41 (55)		HNu= 32 ppm at 45.0' to 47.5' HNu background for 8/21/92 is 0 ppm.
-	50.0	19-SH	_ 2.0	12-22-32-35 (54)	From 47.5 to 57.8 <u>POORLY GRADED SAND</u> , (SP), brown, wet, dense, medium to coarse subangular sand, occasional gravel lenses to 0.4 with occasional coal lenses to 2".	
	52.5	20-SH	2.0	7-7-15-20 (22)		
-	55.0	21-SH	2.0	12-27-37-33 (64)		
-	57.5	22-SH	20	23-50-60-43 (110)	-	
	60.0	23-5н	2.0	7-7-10-17 (17)	From 57.8 to 60.0' <u>SILTY CLAY</u> , (CL), olive gray, moist, stiff, thixotropic. END OF BORING AT 60.0'	End of boring at 60.0° Bootlegger cove formation. No floating product

BORING NUMBER 0U5SB-24

SHEET 1 OF 2

SOIL BORING LOG

PROJECT Elmendorf AFB - 005

LOCATION Operable Unit 5 EAFB

ELEVATION ____

DRILLING CONTRACTOR Denal

DRILLING METHOD AND EQUIPMENT HSA B61 Mob HATED LEVELE 29.1 ON 8/23/92

Dile	Drill	Rig,	4.25"	10	Augers	

WATER	LEVELS	29.1 0	n 8/23/	92	START 8/23/92 1050 FINISH 8/23/	92 1230 LOGGER Rob Crotty
3F		SAMPLE		STANDARD	SOIL DESCRIPTION	COMMENTS
DEPTH BELO SURFACE (F	INTERVAL (FT)	TYPE AND NUMBER	RECOVERY (FT)	RESULTS 6" -6" -6" -6" (N)	SOIL NAME, USCS GROUP SYMBOL, COLOR, MOISTURE CONTENT, RELATIVE DENSITY OR CONSISTENCY, SOIL STRUCTURE MINERALOGY	DEPTH OF CASING. DRILLING RATE DRILLING FLUID LOSS TESTS AND INSTRUMENTATION
	0.3	GRAB	NA		From 0.0' to 0.3' ORGANIC MATERIAL, (PT)	HNu background <1.0 ppm on August 23, 1992 at 0U558-24.
-					From 0.3 to 5.0' <u>POORLY GRADED GRAVEL WITH SILT AND</u> <u>SAND</u> (GP-GM), brown, moist, loose becoming medium dense, subround gravel to 2" diameter with nonplastic silt and fine to medium sand, trace organics from 0.2 to 4.0'.	Soil description based on soil cuttings and drilling action from 1.5 to 5.0°.
5.0 —	5.0				Free 5.0 40.0 01	-
-	•	2-SH	2.0	6-8-12-18 (20)	Prom 5.0 to 9.0 POORLY GRADED GRAVEL WITH SAND, (GP), brown, moist, loose, subround gravel to 1" diameter with medium subangular sand, trace silt and occasional coal lens to 3". -	Soil description based on soil cuttings and drilling action from 7.0 to 10.0°. decreasing gravel fraction, increasing drilling rate
-	9.0				From 0.0 to 12.0	anning rate.
10.0 —		3-SH	2.0	6-12-16-15 (28)	Prom 9.0 (0 12.0 <u>POORLY GRADED SAND.</u> (SP), brown, medium dense, medium to coarse subround gravel to 1" diameter trace nonplastic silt and occasional coal lenses.	
-	12.0				-	Soil description based on soil cuttings and drilling action from 12.0 to 15.0'.
-					-	-
15.0	15.0	4-SH	2.0	6-18-12-20 (30)	From 15.0' to 17.0' <u>POORLY GRADED SAND</u> , (SP), same as above. –	
-						Soil description based on soil cuttings and drilling action from 17.0'to 20.0'
	20.0					
20.0 -	<u>22.</u> 0	5-SH	1.8	9-12-20-22 (32)	From 20.0' to 22.0'	
-					-	Soil description based on soil cuttings and on drilling action from 22.0° to 25.0°.
-	25 0				-	Increase in gravel fraction at 24.0'.
25.0	25.0	6-SH	2.0	8-18-19-20 (37)	From 25.0' to 27.0' <u>POORLY GRADED GRAVEL WITH SAND</u> (GP), brown, moist, medium dense, subround gravel to 2'' diameter with medium to	
-					coarse subangular sand, trace nonplastic silt and occasional coal lens. ~	Soil description based on drilling action from 24.0 to 30.0'.
_	30.0					Freewater encountered at 29.1' at 1220 on 23 August, 1992.

BORING NUMBER 00558-24

SOIL BORING LOG

PROJECT Elmendorf AFB - 005

LOCATION Operable Unit 5 EAFB

ELEVATION _

DRILLING CONTRACTOR Denai DRILLING METHOD AND EQUIPMENT HSA B61 Mobile Drill Rig, 4.25" ID Augers

WATE	RIEVEL	s 29.1 o	n 8/23/	/92	START 8/23/92 1050 EINIGH 8/23/	92 1230 LOCCEP Rob Crotty
		SAMPLE		STANDARD		
- Me	<u> </u>		>	PENETRATION		
	TVAL	ANC	VER	RESULTS	MOISTURE CONTENT, RELATIVE DENSITY	DEPTH OF CASING, DRILLING RATE
DEPT	INTEF (FT)	T Y PE NUMB	RECO (FT)	6* -6* -6* -6* (N)	MINERALOGY	TESTS AND INSTRUMENTATION
	30.0	7-64	20	9-16-18-36	POORLY GRADED GRAVEL WITH SAND, (GP), same as above, wet.	
	32.0	/-5H	2.0	(34)		-
	1				END OF BORING AT 32.0'	No discernible floating product.
	-				-	-
	-				-	-
35.0	-					_
	-				-	-
	4				-	-
	╡.					-
	-				-	
40.0					_	
]					
	1				-	-
					-	-
	-				-	-
45.0	-{				_	-
1	4				-	-
	4				-	-
	4	[l			-
	-				-	-
50.0						_
30.0						
]				-	-
	1				-	-
	1	1			-	-
	4				-	
55.0	-				-	
	-				-	-
	4				-	-
	4		[-	-
					-	-
						<u> </u>

BORING NUMBER 0U5SB-25

SHEET 1 OF 1

SOIL BORING LOG

PROJECT Elmendorf AFB - 005

-LOCATION 55825

ELEVATION ___

DRILLING CONTRACTOR Denali

DRILLING METHOD AND EQUIPMENT HSA B61 Mobile Drill Rig, 4.25" ID Augers

WATER	TER LEVELS 8.6' BGS on 8/18/92				START 8/18/92 0800 FINISH 8/18/9	2 0920 LOGGER Rod Crotty
зÊ		SAMPLE		STANDARD	SOIL DESCRIPTION	COMMENTS
DEPTH BELO SURFACE (F	INTERVAL (FT)	TYPE AND NUMBER	RECOVERY (FT)	PENETRATION TEST RESULTS 6" -6" -6" -6" (N)	SOIL NAME, USCS GROUP SYMBOL, COLOR, MOISTURE CONTENT, RELATIVE DENSITY OR CONSISTENCY, SOIL STRUCTURE, MINERALOGY	DEPTH OF CASING, DRILLING RATE DRILLING FLUID LOSS TESTS AND INSTRUMENTATION
_	0.4				ORGANIC MATERIAL AND PEAL (PT), to	Logged by cuttings and drilling action to 5.0 [°] .
	1.5				From 0.4' to 1.5' <u>SILT</u> , (ML), brown, dry, becoming moist, stiff, nonplastic with trace very fine grained sand, rootlets and cavities throughout, occasional subangular gravel to 0.5" diameter.	loess Silt deposit possibly of eolian origin, loess
5.0 —	4.7	1-SH	2.0	98-36-23-39 (59)	Prom 1.5 to 4.7 <u>POORLY GRADED GRAVEL WITH SILT AND</u> <u>SAND</u> (GP-GM), light brown, moist, medium dense, subangular gravel to 1.0" diameter with nonplastic silt and very fine to medium subangular sand, trace organics.	-
-	10.0				From 4.7' to 7.0' <u>POORLY GRADED GRAVEL WITH SAND</u> , (GP), brown, moist, medium dense, subround gravel to 3" diameter with fine to medium subangular sand, trace silt and organics with occasional subround cobble to 5" diameter.	Free water encountered at 8.6' at 0850.
-	12.0	2-SH	1.5	32-30-31-40 (61)	From 10.0 to 12.0 <u>POORLY GRADED GRAVEL WITH SAND.</u> (GP). same as above, except becomes wet at 8.6'.	No discernible floating product.
- 15.0					END OF BORING AT 12.0'.	-
20.0						
- 25.0 -						

BORING NUMBER 0U5SB-26

SHEET 1 OF 1

SOIL BORING LOG

PROJECT Elmendorf AFB - 005

_LOCATION OUS

ELEVATION _

___ DRILLING CONTRACTOR Denal

WATER LEVELS Not encountered

DRILLING METHOD AND EQUIPMENT HSA B61 Mobile Drill Rig. 4.25" ID Augers

WATER	TER LEVELS Not encountered			ered	START 8/28/92 0940 FINISH 8/28/92 1315 LOGGER Rod Crotty				
TF	SAMPLE STANDARD			STANDARD	SOIL DESCRIPTION	COMMENTS			
DEPTH BELO SURFACE (F	INTERVAL (FT)	TYPE AND NUMBER	RECOVERY (FT)	RESULTS 6" -6" -6" -6" (N)	SOIL NAME, USCS GROUP SYMBOL, COLOR, MOISTURE CONTENT, RELATIVE DENSITY OR CONSISTENCY, SOIL STRUCTURE, MINERALOGY	DEPTH OF CASING, DRILLING RATE DRILLING FLUID LOSS TESTS AND INSTRUMENTATION			
	0.2	-GRAB			ORGANIC MATERIAL (PT), to 0.2'.	OVM BG: 1 ppm			
-					SILTY GRAVEL (GM), light brown, dry – becoming moist at 1.3', loose, subround gravel to 3" diameter with nonplastic silt, trace organics throughout.	Note 1: Soil description derived from drilling action and soil cuttings (from 0.65').			
-					From 2.5' <u>SILT WITH GRAVEL</u> , (ML), brown,				
5.0 -	5.0	ļ			-				
-	7.0	2-SH	1.0	5-7-9-13 (16)	From 5.5' to 7.0' <u>ORGANIC SILT WITH GRAVEL</u> , (OL), dark brown, moist, firm, low plasticity with subround gravel to 1" diameter.				
-	•				-	Same as Note 1 applies from 7'.0 to 10'.			
100 -	10.0				From 10.0' to 12.0'				
10.0 -				10-15-10-13	Drown, moist , medium dense, subround				
-	120	3-SH		(25)	coarse subangular sand, occasional cobble	-			
-	12.0		····		to 4" diameter.	Note 1 applies from 12 to 15'.			
-					-	4			
- I					-				
1 150 -	15.0								
0.0 -				4 15 01 00	From 15.0' to 17.0'	Note 1 applies from 17 to 20'.			
-		4-SH		(36)	brown, moist, medium dense, medium to - coarse grained sand with subround gravel	4			
-	17.0				to 3" diameter, occasional subround	4 -			
-					lenses.	-			
	20.0	[1							
20.0 -					From 20.0 to 22.0	Weathered hydrocarbon odor. OVM			
		5-SH		(25)	brown becoming olive gray at 21.5', moist, -				
-	22.0				sand with occasional coal lens and	Note 1 applies from 22.0 to 25.0			
-					-	Westhered bydres arbes choos and adar			
_						from 23'.			
	25.0								
25.0 -					From 25 0' to 27.0'	Weathered hydrocarbon odor from 25.0			
-		6-5H		Not recorded	above.	taken.			
-	27.0				END OF BOBING AT 27 0	sampler.			
_	Į		1			No discernible floating product, but			
	ļ								

BORING NUMBER 0U5SB-27

/

SHEET 1 OF 2

SOIL BORING LOG

PROJECT Elmendorf AFB - OUS

____LOCATION OUS

ELEVATION ____

DRILLING CONTRACTOR Denah

DRILLING METHOD AND EQUIPMENT HSA B61 Mobile Drill Rig, 4.25" ID Augers

WATER	TER LEVELS 26.4' BGS on 8/27/92				START 8/27/92 0830 FINISH 8/27/92 1020 LOGGER Rob Crotty				
жÊ		SAMPLE			SOIL DESCRIPTION	COMMENTS			
DEPTH BELO SURFACE (F	INTERVAL (FT)	TYPE AND NUMBER	RECOVERY (FT)	TEST RESULTS 6" -6" -6" -6" (N)	SOIL NAME, USCS GROUP SYMBOL, COLOR, MOISTURE CONTENT, RELATIVE DENSITY OR CONSISTENCY, SOIL STRUCTURE, MINERALOGY	DEPTH OF CASING, DRILLING RATE DRILLING FLUID LOSS TESTS AND INSTRUMENTATION			
	10	I-GRAB			ORGANIC MATERIAL, (PT)	OVM background: 0.0 ppm			
	1.0				From 1.0' to 6.0' <u>ORGANIC SILT</u> , (OL), dark brown, dry becoming moist at 2.5', low plasticity, organics include twigs, rootlets and decayed matter.	Note 1: Soil description based on drilling action and soil cuttings from 0 to 5.0'.			
60	5.0								
3.0	7.0	2-SH	1.2	5-6-12-15 (18)	From 6.0' tu 7.0' POORLY GRADED GRAVEL WITH SAND AND SUR (GREGN) brown Friet Friday design				
_	•				subround gravel to 2" diameter with fine to coarse grained sand and nonplastic silt, trace organics.	Note 1 applies from 7.0 to 10.0'.			
	10.0								
10.0 -	12.0	3-SH	1.1	9-17-15-16 (32)	From 10.5' to 12.0' <u>POORLY GRADED GRAVEL WITH SAND</u> (GP), - brown, moist, medium dense, subround gravel to 2'' diameter with medium to				
					coarse grained subangular sand, trace silt.	Note 2 applies from 12.0 to 15.0.			
						-			
-	15.0				-	-			
15.0 —	15.0	4-SH	2.0	20-22-21-30 (43)	From 15.0° to 17.0° POORLY GRADED GRAVEL WITH SAND, (GP), same as above.				
						Note 1 applies from 17.0 to 20.0			
						-			
					-	-			
20.0 —	20.0				From 20.0' to 22.0'				
-	22.0	5-SH	2.0	10-20-20-25 (40)	<u>POORLY GRADED GRAVEL WITH SAND</u> , (GP), same as above.	Note Lapplies from 22.0 to 25.0			
-					-				
25.0	25.0								
29.0 -	27.0	6-SH	2.6	9-20-25-40 (45)	From 25.0' to 27.0' <u>POORLY GRADED GRAVEL WITH SAND</u> , (GP), same as above except becomes wet at 26.4'.	Sample 5SB27-25A is a duplicate of 5SB27-25. Freewater encountered at 26.4'.			
					-	Note 1 applies from 27.0 to 30.0"			
-					-				
	30.0								

CHM HILL

PROJECT NUMBER ANC31026.H3.60 BORING NUMBER 00558-27

SHEET 2 OF 2

SOIL BORING LOG

PROJECT Elmendorf AFB - 005

LOCATION OUS

ELEVATION _

DRILLING CONTRACTOR Denali

DRILLING METHOD AND EQUIPMENT HSA B61 Mobile Drill Rig, 4.25" ID Augers WATER LEVELS 26.4' BGS on 8/27/92 START 8/27/92 0830 FINISH 8/27/92 1020 LOGGER Rob Crotty STANDARD PENETRATION TEST RESULTS SAMPLE SOIL DESCRIPTION COMMENTS ₽Ē RECOVERY (FT) DEPTH BEL SURFACE SOIL NAME, USCS GROUP SYMBOL, COLOR, MOISTURE CONTENT, RELATIVE DENSITY OR CONSISTENCY, SOIL STRUCTURE, TYPE AND NUMBER INTERVAL (FT) DEPTH OF CASING, DRILLING RATE DRILLING FLUID LOSS TESTS AND INSTRUMENTATION 6. - 6. - 6. - 6. MINERALOGY (N) 30.0 From 30.0' to 32.0' POORLY GRADED SAND, (SP), brown, wet, 5SB27-30 collected at 30.0 to 32.0'. 18-15-17-25 7-SH (32) medium dense, medium to coarse grained 32.0 subangular sand. Note 2: Original 55827 abandoned after END OF BORING AT 32.0 FEET. hitting abandoned paper sheathed copper wire telephone cable at 4.2'. Boring moved. No discernible floating product. 35.0 40.0 45.0 50.0 55.0

BORING NUMBER 0U5SB-28

SHEET 1 OF 3

SOIL BORING LOG

PROJECT Elmendorf AFB - 005

_LOCATION 005

ELEVATION ____

DRILLING CONTRACTOR Denali

DRILLING METHOD AND EQUIPMENT HSA B61 Mobile Drill Rig. 4.25" ID Augers

WATER	LEVELS	<u>36.5'</u>	BGS on	8/24/92	START 8/24/92 1035 FINISH 8/25/	92 1601 LOGGER Rob Crotty
BÊ:		SAMPLE		STANDARD	SOIL DESCRIPTION	COMMENTS
DEPTH BELO SURFACE (F	INTERVAL (FT)	TYPE AND NUMBER	RECOVERY (FT)	TEST RESULTS 6" -6" -6" -6" (N)	SOIL NAME, USCS GROUP SYMBOL, COLOR, MOISTURE CONTENT, RELATIVE DENSITY OR CONSISTENCY, SOIL STRUCTURE, MINERALOGY	DEPTH OF CASING, DRILLING RATE DRILLING FLUID LOSS TESTS AND INSTRUMENTATION
-	2.5	1-SH	2.0	7-9-7-10 (16)	ORGANIC MATERIAL, (PT) to 0.3'. From 0.3' to 1.5' SILT WITH SAND AND GRAVEL, (ML), light brown, dry, medium dense, nonplastic silt with fine to medium plastic and subround	HNu background is <1 ppm. -
-	5.0	2-SH	2.0	7-7-20-15 (27)	From 1.5 to 27.5 POORLY GRADED GRAVEL WITH SAND, (GP),	Additional 0.5 material collected in sampler by advancing additional 0.5', therefore each drive is 2.5'.
5.0 -	7.5	3-SH	2.0	6-9-15-17 (24)	moist, medium dense, subround gravel to 2" — diameter with fine to coarse grained sand, trace nonplastic silt.	
-	10.0	4-SH	1.0	7-9-18-20 (27)	· · · ·	55B28-0 collected from 0 to 0.5' for
10.0 — —	12.5	5-SH	2.0	6-18-21-22 (39)		chemical analysis 55828-10 collected from 10.0 to 12.5 feet for chemical analysis.
	15.C	6-SH	2.0	12-21-43-49 (64)		
-	17.5	7-SH	2.0	6-12-18-21 (30)	From 17.0' to 27.5'	
	20.0	8-SH	2.0	7-20-43-41 (63)	same as above except occasional subround cobble to 4" diameter.	
	22.5	9-SH	2.0	12-28-25-26 (53)	-	
	25.0	10-SH	1.0	9-13-21-23 (34)	-	
	27.5	11-SH	2.0	13-23-28-43 (51)	- 	for chemical analysis
-	30.0	12-SH	2.0	11-19-20-22 (39)	From 27.5 to 30.0 <u>POORLY GRADED SAND</u> , (SP), brown, moist, medium dense, fine to medium subangular sand, some subround gravel with occasional cobble.	

CHM HILL

PROJECT NUMBER ANC31026.H3.60

BORING NUMBER 00558-28

SHEET 2 OF 3

SOIL BORING LOG

PROJECT Elmendorf AFB - 005

LOCATION OUS

ELEVATION _

_ DRILLING CONTRACTOR Denali DRILLING METHOD AND EQUIPMENT HSA B61 Mobile Drill Rig, 4.25" ID Augers

UNICCINO METHOU AND EQUIPMENT								
WATER LEVELS 36.5' BGS on 8/24/92	START	8/24/92	1035	FINISH	8/25/92	1601	LOGGER	Rob Crotty

		SAMPLE		STANDARD	SOIL DESCRIPTION	COMMENTS		
DEPTH BELO SURFACE (F	INTERVAL (FT)	TYPE AND NUMBER	RF 7.0VERY (F 1)	TEST RESULTS 6' -6' -6' -6' (N)	SOIL NAME, USCS GROUP SYMBOL, COLOR, MOISTURE CONTENT, RELATIVE DENSITY OR CONSISTENCY, SOIL STRUCTURE, MINERALOGY	DEPTH OF CASING, DRILLING RATE DRILLING FLUID LOSS TESTS AND INSTRUMENTATION		
-	30.0	13-SH	2.0	23-30-70-38 (100)	From 30.0' to 32.5' <u>POORLY GRADED SAND</u> , (SP), same as above, except dense.			
-	52.5	14-SH	2.0	7-32-43-37 (75)	From 32.5' to 35.0' <u>POORLY GRADED</u> <u>SAND,</u> (SP), same as above, except occasional coal lens to 1'' thick.	Increasing gravel fraction.		
35.0 -	35.0	15-SH	2.0	2-13-33-22 (46)	From 35.0 to 40.2 <u>POORLY GRADED SAND</u> (SP), same as above, except wet at 36.4'.	Decreasing gravel fraction.		
-	37.5	16-SH	2.0	6-15-18-22 (33)	-	5SB28-38 collected for chemical analysis from 37.5 to 40.0'. -		
40.0	40.0	17-SH	2.0	5-`3-22-35 (35)	From 40.2' to 60.0 <u>POORLY GRADED SAND WITH GRAVEL</u> , (SP), brown, wet, medium dense, medium to coarse grained subangular sand with subround gravel to 2'' diameter, occasional	End drilling at 40.0' for 8/24/92. Begin drilling at 40.0' on 8/25/92.		
450	45.0	18-SH	2.0	20-22-25-32 (47)	coal lenses to 1". -			
-	47.5	19-SH	2.0	22-26-32-38 (58)	-			
	50.0	20-SH	2.0	6-25-35-16 (60)	-			
-	52.5	21-SH	2.0	20-15-33-50 (48)	-	-		
	55.0	22-SH	2.0	16-24-56-70 (80)	-	-		
	57.5	23-SH	2.0	9-22-38-56 (60)	-			
	60.0	24-SH	2.0	32-35-33-65 (68)	-			

PROJECT	NUMBER
ANC31026	5.H3.60

BORING NUMBER

0U5SB-28

SHEET 3 OF 3

SOIL BORING LOG

PROJECT Elmendorf AFB - 005

_LOCATION 005

ELEVATION _____

DRILLING CONTRACTOR Denali

DRILLING METHOD AND EQUIPMENT HSA 861 Mobile Drill Rig, 4.25" 1D Augers

WATER	LEVEL	36.5	BGS on	8/24/92	START 8/24/92 1035 FINISH 8/25/	92 1601 LOGGER Rob Crotty
=F		SAMPLE		STANDARD	SOIL DESCRIPTION	COMMENTS
DELO CE (F	VAL	AND	ERY	TEST	SOIL NAME, USCS GROUP SYMBOL, COLOR, MOISTURE CONTENT, RELATIVE DENSITY	DEPTH OF CASING, DRILLING RATE
DEPTH	INTER (FT)	T YPE NUMBE	RECOV (FT)	6* -6* -6* -6* (N)	OR CONSISTENCY, SOIL STRUCTURE, MINERALOGY	TESTS AND INSTRUMENTATION
-	60.0	25~SH	2.0	14-22-70-77 (92)	From 60.0 to 67.5 POORLY GRADED SAND, (SP), brown, wet, dense to very dense, uniform medium subangular sand, occasional subround gravel in 4" layers along with coal in 1"	
-	02.5	26-SH	2.0	9-13-22-48 (35)	ienses. -	-
65.0	05.0	27-SH	2.0	30-32-30-70 (62)	-	
-	67.5				-	Description from 67.5 to 70.0' based on drilling action
70.0 —	70.0				From 70.0' to 72.5'	
-	725	28-SH	2.0	9-20-22-32 (42)	POORLY GRADED SAND, (SP), same as - above	
-	12.5				-	Description from 72.5 to 75.0' based on drilling action.
75.0	75.0			9-23-23-30	From 75.0' to 76.5' <u>POORLY GRADED SAND,</u> (SP), same as above.	
-	77.5	29-54	2.0	(46)	From 76.0' to 77.0' <u>CLAY.</u> (CL), olive gray, moist, stiff, lean, occasional <u>SILTY</u> SAND, (SM), lens to 1''	Bootlegger cove formation.
 80.0 —					END OF BORING AT 79.5 FEET	
-					-	
-					-	
85.0 —					_	
					-	
-	4				-	-

CHM HILL

ROJECT NUMBER	BORING NUMBER				
NC31026.H3.60	0U5SB-29	SHEET	1	0F	ł

SOIL BORING LOG

PROJECT Elmendorf AFB - OUS

LOCATION OUS

ELEVATION _

__ DRILLING CONTRACTOR Denali

DRILLING METHOD AND EQUIPMENT HSA B61 Mobile Drill Rig, 4.25" ID Augers WATER LEVELS 3.91' BGS on 8/7/92 START 8/7/92 FINISH 8/7/92 0817 LOGGER Rob Crotty STANDARD PENETRATION TEST SAMPLE SOIL DESCRIPTION COMMENTS BF. RECOVERY (F1) DEPTH BEL SURFACE SOIL NAME, USCS GROUP SYMBOL, COLOR, MOISTURE CONTENT, RELATIVE DENSITY OR CONSISTENCY, SOIL STRUCTURE, TYPE AND NUMBER INTERVAL (FT) RESULTS DEPTH OF CASING, DRILLING RATE DRILLING FLUID LOSS 6* -6* -6* -6* TESTS AND INSTRUMEN , ATION MINERALOGY (N) From 0.0'to 0.6' <u>ORGANIC MATERIAL AND</u> <u>PEAI</u>, (PT) to 0.3' grading into <u>SILTY</u> <u>SAND</u>, (SM), dark brown, moist, rootlets and 8-13-77-17 0.6 1-SH 1.0 HNu background=1 ppm. (30) organic debris, very fine to medium sand 2.0 with nonplastic silt to 0.6. Poor recovery. 8-11-7-7 2-SH 0.2 (18) 4.0 Free water encountered at 3.91' at 0920-From 0.6' to 4.0' Free water at 3.11' at 0920 At 0.6 becomes <u>SILTY GRAVEL WITH</u> <u>SAND</u>, (GM), dark brown becoming brown, moist, loose, subround gravel to 1.5." 8-9-10-7 5.0 3-SH .04 (19) 6.0 diameter with very fine to medium sand and nonplastic silt. Occasional subround cobbles to 3" diameter. Additional drive at 4-6' required to collect enough material for representative sampling. Slight hydrocarbon odor at 4.0 to 6.0'. HNv reads 4.0pm. From 4.0' to 6.0' <u>SILTY GRAVEL WITH SAND.</u> (GM), same as above except becomes wet, trace of silty clay. 10.0 10.0 From 10.0' to 12.0' Heave occurring in hole. SILTY GRAVEL WITH SAND, (GM), same as Strong hydrocarbon at 10.0' to 12.0'. 4-3-7-7 4-SH 0.8 above except slight sheen in gravel HNu reads 50 ppm. (10) fraction 12.0 15.0 15.0 Strong hydrocarbon odor at 15.0' to 17.0'. HNu reads 600 ppm. From 15.0' to 17.0' SILTY GRAVEL WITH SAND, (GM), same as 5-7-8-7 5-SH 0.4 above. (15) 17.0 "Sleeved" SH in plastic bag to avoid contamination when sampling below the 20.0 20.0 water table. . 6-SH 22.0 Note at 1200: Boring and site currently shut down. Sample 6-SH from 20.0' to 22.0' not taken. See field log notebook END OF BORING AT 22.0 SB002. 25.0

Appendix C

MONITORING WELL BORING AND CONSTRUCTION LOG

BORING NUMBER

SHEET 1 OF 1

WELL COMPLETION LOG

OUSMW-01

PROJECT ELMENDORF AFB IRP OUS

LOCATION ANCHORAGE, ALASKA

ELEVATION _____

DRILLING CONTRACTOR DENALI DRILLING

DRILLING METHOD AND EQUIPMENT HOLLOW STEM AUGER, MOBILE DRILL B-61, TRUCK MOUNT

START 8-13-92 WATER LEVELS 35.5 ft. bgs LOGGER D. KUNKEL FINISH 8-13-92 SOIL DESCRIPTION WELL COMPLETION DIAGRAM SAMPLE ₹Ē BLOW DEPTH BEL(SURFACE (SOIL NAME, USCS GROUP SYMBOL, COLOR, TYPE AND NUMBER RECOVERY (F1.) INTERVAL MOISTURE CONTENT, RELATIVE DENSITY 6' -6' -6' -6' OR CONSISTENCY, SOIL STRUCTURE, -2-inch Sch 40 PVC vented slip cap MINERALOGY (N) -6-inch diameter steel surface casing 3 ft x 3 ft concrete pad -Cement/bentonite grout 5.0 60 From 5.0 to 6.0 ft SILT WITH GRAVEL 7-18-27 (ML) tan to yellowish brown, dry, hard, powdery silt with subangular to subrounded gravel, up to 2.5 inches in B01-5 1.2 (45) 7.0 2-inch diam. Sch 40 flush-threaded, PVC casing with 0-ring diameter. From 6.0 to 7.0 ft <u>WELL-GRADED SAND</u> <u>WITH GRAVEL</u>, (SW) brown to dark brown, moist, dense, well-graded brown sand with 10.0 10.0 -Centralizer, joint @ 10.0 7-22-26-32 801-10 1.3 12.0 (48)subangular to subrounded gravel, 2-inch diameter maximum, minor amounts of brown non-plastic silt. From 10.0 to 12.0 ft <u>WELL-GRADED SAND</u> <u>WITH GRAVEL</u> (SW) As above, 15.0 60 9-12-21-25 From 15.0 to 17.0 ft <u>POORLY-GRADED</u> <u>SAND WITH GRAVEL</u>, (SP) Brown, moist to wet, dense, fine to medium-grained sand B01-15 1.7 17.0 (33)with subangular to subrounded gravel and non-plastic silt. 20.0 20.0 Joint @ 20.0 From 21.0 to 22.0 ft POORLY-GRADED 7-13-27-26 <u>SAND</u>. (SP) rust-brown, moist, dense, medium-grained sand with subangular to B01-20 1.8 22.0 (40)subrounded gravel up to 3/4 inches in diameter, trace of brown to rust-brown silt 25.0 25.0 From 27.0 to 27.0 ft <u>POORLY-GRADED</u> <u>SAND</u>, (SP) As above. 13-17-24-33 801-25 1.7 -3/8-inch hydrated 27.0 (41) bentonite chips -CSSI 16-40 sand pack 30.0 30.0 -Centralizer, joint @ 30.0 From 30.0 to 32.0 ft POORLY-GRADED 12-18-22-32 B01-30 1.7 SAND, (SP) As above. (40)32.0 35.0 Joint @ 35.0 36.0 From 35.0 to 37.0 ft POORLY-GRADED 1 10-16-28-32 <u>SAND,</u> (SP) As above. Free water encountered at 35.5 ft. bgs. No 8/13/92 801-35 1.8 37.0 (44) discernible free product. -8-inch diameter borehole 40.0 40.0 From 40.0 to 42.0 ft POORLY-GRADED -2~inch diam. Sch 40 PVC 45-22-28-29 B01-40 2.0 SAND, (SP) As above. machine-cut well screen. 42.0 (50)10 - slotCentralizer, joint @ 45.0 45.D +Flush-threaded PVC end End of boring at 45 ft. bgs. cap with 0-ring

BORING NUMBER

0U5MW-02 SHEET 1 OF 1

WELL COMPLETION LOG

PROJECT ELMENDORF AFB IRP OUS

LOCATION ANCHORAGE, ALASKA

ELEVATION _____

___ DRILLING CONTRACTOR DENALI DRILLING

WATER	LEVELS	<u>31.5 f</u>	t. bgs		START <u>8-23-92</u> FINISH <u>8-23</u>	-92 LOGGER D. KUNKEL
- F		SAMPLE			SOIL DESCRIPTION	WELL COMPLETION DIAGRAM
PTH BELO	TERVAL	PE AND MBER	COVERY T.)	BLOW COUNTS 6* -6* -6* -6*	SOIL NAME, USCS GROUP SYMBOL, COLOR, MOISTURE CONTENT, RELATIVE DENSITY OR CONSISTENCY, SOIL STRUCTURE,	2-inch Sch 40 PVC
88	N.	<u>Y J</u>	Ш Ш Ц	(N)	MINERALUGY	6-inch diameter steel
-						surface casing 3 ft x 3 ft concrete pad -3/8-inch hydrated bentonite chips
စ –	5.0				From 0 to 21.0 ft WELL-GRADED SAND	Joint @ 5.0 -
-	7.0	B02-5	1.2	(24)	<u>WITH GRAVEL</u> (SW) brown, moist, medium - dense, well-craded sand with subrounded	
	10.0				gravel up to 3-inches in diameter in sampler, non-plastic silt.	flush-threaded,
100 -	10.0			12-28-31-42	From 10.0 to 12.0 ft WELL-GRADED SAND	
-	12.0	802-10	1.0	(57)	WITH GRAVEL (SW) As above.	
60	15.0					
	17.0	B02-15	1.2	10-44-50/4" (95)	WITH GRAVEL (SW) As above.	
- 20.0 -	20.0 22.0	B02-20	1.3	13-32-35-50 (67)	From 20.0 to 22.0 ft <u>POORLY-GRADED</u> SAND WITH GRAVEL. (SP) brown to rust brown, moist, very dense, medium and fine	
- - 25.0	25.0	802-25	1.3	3-16-20-50/5	sand, subrounded gravel, and brown non-plastic silt. From 25.0 to 27.0 ft <u>POORLY-GRADED</u> SAND WITH GRAVEL, (SP) As above, some	CSSI 16-40 sand pack
-	27.0 30.0			(36)	charcoal.	← 8-inch diameter borehole
-	<u>32.0</u>	B02-30	1.4	18-32-31-25 (63)	SAND WITH GRAVEL (SP) As above, charcoal in 3-inch layer.	¥ 8/23/92
-	34.5	B02-33	1.3	14-30-30-26 (60)	Free water encountered at 31.8 ft. bgs. No discernible free product.	
0.05	37.5				<u>GRAVEL</u> , (SP) As above.	
-	39.5	B02-38	1.3	23-35-38-41 (73)		2-inch diam. Sch 40 PVC machine-cut well screen.
40.0 - - 46.0 -					End of boring at 45 ft. bgs.	Flush-threaced PVC end- cap with 0-ring

BORING NUMBER

0<u>U5MW-03</u>

SHEET 1 OF 1

WELL COMPLETION LOG

PROJECT ELMENDORF AFB IRP OUS

LOCATION ANCHORAGE, ALASKA

ELEVATION _____

DRILLING CONTRACTOR DENALI DRILLING

DRILLING METHOD AND EQUIPMENT HOLLOW STEM AUGER, MOBILE DRILL B-61, TRUCK MOUNT

WATER LEVELS 31.5 ft. bgs START 8-17-92 FINISH 8-17-92 LOGGER D. KUNKEL SAMPLE SOIL DESCRIPTION WELL COMPLETION DIAGRAM 3 BLOW SOIL NAME, USCS GROUP SYMBOL, COLOR, DEPTH BEL TYPE AND NUMBER RECOVERY (FT.) -6-inch diameter steel NTERVAL MOISTURE CONTENT, RELATIVE DENSITY surface casing 6* -6* -6* -6* OR CONSISTENCY, SOIL STRUCTURE. -2-inch Sch 40 PVC (N) MINERALOGY vented slip cap 3 ft x 3 ft concrete pad 3/8-inch hydrated bentonite chips 5.0 6.0 From 5.0-7.0 ft WELL-GRADED SAND WITH. 16-22-25-24 GRAVEL. (SW) brown to rusty-brown, dry to moist, dense, fine to coarse-grained B03-5 1.3 (47)7.0 2-inch diam. Sch 40 sand with subangular to subrounded gravel flush-threaded, up to 2.5 inches in diameter and rusty-brown silt, silt occurs as slightly 10.0 plastic clumps. 200 Cement/bentonite grout 6-8-15-22 From 10.0 to 12.0 ft WELL-GRADED SAND B03-10 1.5 12.0 (23) WITH GRAVEL. (SW) brown to tan-brown, moist, medium dense, well-graded sand with subangular to subrounded gravel, and minor amounts of silt. A 4-inch layer of charcoal at 10.5 bgs. 15.0 16.0 From 15.0 to 17.0 ft <u>WELL-GRADED SAND</u> <u>WITH GRAVEL</u>, (SW) As above. 6-21-23-25 803-15 1.3 17.0 (44)20.0 20.0 From 20.0 to 22.0 ft WELL-GRADED SAND 10-23-24-27 WITH GRAVEL, (SW) As above. 1.5 B03-20 22.0 (47) -CSSI 16-40 sand pack 25.0 25.0 From 25.0 to 27.0 ft WELL-GRADED SAND 20-27-28-42 B03-25 1.5 WITH GRAVEL. (SW) As above. 2-inch diam. Sch 40 PVC 27.0 (55) machine-cut well screen, 10-slot 30.0 30.0 -Joint @ 30.0 From 30.0 to 32.0 ft WELL-GRADED SAND 12-35-32-22 B03-3(1.3 WITH GRAVEL, (SW) As above. ¥ 8/17/92 32.0 (67) Free water encountered at 31.5 ft. bgs. No discernible free product. 35.0 36.0 From 35.0 to 37.0 ft WELL-GRADED SAND 8-inch diameter borehole 13-17-23-26 WITH GRAVEL. (SW) gray to gray-brown, wet, dense, well-graded sand with gravel, B03-35 1.7 37.0 (40)subangular to subrounded, some cobbles, gray silt. 40.0 40.0 Joint @ 40.0 From 40.0 to 42.0 ft WELL-GRADED SAND 10-36-24-25 803-4d 1.5 WITH GRAVEL. (SW) As above. 42.0 (60) Flush-threaded PVC end_ 46.0 End of boring at 45 ft. bgs. cap with 0-ring

BORING NUMBER

SHEET 1 OF 1

WELL COMPLETION LOG

0U5MW-04

PROJECT ELMENDORF AFB IRP OUS

LOCATION ANCHORAGE, ALASKA

--ELEVATION ___

DRILLING CONTRACTOR DENALI DRILLING

40.0

42.0

B04-40

1.3

40.0

45.0

DRILLING METHOD AND EQUIPMENT HOLLOW STEM AUGER, MOBILE DRILL B-61, TRUCK MOUNT WATER LEVELS 29.5 ft. bgs START 8-18-92 FINISH 8-18-92 LOGGER D. KUNKEL SAMPLE SOIL DESCRIPTION WELL COMPLETION DIAGRAM ₹Ē BLOW SOIL NAME, USCS GROUP SYMBOL, COLOR, DEPTH BEL TYPE AND NUMBER RECOVERY (FT.) NTERVAL MOISTURE CONTENT, RELATIVE DENSITY 8' -8' -8' - 8' 2-inch Sch 40 PVC OR CONSISTENCY, SOIL STRUCTURE, vented slip cap (N) MINERALOGY -6-inch diameter steel surface casing 3 ft x 3 ft concrete pad -3/8-inch hydrated bentonite chios 5.0 50 From 5.0 to 6.0 ft POORLY GRADED SAND 9-5-2-2 (7) WITH GRAVEL. (SP) brown, dry to moist. B04-5 0.7 7.0 2-inch diam. Sch 40 loose. flush-threaded From 6.0 to 7.0 SILT WITH GRAVEL (ML) moist, soft, orange-brown to rust-brown. Silt is plastic. 10.0 10.0 9-23-27-31 From 10.0 to 12.0 ft WELL-GRADED SAND Cement/Dentonite grout 804-10 1.5 WITH GRAVEL. (SW) some rust-brown (50)12.0 layers, dry to moist, dense, well-graded sand with well-graded subangular to subrounded gravel and non-plastic brown to rust-brown silt. 15.0 60 From 15.0 to 17.0 ft WELL-GRADED SAND 4-14-18-19 804-15 1.5 WITH GRAVEL (SW) As above. 17.0 (32)20.0 20.0 From 20.0 to 22.0 ft WELL-GRADED SAND 11-19-28-34 WITH GRAVEL (SW) As above. 804-20 1.5 22.0 (47)-CSSI 16-40 sand pack 25.0 25.0 From 25.0 to 27.0 ft POORLY-GRADED 13-29-38-40 SAND WITH GRAVEL. (SP) brown, wet, very dense, fine to medium sand with B04-25 1.3 27.0 (67)subrounded gravel up to 1-inch in -Joint @ 30.0 diameter, minor amounts of silt. 7 30.0 8/18/92 Free water encountered at 29.5 bgs. No 30.0 discernible free product. 44-21-23-21 804-3d 1.4 (44)32.0 From 30.0 to 32.0 ft WELL-GRADED <u>GRAVEL WITH SAND</u>, (GW) brown, wet, dense, subangular to subrounded gravel, -2-inch diam. Sch 40 PVCmachine-cut well screen, well-graded sand and brown, non-plastic 10-slot 35.0 silt. 35.0 8-inch diameter borehole From 35.0 to 37.0 ft <u>WELL-GRADED</u> <u>GRAVEL WITH SAND</u>, (GW) brown, wet 10-29-19-23 1.3 B04-35 37.0 (48)very dense, decreasing gravel at 37 ft

Bottom of screen

Flush-threaded PVC cap with 0-ring

End of boring at 45 ft. bgs.

formation.

8-24-33-24

(57)

bgs, sand content increasing, heaving

CHM HILL

PROJECT NUMBER ANC31026.H3.60

BORING NUMBER

OU5MW-05 SHEET 1 OF 1

WELL COMPLETION LOG

PROJECT ELMENDORF AFB IRP OUS

LOCATION ANCHORAGE, ALASKA

ELEVATION _____

DRILLING CONTRACTOR DENALI DRILLING

DRILLING METHOD AND EQUIPMENT HOLLOW STEM AUGER, MOBILE DRILL B-61, TRUCK MOUNT

WATER	LEVEL	<u>24.0</u>	ft. bgs		START <u>8-24-92</u> FINISH <u>8-24</u>	-92 LOGGER D. KUNKEL
F		SAMPLE			SOIL DESCRIPTION	WELL COMPLETION DIAGRAM
DEPTH BELO SURFACE (F	INTERVAL	TYPE AND NUMBER	RECOVERY (FT.)	BLOW COUNTS 6" -6" -6" -6" (N)	SOIL NAME, USCS GROUP SYMBOL, COLOR, MOISTURE CONTENT, RELATIVE DENSITY OR CONSISTENCY, SOIL STRUCTURE, MINERALOGY	2-inch Sch 40 PVC vented slip cap 6-inch diameter steel
	5.0	B05-5	0.7	5-3-2-3 (5)	From 5.0 to 7.0 ft <u>WELL-GRADED GRAVEL</u> <u>WITH SAND</u> , (GW) grey-brown, dry to moist, loose, well-graded subrounded to subangular gravel, up to 3-inches in diameter with well-graded sand, minor amounts of brown silt.	surface casing 3 ft x 3 ft concrete pad 3/8-inch hydrated bentonite chips
	10.0 12.0	B05-10	1.0	3-6-10-15 (16)	From 10.0 to 12.0 ft <u>WELL-GRADED</u> <u>GRAVEL WITH SAND</u> , (GW) As above. Medium dense.	Cement/bentonite grout
- 15.0 -	15.0 17.0	B05-15	1.0	10-30-27-34 (57)	From 15.0 to 17.0 ft <u>WELL-GRADED GRAVEL</u> <u>WITH SAND</u> , (GW) As above. Increased gravel fraction, very dense.	3/8-inch hydrated bentonite chips
- 20.0 — - -	20.0 22.0	305-20	1.3	10-23-33-30 (56)	From 20.0 to 22.0 ft <u>WELL-GRADED</u> GRAVEL WITH SAND. (GW) As above.	
- 25.0 - -	25.0 27.0	B05-25	1.3	9-16-24-29 (40)	Free water enountered at 24.0 ft bgs. No discernible free product. From 25.0 to 27.0 ft <u>WELL-GRADED</u> <u>GRAVEL WITH SAND</u> , (GW) As above. Wet, dense.	Joint @ 23.0 ▼ 8/24/92 - - - - - - - - - - - - - -
30.0	<u>30.0</u> <u>32.0</u>	B05-30	1.3	9-17-25-25 (42)	From 30.0 to 32.0 ft <u>WELL-GRADED</u> <u>GRAVEL WITH SAND</u> , (GW) As above.	< 8-inch diameter borehole - - CSSI 16-40 sand pack
36.0 · ·	<u>35.0</u> <u>37.0</u>	805-35	1.3	10-28-28-21 (56)	From 35.0 to 37.0 ft <u>WELL-GRADED</u> <u>GRAVEL WITH SAND</u> , (GW) As above. Very dense.	
					End of boring at 38 ft. bgs.	Elish-threaded PVC end - cap with O-ring

G	N	Ľ	Π	Į

BORING NUMBER

SHEET 1 OF 1

cap with 0-ring

WELL COMPLETION LOG

005MW-06

PROJECT ELMENDORF AFB IRP OUS

LOCATION ANCHORAGE, ALASKA

ELEVATION ____

DRILLING CONTRACTOR DENALI DRILLING

DRILLING METHOD AND EQUIPMENT HOLLOW STEM AUGER, MOBILE DRILL B-61, TRUCK MOUNT WATER LEVELS 34.7 ft. bgs LOGGER D. KUNKEL START 8-27-92 FINISH 8-27-92 SAMPLE SOIL DESCRIPTION WELL COMPLETION DIAGRAM ₹Ē BLOW SOIL NAME, USCS GROUP SYMBOL, COLOR. DEPTH BEL SURFACE (TYPE AND NUMBER RECOVERY (FT.) NTERVAL MOISTURE CONTENT, RELATIVE DENSITY 6' -6' -6' -6' OR CONSISTENCY, SOIL STRUCTURE. 2-inch Sch 40 PVC vented slip cap MINERALOGY (N) -6-inch diameter steel From 0.0 to 7.0 ft <u>POORLY-GRADED SAND</u> <u>WITH GRAVEL</u> (SP) brown to rust-brown, surface casing 3 ft x 3 ft concrete pad dry, medium, dense, fine to medium sand 3/8-inch hydrated with subangular to subrounded gravel up bentonite chips to 3-inches in diameter. Minor amounts of non-plastic brown silt. 5.0 60 10-17-22-22 B06-5 1.3 (29) 7.0 2-inch diam. Sch 40 flush-threaded Cement/bentonite grout 10.0 10.0 From 10.0 to 12.0 ft POORLY-GRADED 10-20-26-46 SAND WITH GRAVEL, (SP) As above. 806-10 1.3 (46) 12.0 15.0 16.0 From 15.0 to 17.0 ft <u>POORLY-GRADED</u> SAND WITH GRAVEL. (SP) As above with 14-28-23-25 (51) 806-15 1.3 17.0 pieces of charcoal. 20.0 20.0 From 20.0 to 25.0 ft <u>WELL-GRADED SAND</u> <u>WITH SILT AND GRAVEL</u>. (SW-SM), brown to gray brown, well-graded sand with 10-16-21-25 806-20 1.3 22.0 (37) subangular to subrounded gravel and brown non-plastic silt. 25.0 26.0 From 25.0 to 26.5 ft <u>WELL-GRADED SAND</u> <u>WITH SILT AND GRAVEL</u>, (SW-SM), dark brown, wet, very dense, well-graded sand 10-24-70/5" B06-25 0.7 26.5 (94) with subangular to subrounded gravel, some cobbles, dark brown non-plastic silt. -8-inch diameter borehole 30.0 30.0 From 30.0 to 32.0 ft <u>WELL-GRADED SAND</u> <u>WITH GRAVEL</u>. (SW) gray-brown, some rusty-brown areas, moist, dense, 10-22-25-28 806-30 12 (47) 32.0 well-graded sand with subrounded gravel, Joint @ 33.0 minor amounts of non-plastic silt. Free water encountered at 34.0 ft bgs. 35.0 8/27/92 36.0 No discernible free product. 13-25-27-24 B06-35 1.0 From 35.0 to 37.0 ft WELL-GRADED SAND 37.0 (52) WITH GRAVEL, (SW) As above. -2-inch diam. Sch 40 PVC-40.0 machine-cut well screen,_ 40.0 From 40.0 to 42.0 ft WELL-GRADED SAND 10-slot 16-26-19-21 B06-40 1.3 WITH SILT AND GRAVEL, (SW-SM) dark 42.0 (45)brown, wet, dense, well-graded sand with subrounded gravel, up to 2-inches in CSSI 16-40 sand pack. diameter and dark brown silt, cohesive when silty, sandy portions are looser. 45.0 Flush-threaded PVC end

End of boring at 48 ft. bgs.

ANC31026.H3.60

BORING NUMBER

0U5MW-07 SHEET 1 OF 1

WELL COMPLETION LOG

PROJECT ELMENDORF AFB IRP OUS

LOCATION ANCHORAGE, ALASKA

DRILLING CONTRACTOR DENALI DRILLING

WATER	TER LEVELS 35.5 ft. bgs				START <u>8-26-92</u> FINISH <u>8-26</u>	-92 LOGGER D. KUNKEL
TE		SAMPLE			SOIL DESCRIPTION	WELL COMPLETION DIAGRAM
depth Belo Surface (F	INTERVAL	TYPE AND NUMBER	RECOVERY (FT.)	BLOW COUNTS 6" -6" -6" -6" (N)	SOIL NAME, USCS GROUP SYMBOL, COLOR, MOISTURE CONTENT, RELATIVE DENSITY OR CONSISTENCY, SOIL STRUCTURE, MINERALOGY	2-inch Sch 40 PVC
1000	5.0 7.0 10.0 12.0 15.0 17.0 20.0	B07-5 B07-10 B07-15	1.3	$ \begin{array}{c} 13-13-16-21 \\ (29) \\ 10-14-25-27 \\ (39) \\ 3-14-18-12 \\ (14) \\ 6-1-8-16-23 \\ \end{array} $	From 1.5-11.0 ft <u>POORLY-GRADED SAND</u> <u>WITH GRAVEL</u> , (SP) brown to gray-brown, moist, medium dense, fine to medium sand with subangular to subrounded gravel, up to 3-inches in diameter, some brown, non-plastic silt. From 11.0-30.0 ft <u>POORLY-GRADED SAND</u> <u>WITH GRAVEL</u> , (SP) gray to rust-brown, moist to wet, dense, fine to medium sand with subangular to subrounded gravel, some brown non-plastic silt.	6-inch diameter steel surface casing 3 ft x 3 ft concrete pad -3/8-inch hydrated bentonite chips -2-inch diam. Sch 40 flush-threaded -Cement/bentonite grout -Joint € 10.0
25.0	22.0 25.0 27.0 30.0 32.0 35.0	B07-20 B07-25 B07-30	1.3	6-1-8-16-23 (15) 12-34-36-38 (70) 10-23-29-25 (52)	From 30.0 to 50.0 ft <u>WELL-GRADED SAND</u> <u>WITH GRAVEL</u> , (SW) rust-brown, wet, very dense, well-graded sand with subangular gravel, some cobbles, some brown, non-plastic silt, some denser lenses of increased silt content.	
40.0	37.0 40.0 42.0	B07-35 B07-40	1.3	10-24-33-28 (57) 15-17-33-40 (50)	Free water encountered at 35.5 ft. bgs. No discernible free product.	 ¥ 8/26/92 2-inch diam. Sch 40 PVC- machine-cut well screen, 10-slot Top of sump
- 0.00						cap with 0-ring

BORING NUMBER

OU5MW-03 SHEET 1 OF 1

WELL COMPLETION LOG

PROJECT ELMENDORF AFB IRP OUS

-LOCATION ANCHORAGE, ALASKA

ELEVATION _____

DRILLING CONTRACTOR DENALI DRILLING

WATER	LEVELS	Appro	x. 10 ft	bgs	START 8-11-92 FINISH 8-11-9	LOGGER D. KUNKEL
ΞĒ		SAMPLE			SOIL DESCRIPTION	WELL COMPLETION DIAGRAM
oepth Belo Surface (F	INTERVAL	TYPE AND NUMBER	RECOVERY (FT.)	BLOW COUNTS 6" -6" -6" -6" (N)	SOIL NAME, USCS GROUP SYMBOL, COLOR, MOISTURE CONTENT, RELATIVE DENSITY OR CONSISTENCY, SOIL STRUCTURE, MINERALOGY	2-inch Sch 40 PVC vented slip cap ← 6-inch diameter steel surface casing 3 ft x 3 ft concrete pad
-	3.0				From 0.0 to 3.0 ft <u>WELL-GRADED GRAVEL</u> <u>WITH SILT AND SAND</u> . (GW-GM) dark brown, dry to moist, loose, well-graded subrounded to subangular gravei up to 8-inches in diameter with well-graded sand and brown, non-plastic silt. Very difficult drilling due to cobbles.	Cement/bentonite grout
- 60	5.0				From 5.0 to 7.0 ft <u>WELL-GRADED SAND</u> WITH GRAVEL. (SW) brown, moist to wet.	2-inch diam. Sch 40 flush-threaded
_		808-5	0.9	8-13-12-9 (25)	medium dense, well-graded sand with subrounded to rounded gravel up to 4-inches in diameter, minor amounts of brown, non-plastic silt.	
- 10.0	10.0				From 10.0 to 12.0 ft WELL-GRADED SAND	3/8-inch hydrated bentonite chips
-	12.0	B08-10	1.3	4-10-16-24 (26)	WITH GRAVEL (SW) brown, wet, medium dense, well-graded sand with subrounded to rounded gravel up to 4-inches in diameter, minor amounts of brown. non-plastic silt.	2-inch diam. Sch 40 PVC machine-cut well screen, 10-slot
-	14.0				From 14.0 to 16.0 ft <u>WELL-GRADED_SAND</u> WITH GRAVEL. (SW) brown, wet, medium	▼ 8/11/92
15.0 —	16.0	B08-14	1.4	7-12-16-20 (28)	dense, well-graded sand with subrounded to rounded gravel up to 4-inches in diameter, minor amounts of brown, non-plastic silt.	
-					Free water encountered at 14.3 ft. bgs. -	CSSI 16-40 sand pack
- 20.0	20.0				-	Flush-threaded PVC end-
-	22.0	808-20	1.4	9-15-18-28 (33)	End of boring at 22 ft bos	
-						-

ANC31026.H3.60

BORING NUMBER

SHEET 1 OF 1

WELL COMPLETION LOG

0<u>U5MW-09</u>

PROJECT ELMENDORF AFB IRP

LOCATION ANCHORAGE, ALASKA

ELEVATION _____

DRILLING CONTRACTOR DENALI DRILLING

СКМ НІЦ

PROJECT NUMBER ANC31026.H3.60 BORING NUMBER

SHEET 1 OF 1

WELL COMPLETION LOG

PROJECT ELMENDORF AFB IRP

LOCATION ANCHORAGE, ALASKA

ELEVATION _____

DRILLING CONTRACTOR DENALI DRILLING

WATER	LEVELS	<u>2.0 ft</u>	bgs 8/	10/92	START 8-10-92 FINISH 8-10-1	92 LOGGER D. KUNKEL
TE		SAMPLE			SOIL DESCRIPTION	WELL COMPLETION DIAGRAM
DEPTH BELO SURFACE (F	INTERVAL	TYPE AND NUMBER	RECOVERY (FT.)	BLOW COUNTS 6" -6" -6" -6" (N)	SOIL NAME, USCS GROUP SYMBOL, COLOR, MOISTURE CONTENT, RELATIVE DENSITY OR CONSISTENCY, SOIL STRUCTURE, MINERALOGY	2-inch Sch 40 PVC vented slip cap -6-inch diameter steel surface casing 3 ft x 3 ft concrete pad
	0.5					
					From 0.0 to 0.5 ft <u>rupsoll</u> , brown, moist, loose, some fine gravel. Free water encountered at 2.0 ft. bgs. No discernible free product.	3/8-inch hydrated ↓ bentonite chips 8/10/92 2-inch diam. Sch 40 flush-threaded 2-inch diam. Sch 40 PVC-
	5.0					10-slot
ເທ –	7.0	B10-5	1.0	6-6-5-5 (11)	From 5.0 to 7.0 ft <u>WELL-GRADED SAND</u> <u>WITH GRAVEL</u> , (SW) brown to gray brown, moist, wet at 2 ft bgs, medium dense, fine to coarse sand with subrounded to rounded gravel up to 2.5-inches in diameter, some brown silt.	CSSI 16-40 sand pack
- 10.0	9.0	B10-9	0.6	7-6-5-5 (11)	From 9.0 to 11.0 ft <u>WELL-GRADED SAND</u> <u>WITH GRAVEL</u> (SW) grayish brown, wet, medium dense, fine to coarse sand with rounded gravel up to 2.5-inches in diameter, some brown silt washed out of sampler.	
-					End of boring at 11.0 ft. bgs.	
-					-	
20.0 — - - -						

BORING NUMBER

<u>OU5MW-11 SHEET 1 OF 1</u>

WELL COMPLETION LOG

PROJECT ELMENDORF AFB IRP OUS

- LOCATION ANCHORAGE, ALASKA

DRILLING CONTRACTOR DENALI DRILLING

WATER	LEVELS	36.5	t. bgs		START 8-21-92 FINISH 8-21-	92LOGGER D. KUNKEL
TE E		SAMPLE			SOIL DESCRIPTION	WELL COMPLETION DIAGRAM
SEPTH BELON SURFACE (F	INTERVAL	LYPE AND	RECOVERY (FT.)	BLOW COUNTS 6° -6° -6° -6° (N)	SOIL NAME, USCS GROUP SYMBOL, COLOR, MOISTURE CONTENT, RELATIVE DENSITY OR CONSISTENCY, SOIL STRUCTURE, MINERALOGY	2~inch Sch 40 PVC
	-	<u> </u>	a -			6-inch diameter steel surface casing 3 ft x 3 ft concrete pad -3/8-inch hydrated bentonite chips
8	5.0 7.0	811-5	1.4	33-13-15-17 (28)	From 5.0 to 7.0 ft <u>WELL-GRADED SAND</u> <u>WITH GRAVEL</u> , (SW) brown to rusty-brown, - dry to moist, medium dense, fine to coarse sand with subangular to subrounded gravel	
10.0	10.0	B11-10	1.2	20-17-16-18	up to 2.5-inches in diameter and rusty-brown silt. Silt occurs as slightly plastic clumps.	Joint @ 10.0
	12.0			(33)	WITH GRAVEL, (SW) As above.	Cement/bentonite grout
	17.0	B11-15	1.2	17-14-18-18 (32)	From 15.0 to 17.0 ft <u>WELL-GRADED_SAND</u> WITH GRAVEL. (SW) As above -	
20.0 -	20.0 22.0	811-20	1.3	5-12-18-19 (30)	From 20.0 to 22.0 ft <u>WELL-GRADED SAND</u> WITH.GRAVEL (SW) As above.	Joint @ 20.0
25.0 -	25.0 27.0	B11-25	1.3	12-16-18-21 (34)	From 25.0 to 27.0 ft <u>WELL-GRADED SAND</u> <u>WTIH GRAVEL</u> (SW) As above. Wet at 31.5 ft. bgs.	3/8-inch hydrated
30.0 -	30.0 32.0	B11-30	1.3	12-29-34-29 (63)	Free water encountered at 31.5 ft. bgs.	bentonit3 chips 8/21/92
36.0	35.0 37.0	B11-35	1.3	18-13-20-19 (43)	From 35.0 to 37.0 ft <u>WELL-GRADED SAND</u> WITH GRAVEL, (SW) As above.	Joint @ 35.0
40.0 -	40.0 42.0	B11-4U	t.3	18-20-18-17 (38)	From 40.0 to 42.0 ft <u>WELL-GRADED SAND</u> WITH GRAVEL (SW) As above.	2-inch diam. Sch 40 PVG- machine-cut well screen, 10-slot
- 45.0 - -						CSSI 16-40 sand pack
50.0 -					-	Flush-threaded PVC end cap with 0-ring
-					End of boring at 52 ft. bgs.	

BORING NUMBER

0U5MW-12

SHEET 1 OF 1

LOGGER D. KUNKEL

WELL COMPLETION DIAGRAM

WELL COMPLETION LOG

PROJECT ELMENDORF AFB IRP

SAMPLE

- LOCATION ANCHORAGE, ALASKA

ELEVATION ____

___ DRILLING CONTRACTOR DENALI DRILLING

DRILLING METHOD AND EQUIPMENT HOLLOW STEM AUGER, MOBILE DRILL B-61. TRUCK MOUNT

WATER LEVELS .

NTERVAL

2.5

4.5 5.0

7.C

7.50

9.50

10.0

12.0

₹Ē

DEPTH BELI SURFACE (

60

10.0

16.0

20.0

START 8-25-92 FINISH 8-25-92 SOIL DESCRIPTION

2-Inch Sch 40 P BLOW SOIL NAME, USCS GROUP SYMBOL, COLOR, vented slip cap (3.5 ft TYPE AND NUMBER RECOVERY (FT.) above ground surface) MOISTURE CONTENT, RELATIVE DENSITY 8' -8' -8' -8' OR CONSISTENCY, SOIL STRUCTURE. 6-inch diameter steel surface casing (N) MINERALOGY 3 ft x 3 ft concrete pad. From 0.0 to 7.0 ft <u>POORLY-GRADED SAND</u> <u>WITH GRAVEL</u> (SP) brown, moist, fine to medium sand, subangular and subrounded 2-inch diam. Sch 40 flush-threaded gravel to 3 inches in diameter and trace silt. 3/8-inch hydrated bentonite chips 11-15-19-21 B12-3 1.2 (34)-2-inch diam. Sch 40 PVC 11-11-14-18 machine-cut well screen, 812-5 1.1 (25) 10 - slot-8-inch diameter borehole 8/25/92 Free water encountered at 7.5 ft. bgs. No discernible free product. 11-19-19-16 From 7.0 to 9.5 ft <u>WELL-GRADED GRAVEL</u> <u>WITH SAND</u>, (GW) gray-brown, wet, loose, subrounded gravel, some fine to coarse 812-8 1.1 (38) -CSSI 16-40 sand pack sand and trace silt. Flush-threaded PVC endcap with 0-ring 10-10-10-9 B12-10 0.5 (20) End of boring at 12 ft.

BORING NUMBER

OU5MW-13

SHEET 1 OF 1

WELL COMPLETION LOG

PROJECT ELMENDORF AFB IRP OUS

LOCATION ANCHORAGE, ALASKA

DRILLING CONTRACTOR DENALI DRILLING

	T				SOIL DESCRIPTION	WELL COMPLETION DIAGRAM
18E	┣───			віля		
W W	Z	9 m	ERY	COUNTS	MOISTURE CONTENT, RELATIVE DENSITY	vented slip cap
I E Z	ER	μΨ.	S₂:	6" -6" -6" -6"	OR CONSISTENCY, SOIL STRUCTURE,	6-inch diameter steel
83	IN	ž	Ш Г	(N)	MINERALOGY	3 ft x 3 ft concrete pad_
		Ν			From 0.0 to 0.5 ft TOPSOIL (ML) soft	3/8-inch hydrated
	{	[brown non-plastic silt, moist soft, fine to	bentonite chips
					gravel.	B/14/92
	2.5	ļ			Free water encountered at 1.4 ft. bgs.	
- 1	{				From 2.5 to 4.5 ft SILTY CLAYEY GRAVEL -	flush-threaded
1	Ì	813-3	1.0	(12)	brownish gray, wet, medium dense	
	4.5	ļ			fine to coarse sand, some gray plastic silt	CSSI 16-40 sand pack
<u>م</u> –	{				and clay	
						B-inch diameter borehole
']					2-inch diam. Sch 40 PVC
-	75	1				machine-cut well screen, . 10-slot
1		1			From 7.5 to 9.5 ft LEAN CLAY. (CL)	Flush-threaded PVC end
		B13-8	1.3	5-6-6-6	bootlegger cove formation, clay with some	cap with U-ring
	95			(12)	sitt, plastic, product odor.	
		<u> </u>			End of boring at 9.5 ft. bgs.	_
- w						
-	-					۰. ۱
]
]					
-	-					۰ · ·
]					
KO	{				-	- 4
]					j
]					
-	4					۰ ·
						J .
	1					f ·
200					=	4
	1	[
•	1					
						{ .
]
	1]
	1				· ·	

BORING NUMBER

SHEET I OF I

WELL COMPLETION LOG

PROJECT ELMENDORF AFB IRP OUS

LOCATION ANCHORAGE, ALASKA

0U5MW-14

ELEVATION ____

DRILLING CONTRACTOR DENALI DRILLING

 DRILLING METHOD AND EQUIPMENT
 HOLLOW STEM AUGER, MOBILE DRILL B-61, TRUCK MOUNT

 WATER LEVELS
 8.7 ft bgs 8/13/92

 START
 8-13-92

WATER	LEVELS	<u>8.7 ft</u>	bgs 8/	13/92	START FINISH	3-92 LOGGER D. KUNKEL
жĒ		SAMPLE			SOIL DESCRIPTION	WELL COMPLETION DIAGRAM
DEPTH BELO SURFACE (F	INTERVAL	TYPE AND VUMBER	RECOVERY (FT.)	BLOW COUNTS 6" -6" -6" -6" (N)	SOIL NAME, USCS GROUP SYMBOL, COLOR, MOISTURE CONTENT, RELATIVE DENSITY OR CONSISTENCY, SOIL STRUCTURE, MINERALOGY	2-inch Sch 40 PVC vented slip cap -6-inch diameter steel surface casing 3 ft x 3 ft consistenced
-	1.0				From 0.0 to 1.0 ft <u>TOPSOIL</u> (ML) brown, dry to moist, loose, sandy silt, brown, non-plastic silt with fine sand.	2-inch diam. Sch 40 flush-threaded -3/8-inch hydrated bentonite chips
ຍ – -	5.0	B14-5	1.3	9-10-12-15 (22)	From 5.0 to 7.0 ft <u>WELL-GRADED GRAVEL</u> <u>WITH SAND</u> (GW) light brown, moist, medium dense, subrounded to rounded gravel, well-graded sand and some brown, pop-plastic sit with gravel up to	
-	7.0	B14-8	0.8	9-12-17-23 (29)	From 7.5 to 9.5 ft <u>WELL-GRADED GRAVEL</u> <u>WITH SAND</u> (GW) light brown, moist to wet, medium dense subrounded to rounded gravel up to 1.5-inches in diameter, with well-graded sand and some brown,	2-inch diam. Sch 40 machine-cut well scre 10-slot ¥ 8/13/92
ιω – -	9.5	B14-10	1.1	5-9-10-18 (19)	non-plastic silt. Free water encountered at 8.7 ft. bgs. From 10.0 to 12.0 ft <u>WELL-GRADED</u> <u>GRAVEL WITH SAND</u> (GW) light brown, wet, medium dense subrounded to rounded gravel up to 1.5-inches in diameter, with	- B-inch diameter borehole
- - 16.0					Plastic silt. End of boring at 12.0 ft. bgs.	cap with O-ring
-						
20.0 - -						
-						

BORING NUMBER OUSMW-15

SHEET 1 OF 1

WELL COMPLETION LOG

PROJECT ELMENDORF AFB IRP

-LOCATION ANCHORAGE, ALASKA

ELEVATION ____

CHIM HILL

DRILLING CONTRACTOR DENALI DRILLING

WATE	R LEVEL	<u>9.5 ft</u>	bgs 8/	7/92	START FINISH	92 LOGGER D. KUNKEL
F		SAMPLE			SOIL DESCRIPTION	WELL COMPLETION DIAGRAM
DEPTH BELO SURFACE (F	INTERVAL	TYPE AND NUMBER	RECOVERY (FT.)	BLOW COUNTS 6* -6* -6* -6* (N)	SOIL NAME, USCS GROUP SYMBOL, COLOR, MOISTURE CONTENT, RELATIVE DENSITY OR CONSISTENCY, SOIL STRUCTURE, MINERALOGY	2-inch Sch 40 PVC vented slip cap 6-inch diameter steel surface casing 3 ft x 3 ft concrete pad
5.0 10.0 15.0 20.0	5.5 7.5 9.5 12.5	B15-5 B15-7 B15-12	1.2	1-1-1-1 (2) 4-5-6-10 (11) 8-10-20-28 (30)	From 5.5 to 7.5 ft <u>SILTY CLAY</u> (CL-ML) mottled gray-rust silty clay, most, very soft gray clay with fine silt. Sightly plastic in some portions, most portions crumbly when manipulated. Increasing plasticity with moisture content. From 7.5 to 9.5 ft <u>WELL-GRADED SAND</u> <u>WITH GRAVEL</u> (SW) blue-gray, most, wet at 9 ft bgs, medium dense, fine to coarse sand with subrounded gravel up to 3-inches in diameter, minor amounts of silt. Free water encountered at 9.5 ft bgs. Product sheen detected on water. From 12.5 to 14.5 ft <u>WELL-GRADED GRAVEL</u> <u>WITH SILT AND SAND</u> (GW-GM) tan-brown, wet, medium dense gravel up to 3-inches in diameter with fine to coarse sand, minor amounts of light brown silt. Sheen on water, petroleum odor in sampler.	2-inch diam. Sch 40 flush-threaded
	-					-

BORING NUMBER

OUSMW-16 SHEET 1 OF 1

WELL COMPLETION LOG

PROJECT ELMENDORF AFB IRP OUS

-LOCATION ANCHORAGE, ALASKA

ELEVATION _____

ORILLING CONTRACTOR DENALI DRILLING

NATER	LEVELS	Appro	x. 10 ft	bgs	START <u>8-6-92</u> FINISH <u>8-7-9</u>	D. KUNKEL
#F		SAMPLE			SOIL DESCRIPTION	WELL COMPLETION DIAGRAM
depth Belo Surface (F	INTERVAL	TYPE AND NUMBER	RECOVERY (FT.)	BLOW COUNTS 6° -6° -6° -6° (N)	SOIL NAME, USCS GROUP SYMBOL, COLOR, MOISTURE CONTENT, RELATIVE DENSITY OR CONSISTENCY, SOIL STRUCTURE, MINERALOGY	2-inch Sch 40 PVC vented slip cap 6-inch diameter steel surface casing 3 ff x 3 ft concrete pad
	2.5 4.5	B16-2.5	1.0	3-2-1-1 (3)	2.5-4.0 ft <u>SILTY SAND WITH GRAVEL</u> . (SM) brown, moist, loose, approx. 60-65% fine to medium grained sand, 20-25% subrounded to rounded gravel, up to 1.5 inches in diameter, up to 15% non-plastic silt, few chunks of gray clay in 2.5-4.0 ft	3/8-inch hydrated Bentonite chips 2-inch diam. Sch 40 PVC
ເທ -	7.0	B16-5	1.1	2-5-7-8 (12)	4.0-4.5 ft <u>PEAL</u> (PT) brown, moist, soft, dark reddish brown, some product odor. 5.0-5.5 ft <u>PEAL</u> (PT) brown, moist, soft, dark reddish brown, some product odor.	with 0-ring
	7.5				5.5-7.0 ft GRAVELLY LEAN CLAY WITH	
-	9.5	B16-7.5	1,1	6-9-10-15 (19)	SAND. (CL) light grayish-brown, moist, somewhat dense and cohesive, approx. 50-60% lean clay, 25% subrounded to rounded gravel, up to 15% silt and fine sand. Poorly graded.	Machine-cut well sc
- no	10.0				7.5-9.5 ft WELL-GRADED SAND WITH	
- 100	12.0	B16-10	0.9	16-18-25-20 (43)	<u>GRAVEL</u> . (SW) gray to blue-gray, moist, loose, mostly non-plastic silt, approx. 55-65% fine to medium grained sand, 30% subrounded gravel up to 2 inches in diameter, up to 5% fine sand.	* 8/6/92 -
-	15.0				This groundwater at 10 ft. bgs. 10.0-12.0 ft <u>WELL-GRADED GRAVEL WITH</u> <u>SILT AND SAND</u> , (GW-GM) gray to blue-gray, approx. 50-55% well-graded gravel, subangular to subrounded, 30% fine to coarse-grained sand, up to 15% silt, wet, loose.	CSSI 16-40 sand pack
- 0.0	;7.0	B16-15	2.0	1-2-3-3 (5)	15.0-17.0 ft <u>LEAN CLAY</u> . (CL) blue-gray, moist, wet. elastic, dense, sticky clay, up to 75% lean clay, approx. 5% fine sand in the upper 5 inches of the sampler.	-
					End of sampling at 17 ft. bgs. End of boring at 20 ft. bgs. Note: 0U5MW-16 was abandoned and backfilled on 8/25/92 due to insufficient yield.	cap with O-ring

3.60

BORING NUMBER

0U5MW-16A

SHEET 1 OF 1

WELL COMPLETION LOG

PROJECT ELMENDORF AFB IRP OUS

LOCATION ANCHORAGE, ALASKA

ELEVATION ____

DRILLING CONTRACTOR DENALI DRILLING

WATER	LEVELS	Appro	<u>ix. 10 ft</u>	bgs	STARTFINISHFINISH	-92 LOGGER D. KUNKEL
₹F.		SAMPLE			SOIL DESCRIPTION	WELL COMPLETION DIAGRAM
Depth Belo Surface (F	INTERVAL	TYPE AND NUMBER	RECOVERY (FT.)	BLOW COUNTS 6° -6° -6° -6° (N)	SOIL NAME, USCS GROUP SYMBOL, COLOR, MOISTURE CONTENT, RELATIVE DENSITY OR CONSISTENCY, SOIL STRUCTURE, MINERALOGY	2-inch Sch 40 PVC vented slip cap 6-inch diameter steel surface casing 3 ff x 3 ft concrete pad
	Γ				From 2.5 to 4.0 ft <u>SILIY SAND WITH</u> <u>GRAVEL</u> (SM) brown, moist, very loose, fine to medium sand with subrounded to rounded gravel, up to 1.5 inches in diameter, and non-plastic silt, few chunks of gray clay in 2.5-4.0 ft interval. From 4.0 to 4.5 ft <u>EEAI</u> (PT) brown, moist, very soft. dark reddish brown, some product odor. From 5.0 to 5.5 ft <u>EEAI</u> (PT) brown, moist, soft, dark reddish brown, some product odor. From 5.5 to 7.0 ft <u>GRAVELLY LEAN CLAY</u> <u>WITH SAND</u> , (CL) light grayish-brown, moist, medium dense and cohesive lean clay with subrounded to rounded gravel. silt and fine sand. Poorly graded. From 7.5 to 9.5 ft <u>WELL-GRADED SAND</u> <u>WITH GRAVEL</u> (SW) gray to blue-gray, most, very stiff, mostly non-plastic silt with fine to medium sand, and subrounded gravel up to 2-inches in diameter. Free water encountered at 10 ft. bgs. From 10.0 to 12.0 ft <u>WELL-GRADED</u> <u>GRAVEL WITH SILT AND SAND</u> (GW-GM) gray to blue-gray, wet, dense, well-graded subangular to subrounded gravel with fine to coarse sand and silt. End of boring at 13 ft. bgs. Note: Soil description is taken from log for OUSMW-16, which was drilled approximately 10 ft. from OUSMW-16A.	3 It x 3 It concrete pad 3/8-inch hydrated bentonite chips 2-inch diam. Sch 40 flush-threaded 2-inch diam. Sch 40 PVC machine-cut well screen, 10-slot 8-inch diameter borehole 8/25/92 CSSI 16-40 sand pack Flush-threaded PVC end cap with 0-ring
1						

BORING NUMBER

0U5MW-17 SHEET 1 OF 1

WELL COMPLETION LOG

PROJECT ELMENDORF AFB IRP OUS

- LOCATION ANCHORAGE, ALASKA

DRILLING CONTRACTOR DENALI DRILLING

WATER	LEVELS	<u>9.5 ft</u>	bgs 8	/12/92	START _8-12-92 FINISH _8-12-	92 LOGGER D. KUNKEL
-F		SAMPLE			SOIL DESCRIPTION	WELL COMPLETION DIAGRAM
DEPTH BELO SURFACE (F	INTERVAL	TYPE AND NUMBER	RECOVERY (FT.)	BLOW COUNTS 6" -6" -6" -6" (N)	SOIL NAME, USCS GROUP SYMBOL, COLOR, MOISTURE CONTENT, RELATIVE DENSITY OR CONSISTENCY, SOIL STRUCTURE, MINERALOGY	2-inch Sch 40 PVC vented slip cap ← 6-inch diameter steel surface casing 3 ft x 3 ft concrete pad
-	1.0				From 0.0 to 1.0 ft <u>TOPSOIL</u> , (ML) brown, moist, loose, some large gravel, mostly silt and fine sand.	3/8-inch hydrated bentonite chips
50 - -	5.0	B17-5	1.7	11-12-18-23 (30)	From 5.0 to 7.0 ft <u>WELL-GRADED SAND</u> <u>WITH GRAVEL</u> . (SW) rust-brown, moist, medium dense. A few small, wet, thin silty zones. Well-graded sand with fine to	2-inch diam. Sch 40 flush-threaded
	7.0 7.5			4-7-20-15	medium gravel, minor amounts of silt. 7.5-9.C ft <u>WELL-GRADED SAND WITH</u> <u>GRAVEL</u> . (SW) rust-brown, moist, medium dense A few small wet this silty zones	
- 10.0 —	9.0 9.5	B17-8 B17-9.5	1.3	4-7-20-15 (27) 7-8-6-5 (14)	Fine to coarse sand with fine to medium gravel, some silt. Free water encountered at 9.5 ft. bgs. No discernible free product.	¥ 8/12/92
	11.0				brown, fine sand with brown, non-plastic silt, trace of clay, dense, somewhat sticky.	2-inch diam. Sch 40 PVC machine-cut well screen, 10-slot Flush-threaded PVC end
- 15.0	14.5				From 14.0 to 16.0 ft <u>LEAN CLAY</u> , (CL) blue-gray, 100% clay, bootlegger cove formation, plastic, sticky.	CSSI 16-40 sand pack
	16.5	B17-15	2.0	(3)	End of sampling at 16.5 ft. bgs.	
20.0						

CHM HILL

PROJECT NUMBER

ANC31026.H3.60

BORING NUMBER

SHEET 1 OF 1

WELL COMPLETION LOG

PROJECT ELMENDORF AFB IRP

LOCATION ANCHORAGE. ALASKA

ELEVATION _____

DRILLING CONTRACTOR DENALI DRILLING

DRILLING METHOD AND EQUIPMENT HOLLOW STEM AUGER, MOBILE DRILL B-61, TRUCK MOUNT

START 8-11-92 FINISH 8-11-92 ----WATER LEVELS . LOGGER SOIL DESCRIPTION SAMPLE WELL COMPLETION DIAGRAM ₽Ē Inch Sch 4U BLOW vented slip cap (3.5 ft DEPTH BEL SOIL NAME, USCS GROUP SYMBOL, COLOR, MOISTURE CONTENT, RELATIVE DENSITY OR CONSISTENCY, SOIL STRUCTURE, RECOVERY (FT.) TYPE AND NUMBER INTERVAL above ground surface) 6-inch diameter steel 6' -6' -6' -6' MINERALOGY surface casing (N) 3 ft x 3 ft concrete pad_ From 0.0 to 0.5 ft TOPSOIL, brown, moist, organic rich, mostly silt, some fine sand. 2-inch diam. Sch 40 4-15-24-24 B030-C 0.7 From 0.5 to 2.0 ft <u>WELL-GRADED GRAVEL</u> <u>WITH SILT</u> (GW-GM) brown fill material, moist, dense, looks like pit run, cobbles up flush-threaded (39) 2.0 to 1 ft in diameter in a silt matrix, well-graded gravel, difficult drilling due to -3/8-inch hydrated bentonite chips cobbles. ¥ 8/11/92 Free water encountered at 4.5 ft. bgs. 5.0 6.0 No discernible free product. From 5.0 to 7.0 ft <u>WELL-GRADED GRAVEL</u> <u>WITH SILT</u>. (GW-GM) brown fill material, -2-inch diam. Sch 40 PVC 5-8-10-12 machine-cut well screen, b030-5 1.0 (18) 10-slot wet, medium dense, loose like pit run, 7.0 cobbles up to 1 ft in diameter in a silt matrix, well-graded gravel, difficult drilling 8-inch diameter borehole due to cobbles. Flush-threaded PVC end From 10.0 to 12.0 ft <u>WELL-GRADED SAND</u> <u>WITH GRAVEL</u>. (SW) brown, wet, medium cap with O-ring dense, fine to coarse sand with -CSSI 16-40 sand pack subrounded gravel up to 15-inches in diameter, minor amounts of non-plastic 10.0 silt. No cobbles. 10.0 7-11-19-39 B030-10 1.2 (30) 12.0 End of boring at 12.0 ft. bgs. 15.0 20.0

BORING NUMBER

0U5MW-31

SHEET 1 OF 1

WELL COMPLETION LOG

PROJECT ELMENDORF AFB IRP

LOCATION ANCHORAGE, ALASKA

DRILLING CONTRACTOR DENALI DRILLING ELEVATION _____ DRILLING METHOD AND EQUIPMENT HOLLOW STEM AUGER, MOBILE DRILL B-61, TRUCK MOUNT LOGGER D. KUNKEL WATER LEVELS 3.5 ft. bgs START 8-20-92 FINISH 8-20-92 SAMPLE SOIL DESCRIPTION WELL COMPLETION DIAGRAM DEPTH BELON SURFACE (FT) BLOW SOIL NAME, USCS GROUP SYMBOL, COLOR, -2-inch Sch 40 PVC RECOVERY (FT.) TYPE AND NUMBER NTERVAL vented slip cap MOISTURE CONTENT, RELATIVE DENSITY OR CONSISTENCY, SOIL STRUCTURE, 6-inch diameter steel 6' -6' -6' -6' surface casing MINERALOGY (N) 3 ft x 3 ft concrete pad_ 2.5 3/8-inch hydrated From 2.5 to 3.0 ft <u>SILT WITH SAND</u>, (ML) brown to dark brown, moist, firm, bentonite chips 3-2-4-7 non-plastic silt with subangular gravel and T 8/20/92 B31-3 1.1 (6) well-graded sand From 3.0 to 4.5 ft <u>WELL-GRADED GRAVEL</u> <u>WITH SAND</u> (GW) brown, wet, loose, well-graded gravel up to 3-inches in diameter with well-graded sand and 4.5 2-inch diam. Sch 40 flush-threaded 60 -2-inch diam. Sch 40 PVC machine-cut well screen, . non-plastic silt. 10-slot Free water encountered at 3.5 ft. bqs. No discernible free product. 7.5 Flush-threaded PVC From 7.5 to 9.5 ft <u>WELL-GRADED GRAVEL</u> <u>WITH SAND</u>, (GW) As above. cap with 0-ring 7-7-8-16 CSSI 16-40 sand pack B31-8 1.3 -8-inch diameter borehole. (15) 9.5 From 9.5 to 11.5 ft WELL-GRADED GRAVEL WITH SAND, (GW) As above. 10.0 8-5-7-12 B31-11 1.0 (12) 11.5 End of boring at 11.5 ft. bgs. 15.0 20.0

Appendix D

WELL PURGING AND DEVELOPMENT FIELD DATA SHEETS

GROUNDWATER SAMPLING FIELD DATA SHEET

WELL NUMBER OUS MW (FIELD TEAM (INITIALS) SRepky
SITE Elmendorf AFB	JOB NUMBER ANCS/026. H3.60
FIELD CONDITIONS Cool (50°) Quercus	t. Furning
``	·

<u>FIELD MEASUREMENT/</u> COLLECTION EQUIP.	MAKE/MODEL	SERIAL/ID NO.	CALIBRATION/
PH METER	j	7	
CONDUCTIVITY METER	See page	2	
	ر ،		
WATER LEVEL INDICATOR	· · · · · · · · · · · · · · · · · · ·		
BAILER/PUMP			
DECONTAMINATION			

Ρι	IRG	iE :	INF	AT	ION	

DATE <u>25-26 Aug 92</u> INITIAL DEPTH TO WATER <u>37.22</u> WELL DEPTH <u>46.9</u> EST. WELLBORE VOL <u>9.7</u> FINAL DEPTH TO WATER <u>37.23</u> TOTAL VOL. PURGED <u>440 ga</u>DISCHARGE RATE <u>5.5 gm</u> METHOD <u>pumper</u> PUMP DEPTH <u>45²²</u> 37.22 to 46.9 TOC

VOLUME PURGED	TEMPERATURE	pH_	CONDUCTIVITY	APPEARANCE
0	11. 4°C	6.82	600	muddy brown
55 gallins	10.9	6.69	525	Turbid brown
220 gallors	<u> </u>	6.82	557)	Slightly Turbid brown
4 20	10.4	6.72	550	Clear Caluctess

SAMPLING INFORMATION

DATE _2	6 Aug 92	S	TART TIME .	09:30	2 EN	D TIME 10:00
METHOD	grunfor	Fed the sead	Flow	pump	>	
INITIAL	DEPTH TO WA	TER	DEPTI		TER AFTER	SAMPLING 37.23'

			(43)
	GROUNDWATER FIELD DATA	SAMPLING SHEET	
WELL NUMBERMW.	FIELD	TEAM (INITIALS)	BIJG
SITE Elmendoret A	FB JRP	JOB NUMBER	An Nort. H3. 60
FIELD CONDITIONS	IN, SOF		
			· · · · · · · · · · · · · · · · · · ·
FIELD MEASUREMEN	<u>T/</u>	SERIAL/ID	CALIBRATION
CULLECTION EQUIP.	MAKE/MODEL		COMMENTS -
PH METER	VET 22	MA20 /8/5	-780 -1 1000 x dos
CONDUCTIVITY METER		HALL 21 10	750 -142
THERMOMETER			
VATER LEVEL INDICATOR	1015	HAZCO 1/72	
BAILER/FUMF		•	· · · · · · · · · · · · · · · · · · ·
DECONTAMINATION	Stram Clear,	Lipninox V	ASH, Tap
KINSE, DI KI	NJE		
		-	
PURGE INFORMATION	1 / Developence	nt	
DATE 8 25 12	START TIME.		_ END TIME
INITIAL DEPTH TO WATER	24.86 WELL DEPTH	EST. WEL	
FINAL DEPTH TO WATER .		GEDDIS(CHARGE RATE
METHOD Watera, Footus	IN, Schartery PUMP DE	Глье :ртн	
VILUME PURGED TEMPER			
BRAL	- Hu	/	
0	R/1 CHAR		<u></u>
Lopo Der	,0.4		. <u></u>
never A1			, <u></u> _
- Gu			ہے۔ بنے مشہور ک ا میں میں میں میں میں میں اور کر میں
••••••••••••••••••••••••••••••••••••••			
SAMPLING INFORMAT	TION		
DATE 8 26 92	START TIME	1500	_ END TIME
METHOD Watera, HIPE	Tube, Velatik	Sample Tube	· · · · · · · · · · · · · · · · · · ·
INITIAL DEPTH TO WATER	RDEPT	H TO WATER AFT	ER SAMPLING

			WATER S D DATA	SAMPI	LING IT	
WELL NUMBER _5M	woi		_ FIELD TI	EAM (I	NITIALS)	KBL/ RC
SITE				JOB	NUMBER	
FIELD CONDITIONS	CUERCAS	T, O'F, W	INDSCAL	m		
-		·				
ETEL D MEASUR	FMENT	/				
COLLECTION EG	QUIP.	- MAKE	MODEL	SE	RIAL/ID NO.	CALIBRATIC
DH METER	<u> </u>	Srion 2	SOA	288	2	4 3 of allibrations
	ER _	YSI 33		182	20	See calibration
THERMOMETER		ORION 2	50A	28	22	See calibration
WATER I EVEL INDI		SLOPE "	51453	195	566	de water bal
	G	SRUNDFOS r	1PL	05	6208	
	_	[6 C				
DECONTAMINATI		SIEAM CL	EAN-AL	Callo)	-1AP-	- DI RIVSE
			.			
FOR PUTP. 1	LOTA	ERS FOLLO	w OUS	MANA	6eman	PLAN
PURGE INFORM	ATION	BRS FOLLO	<u>w 005 1</u>	11ANA (5-2	GEMBNT	PLAN
PURGE INFORMA DATE 12/16/92 INITIAL DEPTH TO FINAL DEPTH TO W METHOD GRUNFOS	ATION WATER 34 VATER VARIA	ERS FOLLO STA C.73 VELL TOTAL BLE FLOW	<u>ω Ους Ν</u> RT TIME DEPTH <u>46.</u> VOL. PURG PUMP DEP	153 .65* ED	GEMENT	END TIME LBORE VOL CHARGE RATE 3_
PURGE INFORMA DATE 12/16/92 INITIAL DEPTH TO FINAL DEPTH TO W METHOD GRUNFOS VOLUME PURGED T	ATION ATION WATER 3 VATER VARIA	ERS FOLLO STA C.73 ⁴ WELL TOTAL BLE FLOW G.8 URE PH	W OUS N RT TIME DEPTH <u>46.</u> VOL. PURG PUMP DEP CONDUCTIV	153 .65* ED	GEMENT	END TIME LBORE VOL CHARGE RATE 34
PURGE INFORMA DATE 12/16/92 INITIAL DEPTH TO FINAL DEPTH TO W METHOD GRUNFOS VOLUME PURGED T	ATION ATION WATER 3 VATER 4 VARIA EMPERAT 8.1'C	ERS FOLLO STA C.73 ⁴ WELL TOTAL BLE FLOW G.8 URE PH	W OUS RT TIME DEPTH <u>46.</u> VOL. PURG PUMP DEP CONDUCTIN 100 mm	153 .65* ED	GEMENT D EST. WEL DISC Slightly C	END TIME LBORE VOL CHARGE RATE 32 APPEARANCE
PURGE INFORMA DATE 12/16/92 INITIAL DEPTH TO FINAL DEPTH TO W METHOD GRUNFOS VOLUME PURGED T K Gal	ATION ATION WATER 3 VATER VARIA EMPERAT 8.1'C 8.6'C	ERS FOLLO STA C.73 ⁴ VELL TOTAL BLE FLOW G.8 URE PH G.8	W OUS RT TIME DEPTH <u>46.</u> VOL. PURG PUMP DEP CONDUCTIN 500 mh 400 mh	153 .65* ED TH VITY bS	GEMENT D EST. WEL DISC Slightly C Claar	END TIME LBORE VOL CHARGE RATE 32 APPEARANCE
PURGE INFORM DATE <u>12/16/92</u> INITIAL DEPTH TO FINAL DEPTH TO W METHOD <u>GRUNFOS</u> VOLUME PURGED T <u>KIGA</u> <u>SGA</u>	ATION ATION WATER 3 VATER 4 VARIA EMPERAT 8:1'C 8.6C 7.0C	ERS FOLLO STA C.73 ⁴ VELL TOTAL BLE FLOW G.8 URE PH G.8 G.8 G.8	W OUS RT TIME DEPTH <u>46.</u> VOL. PURG PUMP DEP CONDUCTIN SOO mhu 400 mhu 400 mhu	153 153 65* ED TH VITY 05 01 01	GEMENT D EST. WEL DISC Slightly C Clan Clan	END TIME LBORE VOL CHARGE RATE 32 APPEARANCE
PURGE INFORM DATE 12/16/92 INITIAL DEPTH TO FINAL DEPTH TO W METHOD GRUNFOS VOLUME PURGED T K Gal SGal SGal 30 gal	ATIEN ATIEN WATER 3 VATER VARIA EMPERAT 8:1'C 8:1'C 7.0'C 7.0'C	ERS FOLLO STA C.73 ⁴ VELL TOTAL BLE FLOW G.8 URE PH - - - - - - - - - - - - -	W OUS I RT TIME DEPTH <u>46.</u> VOL. PURG PUMP DEP CONDUCTIN 500 mh 400 mh 400 mh	153 153 65* ED TH VITY 05 01 01	Clan Clan Clan	END TIME LBORE VOL CHARGE RATE 32 APPEARANCE
PURGE INFORM DATE 12/16/92 INITIAL DEPTH TO FINAL DEPTH TO W METHOD GRUNFOS VOLUME PURGED T KIGAI SGAI SGAI 30 gAI	ATION ATION WATER 3 VATER - VARIA EMPERAT 8:1'C 8:1'C 1.0'C 1.0'C	ERS FOLLO STA C.73 ⁴ VELL DEE FLOW G.8 URE PH G.8 G.8 G.8 G.8	W OUS I RT TIME DEPTH 46. VOL. PURG PUMP DEP CONDUCTIN 500 m/m 400 m/m 400 m/m 400 m/m	153 153 65* ED TH VITY 05 01 10 10 10 10 10 10 10 10 10	GEMENT D EST. WEL DISC Slightly C Clean Clean	END TIME LBORE VOL CHARGE RATE 32 APPEARANCE
PURGE INFORMA DATE <u>12/16/92</u> INITIAL DEPTH TO FINAL DEPTH TO W METHOD <u>GRUNFOS</u> VOLUME PURGED T <u>KIGAL</u> <u>JCGAL</u> <u>JCGAL</u> <u>JCGAL</u> <u>JOGAL</u>	ATIEN ATIEN WATER 3 VATER - VARIA EMPERAT 8.1'C 8.6'C 7.0'C 1.0'C	ERS FOLLO STA C.73 VELL TOTAL BLE FLOW G.8 URE PH - 10.2 G.8 G.8 G.8 G.8 G.8	w OUS RT TIME DEPTH <u>46</u> VOL. PURG PUMP DEP CONDUCTIN 200 mh 400 mh 400 mh	153 153 65* ED	Clan Clan Clan	END TIME LBORE VOL CHARGE RATE 32 APPEARANCE
PURGE INFORMA DATE 12/16/92 INITIAL DEPTH TO FINAL DEPTH TO W METHOD GRUNFOS VOLUME PURGED T K Gal Scal Jogal K Meosured From To SAMPLING INFO	ATIEN ATIEN WATER 3 VATER - VARIA EMPERAT 8.1'C 8.6'C 7.0'C 7.0'C	ERS FOLLO STA C.73 VELL TOTAL BLE FLOW G.8 URE PH - 10.2 G.8 G.8 G.8 G.8 G.8 G.8 G.8	w OUS RT TIME DEPTH <u>46</u> VOL. PURG PUMP DEP CONDUCTIN 200 mh 400 mh 400 mh	11ANA 153 65* ED	Clan Clan Clan	END TIME LBORE VOL CHARGE RATE 32 APPEARANCE
PURGE INFORMA DATE <u>12/16/92</u> INITIAL DEPTH TO FINAL DEPTH TO W METHOD <u>GRUNFOS</u> VOLUME PURGED T <u>KIGAI</u> <u>SGAI</u> <u>SGAI</u> <u>SAMPLING INFO</u>	ATIEN ATIEN WATER 3 VATER - VARIA EMPERAT 8,1'C 8,6'C 7,0'C 7,0'C 1.0'C 1.0'C 1.0'C 1.0'C	ERS FOLLO STA C.73 VELL TOTAL BLE FLOW G.8 URE PH 10.2 G.8 G.8 G.8 G.8 G.8 G.8 G.8 G.8	w OUS I RT TIME DEPTH <u>46</u> VOL. PURG PUMP DEP CONDUCTIN 200 mh 400 mh 400 mh	153 .65* ED TH VITY US NOS .01 .01	C C C C C C C C C C C C C C	END TIME LBORE VOL CHARGE RATE 32 APPEARANCE

-
•

A DO TO A DOTATION A DOTATION OF A DOTATION

1

÷

WELL NUMBER MW Or FIELD	TEAM (INITIALS)
SITE ELMENDORF AFB OUS	JOB NUMBER ANC 3, 02 6. 43. 60
FIELD CONDITIONS CLOUDY 55 .	

FIELD MEASU	REMENT, EQUIP.	<u></u>	MODEL	SE	RIAL/ID	CALIB	RATION/
PH METER	<u>c</u>	DRION 230	<u>A</u>	4A2CO	# 2017	SEE CALIBA	LATION LOG
	TER	4si/ser		HAZCO	dz170		• •
THERMOMETER							
WATER LEVEL IN	DICATOR				· • · ·		
BAILER/PUMP		·····			<u> </u>		• -
DECONTAMINA R.NSE		STEAM CLEX	N, LIEU,	NOX	HZO, TA	P HZO	DI H-10
- 							
PURGE INFOR	MATION				ו		
DATE 3 SEPT 92		STA	RT TIME _		-	END TIME	
INITIAL DEPTH T	WATER 3	325 WELL		6.35	EST. WEL	LBORE VOL	-
FINAL DEPTH TO	WATER	TOTAL		GED	DISC	HARGE RA	TE
NETHED GRUNDFOS	REDI FLO	2	PUMP DEF	этн <u>-4</u> 4		<u></u>	
	TEMPERAT	URE pH		VITY		APPEARAN	
185 GAL	10.7°C	7.19	430	-	DARK BR	own /m.	1001
220 GAL	10.7 °C	7.13	420		ERONN	TURBID	
275 GAL	10.6°C	7.01	420		LIGHT B.	ROWN/TO	1 R.B.A.D
·							•
					•		

SAMPLING INFORMATION

DATE	3 Sept 9	2	START TIME	14:00	END TIME_	14:20
METHOD	builed	w/ 2"-5	turbless Stain	less steel		
INITIAL	DEPTH TO	WATER 33	. 26 below PCC	TO WATER AP	TER SAMPLIN	G <u>33.26</u> '

	16		_ FIELD TEA	M (INITIALS)	KYKBL
	51/110	nth. ~ ~ ~	·// C		MUL JOLG MOGO
	20000	<u>ast 0.</u>	.U.F. WWA	- prove (proved	- N - 2 .
COLLECTION EQUI	<u>.1917</u> P.	MAKE/	MODEL	SERIAL/ID	CALIBRATIO COMMENTS
DH METER	OR	10N 25	OA	2.851	See. Cul logs
CONDUCTIVITY METER	40	n 33		1820	
THERMOMETER	Ď	ZION 25	A	1882	
WATER LEVEL INDICAT	OR SI	082.510	153	195120	
BAILER/PUMP	G	RUNDFOS	MPI	756208	V
DECONTAMINATION PURGE INFORMATI DATE /7-DEC-9		<u>syme on</u> STA	RT TIME 14	<u> </u>	
DECONTAMINATION PURGE INFORMATI DATE <u>77-DEC-9</u> INITIAL DEPTH TO WATE FINAL DEPTH TO WATE METHOD <u>GRUNFOS</u> M	<u>ON</u> 2 TER <u>32.9</u> R <u>33.0</u> IP1	STA	RT TIME 14 DEPTH 16.4 VOL. PURGEI PUMP DEPTH	25 10 [×] EST. WEL 0 <u>30</u> DISC 1 34.5	END TIME 29 LBORE VOL 93 CHARGE RATE 22
DECONTAMINATION PURGE INFORMATI DATE <u>17-DEC-9</u> INITIAL DEPTH TO WATE FINAL DEPTH TO WATE METHOD <u>GRUNFOS</u> M VOLUME PURGED TEMP	ON 2 TER 32.9 R 33.0 IP1 ERATURE	STA	SMWOL RT TIME 14 DEPTH 16. VOL. PURGEI PUMP DEPTH CONDUCTIVI	(16) 10 [*] EST. WEL 0 <u>3091</u> DISC 4 <u>34.5</u> (TY	END TIME 19 LBORE VOL 93 CHARGE RATE 2 APPEARANCE
DECONTAMINATION PURGE INFORMATI DATE /7-DEC-9 INITIAL DEPTH TO VATE FINAL DEPTH TO VATE METHOD GRUNFOS M VOLUME PURGED TEMP < 1 GO	<u>IN</u> 2 R <u>33.0</u> IP <u>1</u> ERATURE 6.8 (STA STA WELL TOTAL	RT TIME /4 DEPTH 46.4 VOL. PURGET PUMP DEPTH CONDUCTIVI	125 10 [×] EST. WEL D <u>3091</u> DISC 1 <u>34.5</u> TY S/ic Mt	END TIME 19 LBORE VOL 99 HARGE RATE 2 APPEARANCE
DECONTAMINATION PURGE INFORMATI DATE /7-DEC-9 INITIAL DEPTH TO WATE FINAL DEPTH TO WATE METHOD CORUNFOS M VOLUME PURGED TEMP CIGOL I3GAL	<u>IN</u> <u>IN</u> <u>R</u> <u>33.0</u> <u>IP1</u> <u>ERATURE</u> <u>6.8 (</u> <u>8.1 (</u>	STA STA VELL TOTAL PH 6.98 6.91	RT TIME 14 DEPTH 46.4 VOL. PURGET PUMP DEPTH CONDUCTIVI 300 mh 300 mh	125 10 [×] EST. WEL D <u>3091</u> DISC 1 <u>34.5</u> TY S <u>S/1914</u>	END TIME 19 LBORE VOL 99 CHARGE RATE 22 APPEARANCE
DECONTAMINATION PURGE INFORMATI DATE <u>7-DEC-9</u> INITIAL DEPTH TO WATE FINAL DEPTH TO WATE METHOD <u>GRUNFOS</u> M VOLUME PURGED TEMP < 1 Gol 13 Gol 20 Gol	ERATURE 6.8'(8,9'(STA STA VELL TOTAL 6.98 6.91 6.93	RT TIME 14 DEPTH 46.4 VOL. PURGEI PUMP DEPTH CONDUCTIVI 300 mh 300 mh	125 10 ^x EST. WEL D <u>30</u> 10 ^x EST. WEL D <u>30</u> 10 10 10 10 10 10 10 10 10 10	END TIME 19 LBORE VOL 99 CHARGE RATE 22 APPEARANCE
DECONTAMINATION PURGE INFORMATI DATE /7-DEC-9 INITIAL DEPTH TO WATE FINAL DEPTH TO WATE METHOD CRUNFOS M VOLUME PURGED TEMP <1001 13091 30961	UN 2 TER 32.9 R 33.0 IP1 ERATURE 6.8 (8.9 (8.9 (8.9 (8.9 (8.9 (8.9 (8.9 (8.9 (STA STA VELL TOTAL 6.98 6.91 6.93 6.93	RT TIME 14 DEPTH 46.4 VOL. PURGET PUMP DEPTH CONDUCTIVI 300 mh 300 mh	125 10 ^x EST. WEL D <u>30ad</u> DISC 1 <u>34.5</u> TY 15 <u>Slightly</u> 10x <u>clem</u> 10x <u>clem</u> 10x <u>clem</u>	END TIME 29 LBORE VOL 99 CHARGE RATE 22 APPEARANCE
DECONTAMINATION PURGE INFORMATI DATE <u>17-DEC-9</u> INITIAL DEPTH TO VATE METHOD <u>GRUNFOS</u> M VOLUME PURGED TEMPI <u>Cloch</u> <u>13gal</u> <u>20gal</u> <u>30gal</u>	UN 2 TER 32.9 R 33.0 IP1 ERATURE 6.8 (8.9 (8.9 (8.9 (8.9 (8.9 (8.9 (8.9 (сулье сл. STA VELL TOTAL _	RT TIME /4 DEPTH 46. VOL. PURGEI PUMP DEPTH CONDUCTIVI 300 mh 300 mh	125 10 ^x EST. VEL 30gd DISC 34.5 TY S/19hthy NCK Clem. hos Clear	END TIME 29 LBORE VOL 93 HARGE RATE 22 APPEARANCE
DECONTAMINATION PURGE INFORMATION DATE /7-DEC-9 INITIAL DEPTH TO VATE INITIAL DEPTH TO VATE METHOD GRUNFOS M VOLUME PURGED TEMP <1001 13031 20041 30341 410P OF COGNV	UN 2 TER 37.9 R 33.0 IP1 ERATURE 6.8°(8.9°(8.9°(8.9°(силе со STA VELL TOTAL 	RT TIME 14 DEPTH 46.4 VOL. PURGET PUMP DEPTH CONDUCTIVI 300 mh 300 mh	125 10 ^x EST. WEL 30gd DISC 34.5 TY S S/1ghthy NOX Clean hos Clean	END TIME 12 LBORE VOL 99 HARGE RATE 2 APPEARANCE

in the

WELL NUMBER _5MW3	FIELD TEAM (INITIALS) SR
SITE Elmendert AFB OUS	JOB NUMBER ANC31026.113.60
FIELD CONDITIONS Coul, overcust	

FIELD MEASUREMENT/ COLLECTION EQUIP.	MAKE/MODEL	SERIAL/ID NO.	CALIBRATION/ COMMENTS
PH METER _			
CONDUCTIVITY METER _	- oucje I		·
THERMOMETER _	See		······
WATER LEVEL INDICATOR _			
BAILER/PUMP _			
DECONTAMINATION	See Page 1		

PURGE INFORMATION								
DATE 27 Aug 92 START TIME 26 Aug 92 11:30 END TIME 27 Aug 92								
INITIAL DEPTH T	0 WATER <u>34.2</u>	_ WELL		EST. WELLBORE VOL. 15.3				
FINAL DEPTH TO	WATER 34.2	TUTAL	VOL. PURGED 82	Egel DISCHARGE RATE 9 9 pm				
METHOD pumper	L	<u> </u>	PUMP DEPTH	40'				
	TEMPERATURE	рН		APPEARANCE				
O gulling	7.5°C	ט.ר	420	muldy				
165 "	9.1°C	7.03	420	Turbid				
200 gallons	9.2°C	6.86	440	Turb.d				
715	8.5°C	6.93	425	Slightly Turbid				
825	8.5°C	7.0	450	Cleur Colorless				

SAMPLING INFORMATION

DATE	27 Aug	92	START	TIME	END TIME
METHOD	well	samples	l using	2" Stunless	Steel bailer
	DEPTH TO	WATER _3	4.0	DEPTH TO WATE	R AFTER SAMPLING <u>H.O</u>

GROUNDWATER	SAMPLING
FIELD DATA	SHEET

S

WELL NUMBERMW.3	FIELD TEAM (INITIALS) BTJG
SITE Elmandoet AFB IRP	JOB NUMBER ANC 31026.H3.60
FIELD CONDITIONS OVERCOST, 59	8°F
/ /	

FIELD MEASUREMENT	MAKE/MODEL	SERIAL/ID NO.	CALIBRATION/ COMMENTS
PH METER .			·
CONDUCTIVITY METER	Keter TO Pa	y#51	
THERMOMETER .	·/		
WATER LEVEL INDICATOR .			·····
BAILER/PUMP			····
DECONTAMINATION			
	¥		

PURGE INFOR	MATION De	velop	oc man	4	
DATE	·····	STA	ART TIME	11 1	BTOC END TIME
INITIAL DEPTH TI			DEPTH S	14.69	
FINAL DEPTH TO	WATER	TUTAL			DISCHARGE RATE
	TEMPERATURE	,pH			APPEARANCE
					·
Susan	Repko/CH	em)		_	
Dennii	Drilling 1	Devel	oped	8/27/	92
	<u> </u>				
	······				

SAMPLING INFORMATION	
DATE 8/27/92	
METHOD 55 Bailer	
INITIAL DEPTH TO WATER 33.3	8 DEPTH TO WATER AFTER SAMPLING

	GROUNDWATER FIELD DATA	SAMPLING SHEET	
WELL NUMBER 5mw4	FIELD 1	TEAM (INITIALS)	512
SITE Elmendurt A	FB	JOB NUMBER	ANC31026. H3. 60
FIELD CONDITIONS Cool	overcust		
			· · · · · · · · · · · · · · · · · · ·
FIELD MEASUREMENT	MAKE/MODEL	SERIAL/ID NO.	CALIBRATION/ COMMENTS
PH METER			
CONDUCTIVITY METER	- 1		
THERMOMETER	ser		
WATER LEVEL INDICATOR .			
BAILER/PUMP			
DECONTAMINATION	pug		
	see	······	
PURGE INFORMATION	· · ·		
DATE 25 Aug 92	START TIME	14:20	FND TIME 18:00
	DO TOC (steel)	5 31)	17.97

TIAT I TW		- IU	WHIEF	C WEL		IH <u> </u>	ZESI.	WELLBURE	VOLL	<u></u>
FINAL	DEPTH	то у	ATER	33.08 TUTAL	VOL.	PURGED	715gal	DISCHARGE	RATE	<u>9apm</u>
METHO	D <u>Subn</u>	nersik	olz f	sump	. PUMI	P DEPTH	<u>40 f</u>	cet		

VOLUME PURGED	TEMPERATURE	pH	CUNDUCTIVITY	APPEARANCE
0	9.9°C	7.03	410	muddy
110	8.4°C	7.00	385	Turb, d
165	8.7°C	6.99	390	Turbid
230	8.7°C	7.04	360	Slightly Turbid
715	8.5°C	6.94	380	Clear Colorless

SAMPLING INFORMATIO	<u>N</u>	
DATE 28 Aug 92	START TIME 18:35	END TIME 18:45
METHOD _2" Stainless	Steel Build	
INITIAL DEPTH TO WATER	33.08 DEPTH TO WATER	AFTER SAMPLING 33.08

	G	ROUNDWATE	R SAMPLING TA SHEET	3	
WELL NUMBER 5MW5 FIELD TEAM (INITIALS) Slepko					
SITE Elmenfurt AFB JOB NUMBER ANC31026 H3.60					
FIFLD CONDITION	· Cool,	Cloudy,	quercust	-	
	/	<u> </u>	· · · · · · · · · · · · · · · · · · ·		
FIELD MEASU COLLECTION	REMENT/ EQUIP.	MAKE/MODEL	SERIAL. - NO.	/ID CALIBRATION/ COMMENTS	
PH METER			<u> </u>		
CONDUCTIVITY ME			1/	· · · · · · · · · · · · · · · · · · ·	
THERMOMETER		pur	5		
WATER LEVEL IN		<u>ser</u>	4		
BAILER/PIJMP					
DECONTAMINA	TION	ave 1	,		
	<u> </u>	.e1	<u></u>		
PURGE INFOR	MATION				
PURGE INFOR DATE 28 Aug C INITIAL DEPTH T FINAL DEPTH TO	MATION 12 0 WATER <u>38.3</u> VATER <u>38.3</u>	START TII I VELL DEPTI _TOTAL VOL. F	ME <u>/6:00</u> H <u>52.38</u> EST. PURGED <u>660</u>	END TIME <u>3ا بمنع رون</u> WELLBORE VOL	
PURGE INFOR DATE 28 Aug C INITIAL DEPTH T FINAL DEPTH TO METHOD pump	MATION 12 0 WATER <u>38.3</u> WATER <u>38.3</u>	START TII VELL DEPTI TOTAL VOL. F PUMP	ME <u>/6:00</u> H <u>52.3%</u> EST. PURGED <u>660</u> DEPTH <u></u>	END TIME <u>3ا میں رہ</u> WELLBORE VOL DISCHARGE RATE <u>9</u> ویہ	
PURGE INFOR DATE DATE DATE INITIAL DEPTH T FINAL DEPTH TO METHOD PURGED	MATION 12 O WATER <u>38.3</u> WATER <u>38.3</u> <u>-</u> TEMPERATURE	START TII <u> VELL</u> DEPTI TOTAL VOL. F PUMP PH CONDL	ME <u>/6:00</u> H <u>52.38</u> EST. PURGED <u>660</u> DEPTH <u></u> <u></u>	END TIME <u>المع الا</u> WELLBORE VOL DISCHARGE RATE <u>عوم</u> و	
PURGE INFOR DATE DATE DATE INITIAL DEPTH T FINAL DEPTH TO METHOD PURGED	MATION 12 U WATER <u>38.3</u> WATER <u>38.3</u> <u>-1</u> TEMPERATURE 8.8°C	START TII <u> </u>	ME <u>/6:00</u> H <u>52.38</u> EST. PURGED <u>660</u> DEPTH <u>90</u> JCTIVITY	END TIME <u>31 میں 10</u> WELLBORE VOL DISCHARGE RATE <u>9</u> عم 2' <u>APPEARANCE</u> اسلام	
PURGE INFOR DATE DATE DATE INITIAL DEPTH T FINAL DEPTH TO METHOD PURGED 0 80	MATION 12 U WATER <u>38.3</u> WATER <u>38.3</u> <u>-</u> <u>TEMPERATURE</u> <u>8.8°C</u> <u>9.9°C</u>	START TII <u> <u> </u> </u>	ME <u>/6:00</u> H <u>52.38</u> EST. PURGED <u>660</u> DEPTH <u>90</u> JCTIVITY	END TIME <u>31 Aug 10</u> WELLBORE VOL DISCHARGE RATE <u>99</u> 22 2' <u>APPEARANCE</u> <u>Includy</u> <u>AFB: d</u>	
PURGE INFOR DATE DEPTH T INITIAL DEPTH T FINAL DEPTH TO METHOD PURGED 0 80 220	MATION 12 U WATER <u>38.3</u> WATER <u>38.3</u> <u>-</u> <i>L</i> <i>TEMPERATURE</i> 8.8°C 9.9°C 9.0°C	START TII <u> <u> </u> </u>	ME <u>/6:00</u> H <u>52.38</u> EST. PURGED <u>660</u> DEPTH <u>90</u> JCTIVITY S <u>70</u> 70 T	END TIME <u>31 Aug 10</u> WELLBORE VOL DISCHARGE RATE <u>99</u> 22 2' <u>APPEARANCE</u> <u>inclify</u> <u>inclify</u>	
PURGE INFOR DATE DEPTH T INITIAL DEPTH T FINAL DEPTH TO METHOD PURGED 0 80 220 440	MATION 12 U WATER <u>38.3</u> WATER <u>38.3</u> <u>2</u> TEMPERATURE 8.8°C 9.9°C 9.0°C 9.8°C	START TII <u>4</u> WELL DEPTI PUMP PUMP PUMP PUMP 200 38 7.07 38 6.98 40 6.98 40 37	$ME - \frac{6:00}{5}$ $H = \frac{52.38}{60} EST.$ $PURGED - \frac{60}{20}$ $DEPTH - \frac{90}{20}$ $JCTIVITY$ $S - \frac{10}{7}$ $S - \frac{10}{7}$ $S - \frac{10}{7}$	END TIME <u>31 Aug 10</u> WELLBORE VOL DISCHARGE RATE <u>9900</u> 2' <u>APPEARANCE</u> <u>incledy</u> <u>incled</u> <u>web.d</u> <u>web.d</u> <u>yhtly Turb.d</u>	
PURGE INFOR DATE 28 Aug C INITIAL DEPTH T FINAL DEPTH TO METHOD <u>pump</u> VOLUME PURGED 0 80 220 440 660	MATION 12 12 12 12 12 12 12 12 12 12	START TII VELL DEPTI PUMP PUMP PUMP PUMP OU 3 8 3 8 3 8 3 9 6.98 37 6.6 42	$ME - \frac{16:00}{52.3\%} EST.$ $PURGED 60 DEPTH - 90 JCTIVITY S - m O - T S - S - S - S - S - S - S - S - S - S -$	END TIME <u>31 Aug 10</u> WELLBORE VOL DISCHARGE RATE <u>992</u> 0 <u>APPEARANCE</u> <u>incledy</u> <u>incledy</u> <u>incledy</u> <u>incledy</u> <u>incledy</u> <u>incledy</u> <u>incledy</u> <u>incledy</u> <u>incledy</u> <u>incledy</u> <u>incledy</u> <u>incledy</u> <u>incledy</u> <u>incledy</u> <u>incledy</u> <u>incledy</u> <u>incledy</u> <u>incledy</u> <u>incledy</u> <u>incledy</u> <u>incledy</u> <u>incledy</u> <u>incledy</u> <u>incledy</u> <u>incledy</u> <u>incledy</u> <u>incledy</u> <u>incledy</u> <u>incledy</u> <u>incledy</u> <u>incledy</u> <u>incledy</u> <u>incledy</u> <u>incledy</u> <u>incledy</u> <u>incledy</u> <u>incledy</u> <u>incledy</u> <u>incledy</u> <u>incledy</u> <u>incledy</u> <u>incledy</u> <u>incledy</u> <u>incledy</u> <u>incledy</u> <u>incledy</u> <u>incledy</u> <u>incledy</u> <u>incledy</u> <u>incledy</u> <u>incledy</u> <u>incledy</u> <u>incledy</u> <u>incledy</u> <u>incledy</u> <u>incledy</u> <u>incledy</u> <u>incledy</u> <u>incledy</u> <u>incledy</u> <u>incledy</u> <u>incledy</u> <u>incledy</u> <u>incledy</u> <u>incledy</u> <u>incledy</u> <u>incledy</u> <u>incledy</u> <u>incledy</u> <u>incledy</u> <u>incledy</u> <u>incledy</u> <u>incledy</u> <u>incledy</u> <u>incledy</u> <u>incledy</u> <u>incledy</u> <u>incledy</u> <u>incledy</u> <u>incledy</u> <u>incledy</u> <u>incledy</u> <u>incledy</u> <u>incledy</u> <u>incledy</u> <u>incledy</u> <u>incledy</u> <u>incledy</u> <u>incledy</u> <u>incledy</u> <u>incledy</u> <u>incledy</u> <u>incledy</u> <u>incledy</u> <u>incledy</u> <u>incledy</u> <u>incledy</u> <u>incledy</u> <u>incledy</u> <u>incledy</u> <u>incledy</u> <u>incledy</u> <u>incledy</u> <u>incledy</u> <u>incledy</u> <u>incledy</u> <u>incledy</u> <u>incledy</u> <u>incledy</u> <u>incledy</u> <u>incledy</u> <u>incledy</u> <u>incledy</u> <u>incledy</u> <u>incledy</u> <u>incledy</u> <u>incledy</u> <u>incledy</u> <u>incledy</u> <u>incledy</u> <u>incledy</u> <u>incledy</u> <u>incledy</u> <u>incledy</u> <u>incledy</u> <u>incledy</u> <u>incledy</u> <u>incledy</u> <u>incledy</u> <u>incledy</u> <u>incledy</u> <u>incledy</u> <u>incledy</u> <u>incledy</u> <u>incledy</u> <u>incledy</u> <u>incledy</u> <u>incledy</u> <u>incledy</u> <u>incledy</u> <u>incledy</u> <u>incledy</u> <u>incledy</u> <u>incledy</u> <u>incledy</u> <u>incledy</u> <u>incledy</u> <u>incledy</u> <u>incledy</u> <u>incledy</u> <u>incledy</u> <u>incledy</u> <u>incledy</u> <u>incledy</u> <u>incledy</u> <u>incledy</u> <u>incledy</u> <u>incledy</u> <u>incledy</u> <u>incledy</u> <u>incledy</u> <u>incledy</u> <u>incledy</u> <u>incledy</u> <u>incledy</u> <u>incledy</u> <u>incledy</u> <u>incledy</u> <u>incledy</u> <u>incledy</u> <u>incledy</u> <u>incledy</u> <u>incledy</u> <u>incledy</u> <u>incledy</u> <u>incledy</u> <u>incledy</u> <u>incledy</u> <u>incledy</u> <u>i</u>	

WELL NUMBER	FIELD TEAM (INITIALS)
SITE ELMENDORF AFB OUS	JUB NUMBER ANC 310 26 43.60
FIELD CONDITIONS CLEAR 55°	

i

COLLECTION	EQUIP.	MAKE			1.		COMMENT	2
PH METER	ORION	230 A	4	14 2C0 d	2017	£€ ¢	CALIBRATIN	100
	ETER <u>451/5</u>	eT	4	Azco4.	2170	4	"	4
THERMOMETER								
WATER LEVEL IN								•
BAILER/PUMP	_ <u></u>							
DECONTAMINA	TION STEP	m cle	AN LIDI	11 A IDK	ω/τ	AN L	170	•
TAP HOD	DT HOC R	INST		<u>. 10 - /</u>	00/ //	<u> </u>		
<u>- 11 120 1</u>	IT FILL R							
		:	<u></u>					
PURGE INFOR	MATION		2007	2				
		•		11.00	S ISPATA		2.500	>7 92
		_		- nan			• • • •	
DATE 2 SEPT 72	- ISEPT - 2SEPT	7 STA	RT TIME	25		END	TIME 141	5
DATE 2 SEPT 72	- 15EPT - 25EPT -	TTA	RT TIME	75 ····		END	TIME <u>141</u>	5
DATE 2 SERT 72 2020 INITIAL DEPTH T	15EPT - 25EPT - 72 72 35.83 10 WATER - 772	STA		5- ES	T. WEL	END		5
DATE 2 SEPT 72 DATE 2 SEPT INITIAL DEPTH T FINAL DEPTH TO	15EPT - 25EPT - 72 35.93 10 WATER	TOTAL		5 5 25 25 25 7 7 25 7 7 7 7 7 7 7 7 7 7	T. WEL	END	TIME <u>////</u> E VOL E RATE _	5
DATE 2 SEPT 72 23200 INITIAL DEPTH T FINAL DEPTH TO METHOD 6RUNDFOS	15EPT - 25EPT 4 72 35.43 10 WATER 33.23 280320 VATER 35.93 REDI FLO 2"	7 STA 	RT TIME	55 5 5 5 5 5 5 5 5 5 5 5 5	T. WEL	END LBOR	TIME <u>///</u> E VOL	5
DATE 2 SECT 72 23207 INITIAL DEPTH T FINAL DEPTH TO METHOD 6RUNDFOS VOLUME PURGED	15EPT - 25EPT - 72 35.93 0 WATER 35.93 WATER 35.93 WATER 35.93 REDI FLO 2" •C TEMPERATURE	TOTAL	RT TIME	35 5 5 5 5 5 5 5 5 5 5 5 5 5	T. WEL		TIME <u>///</u> E VOL E RATE _ EARANCE	5
DATE <u>2 SEPT</u> 72 DATE <u>2 SEPT</u> 72 INITIAL DEPTH T FINAL DEPTH TO METHOD <u>GRUNDFOS</u> VOLUME PURGED 330 FOS GAL.	15EPT - 25EPT - 72 35.93 0 WATER 35.23 WATER 35.93 WATER 35.93 REDI FLO 2" • C TEMPERATURE 7.6 • C	77 STA WELL TOTAL	RT TIME	55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55	T. WEL	END LBOR CHARG	TIME <u>141</u> E VOL E RATE _ EARANCE	5
DATE <u>2 SEPT</u> 72 DATE <u>2 SEPT</u> 72 INITIAL DEPTH T FINAL DEPTH TO METHOD <u>GRUNDFOS</u> VOLUME PURGED 330 FOS GAL. 330 495 4	$\frac{15EPT - 25EPT}{72}$ $\frac{72}{35.93}$ $\frac{35.93}{29322}$ $\frac{VATER}{35.93}$ $\frac{35.93}{29322}$ $\frac{VATER}{5.93}$ $\frac{35.93}{29322}$ $\frac{REDI}{FLO} 2''$ $\frac{35}{7.6}$ $\frac{7.6}{7.7}$	77 STA WELL TOTAL PH 6.97	RT TIME SP.05 DEPTH VOL. PURGEN PUMP DEPTH CONDUCTIVI 310 300		T. WEL DISC	END LBOR CHARG	TIME <u>Jy</u> E VOL E RATE _ EARANCE	5
DATE 2 SECT 7 DATE 2 SECT 7 INITIAL DEPTH T FINAL DEPTH TO METHOD GRUNDFOS VOLUME PURGED 730 GAL. 330 GAL. 440 440 440 440 440 440 440 44	$\begin{array}{c} 15EPT - 25EPT \\ 72 \\ 35.83 \\ \hline 72 \\ 235 \\ 23$	77 STA VELL TOTAL DH 6.97 6.79	RT TIME SP.05 DEPTH VOL. PURGEN PUMP DEPTH CONDUCTIVI 310 300 300		T. WEL DISC	END LBOR CHARG	TIME <u>141</u> E VOL E RATE EARANCE	5
DATE <u>2 SEPT</u> 7 INITIAL DEPTH T FINAL DEPTH TO METHOD <u>GRUNDFOS</u> <u>VOLUME PURGED</u> 730 730 730 64 730 730 64 730 730 64 730 730 64 730 730 730 730 730 730 730 730 730 730 730 730 730 730 730 730 730 730 730 730 730 730 730 730 730 730 730 730 730 730 730 730 730 730 730 730 730 730 730 730 730 730 730 730 730 730 730 730 730 730 730 730 730 730 730 730 730 730 730 730 730 730 730 730 730 730 730 730 730 730 730 730 730 730 730 730 730 730 730 730 730 730 730 730 730 730 730 730 730 730 730 730 730 730 730 730 730 730 730 730 730 730 730 730 730 730 730 730 730 730 730 730 730 730 730 730 730 730 730 730 730 730 715 715 715 715 715 715 715 715 715 715 715 715 715 715 715 715 715 715 715 715 715 715 715 715 715 715 715 715 715 715 715 715 715 715 715 715 715 715 715 715 715 715 715 715 715 715 715 715 715 715 715 715 715 715 715 715 715 715 715 715 715 715 715 715 715 715 715 715 715 715 715 715 715 715 715 715 715 715 715 715 715 715 715 715 715 715 715 715 715 715 715 715 715 715 715 715 715 715 715 715 715 715 715 715 715 715 715 715 715 715 715 715 715 715 715 715 715 715 715 715 715 715 715 715 715 715 715 715 715 715 715 715 715 715 715 715 715 715 715 715 715 715 715 715 715 715	$\begin{array}{c} 15EPT - 25EPT \\ 72 \\ 35.83 \\ \hline 72 \\ 35.83 \\ \hline 72 \\ 35.83 \\ \hline 72 \\ 55.83 \\ \hline 72 \\ 55.83 \\ \hline 72 \\ 75.83 \\ \hline 72 \\ 7.6 \\ 7.$	77 STA - WELL TOTAL PH 6.97 6.79 6.84 6.80	RT TIME SP.05 DEPTH VOL. PURGEN PUMP DEPTH CONDUCTIVI 310 300 300 300 300	7 7 7 7 7 7 7 7 7 7 7 7 7 7	T. WEL DISC		TIME $\frac{141}{141}$ E VOL E RATE _ EARANCE $\frac{2000 \text{ ol}}{11}$	5
DATE $\frac{2.5EPT}{2320}$ INITIAL DEPTH T FINAL DEPTH TO METHOD GRUNDFOS VOLUME PURGED $\frac{230}{730}$ GAL. $\frac{230}{705}$. $\frac{440}{550}$. $\frac{440}{550}$. $\frac{550}{15}$. $\frac{1}{245}$ GAL	$\begin{array}{c} 15EPT - 25EPT \\ 72 \\ 35.83 \\ \hline 72 \\ 35.83 \\ \hline 72 \\ 35.83 \\ \hline 72 \\ 28 \\ 28 \\ 28 \\ 28 \\ 28 \\ 28 \\ 28 \\$	72 STA - WELL TOTAL PH 6.97 6.79 6.84 6.80 6.88	RT TIME SP.05 DEPTH VOL. PURGEN PUMP DEPTH CONDUCTIVI 310 300 300 300 300 300 300 300	1000 100 1000 1	T. WEL DISC 		TIME <u>141</u> E VOL E RATE EARANCE 2000 0J 	5
DATE $\frac{2}{3} \frac{5607}{7} \frac{7}{7}$ INITIAL DEPTH TO METHOD <u>GRUNDFOS</u> <u>VOLUME PURGED</u> $\frac{730}{705}$ <u>GAL</u> $\frac{715}{550}$ <u>1</u> $\frac{715}{15}$ <u>1</u> $\frac{860}{5}$ <u>GAL</u>	$\frac{15EPT - 25EPT}{72}$ $\frac{35.43}{35.43}$ $\frac{72}{23}$ $\frac{35.43}{23}$ $\frac{35.43}{23}$ $\frac{35.43}{23}$ $\frac{35.43}{23}$ $\frac{72}{23}$ $\frac{35.93}{23}$ $\frac{REDi FLO 2''}{C}$ $\frac{7.6 °C}{7.6 °C}$ $\frac{7.6 °C}{7.6 °C}$ $\frac{7.6 °C}{7.7 °C}$	77 STA WELL TOTAL PH 6.97 6.79 6.89 6.89 6.88	RT TIME SP.05 DEPTH DEPTH VOL. PURGEN PUMP DEPTH CONDUCTIVI 310 300 300 300 300 300		T. WEL DISC 		TIME <u>141</u> E VOL E RATE EARANCE 2000 0J 	5
DATE $\frac{2.5EPT}{2320}$ INITIAL DEPTH T FINAL DEPTH T METHOD <u>GRUNDFOS</u> <u>VOLUME PURGED</u> $\frac{230}{730}$ GAL. $\frac{230}{705}$ (1) $\frac{230}{715}$ (1) $\frac{240}{715}$ (1) $\frac{240}{715}$ (1) $\frac{240}{715}$ (1) $\frac{240}{715}$ (1) $\frac{240}{715}$ (1) $\frac{240}{715}$ (1) $\frac{240}{715}$ (1) $\frac{240}{715}$ (1)	$\frac{15EPT - 25EPT}{72}$ $\frac{35.83}{72}$ $\frac{72}{35.83}$ $\frac{37.25}{28322}$ $\frac{72}{28322}$ $\frac{72}{28322}$ $\frac{72}{10}$	72 STA WELL TOTAL PH 6.97 6.79 6.84 6.89 6.88	RT TIME SP.05 DEPTH VOL. PURGEN PUMP DEPTH CONDUCTIVI 310 300 300 300 300 300 300 300		T. WEL DISC 		TIME $\frac{14}{14}$ E VOL E RATE _ EARANCE $\frac{20000}{14}$ $\frac{11}{14$	5
DATE <u>2 SEPT</u> 72 INITIAL DEPTH T FINAL DEPTH TO METHOD <u>GRUNDFOS</u> <u>VOLUME PURGED</u> <u>730</u> <u>641</u> <u>730</u> <u>641</u> <u>715</u> <u>1</u> <u>715</u> <u>1</u> <u>715</u> <u>1</u> <u>715</u> <u>1</u> <u>715</u> <u>1</u> <u>715</u> <u>1</u> <u>715</u> <u>1</u> <u>715</u> <u>1</u> <u>715</u> <u>1</u> <u>715</u> <u>1</u> <u>715</u> <u>1</u> <u>715</u> <u>1</u> <u>715</u> <u>1</u> <u>715</u> <u>1</u> <u>715</u> <u>1</u> <u>715</u> <u>1</u> <u>715</u> <u>1</u> <u>715</u> <u>1</u> <u>715</u> <u>1</u> <u>715</u> <u>1</u> <u>715</u> <u>1</u> <u>715</u> <u>1</u> <u>715</u> <u>1</u> <u>715</u> <u>1</u> <u>715</u> <u>1</u> <u>715</u> <u>1</u> <u>715</u> <u>1</u> <u>715</u> <u>1</u> <u>715</u> <u>1</u> <u>715</u> <u>1</u> <u>715</u> <u>1</u> <u>715</u> <u>1</u> <u>715</u> <u>1</u> <u>715</u> <u>1</u> <u>715</u> <u>1</u> <u>715</u> <u>1</u> <u>715</u> <u>1</u> <u>715</u> <u>1</u> <u>715</u> <u>1</u> <u>715</u> <u>1</u> <u>715</u> <u>1</u> <u>715</u> <u>1</u> <u>715</u> <u>1</u> <u>715</u> <u>1</u> <u>715</u> <u>1</u> <u>715</u> <u>1</u> <u>715</u> <u>1</u> <u>715</u> <u>1</u> <u>715</u> <u>1</u> <u>715</u> <u>1</u> <u>715</u> <u>1</u> <u>715</u> <u>1</u> <u>715</u> <u>1</u> <u>715</u> <u>1</u> <u>715</u> <u>1</u> <u>715</u> <u>1</u> <u>715</u> <u>1</u> <u>715</u> <u>1</u> <u>715</u> <u>1</u> <u>715</u> <u>1</u> <u>715</u> <u>1</u> <u>715</u> <u>1</u> <u>715</u> <u>1</u> <u>715</u> <u>1</u> <u>715</u> <u>1</u> <u>715</u> <u>1</u> <u>715</u> <u>1</u> <u>715</u> <u>1</u> <u>715</u> <u>1</u> <u>715</u> <u>1</u> <u>715</u> <u>1</u> <u>715</u> <u>1</u> <u>715</u> <u>1</u> <u>715</u> <u>1</u> <u>715</u> <u>1</u> <u>715</u> <u>1</u> <u>715</u> <u>1</u> <u>715</u> <u>1</u> <u>715</u> <u>1</u> <u>715</u> <u>1</u> <u>715</u> <u>1</u> <u>715</u> <u>1</u> <u>715</u> <u>1</u> <u>715</u> <u>1</u> <u>715</u> <u>1</u> <u>715</u> <u>1</u> <u>715</u> <u>1</u> <u>715</u> <u>1</u> <u>715</u> <u>1</u> <u>715</u> <u>1</u> <u>715</u> <u>1</u> <u>715</u> <u>1</u> <u>715</u> <u>1</u> <u>715</u> <u>1</u> <u>715</u> <u>1</u> <u>715</u> <u>1</u> <u>715</u> <u>1</u> <u>715</u> <u>1</u> <u>715</u> <u>1</u> <u>715</u> <u>1</u> <u>715</u> <u>1</u> <u>715</u> <u>1</u> <u>715</u> <u>1</u> <u>715</u> <u>1</u> <u>715</u> <u>1</u> <u>715</u> <u>1</u> <u>715</u> <u>1</u> <u>715</u> <u>1</u> <u>715</u> <u>1</u> <u>715</u> <u>1</u> <u>715</u> <u>1</u> <u>715</u> <u>1</u> <u>715</u> <u>1</u> <u>715</u> <u>1</u> <u>715</u> <u>1</u> <u>715</u> <u>1</u> <u>715</u> <u>1</u> <u>715</u> <u>1</u> <u>715</u> <u>1</u> <u>715</u> <u>1</u> <u>715</u> <u>715</u> <u>1</u> <u>715</u> <u>715</u> <u>715</u> <u>715</u> <u>715</u> <u>715</u> <u>715</u> <u>715</u> <u>715</u> <u>715</u> <u>715</u> <u>715</u> <u>715</u> <u>715</u> <u>715</u> <u>715</u> <u>715</u> <u>715</u> <u>715</u> <u>715</u> <u>715</u> <u>715</u> <u>715</u> <u>715</u> <u>715</u> <u>715</u> <u>715</u> <u>715</u> <u>715</u> <u>715</u> <u>715</u> <u>715</u> <u>715</u> <u>715</u> <u>715</u> <u>715</u> <u>715</u> <u>715</u> <u>715</u> <u>715</u> <u>715</u> <u>715</u> <u>715</u> <u>715</u> <u>715</u> <u>715</u> <u>715</u> <u>715</u> <u>715</u> <u>715</u> <u>715</u> <u>715</u> <u>715</u> <u>715</u> <u>715</u> <u>715</u> <u>715</u> <u>715</u> <u>7155</u> <u>7155</u> <u>7155</u> <u>7155</u> <u>7155</u> <u>7155</u> <u>7155</u> <u>7155</u> <u>7</u>	FORMATION	72 STA WELL TOTAL PH 6.97 6.79 6.89 6.89 6.88	RT TIME SP.05 DEPTH VOL. PURGEN PUMP DEPTH CONDUCTIVI 310 300 300 300 300 310		$\frac{1}{1} = \frac{1}{1}$	$\frac{\text{END}}{\text{LBOR}}$ $\frac{\text{APP}}{1 / B_{1}}$ $\frac{7 \sqrt{R}}{2 \sqrt{3}}$	TIME $\frac{14}{14}$ E VOL E RATE _ EARANCE $\frac{2000 \text{ of}}{14}$	< <u>e</u> <u>8</u> 1 <u>D</u>
DATE 2 SEPT 72 INITIAL DEPTH T FINAL DEPTH TO METHOD <u>GRUNDFOS</u> <u>VOLUME PURGED</u> 330 405 GAL 330 65 GAL 330 65 GAL 330 15 1 550 1 550 1 550 1 550 1 550 1 550 1 550 1 550 1 550 1 550 1 550 1 550 1 550 1 550 1 550 1 550 1 550 1 550 1 550 1 550 1 550 1 550 1 550 1 550 1 550 1 550 1 550 1 550 1 550 1 550 1 550 1 550 1 550 1 550 1 550 1 550 1 550 1 550 1 550 1 550 1 550 1 550 1 550 1 550 1 550 1 550 1 550 1 550 1 550 1 550 1 550 1 550 1 550 1 550 1 550 1 550 1 550 1 550 1 550 1 550 1 550 1 550 1 550 1 550 1 550 1 550 1 550 1 550 1 550 1 550 1 550 1 550 1 550 1 550 1 550 1 550 1 550 1 550 1 550 1 550 1 550 1 550 1 550 1 550 1 550 1 550 1 550 550 550 550 550 550 550 550 550 550 550 550 550 550 550 550 550 550 550 550 550 550 550 550 550 550 550 550 550 550 550 550 550 550 550 550 550 550 550 550 550 550 550 550 550 550 550 550 550 550 550 550 550 550 550 550 550 550 550 550 550 550 550 550 550 550 550 550 550 550 550 550 550 550 550 550 550 550 550 550 550 550 550 550 550 550 550 550 550 550 550 550 550 550 550 550 550 550 550 550 550 550 550 550 550 550 550 550 550 550 550 550 550 550 550 550 550 550 550 550 550 50	F = RMATION 92	77 STA WELL TOTAL PH 6.97 6.29 6.84 6.88 6.88	RT TIME TO SPOS DEPTH CONDUCTIVI 310 300 300 300 310		T. WEL DISC 		TIME <u>141</u> E VOL E RATE EARANCE EARANCE 2000 0J 	<u><</u> <u>e</u> <u>8</u> <u></u>

WELL NUMBER 5mm	FIELD	TEAM (INITIALS)	JE, SC
SITE ELMENDORF AF	BIRP OUT	JOB NUMBER	ANX 3626 H3.60
FIELD CONDITIONS RAI	<u>v 55°</u>		
	·····		· · · · · · · · · · · · · · · · · · ·
ETEL D MEASUPEMENT	· · ·		
COLLECTION EQUIP.	MAKE/MODEL	SERIAL/ID NO.	CALIBRATION/ COMMENTS
PH METER	ORION 250 A	CHLMHII 2682	SEE CALIBRATION LOG
CUNDUCTIVITY METER	451/SCT	HARCO # 2170	" "
THERMOMETER			
WATER LEVEL INDICATOR	······································		· *
BAILER/PUMP			
DECUNIAMINATION	Steam Clean	Liavinox, ta	p rinse,
DI Kinse			• •
PURGE INFORMATION	/ DEVELOPEMENT		
MATE SEPT 92	-' Stadt time "	37 AUG92 1215	1355
	34.50 VELL DEDTU 5		
	WICH WELL DEPINE	$r = \frac{1}{2} $	LBURE VUL
LINAL DEFINITIE WALLY	CONTRACTOR	שבט <u>איבי</u> DISC בייי וובי	HANGE RATE
METHOD <u>C UPRIMITUR SPEE</u>	<u>> > CEMERSABLE</u> PUMP DE	PTH <u>Y ></u>	
VOLUME PURGED TEMPERA	TURE PH CUNDUCT		APPEARANCE

DATE SEPT 92	_ START T	IME 31 AUG 12	1215 END	1355
INITIAL DEPTH TO WATER 34.50	, WELL DEP	TH <u>51.92, ES</u>	J. WELLBORE	VOL
FINAL DEPTH TO WATER 34.50 TE	TAL VOL.	PURGED 825	DISCHARGI	E RATE 36PM
METHOD 2" VARIABLE SPEED SUBMER	23ABLE PUMP		· /	

	VOLUME PURGED	TEMPERATURE	pH_		APPEARANCE
-	550 - 145 GAL	6.4°°C	6.93	330	TURZID, BROWN /TAN
	715	6.6	6.82	330	TURBID, LIGHT TAN
	770	7.2	6.91	330	TURBID(SLIGHTLY), LIGHT TAN
	625	6.5	6.81	330	CLEAR

SAMPLING INFORMATION	
DATEISEFT 92	_ START TIME END TIME
METHODSS BAILER	
INITIAL DEPTH TO WATER 34.50	DEPTH TO WATER AFTER SAMPLING 34.50

43

		FIELI	DATA C	SHEE	T		
WELL NUMBER	nw-8_		_ FIELD TO	EAM (I	(NITIALS)	BT, JG	
SITE Elmed	ort AFB	IKP		JOB	NUMBER	Anc 31026.4360	`
FIELD CONDITION	s_Rain, (ool, L	16°F		<u>_</u>		
			······			<u> </u>	
FIELD MEASU	<u>REMENT/</u> EQUIP.	MAKE	MODEL	SE	RIAL/ID NO.	CALIBRATIC COMMENTS	INZ
PH METER							
	ETER	-0-	$\theta \rightarrow $	D			<u> </u>
THERMOMETER		Ke	yen 10	12	8e # 4	3	
WATER LEVEL IN							•••
BAILER/PUMP				L			
DECONTAMINA	TION						
				Y	· · · · · · · · · · · · · · · · · · ·		
PURGE INFOR DATE 8 25 INITIAL DEPTH T FINAL DEPTH TO METHOD Water	MATION / DO 92 O WATER 16.22 WATER 16.23 WATER 16.23	EVEIC STA WELL TOTAL	RT TIME DEPTH 2/ VOL. PURG PUMP DEP	1000 94° •	O EST. WEL <u>STAL</u> DISC L 15	END TIME <u>30</u> LBORE VOL 7.37 HARGE RATE	2
	TEMPERATURE	pН		VITY		APPEARANCE	
O GAL	9.5°c	6.02	Guar 1	44 8 8	Orang	ish	
55	G.2°C	6.42	375X1		11		
110	\$.5°C	6.45	315×1		SIGNITUR	dois / onaye	
140	8.5%	6.44	3901)		Cloup	Y	
160	8.7°C	4158	\$75 1		SLIGht	Cloupy	
actensuph	9.6°C	6.46	3801	1	Clear		
SAMPLING IN	FORMATION Z	574	OT TIME	1313	-	END TIME (37	,
METHOD Wator	Hore Tube,	Volati	12 Souple	Tub	E		
						•	· ·

INITIAL DEPTH TO WATER _____ DEPTH TO WATER AFTER SAMPLING _____

(51) GROUNDWATER SAMPLING FIELD DATA SHEET WELL NUMBER MW-09 FIELD TEAM (INITIALS) BTITE SITE Elmen DORF AFB IRP JOB NUMBER HANCES 102C. HLGO FIELD CONDITIONS OVERCAST, 50°F FIELD MEASUREMENT/ SERIAL/ID CALIBRATION/ COLLECTION EQUIP. MAKE/MODEL ND. COMMENTS 4.0,7.01,10.21 230A ORION HAZO 2017 OH METER Sourcoo C/42. 4 SI 33 HAZCO 2170 7500 MI LOUIS CONDUCTIVITY METER THERMOMETER WATER LEVEL INDICATOR BAILER/PUMP Stram Clean, LIquinx WASH, DECONTAMINATION Tap RINSE DI WATTR RINSE PURGE INFORMATION / Developement END TIME 300 START TIME 110 DATE \$27 92 INITIAL DEPTH TO WATER 3.74' WELL DEPTH 10.32 EST. WELLBORE VOL 5.954 FINAL DEPTH TO WATER 3.75 TOTAL VOL. PURGED _____ DISCHARGE RATE __ METHOD Pacastolic Pump PUMP DEPTH _ APPEARANCE VOLUME PURGED TEMPERATURE CONDUCTIVITY pH 9.5% 7.20 47821 GAL MODY/SILTY BRONT 9.1% GAL 7.13 LIGOXI repip 9.5°C GAL 7.22 440x1 emi-Tanbio /10

9.400 7,24 Yun GM 165 Jouby 9.1% 43 (X) 7.17 SemilClondy 7.20 GN-9.5°C 6.94 440 x Afre Sayle Clean

SAMPLING INFORMATION		
DATE 8/27/92	START TIME 1315	END TIME 330
METHOD Parastoltic Pui	<u>м</u> р	
		AFTER SAMPLING
INLIAL DEFINITU WATER		

• - -

			WATER SAN D DATA SH	APLING EET	
	mw10		FIELD TEAM	CINITIAL SI	BL JG
TTE Elma	ndorf AF	BTRP			Anx 31026. H3. 60
	THIS MURLE	AST 155°			· · · · · · · · · · · · · · · · · · ·
FIELD CONDITIE			4		<u> </u>
FIELD MEAS	<u>SUREMENT/</u> N EQUIP.	MAKE/	MODEL	SERIAL/ID ND.	CALIBRATION/
OH METER	0) LION	HA	200 1875	10.12,4.0,7.01 24
	METER 4	SI 33	H	AZCU 2170	790 4/1000 Unios 7900 4/1900 @ 15%
	الت ۲۱ تا: ۱				Ţ
WATED I EVEL		····			
PATIER LEVEL		······			
BRILERY FUMP	-	<u> </u>			
DECONTAMI	NATION	Steam (Clean, LI	gourner 4	UASH, TAPRILE
		-		V	•
PURGE INFI DATE 8/24/4	RILSE ORMATION 12	Develog STA	pement RT TIME	0:1≤	END TIME 1250
PURGE INFI DATE SI24	RINGE DRMATION 12 I TO WATER 2 TO WATER 2	Develo 	RT TIME <u>//</u> DEPTH <u>/0.3</u> VOL. PURGED	0:1≤ 0'est. vel 2251M_disc -7'	END TIME $\frac{1250}{1.100}$ LBORE VOL 6.67 CHARGE RATE
PURGE INFI DATE 8/24/4 INITIAL DEPTH FINAL DEPTH METHOD Wate	RIAGE ORMATION 12 1 TO WATER = TO WATER = 2 2 2 2 2 4 4 4 4 4 4 4 4 4 4 4 4 4	Develoy STA 2.96' WELL .92'TOTAL TUTAL	RT TIME // DEPTH /0.3 VOL. PURGED	0:1≤ 0'EST. VEL 2257MDISC 7'	END TIME $\frac{1250}{1.160}$ LBORE VOL 6.67 CHARGE RATE
PURGE INFI PURGE INFI DATE 8/24/0 INITIAL DEPTH FINAL DEPTH METHOD Wate VOLUME PURGE	DRMATION 12 1 TO WATER = TO WATER = 2 2 2 2 2 2 2 2 2 2 2 2 2	Develo STA 2.96' WELL .92' TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL	RT TIME // DEPTH /0.3 VOL. PURGED	2:1≤ <u>0'</u> EST. WEL <u>2257M</u> DISC Y	END TIME <u>250</u> LBORE VOL <u>6.67</u> CHARGE RATE APPEARANCE
PURGE INFI PURGE INFI DATE 8/24/0 INITIAL DEPTH FINAL DEPTH METHOD Wate VOLUME PURGE	DRMATION 12 1 TO WATER = TO WATER = 2 2 2 2 2 2 2 2 2 2 2 2 2	Develoy STA 2.96' WELL .92' TOTAL TUDEJ FUEL URE PH G.23	RT TIME // DEPTH /0.3 VOL. PURGED DEPTH CONDUCTIVIT 445×1	2:15 0'EST. WEL 2257MDISC 7' Y Cloue	END TIME $\frac{250}{250}$ LBURE VOL 6.67 CHARGE RATE APPEARANCE
PURGE INFI DATE 8/24/C INITIAL DEPTH FINAL DEPTH METHOD Wate VOLUME PURGE O GAL	$\frac{12}{12}$ $\frac{12}{10} = \frac{12}{12}$ $\frac{12}{12}$ $\frac{12}{12}$ $\frac{12}{12}$	Develoy STA 2.96' WELL .92'TOTAL CUBOJ FURT URE PH G.23 G.91	RT TIME // DEPTH /0.3 VOL. PURGED DEPTH CONDUCTIVIT 445x1	2:15 0'EST. VEL 2257MDISC 7' Y Cloue Tuabio, S	END TIME <u>250</u> LBURE VOL 6.67 CHARGE RATE APPEARANCE Y Scaly - DARK
PURGE INFI DATE 8/24/C INITIAL DEPTH FINAL DEPTH METHOD Wate VOLUME PURGE O GAL 55 GAL	$\frac{1}{2}$ $\frac{1}$	Develoy STA 2.96' WELL .92'TOTAL TOTAL TOTAL TOTAL SUCCE URE PH 6.23 6.91 7.18	RT TIME // DEPTH /0.3 VOL. PURGED DEPTH CONDUCTIVIT 445x1 435x1	2:15 0'EST. VEL 2257MDISC 7' Y Cloue Turbio, S Clou	END TIME <u>J250</u> LBURE VOL 6.67 CHARGE RATE APPEARANCE Y Scaly - DARK DY
PURGE INFI DATE 8/24/ INITIAL DEPTH FINAL DEPTH METHOD Wate VOLUME PURGE O GAL 10 GAL	$\frac{ \mathbf{R} \mathbf{R} }{ \mathbf{R} }$ $\frac{ \mathbf{R} }{ \mathbf{R} }$	Develo STA 2.96' WELL .92'TOTAL CUSED FUEL URE PH 6.23 6.91 7.18 7.38	RT TIME <u>//</u> DEPTH <u>/0.3</u> VOL. PURGED DEPTH <u>/0.3</u> VOL. PURGED DEPTH CONDUCTIVIT <u>445X1</u> <u>445X1</u> <u>435X1</u> <u>440X1</u>	2:15 0'EST. WEL 2257MDISC 7' Y Cloue Cloue Cloue	END TIME <u>250</u> LBURE VOL 6.67 CHARGE RATE APPEARANCE Y Scaly - DARK DY
PURGE INFI DATE 8/24/ INITIAL DEPTH FINAL DEPTH METHOD Wate VOLUME PURGE O GAL 10 GAL 10 GAL	$\frac{2}{12.5^{\circ}}$	Develoy STA 2.96' WELL .92'TOTAL CUSEJ FUEL URE PH 6.23 6.91 7.18 7.38 6.91	PE MEN RT TIME <u>//</u> DEPTH <u>/0.3</u> VOL. PURGED MOMP DEPTH <u>CONDUCTIVIT</u> <u>445X1</u> <u>445X1</u> <u>435X1</u> <u>435X1</u>	2:15 0'EST. WEL 2257MDISC 7' Y Cloue Tuabio, S Cloue Senic	END TIME <u>J250</u> LBURE VOL 6.67 CHARGE RATE APPEARANCE Y Squdy - DAek DY Y Clouby
PURGE INFI DATE 8/24/ INITIAL DEPTH FINAL DEPTH METHOD Wate VOLUME PURGE 0 GAL 200 GAL 200 GAL	$\frac{R_{1} + c}{R_{1} + c}$ $\frac{R_{1} + c}{R_{2}}$ $\frac{R_{1} + c}{R_{2}}$ $\frac{R_{1} + c}{R_{2}}$ $\frac{R_{2} + c}{R_{1} + c}$ $\frac{R_{2} + c}{R_{2} + c}$	Develoy STA 2.96' WELL .92'TOTAL .93'TOTAL .92'TOTAL .93'TOTAL .93'TOTAL .94'TOT	PENEN RT TIME // DEPTH /0.3 VOL. PURGED PDMP DEPTH CONDUCTIVIT 445×1 435×1 435×1 435×1 430×1 430×1 410×1	2:15 0'EST. WEL 2257ACDISC 7' Y Cloue Tuabio,S Clou Clou Semi C Semi (C 1)	END TIME <u>250</u> LBURE VOL 6.67 CHARGE RATE APPEARANCE Y Scady - DARK DY 2(00 by Clear 1)
PURGE INFI DATE S [24] INITIAL DEPTH FINAL DEPTH METHOD Wate <u>VOLUME PURGE</u> <u>JO GAL</u> <u>10 GAL</u> <u>200 GAL</u> <u>220 GAL</u> 3446 Semple	$\frac{2}{12}$ $\frac{1}{10} = \frac{1}{10}$	Develoy STA 2.96' WELL .92' TOTAL .92' TOTAL .93' S'	PENEN RT TIME // DEPTH /0.3 VOL. PURGED PDMP DEPTH CONDUCTIVIT 445×1 445×1 435×1 435×1 430×1 440×1	2:15 0'EST. WEL 2257ACDISC 7' Y Cloue Tuabio, S Cloue Cloue Semi C Semi (C 11	END TIME <u>J250</u> LBURE VOL 6.67 CHARGE RATE APPEARANCE Y Scady - DARK DY Clouby Clear 11
PURGE INFI DATE SI24 INITIAL DEPTH FINAL DEPTH METHOD Wate VOLUME PURGE O GAL SS GAL 10 GAL 200 GAL 220 GAL 7514 Somple	$\frac{R_{1}}{R_{2}}$ $\frac{R_{1}}{R_{2}}$ $\frac{R_{1}}{R_{2}}$ $\frac{R_{1}}{R_{2}}$ $\frac{R_{2}}{R_{2}}$ $\frac{R_{1}}{R_{2}}$ $\frac{R_{2}}{R_{1}}$ $\frac{R_{2}}{R_{2}}$ $\frac{R_{1}}{R_{2}}$ $\frac{R_{1}}{R_{2}}$ $\frac{R_{1}}{R_{2}}$ $\frac{R_{1}}{R_{2}}$ $\frac{R_{1}}{R_{2}}$ $\frac{R_{1}}{R_{2}}$ $\frac{R_{1}}{R_{2}}$ $\frac{R_{1}}{R_{1}}$ $\frac{R_{1}}{R_{2}}$ $\frac{R_{1}}{R_{1}}$ $\frac{R_{1}}{R$	Develo Develo STA 2.96' WELL .92' TOTAL CUE PH 6.23 6.91 7.18 6.91 6.92 7.38 0.92 7.38 0.92 7.38	Perent RT TIME <u>//</u> DEPTH <u>/0.3</u> VOL. PURGED PDMP DEPTH <u>CONDUCTIVIT</u> <u>445x1</u> <u>445x1</u> <u>435x1</u> <u>435x1</u> <u>435x1</u> <u>436x1</u> <u>436x1</u>	2:15 0'EST. WEL 2257ACDISC 7' Y Cloue Tuabio,S Clou Seni Clou Seni (1)	END TIME <u>250</u> LBURE VOL 6.67 CHARGE RATE APPEARANCE Y Scady - DAek DY 21000 y Clean 11
PURGE INFI DATE S 24 INITIAL DEPTH FINAL DEPTH METHED Wate VOLUME PURGE O GAL SS GAL 10 GAL 200 GAL 200 GAL 220 GAL SAMPLING DATE S 24	$\frac{2}{12}$ $\frac{1}{10} = \frac{1}{10}$	Develo Develo STA 2.96' WELL .92' TOTAL .92' TOTAL .93' S'	RT TIME // DEPTH /0.3 VOL. PURGED DEPTH /0.3 VOL. PURGED DEPTH CONDUCTIVIT 445×1 445×1 435×1 435×1 430×1 440×1 ART TIME /3	2:15 0'EST. WEL 2257ACDISC 7' Y Cloue Tuabio,S Clou Seni Clou Seni (1) 00	END TIME <u>250</u> LBURE VOL 6.67 CHARGE RATE APPEARANCE Y Scady - DARK DY 2(000 y Clear 1) END TIME <u>315</u>
DI Velee PURGE INFI DATE S [24] INITIAL DEPTH METHOD Wate VOLUME PURGE O GAL SS GAL 10 GAL 200 GAL	DRMATION 12 10 WATER 2 10 WATER 2 10 WATER 2 10 WATER 2 10 WATER 2 10 VATER 2 10 V	Develo Develo STA 2.96' WELL .92' TOTAL .92' TOTAL .93' STA .92' TOTAL .92' TOTAL .93' STA .92' TOTAL .93' STA .94' STA	RT TIME <u>//</u> DEPTH <u>/0.3</u> VOL. PURGED DEPTH <u>/0.3</u> VOL. PURGED DEPTH <u>CONDUCTIVIT</u> <u>445X1</u> <u>445X1</u> <u>445X1</u> <u>445X1</u> <u>435X1</u> <u>435X1</u> <u>435X1</u> <u>435X1</u> <u>435X1</u> <u>435X1</u> <u>435X1</u> <u>50-415</u> <u>Tu</u>	2:15 0'EST. VEL 2257ACDISC 7' Y Cloue Tualio,S Clou Seni Clou Seni (1) 00 Seni 10	END TIME <u>250</u> LBURE VOL 6.67 CHARGE RATE APPEARANCE Y Scady - DARK DY Y Clouby Clear 11 END TIME <u>315</u>

GROUNDWATER SAMPLING FIELD DATA SHEET WELL NUMBER <u>5 MW 11</u> FIELD TEAM (INITIALS) <u>S Reacho</u> SITE <u>Flmewolocf AFB</u> JOB NUMBER <u>ANC31026.113.6</u> FIELD CONDITIONS <u>Call</u> , <u>Overcast</u> FIELD MEASUREMENT/ COLLECTION EQUIP. <u>MAKE/MODEL</u> <u>SERIAL/ID</u> <u>CALIBRATION/</u> COMMENTS PH METER <u>4</u> CONDUCTIVITY METER <u>4</u>				1
WELL NUMBER		GROUNDWATER FIELD DATA	SAMPLING SHEET	
FIELD CONDITIONS Coll, Overcast <u>FIELD MEASUREMENT/</u> <u>COLLECTION EQUIP.</u> <u>MAKE/MODEL</u> <u>SERIAL/ID</u> <u>CALIBRATION/</u> <u>COMMENTS</u> <u>PH METER</u> <u><u>e</u> <u>CONDUCTIVITY METER</u> <u>e</u> <u>THERMOMETER</u></u>	WELL NUMBER <u>5 mw</u> i SITE <u>Elmendurf</u>	AFB	EAM (INITIALS)	<u>S (20,240</u> ANC31026.113.60
FIELD MEASUREMENT/ SERIAL/ID CALIBRATION/ COLLECTION EQUIP. MAKE/MODEL NO. COMMENTS pH METER	FIELD CONDITIONS Col,	, overcost		· · ·
PH METER	FIELD MEASUREMENT COLLECTION EQUIP.	/ MAKE/MODEL	SERIAL/ID NO.	CALIBRATION/ COMMENTS
WATER LEVEL INDICATOR	PH METER CONDUCTIVITY METER THERMOMETER WATER LEVEL INDICATOR BATLER/PUMP	set for set		· ·
		pars		

PURGE INFORMATION

t

DATE 38 Aug 92	START TIME _09:30	END TIME 13:15
20 7	below PUC	
INITIAL DEPTH TO WATER 20	L_WELL JEPTH <u>JC. JC</u> EST. W	FUTRIKE ADUTAT
FINAL DEPTH TO WATER 38.3	TOTAL VOL. PURGED 460 - D	ISCHARGE RATE Japan
METHOD Submersible pun		,

VOLUME PURGED	TEMPERATURE	<u>pH</u>		APPEARANCE
60 gal of 1.12	9.9°C	7.04	380	Turbid
220	9.0°C	6.98	400	Turbid
230	10.3°C	6.97	385	war Slightly Turbid
460	9.8°C	6.98	375	clear Colorless
	-			_

SAMPLING INFORMATION

DATE	28 Aug 97	2	STA	RT TIME	16:55	END	TIME 12:15
METHOD	builed	/کی	2" Star	nless	steel	bailer	······································
INITIAL	DEPTH TO W		38.3	DEPT	H TO WA	TER AFTER S	AMPLING 38.3

						(51)	
	GR		WATER S D DATA	SAMP SHEE	LING T		
WELL NUMBER	MWIZ		_ FIELD TE	EAM (I	(NITIALS)	BT, 5G	
SITE_Fime	udons AFI	SI	eP		B NUMBER	Anc3 1026.115,60	
FIELD CONDITION	S PARTLY	Sun	NY SS	=107			
FIELD MEASU	REMENT/ EQUIP.	MAKE	MODEL	SE	RIAL/ID NO.	CALIBRATION/ COMMENTS	
PH METER							•
CONDUCTIVITY ME	TER	ρ o	Per To	-Po	eze tt	5 <u>5</u>	•
THERMOMETER			1		0		
WATER LEVEL IN	DICATOR			- 			-
BAILER/PUMP		·· <u> </u>		- <u> </u>		l	•
DECONTAMINA				 			-
			•	<u> </u>			•
			` `	·			•
PURGE INFOR	MATION / De	evel	ope me	W			
DATE \$ 2810	72	STA	RT TIME	1510		END TIME 1735	÷.*
INITIAL DEPTH T	U WATER 8.39	, STOC		68'	STOC	LBURE VOL 2.99	
FINAL DEPTH TO	WATER 8,24	TOTAL			5 q Maiso		_
METHOD Walera	Tube, Suare 1	Stody	PUMP DEP	the pur	- P 10	¢*	
	TENPEPATURE	, ⊓ ^µ	CONDUCTIN				
	15,3%	776	485×1		the address		
55	14,3°C	7,15	450x1		Scal	loug/Turbio	
110	14.7°C	7.08	450X1		Claum		
165	14.9%	7,18	460X1		Clear	f L	,
after sample	14.5%	7.11	450x)		545 pender	/Clean	
<u> </u>	·			J			1
SAMPLING IN	FORMATION			_	-		
DATE 8/28/92		STA	ART TIME	72	0	END TIME 1730	,
METHOD Watera	Tube, Volat	16 5	aup le 7	The	• •	· · · · · · · · · · · · · · · · · · ·	
INITIAL DEPTH T			DEPTH	то у	ATER AFT	ER SAMPLING 8.24	i ,

ł

51

				(3)			
	GI	ROUNDWATER FIELD DATA	SAMPLING SHEET				
WELL NUMBER	MW 13	FIELD	TEAM (INITIALS)	BT, JG			
SITE Elment	bef AFB :	IRP	JOB NUMBER	ANC 31026. H3.60			
FIELD CONDITIONS	ovencon	J. DRizzle,	50°F				
		·		· · · · · · · · · · · · · · · · · · ·			
FIELD MEASU	REMENT/ EQUIP.	MAKE/MODEL	SERIAL/ID NO.	CALIBRATION/: COMMENTS			
PH METER	ORI	ON ZBOA	1 875 HARLO	10.9%) 1.0, 1.0 0 19,9%			
CONDUCTIVITY ME	TER 45	[33	2170 14120	5000 011900 01494			
THERMOMETER	<u></u>						
WATER LEVEL IN	DICATOR	7KS	1792 HAZCO				
BAILER/PUMP				5			
ΠΕΩΠΝΤΔΜΙΝΔ		can Chose	Linuitor 10.	MSH. TRIPRIPS			
DI Rince		<u> </u>	- U- I-	-			
	·						
PURGE INFOR	MATION / De	NEOPEMEN START TIME	T 0940	I END TIME [330]			
	I WATER 3.6	V WELL DEPTH 7	.5' EST. WEI	LBORE VOL 4.640			
	WATER 3,59		GED ZZOAL DIS	CHARGE RATE			
METHON 1/2010	HDPE TO		ртн 2.5 -> 7.1	5' B65			
VOLUME PURGED	TEMPERATURE			APPEARANCE			
O GAL	11.6°C	6.83 478	XI Juchiels	hem/ODOR			
55	9.5°C	7.15 450	<u>x1 [1]</u>	······································			
110	9.3°C	7.21 475	XI Seni-To	whis ODOR			
180	9.4°C	7.19 450	/\ (X)				
200	9.4°C	6.60 440	x1 sm: C	Par 1,000x			
220 💌	9.4°C	6.55 44	OXI Semi/C	trac (ODOR			
SAMPLING INFORMATION							
SHITLING INFURMATION							
DATE 7/23/97 START TIME 1400 END TIME 1415							
METHOD LUATCE	METHOD Watces, HDPE Tube, Volatile Sample Tube						
INITIAL DEPTH T	U WATER	DEPT	H TO WATER AF	TER SAMPLING			

						(49)	
	C	GROUND FIEL	WATER D DATA	SAMF SHE	'LING ET		
WELL NUMBER	mw13		FIELD.1	EAM (INITIALS	BIJSG	
SITEElmo	endout AF	B		JO	B NUMBER	14C3/026-H360	
FIELD CONDITION	s_Over	dest)	50°F			······································	
	<u></u>		·····			······································	
FIELD MEASU	REMENT/			S	ERIAL/ID	CALIBRATION	
	EQUIP.	MAKE		NASI	<u>ND.</u>	COMMENTS 7.02, 4.00	
CONDUCTIVITY M	- <u></u>			H H	112	EUSE	
THERMOMETER		Keh	x 10 P	Je The	73-		
WATER LEVEL IN				11			
BAILER/PUMP							
							-
				\checkmark			
					·····		
PURGE INFOR	MATION			1740	-		•
DATE 32619	24	STA	RT TIME _	51		END TIME (805	
INITIAL DEPTH T	WATER _2/3	WELL			EST. WEL		
FINAL DEPTH TO	VAIER	_ TUTAL		ED	DISC	CHARGE RATE	
			PUMP DEP	· (H		<u></u>	
	TEMPERATURE	PH		VITY	5100	APPEARANCE	
5.58 (79)	/0.0	6.06	450		Shill.	Julil Klas	
11.º Gal	9.5	6.16	450		Claudas	Sharpine Sken	
16.5	9.3	6.24	445			, sheet	
Post Sample	9.4	6.30	450		le.	¥	
	••••••••••••••••••••••••••••••••••••••	<u>_</u>			<u></u> .		
SAMPLING IN	FORMATION						
DATE 0/26/9	2	STA	RT TIME _	1800	<u>ہ</u>	END TIME (80	
метнод <u>55 (</u> .	Jail th	·		·	<u> </u>		
INITIAL DEPTH T			DEPTH	та у	ATER AFT	ER SAMPLING	

WELL NUMBER OUS MW14	FIELD TEAM (INITIALS) S. Reptus
SITE Elmendulf AFB	JEB NUMBER ANC 31026.H3.
FIELD CONDITIONS Cool (~ 50°F), Que	reast, raining (light to
moderate)	

.

r.

FIELD_MEASUREMENT/ COLLECTION EQUIP.	MAKE/MODEL	SERIAL/ID NO.	CALIBRATION/ COMMENTS
PH METER		2882	
CONDUCTIVITY METER _		1820	
THERMOMETER _	·	2882	
WATER LEVEL INDICATOR _			
BAILER/PUMP		<u> </u>	l
DECONTAMINATION	Wash with alc	onex and	tap water
rinse with Tur	water then	HPLC (orya	nic-free)
devenired water	······································		
DATE 23 Huy 92	START TIME _	· · · · · · · · · · · · · · · · · · ·	END TIME
INITIAL DEPTH TO WATER 2	C.88 WELL DEPTH	<u>5,20</u> EST. WEL	LBORE VOL 5. 3 ga
FINAL DEPTH TO WATER	<u>2. </u>	GED DISC	HARGE RATE - 10 pm
METHOD bailed	PUMP DEI	PTH	
VOLUME PURGED TEMPERAT			APPEARANCE
			_
		<u>\</u>	
		\mathbf{i}	
SAMPLING INFORMATI		\sim	
DATE	START TIME .		. END TIME

WELL NUMBER OBS MW-14	FIELD TEAM (INITIALS) _SR
SITE _Elmen durg	JOB NUMBER
FIELD CONDITIONS Sunny Coul.	·

FIELD MEASUREMENT COLLECTION EQUIP.	MAKE/MODEL	SERIAL/ID NO.	CALIBRATION/ COMMENTS			
PH METER	ΟΓΙΟΛ	2882	See Calbrition			
CONDUCTIVITY METER	<u>UST #33</u>	1820	Lug book			
THERMOMETER	Drun	2882				
WATER LEVEL INDICATOR	-					
BAILER/PUMP	Stunless Steel					
DECONTAMINATION	Wash with Alcune coul Di water					
			- warn			

PURGE INFOR	MATION			
DATE 25 Any	92	STA	RT TIME 23 Any	92 09:30 END TIME 15.30
INITIAL DEPTH TI	, D WATER <u>10.88</u>	below SE WELL	. DEPTH <u>15.20</u>	EST. WELLBORE VOL.5.3
FINAL DEPTH TO	WATER	TOTAL	VOL. PURGED	DISCHARGE RATE ~/Oge-
METHOD <u>gan f</u>	int		PUMP DEPTH	15.0 below TOC
	TEMPERATURE	pH		APPEARANCE
5.5	11.8	684	370	colorless slightly Cloudy
11.0	11.7	6.91	395	
16.0	7	6.90	390	<i>د</i> ۰

SAMPLING INFORMATION

DATE	25 Ana	92	START	TIME _16:00	END TIME 16:30
METHOD	stain	less steel	bailer		

INITIAL DEPTH TO WATER ______DEPTH TO WATER AFTER SAMPLING_

· CARTER STREET BORNES BEEN

	MANIS				BT WW
WELL NUMBER	dad DUS		FIELU TEA	(INITIALS)	Aux 2102 6 HB 6
	5005	2	·····	JUB NUMBER	<u></u>
FIELD CONDITION	S	+ and	7 1		
					*
FIELD MEASU	REMENT/ EQUIP.	MAKE	MODEL	SERIAL/ID	CALIBRATION/ COMMENTS
H METER	On	ion Hodel 2	-DA S	5/N 002151	Cal +04.0~17.0
CONDUCTIVITY M	ETER YSI	Model 3:	ι, <u>s</u>	1/1 J8016848	
HERMOMETER		·		• - · •••	-
VATER LEVEL IN		nce Model 5	1453 - 5	N	2
AILER/PUMP					· · · · ·
DECONTAMINA		Alioner,	potelle not a	mar DI wa	to find
					
PURGE INFOR	MATION			CUN	-
PURGE INFOR DATE <u>GIUG</u> INITIAL DEPTH T FINAL DEPTH TO METHOD Z'SS	MATION 2 VATER 10.1 VATER Bailer	STA <u>7'&¤c</u> Well Total	NRT TIME DEPTH _ <u></u> VOL. PURGET PUMP DEPTH	540 5000 EST. WELL <u>9 gall</u> DISC NA.	END TIME LBORE VOL 390
PURGE INFOR DATE <u>SILE</u> INITIAL DEPTH T FINAL DEPTH TO METHOD <u>3'55</u> VOLUME PURGED	MATION 2 U WATER <u>10,1</u> WATER <u>Bailer</u> TEMPERATUR	STA <u>7 / ñtc</u> WELL TOTAL E PH	NRT TIME DEPTH _ <u>14.3</u> VOL. PURGET PUMP DEPTH CONDUCTIVI	5600 EST. WELL 9 <u>9 gall</u> DISC 1 <u>NA</u>	END TIME LBORE VOL 39
PURGE INFOR DATE <u><u><u>G</u></u> NITIAL DEPTH T TINAL DEPTH TO NETHOD <u><u><u>S</u></u> S C <u><u>G</u></u> <u><u>G</u></u> <u><u>G</u></u></u></u>	MATION 2 U WATER <u>10,1</u> WATER <u>Bailer</u> TEMPERATUR 9.7°C	STA <u>1 m²c</u> WELL TOTAL EPH [7,4]	DEPTH <u>14.3</u> VOL. PURGET PUMP DEPTH CONDUCTIVI 340 Junio/cm	5000 EST. WELL 9 9 Sull DISC NA. TY Clou	END TIME LBORE VOL 3910 HARGE RATE APPEARANCE
PURGE INFOR ATE 9169 NITIAL DEPTH TO TINAL DEPTH TO TINAL DEPTH TO TINAL DEPTH TO TINAL DEPTH TO TOLUME PURGED CAL 3 Sal	MATION 2 U WATER <u>10.1</u> WATER <u>Bailer</u> TEMPERATUR 9.7°C 9.4°C	STA <u>1'm²c</u> WELL TOTAL EpH 7.41 7.41	DEPTH <u>14.3</u> DEPTH <u>14.3</u> VOL. PURGET PUMP DEPTH CONDUCTIVI <u>340 µmho/cm</u> 375 µmho/cm	5000 EST. WELL <u>9 gull</u> DISC <u>NA</u> TY <u>Clou</u> Uoulu	END TIME LBORE VOL 39
PURGE INFOR DATE 9169 NITIAL DEPTH TO TINAL DEPTH TO NETHOD $3'55$ VOLUME PURGED 962	2 WATER <u>10.1</u> WATER <u>10.1</u> WATER <u>10.1</u> TEMPERATUR 9.7°C 9.4°C 8.9°C	STA <u>1'mile</u> WELL TOTAL TOTAL 7.41 7.42	DEPTH <u>14.3</u> DEPTH <u>14.3</u> VOL. PURGET PUMP DEPTH CONDUCTIVI 340 junio/cm 375 junio/cm 375 junio/cm	540 Sóra EST. VEL 9 <u>9 sull</u> BISC NA. TY Clou Clou Lou promíc	END TIME LBORE VOL 39 HARGE RATE APPEARANCE UY Loudy
PURGE INFOR DATE 9149 INITIAL DEPTH TO TINAL DEPTH TO AETHOD $3'55$ VOLUME PURGED 6 5	2 WATER <u>10.1</u> WATER <u>10.1</u> WATER <u>10.1</u> TEMPERATUR 9.7°C 9.4°C 8.9°C 8.9°C	STA <u>1'brec</u> WELL TOTAL TOTAL 7.41 7.42 7.50	DEPTH 14.3 DEPTH 14.3 VOL. PURGET PUMP DEPTH CONDUCTIVI 340 pmho/cm 375 pmho/cm 375 pmho/cm 375 pmho/cm	540 Sóra EST. VEL 9 <u>9 sell</u> BISC NA. TY Cloub Cloub protyc Autyc	END TIME LBORE VOL 39 HARGE RATE APPEARANCE DY Loudy Loudy Loudy
PURGE INFOR DATE 9149 INITIAL DEPTH T FINAL DEPTH TO METHOD $3'55$ VOLUME PURGED 6 $5a^{2}$ 6	$\frac{2}{2}$ $\frac{2}$	STA <u>7'brec</u> WELL TOTAL TOTAL 7.41 7.42 7.50	ART TIME DEPTH VOL. PURGET PUMP DEPTH CONDUCTIVI 340 pmho/cm 375 pmho/cm 375 pmho/cm 375 pmho/cm	540 Sóra EST. WELL 9 <u>9 sell</u> BISC NA. TY Cloub Cloub promy c	END TIME LBORE VOL 39 HARGE RATE APPEARANCE by loudy loudy loudy
PURGE INFOR DATE <u><u><u><u></u></u><u><u><u></u></u><u><u><u></u><u><u></u><u><u></u><u><u></u></u><u><u></u><u><u></u><u></u><u><u></u><u></u></u></u></u></u></u></u></u></u></u></u>	2 I WATER I WATER Bailex TEMPERATUR 9.7°C 9.4°C 8.9°C 8.9°C 8.9°C 8.9°C	<u></u> STA <u>7'brc</u> Well TOTAL 	ART TIME DEPTH VOL. PURGET PUMP DEPTH CONDUCTIVI 340 junito/cm 375 junito/cm 347 junito/cm 350 junito k	540 Sorac EST. WELL 9 <u>9 sell</u> BISC NA. TY Cloub Cloub prothy c	END TIME LBORE VOL 390 HARGE RATE APPEARANCE DY Loudy Loudy Loudy
PURGE INFOR DATE <u><u><u>9</u>169</u> INITIAL DEPTH TO AETHOD <u>3'SS</u> VOLUME PURGED <u><u>6</u> <u>6</u> <u>9</u> SAMPLING IN DATE <u><u>9</u>169</u></u></u>	2 WATION Z WATER <u>10.1</u> VATER <u>10.1</u> VATER <u>10.1</u> VATER <u>10.1</u> FORMATION Z	STA <u>1'brc</u> Well TOTAL TOTAL 7.41 7.42 7.50 	ART TIME DEPTH VOL. PURGET PUMP DEPTH CONDUCTIVI 340 junio/cm 375 junio/cm 375 junio/cm 390 junio/cm	540 Sorac EST. WELL 9 <u>9 sell</u> BISC NA. TY Cloub cloub prothy c putty c	END TIME LBORE VOL 390 HARGE RATE APPEARANCE DY Loudy L
PURGE INFOR DATE <u><u><u>9</u>169</u> INITIAL DEPTH TO METHOD <u>3'55</u> VOLUME PURGED <u><u>6</u> <u>6</u> <u>9</u> SAMPLING IN DATE <u><u>9</u>169 METHOD <u>3'55</u></u></u></u>	2 2 0 VATER Bailex TEMPERATUR 9.7°C 9.4°C 8.9°C 8.9°C 8.9°C 8.9°C 8.9°C 8.9°C 8.9°C 8.9°C 9.9°C 9.9°C	STA <u>7'&rc</u> Well TOTAL EPH 7.41 7.42 7.50 STA	ART TIME DEPTH <u>14.3</u> VOL. PURGET PUMP DEPTH <u>CONDUCTIVI</u> <u>340 µmho/cm</u> <u>375 µmho/cm</u> <u>375 µmho/cm</u> <u>350 µmho/cm</u>	540 Sorac EST. WELL 9 <u>9 sell</u> BISC NA. TY Cloub cloub prothyce putyce	END TIME LBORE VOL 3902 HARGE RATE APPEARANCE DY Loudy Loudy Loudy Loudy Loudy Loudy Loudy Loudy

VELL NUMBER _	511119		FIELD T	EAM (II) 	NITIALS) NUMBER	KEL R PALC 3/0	24. H3.60
TIELD CONDITIO	INS QUEC	AST, 12°F	<u>CAIN WI</u>	NDS,	Savew	ind .	
TIELD MEAS	UREMENT EQUIP.	<u>/</u> Make	/MODEL	SE	RIAL/ID NO.	CAL) Co	BRATION/
H METER	C	RION ZTO	A	288	2	See CA	1 1075
	METER	YS1 33)	182	0	6	
THERMOMETER		URION 29	DA	288	3		
VATER LEVEL		Slope HI	543	195	26	<u>↓ </u>	
BAILER/PUMP	(Grundros 1	191	0562	08	₩	
DECONTAMIN	ATION	SAME	A: 5m	1203			
· · · · · · · · · · · · · · · · · · ·			<u></u>				
PURGE INFO		9.57 VEL	ART TIME	1310	D		E 1320
PURGE INFO DATE 18- INITIAL DEPTH FINAL DEPTH T METHOD GRAN	TO VATER	9.57_VELL 2.56_TOTAL	ART TIME	<u>13</u> 10 .45 е ер _/(тн1	D EST. WEL Egge DISC	END TIM LBORE V CHARGE R	E <u>1320</u> DL <u>2 gal</u> ATE 3 900
PURGE INFO DATE 18- INITIAL DEPTH FINAL DEPTH T METHOD GRAN	IRMATION DEL-11 TO WATER TO WATER DFOS PUN D TEMPERA	9.51_VELL 7.56_TOTAL	ART TIME DEPTH // VOL. PURG PUMP DEP CONDUCTIV	1310 .45 e ed _/(th1	D ST. WEL 694 DISC	END TIM LBORE V CHARGE R APPEAR	E 1320 DL 2 gal ATE 3 gan
PURGE INFO DATE 18- INITIAL DEPTH FINAL DEPTH T METHOD GRAN	IRMATION DEL-11 TO WATER TO WATER DFOS PUR D TEMPERA 1.6°C	STA 9.57_VELL 7.56_TOTAL 0 TURE PH 7.20	ART TIME DEPTH 14 VOL. PURG PUMP DEP CONDUCTIV	1310 .45 e ED _/(TH]	D ST. WEL Egd DISC 2.0' CIEA	END TIM LBORE V CHARGE R APPEAR	E 1320 DL 2 gal ATE 3 900 ANCE
PURGE INFO DATE 18- INITIAL DEPTH FINAL DEPTH T METHOD GRAN VOLUME PURGE 1 CAI	IRMATION DEL-11 TO WATER TO WATER DFOS PUR D TEMPERA I.G°C I.G°C	STA 9.57_VELL 7.56_TOTAL 7.15 7.15	ART TIME DEPTH 14 VOL. PURG PUMP DEP CONDUCTIV 2907.4 312	1310 .45 E ED _/(TH VITY	D ST. WEL Egd DISC 1.D' CIEAL	END TIM LBORE V CHARGE R APPEAR	E 1320 DL 2 gal ATE 2 ga l
PURGE INFO DATE 18- INITIAL DEPTH FINAL DEPTH T METHOD GRANI VOLUME PURGE 1 GAI 7 GAI	IRMATION DEL-11 TO VATER VATER DFOS PUR D TEMPERA I.G°C I.G I.S	STA 9.57_VELL 7.56_TOTAL 7.15 7.15 7.15	ART TIME DEPTH 14 VOL. PURG PUMP DEP CONDUCTIV 29074 312 326	1310 .45 e ed _/(th vity	CIEAL	END TIM LBORE V CHARGE R APPEAR	E 1320 DL 2 gal ATE 3 900 ANCE
PURGE INFO DATE 18- INITIAL DEPTH FINAL DEPTH T METHOD GRANI VOLUME PURGE 1 GAI 7 GAI 10 GAI	IRMATIUN DEL-11 TU WATER U WATER DFOS PUM D TEMPERA I.G°C I.G°C I.G°C I.S I.S	STA 9.51_VELL 7.56_TOTAL 7.15 7.15 7.17	ART TIME $_{4}$ DEPTH 14 VOL. PURG PUMP DEP CUNDUCTIV 2907A 312 320	1310 .45 e ED _/(TH VITY	Cient	END TIM LBORE V CHARGE R APPEAR	E 1320 DL 2 gal ATE 3 900 ANCE
PURGE INFO DATE INITIAL DEPTH FINAL DEPTH T METHOD GRANT VOLUME PURGE I GAI I GAI I GAI I GAI	IRMATION DEL-11 TO WATER TO WATER DFOS PUM D TEMPERA I.G°C I.G°C I.G°C I.G°C I.S I.S I.S	STA 9.57_VELL 7.56_TUTAL 7.15 7.15 7.17 7.17 7.16	ART TIME $_$ DEPTH 14 VOL. PURG PUMP DEP CUNDUCTIV 2907A4 312 320 320 318	1310 .45 e ed _/(th vity	CIEA	END TIM LBORE V CHARGE R APPEAR	E 1320 DL 2 gal ATE 3 900 ANCE

i

:

1

i

					59	
(GROUND	WATER SA	MPLING			
	FIEL	D DATA SH	HEET			
WELL NUMBER MW 16A			M (INITIALS)	<u>Y37,</u>	56	
SITE Elmendorf AF-B	TKP	ous_	JOB NUMBER	Apr 3/	0 26. H3.60	
FIELD CONDITIONS Over A	51, 4	S°F				N
	·	· · · · · · · · · · · · · · · · · · ·			•	
FIELD MEASUREMENT/			SERIAL/ID	c	ALIBRATION	
COLLECTION EQUIP.	MAKE		ND.	4.0,7.	COMMENTS	
PH METER	- 7		A210 2011	740	<u>e 11,6 to 3</u> w[1000	
	<u> </u>	<u> </u>	26 11 10	7000	M1910 120	
WATER LEVEL INDICATOR	•		· <u> </u>	+		
				•		
DECONTAMINATION ST	cam (Jean L	quinox h	UAS4	, Tap	
KINSE, DI WASH		(<u> </u>			
· · · · · · · · · · · · · · · · · · ·	·				· · · · · · · · · · · · · · · · · · ·	
PURGE INFORMATION	•		, *		•	
DATE \$3192	STA	RT TIME OU	0	. END	TIME /150	
INITIAL DEPTH TO WATER	WELL	DEPTH 15.3	O EST. WEL	LBORE	Val. 3.37	ML.
FINAL DEPTH TO WATER 1.60	TUTAL		100gal DISC	CHARGE		
METHODINAtion Tube, Suage Bl	ch, take	PUMP DEPTH	1 for Twee	14'		-
VOLUME PURGED TEMPERATURE	pH		Υ <u></u>	APPE	ARANCE	
O GAL 12.2°C	6.36	490x1	SIITY G	qey (ODOR	
50 GM 11.9°C	6.82	450×1	Clear			
H075GAC 11.8°C	7.03	448×1	Cloud	4		<u> </u>
95 GAL 11.70C	7.06	445×1	Clear			
Watter Single 11.7°C	7.44	440x)	Cloup	1		
SAMPLING INFURMATION		1-	!		10	
DATE 0/0/96	STA	ART TIME 12		END	TIME 1210	
METHOD WATCH HIPE TWAY	K lat	IT Jup	k lub	S		
		DEPTH TO	WATER AFT	ER SA	MPLING ///	40 i

t

「「「「」」」

	GROUNDWATER		
CHIM	FIELD DATA	SHEET	Delvel
WELL NUMBER 71101	FIELD T	EAM (INITIALS)	KYIVZ U
SITE UUD		JOB NUMBER	W 71026 H360
FIELD CONDITIONS _ DIVOL	U 116 ~ 5 F		
FIELD MEASUREMENT COLLECTION EQUIP.	MAKE/MODEL	SERIAL/ID	CALIBRATION/ COMMENTS
pH METER	ORION 250A	2882	See callogs
CONDUCTIVITY METER	<u>Y1 33</u>	1820	
THERMOMETER	(TRIM 250A	2582	
WATER LEVEL INDICATOR	SLOPE 41943	19366	
BAILER/PUMP	GRUNDFO MP1	036208	V
	6		
DECUNIAMINAIIUN	-June or 5MU	NU'2	
PURGE INFORMATION	•		
DATE	START TIME		END TIME
INITIAL DEPTH TO WATER	10.83_WELL DEPTH 1	EST. WEL	LBORE VOIL
FINAL DEPTH TO WATER _		EDDISC	HARGE RATE
METHOD	PUMP DEP	TH	:
VOLUME PURGED TEMPERA			APPEARANCE
<2ga! 5.2	1 7.2 -100 mh	105 519th	donly
	2 7.03 390 m	hos Slightly	cloudy :
8g4 5.4	1 7.04 400 m	Los 5/19 the	clonety i
10gd 5.4	1 7.03 395mh	os skylt	y cloudy
15gd 5.	-1 7.03 ST5m	his sligh	they cloudy
		-	
			·
SAMPLING INFORMAT	ION	141/	
DATE 18 - Dec-92	START TIME	1770	. END TIME 1450
METHODGRUND	2 1112	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	
INITIAL DEPTH TO WATER	10.85DEPTH	TO WATER AFT	ER SAMPLING

THE REAL

GROUNDWATER SAMPLING FIELD DATA SHEET WW11 FIELD DATA SHEET STRE $E/m & Dord & AFB IKP$							37
FIELD DATA SHEET VELL NUMBER		G		WATER S		LING	
VELL NUMBER MW 11 FIELD TEAM (INITIALS) DJJUE SITE $E[M \triangleleft POoeq Afg TKP$ JOB NUMBER Arc 31026-18860 SITE $E[M \triangleleft POoeq Afg TKP$ JOB NUMBER Arc 31026-18860 FIELD CONDITIONS Rain, 55°F CALIBRATION DECIDITIONS RUPPER Arc 31026-18860 SERIAL/ID CALIBRATION DECIDITION EQUIP. MAKE/MODEL NOL CALIBRATION CALID 230 A Haze 1925 MAKE/MODEL NOL CALIBRATION CALID 2102 DECONTAMINATION START TIME OCONTAMINATION DECONTAMINATION DATE DECONTAMINATION DATE DECONTAMINATION DATE DECONTAMINATION DATE DECONTAMATION DATE DECONTAMITION DATE		14 A	FIEL	D DAIA	SHEF	_	# + } /
THE <u>LIME PORE HILE CONSTRUCTOR</u> TELD CONDITIONS Rain, 55°F TELD CONDITIONS Rain, 55°F TELD CONDITIONS Rain, 55°F TELD MEASUREMENT/ DELLECTION EQUIP. MAKE/MODEL NO. CALIBRATION DELLECTION EQUIP. MAKE/MODEL NO. CALIBRATION THERMOMETER <u>28 Low 230 A Hazeo 1935</u> HAZEO 1935 HAZEO 1935 HAZEO 1935 HAZEO 1935 HAZEO 1935 HAZEO 1935 HAZEO 1935 HAZEO 1942 TELD MEASUREMENT/ DECONTAMINATION <u>Stem Clear</u> , Lignmer Wash, Tap Rimse, DI Rimse PURGE INFORMATION <u>Stem Clear</u> , Lignmer Wash, Tap Rimse, DI Rimse PURGE INFORMATION <u>Stem Clear</u> , Lignmer Wash, Tap Rimse, DI Rimse PURGE INFORMATION <u>Stem Clear</u> , Lignmer Wash, Tap Rimse, DI Rimse PURGE INFORMATION <u>Stem Clear</u> , Lignmer Wash, Tap Rimse, DI Rimse PURGE INFORMATION <u>Stem Clear</u> , Lignmer Wash, Tap Rimse, DI Rimse PURGE INFORMATION <u>Stem Clear</u> , Lignmer Wash, Tap Rimse, DI Rimse PURGE INFORMATION <u>Stem Clear</u> , Lignmer Wash, Tap Rimse, DI Rimse PURGE NFORMATION DATE <u>323</u> Start TIME <u>(000</u> <u>Gast 1936</u> <u>Clear</u> , 1996 <u>Clear</u> , 1997 <u>Clume PURGED TEMPERATURE</u> <u>PUMP DEPTH <u>1415</u> <u>VOLUME PURGED TEMPERATURE <u>PH CONDUCTIVITY</u> <u>APPEARANCE</u> <u>O GAS 7.6°C (.25 78×10 1' '' <u>Clar 7.9°C (.28 78×10 1' ''</u> <u>Clar 7.9°C (.28 78×10 1' ''</u> <u>SAMPLING INFORMATION</u> DATE <u>7.21,92</u> START TIME <u>[015]</u> END TIME(<u>045</u> METHOD WARE <u>Start Fire Start</u> Lignmer <u>Clar 100</u> DATE <u>7.21,92</u> <u>START TIME <u>[015]</u> END TIME(<u>045</u> <u>SAMPLING INFORMATION</u> DATE <u>7.21,92</u> <u>START TIME <u>100</u> <u>Clar 7.9°C (.29 78×10 1' ''</u> <u>Clar 100</u> <u>Clar 7.9°C (.28 78×10 1'' ''</u> <u>Clar 100</u> <u>Clar 7.9°C (.28 78×10 1'' ''</u> <u>Clar 100</u> <u>Clar 7.9°C (.28 78×10 1'' ''</u> <u>Clar 100</u> <u>Clar 100</u> <u>Clar 7.9°C (.28 78×10 1'' ''</u> <u>Clar 100</u> <u>Clar 100</u> <u>Cla</u></u></u></u></u></u>	VELL NUMBER		NII TPP	_ FIELD T	EAM (I	NITIALS)	
IELD CONDITIONS_INATIONS_INATION INATE APPEARANCE IELD MEASUREMENT/ SERIAL/ID CALIBRATION DELLECTION EQUIP. MAKE/MODEL ND. CALIBRATION DELLECTION EQUIP. MAKE/MODEL ND. CALIBRATION NH METER IST 33 HAZO 1935 MISSO 2170 HERMOMETER IST 33 HAZO 1762 IST 33 DECONTAMINATION IST 2000 IST 2000 IST 2000 DECONTAMINATION IST 2000 IST 2000 IME 2000 PURGE INFORMATION IST 2000 IST 2000 IME 2000 PURGE INFORMATION IST 2000 IST 2000 IST 2000 NITIAL DEPTH TO VATER PH CONDUCTIVITY APPEARANCE O GAL 9:3°C GOS 3110 Cloudy ISCONT Coloe 3.4	ITE	Pair 6	<u> </u>	<u> </u>	JOB	NUMBER	MAC 31066.0300
IELD MEASUREMENT/ IDLLECTION EQUIP. SERIAL/ID CALIBRATION.	IELD CONDITIONS	s_lain_0	D° Г	<u> </u>			
TIELD MEASUREMENT/ DILLECTION SERIAL/ID QUIECTION CALIBRATION COMMENTS CONDUCTIVITY AUTOR QR.10 2.30 A Hazio 19.5 10.10 2.10							·
$\frac{\partial \mathcal{L} \mathcal{L} \mathcal{L} \mathcal{L} \mathcal{L} \mathcal{L} \mathcal{L} \mathcal{L}$	TELD MEASU	REMENT/	MAKE	/אחזהכו	SE		CALIBRATION/
THETER 151.33 HARO 2170 100 1000 1000 1000 1000 1000 1000		OR1	• 2	30 A	Huzio	1475	10,12,7,01,4,00 0-18,9°C
UNDUCTIVITY PRETER Image:	T MEIER	······································	1 33	<u> </u>	HARO	2170	Too of ross union of 19.9%.
ATER LEVEL INDICATOR ORS HERE INDICATOR ORS HERE LEVEL INDICATOR ORS HERE SHOWS HERE STARE STARE STARE STARE TIME HERE WASH, Tap Kiwse, DI RINGE INFORMATION STARE CLEAR, Lignmer WASH, Tap Kiwse, DI RINGE INFORMATION STARE TIME HERE WASH, Tap Kiwse, DI RINGE INFORMATION STARE TIME HERE WASH, Tap Kiwse, URGE INFORMATION STARE TIME HERE WASH, Tap Kiwse, DI RINGE END TIME LOLO END TIME LOLO INTER LOLO END TIME LOLO INTER LOLO EST. VELLBORE VOL33794 INAL DEPTH TO WATER TOTAL VOL. PURGED DISCHARGE RATE - ETHOD WATER HERE TOTAL VOL. PURGED DISCHARGE RATE - ETHOD WATER HERE OF CONDUCTIVITY APPEARANCE O GAC 9:3°C GOS 91x10 Cloudy Scont Color 3.4 8:2°C GOG 78x10 1' 1' .8 7.6°C G:28 78x10 1' 1' 1' 1' .8 7.6°C G:28 700 1' 1' 1' 1' 1' 1' 1' 1' 1' 1' 1' 1' 1'	JNDUCITVIII mu	.158					
ATTE TO A STORE AT THE ATTENT APPEARANCE OF CASE ATTENT AND ATTENT APPEARANCE OF CASE AND	ATCO I EVEL IN		RS		Ha>60	1792	
ALLERY FURF ALLERY FURF DI RINATION Stean Clear, Lignwer Wash, Tap Rives, DI RINAC PURGE INFORMATION HATE 2/21/92 START TIME 1000 END TIME 1010 HATE 2/21/92 START TIME 1000 EST. VELLBORE VOL3.3794 INAL DEPTH TO WATER 101 VOL. PURGED DISCHARGE RATE HETHOD WATER, H91E TUVIC, PUMP DEPTH 14.5 VOLUME PURGED TEMPERATURE PH CONDUCTIVITY APPEARANCE O GAL 9:3°C GOS 91×10 Cloudy GREAT Color 3.4 8.2°C GOG 78×10 1' 1' 4.8 7.6°C GOS 78×10 1' 1' 4.8 7.6°C GOS 78×10 1' 1' 2.8 7.6°C GOS 78×10 1' 1' 2.8 7.6°C GOS 78×10 1' 1' 3.4 8.2°C GOG 78×10 1' 1' 3.4 8.2°C GOG 78×10 1' 1' 3.4 8.2°C GOS 78×10 1'' 1' 3.4 8.2°C GOS 78×10 1'' 1'' 3.4 8.2°C GOS 78×10 1'' 1'' 3.4 1'' 1'' 1'' 1'' 1''' 1''' 1''''''''''	ALER LEVEL IN						
DECONTAMINATION 54 Clear, Lignux Wash, 1 ap Kinse, DI Ringe PURGE INFORMATION HATE $3 21 f2$ START TIME 1000 END TIME 200 NITIAL DEPTH TO VATER $2:0$ VELL DEPTH 300 EST. VELLBORE VOL $3:374$ INAL DEPTH TO VATER $1:0$ VELL DEPTH $1:0$ DISCHARGE RATE HETHOD Watca, H91E Tabin, PUMP DEPTH $1'4.5'$ VOLUME PURGED TEMPERATURE PH CONDUCTIVITY APPEARANCE O GAC 9:3°C GOS $81x10$ Cloudy $5xx10c$ 3.4 $8.2°C$ GOS $81x10$ Cloudy $5xx10c3.4$ $8.2°C$ GOS $78x10$ $1'$ $1'6.8$ $7.6°C$ 4.25 $78x10$ $1'$ $1'2.7.9°C$ 4.28 $7.8x10$ $1'$ $1'3.4$ $5.2°C$ GOS $1.78x10$ $1'$ $1'3.4$ $5.2°C$ 6.61 $78x10$ $1'$ $1'3.4$ $5.2°C$ 6.61 $78x10$ $1'$ $1'3.4$ $5.2°C$ 6.61 $78x10$ $1'$ $1'3.4$ 5.50 $5.78C$ 5.78 10 $1'$ $1'5.50$ 1.5 1					A		<u>`</u>
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	ECONTAMINA	TION 54	an C	ear, Li	pour	x wash	1 Tap Kinse,
PURGE INFORMATION TATE $2/21/52$ START TIME 1000 END TIME 200 NITIAL DEPTH TO WATER 2.10 WELL DEPTH 3.00^{-1} EST. VELLBORE VOL 3.3794 INAL DEPTH TO WATER 1000 TOTAL VOL. PURGED DISCHARGE RATE 13.00^{-1} INAL DEPTH TO WATER 1000 PUMP DEPTH 14.5^{-1} PUMP DEPTH 11.5^{-1} PUMP DEPTH 11.5^{-1}	DI Rinse						······································
PURGE INFORMATION NATE 32152 START TIME 6000 END TIME 600 NITIAL DEPTH TO WATER 2.10 WELL DEPTH 300^{100} EST. WELLBORE VOL 3.3794 INAL DEPTH TO WATER TOTAL VOL, PURGED DISCHARGE RATE IETHOD WATER HPIE TOTAL VOL, PURGED DISCHARGE RATE IETHOD WATER HPIE TOTAL VOL, PURGED DISCHARGE RATE IETHOD WATER HPIE TOTAL VOL, PURGED DISCHARGE RATE VOLUME PURGED TEMPERATURE PH CONDUCTIVITY APPEARANCE O GAC 9:3°C GOS 81410 Cloudy Growt Color 3.4 8.2°C GOS 78×10 1'' '' (.8 7.6°C G.25 78×10 1'' '' (.8 7.6°C G.25 78×10 1'' '' 2.8 7.6°C G.28 78×10 1'' '' 2.9 7.9°C G.28 78×10 1'' '' 2.9 7.9°C G.28 78×10 1'' '' 2.9 7.9°C G.28 78×10 1'' '' 3.4 8.2°C GOG 78×10 1'' '' 3.4 8.2°C G.00 78×10 1'' '' (.8 7.6°C G.28 78×10 1'' '' 3.4 8.2°C G.00 78×10 1''''							
DATE $3 23 42$ START TIME 1000 END TIME 200 INITIAL DEPTH TO WATER 2.00 WELL DEPTH 300 EST. WELLBORE VOL 3.374 FINAL DEPTH TO WATER TOTAL VOL. PURGED DISCHARGE RATE METHOD Water, HOIE TOTAL VOL. PURGED DISCHARGE RATE VOLUME PURGED TEMPERATURE PH CONDUCTIVITY APPEARANCE O GAC 9.3°C GOS 81×10 Cloudy GROAT Color 3.4 8.2°C GOG 78×10 1' 1' 6.8 7.6°C G.25 78×10 1' 1' 6.8 7.6°C G.25 78×10 1' 1' G.2 7.9°C G.28 78×10 1' 1' G.2 7.9°C G.28 78×10 1' 1' SAMPLING INFORMATION DATE $521/42$ START TIME 205 END TIME 2020 WETHOD WARCO, HOPE Tobs, Volotik Seep k. Ticket. INITIAL DEPTH TO WATER DEPTH TO WATER AFTER SAMPLING	PURGE INFOR	MATION					
NITIAL DEPTH TO WATER $\begin{bmatrix} 2.10 \\ 2.10 \end{bmatrix}$ WELL DEPTH $\begin{bmatrix} 918/42 \\ 13.00 \end{bmatrix}$ EST. WELLBORE VOL 3.3774 INAL DEPTH TO WATER TOTAL VOL. PURGED DISCHARGE RATE IETHOD Water, H91E Tobic PUMP DEPTH $\begin{bmatrix} 14.5 \\ 4.5 \end{bmatrix}$ /OLUME PURGED TEMPERATURE PH CONDUCTIVITY APPEARANCE O GAC 9:3°C G.05 81×10 Cloudy GROWT Color 3.4 8.2°C G.09 78×10 1' '' 5.8 7.6°C G.25 78×10 1' '' 5.8 7.6°C G.28 78×10 1' '' 6.2 7.9°C G.28 78×10 1' '' 2.5 tot Sample 7.8°C G.601 78×10 1' '' SAMPLING INFORMATION DATE $\boxed{721/42}$ START TIME $\boxed{015}$ END TIME $\boxed{020}$ IETHOD $WARCA, H9PE Tobs, Welch & Sample Tobs, Welch & Sa$	ATE 8/21/92		STA	RT TIME	100	ne	END TIME /010
FINAL DEPTH TO WATERTOTAL VOL. PURGEDDISCHARGE RATE METHOD WaterPUMP DEPTHAPPEARANCE VOLUME PURGED TEMPERATURE PH CONDUCTIVITY APPEARANCE O GAC 9:3°C GOS 81×10 Cloudy GROAT Color 3.4 8:2°C GOG 78×10 1' '' 6.8 7.6°C G.25 78×10 1' '' 6.8 7.6°C G.28 78×10 1' '' 9.2 7.9°C G.28 78×10 1' '' 254cc Saple 7.8°C GOU 78×10 1' '' SAMPLING INFORMATION DATE $T)2192$ START TIME 2015 END TIME $(020$ 4ETHOD WARCA, HDPE Table, Valothe Sample. Tuber. INITIAL DEPTH TO WATERDEPTH TO WATER AFTER SAMPLING	NITIAL DEPTH T	U WATER 2.10	WELL		100	2 8/2/91 EST. WEL	LBORE VOL 3.3794
AETHOD Watera, Hole Tubiq PUMP DEPTH $/4.5'$ VOLUME PURGED TEMPERATURE pH CONDUCTIVITY APPEARANCE O GAC 9:3°C GOS $91X10$ Cloudy / Growt Color 3.4 $9:2°C$ G.09 78×10 1'' '' 6.8 $7:6°C$ $6:25$ 78×10 1'' '' 0.2 $7:9°C$ $6:28$ 78×10 1'' '' $28 + ca$ $5mpk$ $7.8°C$ $6:61$ 78×10 1'' 1'' SAMPLING INFORMATION $5mpk$ $5mpk$ END TIME (0.20 DATE $5Takt$ $5mpk$ $Tiakt$ END TIME (0.20 METHOD $MAR eapHOPE Tube, Voletk$	INAL DEPTH TO	WATER	TOTAL	/ [™] VOL. PURG	3.01	DIS	CHARGE RATE
VOLUME PURGED TEMPERATURE PH CONDUCTIVITY APPEARANCE O GAL 9:3°C GOS 81×10 Cloudy GROWT Color 3.4 8.2°C GOG 78×10 1'' '' 6.8 7.6°C G.25 78×10 1'' '' 6.8 7.6°C G.28 78×10 1'' '' 0.2 7.9°C G.28 78×10 1'' 1'' GHCL Saple 7.8°C G.61 78×10 1'' 1' SAMPLING INFORMATION DATE 521942 START TIME LOIS END TIME (OLD METHOD WARCA, HOPE Tobe, Valotik Saple Time. INITIAL DEPTH TO WATER DEPTH TO WATER AFTER SAMPLING	ETHOD Watera	HOIE Tubis	1	PUMP DEP	тн	14.5	
O GAC $9:3^{\circ}C$ GOS $8 X O$ $Cloudy/GROUTColor3.48:2^{\circ}CGOS8 X O1^{\circ}1^{\circ}6.87:6^{\circ}C6:2578 \times 101^{\circ}1^{\circ}0.27:9^{\circ}C6:2878 \times 101^{\circ}1^{\circ}0.27:9^{\circ}C6:2878 \times 101^{\circ}1^{\circ}0.27:9^{\circ}C6:2878 \times 101^{\circ}1^{\circ}0.27:9^{\circ}C6:6178 \times 101^{\circ}1^{\circ}0.2$		TENDEDATURE	-		VITY		
$\frac{3.4}{6.8} \qquad \frac{9.2^{\circ}c}{7.6^{\circ}c} \qquad \frac{6.09}{78 \times 10} \qquad \frac{11}{11} \qquad \frac{11}{1$		913°C	6.05	8/110	<u>• • • •</u>	Cloudy	GRONT ColoR
6.8 7.6°C 6.25 78×10 11 11 10.2 7.9°C 6.28 78×10 11 11 QSter Suple 7.8°C 6.61 78×10 11 11 SAMPLING INFORMATION DATE $\overline{\sigma}_{21}^{42}$ START TIME 105 END TIME 020 METHOD 100 AR 100	3.4	%,2°C	6.09	78×10		11	11
10.2 7.9°C 6.28 78×10 11 11 Ofter Saple 7.8°C 6.61 78×10 11 11 SAMPLING INFORMATION DATE 5/21/42 START TIME 1015 END TIME (020 METHOD WAR CA, HOPE Tube, Valence Start Time. Time.	6.8	7.6°C	6.25	78×10		11	Lt
<u>SAMPLING INFORMATION</u> DATE <u>J21)92</u> WETHOD WARKA, HOPE Tobe, Volatik Serph. Ticher. INITIAL DEPTH TO WATER AFTER SAMPLING	10.2	7.9%	4.28	78×10		11	11
SAMPLING INFORMATION DATE <u>J21)92</u> START TIME <u>1015</u> END TIME <u>020</u> METHOD <u>WAREA, HOPE Tobe, Volatik Sergik. Ticker</u> INITIAL DEPTH TO WATER	after Saule	7.8°C	6.61	18×10		11	L F
SAMPLING INFORMATION DATE <u>J21)92</u> START TIME <u>1015</u> END TIME <u>020</u> METHOD <u>WAREA, HOPE Tobe, Volatik Sergik. Ticker.</u> INITIAL DEPTH TO WATER	a provention			4- <u></u>			
SAMPLING INFORMATION DATE <u>J21)92</u> START TIME <u>1015</u> END TIME <u>020</u> METHOD <u>WAREA, HOPE Tube, Volatik Sample. Tisker</u> INITIAL DEPTH TO WATER							
DATE <u>J2192</u> START TIME <u>1015</u> END TIME <u>020</u> METHOD <u>WAR CA, HOPE Tube, Volatik Seep k. Tisker.</u> INITIAL DEPTH TO WATER	SAMPLING IN	FORMATION					
METHOD WAR CA, HOPE Tube, Volatik Sup k. Tisker.	DATE 5)21)4	٤	ST/	ART TIME	015		END TIME (020
INITIAL DEPTH TO WATERDEPTH TO WATER AFTER SAMPLING	METHOD WAREA	HOPE Tube, 1	rolotik	Sack	Tink	æ	
	INITIAL DEPTH T			DEPTH	דם ע	ATER AF	TER SAMPLING

WELL	NUMBER MW 30	FIELD TEAM (INITIALS) BLJJG
SITE _	Elmendout AFB IRP	JOB NUMBER AVC31026, H3.60
FIELD	CONDITIONS OVER 45T S20F	

FIELD MEASUREMENT/ COLLECTION EQUIP.	MAKE/MODEL	SERIAL/ID NO.	CALIBRATION/ COMMENTS
PH METER			10.1, 4.017.0 @12°C
CONDUCTIVITY METER	Refer TU Pag	e#43	750 w 1000 7500 w 1000 w
WATER LEVEL INDICATOR			
BAILER/PUMP	·····	·	
DECONTAMINATION			
			·
	V		

PURGE INFORMATION / Developement 8/26 DATE \$ 25192/8/26/42 _____ START TIME 1459 0945 END TIME INITIAL DEPTH TO WATER 5.69' WELL DEPTH 10.32' EST. WELLBORE VOL 6.58 19 FINAL DEPTH TO WATER 5.46 TOTAL VOL. PURGED 111 GAUDISCHARGE RATE _ METHOD Water, HOPE Tube, Fost Value, Sump Berth _____7

	VOLU	ME PURGED	TEMPERATURE	рH		. APPEARANCE
A _3	10	GAL	14.1°C	6.69	430×1	BROWNISH
774 120	6	GAL	12.2°C	7.12	500x1	Tuaba/MUDDY SILTY BROWN SILTY
	14	GAL	12.0°C	7.30	425×1	LN 11
i	55	ĜAL	[2.0°C	7,33	LIZOXI	SLIGHT TURbio/Samor
,	'C	GAL	12.4°C	7.43	430 × 1	Cloupy-SLIGHTZY
9	pflee	Saple	/30°C	7.38	425×1	to 71

SAMPLING INFORMATION _ START TIME V330 ____ END TIME 8/26/92 DATE SIZ METHOD Watena, HDPETube, Volatile Sample Tabo INITIAL DEPTH TO WATER . DEPTH TO WATER AFTER SAMPLING.

	(55)	
GROUNDWATER SAMPLING FIELD DATA SHEET		
WELL NUMBER MW31 FIELD TEAM (INITIALS) BT		
SITE JOB NUMBER DUC FIELD CONDITIONS OVERCHST 52°F	>1024,17360	
	:	

<u>FIELD MEASUREMENT</u> COLLECTION EQUIP.	MAKE/MODEL	SERIAL/ID ND.	CALIBRATION/ COMMENTS
OH METER	ORION 230A	HALLO 2017	4,007,0,1017 11,2°C
CONDUCTIVITY METER	45E 33	HTAZLO 2170	780 w 1000 C 1424
THERMOMETER			
WATER LEVEL INDICATOR			<u></u>
BAILER/PUMP			1
	-	•	

DECONTAMINATION	Steam Clean.	LIGHINGE	WASH,
Tap RINSC, D:	ERinse	0-	

PURGE INFORMATION / Developement	~
DATE 82892 START TIME 1130 ENI	TIME 315
INITIAL DEPTH TO WATER 4.40 WELL DEPTH 9.74 EST. WELLPIR	E VOL 4.86
FINAL DEPTH TO WATER 4738 TOTAL VOL. PURGED SCHAR	SE RATE
METHOD Ware Tube, Suge Block, Mar PUMP, DEPTH	

VOLUME	PURGED	TEMPERATURE	рн	CONDUCTIVITY	APPEARANCE
0	GAL	13:3°C	7.04	330×1	SITT/BROWN .
55		9.8°C	7.11	285×1	Turbio Brown
110		9,8°C	7.22	290 X1	semil tudio
150		9.5°C	7.27	290x1	Clean
after Sa	mle	10.3°C	7.21	29021	Cloudy

SAMPLING INFORMATION			
DATE \$ 28 92	START TIME .	1330	END TIME 1315
METHOD Waters HOPE Tube .	Volofile Sa	uple Th	bc
INITIAL DEPTH TO WATER	DEPT	TO WATER	AFTER SAMPLING 4.38

	GROUNDWATE FIELD DA	ER SAMPLING TA SHEET	Ŭ
WELL NUMBER SPI	-OK FIEL	D TEAM (INITIALS)	BT, JG ANC 31026. H3.60
FIELD MEASUREM			
COLLECTION EQUI	P. MAKE/MODEL	- ND.	COMMENTS
OH METER	ORION SHEDH	015AM 2181	24 17.10°C
CONDUCTIVITY METER	724 32	2110 Hero	HOO W 10,000 CIT
	APC	1707 1000	
ATER LEVEL INDICAT		1/76 Hauo	
AILER/PUMP	- · · · · ·	 	
NITIAL DEPTH TO WAT INAL DEPTH TO WATE INAL DEPTH TO WATE	TER 0.32 WELL DEPTH R TOTAL VOL. F TOTAL VOL. F TOTAL VOL. F	H 20.0' EST. WELL PURGED <u>4344</u> DISC DEPTH <u>14.0</u>	BORE VOL 13.859A
ALUME PURGED TEMP	ERATURE PH CONDU	ICTIVITY	APPEARANCE
D GAL 10	PERATURE PH CONDU	ICTIVITY DXI Cloupy	APPEARANCE Sheen Oper
ZOLUME PURGED TEME ZOLUME P	erature pH CONDU .9°C 6.22 452 .3°C 6.19 410	DETIVITY DXI Cloupy VXI ''	APPEARANCE Sheen Opor
VOLUME PURGED TEMF D G.AL 10 3.85 9 1.70 8	ERATURE pH CONDU- 19°C 6,22 452 3°C 6,19 410 ,7°C 6,29 402	$\frac{ CTI \vee ITY}{ X } = \frac{ OuPY }{ Y }$	APPEARANCE
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	ERATURE pH CONDU- 19°C 6.22 452 3°C 6.19 410 17°C 6.29 402 0°C 6.39 402	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	APPEARANCE Sheen Opore
VOLUME PURGED TEMF D GAL 10 3.85 9 27.70 8 11.55 9 Star 9 Star 9 11.55 9 Star 9	ERATURE pH CONDU .9°C 6.22 452 3°C 6.19 410 .7°C 6.29 402 .7°C 6.39 402 .8°C 6.47 403	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	APPEARANCE Sheen Opore 11 11 11 17 11 17 11 17

		GROUND	WATER S	SAMPL	_ING T		
G	P1-~	FIEL		SHEE	, 1	V - *	
WELL NUMBER			FIELD TI	EAM (I	VITIALS)	NBL_	
SITE EAFB C	<u>x-5</u>		<u></u>	תםר –	NUMBER .		
FIELD CONDITIONS	OVERC	AST, -2"	F, Win	<u>, 201</u>	alm		
						<u>.</u>	
FIELD MEASUR	REMENT/	•	/1072	SE		CAL	IBRATI
ULLELIIUN E		MAKE	SCA	2=1	NU. 82	Cl ~~~ ^	UMMENTS
	<u>ک</u>	<u></u>		10-	20	ore (<u>~~</u>
CONDUCTIVITY ME	TER _	· 34 40		101	* 2		
THERMOMETER	<u>(</u>	cham and	- 30 M	1000			
WATER LEVEL INI	DICATOR _	30pe 41:	CTC	Kri I	200		}
BAILER/PUMP		unundros	(12-1	0%:	100	L	
DECONTAMINA	ΓΙΟΝ	SAME A	5 Smu	02			_
PURGE INFORM	MATION					E 117 7 1	
RURGE INFORM DATE 12249 INITIAL DEPTH TO FINAL DEPTH TO METHOD Grundfa	MATION 2 J WATER S WATER 9. S Pum	STA . 361 WELL 33TOTAL P	ART TIME DEPTH 23 VOL. PURG PUMP DEP		EST. WELI 7 DISC 7.56	END TJ LBORE Y HARGE	ME 115
RURGE INFORM DATE 12249 INITIAL DEPTH TO FINAL DEPTH TO METHOD Growdra VOLUME PURGED	MATION 2 VATER VATER S Pun TEMPERAT	STA .361 WELL 33 TOTAL P URE PH	ART TIME DEPTH 23 VOL. PURG PUMP DEP CONDUCTIV		EST. WELI 7 DISC 7.56	END TI LBORE Y HARGE	
PURGE INFORM DATE 12249 INITIAL DEPTH TO FINAL DEPTH TO METHOD Growdfa VOLUME PURGED	MATION 2 VATER VATER S Pun TEMPERAT 5.8	STA 361 WELL 33 TOTAL P URE PH C 652	ART TIME DEPTH 23 VOL. PURG PUMP DEP CONDUCTIV		EST. WELL 7 DISC 7.56	END TI LBORE Y HARGE APPEA	
PURGE INFORM DATE 12219 INITIAL DEPTH TO FINAL DEPTH TO METHOD Growdfa VOLUME PURGED	MATION 2 VATER 9 VATER 9 S PUM TEMPERAT 5.8 (5.0 (STA 361 WELL 33 TOTAL 4 URE PH C 652 645	ART TIME DEPTH 23 VOL. PURG PUMP DEP CONDUCTIV 400 mh		EST. WELL 7 DISC 7.56 Signtly	END TI LBORE Y HARGE APPEA COM	
PURGE INFORM DATE 12219 INITIAL DEPTH TO FINAL DEPTH TO METHOD Growdfa VOLUME PURGED	1ATION 2 2 2 WATER 9 WATER 9 S PUM TEMPERAT 5.8 (5.0 (4.9 (STA 361 WELL 35 TOTAL 4 URE PH 652 645 6.33	ART TIME DEPTH 23 VOL. PURG PUMP DEP CONDUCTIV 400 mb 400 mb		EST. WELL 7 DISC 7.56 Slightly	END TJ LBORE V HARGE	
PURGE INFORM DATE 12219 INITIAL DEPTH TO FINAL DEPTH TO METHOD Growdfa VOLUME PURGED CIGAL ISAL	1ATION 2 VATER 9 VATER 9 S PUM TEMPERAT 5.8 (5.0 (4.9 (32.2 2	STA 361 WELL 35 TOTAL 4 URE PH 652 645 6.86	ART TIME DEPTH 23 VOL. PURG PUMP DEP CONDUCTIV 400 mb 400 mb 400 mb		EST. WELL 7 DISC 7.56 Slightly	END TJ LBORE V HARGE	
PURGE INFORM DATE 12219 INITIAL DEPTH TO FINAL DEPTH TO METHOD Growdfa VOLUME PURGED Clock 15041 15041 15041 2500	1ATION 2 VATER 9 VATER 9 S PUM TEMPERAT 5.8 (5.0 (9.0 (7.0)) (7.0 (7.0)) (7.0 (7.0)) (7.0 (7.0)) (7.0	STA 361 WELL 35 TOTAL 4 URE PH 652 645 6.73	ART TIME DEPTH 23 VOL. PURG PUMP DEP CONDUCTIV 400 mb 400 mb 400 mb 400 mb		EST. WELL 7 DISC 7.56 Slightly Q		
PURGE INFORM DATE 12219 INITIAL DEPTH TO FINAL DEPTH TO METHOD Growdfa VOLUME PURGED VOLUME PURGED	1ATION 2 VATER 9 VATER 9 VATER 9 S PUM TEMPERAT 5.8 5.0 (9.9 (9.9 (0.5) 1.6 (URE PH 6.73 6.73 6.73 6.73	ART TIME DEPTH 23 VOL. PURG PUMP DEP CONDUCTIV 400 mho 400 mho 400 mho 400 mho 400 mho 400 mho 400 mho 400 mho 400 mho		EST. WELL 7 DISC 7.56 Slightly Q	END TI LBORE Y HARGE APPEAR COM	ME [155 VOL 6 2 RATE 3 RATE 3 RANCE
PURGE INFORM DATE 12219 INITIAL DEPTH TO FINAL DEPTH TO METHOD Growdfa VOLUME PURGED VOLUME PURGED VOLUME PURGED SAMPLING INF	MATION 2 VATER 9 VATER 9 VATER 9 S PUM TEMPERAT 5.8 5.0 (9.9 (9.6 C 1.6 C TORMATI	STA 361 WELL 35 TOTAL P URE PH 652 655 673 673 673	ART TIME DEPTH 23 VOL. PURG PUMP DEP CONDUCTIV 400 mho 400 mho 400 mho 400 mho 400 mho 400 mho 400 mho 400 mho		EST. WELL 7 DISC 7.56 Slightly C Slightly	END TI LBORE Y HARGE APPEAR COM	ME [155 VOL 6 2 RATE 3 RANCE
PURGE INFORM DATE 12219 INITIAL DEPTH TO FINAL DEPTH TO METHOD Growdfa VOLUME PURGED Clock SAMPLING INF DATE 20-D	MATION 2 VATER 9 VATER 9 VATER 9 S PUM TEMPERAT 5.8 5.0 (9.9 (9.9 (9.9 (9.9 (9.9 (9.5 (9.5 (9.5 (9.5 (9.5 (9.5 (9.5 (9.5)) (9.5 (9.5)) (9.5 (9.5)) (9.5 (9.5)) (9.5		ART TIME DEPTH 23 VOL. PURG PUMP DEP CONDUCTIV 400 mbo 400 mbo 400 mbo 400 mbo 400 mbo 400 mbo 400 mbo 400 mbo		EST. WELL 7 DISC 7.56 Slightly Q Slightly Q	END TI LBORE V HARGE APPEA CON LARGE	
PURGE INFORM DATE 12219 INITIAL DEPTH TO FINAL DEPTH TO METHOD Growdfa VOLUME PURGED VOLUME PURGED VOLUME PURGED VOLUME PURGED VOLUME PURGED VOLUME PURGED VOLUME PURGED SAMPLING INF DATE 20-0 METHOD GRUND	MATION 2 VATER 9 VATER 9 VATER 9 S PUM TEMPERAT 5.8 5.0 (9.9 (9.9 (0.5) 9.6 C 1.6 C IRMATI SC-92 (0.5) 1.6 C IRMATI		ART TIME DEPTH 23 VOL. PURG PUMP DEP CONDUCTIV 400 mho 400 mho		EST. WELL 7 DISC 7.56 Slightly Q Slightly Q	END TI LBORE Y HARGE APPEA COM	
PURGE INFORM DATE 12219 INITIAL DEPTH TO FINAL DEPTH TO METHOD Growdfa VOLUME PURGED VOLUME PURGED VOLUME PURGED VOLUME PURGED VOLUME PURGED VOLUME PURGED VOLUME PURGED SAMPLING INF DATE 20-0 METHOD GRUNN INITIAL DEPTH TO	1ATION 2 VATER 9 VATER 9 VATER 9 S PUM TEMPERAT 5.8 5.0 (9.9 (9.9 (9.9 (9.9 (9.9 (9.9 (9.9 (9.9 (9.9 (9.9 (9.9 (9.6 (9.9) (9.6 (9.6)	STA 361 WELL 35 TOTAL 2 URE PH 652 655 655 673 673 673 673 673 673 673 673	ART TIME DEPTH 23 VOL. PURG PUMP DEP CONDUCTIV 400 mho 400 mho		EST. WELL 7 DISC 7.56 Slightly C Slightly Slightly C Slightly	END TI LBORE V HARGE APPEA CON LARGE	

į.

	GROUNDWATER	SAMPLING SHEET	
WELL NUMBER SPI-D?		CAM (THITTAL C)	RL/KBL
SITE EAFB OL	JS	JOR NUMBER	
FIELD CONDITIONS SNOW	11,16, 0 + 10 F, 5 Knt	wood N-S	
FIELD MEASUREMENT/		SERIAL/ID	CALIBRATION
	ARE/HUDEL	7 88 2	Se cal loss
	451 33	/810	(
	ORION 250A	288L	7
	SLOPE HISY3	19566	
BAILER/PUMP	Stor GRUDRAMPI	056208	4
DECONTAMINATION	AME A	SAND	
PURGE INFORMATION			
NATE 12/11/92		16110	1620
		/	END TIME
INITIAL DEPTH TO WATER 3	505 WELL DEPTH	15 EST. WEL	END TIME 1000
INITIAL DEPTH TO WATER 3	505 WELL DEPTH	175 EST. WEL	END TIME 1000 LBORE VOL 55
INITIAL DEPTH TO WATER 3 FINAL DEPTH TO WATER 3 METHOD GRUNDFOS MP1	START TIME	<u>175 е</u> ят. wel ed <u>259</u> disc тн <u>36, 5</u>	END TIME 1000 LBORE VOL 5.5 HARGE RATE 290
INITIAL DEPTH TO WATER 3 FINAL DEPTH TO WATER 3 METHOD GRUNDFOS MP1 VOLUME PURGED TEMPERATU	505 WELL DEPTH	175 EST. WEL ED 259 DISC TH 36,5	END TIME 1000 LBORE VOL 5.5 HARGE RATE 290 Jok M APPEARANCE
INITIAL DEPTH TO WATER 3 FINAL DEPTH TO WATER 3 METHOD GRUNDFOG MP1 VOLUME PURGED TEMPERATU COULT 3.7	START TIME	<u>75 Е</u> ST. VEL ED <u>259</u> DISC TH <u>36, 5</u> VITY	END TIME 1000 LBORE VOL 5.5 HARGE RATE 290 Jok M APPEARANCE
INITIAL DEPTH TO WATER 3 FINAL DEPTH TO WATER 3 METHOD GRUNDFOG MP1 VOLUME PURGED TEMPERATO <1001 3.7 1441 5.60	START TIME 505 Well DEPTH 4 5.5 TOTAL VOL. PURG PUMP DEP URE PH CONDUCTIV C 7.11 210 -1 C 7.07 220 -1	175 EST. WEL ED 259 DISC TH 36, 5 VITY	END TIME 1000 LBORE VOL 5.5 HARGE RATE 290 Jok M APPEARANCE
INITIAL DEPTH TO WATER 3 FINAL DEPTH TO WATER 3 METHOD GRUNDFOS MP3 VOLUME PURGED TEMPERATI S.7 1441 5.6 2000 5.5	$\frac{505}{101} \text{ Vell DEPTH} 49$ $\frac{505}{101} \text{ TOTAL VOL. PURG}$ $\frac{505}{101} \text{ TOTAL VOL. PURG}$ $\frac{505}{101} \text{ PUMP DEP}$ $\frac{1000}{100} \text{ PUMP DEP}$	175 EST. WEL ED 259 DISC TH 36.5 VITY UITY UITY (5 VERY SING 5 CC	END TIME 1000 LBORE VOL 5.5 HARGE RATE 290 Jok M APPEARANCE
INITIAL DEPTH TO WATER 3 FINAL DEPTH TO WATER 3 METHOD GRUNDFOS MP3 VOLUME PURGED TEMPERATI	START TIME 505 Well DEPTH 47 5.5 TOTAL VOL. PURG PUMP DEP URE PH CONDUCTIV C 7.11 210 -11 C 7.07 220 1 C 7.11 320 1	175 EST. WEL ED 259 DISC TH 36,5 VITY U) C S VEY SIG S VEY SIG S C/CON	END TIME 1000 LBORE VOL 5.5 HARGE RATE 290 100 APPEARANCE OUCH HILCIONY 10 CLOOP
INITIAL DEPTH TO WATER 3 FINAL DEPTH TO WATER 3 METHOD GRUNDFOS MP3 VOLUME PURGED TEMPERATO VOLUME PURGED TEMPERATO 19441 5.6 20901 5.5 22041 5.7 2564 5.7		ITY IS LOCATION CLEAR IN 259 DISC TH 36, 5 VITY IS CLEAR IS CLEAR IS CLEAR	END TIME 100 LBORE VOL 5.5 HARGE RATE 290 APPEARANCE OUDI Hy clondy to cloar
INITIAL DEPTH TO WATER 3° FINAL DEPTH TO WATER 3° METHOD <u>GRUNDFOS</u> MPT <u>VOLUME PURGED</u> TEMPERATU <u>VOLUME PURGED</u> TEMPERATU <u>VOLUME PURGED</u> TEMPERATU <u>VOLUME PURGED</u> TEMPERATU <u>VOLUME PURGED</u> TEMPERATU <u>VOLUME PURGED</u> TEMPERATU <u>VOLUME S.7'</u> <u>2564</u> 5.7' <u>4</u> TOP OF UK	START TIME 505 Well DEPTH 47 5.5 TOTAL VOL. PURG PUMP DEP URE PH CONDUCTIV C 7.11 210 -1 C 7.11 210 -1 C 7.11 320 -1 C 7.11 -1	ITY IS LOTY Slight ITY IS LOTY Slight IS Clear IS Clear	END TIME 100 LBORE VOL 5.5 HARGE RATE 290 Job M APPEARANCE OUCH Hy clondy to cloar
INITIAL DEPTH TO WATER 3 FINAL DEPTH TO WATER 3 METHOD GRUNDFOG MPA VOLUME PURGED TEMPERATU VOLUME PURGED TEMPERATU 1000 1000 2000 2000 2000 5.5 2564 5.7 ¥ TOP OF OF SAMPLING INFORMATIO	START TIME 505 Well DEPTH 47 5.5 TOTAL VOL. PURG PUMP DEP URE PH CONDUCTIV C 7.11 210 10 C 7.11 220 10 C 7.11 320 10 C 7.11 10 10 C 7.11 10 10 10 10 10 10 10	175 EST. WEL ED 259 DISC TH 36,5 VITY U) Cl es Nery slight 15 ClCa whose Clear	END TIME 1000 LBORE VOL 5.5 HARGE RATE 290 Job M APPEARANCE OUCH Hy clony to cloar
INITIAL DEPTH TO WATER 3 FINAL DEPTH TO WATER 3 METHOD GRUNDFOS MP3 VOLUME PURGED TEMPERATION VOLUME PURGED TEMPERATION VOLU	START TIME <u>505</u> Vell Depth <u>4</u> <u>505</u> TOTAL VOL. PURG <u>900</u> PUMP DEP <u>100</u> PH CONDUCTIV <u>6 7.11 210 -11</u> <u>6 7.11 210 -11</u> <u>6 7.11 220 n1</u> <u>6 7.11 320 n1</u> <u>7 7.11 320 n1</u> <u>6 7.11 320 n1</u> <u>7 7.11 320 n1</u> <u>6 7.11 320 n1</u> <u>6 7.11 320 n1</u> <u>7 7.11 7.11 7.11 7.11 7.11 7.11 7.11 7.</u>	1600	END TIME 100 LBORE VOL 5.5 HARGE RATE 290 APPEARANCE OUD 1 HI Clondy to cloar C END TIME 1609
INITIAL DEPTH TO WATER 3 FINAL DEPTH TO WATER 3 METHOD GRUNDFOG MPA VOLUME PURGED TEMPERATO VOLUME PURGED TEMPERATO	START TIME <u>505</u> Vell Depth <u>4</u> <u>505</u> TOTAL VOL. PURG PUMP DEP URE PH CONDUCTIV <u>6 7.11 210 -11</u> <u>7 7.1 210 -11</u> <u>6 7.11 320 -11</u> <u>6 7.1 510 -11</u> <u>6 7.1 510 -11</u> <u>6 7.1 510 -11</u> <u>6 7.1 510 -11</u> <u>7 7.1 510 -11 <u>7 7.1 510 -11 <u>7 7.1 510 -11 <u>7 7.1 510 -1</u></u></u></u>	175 EST. WEL ED 259 DISC TH 36, 5 VITY U) Cl Mary sly 15 ClCa ahor Clear ahor Clear ahor Clear	END TIME 100 LBORE VOL 5.5 HARGE RATE 290 APPEARANCE OUD J Hy clondy to cloar C END TIME 1605

GROUNDWATER SAMPLING FIELD DATA SHEET WELL NUMBER SPI-02 BTJG EAFB OUS JUB NUMBER ANC 31026. H3.60 SITE FIELD CONDITIONS OVERCAST 60°F No. . . FIELD MEASUREMENT/ SERIAL/ID CALIBRATION/ COLLECTION EQUIP. MAKE/MODEL ND. COMMENTS DH METER Refe CONDUCTIVITY METER 7 a te # THERMOMETER WATER LEVEL INDICATOR BAILER/PUMP DECONTAMINATION PURGE INFORMATION _____ START TIME 1500 DATE \$10/92 ____ END TIME /600 INITIAL DEPTH TO WATER 3462 WELL DEPTH 50 - EST. WELLBORE VOL 17.36 PAL FINAL DEPTH TO WATER _____ TOTAL VOL. PURGED 50 M DISCHARGE RATE __ METHOD WATER & HOPE TUbing PUMP DEPTH __ VOLUME PURGED TEMPERATURE pH CONDUCTIVITY APPEARANCE O GAC 10.4°C 459x1 6.74 uebis 17.36 10.1°C 422x1 Tucko 6.79 34.72 9.9°C 432×1 6.83 uebio 9.3°C 432x1 52.08 6.95 unbis 10,7% 4.42×1 atter Sample (n.86 webio SAMPLING INFORMATION _ START TIME _ 600 ____ END TIME _ 630 DATE \$10 92 METHED Waters, HOPE Tubing (volatele S-ple Tubing INITIAL DEPTH TO WATER _ DEPTH TO WATER AFTER SAMPLING

		GROUNI	WATER	SAMPLING	
· · · · · ·		FIEL			AT. TE
ELL NUMBER	<u>PZ/6-0</u>) <u>[]]] JU</u>
ITE	OUS		69.0	JOB NUMBE	R (195, 31, 20, 175, 00)
IELD CONDITIONS	Over	cras,	300		
					·
IELD MEASU	REMENT/			SERIAL/II	CALIBRATION
ULLECIIUN I		MAKE	730)A	HAZIO 1875	10.10, 4.0, 7.0
HMETER	 	- CT 23	<u>67017</u> 2	11070 7170	500 w/1000mbs
		127 2			
HERMOMETER		ADE		4470 1793	
ATER LEVEL IN	DICATOR A-	UKS	، شرور و مي -	177210 1115	
AILER/PUMP	- -	• • •	· · ·	<u> </u>	<u></u>
ECONTAMINA	TION	Stram	-lean	Lighting	WASH. TELS KI
				the second s	
DI WATER	Rinse			- /	·····
DI WATK	R S				<u>к то стране</u>
DI WATTE PURGE INFOR ATE SILLIG NITIAL DEPTH TO TINAL DEPTH TO	MATION 2 U WATER 4 WATER 4	ST 0.21 VEL C. TOTAL F. Tubis	ART TIME	<u>/015</u> <u>45 '665</u> EST. W GED <u>21.0'</u> DI BTH <u>43</u>	END TIME 1115 ELLBORE VOL 6.44 SCHARGE RATE
DI WATTE PURGE INFOR ATE SILLIG NITIAL DEPTH TO INAL DEPTH TO HETHOD WATTER	MATION Z U WATER 4 WATER 4	ST 0.21' VEL TOTAL EDIAL	ART TIME . L DEPTH VOL. PUR PUMP DE	<u>/015</u> <u>45 '655</u> EST. W GED <u>21.0'</u> DI PTH <u>43</u>	END TIME 1115 ELLBORE VOL 6.444 SCHARGE RATE
URGE INFOR ATE SILLIG NITIAL DEPTH TO INAL DEPTH TO ETHOD WATTER OLUME PURGED	RINS MATION Z U WATER Z VATER Z A HDP TEMPERATI	ST <u>0.21'</u> VEL <u>TOTAL</u> <u>E Tubin</u> <u>URE pH</u>	ART TIME	/015 45 '655 EST. W GED 21.0' DI PTH 43 IVITY	END TIME 1115 ELLBORE VOL 6.44 SCHARGE RATE
URGE INFOR ATE SILLIG NITIAL DEPTH TO INAL DEPTH TO ETHOD WATTER OLUME PURGED	RINGE MATION Z U WATER Z WATER Z MATER Z MATER Z MATER Z MATER Z MATER Z MATER Z MATER Z MATER Z MATER Z MATION	ST ST ST ST VEL TOTAL E Tubin URE pH ST ST ST ST ST ST ST ST ST ST	ART TIME	/015 45 '655 EST. W GED 21.0' DI PTH 43 IVITY / MUDDY / MUDDY	END TIME 1115 ELLBORE VOL 6.449 SCHARGE RATE APPEARANCE (TRESM)
URGE INFOR ATE SILLIG NITIAL DEPTH TO INAL D	KINSE MATION Z U WATER Z WATER Z MATER Z MATION Z MATION Z MATION Z MATION Z MATION Z MATION Z MATION Z MATION Z MATION Z MATION Z MATION Z MATER Z MATER Z MA	ST ST ST ST VEL TOTAL E Tubin URE PH ST ST CISE	ART TIME $_{1}$ L DEPTH $_{2}$ VOL. PUR PUMP DE CONDUCT CONDUCT 4/12 X 4/22 X 295 X	/015 45 '655 EST. W GED 21.0' DI PTH 43 IVITY 1 Muror 1 Clour 1 Clour	END TIME 1115 ELLBORE VOL 6.449 SCHARGE RATE APPEARANCE (TRESM) Y/BROWNSH
DI WATER PURGE INFOR ATE SILLIG NITIAL DEPTH TO TINAL DEPTH TO TINAL DEPTH TO DETHOD WATER OLUME PURGED OGDL G.44 12,88 19,22	RINGE MATION Z U WATER 2 WATER 2 MATER 2 MATION Z MATION Z MATION Z MATION Z MATION Z MATION Z MATION Z MATION Z MATION Z MATER 2 MATION Z MATER 2 MATER 2 MAT	URE PH 6.20 URE PH 6.20 6.68 6.20 6.20 6.20 6.20 6.20 6.20 6.20	ART TIME $_{1}$ L DEPTH $_{2}$ VOL. PUR PUMP DE CONDUCT MIZX 4/12X 4/22X 398X L/05X	/015 45 '655 EST. W GED 21.0' DI PTH43 IVITY I MUPON I Cloud I Slyhi I	END TIME 1115 ELLBORE VOL 6.449 SCHARGE RATE APPEARANCE (TREGM) Y/BROWNSH Y (BROWNSH
DI WATER PURGE INFOR DATE SILLIG NITIAL DEPTH TO METHOD WATER VOLUME PURGED O GAL G.44 12,88 19:32	Reves MATION WATER 2 WATER 2 TEMPERATION TEMPERATION 3.3° 9.1° 0.20	URE PH 6.20 URE PH 6.20 6.	ART TIME $_{-}$ L DEPTH $_{-}$ VOL. PUR PUMP DE CONDUCT 4/12x 4/22x 398x 405x	/015 45 '665 EST. W GED 21.0' DI PTH43 IVITY I MUPPY I Cloud I Cloud I SlyhT I	END TIME 1115 ELLBORE VOL 6.444 SCHARGE RATE APPEARANCE (TREGIO) Y/BROWNSH Y (BROWNSH Y CLOUDY
DI WATER PURGE INFOR DATE SILLIG NITIAL DEPTH TO TINAL DEPTH TO AETHOD WATER VOLUME PURGED O GDL G.44 12,88 19.32 9565 Suple	R \sim se MATION Z U WATER \sim WATER \sim MATER \sim WATER \sim MATION TEMPERATION TEMPERATION SA C U(.1°C 8.3°C 9.1°C 9.3°C	ST 0.21 WEL TOTAL E Tubin URE PH 6.20 - 6.68 - 6.68 - 6.70 - 6.70	ART TIME L DEPTH \sim VIL. PUR \rightarrow PUMP DE CUNDUCT \sim 4/12 X \sim 398X \sim 4/05X \sim 4/05X	/015 45 '655 EST. W GED 21.0' DI PTH 43 IVITY 1 MUPPY 1 Cloub 1 Slyht 1	END TIME IIIS ELLBORE VOL G.449 SCHARGE RATE APPEARANCE (TRESM) Y/BROWNSH Y/BROWNSH Y Cloupy
DI WATER PURGE INFOR DATE SILLIG NITIAL DEPTH TO METHOD WATCH VOLUME PURGED OGDL G.44 12,88 19:32 95005000000000000000000000000000000000	Revest MATION WATER 2 WATER 2 MATER 2 M	URE PH 6.20 URE PH 6.20 6.70 6.	ART TIME $_{1}$ L DEPTH $_{2}$ VOL. PUR PUMP DE CONDUCT 4/12x 4/22x 398x 4/05x 0 4/0x	/015 45 '665 EST. W GED 21.0' DI PTH43 IVITY I MUPPY I Cloure I Slyhtt I SL:ql	END TIME 1115 ELLBORE VOL 6.449 SCHARGE RATE APPEARANCE (TREGM) Y/BROWNSH Y/BROWNSH Y Cloupy
DI WATER PURGE INFOR NATE SILLIG NITIAL DEPTH TO NITIAL DEPTH TO NAL DEPTH TO NA	R		ART TIME $_{1}$ L DEPTH $_{2}$ VOL. PUR PUMP DE CONDUCT 4/12x 4/22x 398x 4/05x 0 4/0x	/015 45 '665 EST. W GED 21.0' DI PTH43 IVITY I MUPPY I Cloure I Slyhtt I SL:ql	END TIME IIIS ELLBORE VOL G.449 SCHARGE RATE APPEARANCE (TREGM) Y/BROWNSH Y/BROWNSH Y Cloupy II HY Cloupy
DI WATER PURGE INFOR HATE SILLIG NITIAL DEPTH TO HETHOD WATER VOLUME PURGED O GAL (9.32 9500 Sample SAMPLING IN OLING IN	RING MATION WATER 2 WATER 2 MATER 2 MA		ART TIME $_{1}$ L DEPTH $_{2}$ VOL. PUR PUMP DE CONDUCT 4/12x 4/22x 398x 4/05x 24/0x	/015 	- END TIME 1115 ELLBORE VOL 6.444 SCHARGE RATE APPEARANCE (TREGIN) Y/BROWNSH Y/BROWNSH Y Cloupy II HY CLOUPY II HY CLOUPY
DI WATER PURGE INFOR DATE SILLIG NITIAL DEPTH TO METHOD WATER VOLUME PURGED OGDL OG	KINSE MATION Z U WATER 2 MATER		ART TIME _ L DEPTH _ VOL. PUR PUMP DE CONDUCT 2 4/12 X 398X 4/22 X 398X 4/05X 0 4/0X	/015 	END TIME 1115 ELLBORE VOL 6.444 SCHARGE RATE APPEARANCE (TREGIO) Y/BROWNSH Y/BROWNSH Y Cloupy II HY Cloupy II END TIME 1150 The be

ł

÷.

						(7)
	GI		ATER S	SAMPL	_ING	
÷.	- 1	FIELD	DATA	SHEE	Т	•
WELL NUMBER	P2/6-02	•	_ FIE	EAN G	NITIALS)	BT, JG
SITE EAFE	ous	<u> </u>	·····		NUMBER	ANC 31026. H3.60
FIELD CONDITION	S OVERCA	st, 60	o°F	<u></u>		· · · · · · · · · · · · · · · · · · ·
· ····			•		N	
FIELD MEASU	REMENT/ EQUIP.	MAKE	MODEL	SE	RIAL/ID NO.	CALIBRATION/ COMMENTS
PH METER	•					
		eter	7			<u> </u>
THERMOMETER			<u> </u>	ag.		
WATER LEVEL IN	DICATOR			7	'5	
BAILER/PUMP				<u> </u>	-	
DECONTAMINA	TION	₩t=1/ .e				
		- -	V			
FURGE INFUR		· ·	· · ·	lun	()	
DATE SIII 92		STA	RT TIME	5'		END TIME
INITIAL DEPTH I	U WATER	TOTAL			LSI. WEL	HADGE PATE
METHOD IN CHA	+ HOPE Tu	bine	OUMD REP	с <i>р</i> отц	D13C	
METHOD DOCTOR					·-	
	TEMPERATURE		4 IOVI		Tich	APPEARANCE
97 1	Q 7°C	1.99	39721		11	
19.4	9.0%	1.95	398X1		· 11	
291	9.7%	7.03	400X 1		[]	
che S de	11.4°C	7.00	425X1		11	
UTTAL AMPIC					······	
SAMPLING IN	FORMATION		•			
DATE 8/11/92		STA	RT TIME _	145	U	END TIME 1500
METHOD WATE	A, HPPE Tu	ing, Ve	lote S	ongling	Tube	
INITIAL DEPTH			DEPTH		ATER AFT	

GROUNDWATER FIELD DATA VELL NUMBER $SP2/6-03$ FIELD T SITE <u>PAPB OUS</u> FIELD CONDITIONS <u>Submy 62°F</u> FIELD MEASUREMENT/ COLLECTION EQUIP. MAKE/MODEL PH METER CONDUCTIVITY METER ' <u>REFERENT</u> HERMOMETER WATER LEVEL INDICATOR BAILER/PUMP DECONTAMINATION DATE <u>SI392</u> START TIME - INITIAL DEPTH TO WATER <u>SF.23'</u> VELL DEPTH S FINAL DEPTH SF. <u>F.35'</u> C <u>G.58</u> <u>SF.23'</u> C <u>G.58</u> <u>SF.23'</u> <u>F.35'</u> C <u>G.58</u> <u>SF.23'</u> <u>F.35'</u> C <u>G.58</u> <u>SF.23'</u> C <u>G.58'</u> C <u>G.58</u>	SAMPLING SHEET FEAM (INITIALS) JOB NUMBER SERIAL/ID NO. SERIAL/ID NO. 1530 20 EST. VEL SED DISC PTH 0 GR415h 0 11 0 11 0 11 0 11 0 11 0 11 0 11	21) <u>BT, J6</u> <u>Ame 31026, H3, 60</u> <u>CALIBRATION</u> <u>COMMENTS</u> <u>COMMENTS</u> <u>BURE VOL 13, 79</u> <u>HARGE RATE</u> <u>APPEARANCE</u> <u>4 M.d dy</u> <u>M. 094</u> <u>4</u> <u>Beam Tuch in</u> <u>11</u> <u>11</u> <u>11</u> <u>11</u> <u>11</u> <u>11</u> <u>11</u> <u>11</u> <u>11</u> <u>11</u> <u>11</u> <u>11</u> <u>11</u> <u>11</u> <u>11</u> <u>11</u> <u>11</u> <u>11</u> <u>11</u> <u>11</u> <u>11</u> <u>11</u> <u>11</u> <u>11</u> <u>11</u> <u>11</u> <u>11</u> <u>11</u> <u>11</u> <u>11</u> <u>11</u> <u>11</u> <u>11</u> <u>11</u> <u>11</u> <u>11</u> <u>11</u> <u>11</u> <u>11</u> <u>11</u> <u>11</u> <u>11</u> <u>11</u> <u>11</u> <u>11</u> <u>11</u> <u>11</u> <u>11</u> <u>11</u> <u>11</u> <u>11</u> <u>11</u> <u>11</u> <u>11</u> <u>11</u> <u>11</u> <u>11</u> <u>11</u> <u>11</u> <u>11</u> <u>11</u> <u>11</u> <u>11</u> <u>11</u> <u>11</u> <u>11</u> <u>11</u> <u>11</u> <u>11</u> <u>11</u> <u>11</u> <u>11</u> <u>11</u> <u>11</u> <u>11</u> <u>11</u> <u>11</u> <u>11</u> <u>11</u> <u>11</u> <u>11</u> <u>11</u> <u>11</u> <u>11</u> <u>11</u> <u>11</u> <u>11</u> <u>11</u> <u>11</u> <u>11</u> <u>11</u> <u>11</u> <u>11</u> <u>11</u> <u>11</u> <u>11</u> <u>11</u> <u>11</u> <u>11</u> <u>11</u> <u>11</u> <u>11</u> <u>11</u> <u>11</u> <u>11</u> <u>11</u> <u>11</u> <u>11</u> <u>11</u> <u>11</u> <u>11</u> <u>11</u> <u>11</u> <u>11</u> <u>11</u> <u>11</u> <u>11</u> <u>11</u> <u>11</u> <u>11</u> <u>11</u> <u>11</u> <u>11</u> <u>11</u> <u>11</u> <u>11</u> <u>11</u> <u>11</u> <u>11</u> <u>11</u> <u>11</u> <u>11</u> <u>11</u> <u>11</u> <u>11</u> <u>11</u> <u>11</u> <u>11</u> <u>11</u> <u>11</u> <u>11</u> <u>11</u> <u>11</u> <u>11</u> <u>11</u> <u>11</u> <u>11</u> <u>11</u> <u>11</u> <u>11</u> <u>11</u> <u>11</u> <u>11</u> <u>11</u> <u>11</u> <u>11</u> <u>11</u> <u>11</u> <u>11</u> <u>11</u> <u>11</u> <u>11</u> <u>11</u> <u>11</u> <u>11</u> <u>11</u> <u>11</u> <u>11</u> <u>11</u> <u>11</u> <u>11</u> <u>11</u> <u>11</u> <u>11</u> <u>11</u> <u>11</u> <u>11</u> <u>11</u> <u>11</u> <u>11</u> <u>11</u> <u>11</u> <u>11</u> <u>11</u> <u>11</u> <u>11</u> <u>11</u> <u>11</u> <u>11</u> <u>11</u> <u>11</u> <u>11</u> <u>11</u> <u>11</u> <u>11</u> <u>11</u> <u>11</u> <u>11</u> <u>11</u> <u>11</u> <u>11</u> <u>11</u> <u>11</u> <u>11</u> <u>11</u> <u>11</u> <u>11</u> <u>11</u> <u>11</u> <u>11</u> <u>11</u> <u>11</u> <u>11</u> <u>11</u> <u>11</u> <u>11</u> <u>11</u> <u>11</u> <u>11</u> <u>11</u> <u>11</u> <u>11</u> <u>11</u> <u>11</u> <u>11</u> <u>11</u> <u>11</u> <u>11</u> <u>11</u> <u>11</u> <u>11</u> <u>11</u> <u>11</u> <u>11</u> <u>11</u> <u>11</u> <u>11</u> <u>11</u> <u>11</u> <u>11</u> <u>11</u> <u>11</u> <u>11</u> <u>11</u> <u>11</u> <u>11</u> <u>11</u> <u>11</u> <u>11</u> <u>11</u> <u>11</u> <u>11</u> <u>11</u> <u>11</u> <u>11</u> <u>11</u> <u>11</u> <u>11</u> <u>11</u> <u>11</u> <u>11</u> <u>11</u> <u>11</u> <u>11</u> <u>11</u> <u>11</u> <u>11</u> <u>11</u> <u>11</u> <u>11</u> <u>11</u> <u>11</u> <u>11</u> <u>11</u> <u>11</u> <u>11</u> <u>11</u> <u>11</u> <u>11</u> <u>11</u> <u>11</u> <u>11</u> <u>11</u> <u>11</u> <u>11</u> <u>11</u> <u>11</u> <u>11</u> <u>11</u> <u>11</u> <u>11</u> <u>11</u> <u>11</u> <u>11</u> <u>11</u> <u>11</u> <u>11</u> <u>11</u> <u>11</u> <u>11</u> <u>11</u> <u>11</u> <u>11</u> <u>11</u> <u>11</u> <u>11</u> <u>11</u> <u>11</u> <u>11</u> <u>11</u> <u>11</u> <u>11</u> <u>11</u> <u>11</u>
41.37 GAL 8.5°C 6187 70×1	10 Gryish	Beam Tueting
55.0 GAL 9,3°C 7.18 70×1	0 11	
60.0 GAC 8.5°C 7.18 80×1 affer suple 8.8°C 7.09 110×11 SAMPLING INFORMATION	0 ((0 ⁽ (
DATE <u>7(3)92</u> METHOD <u>Watca</u> , <u>HDPE Tubiy</u> , <u>Volotic Say</u> INITIAL DEPTH TO WATER DEPTH	1630 PC TISCI H TO WATER AFT	END TIME 1675

					(19)
	GR		VATER SA	MPLING	
	P216-04		FIELD TEAN	- (INITIALS)	BT. J6
SITE EAFR	OUS				1-C 310 26 H3.60
	Sunn (60°17			
			-		
<u>FIELD MEASUR</u> COLLECTION E	EMENT/	MAKE/	MODEL	SERIAL/ID ND.	CALIBRATION/ COMMENTS
pH METER -	·		•	-	
CONDUCTIVITY MET	TER - /	Ro	Sen _		· · ·
THERMOMETER	1		~~ <i>B</i>	Page	
WATER LEVEL IND				<u> </u>	
BAILER/PUMP				•/	
DECONTAMINAT					
<u></u>				·····	
			<u> </u>		i
PURGE INFORM	ATION	STAI		330	END TIME <u>1410</u>
INITIAL DEPTH TO	WATER 37,96	WELL	DEPTH 50	, EST. WELL	BORE VOL
FINAL DEPTH TO		TOTAL '		429AL DISCH	
METHOD Watera	HOPE Tubi	<u>N9</u>	PUMP DEPTH	25 - 4	4
	TEMPERATURE	J		'Y	APPEARANCE
NO GAL	10.2°C	6.63	380x)	Opanusti	Berne
M 18.79 13.27	7.9°C	10.78	365X1	BROWN	h I Tuxbio
W 37.58 26.54	3. Y°C	6.62	350X)	GRENSH	ITuebio
895637-39.81	7.5°C	6.58	355XI		11
after Sample	7.5°C	6.38	355 ×1	Cloudy	
SAMPLING INF	ORMATION				
DATE 5/13/92		STA	RT TIME 19	120	END TIME 1425
METHOD WATCH	HDPE TUD	my la	latik San	ple Tube	
INITIAL DEPTH TO	I WATER		DEPTH TO	WATER AFTE	

i:

,

) • •

:•

• -

1 d_i.

	GRUU		R SAMPLING	
Carl	۲۱ متر م	LLU DAI	ASHELI	atte
VELL NUMBER SP2/C	-05	FIEL	D TEAM (INITIAL:	$\frac{151156}{44\pi^2 (n)}$
ITE EAFYS O	<u>us</u>	<u> </u>		R 11 2 10 40 1720
TELD CONDITIONS 0	rekenst,	Kain	58-1-	
				·
	NT/		SERIAL/I	
OLLECTION EQUIF	<u>р. М</u>	KE/MODEL	ND.	COMMENTS
H METER	ORIOR	· 230 A	HALIO 1875	(1) w (1000 and 030)
CONDUCTIVITY METER	<u>4ST</u>	33	HAZCO 2170	\$100 wi 10,000 unlos
THERMOMETER	• •• • • • •	· ·		
WATER LEVEL INDICATE		es	Hazio 1792	
916 / Water Jutesfac	Ċ	-		
	· ·			
DATE 8/12/92		START TIM	E /020	END TIME ///5
INITIAL DEPTH TO WAT	ER 22.10 W	ELL DEPTH	EST. W	
FINAL DEPTH TO WATE		AL VOL. F	URGED <u>4 590L</u> D	ISCHARGE RATE
METHOD WATTRA, H	DPE TUDI	PUMP	DEPTH	·
VOLUME PURGED TEMPE		H CONDU	CTIVITY	APPEARANCE
0 GAL 8.	4°C 6.	24 422	XI Mud	dy, Sheer, ODOR
15.7 7.	yec b	37 399	x' Mudd	y Sheen Odor
31.4 7.	3°C 4	58 395	×1 Klowed	1. Sheen, Odor
46.1 7.1	48 6	66 390	XI Clou	DY. ODOR, Garais
offer Sample 8,	4% 6	.74 398	×/ /	7 11 15
			╶────────╄┑╍╼╸╸┥╼┈	
SAMPLING INFORM				
				<u>,</u> ,

:

				(13)
· · · ·				-
	FIELI	DATA S	AMPLING HEET	
WELL NUMBER _ 10-16				S BT. JG
SITE OUS EAFB				ER ANC 31026 H3.60
FIELD CONDITIONS Rain,	OVER	(+5,6	0°F	
				•
FIELD MEASUREMENT/ COLLECTION EQUIP.	MAKE/	MODEL	SERIAL/	ID CALIBRATION/ COMMENTS
PH METER		-3-	\$	
	ρ_{-}			
	<u>1 6t</u>	a J		
WATER LEVEL INDICATOR			Page	1 2
BAILER/PUMP	.			13
DECONTAMINATION				
		\	¥	
PURGE INFORMATION				
NATE 8/12/92		TTME 1	515	END TIME 1440
INITIAL DEPTH TO WATER 3/16	S' VELL	DEPTH 50	FST. V	
FINAL DEPTH TO WATER	TOTAL		729AL D	
METHOD WATLAA, HOPE TW	<u>eim</u>	PUMP DEPTI	<u>. 4</u>	6'
	С рн -		TY	
O GAL 10.8°C	677	4LOX1	Cloue	r, Elanters
23.4 8.9°C.	6.94	390×1	Silty	Grevish
46.3 8.0°C	6.99	385 x 1	5.14	Grey
70.2 8.2°C	7.0Z	392X1	11)	<i>i j</i> ¹
after sample 8.99	7.11	39081	Gency	ish Glouby
v				
SHER CING INFURMATION		/	6571	
NETHON WITH RA. HINDE T.	STAI	17012610	Samale	Trahe

i

ţ,

							(\mathcal{D})
		G		ATER S			
			FIELD	DALA S	SHEEI	GT TT	
	WELL NUMBER	W-6A.		FIELD TE	AM (INITIALS)	121,00	
	SITE EAPPIS	ous	1 .0 0		_ JOB NUMBER	[fre 3/020	.HS.60
	FIELD CONDITIONS	5 Junay	60° F				
						<u> </u>	
	FIELD MEASU	REMENT/ EQUIP	MAKE/I		SERIAL/ID NO.	CALIBRA	TION/ NTS
	pH METER	- ORI	00 23	OA _	Hazeo 1875	10.12, 4.0,7.0	5,3°C
	CONDUCTIVITY ME	TER <u>4</u> S	I 33		Hazso 2170	8000 W/10,000 WA	assist
;	THERMOMETER						
•	WATER LEVEL IN		TK s		1792 Haza	4	
	OIL WARE Th	ezface				<u> </u>	
					t ida wa ka lidada	SH TAIN R	ha 68.
	OT RINGE			(<u> </u>		<u>→ y 1~ p 10</u>	<u></u>
		· · · · · · · · · · · · · · · · · · ·		· ·	· _ · · · · · · · · · · · · · · · · · ·		
	PURGE INFOR	MATION		1	1.2 -	- · · · · · · · · · · · · · · · · · · ·	
	DATE 6139	2	STAR			_ END TIME (/>>
	INITIAL DEPTH T	U WATER 31.2	<u>3</u> VELL	DEPTH 41	EST. VEL		<u>.</u>
	FINAL DEPTH TO	WATER	TOTAL \	DL. PURGE		CHARGE RATE	:!
	METHOD WATER	, THE TU	bing	PUMP DEPT	"Н58		
		TEMPERATURE	рН		TTY	APPEARANC	Ε
	O GAL	10.70	6.42	430 ×	1 Brown, N	ruldy, Sheen	, Odor
	9.69	8.2°C	6.58	392X	Brown, 1	noddy, Sheer	, con
	:9.38	6.1°C	5.66	395X)			. "
1.	28.17	7.6°C	6.69	390×1	()	11 11	<i>'i</i>
	after Suple	7.9°C	6.73	390X)		·) [("
	• • • • • • • • • • • • • • • • • • • •						
							_
ľ	SAMPLING IN	FORMATION			1 1 6 6		
Į	DATE 5)13/92		STA	RT TIME _/	1200	_ END TIME_	1215
	METHOD WATCH	a, HIPE Tub	ing, Value	tile Som	phy Tube	······	
ł	INITIAL DEPTH T			DEPTH	TO WATER AF	TER SAMPLIN	G
					۰.		

		GROUND	WATER	SAMF	LING	
		FIEL	D DATA	SHE	ET	
WELL NUMBER	574-01		_ FIELD	TEAM (INITIALS	<u>B1, J6</u>
SITE Elmend	ort AFB	IKP		בר	B NUMBER	Auc 31026-13.60
FIELD CONDITION	s_Dusty(ASH) OL	RECAST	Cal	<u>m, 55'</u>	·F
-	·	······································			· · · · · · · · · · · · · · · · · · ·	<u>.</u>
FIELD MEASU	REMENT/			S	ERIAL/ID	
CULLECTION	EQUIP.	MAKE	MODEL		<u>ND.</u>	COMMENTS
PH METER		CION 2	011	HAZI	0 1875	19 million 4 abos
CONDUCTIVITY ME		21.32		HAZ(0 2 10	Chi Chi
WATER LEVEL IN		0253		HAZU	<u>0 1792</u>	
BAILER/PUMP		·				
DECONTAMINA	TION 5	team C	lean, 1	Linu	nox les	ASH Tay Rive
DI WATIK	Ringe_		•	V	-	
•						
▲ ▲						
DATE Spect	2 U WATER 5.3 WATER	STA <u>39'</u> WELL TOTAL	RT TIME _ DEPTH _	<u> 394</u> 2 4' GED <u>5</u>	.est. vel 991 disc	END TIME <u>/045</u> LBORE VOL 19.22 CHARGE RATE
DATE 5/209 INITIAL DEPTH T FINAL DEPTH TO METHOD Water	Z U WATER S. S WATER	STA 39'_WELL TOTAL	RT TIME _ DEPTH _ VOL. PURC PUMP DEF	<u>094</u> 2 4' ged <u>5</u> ртн _	15 .est. vel 99 <i>M</i> disc 81	END TIME <u>/045</u> LBORE VOL [9.27 HARGE RATE
DATE <u>Spectal</u> INITIAL DEPTH T FINAL DEPTH TO METHOD <u>Waters</u> VOLUME PURGED	Z WATER WATER WATER MOTE TAN	STA 39' WELL TOTAL	RT TIME _ DEPTH _ VOL. PURC PUMP DEF	<u> 794</u> 2 4' дер <u>5</u> ртн іvіту	15 .est. wel 991 disc 81	END TIME <u>/045</u> LBORE VOL <u>19.27</u> HARGE RATE
DATE <u>SZO</u> 9 INITIAL DEPTH T FINAL DEPTH TO METHOD <u>Waters</u> VOLUME PURGED O GM	Z WATER WATER WATER WATER MATE TAN TEMPERATUR 9.2°C	STA 39' WELL TUTAL 01'7 E PH 5.88		<u> 794</u> 24' GED <u>5</u> ртн <u>1</u> IVITY	5 .EST. WEL <u>996 DISC</u> 8'	END TIME <u>/045</u> LBORE VOL <u>19.27</u> HARGE RATE APPEARANCE
DATE <u>Spectar</u> INITIAL DEPTH T FINAL DEPTH TO METHOD <u>Waters</u> <u>VOLUME PURGED</u> <u>O</u> <u>GML</u> <u>19.27</u>	Z WATER WATER ANDIE TAN TEMPERATUR 9.2°C 7.6°C	STA 39' WELL TOTAL 0'		<u> 794</u> 2 4' GED <u>5</u> РТН IVITY 1	S EST. WEL 99K DISC 8' CIPAR BROWNS	END TIME <u>/045</u> LBORE VOL <u>19.27</u> HARGE RATE APPEARANCE
DATE <u>S</u> INITIAL DEPTH T FINAL DEPTH TO METHOD <u>Waters</u> <u>VOLUME PURGED</u> <u>O</u> <u>G</u> <u>J</u> <u>J</u> <u>38</u> ,54	Z WATER WATER WATER WATER WATER TEMPERATUR 9.2°C 7.6°C 7.7°C	STA 39' WELL TOTAL 5.88 6.02 6.34	RT TIME DEPTH VOL. PURC PUMP DEF CONDUCTI 315X 290X1 290X1	<u> 794</u> 24' дев <u>5</u> ртн тупту 1	EST. WEL <u>AGNC</u> DISC 8' <u>CIPAR</u> <u>BROWNS</u> <u>II</u>	END TIME <u>/045</u> LBURE VOL <u>19.27</u> HARGE RATE APPEARANCE
DATE $S/20$ 9 INITIAL DEPTH T FINAL DEPTH TO METHOD Water VOLUME PURGED O GM 19.27 38.59 57.81	Z WATER WATER WATER WATER WATER TEMPERATUR 9.2°C 7.6°C 7.7°C 8.4°C	STA 39' WELL TOTAL 5.88 6.02 6.45	RT TIME DEPTH VOL. PURC PUMP DEF CONDUCTI 315X 290X1 290X1 295X1	<u> 794</u> 24' дев <u>5</u> ртн тупту 1	S EST. WEL 99K DISC 8' CIPAR BROWNSK II	END TIME <u>/045</u> LBURE VOL <u>19.27</u> HARGE RATE APPEARANCE <u>[Clouge</u> U
DATE $S/209$ INITIAL DEPTH T FINAL DEPTH TO METHOD Water VOLUME PURGED O GM 19.27 38.59 57.81 2^{14} the Sample	Z WATER WATER WATER TEMPERATUR 9.2°C 7.6°C 7.7°C 8.4°C 8.4°C 8.1°C	STA 39' WELL TOTAL 5.88 6.02 6.45 6.74	RT TIME $_{DEPTH}$ VOL. PURC PUMP DEF $CONDUCTI3(5X)290x1290x1295x1295x1$	<u> ()94</u> дел <u>5</u> ртн (VITY 1	5 EST. WEL 991 DISC 8' <u>CIPAR</u> BROWNISK 11 11	END TIME <u>/045</u> LBURE VOL <u>19.27</u> HARGE RATE APPEARANCE <u>[Cloudy</u> U U U
DATE $5/20$ 9 INITIAL DEPTH T FINAL DEPTH TO METHOD Water VOLUME PURGED 0 GM 19.27 38.54 57.81 $2^{14}ee 5 mple$	Z WATER WATER WATER TEMPERATUR 9.2°C 7.6°C 7.7°C 8.4°C 8.4°C 8.1°C	STA 39' WELL TOTAL 5.88 6.02 6.45 6.74	RT TIME _ DEPTH _ VOL. PURC PUMP DEF CONDUCTI 3 (5x) 290x (1) 290x (1) 295x (1)	<u> 794</u> <u>24'</u> дер <u>5</u> ртн <u>1</u> іvіту 1	5 EST. WEL 99K DISC 8' CIPAR BROWNISK II II II	END TIME 2045 LBURE VOL 19.27 HARGE RATE APPEARANCE 1 1 1 1 1
DATE <u>Specify</u> INITIAL DEPTH T FINAL DEPTH TO METHOD <u>Waters</u> VOLUME PURGED <u>O G.M.</u> <u>19.27</u> <u>38.54</u> <u>57.81</u> <u>257.81</u>	Z WATER WATER WATER TEMPERATUR 9.2°C 7.6°C 7.7°C 8.4°C 8.4°C 8.1°C	STA 39' WELL TUTAL 5.88 6.02 6.34 6.45 6.74	RT TIME DEPTH UEL. PURC PUMP DEF CENDUCTI 3 (5x) 290x1 290x1 295x1 295x1	<u> ()94</u> дел <u>5</u> ртн тупту т	S EST. WEL 99K DISC 8' CIPAR BROWNSK II II II	END TIME <u>/045</u> LBURE VOL <u>19.27</u> HARGE RATE APPEARANCE <u>[Clouge</u> N 11 11
DATE <u>SIZO</u> INITIAL DEPTH T FINAL DEPTH TO METHOD <u>Waters</u> <u>VOLUME PURGED</u> <u>O</u> <u>O</u> <u>O</u> <u>O</u> <u>C</u> <u>J</u> <u>J</u> <u>J</u> <u>S</u> <u>S</u> <u>S</u> <u>S</u> <u>A</u> <u>M</u> <u>S</u> <u>A</u> <u>M</u> <u>M</u> <u>M</u> <u>M</u> <u>M</u> <u>M</u> <u>M</u> <u>M</u>	Z WATER WATER TEMPERATUR 9.2°C 7.6°C 7.7°C 8.4°C 8.4°C 8.1°C FORMATION	STA 39' WELL TUTAL 5.88 6.02 6.34 6.45 6.74	RT TIME $_{DEPTH}$ VOL. PURC PUMP DEF CONDUCTI $3 (5X)290x (1)290x (1)295x (1)295x (1)$	<u> ()94</u> дел <u>5</u> ртн тупту т	5 EST. WEL 99% DISC 8' CIPAR BROWNS 11 11	END TIME <u>2045</u> LBURE VOL <u>19.27</u> HARGE RATE APPEARANCE <u>10</u> 10 10
DATE <u>SIZO</u> INITIAL DEPTH T FINAL DEPTH TO METHOD <u>Waters</u> <u>VOLUME PURGED</u> <u>O</u> <u>G.M.</u> <u>19.27</u> <u>38.54</u> <u>57.81</u> <u>2.54557</u> <u>57.81</u> <u>2.54557557551</u> <u>2.546557655555555555555555555555555555555</u>	Z WATER WATER TEMPERATUR 9.2°C 7.6°C 7.7°C 8.4°C 8.4°C 8.1°C FORMATION	STA 39' WELL TUTAL 0107 E PH 5.88 G.02 G.34 G.45 G.74 N STA	RT TIME _ DEPTH _ VOL. PURC PUMP DEF CONDUCTI 3 (5X 290x) 290x1 295x1 295x1	<u> 794</u> дел <u>5</u> ртн тупту 1	5 .EST. WEL 99% DISC 8' <u>CIPAR</u> BROWNS 11 11	END TIME <u>/045</u> LBURE VOL <u>19.27</u> HARGE RATE APPEARANCE <u>[Clowy</u> II II II II II II II II II II II II II
DATE <u>SIZO 9</u> INITIAL DEPTH T FINAL DEPTH TO METHOD <u>Waters</u> <u>VOLUME PURGED</u> <u>O G.M.</u> <u>19.27</u> <u>38.54</u> <u>57.81</u> <u>2.14ce Saple</u> <u>SAMPLING IN</u> DATE <u>OJZO 97</u> METHOD <u>Waters</u>	Z WATER WATER TEMPERATUR 9.2°C 7.6°C 7.7°C 8.4°C 8.4°C 8.1°C FORMATION HOPE Tubing	STA 39' WELL TUTAL 5.88 6.02 6.34 6.45 6.74 V STA	RT TIME _ DEPTH _ VOL. PURC PUMP DEF CONDUCTI 315X 290X1 290X1 295X1 295X1 295X1	<u> 794</u> <u>24'</u> GED <u>5</u> РТН <u>1</u> IVITY 1 1 1 1 1 1 1 1 1 1 1 1 1	S EST. WEL 990 DISC 8' CIPAR BROWNISK 11 11 11 11 11 11 11 11 11 1	END TIME <u>/045</u> LBURE VOL <u>19.27</u> HARGE RATE APPEARANCE <u>[Clouge</u> N 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
DATE <u>SIZO</u> INITIAL DEPTH T FINAL DEPTH TO METHOD <u>Waters</u> <u>VOLUME PURGED</u> <u>O</u> <u>Q</u> <u>VOLUME PURGED</u> <u>O</u> <u>Q</u> <u>J</u> <u>J</u> <u>J</u> <u>J</u> <u>J</u> <u>J</u> <u>J</u> <u>J</u>	Z WATER WATER TEMPERATUR 9.2°C 7.6°C 7.7°C 8.4°C 8.4°C 8.1°C FORMATION HOPE TUDING UNATER	STA <u>39'</u> WELL TUTAL <u>6.95</u> <u>6.74</u> <u>5.88</u> <u>6.74</u> <u>5.74</u> <u>5.88</u> <u>6.74</u>	RT TIME _ DEPTH _ VOL. PURC PUMP DEF CONDUCTI 3 (5X 290x) 290x1 290x1 290x1 295x1 295x1 295x1 295x1	<u> 794</u> <u>24'</u> GED <u>5</u> РТН <u>1</u> <u>1</u> <u>1</u> <u>1</u> <u>1</u> <u>1</u> <u>1</u> <u>1</u>	S LEST. WEL <u>996</u> DISC 8' CIPAC BROWNISK II II II II II II II II II II II II II	END TIME <u>/045</u> LBURE VOL <u>19.21</u> HARGE RATE <u>APPEARANCE</u> <u>ICLOUBY</u> IC IC IC IC IC IC IC IC IC IC

:

1

۱

		/				(2);
		GROUND		SAMPI		
		FIELI	D DATA	SHEE	T	
	P4/N-C:	2	_ FIELD T	EAM (I		BT.JG
SITE <u>E, AFB</u>	Cus			JOB	NUMBER	HANG BIL Z.H3.60
FIELD CONDITIONS	S					
					<u> </u>	·
FIELD MEASU	REMENT/			SE	/ RIAL/ID	- CALIBRATION
		MAKE	MODEL	LAND	ND.	COMMENTS 10,14,4,9,6,55
		ST 33		HAZCO	2178	750 w 1000 Univers
		<u> </u>				
WATER I EVEL IN		285		HAXO	1792	
OILTWATE Jut	n face					
						Do River
OT under V		Man CV	an, ciq	<u> 4.16.0.2</u>	007750	, lap Kute
	MATIUN			1991	<u>ر</u>	0945
	5.	STA	RT TIME _	4'		END TIME 0175
INITIAL DEPTH T				51	Ball-DISS	
METUON WATE	Rut, HDPE	E Tube			15'	
C CA	9 3%		265x)		(100	AFFEARANCE
19.27	(,.1°C	6.51	248×1		BROWNIN	Turbis
38.54	6.50	6.67	ZYOXI		"]	scai - Taxbio
57.81	6.4°C	6.72	240X1		"	()
Asta S-ple	6.52	6.90	245×1		"/	K
					·	
SAMPLING IN		<u>N</u>		1		
DATE 5	1 C , A LIND- T	STA	RT TIME 1	<u></u>		- END TIME (00)
	WI TURE I	Ave, Ka			mpk	
INITIAL DEPTH T	U WAIER	<u> </u>	U&P IH		AILK AF	ICK SAMPLING

		P4-03	GROUND FIEL	WATER S D DATA	SAMPLING SHEET	PLT	
WELL N			- 4 7-1	FIELD T Ор	EAM (INITIALS	> <u>18110</u>	~~~
SITE	CINCD	DOEL MF			JOB NUMBE	R Mrc \$1026.83.60	
FIELD	CONDITIONS	Overav	$\mathbf{D}_{1,2}$	18 F			
			<u></u>			·	
FIELD	MEASUR	REMENT/ QUIP.	MAKE.	MODEL	SERIAL/ID NO.	CALIBRATION	<u>بر</u>
рН МЕТ	ER						
CUNDUC	TIVITY ME	TER	- f		h		
THERMO	METER	· · · · · · · · · · · · · · · · · · ·	Kek	<u>in 10</u>	Page #	<u> 59</u>	
WATER	LEVEL INI		/		H		
BAILER	/PUMP				Ц		
	-						-
DECON	NIAMINA I	IUN					
DECON	NIAMINAI						
		<u>IUN</u>					
					1524		
	I INFORM		STA	RT TIME	1530	END TIME 1625	
DECON PURGE DATE S INITIAL	E INFORM 2)24)92 DEPTH TO	ATION L VATER 37.	STA 38' WELL		1530 5'EST. VE	END TIME <u>(625</u> LLBORE VOL <u>(656</u>	
DECON PURGE DATE S INITIAL FINAL	E INFORM 22492 DEPTH TO	ATION L VATER 37-1 VATER	STA <u> 38'</u> WELL TOTAL TOTAL	RT TIME DEPTH S	<u>1530</u> <u>5'</u> est. ve ed <u>56'</u> di:	END TIME 1625 LLBORE VOL 1656 SCHARGE RATE	
DECON PURGE DATE S INITIAL FINAL METHOD	E INFORM 2492 DEPTH TO DEPTH TO DEPTH TO Mandem	ATION L WATER 37: WATER	STA 38' WELL TOTAL TUDE	RT TIME DEPTH S VOL. PURG PUMP DEP	/530 5°_est. we ed 50° di: th <u>50°</u>	END TIME 1625 LLBORE VOL 1656 SCHARGE RATE 9	
DECON PURGE DATE S INITIAL FINAL METHOD	E INFORM DEPTH TO DEPTH TO DEPTH TO DEPTH TO DEPTH TO DEPTH TO DEPTH TO	ATION L VATER 37.1 VATER A, HOPE TEMPERATURE	STA <u>38'</u> WELL TOTAL TU DC EPH	RT TIME DEPTH S VOL. PURG PUMP DEP CONDUCTIV	/530 5°_est. we ed 50° di: th <u>50°</u>	END TIME 1625 LLBORE VOL 1656 SCHARGE RATE 90 APPEARANCE	
DECON PURGE DATE S INITIAL FINAL METHOD VOLUME	E INFORM DEPTH TO DEPTH TO DETH DETH DETH DETH DETH DETH DETH DETH	ATION L VATER 37. VATER A, HOPE TEMPERATURE [2.1°C	STA 38' WELL TOTAL TUDE EPH [/.5]	RT TIME DEPTH S VOL. PURG PUMP DEP CONDUCTIV 37571	1530 5 EST. WE ED 50 TH VITY Clear	END TIME 1625 LLBORE VOL 1656 SCHARGE RATE 91 APPEARANCE Susspended mat.	
DECON PURGE DATE S INITIAL FINAL METHOD VOLUME 0 (6,56	E INFORM DEPTH TO DEPTH TO DETH DEPTH TO DETH DEPTH TO DETH DETH DEPTH TO DETH DETH DETH DETH DETH DETH DETH DETH	ATION L VATER 37. VATER A, HOPE TEMPERATURE [2.1°C 7.5°C	STA 38' WELL TOTAL E 	RT TIME _ DEPTH S VOL. PURG PUMP DEP CONDUCTIV 37571 35281	1530 5 EST. WE ED 50 TH VITY Clear Brown Augry	END TIME 1625 ELLBORE VOL 1656 SCHARGE RATE 91 APPEARANCE Susspended mat. Tarbio	
DECON PURGE DATE S INITIAL FINAL METHOD VOLUME 0 16,56 33	E INFORM DEPTH TO DEPTH TO DEP	ATION L VATER 37. VATER A, HOPE TEMPERATURE [2.1°C 7.5°C 7.4°C	STA 38' WELL TOTAL Tube F 7.51 7.34	RT TIME _ DEPTH S VOL. PURG PUMP DEP CONDUCTIV 37571 352X1 360	1530 5 EST. WE ED 50 DI: TH <u>50</u> VITY Clear Brown Autory Meduna Clarc	END TIME 1625 ELLBORE VOL 1656 SCHARGE RATE 91 APPEARANCE Sussponded mat. Jackio m brown	
DECON PURGE DATE S INITIAL FINAL METHOD VOLUME 0 (6,56 33 50	E INFORM DEPTH TO DEPTH	$\frac{1110}{2}$ $\frac{14T100}{2}$ $\frac{1}{\sqrt{4}}$ $\frac{1}{\sqrt{4}}$ $\frac{1}{\sqrt{2}}$ $\frac{1}{\sqrt{2}}$ $\frac{1}{\sqrt{2}}$ $\frac{1}{\sqrt{2}}$ $\frac{1}{\sqrt{2}}$	STA 38' WELL _ TOTAL Tube = pH [.5] 7.51 7.34 1.23	RT TIME _ DEPTH S VOL. PURG PUMP DEP CONDUCTIV 37571 35271 360 360 350	1530 5 EST. WE ED 50 DI: TH <u>50</u> VITY Clear Brown Augy Medun Clour Medun The	END TIME 1625 ELLBORE VOL 1656 SCHARGE RATE 99 APPEARANCE Sussponded mat. Jackid m brown L to dark brown bid	

TIAL	DEPTH	ТΟ	WATER	DEPTH	TO	WATER	AFTER	SAMPLI
------	-------	----	-------	-------	----	-------	-------	--------

	Guua	FIELD	DATA SHE	ET	RT DC
WELL NUMBER	Lat A SR		_ FIELD TEAM	(INITIALS)	A11 2 1026 42 60
SITE <u>CONDIT</u>	Rain L	1505 1	BREEZY	JB NUMBER (
FIELD CUNDIT					
FIELD MEA COLLECTIO	SUREMENT/ N EQUIP.	MAKE/	MODEL	SERIAL/ID NO.	CALIBRATION/ COMMENTS
PH METER				\sim	
		70500	to Pole	73)	
THERMOMETER					
WATER LEVEL	. INDICATOR			 	
BAILER/PUMP	·			<u> </u> l	
DECONTAMI					
			, l	/	
			V	/	
			V	·	
PURGE INF	ORMATION	- STA		45	ENTL TIME '7/0
PURGE INF DATE 9/17	ORMATION 18292 Re-	STAI		15 Sest. Veli	END TIME 7/0
PURGE INF DATE 9/17 INITIAL DEPTH	URMATION 19272 K H TO WATER 4.	STAI	RT TIME 16 DEPTH 12:2	SEST. WELL	END TIME 7/0 BORE VOL
PURGE INF DATE 9/17 INITIAL DEPTH FINAL DEPTH METHOD 3'5	URMATION 18292 K H TO WATER 4. TO WATER	STAI	RT TIME 16 DEPTH 12:2 VOL. PURGED PUMP DEPTH _	EST. WELL AFAL DISC	END TIME 7/0 BORE VOL 90
PURGE INF DATE 9/17 INITIAL DEPTH FINAL DEPTH METHOD 3'5	URMATION 18292 H TO WATER 4. TO WATER 4. S Bailte	STAI	RT TIME 16 DEPTH 2:2 VOL. PURGED PUMP DEPTH _	Sest. Well And Disc	END TIME 7/0 BORE VOL 90 HARGE RATE
PURGE INF DATE 9/17 INITIAL DEPTH FINAL DEPTH METHOD 3'S VOLUME PURG	URMATION SC92 H TO WATER TO WATER S Bailte S Bailte G.9° C	STAI	RT TIME 16 DEPTH 12:2 VOL. PURGED 2 PUMP DEPTH _ CONDUCTIVITY 210 Mm	EST. WELL AAL DISC	END TIME 7/0 BORE VOL 90 HARGE RATE
PURGE INF DATE 9/17 INITIAL DEPTI FINAL DEPTH METHOD 3'S VOLUME PURC (c. 2	URMATION 18292 H TO WATER TO WATER S Bailth G.9° C G.9° C	STAI WELL TOTAL	RT TIME 16 DEPTH 12.2 VOL. PURGED 2 PUMP DEPTH _ CONDUCTIVITY 210 Whr 2/0	EST. WELL 194 DISC	END TIME 7/0 BURE VOL 90 HARGE RATE APPEARANCE
PURGE INF DATE 9/17 INITIAL DEPTH FINAL DEPTH METHOD 3'S VOLUME PURC (c, 2 12, 4	URMATION 18292 H TO WATER 4. TO WATER 4. S Bailth G.9° C G.9° C G.9° C G.9° C	STAI WELL TOTAL PH 7,06 7,06 7,01	RT TIME 16 DEPTH 12.2 VOL. PURGED 1 PUMP DEPTH _ CONDUCTIVITY 210 Mhr 210 Mhr	EST. WELL AL DISC	END TIME 7/0 BURE VOL 90 HARGE RATE APPEARANCE
PURGE INF DATE 9/17 INITIAL DEPTH FINAL DEPTH METHOD 3'5 VOLUME PURG (c,2 12,4 18,6	URMATION 18292 H TO WATER 4. TO WATER 4. S Bailth G.9° C G.9° C G.9° C G.9° C G.9° C G.9° C	STAI WELL TOTAL PH 7,06 7,06 7,06 7,11 7,20	RT TIME 16 DEPTH 12.2 VOL. PURGED 1 PUMP DEPTH - CONDUCTIVITY 210 000 210 000 210 000	EST. WELL ALOC SET	END TIME <u>'7/0</u> BORE VOL GRA HARGE RATE APPEARANCE DY COOR JSHEE SAME SAME
PURGE INF DATE $9/17$ INITIAL DEPTH FINAL DEPTH METHOD $3^{\prime}5$ VOLUME PURC (c, 2) 12, 4 15, 6	URMATION 132.92 K H TO WATER 4.1 TO WATER $$	STAI STAI VELL TOTAL PH 7,06 7,06 7,06 7,06 7,06 7,11 7,20	RT TIME 16 DEPTH 12.2 VOL. PURGED 2 PUMP DEPTH _ CONDUCTIVITY 210 000 210 000 210 000	EST. VELL ATAL DISC CLOC	END TIME 7/0 BORE VOL 90 HARGE RATE APPEARANCE DY COOR JSHE SAMC SAMC
PURGE INF DATE 9/17 INITIAL DEPTH FINAL DEPTH METHOD 3'S VOLUME PURG (c,2 12,4 12,4 18,6	URMATION DEC 92 H TO WATER 4. TO WATER 4. S Bailth G.9° C G.9° C G.9° C G.9° C G.9° C G.9° C G.9° C G.9° C G.2° C G.2° C G.2° C G.2° C		RT TIME DEPTH DEPTH DEPTH PUMP DEPTH CONDUCTIVITY 210 mm 210 mm 210 mm 210 mm	EST. WELL AAL DISC CLOC	END TIME 7/0 BORE VOL 90 HARGE RATE APPEARANCE DOY ODOR JSUE SAME SAME
PURGE INF DATE 9/17 INITIAL DEPTH FINAL DEPTH METHOD 3'S VOLUME PURG (c,2 12,4 12,4 18,6	URMATION SEC 92 H TO WATER 4. TO WATER 4. S Bailth G.9° C G.9° C G.9° C G.9° C G.7° C G.7° C G.7° C G.7° C G.7° C G.7° C			EST. WELL AAL DISC	END TIME 7/0 BORE VOL 90 HARGE RATE APPEARANCE SAME SAME
PURGE INF DATE 9/17 INITIAL DEPTH METHOD 3'S VOLUME PURC (c, 2 12, 4 18, 6 SAMPLING	URMATION SEC 92 H TO WATER 4. TO WATER 4. S Bailth G.9° C G.9° C				END TIME 7/0 BURE VOL 90 HARGE RATE APPEARANCE DY COOR SHEE SAME SAME

	GROUN FIE	IDWATER S	AMPLING SHEET	(79)
WELL NUMBER	-14	FIELD TE	AM (INITIALS)	BTWW
SITE Elmendort A	FB IRP	OUS	_ JOB NUMBER	ANC31026.1360
FIELD CONDITIONS Pre	nume, upper	40.5	<u> </u>	
FIELD MEASUREMEN			SERIAL/ID	CALIBRATION
	ORION	2 JDA	NU. 2882	4.05.7.01. 10.0 21.5°C
	YSI 33		468	960 1000 unlos @ 21.5%
THERMOMETER				
WATER LEVEL INDICATO	R Solunst	CI	H211Hallab. 1673	NA
BAILER/PUMP				
DECONTAMINATION	Linu	Nrx. Tap.	Distille	Rinse Twice
		·····	<u></u>	
PURGE INFORMATIO	N			
DATE 911892	s	TART TIME	0930	END TIME 1015
INITIAL DEPTH TO WATE	R 3.25 6720 WE	LL DEPTH 23.0	BTOC_EST. WEL	LBORE VOL 14,590L
		L VOL. PURGE	D 44gel DISC	WARGE PATE NA
FINAL DEPTH TO WATER	TOTA			
FINAL DEPTH TO WATER METHOD HOPE TABE,	TOTA Foot Valve		H	MAK 10' BTOL
FINAL DEPTH TO WATER METHOD HOPE TABE	TOTA		н <u>- ++++ су</u>	
FINAL DEPTH TO WATER METHOD HOPE TABE, VOLUME PURGED TEMPE	RATURE PH	E PUMP DEPT	н <u>ж</u> ер ITY Сеан	
FINAL DEPTH TO WATER METHOD HOPE TUBE, VOLUME PURGED TEMPE O GAL R.G 14.5 5	RATURE PH	E PUMP DEPT	H <u>H</u> on ITY Clean dirty	APPEARANCE
FINAL DEPTH TO WATER METHOD HOPE TABE, VOLUME PURGED TEMPE O GAL X.G 14.5 5 29.0 5	RATURE PH .4°C	E PUMP DEPT	H on ITY Clean Clean Clrty Tuebio	APPEARANCE dark brown Brown
FINAL DEPTH TO WATER METHOD HOPE TABE, VOLUME PURGED TEMPE O GAL X.G 14.5 5 29.0 5 43.5 5;	<u>тота</u> <u>Poot Valve</u> <u>RATURE</u> pH <u>4°C</u> 674 <u>11°C</u> 7.6 <u>2°C</u> 7.5 <u>1°C</u> 7.6	= PUMP DEPT $= CUNDUCTIVE$ $= 215X1$ $= 210V1$ $= 222X1$ $= 100V1$	H on ITY Clean dirty Tuebio Tubio	APPEARANCE dark brown) Brown Light brown
FINAL DEPTH TO WATER METHOD HOPE TUBE, VOLUME PURGED TEMPE O GAL R.G JY.S 5 29.0 5 43.5 5;	TOTA Prot Value RATURE pH .4°C GH .1°C 7.6 .2°C 7.5 J°C 7.6	PUMP DEPT CUNDUCTIV 2 SX 2 OV 2 2ZX 2 2ZX	H on ITY Clean dirty Tuebio Tubio	APPEARANCE dark brown Brown Light brown
FINAL DEPTH TO WATER METHOD HOPE TABE, VOLUME PURGED TEMPE O GAL X.G JY.S 5 29.0 5 43.5 5;	TOTA Fort Value RATURE PH M°C 1°C 7.6 2°C 7.6 7.6	$= PUMP DEPT \\ CUNDUCTIVE 215X1 1 210V1 9 222X1 1 23V1$	H op ITY Clean dirty Tuebio Tubio	APPEARANCE dark brown Brown Light brown
FINAL DEPTH TO WATER METHOD HOPE TABE, VOLUME PURGED TEMPE O GAL X.G JY.S 5 29.0 5 43.5 5; SAMPLING INFORMA	TION	E PUMP DEPT CUNDUCTIV 215X1 1 210V1 9 222X1 1 33V1	H en ITY Clean dirty(Tuebio Tubio	APPEARANCE dark brown Brown Light brown
FINAL DEPTH TO VATER METHOD HOPE TABE, VOLUME PURGED TEMPE O GAL X.G JY.S 5 29.0 5 43.5 5; SAMPLING INFORMA DATE 91892	TION	E PUMP DEPT	H en ITY Clean dirty Tuebio Tubio	APPEARANCE dark brown Brown Light brown Light brown
FINAL DEPTH TO VATER METHOD HOPE TABE, VOLUME PURGED TEMPE O GAL R.G JY.S 5 29.0 5 43.5 5; MATE 911892 METHOD 3'SS BO	TION TOTA TOTA TOTA TOTA TOTA PH AIVE AIVE	E PUMP DEPT	H <u>H</u> on ITY Clean dirty Tuebio Tubio 020	APPEARANCE dark brown Brown Light brown Light brown

			(3)
	GROUNDWATER FIELD DATA	SAMPLING SHEET	
WELL NUMBER N53-02	FIELD	TEAM (INITIALS)	BTJE
SITE Elmendoet AF	B IRP	JOB NUMBER	ANC 31026.H360
FIELD CONDITIONS asky,	OWWAST, 55°F		
FIELD MEASUREMENT/ COLLECTION EQUIP.	MAKE/MODEL	SERIAL/ID ND.	CALIBRATION/ COMMENTS
PH METER _		+	
	Pafer To	Paget 20	·
	retter		·
WATER LEVEL INDICATOR _		↓/	
BAILER/PUMP		1/	
DECONTAMINATION			· · · · · · · · · · · · · · · · · · ·
·		- <u>t</u>	
,		•	
PURGE INFORMATION			•
DATE 8/20/92	START TIME .	1230	END TIME 1300
INITIAL DEPTH TO WATER	5.24 WELL DEPTH	24EST. WEL	LBORE VOL 9.54
FINAL DEPTH TO WATER		GED SAAL DISC	CHARGE RATE
METHOD ILDOGENA, HOPE 7	Tubing PUMP DE	PTH	· · · · · · · · · · · · · · · · · · ·
VOLUME PURGED TEMPERAT	URE OH CONDUCT.	IVITY	APPEARANCE
O GAL 10.50	C 6.74 287x	Clouey	1 gandy
'9.5 8.8'	C 6.71 275x	1 Turbio /	Brownish
39.0 8.4	°C 6.74 275×1		11
57.5 8.4	6.84 275×1	• /	<i>с</i> (
1 4 x Sup & 9.3%	6.78 280×1	()	11

SAMPLING INFORMATION		
DATE 8/20/92	_ START TIME _1300	END TIME 1310
METHOD matter, HOPE Taking V	Satile Sample Tube	
INITIAL DEPTH TO WATER	DEPTH TO WATER	AFTER SAMPLING

						(33	
	G	ROUND FIEL	WATER D DATA	SAMP SHEE	LING ET		
WELL NUMBER	NS3-03	3	FIELD T	EAM C	INITIALS)	BT, JG	ļ
SITE <u>Elme</u>	ndc.2f AF	GI	RP	וםר	B NUMBER	ANC 31026 HS	<u>60</u>
FIELD CONDITION	S Party	Clon	DY, AS	hy,	60°F		
<u>FIELD MEASU</u> COLLECTION	REMENT/ EQUIP.	MAKE	MODEL	SE	RIAL/ID	CALIBRATI COMMENT	
PH METER			· · · · · · · · · · · · · · · · · · ·	<u> </u>			
		-R		<u> </u>	,,,,,,,,		
THERMOMETER				\square	Para		
WATER LEVEL IN				ļ'	~7° ±		
BAILER/PUMP			<u></u>	<u> </u>		~7	į
DECONTAMINA	TION						t.
				1			
						·····	
PURGE INFOR DATE S 20 INITIAL DEPTH TO FINAL DEPTH TO	MATION 9 Z 0 WATER <u>4.02</u> WATER	STA WELL _TOTAL	ART TIME DEPTH VOL. PURG	<u>1510</u> <u>4</u> ied <u>4</u>	EST. WEL	END TIME (5) LBORE VOL //.8 CHARGE RATE	
METHOD Water	, HOPE Tu	pind	PUMP DEP	тн 🔟	0		ع م الم
VOLUME PURGED	TEMPERATURE	рН		VITY		APPEARANCE	<u> </u>
O GAL	10.2°C	4.81	4Gox1		MUDON/Tu	uchio Bermist	بن الم
<u>il.</u> 8	9.3°C	£.86	435×1		4	<i>tt</i> ' <i>t</i> '	
23.6	9,4°C	6.91	435×1		11	<i>te te</i>	i ¹
35.4	9.1%	6.91	435x1		SLIGhter	Tuesto (KO	un st
after Saple	9.5°C	7.16	438x1		Slight	4 Cloudy	÷ ب
SAMPLING IN DATE <u>S</u> 20) METHOD Water	FORMATION 9 Z Ra, HDPE T	STA	ART TIME _ y, Vola	/53 L.le	Sampl	END TIME 153	
THITHE DELIN I	U WAILK		UEP I H	IU W	AILK AFI	ER SAMPLING	

		GROUNDWATE	R SAMPLING	
	·	FIELD DA	TA SHEET	
WELL NUMBER	153-0	76 FIEL	D TEAM (INITIAL	s) BT, JG
SITE <u>EATER</u>	OUS			HER ANC 31026. H3.6
FIELD CONDITIONS	s Overa	CHST, 4/8°F		
	 	/		
FIELD MEASU	REMENT/			
COLLECTION P	EQUIP.	MAKE/MODEL		ID CALIBRATIUN COMMENTS
PH METER	Ç	JRION 1230A	HAZ(0 1875	@ 15,3°C
		YSI 33	HAZIU 217	0 7500 w/10,000 @ 15.3
THERMOMETER	_	· · · ·		
WATER LEVEL IN		ORS	HAZ(0 1792	
OIL WATE FI	ntecface			· • · · · ·
DECONTAMINA DE RINSO PURGE INFOR	<u>TION</u> <u><</u> <u>e</u> <u>MATION</u> 7	Stam Clear,	<u>Ligiumex</u> 0840	NASH, Tap Rinse
DECONTAMINA DE RINSO PURGE INFOR DATE RING INITIAL DEPTH TO FINAL DEPTH TO	<u>TION</u> <u><</u> <u>MATION</u> 2 □ VATER <u></u>	Stam Clean, START TIN S,01 WELL DEPTH TOTAL VOL. F	<u>Liqluinex</u> 10 10 10 10 10 10 10 10 10 10	NASH, Tap Ringe END TIME 1015 VELLBORE VOL17.63;
DECONTAMINA DE CONTAMINA DE CINE PURGE INFOR DATE SILLA INITIAL DEPTH TO FINAL DEPTH TO METHOD 2"55	<u>TION</u> <u>e</u> <u>MATION</u> Z U VATER <u></u> <u>VATER</u> <u></u>	Stam Clean, START TIN S,01 WELL DEPTH TOTAL VOL. F PUMP	<u>Liqiumex</u> <u>16</u> <u>16</u> <u>198</u> <u>198</u> <u>198</u> <u>198</u> <u>198</u> <u>198</u> <u>198</u> <u>198</u> <u>198</u> <u>198</u> <u>198</u> <u>198</u> <u>198</u> <u>198</u> <u>198</u> <u>198</u> <u>198</u> <u>198</u> <u>198</u> <u>198</u> <u>198</u> <u>198</u> <u>198</u> <u>198</u> <u>198</u> <u>198</u> <u>198</u> <u>198</u> <u>198</u> <u>198</u> <u>198</u> <u>198</u> <u>198</u> <u>198</u> <u>198</u> <u>198</u> <u>198</u> <u>198</u> <u>198</u> <u>198</u> <u>198</u> <u>198</u> <u>198</u> <u>198</u> <u>198</u> <u>198</u> <u>198</u> <u>198</u> <u>198</u> <u>198</u> <u>198</u> <u>198</u> <u>198</u> <u>198</u> <u>198</u> <u>198</u> <u>198</u> <u>198</u> <u>198</u> <u>198</u> <u>198</u> <u>198</u> <u>198</u> <u>198</u> <u>198</u> <u>198</u> <u>198</u> <u>198</u> <u>198</u> <u>198</u> <u>198</u> <u>198</u> <u>198</u> <u>198</u> <u>198</u> <u>198</u> <u>198</u> <u>198</u> <u>198</u> <u>198</u> <u>198</u> <u>198</u> <u>198</u> <u>198</u> <u>198</u> <u>198</u> <u>198</u> <u>198</u> <u>198</u> <u>198</u> <u>198</u> <u>198</u> <u>198</u> <u>198</u> <u>198</u> <u>198</u> <u>198</u> <u>198</u> <u>198</u> <u>198</u> <u>198</u> <u>198</u> <u>198</u> <u>198</u> <u>198</u> <u>198</u> <u>198</u> <u>198</u> <u>198</u> <u>198</u> <u>198</u> <u>198</u> <u>198</u> <u>198</u> <u>198</u> <u>198</u> <u>198</u> <u>198</u> <u>198</u> <u>198</u> <u>198</u> <u>198</u> <u>198</u> <u>198</u> <u>198</u> <u>198</u> <u>198</u> <u>198</u> <u>198</u> <u>198</u> <u>198</u> <u>198</u> <u>198</u> <u>198</u> <u>198</u> <u>198</u> <u>198</u> <u>198</u> <u>198</u> <u>198</u> <u>198</u> <u>198</u> <u>198</u> <u>198</u> <u>198</u> <u>198</u> <u>198</u> <u>198</u> <u>198</u> <u>198</u> <u>198</u> <u>198</u> <u>198</u> <u>198</u> <u>198</u> <u>198</u> <u>198</u> <u>198</u> <u>198</u> <u>198</u> <u>198</u> <u>198</u> <u>198</u> <u>198</u> <u>198</u> <u>198</u> <u>198</u> <u>198</u> <u>198</u> <u>198</u> <u>198</u> <u>198</u> <u>198</u> <u>198</u> <u>198</u> <u>198</u> <u>198</u> <u>198</u> <u>198</u> <u>198</u> <u>198</u> <u>198</u> <u>198</u> <u>198</u> <u>198</u> <u>198</u> <u>198</u> <u>198</u> <u>198</u> <u>198</u> <u>198</u> <u>198</u> <u>198</u> <u>198</u> <u>198</u> <u>198</u> <u>198</u> <u>198</u> <u>198</u> <u>198</u> <u>198</u> <u>198</u> <u>198</u> <u>198</u> <u>198</u> <u>198</u> <u>198</u> <u>198</u> <u>198</u> <u>198</u> <u>198</u> <u>198</u> <u>198</u> <u>198</u> <u>198</u> <u>198</u> <u>198</u> <u>198</u> <u>198</u> <u>198</u> <u>198</u> <u>198</u> <u>198</u> <u>198</u> <u>198</u> <u>198</u> <u>198</u> <u>198</u> <u>198</u> <u>198</u> <u>198</u> <u>198</u> <u>198</u> <u>198</u> <u>198</u> <u>198</u> <u>198</u> <u>198</u> <u>198</u> <u>198</u> <u>198</u> <u>198</u> <u>198</u> <u>198</u> <u>198</u> <u>198</u> <u>198</u> <u>198</u> <u>198</u> <u>198</u> <u>198</u> <u>198</u> <u>198</u> <u>198</u> <u>198</u> <u>198</u> <u>198</u> <u>198</u> <u>198</u> <u>198</u> <u>198</u> <u>198</u> <u>198</u> <u>198</u> <u>198</u> <u>198</u> <u>198</u> <u>198</u> <u>198</u> <u>198</u> <u>198</u> <u>198</u> <u>198</u> <u>198</u> <u>198</u> <u>198</u> <u>198</u> <u>198</u> <u>198</u> <u>198</u> <u>198</u> <u>198</u> <u>198</u> <u>198</u> <u>198</u> <u>198</u> <u>198</u> <u>198</u> <u>198</u>	NASH, Tap Ringe END TIME 1015 VELLBORE VOL17.63;~
DECONTAMINA DECONTAMINA DECONTAMINA PURGE INFOR DATE SINGE DATE SINGE DATE SINGED METHOD SS VOLUME PURGED	TION S MATION Z U VATER 2 VATER 1 VATER 1	START TIN <u>S,01</u> WELL DEPTH TOTAL VOL. F PUMP JRE PH CONDU	19100000000000000000000000000000000000	NASH, Tap Rinse END TIME <u>1015</u> VELLBORE VOL <u>17.63; -</u> DISCHARGE RATE APPEARANCE
DECONTAMINA DECONTAMINA DECONTAMINA PURGE INFOR DATE SINFOR DATE	<u>TION</u> <u>e</u> <u>MATION</u> Z U WATER <u>VATER</u> <u>VATER</u> <u>VATER</u> <u>VATER</u> <u>VATER</u> <u>TEMPERATL</u> <u>7.5%</u>	START TIN START TIN S,01 WELL DEPTH TOTAL VOL. F PUMP JRE PH CONDU C 6.07 430	$\frac{0340}{100000000000000000000000000000000000$	NASH, Tap Ringe END TIME 1015 VELLBORE VOL17.63; APPEARANCE
DECONTAMINA DECONTAMINA DECONTAMINA PURGE INFOR DATE QIYA INFOR DATE QIYA INITIAL DEPTH TO METHOD Q'SS VOLUME PURGED O GAL 17.63	<u>TION</u> <u>e</u> <u>MATION</u> Z U VATER <u></u> <u>VATER</u> <u>VATER</u> <u>VATER</u> <u>TEMPERATL</u> <u>7.5°C</u>	START TIN START TIN S,01 WELL DEPTH TOTAL VOL. F PUMP JRE PH CONDU C 6.07 430 C 6.39 475	19100000000000000000000000000000000000	NASH, Tap Rinse END TIME 1015 VELLBORE VOL17.63; DISCHARGE RATE APPEARANCE 04
DECONTAMINA DECONTAMINA DECONTAMINA PURGE INFOR DATE QUY DATE QUY INITIAL DEPTH TO METHOD Q"SS VOLUME PURGED O GAL 17.63 35.26	<u>TION</u> <u>MATION</u> <u>Z</u> U VATER <u></u> <u>VATER</u> <u>VATER</u> <u>TEMPERATL</u> <u>7.5°C</u> <u>7.6°C</u>	Stam Clean, START TIN S,01 WELL DEPTH TOTAL VOL. F PUMP JRE PH CONDU C 6.07 430 C 6.39 475 C 6.62 480	19100000000000000000000000000000000000	NASH, Tap Rinse END TIME <u>1015</u> VELLBORE VOL <u>17.63; **</u> DISCHARGE RATE APPEARANCE 04 104
DECONTAMINA DECONTAMINA DECONTAMINA PURGE INFOR DATE QUY DATE QUY INITIAL DEPTH TO METHOD Q"SS VOLUME PURGED OGAL 17.03 35.26 52.89	<u>TION</u> <u>MATION</u> <u>Z</u> U VATER <u><u></u> <u>VATER</u> <u>VATER</u> <u>TEMPERATL</u> <u>7.5°C</u> <u>7.6°C</u> <u>8.1°C</u></u>	Stam Clean, START TIN S,01 WELL DEPTH TOTAL VOL. F PUMP JRE PH CONDU C 6.07 430 C 6.39 475 C 6.62 480 C 6.71 485	19100000000000000000000000000000000000	NASH, Tap Rinse END TIME 1015 VELLBORE VOL17.63; DISCHARGE RATE
DECONTAMINA DECONTAMINA DECONTAMINA PURGE INFOR DATE 9 14 9 INITIAL DEPTH TO METHOD 2"55 VOLUME PURGED O GAL 17.63 35.26 52.89 After Sumple	<u>TION</u> <u>e</u> <u>MATION</u> <u>z</u> <u>U VATER</u> <u>VATER</u> <u>VATER</u> <u>TEMPERATL</u> <u>7.5°C</u> <u>7.6°C</u> <u>8.1°C</u> <u>8.1°C</u>	START TIN S,01 WELL DEPTH TOTAL VOL. F PUMP JRE PH CONDU C 6.07 430 C 6.07 5 C 7 C 7 C 7 C 7 C 7 C 7 C 7 C 7	19100000000000000000000000000000000000	NASH, Tap Rinse END TIME <u>1015</u> VELLBORE VOL <u>17.63; A</u> DISCHARGE RATE APPEARANCE DY DY DY DY DY

.

:

;

. 1

ı

13

GROUNDWATER SAMPLING FIELD DATA SHEET

W)

ł

ł

WELL NUN	IBER	5wsc	>1		FIELD	TEAM ((NITIALS)	www	MLP	_
SITE T.	G.M.	2433	Post	ROAD		JOI	B NUMBER	ANC 31	026.113	- 69
FIELD CO		s WELL	WATER	SAMPLIN	6 AT	SINK	IN BAT	THROOM		- 13 -

FIELD MEASUREMENT/ COLLECTION EQUIP.	MAKE/MODEL	SERIAL/ID NO.	CALIBRATION/ COMMENTS
PH METER			
		92	
THERMOMETER _		9-1	
WATER LEVEL INDICATOR _	000		
BAILER/PUMP			
DECONTAMINATION	Bottles Filled dir	eithy from fac	need.
<u></u>		······································	9846
PURGE INFORMATION			
	STAPT TIME	0935	THE COND
		VA EST VELL	
FINAL DEPTH TO WATER			ARGE PATE 1 gallog /10 sec
METHOD Open celle water fam	et full	TH unknown). z
meanued discharge ras	& with I gallon bucket		
VOLUME PURGED TEMPERATI	URE PH CONDUCTI		APPEARANCE
	(1570)		
	101 - Internet		
	<u> 412</u>		
、			
SAMPLING INFORMATI	٦N		
1 500 97		0935	0955
DATE <u>SEPT 92</u>	START TIME	0935	END TIME _09 55

Can Can a

۱

「二十二十二十二

			G3)
	GROUNDWATER	SAMPLING SHEET	
WELL NUMBER _ 5WSOZ	FIELD T	EAM (INITIALS)	INWW, MLP
SITE INLET COMPRONY	·	JOB NUMBER _	An' 31026.13.00
FIELD CONDITIONS Filled	& directly from	fancet in b	athroom
	·····		
FIELD MEASUREMENT/ COLLECTION EQUIP.	MAKE/MODEL	SERIAL/10 ND,	CALIBRATION/
DH METER		2	
	Szor		
THERMOMETER _			·····
WATER LEVEL INDICATOR _	61916		
BAILER/PUMP _	···· V /		
DECONTAMINATION	Bottles filled de	reetly from to	aucet
	······································	<u> </u>	
PURGE INFORMATION DATE <u>/ SEPT 92</u> INITIAL DEPTH TO WATER _	START TIME <u>NA</u> VA VA TITAL VA TITAL VA PUPO	1025 heren HEST. WELL SCOTT 9 ED DISCH	END TIME 1033 BORE VOL
NETHIN Open cole water ful	l in bathoom pump DEP	TH entrom	
VOLUME PURGED TEMPERAT			APPEARANCE
	p1 92	Crean	· · · · · · · · · · · · · · · · · · ·
	1 SE		
			······································
	<u> </u>	_	
SAMPLING INFORMATI	۵N		
DATE 1 SCOT 92	STADT TIME	1033	END TIME
METHOD directly Villed	hatter from bath	owne curk	
	NA DEPTH		R SAMPLING KA
ANTING DELITING WHICK .			

GROUND	✔ATER SAMPLING
FIELD	D DATA SHEET
WELL NUMBER _ BWZ	FIELD TEAM (INITIALS) <u>BT, RC</u>
SITE <u>Elmendort</u> AFB	JOB NUMBER ANC 31026. H360
FIELD CONDITIONS <u>Rain, 450F</u>	Volcanic ash

F

FIELD MEASUREMENT/ COLLECTION EQUIP.	MAKE/MODEL	SERIAL/ID NO.	CALIBRATION/ COMMENTS
PH METER			
CONDUCTIVITY METER	Reter TO	Page # 7	3
WATER LEVEL INDICATOR		·/	
BAILER/PUMP			
DECONTAMINATION			-
		•	
/	-TOPT UND		

PURGE INFOR	MATION /S	TART	up	
DATE	<u>د ا</u>	ST/	ART TIME 154	5 END TIME 1600
INITIAL DEPTH 1		VELL	DEPTH 800'?	EST. WELLBORE VOL
FINAL DEPTH TO		_ TOTAL		DISCHARGE RATE
METHOD JURDI	ne Pump		PUMP DEPTH	
	TEMPERATURE	рН		APPEARANCE
12,000 gAL	5.1°C	8.01	130 unto	Clean
				·
			<u></u>	······································

SAMPLING INFORMATION	
DATE 9/17/92	START TIME END TIME
METHOD Spigot & Tygon	Tube
INITIAL DEPTH TO WATER	DEPTH TO WATER AFTER SAMPLING

				(73)		
	GROUND	WATER	SAMPLING			
0	FIEL	D DATA	SHEET	07.4-		
WELL NUMBER _ BW-	56	FIELD T	EAM (INITIALS)	Br, KC		
SITE _ Elmendorf /	HFB		JOB NUMBER	Auc 31026. H3.60		
FIELD CONDITIONS_RA	in, 45°F	-, Volca	unic ASH			
		·		·		
FIELD MEASUREMEN						
COLLECTION EQUIP.	MAKE	MODEL	NO.			
PH METER	ORION 2	250A	002151	4.60 \$ 7.02 a 17.92		
CONDUCTIVITY METER	45I Made	(33	<u> 18010848</u>	900 w/100 unio 5 e 18°c		
THERMOMETER		<u>-</u>				
WATER LEVEL INDICATOR	Sope More	dl 5/43	19566			
BAILER/PUMP						
	1	_		•		
DECUNTAMINATIUN	Ligunex	, Jap, 1	11 Kinse Im	1.08		
·						
PURGE INFORMATIO	N Runso	n Dem	ind			
DATE 9/17/92	—) 	ART TIME	445	END TIME 1500		
		ПЕРТИ	EST. VEL	I BORF VOI /001AL		
STNAL DEPTH TO WATER	τηται		ED 150eal DISC	CHAPGE PATE /OGPM		
	Faber Hose		120 <u>1.2.2.78</u> DIS.			
METHUD	<u> </u>	FUMP DEF	· · · · · · · · · · · · · · · · · · ·	- · · · · · · · · · · · · · · · · · · ·		
VOLUME PURGED TEMPER	RATURE pH	CONDUCTI		APPEARANCE		
100 PAL 5.	8°C 8.29	1687	Clea	<u>L</u>		
		<u> </u>				
		ļ				
·		<u> </u>		····		
SAMPLING INFORMA	TION					
DATE _ 4/17/92	ST	ART TIME _	[5]5	END TIME		
METHOD Spigot & Tygon	, Tubry	<u> </u>				
INITIAL DEPTH TO WATE		DEPTH	TO WATER AF	TER SAMPLING		

Appendix E

WATER LEVEL MONITORING DATA

Station	Date	Time	Depth to Water (ft)	Top of PVC Casing Elevation (ft)	Groundwater Elevation (ft)	Top of Steel Casing Elevation (ft)	Ground Surface Elevation (ft)	Estimated Hydraulic Conductivity (ft/min)	Estimated Hydraulic Conductivit (cm/sec)
GW 4A	8/5/92	1510	6.6	134.79	128.19	135.32	132.9		
GW 4A	8/27/92	1842	6.46	134.79	128.33	135.32	132.9		
GW 4A	9/25/92	1500	4	134.79	130.79	135.32	132.9		
GW 4A	10/29/92	1059	3.935	134.79	130.855	135.32	132.9		
GW 6A	8/5/92	1410	31.2	137.62	106.42	137.74	135.6		
GW 6A	8/27/92	1720	31.26	137.62	106.36	137.74	135.6		
GW 6A	9/25/92	1602	31.06	137.62	106.56	137.74	135.6		
G W 6A	8/5/92	1610	31.075	137.62	106.545	137.74	135.6		
NS3-02	8/5/92	1800	5.02	117.98	112.96	118.44	115.3		
NS3-02	8/27/92	1625	5.21	117.98	112.77	1 18.44	115.3		
NS3-02	9/25/92	1506	5.33	117.98	112.65	118.44	115.3		
NS3-02	10/29/92	1310	5.47	117.98	112.51	118.44	115.3		
NS3-03	8/5/92	1450	3.82	109.13	105.31	109.17	106.2		
NS3-03	8/28/92	845	3.97	109.13	105 .16	109.17	106.2		
NS3-03	9/25/92	1512	4.01	109.13	105.12	109.17	106.2		
NS3-03	10/30/92	1109	4.14	109.13	104.99	109.17	106.2		
NS3-06	8/6/92	800	27.92	NS		146.84	152		
NS3-06	8/28/92	815	28.02	NS		146.84	152		
NS3-06	9/25/92	1530	27.9	NS		14 6.84	152		
NS3-06	10/30/92 N	М	NM	NM		146.84	152		
OU5MW-01	8/27/92	1735	36.5	136.41	99.91	136.82	134.1	0.05	0.025
OU5MW-01	9/25/92	1536	36.77	136.41	99.64	136.82	134.1		
OU5MW-01	10/28/92	1523	36.89	136.41	99.52	136.82	134.1		
OU5MW-02	8/28/92	900	33.36	140.95	107.59	141.67	139.2		
OU5MW-02	9/25/92	1610	33.06	140.95	107.89	141.67	139.2		
OU5MW-02	10/28/92	1203	33.165	140.95	107.785	141.67	139.2		
OU5MW-03	8/27/92	1720	33.33	147.58	114.25	148.11	145.7	0.032	0.016
OU5MW-03	9/25/92	1612	33.02	147.58	114.56	148.11	145.7		
OU5MW-03	10/28/92	1337	33.07	147.58	114.51	148.11	145.7		
OU4MW-04	8/28/92	905	32.38	157.09	124.71	157.46	154.8		
OU4MW-04	9/25/92	1621	32.51	157.09	124.58	157.46	154.8		
OU4MW-04	10/28/92	1457	32.51	157.09	124.58	157.46	154.8		

OU5MW-05	9/25/92	1624	25.3	157.29	131.99	157.82	155.3	0.037	0.019
OU5MW-05	10/30/92	1225	25.335	157.29	131.955	157.82	155.3		
OU5MW-06	8/28/92	920	35.86	173.99	138.13	174.54	172.4		
OU5MW-06	9/25/92	1521	35.73	173.99	138.26	174.54	172.4		
OU5MW-06	10/30/92	1325	35. 8 1	173.99	138.18	174.54	172.4		
OU5MW-07	8/28/92	915	34.19	179.42	145.23	179.97	177.4		
OU5MW-07	9/25/92	1515	34.08	179.42	145.34	1 79 .97	177.4		
OU5MW-07	10/30/92	1405	34.25	179.42	145.17	179.97	177.4		
OU5MW-08	8/27/92	1631	16.16	153.5	137.34	153.88	151.1	0.045	0.023
OU5MW-08	9/25/92	1455	16.1	153.5	137.4	153.88	151.1		
OU5MW-08	10/29/92	9 47	16.14	153.5	137.36	153.88	151.1		
	8/07/02	1520	374	113.02	100.28	113.62	111		
OI 15MW-00	0/27/32	1510	2.91	113.02	109.20	113.62	111		
OU5MW-09	10/20/02	1330	3.07	113.02	109.21	113.62	111		
003000-03	10/23/32	1330	3. 32	113.02	103.1	113.02	111		
OU5MW-10	8/27/92	1445	2.89	105.25	102.36	106.08	103.5	0.068	0.035
OU5MW-10	9/25/92	1450	2.97	105.25	102.28	106.08	103.5		
OU5MW-10	10/29/92	1349	3.05	105.25	102.2	106.08	103.5		
CU5MW-11	8/28/92	935	38.24	152.95	114.71	153.5	151.9		
OU5MW-11	9/25/92	1617	37.99	152.95	114.96	153.5	151.9		
OU5MW-11	10/28/92	1415	38.01	152.95	114. 94	153.5	151.9		
OU5MW-12	8/27/92	1623	8.4	96.01	87.61	96.89	94.1	0.076	0.039
OU5MW-12	9/25/92	1445	7.94	96.01	88.07	96.89	94.1		
OU5MW-12	10/28/92	1504	8.49	96.01	87.52	96.89	94.1		
OU5MW-13	8/07/02	1610	369	00.81	87 12	01 20	88.6	0.062	0 032
OU5MW-13	9/25/92	1437	3.60	00.81	87.2	91.39	88.6	0.002	0.002
OU5MW-13	10/28/92	1514	4.38	90.81	86.43	91.39	88.6		
00000000000	10/20/32	1314	4.00	50.01	00.40	01.00	00.0		
OU5MW-14	8/27/92	1615	10.28	84.97	74.69	85.52	83	0.258	0.131
OU5MW-14	9/25/92	1435	10.2	84.97	74.77	85.52	83		
OU5MW-14	10/28/92	152 9	10.11	84.97	74.86	85.52	83		
OU5MW-15	8/27/92	1603	10.4	81.56	71.16	82	79.6	0.042	0.021
OU5MW-15	9/25/92	1425	10.07	81.56	71.49	82	79.6		
OU5MW-15	10/29/92	1620	9.87	81.56	71.69	82	79.6		
	0.0700	4850		77 ^^	05 A5	77 00	75 4	0.005	0.000
UU5MW-16	8/2//92	1558	11.64	11.29	65.65	11.98	/5.4	0.005	0.003

OU5MW-16	9/25/92	1427	11.25	77.29	66.04	77.98	75.4		
OU5MW-16	10/29/92	1613	10.8	77.29	66.49	7 7.98	75.4		
OU5MW-17	8/27/92	1610	11.98	65.9 9	54.01	66.38	63.1		
OU5MW-17	9/25/92	1430	11.56	65.99	54.43	66.38	63.1		
OU5MW-17	10/29/92	1600	11.7	65.99	54.29	66.38	63.1		
OU5MW-30	8/27/92	1530	5.71	117.29	111.58	117.6	114.7		
OU5MW-30	9/25/92	1508	5.75	117.29	111.54	117.6	114.7		
OU5MW-30	10/29/92	1320	5.74	117.29	111.55	117.6	114.7		
OU5MW-31	8/27/92	1535	4.39	125.16	120.77	125.73	123.5	0.022	0.011
OU5MW-31	9/25/92	1504	4.44	125.16	120.72	125.73	123.5		
OU5MW-31	10/29/92	1420	4.45	125.16	120.71	125.73	123.5		
SP1-01	8/5/92	1325	8.22	97.91	89.69	98.2	94.8		
SP1-01	8/27/92	1645	8.59	97.91	89.32	98.2	94.8		
SP1-01	9/25/92	1552	8.47	97.91	89.44	98.2	94.8		
SP1-01	10/28/92	1110	8.405	97.91	89.505	98.2	94.8		
				•••••		••••=	00		
SP1-02	8/5/92	1335	34.56	135.55	100.99	135.9	132.5		
SP1-02	8/27/92	1655	35.66	135.55	99.8 9	135.9	132.5		
SP1-02	9/25/92	1555	35.14	135.55	100.41	135.9	132.5		
SP1-02	10/28/92	1015	35.75	135.55	99.8	135.9	132.5		
SP2/6-01	8/5/92	1405	40.17	152.75	112.58	153.05	150.4		
SP2/6-01	8/27/92	1700	40.28	152.75	112.47	153.05	150.4		
SP2/6-01	9/25/92	1615	40.01	152.75	112.74	153.05	150.4		
SP2/6-01	10/28/92	1433	40.04	152.75	112.71	153.05	150.4		
SP2/6-02	8/5/92	1420	31.92	144,19	112.27	144.31	141.3		
SP2/6-02	8/27/92	1740	32.02	144.19	112.17	144.31	141.3		
SP2/6-02	9/25/92	1607	31.78	144.19	112.41	144.31	141.3		
SP2/6-02	10/30/92	1023	31.81	144.19	112.38	144.31	141.3		
SP2/6-03	8/5/92	1440	37.2	141.63	104.43	141.85	139.1		
SP2/6-03	8/27/92	1730	37.54	141.63	104.09	141.85	139 1		
SP2/6-03	9/25/92	1605	37.08	141.63	104.55	141.85	139.1		
SP2/6-03	10/30/92	1053	37.08	141.63	104.55	141.85	139.1		
SP2/6-04	8/5/92	1415	37.85	140.44	102.59	140.49	137.9		
SP2/6-04	8/27/92	1725	37.83	140.44	102.61	140.49	137.9		
SP2/6-04	9/25/92	1603	37.82	140.44	102.62	140.49	137.9		
SP2/6-04	10/28/92	1038	37.8	140.44	102.64	140.49	137.9		

SP2/6-05	8/5/92	1350	32.14	135.81	103.67	136.03	133.1
SP2/6-05	8/27/92	1710	32.12	135.81	103.69	136.03	133.1
SP2/6-05	9/25/92	1558	32.02	135.81	103.79	136.03	133.1
SP2/6-05	10/28/92	1553	29.995	135.81	105.815	136.03	133.1
SP4-02	8/5/92	1530	5.84	128.13	122.29	128.45	125.3
SP4-02	9/25/92	1503	5.8	128.13	122.33	128.45	125.3
SP4-02	10/28/92	1210	5.8	128.13	122.33	128.45	125.3
SP4/11-01	8/5/92	1505	5.45	134.3	128.85	134.58	131.3
SP4/11-01	8/27/92	1634	5.34	134.3	128.96	134.58	131.3
SP4/11-01	9/25/92	1502	5.28	134.3	129.02	134.58	131.3
SP4/11-01	10/28/92	1144	5.245	134.3	129.055	134.58	131.3
SP4/11-03	8/5/92	1545	39.4	171.06	131.66	171.65	168.5
SP4/11-03	8/27/92	825	39.38	171.06	131. 68	171.65	168.5
SP4/11-03	9/25/92	1525	39.27	171.06	131.79	171.65	168.5
SP4/11-03	10/28/92	1304	39.295	171.06	131.765	171.65	168.5
W-14	8/5/92	1520	3.52	135.16	131. 64	135.35	133.7
W-14	8/27/92	1640	3.38	135.16	131.78	135.35	133.7
W-14	9/25/92	1457	3.19	135.16	131.97	135.35	133.7
W-14	10/29/92	1107	3.09	135.16	132.07	135.35	133.7
W-16	8/5/92	1358	31.6	138.18	106.58	138.48	137
W-16	8/27/92	1715	31.64	138.18	106.54	138.48	137
W-16	9/25/92	1600	31.45	138.18	106.73	138.48	137
W-16	10/30/92	1004	31.47	138.18	106.71	138.48	137
OU5GW-25	8/6/92	1515	4	114.2	110.2	117.05	
OU5GW-25	9/23/92	1630	3.86	114.2	110.34	117.05	
OU5GW-25	10/29/92	1408	3.865	114.2	110.335	117.05	
OU5GW-27	8/6/92	1215	4.39	130.9	126.51	133.71	
OU5GW-27	8/27/92	1740	4.1	130.9	126.8	133.71	
OU5GW-27	9/23/92	1506	3.88	130.9	127.02	133.71	
OU5GW-27	10/29/92	1034	3.77	130.9	127.13	133.71	
OU5GW-28	8/6/92	1145	4.48	133	128.52	136.54	
OU5GW-28	8/27/92	1746	4.36	133	128.64	136.54	
OU5GW-28	9/23/92	1502	3.75	133	129.25	136.54	
OU5GW-28	10/29/92	1013	4.265	133	128.735	136.54	
OU5GW-29	8/6/92	1220	6.49	123.54	117.05	127.12	
OU5GW-29	9/23/92	1513	4.79	123.54	118.75	127.12	

OU5GW-29	10/30/92	1248	4.61	123.54	118.93	127.12
OU5GW-34	8/6/92	1525	3.64	98.8	95.16	102.53
OU5GW-34	8/27/92	16 37	3.78	98.8	95.02	102.53
OU5GW-34	9/23/92	1542	3.7	98.8	95.1	102.53
OU5GW-34	10/29/92	1428	4.86	98.8	93.94	102.53
OU5GW-40	8/6/92	1155	4.44	134.6	130.16	138.01
OU5GW-40	8/27/92	1800	4.3	134.6	130.3	138.01
OU5GW-40	9/25/92	1417	4.14	134.6	130.46	138.01
OU5GW-40	10/29/92	1003	4.18	134.6	130.42	138.01
OU5GW-41	8/6/92	1140	5.72	129	123.28	132.96
OU5GW-41	9/25/92	1424	5.85	129	123.15	132.96
OU5GW-41	10 /29/ 92	933	5.81	129	123.19	132.96
OU5GW-42	8/6/92	1135	3.37	123.7	120.33	126.26
OU5GW-42	9/25/92	1436	3.85	123.7	119.85	126.26
OU5GW-42	10/29/92	911	4.015	123.7	119.685	126.26
OU5GW-44	8/6 / 92	1128	3. 59	121.3	117.71	124.86
OU5GW-44	9/25/92	1431	4	121.3	117.3	124.86
OU5GW-44	10/29/92	903	4.135	121.3	117.165	124.86
OU5GW-46	8/6/92 N/	Ą	1.93	99.1	97.17	101.83
OU5GW-46	8/27/92	1649	1.92	99. 1	97.18	101.83
OU5GW-46	9/23/92	1545	1.85	99.1	97.25	101.83
OU5GW-46	10/29/92	1436	1.805	99.1	97.295	101.83
OU5GW-50	8/6/92	1506	3.79	112.9	109.11	116.14
OU5GW-50	9/25/92	1650	3.75	112.9	109.15	116.14
OU5GW-50	10/30/92	1205	3.715	112.9	109.185	116.14
OU5GW-51	8/6/92	1150	5.52	93	87.48	96.74
OU5GW-51	8/27/92	1655	5.46	93	87.54	96.74
OU5GW-51	9/25/92	1358	5.3	93	87.7	96.74
OU5GW-51	10/29/92	1454	5.395	93	87.605	96.74
OU5GW-55	8/6/92	1615	3.7	54.6	50.9	58.2
OU5GW-55	8/28/92	957	4.06	54.6	50.54	58.2
OU5GW-55	9/24/92	1633	4.1	54.6	50.5	58.2
OU5GW-55	10/30/92	1128	4.325	54.6	50.275	58.2
OU5GW-58	8/2 8/ 92	953	3	55.1	52.1	58.61
OU5GW-58	9/24/92	1643	2.9	55.1	52.2	58.61

OU5GW-58	10/30/92	11	35	2.89	55.1	52.21	58.61
OU5GW-63	8/6/92	14	20	3.47	129.8	126.33	133
OU5GW-63	9/23/92	14	20	3.44	129.8	126.36	133
OU5GW-63	10/29/92	11	35	2.41	129.8	127.39	133
OU5SL-07	8/6/92	16	50	4.36	80.7	76.34	84.77
OU5SL-07	9/25/92	15	33	4.35	80.7	76.35	84.77
OU5SL-07	10/ 29/9 2	16	29	4.25	80.7	76.45	84.77
OU5SL-10	9/25/92	15	05	2	93.6	91.6	96.78
OU5SL-10	10/28/92	15	35	2.66	93.6	90 .94	96.78
OU5SL-12	8/6/92	15	40		3.35	3.35	107.04
OU5SL-12	8/27/92	17	03		4.02	4.02	107.04
OU5SL-12	9/23/92	16	00		3.95	3.95	107.04
OU5SL-12	10/29/92	14	48		3.9	3.9	107.04
OU5SL-18	8/6/92	14	55	3.66	107.3	103.64	110.78
OU5SL-18	8/27/92	16	31	3.7	107.3	103.6	110.78
OU5SL-18	9/23/92	16	20	3.44	107.3	103.86	110.78
OU5SL-18	10/29/92	14	00	3.465	107.3	103.835	110.78
OU5SL-20	9/23/92	16	50	4.4	110.4	106	114.87
OU5SL-20	10/30/92	11	55 ICE		110.4		114.87
OU5SL-22	8/6/92	14	40	4.73	129.9	125.17	134.29
0U5SL-22	9/23/92	14	25	4.65	129.9	125.25	134.29
OU5SL-22	10/29/92	11	50	4.635	129.9	125.265	134.29
OU5SL-23	8/6/92	14	15	4.27	132.1	127.83	136.4
OU5SL-23	9/23/92	14	15	4.08	132.1	128.02	136.4
OU5SL-23	10/29/92	11	23	4.09	132.1	128.01	136.4
OU5SL-25	8/6/92	15	15	4	105.7	101.7	109.21
OU5SL-25	9/23/92	16	30	3.86	105.7	101.84	109.21
OU5SL-25	10/29/92	14	80	3.865	105.7	101.835	109.21
BW-40	NM	NM	NM		171.6	0	173.86
BW-50	NM	NM	NM		200.2	0	200.43
BW-5 2	NM	NM	NM		106.1 [.]		108.01

NS = Not Surveyed

NM = Not Measured

NA = Not Available

* These samples are labeled SP4-01 on the data sheets.

(SLUG-ONT)

SE10	000C	
Ervironmer	ntal	Logger
09/02	07:3	6

Unit#	00856	Test 2	
Setups:		INPUT 1	_
Fune		Level (F	- \
Node Tibe		TOC	/
T.D.		00000	
Referenc	е	0.000	
Linearit	y	0.000	
Scale fa	ctor	10.010	
Offset		-0.130	
Delay mS	EC	50.000	
Step 0	09/01	14:48:48	
Elapsed	Time	INPUT 1	-
0.000	0	0.022	
0.003	3	0.066	
0.006	6	0.018	
0.010	0	0.022	
0.013	3	0.025	
0.016	6	0.025	
0.020	0	0.022	
0.023	3	0.047	
0.026	56	0.018	
0.030	00	1.539)
0.033	33	4.080)
0.036	56	0.632	
0.040	00	1.508	
0.043	33	1.492	
0.046	56	1.297	
0.050	00	1.152	
0.053	33	1.010)
0.056	56	0.891	•
0.060	10	0.784	:
0.062	53	0.692	
0.066	56	0.610)
0.070	JU 22	0.941	-
0.07)) <	0.401	
0.070	50 10	0.42	,
0.08	20	0.377	'n
0.08	55	0.340	, ,
0.000	00 00	0.270	-
0.09	33	0.242	5
0.09	66	0.220	5
C.10	00	0.198	3
0,10	33	0.179)
0.10	66	0.16	3
0.110	00	0.151	L
0.11	33	0.13	5
0.11	66	0.12	5
0.12	00	0.11	5

(SLUGOUT)

- ----

SE1000	OC
Environmenta	11 Logger
09/02 07	7:33
nit# 00856	Test 1
Setups:	INPUT 1
Type	Level (F)
Mode	TOC
I.D.	00000
Reference	0.000
Linearity	0.000
Scale factor	10.010
Offset	-0.130
Delay mSEC	50.000
Step 0 09/01	14:41:05
Elapsed Time 0.0000 0.0033 0.0066 0.0100 0.0133 0.0166 0.0200 0.0233 0.0266 0.0300 0.0333 0.0266 0.0300 0.0333 0.0366 0.0400 0.0433 0.0466 0.0500 0.0533 0.0566 0.0600 0.0633 0.0666	INPUT 1 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.044 0.040 0.044 0.040 0.044 0.045 4.631 2.021 0.532 1.678 1.423 1.218
0.0700	1.070
0.0733	0.941
0.0766	0.831
0.0800	0.733
0.0833	0.651
0.0866	0.579
0.0900	0.513
0.0933	0.456
0.0966	0.406
0.1000	0.365
0.1033	0.327
0.1066	0.295
0.1100	0.267
0.1133	0.242
0.1366	0.220
0.1200	0.204

0.1233	0.185
0.1265	0.173
0.1300	0.160
0.1333	0.148
0.1366	0.135
0.1400	0.129
0.1433	0.122
0.1466	C.100
0.1500	0.094
0.1533	0.081
0.1566	0.081
0.1600	0.072
0.1633	0.075
0.1666	0.059
0.1700	0.063
0.1733	0.063
0.1766	0.063
0.1800	0.060
0.1855	0.063
0.1800	0.033
0.1900	0.075
0.1955	0.003
0.1900	0.000
0.2000	0.055
0.2055	0.059
0.2100	0.059
0.2133	0.063
0.2166	0.056
0.2200	0.063
0.2233	0.063
0.2266	0.056
0.2300	0.056
0.2333	0.053
0.2366	0.072
0.2400	0.047
0.2433	0.059
0.2466	0.063
0.2500	0.059
0.2533	0.047
0.2566	0.056
0.2600	0.069
0.2633	0.056
0.2666	0.050
0.2700	0.053
0.2733	0.047
0.2766	0.050
0.2800	0.059
0.2833	0.047
0.2866	0.056
0.2900	0.040
0.2933	0.050
0.2966	0.059
0.3000	
0.3033	0.059
0.3000	0.050
0.3100	0.053
0.3155	0.050
0.3200 001C.U	0.053
0.3200	0.053

0 2222	0 053
0.3233	0.055
0.3266	0.059
0.3300	0.050
0.3333	0.059
• 0.3500	0.059
0.3666	0.066
0 3833	0 085
0.3033	0.003
0.4000	0.063
0.4166	0.053
0.4333	0.053
0.4500	0.050
0.4666	0.050
0.4833	0.037
0.5000	0.056
0.5166	0.050
0 5333	0.050
0.5555	0.050
0.5500	0.050
0.5666	0.04/
0.5833	0.050
0.6000	0.047
0.6166	0.047
0.6333	0.050
0.6500	0.047
0.6666	0.047
0.6833	0.047
0.7000	0 047
0.7000	0.047
0.7166	0.047
0.7333	0.04/
0.7500	0.044
0.7666	0.047
0.7833	0.047
0.8000	0.047
0.8166	0.047
0.8333	0.037
0.8500	0.075
0 8666	0 053
0.8000	0.055
0.8833	0.050
0.9000	0.047
0.9166	0.047
0.9333	0.047
0.9500	0.047
0.9666	0.047
0.9833	0.047
1,0000	0.047
1,2000	0.044
1 4000	0 044
1 6000	0.044
T.0000	0.044

.

AQTESOLV RESULTS Version 1.10 15:07 09/24/92 TEST DESCRIPTION Data set..... 0901n-1.in Data set title.... EAFB - Monitoring Well 10, Test 1 Knowns and Constants: No. of data points..... 126 Radius of well casing..... 0.08333 Radius of well..... 0.3333 Aquifer saturated thickness..... 7.4 Well screen length..... 5 Static height of water in well..... 7.4 Log(Re/Rw) 2.199 A, B, C..... 0.000, 0.000, 1.498 ANALYTICAL METHOD Bouwer and Rice (unconfined aquifer slug test) RESULTS FROM VISUAL CURVE MATCHING VISUAL MATCH PARAMETER ESTIMATES Estimate 5.2445E-003 K = $y_0 =$ 1.6970E-155 TYPE CURVE DATA K = 7.90226E-002y0 = 3.25741E+000Drawdown Time Drawdown Time Drawdown Time _____ -----_____ ____ 0.000E+000 3.257E+000 1.000E-001 1.844E-002

		Geometric)				
Well No.	Aquifer Type	Mean	K (feet/min)		K (cm/sec)		Calculated	Curve
		•	Curve	Corrected	Curve	Corrected	Yo (feet)	Yo (feet)
MW14	Well graded gravel w/sand		2.8E-01	1.5E+00	1.4E-01	7.8E-01	1.3	8.8
			2.0E-01	1.1E+00	1.0E-01	5.6E-01		0.2
			2.9E-01	1.6E+00	1.5E-01	8.0E-01		14.4
			2.8E-01	1.5E+00	1.4E-01	7.7E-01	0.9	8.9
			2.4E-01	1.3E+00	1.2E-01	6.6E-01		2.6
		Mean	2.6E-01	1.4E+00	1.3E-01	7.IE-01		
	handur laura babara U.W.		1 6E (N	115 01	3 DE 75	15 01	9 U	01
71 M M	weil glauch glavel wisallu		7.6E-02	4.1E-01	3.9E-02	2.1E-01	0.0	2.0
		Mean	7.6E-(1)	4 16-01	1 OF	2 15-01		
MW10	Well graded sand w/gravel		7.9E-02	V/N#	4.0E-02	V/N*	3.3	3.4
			5.8E-02	¥N/¥	3.0E-02	¥N/¥		2.7
		Mean	6.8E-02	¥N/¥	3.5E-02	#N/A		
		,						
MW13	Clayey gravel w/sand & clay		6.2E-02	¥/\#	3.2E-02	V/N#	1.7	2.7
			6.2E-02	¥N/A	3.2E-02	V/V#		3.0
		Mean	6.2E-02	¥N/¥	3.2E-02	¥N/¥		
IMM	Poorly graded sand w/gravel		4.9E-02	2.6E-01	2.5E-02	1.4E-01	2.0	6.3
)))		5.1E-02	2.8E-01	2.6E-02	1.4E-01		9.5
		Mean	5.0E-02	2.7E-01	2.5E-02	1.4E-01		
8WM	Well graded gravel w/sand		4.6E-02	2.5E-01	2.3E-02	1.2E-01	1.2	3.7
			4.4E-02	2.4E-01	2.2E-02	1.2E-01		1.8
		Mean	4 5E-02	2 4E-01	2.2E-02	1.26-01		

MW15	Well graded gravel w/sand		4.5E-02 3.9E-02	2.4E-01 2.1E-01	2.3E-02 2.0E-02	1.2E-01 1.1E-01	0.1	2.0 1.5
		Mean	4.2E-02	2.3E-01	2.1E-02	1.2E-01		
MWS	Well graded gravel w/sand		3.7E-02 3.8E-02	2.0E-01 2.1E-01	1.9E-02 1.9E-02	1.0E-01 1.0E-01	2.7	9.7 8.2
		Mean	3.7E-02	2.0E-01	1.9E-02	1.0E-01		
MW3	Poorly graded sand & gravelly sand		3.3E-02 3.2E-02	1.8E-01 1.7E-01	1.7E-02 1.6E-02	9.2E-02 8.6E-02	5.6	7.1 7.9
		Mean	3.2E-02	1.8E-01	1.6E-02	8.9E-02		
IEWW	Well graded gravel w/sand		2.2E-02 2.2E-02	V/N#	1.1E-02 1.1E-02	¥/N# ¥/N#	Ľ	2.2 2.0
		Mean	2.2E-02	V/N#	1.1E-02	V/N*		
MW16	Well graded sand w/gravel & well graded gravel with &		5.0E-03 5.0E-03	2.7E-02 2.7E-02	3.0E-03 3.0E-03	1.6E-02 1.6E-02	0.7	1.3
	sand	Mean	5.0E-03	2.7E-02	3.0E-03	1.6E-02		

Note 1: Corrected K values account for effective contribution from gravel pack (see text).

1

TECHNICAL MEMORANDUM

PREPARED FOR:	Mike Singer
PREPARED BY:	Kirk Creswick
DATE:	September 29, 1992
SUBJECT:	Elmendorf Air Force Base Slug Testing
PROJECT:	ANC31026.H4.10

This memorandum presents results from analysis of slug test data collected from Elmendorf Air Force Base, Alaska, during the 1st and 2nd of September, 1991.

CHAMHIII

The aquifer is a shallow unconfined glacio-fluvial aquifer consisting of mixtures of gravels and sands with occasional silts and clays.

The data are a record of the rising head after the removal of solid slug. Two slug sizes were used for the testing: a 1.5-inch-diameter, 10-foot-long slug, and a 1-inch-diameter, 10.6-foot-long slug. Both slugs produced good results. The slug was partially submerged in the majority of the tests.

Data were analyzed using the AQTESOLV algorithm for the Bouwer and Rice (1976) solution for unconfined aquifers. This method proved appropriate for the data and produced consistent results with excellent repeatability.

Water levels in nine of the tested wells intersected the well screen during the tests, requiring that a correction factor be applied to the well casing radius to account for the thickness and porosity of the gravel pack (Bouwer and Rice, 1976). The following formula is used to calculate the corrected well casing radius:

$$r_{corr} = [(1-n)r_{c}^{2} + nr_{w}^{2}]0.5$$

Where:

r _{corr}	=	corrected casing radius, in feet
n	=	porosity of gravel pack
r _c	=	measured casing radius. in feet
r _w	=	radius of borehole, in feet

The tested wells have a casing radius of 1 inch (0.083 feet), a borehole radius of 4 inches (0.333 feet), and an assumed gravel pack porosity of 30 percent. These measurements resulted in a computed value for r_{corr} of 2.3 inches (0.192 feet).

The hydraulic conductivities were first computed using the actual casing diameter of 1 inch. For the affected wells, a correction factor based on the value for r_{cor} was then applied to the hydraulic conductivity value. The hydraulic conductivity value computed using the Bouwer and Rice (1979) solution is directly proportional to the square of the r_c . The correction factor (cf) was computed as follows:

$$cf = r_{corr}^2 / r_c^2$$

10010F83.ANC

Technical Memorandum ANC31026.H4.10 September 29, 1992 Page 2

For the affected wells, the computed correction factor was 5.3. The corrected hydraulic conductivity was computed by multiplying the computed value by 5.3. The corrected values are shown in the table below.

As described by Bouwer (1989), the drawdown data generally exhibit characteristic curves with a distinctive straight-line segment. On some plots (for example, Well 16, test 8), a minor amount of deviation occurs. The plotted lines were fitted visually; deviations within the range of data observed on the plots do not result in significant variations in estimated hydraulic conductivity. For some tests (for example, Well 14, test 12), the water levels changed quickly after the removal of the slug. For these tests, only the first few data points were used for the analyses. However, even for these wells the results exhibited good repeatability between tests.

Resulting hydraulic conductivities in the wells ranged from 1.6 ft/min (0.8 cm/s) to 0.027 ft/min (0.016 cm/s). The geometric mean of the test results was 0.4 ft/min (0.2 cm/sec). These values are appropriate for sand and gravel aquifers and represent highly conductive materials. K values of individual tests at any particular well were very similar (see table).

Initial drawdown values, y_o computed by the algorithm were consistently higher than values calculated for displacement by the slug. This is likely due to the very fast response of the aquifer. The first second or two of data often show erratic readings which are caused by the shock of the slug removal. The data being fitted consists of the first 6 to 12 seconds of the record. This means that slug removal is slightly less than instantaneous and thereby causes an offset in the time axis which in turn causes the y intercept to be higher. However, after the initial noise has dissipated, the first good data have y values reasonably close to y_o and therefor provide for a valid solution. The effective radius of these tests appears to be about 1.2 to 3.7 feet from the center of the well.

Overall, the resulting K values appear to be good and consistent indicators of the hydraulic conductivities of these aquifer materials. Appendix F

SLUG TEST DATA

0.1233	0.107
0.1266	0.100
0.1300	0.094
0.1333	0.088
0.1366	0.081
0.1400	0.072
0.1466	0.072
0.1500	0.069
0.1533	0.063
0.1566	0.063
0.1600	0.059
0.1666	0.056
0.1700	0.053
0.1733	0.050
0.1766	0.050
0.1833	0.050
0.1866	0.047
0.1900	0.047
0.1933	0.044
0.1966	0.044
0.2000	0.044
0.2066	0.044
0.2100	0.040
0.2133	0.040
0.2166	0.040
0.2233	0.040
0.2266	0.040
0.2300	0.037
0.2333	0.037
0.2300	0.037
0.2433	0.040
0.2466	0.034
0.2500	0.037
0.2533	0.034
0.2566	0.037
0.2633	0.034
0.2666	0.034
0.2700	0.034
0.2733	0.034
0.2766	0.034
0.2833	0.034
0.2866	0.034
0.2900	0.034
0.2933	0.034
0.3000	0.034
0.3033	0.034
0.3066	0.034
• 0.3100	0.034
0.3133	0.031
0.3200	0.034

0.3233	0.031
0.3266	0.034
0.3300	0.031
0.3333	0.031
0.3500	0.031
0.3666	0.031
0.3833	0.031
0.4000	0.028
0 4166	0 031
0.4100	0.028
0.4555	0.020
0.4500	0.028
0.4000	0.028
0.4833	0.028
0.5000	0.028
0.5166	0.028
0.5333	0.028
0.5500	0.028
0.5666	0.028
0.5833	0.028
0.6000	0.028
0.6166	0.028
0.6333	0.025
0.6500	0.025
0.6666	0.025
0.6833	0.025
0.0000	0.025
0.7000	0.025
0.7100	0.025
0.7333	0.025
0.7500	0.025
0.7666	0.025
0.7833	0.025
0.8000	0.025
0.8166	0.025
0.8333	0.025
0.8500	0.025
0.8666	0.025
0.8833	0.025
0.9000	0.025
0.9166	0.025
0.9333	0.025
0.9500	0.025
0.9666	0.025
0.9833	0.022
1 0000	0.025
1 2000	0 022
1.2000	0.022
1 6000	0.010
1.0000	0.022
1.8000	0.022
2.0000	0.022
2.2000	0.025
2.4000	0.022
2.6000	0.022
2.8000	0.022

<<<<<<<<<<<<<<>>>>>>>>>>>>>>>>>>>>>>>>>
AQTESOLV RESULTS Version 1.10
09/24/92 15:43:23
TEST DESCRIPTION
Data set 0901n-2.in Data set title EAFB - Monitoring Well 10, Test 2
<pre>Knowns and Constants: No. of data points</pre>
ANALYTICAL METHOD
Bouwer and Rice (unconfined aquifer slug test)
RESULTS FROM VISUAL CURVght of water in well 7.4 Log(Re/Rw)
ANALYTICAL METHOD
Bouwer and Rice (unconfined aquifer slug test)

Displacement (ft)

AQTESOLV RESULTS Version 1.10 09/25/92 09:56:31 TEST DESCRIPTION Data set..... mwl4t3.in Data set title.... EAFB - Monitoring Well 14, Test 3 Knowns and Constants: Radius of well casing..... 0.08333 Radius of well..... 0.3333 Aguifer saturated thickness..... 4.44 Well screen length..... 4.44 Static height of water in well..... 4.44 Log(Re/Rw)..... 1.877 A, B, C..... 0.000, 0.000, 1.436 لخد عذه جوه مع بالا مع بالا من جوه بالا من المعالية والمعالية المعالية بالمعالية بالمعالية بالمعالية والمعالية المعالية ANALYTICAL METHOD Bouwer and Rice (unconfined aquifer slug test) RESULTS FROM VISUAL CURVE MATCHING VISUAL MATCH PARAMETER ESTIMATES Estimate K = 2.8279E-0012.3474E-022 y0 =TYPE CURVE DATA K = 2.82790E-001y0 = 8.74994E+000Time Time Drawdown Drawdown Time Drawdown ______ ______ -----0.000E+000 8.750E+000 4.000E-002 3.946E-003

Displacement (ft)

SE1000C		
09/02 10:28		
O nit# 00856	Test O	
Setups:	INPUT 1	
Type	Level (F)	
Mode	TOC	
I.D.	00000	
Reference	0.000	
Linearity	10.000	
Offset	-0.130	
Delay mSEC	50.000	
Step 0 09/02	10:01:29	
Elapsed Time	INPUT 1	
0.0000	0.006	
0.0033	0.003	
0.0066	0.006	
0.0100	0.008	
0.0166	14.002	
0.0200	7.884	
0.0233	1.092	
• 0.0266	-1.020	
0.0333	3.161	
0.0366	2.991	
0.0400	2.456	
0.0433	1.325	
0.0500	2.440	
0.0533	1.864	
0.0566	1.687	
0.0600	1.517	
0.0633	1,190	
0.0700	1.086	
0.0733	0.963	
0.0766	0.872	
0.0800	0.777	
0.0866	0.626	
0.0900	0.560	
0.0933	0.503	
0.0966	0.450	
0.1033	0.409	
0.1066	0.330	
0.1100	0.302	
0.1133	0.273	
0.1166	0.248	
0.1200	0.220	

0.1233	0.211
0.1266	0.192
0.1300	0.179
0.1355	0.173
0.1300	0.141
0.1433	0.132
0.1466	0.125
0.1500	0.119
0.1533	0.110
0.1566	0.107
0.1600	0.103
0.1633	0.097
0.1666	0.094
0.1700	0.088
0.1766	0.088
0.1800	0.081
0.1833	0.078
0.1866	0.075
0.1900	0.072
0.1933	0.072
0.1966	0.069
0.2000	0.069
0.2033	0.063
0.2100	0.063
0.2133	0.056
0.2166	0.053
0.2200	0.056
0.2233	0.056
0.2266	0.055
0.2300	0.053
0.2366	0.050
0.2400	0.050
0.2433	0.050
0.2466	0.059
0.2500	0.047
0.2533	0.04/
0.2500	0.050
0.2633	0.047
0.2666	0.050
0.2700	0.047
0.2733	0.047
0.2766	0.050
0.2800	0.040
0.2866	0.044
0.2900	0.040
0.2933	0.040
0.2966	0.040
0.3000	0.040
0.3033	0.040
0.3066	0.037
0.3133	0.040
0.3166	0.040
0.3200	0.037

0.3233	0.040
0.3266	0.037
0.3300	0.037
0.3333	0.037
.3500	0.034
0.3666	0.037
0.3833	0.034
0.4000	0.034
0.4166	0.034
0.4333	0.034
0.4500	0.034
0.4666	0.034
0.4833	0.034
0.5000	0.031
0.5166	0.031
0.5333	0.031
0.5500	0.031
0.5666	0.031
0.5833	0.031
0.6000	0.028
0.6166	0.028
0.6333	0.028
0.6500	0.028
0.6666	0.028
0.6833	0.028
0.7000	0.037
0.7166	0.040
0.7333	0.040
0.7500	0.028
0.7666	0.037
0.7833	0.031
• 0.8000	0.031
0.8166	0.031
0.8333	0.034
0.8500	0.031
0.8666	0.040
0.8833	0.034
0.9000	0.031
0.9100	0.031
0.9333	0.031
0.9900	0.031
0.000	0.020
1 0000	0.034
1.0000	0.034
1.2000	0.031

AQTESOLV RESULTS Version 1.10 09/28/92 15:35:43 TEST DESCRIPTION Data set..... mw3t0.in Data set title.... EAFB - Monitoring Well 3, Test 0 Knowns and Constants: No. of data points..... 136 Radius of well casing..... 0.08333 Radius of well..... 0.3333 Aguifer saturated thickness...... 8.3 Well screen length..... 8.3 Static height of water in well..... 8.3 Log(Re/Rw)..... 2.41 A, B, C..... 0.000, 0.000, 1.810 ANALYTICAL METHOD Bouwer and Rice (unconfined aquifer slug test) ********* **RESULTS FROM VISUAL CURVE MATCHING** VISUAL MATCH PARAMETER ESTIMATES Estimate K = 1.0645E-001 v0 =3.7552E+232 TYPE CURVE DATA K = 3.34412E-002y0 = 7.09170E+000Drawdown Time Time Drawdown Time Drawdown _____ _____ ------_____ 0.000E+000 7.092E+000 2.000E-001 9.338E-003

SE1000C Environmental Logger 09/03 09:26			
Unit# C	0856	Test	1
Setups:		INPUT	1
Гуре		Level	(F)
Mode		TOC	
1.0.		00000	
Reference	9	0.0	000
Linearity	1	0.0	000
Scale la Offset	SLOP	-0.1	130
Delay mSI	EC	50.0	000
Step 0	09/02	10:08	:30
Elapsed '	Time	INPUT	1
0.000	0	0.	003
0.003	3	0.	003
0.006	6 0	0.	003
0.013	3	<i>o</i> .	003
0.016	6	0.	000
0.020	0	12.	195 033
0.025	6	<i>5.</i> 6.	738
0.030	0	1.	848
0.033	3	2.	575 451
0.030	0	1.	923
0.043	3	2.	437
0.046	6	2.	279
0.050	3	2.	854
0.056	6	1.	640
0.060	0	1.	448
0.063	3 6	1.	275
0.070	0	1.	061
0.073	3	0.	950
0.076	6	0.	865 758
0.083	3	0.	714
0.086	6	0.	639
0.090	10	0.	579 525
0.096	56	0.	475
0.100	0	0.	431
0.103	13	0.	390 355
0.110	0	0.	321
0.113	33	0.	296
0.116	56	0.	274
0.120	10	υ.	230

.

0.1233	0.226
0.1266	0.211
0.1333	0.185
0.1366	0.154
0.1400	0.148
0.1433	0.141
0.1500	0.129
0.1533	0.122
0.1566	0.110 0.107
0.1633	0.100
0.1666	0.110
0.1700	0.097
0.1766	0.088
0.1800	0.085
0.1833	0.097
0.1866	0.094
0.1933	0.085
0.1966	0.081
0.2000	0.078
0.2055	0.072
0.2100	0.069
0.2133	0.072
0.2200	0.066
0.2233	0.063
0.2266	0.059
0.2333	0.056
0.2366	0.050
0.2400	0.050
0.2455	0.047
0.2500	0.047
0.2533	0.047
0.2500	0.047
0.2633	0.047
0.2666	0.047
0.2700	0.050
0.2766	0.056
0.2800	0.056
0.2833	0.056
0.2900	0.056
0.2933	0.056
0.2966	0.053
0.3033	0.053
0.3066	0.053
0.3100	0.053
0.3133	0.053
0.3200	0.053

0.3233	0.053
0.3266	0.053
0.3300	0.050
0.3333	0.053
0.3500	0.050
0.3666	0.047
0.3833	0.047
0.4000	0.050
0.4166	0.047
0.4333	0.047
0.4500	0.044
0.4666	0.044
0.4833	0.044
0.5000	0.044
0.5166	0.044
0.5333	0.041
0.5500	0.044
0.5666	0.044
0.5833	0.044
0.6000	0.044
0.6166	0.041
0.6333	0.044
0.6500	0.044
0.6666	0.044
0.6833	0.044
0.7000	0.041
0.7166	0.050
0.7333	0.041
0.7500	0.041
0.7666	0.041
0.7833	0.041
0.8000	0.041
0.8166	0.041
0.8333	0.041
0.8500	0.041
0.8666	0.041
0.8833	0.041
0.9000	0.041
0.9166	0.041
0.9333	0.041
0.9500	0.041
0.9666	0.041
0.9833	0.031
1.0000	0.034

AOTESOLV RESULTS Version 1.10 19/28/92 16:05:16 TEST DESCRIPTION Data set..... a:\mw3t1.in Data set title.... EAFB - Monitor Well 3, Test 1 Knowns and Constants: No. of data points..... 139 Radius of well casing..... 0.08333 Radius of well..... 0.3333 Aquifer saturated thickness..... 8.3 Well screen length..... 8.3 Static height of water in well..... 8.3 Log(Re/Rw)..... 2.41 A, B, C..... 0.000, 0.000, 1.810 ANALYTICAL METHOD Bouwer and Rice (unconfined aguifer slug test) RESULTS FROM VISUAL CURVE MATCHING VISUAL MATCH PARAMETER ESTIMATES Estimate 1.5349E-002 К ≃ v0 ≈ .ºÄ&E+106 TYPE CURVE DATA K = 3.14906E - 002y0 = 9.57249E+000Time Drawdown Time Time Drawdown Drawdown ---------_____ ------0.000E+000 9.572E+000 2.000E-001 1.856E-002

SE1000C Environmental Logger 09/02 11:42		
O nit# 00856	Test 2	
Setups:	INPUT 1	
Type Mode	Level (F) TOC	
I.D.	00000	
Reference Linearity Scale factor Offset Delay mSEC	0.000 0.000 10.010 -0.130 50.000	
Step 0 09/02	11:21:14	
Elapsed Time	INPUT 1	
0.0000 0.0033 0.0066 0.0100 0.0133 0.0166 0.0200 0.0233 0.0266 0.0300 0.0333 0.0366 0.0400 0.0433 0.0466 0.0500 0.0533 0.0566 0.0600 0.0633 0.0666 0.0700 0.0733	$\begin{array}{c} 0.028\\ 0.062\\ -0.037\\ 0.018\\ 5.000\\ 2.881\\ 2.547\\ 1.804\\ 1.262\\ 1.763\\ 1.772\\ 1.542\\ 1.313\\ 1.111\\ 0.925\\ 0.774\\ 0.645\\ 0.538\\ 0.450\\ 0.374\\ 0.314\\ 0.264\\ 0.220\end{array}$	
0.0733 0.0766 0.0800 0.0833 0.0866 0.0900 0.0933 0.0966 0.1000 0.1033 0.1066 0.1100 0.1133 0.1166 0.1200	0.220 0.185 0.157 0.135 0.100 0.085 0.075 0.066 0.059 0.053 0.040 0.040 0.040 0.037	

0.1233	0.034
0.1266	0.034
0.1333	0.028
0.1366	0.028
0.1400	0.028
0.1433	0.025
0.1500	0.025
0.1533	0.025
0.1566	0.025
0.1600	0.025
0.1633	0.025
0.1700	0.022
0.1733	0.022
0.1766	0.022
0.1800	0.022
0.1866	0.022
0.1900	0.025
0.1933	0.022
0.1966	0.025
0.2000	0.022
0.2066	0.025
0.2100	0.022
0.2133	0.025
0.2166	0.022
0.2233	0.022
0.2266	0.025
0.2300	0.022
0.2333	0.025
0.2400	0.022
0.2433	0.025
0.2466	0.025
0.2500	0.025
0.2566	0.025
0.2600	0.025
0.2633	0.025
0.2666	0.025
0.2733	0.025
0.2766	0.025
0.2800	0.025
0.2833	0.025
0.2866	0.025
0.2933	0.025
0.2966	0.025
0.3000	0.025
0.3033	0.025
0.3100	0.025
0.3133	0.028
0.3166	0.025
0.3200	0.025

•	
• 0.3233	0.022
0.3266	0.025
0.3300	0.025
0.3333	0.025
0.3500	0.025
0.3666	0.022
0.3833	0.025
0.4000	0.025
0.4166	0.025
0.4333	0.025
0.4500	0.025
0.4666	0.022
0.4833	0.022
0.5000	0.022
0.5166	0.022
0.5333	0.022
0.5500	0.022
0.5666	0.022
0.5833	0.022
0.6000	0.022
0.6166	0.022
0.6333	0.022
0.6500	0.022
0.6666	0.022
0.6833	0.022
0.7000	0.022
0.7166	0.025
0.7333	0.022
0.7500	0.028

• • •

.

AQTESOLV RESULTS Version 1.10 09/25/92 13:56:25 TEST DESCRIPTION Data set..... a:\mw1t2.in Data set title..... EAFB - Monitoring Well 1, Test 2 Knowns and Constants: No. of data points..... 122 Radius of well casing..... 0.08333 Radius of well..... 0.3333 Aquifer saturated thickness...... 9.6 Well screen length..... 9.6 Static height of water in well..... 9.6 Log (Re/Rw) 2.536 A, B, C..... 0.000, 0.000, 1.931 ______ ANALYTICAL METHOD Bouwer and Rice (unconfined aquifer slug test) ______ RESULTS FROM VISUAL CURVE MATCHING VISUAL MATCH PARAMETER ESTIMATES Estimate 4.8760E-002 K = y0 =5.2140E-303 TYPE CURVE DATA K = 4.87601E-002y0 = 6.30642E+000Time Drawdown Time Drawdown Time Drawdown ______ _____ 0.000E+000 6.306E+000 2.000E-001 1.519E-004

SE1000C Environmental Logger 09/02 11:46		
Unit# 00856	Test 3	
Setups: Type Mode I.D.	INPUT 1 Level (F) TOC 00000	
Reference Linearity Scale factor Offset Delay mSEC	0.000 0.000 10.010 -0.130 50.000	
Step 0 09/02	11:25:14	
Elapsed Time	INPUT 1	
0.0000 0.0033 0.0066 0.0100 0.0133 0.0166 0.0200 0.0233 0.0266 0.0300 0.0333 0.0366 0.0400 0.0433 0.0466 0.0500 0.0533 0.0566 0.0600 0.0633 0.0666 0.0700 0.0733 0.0766 0.0800 0.0833 0.0866 0.0900	0.031 0.018 -0.031 -0.091 3.772 3.082 2.701 1.772 1.394 1.882 1.753 1.473 1.262 1.057 0.878 0.733 0.610 0.510 0.415 0.346 0.286 0.236 0.138 0.113 0.094 0.075	
0.0966 0.1000 0.1033 0.1066 0.1100 0.1133 0.1166 0.1200	0.056 0.044 0.040 0.034 0.028 0.018 0.018 0.018	

0.1233	0.012
0.1266	0.012
0.1300	0.009
0.1333	0.009
0.1366	0.009
0.1400	0.009
0.1433	0.009
0.1466	0.006
0.1500	0.009
0.1533	0.003
0.1566	0.006
0.1600	0.006
0.1633	0.009
0.1666	0.009
0.1700	0.006
0.1733	0.000
0.1766	0.006
0.1800	0.006
0.1833	0.006
0.1866	0.006
0.1900	0.006
0.1933	0.009
0.1966	0.006
0.2000	0.006
0.2033	0.003
0.2066	0.006
0.2100	0.006
0.2133	0.006
0.2166	0.006
	0.006
0.2233	0.006
0.2200	0.008
0.2300	0.000
0.2355	0.000
0.2300	0.000
0.2400	0.000
0.2455	0.006
0.2500	0.006
0.2533	0.006
0.2566	0.006
0.2600	0.006
0.2633	0.006
0.2666	0.006
0.2700	0.006
0.2733	0.006
0.2766	0.006
0.2800	0.006
0.2833	0.006
0.2866	0.006
0.2900	0.006
0.2933	0.006
0.2966	0.006
0.3000	0.006
0.3033	0.006
0.3066	0.006
0.3100	0.006
0.3133	0.003
0.3166	0.006
0.3200	0.003

0.3233	0.006
0.3266	0.003
0.3300	0.003
0.3333	0.006
0.3500	0.003
0.3666	0.003
0.3833	0.003
0.4000	0.003
0.4166	0.003
0.4333	0.006
0.4500	0.003
0.4666	0.003
0.4833	0.003
0.5000	0.003
0.5166	0.000
0.5333	0.000
0.5500	0.003
0.5666	0.003
0.5833	0.003
0.6000	0.003
0.6166	0.003
0.6333	0.003
0.6500	0.003
0.6666	0.003
0.6833	0.003
0.7000	0.003
0.7166	0.003
0.7333	0.003
0.7500	0.003
0.7000	0.003
0.7833	0.003
0.8000	0.003
0.0100	0.000
0.8500	0.003
0.8566	0.000
0.8833	0.003
0 9000	0.000
0.9166	0.000
0.9333	0.000
0.9500	0.000
0.9666	0.003

AQTESOLV RESULTS Version 1.10
Version 1.10
09/25/92 14:07:19

TEST DESCRIPTION
Data set a:\mw1t3.in Data set title EAFB - Monitoring Well 1, Test 3
<pre>Knowns and Constants: No. of data points 126 Radius of well casing 0.08333 Radius of well 0.3333 Aquifer saturated thickness 9.6 Well screen length 9.6 Static height of water in well 9.6 Log(Re/Rw) 2.536 A, B, C 0.000, 0.000, 1.931</pre>
Bouwer and Rice (unconfined aquifer slug test)
RESULTS FROM VISUAL CURVE MATCHING
RESULTS FROM VISUAL CURVE MATCHING VISUAL MATCH PARAMETER ESTIMATES
RESULTS FROM VISUAL CURVE MATCHING VISUAL MATCH PARAMETER ESTIMATES Estimate
RESULTS FROM VISUAL CURVE MATCHING VISUAL MATCH PARAMETER ESTIMATES Estimate K = 4.0944E-002 y0 = 5.2140E-303
RESULTS FROM VISUAL CURVE MATCHING VISUAL MATCH PARAMETER ESTIMATES Estimate K = 4.0944E-002 y0 = 5.2140E-303 <<<<<<<>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>
RESULTS FROM VISUAL CURVE MATCHING VISUAL MATCH PARAMETER ESTIMATES Estimate K = 4.0944E-002 y0 = 5.2140E-303 <<<<<<<<<>>>>>>>>>>>>>>>>>>>>>>>>>>>
RESULTS FROM VISUAL CURVE MATCHING VISUAL MATCH PARAMETER ESTIMATES Estimate K = 4.0944E-002 y0 = 5.2140E-303 <<<<<<<<<>>>>>>>>>>>>>>>>>>>>>>>>>>>>
RESULTS FROM VISUAL CURVE MATCHING VISUAL MATCH PARAMETER ESTIMATES Estimate K = 4.0944E-002 y0 = 5.2140E-303 <<<<<<<>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>
RESULTS FROM VISUAL CURVE MATCHING VISUAL MATCH PARAMETER ESTIMATES Estimate K = 4.0944E-002 y0 = 5.2140E-303 <<<<<<<<<<<<<<<<>>>>>>>>>>>>>>
RESULTS FROM VISUAL CURVE MATCHINGVISUAL MATCH PARAMETER ESTIMATESEstimate K = 4.0944E-002 y0 = 5.2140E-303VISUAL MATCH PARAMETER ESTIMATESEstimate K = 5.0140E-303TYPE CURVE DATA K = 5.06885E-002 y0 = 9.52796E+000Time Drawdown 0.000E+000Time Drawdown 1.200E-001Time Drawdown Drawdown

1	•
SE1000	
Environmenta	L Logger
09/02 13	. 52
Unit # 00856	Test 4
Setups:	INPUT 1
Type	Level (F)
Mode	TOC
I.D.	00000
Reference	0.000
Linearity	0.000
Scale factor	10.010
OIISEC	-0.130
Delay msec	50.000
Step 0 09/02	12:50:11
Elapsed Time	INPUT 1
0.0000	0.000
0.0033	-0.012
0.0066	1.511
0.0100	3.806
0.0133	2.008
0.0200	1.687
0.0233	1.467
0.0266	1.335
0.0300	1.212
0.0333	1.057
0.0366	0.982
0.0400	0.793
0.0466	0.689
0.0500	0.613
0.0533	0.544
0.0566	0.472
0.0600	0.418
0.0633	0.371
0.0700	0.295
0.0733	0.264
0.0766	0.229
0.0800	0.201
0.0833	0.176
0.0866	0.157
0.0900	0.100
0.0966	0.110
0.1000	0.097
0.1033	0.085
0.1066	0.075
0.1100	0.069
0.1133	0.059
0.1200	0.050
~	

0.1233	0.047
0.1266	0.040
0.1300	0.031
0.1366	0.025
0.1400	0.022
0.1433	0.022
0.1500	0.015
0.1533	0.012
0.1600	0.009
0.1633	0.009
0.1666	0.009
0.1733	0.009
0.1766	0.009
0.1800	0.009
0.1866	0.012
0.1900	0.012
0.1955	0.006
0.2000	0.006
0.2033	0.003
0.2100	0.009
0.2133	0.012
0.2200	0.009
0.2233	0.015
0.2266	0.015 0.012
0.2333	0.012
0.2366	0.012
0.2400	0.012
0.2466	0.012
0.2500	0.012 0.012
0.2566	0.009
0.2600	0.012
0.2633	0.009
0.2700	0.012
0.2733	0.009
0.2800	0.009
0.2833	0.012
0.2866	0.009
0.2933	0.009
0.2966	0.009
0.3033	0.006
0.3066	0.006
0.3100	0.006
0.3166	0.009
0.3200	0.009

0.3233	0.003
0.3266	0.003
0.3300	0.003
_ 0.3333	0.003
0.3500	0.000
0.3666	0.003
0.3833	0.003
0.4000	0.000
0.4166	0.000
0.4333	0.000
0.4500	0.000
0.4666	0.003
0.4833	0.003
0.5000	0.000
0.5166	0.000
0.5333	0.000
0.5500	0.000
0.5666	0.000
0.5833	0.000
0.6000	0.000
0.6166	0.000
0.6333	-0.006
0.6500	-0.006
0.6666	-0.018
0.6833	0.000
0.7000	0.013
0.7100	0.016
0.7333	0.015
0.7500	0.015
0 7833	0.015
0.8000	0.015
0.8166	0.015
0.8333	0.015
0.8500	0.015
0.8666	0.015
0.8833	0.015
0.9000	0.015
0.9166	0.015
0.9333	0.015
0.9500	0.015
0.9666	0.018
0.9833	0.015
1.0000	0.015
1.2000	0.012
1.4000	-0.006
1.6000	0.012

AQTESOLV RESULTS Version 1.10 14:21:49 09/25/92 TEST DESCRIPTION Data set..... a:\mw8t4.in Data set title.... EAFB - Monitoring Well 8, Test 4 Knowns and Constants: No. of data points..... 124 Radius of well casing..... 0.08333 Radius of well..... 0.3333 Aquifer saturated thickness..... 5.77 Well screen length..... 5.77 Static height of water in well..... 5.77 A, B, C..... 0.000, 0.000, 1.576 ANALYTICAL METHOD Bouwer and Rice (unconfined aquifer slug test) RESULTS FROM VISUAL CURVE MATCHING VISUAL MATCH PARAMETER ESTIMATES Estimate K = 3.2469E-003 y0 ≈ 5.2140E-303 TYPE CURVE DATA K = 4.60367E-002y0 = 3.73594E+000Time Drawdown Time Drawdown Time Drawdown ------______ 0.000E+000 3.736E+000 2.000E-001 2.534E-003

SE1000	OC
Environmenta	al Logger
09/02 13	3:57
Unit# 00856	Test 5
Setups:	INPUT 1
Type	Level (F)
Mode	TOC
I.D.	00000
Reference	0.000
Linearity	0.000
Scale factor	10.010
Offset	-0.130
Delay mSEC	50.000
Step 0 09/02	12:55:50
Elapsed Time	INPUT 1
0.0000 0.0033 0.0066 0.0100 0.0133 0.0166 0.0200 0.0233 0.0266 0.0300 0.0333 0.0366 0.0400 0.0433 0.0466 0.0500 0.0533 0.0566 0.0600 0.0633 0.0666 0.0700 0.0733	$\begin{array}{c} -0.006\\ 0.034\\ 0.031\\ 0.566\\ 5.003\\ -0.349\\ 1.974\\ 1.539\\ 1.394\\ 1.294\\ 1.155\\ 1.045\\ 0.932\\ 0.853\\ 0.733\\ 0.673\\ 0.591\\ 0.522\\ 0.453\\ 0.393\\ 0.352\\ 0.318\\ 0.289\end{array}$
0.0766	0.261
0.0800	0.236
0.0833	0.204
0.0866	0.188
0.0900	0.166
0.0933	0.148
0.0966	0.132
0.1000	0.110
0.1033	0.097
0.1066	0.085
0.1100	0.075
0.1133	0.066
0.1166	0.056
0.1200	0.050

0.044
0.040
0.031
0.028
0.022
0.018
0.015
0.012
0.012
0.009
0.009
0.006
0.006
0.003
0.003
0.003
0.003
0.000
0.000
-0.003
-0.003
-0.003
-0.006
0.000
0.003
0.003
0.003
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.003
0.000
0.003
0.003
0.000
0.000
0.003

0.3233	0.000
0.3266	0.000
0.3300	0.000
0.3333	0.000
0.3500	0.003
0.3666	0.003
0.3833	-0.003
0.4000	-0.003
0.4166	0.003
0.4333	0.003
0.4500	0.003
0.4666	0.003
0.4833	0.000
0.5000	0.003
0.5166	0.003

AQTESOLV RESULTS Version 1.10 09/25/92 14:39:47 TEST DESCRIPTION Data set..... a:\mw8t5.in Data set title.... EAFB - Monitoring Well 8, Test 5 Knowns and Constants: No. of data points..... 69 Radius of well casing..... 0.08333 Radius of well..... 0.3333 Aquifer saturated thickness..... 5.77 Well screen length..... 5.77 Static height of water in well..... 5.77 Log(Re/Rw)..... 2.097 A, B, C..... 0.000, 0.000, 1.576 ANALYTICAL METHOD Bouwer and Rice (unconfined aquifer slug test) RESULTS FROM VISUAL CURVE MATCHING VISUAL MATCH PARAMETER ESTIMATES Estimate 4.4200E-002 K ≈ v0 ≈ 0.0000E+000 TYPE CURVE DATA K = 4.42004E-002y0 = 1.75198E+000Time Drawdown Time Time Drawdown Drawdown _____ -----0.000E+000 1.752E+000 1.500E-001 9.160E-003

SE1000	C
Environmenta	l Logger
09/02 14	:00
nit# 00856	Test 6
Setups:	INPUT I
Туре	Tevet (1)
Mode	00000
1.0.	00000
Reference	0.000
Linearity	0.000
Scale factor	10.010
Offset	-0.130
Delay mSEC	50.000
Step 0 09/02	13:23:23
Elapsed Time	INPUT 1
	0 010
0.0000	0.012
0.0055	0.009
0.0000	0.012
0.0133	0.009
0.0166	0.012
- 0.0200	0.012
0.0233	0.006
0.0266	0.103
0.0300	5.119
0.0333	0.919
0.0366	1.898
0.0400	1.826
0.0433	1.694
0.0466	1.605
0.0500	1.540
0.0533	1 276
0.0500	1 303
0.0600	1.234
0.0666	1,171
0.0700	1.111
0.0733	1.051
0.0766	0.998
0.0800	0.947
0.0833	0.897
0.0866	0.853
0.0900	0.806
0.0933	0.765
0.0966	0.727
0.1000	0.689
0.1033	0.654
0.1066	0.623
0.1100	0.591
0.1133	0.500
0.1100	0.532
0.1200	0.000

0.1233	0.481
0.1266	0.456
0.1333	0.412
0.1366	0.393
0.1400	0.371
0.1433	0.355
0.1400	0.340
0.1533	0.308
0.1566	0.292
0.1600	0.280
0.1633	0.267
0.1700	0.242
0.1733	0.233
0.1766	0.220
0.1800	0.210
0.1866	0.192
0.1900	0.185
0.1933	0.176
0.1966	0.170
0.2000	0.160
0.2055	0.147
0.2100	0.141
0.2133	0.135
0.2166	0.129
0.2200	0.129
0.2266	0.116
0.2300	0.110
0.2333	0.107
0.2300	0.103
0.2433	0.094
0.2466	0.091
0.2500	0.088
0.2533	0.085
0.2600	0.078
0.2633	0.075
0.2666	0.072
0.2700	0.072
0.2766	0.066
0.2800	0.062
0.2833	0.062
0.2866	0.059
0.2900	0.053
0.2966	0.053
0.3000	0.053
0.3033	0.050
0.3066	0.04/ 0.047
0.3133	0.047
0.3166	0.044
0.3200	0.044

0.3233	0.040
0.3266	0.040
0.3300	0.040
_ 0.3333	0.040
0.3500	0.034
0.3666	0.031
0.3833	0.028
0.4000	0.025
0.4166	0.025
0.4333	0.022
0.4500	0.018
0.4666	0.018
0.4833	0.015
0.5000	0.018
0.5166	0.018
0.5333	0.018
0.5500	0.015
0.5666	0.015
0.5833	0.015
0.6000	0.015
0.6166	0.015
0.6333	0.015
0.6500	0.015
0.6666	0.015
0.6833	0.015
0.7000	0.015
0.7100	0.015
0.7333	0.015
0.7500	0.015
0.7000	0.015
	0.015
0.8000	0.015
0.8100	0.015
0.8500	0.015
0.8666	0.015
0.8833	0.015
0.9000	0.015
0.9166	0.015
0,9333	0.015
0,9500	0.015
0,9666	0.015
0,9833	0.012
1,0000	0.012
2.0000	

AOTESOLV RESULTS Version 1.10 15:05:42 09/25/92 <u>⋛⋬⋕⋻⋭⋳⋓⋼⋧⋨⋕⋼⋶⋭⋳⋝⋳⋜⋶⋜⋶⋓⋜⋓⋳⋓⋳⋓⋼⋧⋳⋎⋳⋓⋶⋭⋹∊∊⋳⋏⋳⋎∊</u>⋧∊∊⋨⋌⋎⋝⋌⋩⋝⋜⋕⋜⋶⋶⋛⋛⋻⋶⋶⋏⋧∊∊∊ TEST DESCRIPTION Data set..... a:\mw31t6.in Data set title..... EAFB - Monitoring Well 31, Test 6 Knowns and Constants: No. of data points..... 132 Radius of well casing..... 0.08333 Radius of well..... 0.3333 Aquifer saturated thickness..... 5.42 Well screen length..... 5 Static height of water in well..... 5.42 Log (Re/Rw) 2.023 A, B, C..... 0.000, 0.000, 1.498 ANALYTICAL METHOD Bouwer and Rice (unconfined aquifer slug test) RESULTS FROM VISUAL CURVE MATCHING VISUAL MATCH PARAMETER ESTIMATES Estimate 2.2983E-002 К = 0.0000E+000 v0 =TYPE CURVE DATA K = 2.29830E-002y0 = 2.27856E+000Time Drawdown Time Time Drawdown Drawdown -----______ 0.000E+000 2.279E+000 4.000E-001 3.278E-003 TYPE CURVE DATA K = 2.22808E-002y0 = 2.19072E+000
Time	Drawdown	Time	Drawdown	Time	Drawdown
0.000E+000	2.191E+000	4.000E-001	3.849E-003		

Displacement (ft)

SE1000C				
Environmental Logger				
09/02 14:02				
Unit# 00856	Test 7			
Setups:	INPUT 1			
Туре	Level (F)			
Mode	TOC			
I.D.	00000			
Reference	0.000			
Linearity	0.000			
Offset	-0.130			
Delay mSEC	50.000			
Step 0 09/02	13:28:51			
Elapsed Time	INPUT 1			
0.0000	-0.012			
0.0033	-0.015			
0.0100	-0.015			
0.0133	-0.166			
0.0166	6.769			
	0.355			
0.0266	1.549			
0.0300	1.476			
0.0333 1.457				
0.0400 1.300				
0.0433 1.212				
0.0466 1.171				
0.0500	1.111			
0.0533	1.051			
0.0600	0.938			
0.0633	0.887			
0.0666	0.850			
0.0700	0.802			
0.0766	0.749			
0.0800	0.692			
0.0833	0.645			
0.0866	0.610			
0.0900	0.547			
0.0966	0.519			
0.1000	0.491			
0.1033	0.466			
	0.445			
0.1133	0.399			
0.1166	0.381			
0.1200	0.358			

.

0.1233	0.340
0.1266	0.324
0.1300	0.308
0.1333	0.292
0.1366	0.280
0.1400	0.204
0.1433	0.251
0.1466	0.239
0.1500	0.229
0.1555	0.217
0.1500	0.204
0.1633	0.188
0.1666	0.179
0.1700	0.170
0.1733	0.160
0.1766	0.154
0.1800	0.148
0.1833	0.141
0.1866	0.132
0.1900	0.129
0.1933	0.122
0.1966	0.116
0.2000	0.110
0.2033	0.107
0.2066	0.100
0.2100	0.097
0.2133	0.091
0.2166	0.088
0.2200	0.085
0.2255	0.001
0.2300	0.072
0.2333	0.072
0.2366	0.069
0.2400	0.066
0.2433	0.062
0.2466	0.059
0.2500	0.056
0.2533	0.053
0.2566	0.053
0.2600	0.050
0.2633	0.047
0.2666	0.047
0.2700	0.044
0.2733	0.044
0.2760	0.040
0.2800	0.037
0.2855	0.037
0.2000	0.034
0.2933	0.034
0.2966	0.031
0.3000	0.031
0.3033	0.028
0.3066	0.028
0.3100	0.028
0.3133	0.028
0.3166	0.025
0.3200	0.025

0.3233	0.028
0.3266	0.022
0.3300	0.022
0.3333	0.022
0.3500	0.018
0.3666	0.015
0.3833	0.012
0.4000	0.012
0.4166	0.009
0.4333	0.009
0.4500	0.009
0.4666	0.009
0.4833	0.006
0.5000	0.006
0.5100	0.006
0.5333	0.006
0.5500	0.006
0,5000	0.000
0.5855	0.003
0.6166	0.006
0.6333	0.003
0.6500	0.003
0.6666	0.003
0.6833	0.003
0.7000	0.006
0.7166	0.003
0.7333	0.003
0.7500	0.003
0.7666	0.003
0.7833	0.003
• 0.8000	0.003
0.8166	0.003
0.8333	0.006
0.8500	0.003
0.8666	0.003
0.8833	0.003
0.9000	0.003
0.9100	0.003
0.9555	0.003
0.9666	0.003
0,9833	0.003
1,0000	0.003
1.2000	0.000
1.4000	-0.003
1.6000	-0.006

AOTESOLV RESULTS Version 1.10 09/25/92 15:20 TEST DESCRIPTION Data set..... a:\mw31t7.in Data set title.... EAFB - Monitoring Well 31, Test 7 Knowns and Constants: No. of data points..... 136 Radius of well casing..... 0.08333 Radius of well..... 0.3333 Aquifer saturated thickness..... 5.42 Well screen length..... 5 Static height of water in well..... 5.42 Log (Re/Rw) 2.023 A, B, C..... 0.000, 0.000, 1.498 *=*=*=*============== ANALYTICAL METHOD Bouwer and Rice (unconfined aguifer slug test) RESULTS FROM VISUAL CURVE MATCHING VISUAL MATCH PARAMETER ESTIMATES Estimate К = 9.9244E-003 y0 =0.0000E+000 TYPE CURVE DATA K = 2.21737E - 002y0 = 1.95754E+000Time Time Drawdown Time Drawdown Drawdown _____ 0.000E+000 1.958E+000 4.000E-001 3.546E-003

MW216 121 1281

SE1000C Environmental Logger 09/02 18:49			
Unit# 00856	Test 8		
Setups:	INPUT 1		
Туре	Level (F)		
Mode	TOC		
I.D.	00000		
Reference	0.000		
Linearity Scale factor	10 010		
Offset	-0.130		
Delay mSEC	50.000		
Step 0 09/02	14:57:32		
Elapsed Time	INPUT 1		
0.0000	-0.056		
0.0033	3.167		
0.0066	1.605		
0.0133	1.228		
0.0166	1.212		
0.0200	1.240		
0.0233	1,190		
0.0300	1.180		
0.0333	1.168		
0.0366	1.155		
0.0400	1,136		
0.0466	1.124		
0.0500	1.130		
0.0533	1.095		
0.0560	1.089		
0.0633	1.064		
0.0666	1.051		
0.0700	1.042		
0.0733	1.029		
0.0800	1.007		
0.0833	0.991		
0.0866	0.988		
0.0900	0.976		
0.0966	0.957		
0.1000	0.947		
0.1033	0.938		
0.1066	0.928		
0.1133	0.910		
0.1166	0.900		
0.1200	0.894		

0.1233	0.869
0.1266	0.865
0.1300	0.856
0.1333	0.847
0.1366	0.837
0.1400	0.828
0.1433	0.821
0.1466	0.812
0.1500	0.802
0.1533	0.793
0.1500	0.787
0.1600	0.771
0.1666	0.762
0.1700	0.752
0.1733	0.746
0.1766	0.739
0.1800	0.730
0.1833	0.724
0.1866	0.714
0.1900	0.708
0.1933	0.699
0.1966	0.692
0.2000	0.686
0.2033	0.677
0.2066	0.670
0.2100	0.004
0.2166	0.648
- 0.2200	0.642
0.2233	0.636
0.2266	0.629
0.2300	0.623
0.2333	0.617
0.2366	0.610
0.2400	0.601
0.2433	0.598
0.2466	0.591
0.2500	0.502
0.2555	0.570
0.2600	0,563
0.2633	0.560
0.2666	0.554
0.2700	0.547
0.2733	0.541
0.2766	0.535
0.2800	0.529
0.2833	0.522
0.2866	0.510
0.2900	0.515
0.2935	0.500
0.3000	0.494
0.3033	0.488
0.3066	0.481
0.3100	0.478
0.3133	0.472
0.3166	0.466
0.3200	0.459

0.3233	0.456
0.3266	0.450
0.3300	0.447
0.3333	0.440
0.3500	0.412
0.3666	0.390
0.3833	0.365
0.4000	0.343
0.4166	0.321
0 4333	0.302
0.4500	0.283
0.4500	0.264
0.4000	0.204
0.4000	0.233
0.5000	0.233
0.5100	0.21/
0.5355	0.204
0.5500	0.192
0.5666	0.1/9
0.5833	0.166
0.6000	0.15/
0.6166	0.148
0.6333	0.138
0.6500	0.129
0.6666	0.119
0.6833	0.113
0.7000	0.107
0.7166	0.100
0.7333	0.094
0.7500	0.088
0.7666	0.081
0.7833	0.078
0.8000	0.072
0.8166	0.069
0.8333	0.066
0.8500	0.059
0.8666	0.056
0.8833	0.053
0.9000	0.053
0.9166	0.050
0.9333	0.047
0.9500	0.044
0.9666	0.040
0.9000	0.040
1 0000	0.037
1 2000	0.012
1 4000	0 000
1 6000	-0.006
1 0000	-0.000
T.0000	
2.0000	
2.2000	-0.015
2.4000	-0.018

Envi	09,	nmenta /02 18	1 Lo :52	gç	je	r
Unit	:# (00856	Tes	t	9	
Setups	5:		INPU	т —-		1
Туре			Leve	1	(F)
Mode			TOC		-	•
I.D.			0000	0		
Refere	enc	е	0	. (00	0
Lineal	rit	Y	0	•	00	0
Scale	la	ctor	10	•	12	0
Delay	r mS	EC	-0 50	•	00	0
Step (0	09/02	15:0	5	:4	0
Elaps	ed	Time	INPU	T		1
0.0	000	0) . (00	0
0.0	003	3	-0		00	6
0.0	006	6	0).	00	3
0.0	010	0	2	•	83	3
0.0	013	3	-1	•	79	1
0.	016	6	1	•	41 25	.6
0.	020	2	لـ ۱	•	20 10	9
0.	025 026	5	ב נ	••	14	6
Ő.	030	0	Ĩ		12	4
0.	033	3	1		10	8
0.	036	6	1	•	10	5
0.	040	0]	•	80	9
0.	043	3	1	••	08	0
0.	040 050		1	• •	05) <u>1</u> ; 1
0.	053	3	1		03	9
0.	056	6	j	L .	02	9
ο.	060	0	1	L.	01	.7
0.	063	3	1	L.	00)7
0.	066	6	().	99	95
0.	070			J.	98	32
0.	075	5		יי א	91	' J : 1
0.	080	0).).	95	50
ŏ.	083	3	Ċ	5.	94	11
0.	086	56	().	92	28
0.	090	00	().	91	L9
0.	093	33	().	91	LO
0.	096	56	(). `	90	JO
0.	103	10		่ง. า	85	7⊥ 21
0.	104	56). 7.	81	, <u>,</u> 72
0.	110	0			86	52
Ŭ.	112	33	ĺ	ο.	85	53
<u>.</u>	116	56	(ο.	84	13
0.	120	00	(ο.	83	34

SE1000C

0.1233	0.828
0.1266	0.818
0.1333	0.796
0.1366	0.790
0.1400	0.784
0.1466	0.768
0.1500	0.758
0.1533	0.749
0.1566	0.743
0.1633	0.733
0.1666	0.717
0.1700	0.708
0.1733	0.702
0.1800	0.689
0.1833	0.680
0.1866	0.673
0.1900	0.667
0.1966	0.651
0.2000	0.642
0.2033	0.639
0.2066	0.629
0.2133	0.617
0.2166	0.610
0.2200	0.601
0.2233	0.598
0.2300	0.582
0.2333	0.576
0.2366	0.569
0.2400	0.563
0.2466	0.551
0.2500	0.544
0.2533	0.538
0.2500	0.532
0.2633	0.519
0.2666	0.513
0.2700	0.510
0.2766	0.497
0.2800	0.491
0.2833	0.484
0.2866	U.481 0.475
0.2933	0.469
0.2966	0.466
0.3000	0.459
	0.453
0.3100	0.443
0.3133	0.437
0.3166	0.431
0.3200	0.428

0.3233	0.421
0.3266	0.418
0.3300	0.412
0.3333	0.409
0.3500	0.384
0.3666	0.358
0.3833	0.333
0.4000	0.314
0.4100	0.292
0.4333	0.273
0.4500	0.200
0.4000	0.242
0.4035	0.225
0.5166	0.198
0.5100	0.185
0.5500	0.173
0.5666	0.163
0.5833	0.151
0.6000	0.144
0.6166	0.135
0.6333	0,125
0.6500	0.119
0.6666	0.113
0.6833	0.107
0.7000	0.100
0.7166	0.094
0.7333	0.088
0.7500	0.085
0.7666	0.078
0.7833	0.075
0.8000	0.072
0.8166	0.069
0.8333	0.066
0.8500	0.062
0.8666	0.059
0.8833	0.056
0.9000	0.053
0.9166	0.053
0.9333	0.050
0.9500	0.047
0.9666	0.047
0.9833	0.044
1.0000	0.040
1.2000	0.022
1.4000	0.012
1.6000	0.006
1.8000	0.003
2.0000	0.000
2.2000	0.000
2.4000	-0.003
2.6000	-0.003
2.8000	-0.003
3.0000	-0.006
3.2000	-0.006
3.4000	-0.009
3.6000	-0.006
3.8000	-0.006

AQTESOLV RESULTS Version 1.10 09/25/92 16:24: TEST DESCRIPTION Data set a:\mwl6t9.in Data set title EAFB - Monitoring Well 16, Test 9 Knowns and Constants: No. of data points 141 Radius of well casing 0.08333 Radius of well casing 0.3333 Aquifer saturated thickness 3.76 Well screen length 3.76 Well screen length 3.76 Static height of water in well 3.76 Log(Re/RW)				
AQTESOLV RESULTS Version 1.10 16:24:				
09/25/92 16:24: TEST DESCRIPTION Data seta:\mwl6t9.in Data set title EAFB - Monitoring Well 16, Test 9 Knowns and Constants: No. of data points141 Radius of well casing0.08333 Radius of well0.3333 Aquifer saturated thickness3.76 Well screen length				
TEST DESCRIPTION Data set a:\mw16t9.in Data set title EAFB - Monitoring Well 16, Test 9 Knowns and Constants: No. of data points 141 Radius of well casing 0.08333 Radius of well 0.3333 Aquifer saturated thickness 3.76 Well screen length 3.76 Static height of water in well 3.76 Log(Re/Rw) 1.744				
TEST DESCRIPTION Data set a:\mwl6t9.in Data set title EAFB - Monitoring Well 16, Test 9 Knowns and Constants: No. of data points 141 Radius of well casing 0.08333 Radius of well 0.3333 Aquifer saturated thickness 3.76 Well screen length 3.76 Static height of water in well 3.76 Log(Re/Rw) 1.744				
Data set a:\mwl6t9.in Data set title EAFB - Monitoring Well 16, Test 9 Knowns and Constants: No. of data points 141 Radius of well casing 0.08333 Radius of well 0.3333 Aquifer saturated thickness 3.76 Well screen length 3.76 Static height of water in well 3.76 Log(Re/Rw) 1.744				
<pre>Knowns and Constants: No. of data points 141 Radius of well casing 0.08333 Radius of well 0.3333 Aquifer saturated thickness 3.76 Well screen length 3.76 Static height of water in well 3.76 Log(Re/Rw) 1.744</pre>				
A, B, C 0.000, 0.000, 1.348 ANALYTICAL METHOD Bouwer and Rice (unconfined aquifer slug test)				
RESULTS FROM VISUAL CURVE MATCHING				
VISUAL MATCH PARAMETER ESTIMATES Estimate				
K = 6.2772E-003 y0 = -5.5992E-282				
<<<<<<<<<<<<<<>>>>>>>>>>>>>>>>>>>>>>>>>				
TYPE CURVE DATA				
K = 5.49911E-003 y0 = 1.19822E+000				
Time Drawdown Time Drawdown Time Drawdown				
0.000E+000 1.198E+000 2.000E+000 1.295E-003				

Displacement (ft)

MW15 TEST1 SE1000	c
Environmenta 09/02 18	al Logger 3:34
nit# 00856	Test 10
Setups:	INPUT 1
Type Mode	Level (F) TOC
I.D.	00000
Reference Linearity	0.000
Scale factor	10.010
Offset	-0.130
Delay mSEC	50.000
Step 0 09/02	15:27:52
Elapsed Time	INPUT 1
0.0000	-0.072
0.0033	-0.025
0.0066	2,912
0.0100	1 505
0.0155	1.193
_ 0.0200	1.183
0.0233	0.979
0.0266	0.850
0.0300	0.834
0.0333	0.758
0.0400	0.604
0.0433	0.569
0.0466	0.506
0.0500	0.450
0.0533	0.412
0.0566	0.355
0.0633	0.295
0.0666	0.267
0.0700	0.270
0.0733	0.210
0.0766	0.195
0.0800	0.1/9
0.0866	0.154
0.0900	0.135
0.0933	0.122
0.0966	0.110
0.1000	0.100
0.1033	0.09E
0.1000	0.083
0.1133	0.075
0.1166	0.066
0.1200	0.059

0.1233	0.056
0.1266	0.053
0.1300	0.050
0.1333	0.047
0.1366	0.047
0.1400	0.044
0.1433	0.037
0.1466	0.034
0.1500	0.031
0.1533	0.028
0.1566	0.025
0.1600	0.028
0.1633	0.022
0.1000	0.022
0.1722	0.028
0.1755	0.022
0.1700	0.022
0.1833	0.018
0.1866	0.012
0.1000	0.022
0.1933	0.012
0.1966	0.012
0.2000	0.015
0.2033	0.018
0.2066	0.015
0.2100	0.015
0.2133	0.009
0.2166	0.012
0.2200	0.006
0.2233	0.009
0.2266	0.009
0.2300	0.009
0.2333	0.009
0.2366	0.009
0.2400	0.006
0.2433	0.003
0.2466	0.006
0.2500	0.009
0.2533	0.009
0.2566	0.009
0.2600	0.009
0.2033	0.009
0.2000	0.000
0.2700	0.009
0.2755	0.003
0.2800	0.006
0.2833	0.006
0.2866	0.003
0.2900	0.006
0.2933	0.003
0.2966	0.006
0.3000	0.006
0.3033	0.003
0.3066	0.006
0.3100	0.003
0.3133	0.003
0.3166	0.006
0.3200	0.006

0.3233	0.006
0.3266	0.000
0.3300	-0.003
0.3333	0.003
0.3500	0.003
0.3666	0.003
0.3833	0.000
0.4000	0.003
0.4166	0.003
0.4333	0.003
0.4500	0.000
0.4666	0.000
0.4833	-0.003
0.5000	0.000
0.5166	0.003
0.5333	0.000
0.5500	0.003
0.5666	0.000
0.5833	0.003
0.6000	-0.003
0.6166	0.000
0.6333	0.003
0.6500	0.000
0.6666	0.000
0.6833	-0.003
0.7000	0.000
0.7166	-0.003
0.7333	-0.003
0.7500	-0.000
0.7000	-0.003
0.8000	-0.003
- 0.0000	-0.003
0.8333	-0.003
0.8500	0.003
0.8666	0.000
0.8833	0.000
0,9000	-0.003
0.9166	0.000
0.9333	-0.009
0.9500	0.000
0.9666	0.000
0,9833	-0.003
1.0000	-0.009
1.2000	-0.003
1.4000	0.003
1.6000	-0.012

AQTESOLV RESULTS Version 1.10 09/28/92 09:18:22 TEST DESCRIPTION Data set..... a:\mw15t10.in Data set title.... EAFB - Monitoring Well 15, Test 10 Knowns and Constants: No. of data points..... 108 Radius of well casing..... 0.08333 Radius of well..... 0.3333 Aquifer saturated thickness..... 4.22 Well screen length..... 4.22 Static height of water in well..... 4.22 Log (Re/Rw) 1.836 A, B, C..... 0.000, 0.000, 1.409 ANALYTICAL METHOD Bouwer and Rice (unconfined aguifer slug test) RESULTS FROM VISUAL CURVE MATCHING VISUAL MATCH PARAMETER ESTIMATES Estimate К = 6.3189E-002 y0 =7.7468E-304 TYPE CURVE DATA K = 6.31889E - 002y0 = 2.61070E+000Time Drawdown Time Drawdown Time Drawdown _____ _____ ---------0.000E+000 2.611E+000 2.000E-001 6.077E-004 TYPE CURVE DATA K = 4.52290E-002

y0 = 2.02127E+000

Time	Drawdown	Time	Drawdown	Time	Drawdown
0.000E+000	2.021E+000	2.000E-001	5.072E-003		

MW15 TEST2		
SE1000C Environmental Logger 09/02 18:55		
nit# 00856	Test 11	
Setups:	INPUT 1	
Type Mode I.D.	Level (F) TOC 00000	
Reference Linearity Scale factor Offset Delay mSEC	0.000 0.000 10.010 -0.130 50.000	
Step 0 09/02	15:32:43	
Elapsed Time 0.0000 0.0033 0.0066 0.0100 0.0133 0.0166 0.0200 0.0233 0.0266 0.0300 0.0333 0.0266 0.0300 0.0333 0.0366 0.0400 0.0433 0.0466 0.0503 0.0566 0.0566 0.0600 0.0633 0.0666 0.0700	INPUT 1 -0.003 -0.003 -0.003 0.135 2.707 -1.057 1.524 1.114 1.117 1.007 0.869 0.856 0.780 0.717 0.648 0.579 0.569 0.494 0.494 0.494 0.393 0.314 0.302	
0.0733 0.0766 0.0800 0.0823 0.0866 0.0900 0.0933 0.0966 0.1000 0.1033 0.1066 0.1100 0.1133 0.1166 0.1200	0.280 0.251 0.229 0.207 0.188 0.173 0.157 0.144 0.132 0.122 0.113 0.103 0.094 0.088 0.081	

0.1233	0.078
0.1266	0.072
0.1300	0.069
0.1333	0.062
0.1366	0.059
0.1400	0.056
0.1433	0.053
0.1466	0.050
0.1500	0.047
0.1533	0.044
0.1566	0.040
0.1600	0.040
0.1633	0.037
0.1666	0.034
0.1700	0.034
0.1733	0.034
0.1766	0.034
0.1800	0.031
0.1833	0.028
0.1866	0.031
0.1900	0.028
0.1933	0.028
0.1966	0.028
0.2000	0.025
0.2033	0.025
0.2066	0.025
0.2100	0.025
0.2133	0.025
0.2166	0.025
0.2200	0.022
0.2233	0.022
0.2266	0.022
0.2300	0.022
0.2333	0.022
0.2366	0.022
0.2400	0.022
0.2433	0.018
0.2466	0.018
0.2500	0.018
0.2533	0.018
0.2566	0.018
0.2600	0.018
0.2633	0.018
J.2666	0.015
0.2700	0.018
0.2733	0.018
0.2766	0.018
0.2800	0.015
0.2833	0.015
0.2866	0.015
0.2900	0.015
0.2933	0.015
0.2900	0.015
0.3000	0.015
0.3033	0.015
0.3066	0.015
0.3100	0.015
0.3133	0.015
0.3166	0.015
0.3200	0.015

0.3233	0.012
0.3266	0.015
0.3300	0.015
0.3333	0.012
0.3500	0.012
0.3666	0.012
0.3833	0.012
0.4000	0.012
0.4166	0.009
0.4333	0.012
0.4500	0.012
0.4666	0.012
0.4833	0.012
0.5000	0.009
0.5166	0.009
0.5333	0.012
0.5500	0.009
0.5666	0.009
0.5833	0.009
0.6000	0.009
0.6166	0.009
0.6333	0.009
0.6500	0.009
0.6666	0.009
0.6833	0.009
0.7000	0.009
0.7166	0.009
0.7333	0.009
0.7500	0.009
0.7666	0.009
0.7833	0.009
0.8000	0.009
0.8166	0.009
0.8333	0.009
0.8500	0.009
0.8666	0.009
0.8833	0.009
0.9000	0.009
0.9166	0.009
0.9333	0.009
0.9500	0.006
0.9666	0.009
0.9833	0.009
1.0000	0.012
1.2000	0.006
1.4000	0.006
1.6000	0.003
1.8000	0.006
2.0000	0.003

AQTESOLV RESULTS Version 1.10 09/28/92 09:38:32 TEST DESCRIPTION Data set..... mw15t11.in Data set title.... EAFB - Monitoring Well 15, Test 11 Knowns and Constants: No. of data points..... 141 Radius of well casing..... 0.08333 Radius of well..... 0.3333 Aguifer saturated thickness..... 4.22 Well screen length..... 4.22 Static height of water in well..... 4.22 Log(Re/Rw)..... 1.836 A, B, C..... 0.000, 0.000, 1.409 ANALYTICAL METHOD Bouwer and Rice (unconfined aquifer slug test) RESULTS FROM VISUAL CURVE MATCHING VISUAL MATCH PARAMETER ESTIMATES Estimate K = 3.9245E-002 v0 =6.6365E+265 TYPE CURVE DATA K = 3.92448E-002y0 = 1.50384E+000Time Drawdown Time Drawdown Time Drawdown ______ _____ -------------0.000E+000 1.504E+000 2.000E-001 8.333E-003

MW14 TEST 1 Se1000C		
Environmenta 09/03 07	l Logger 1:28	
Unit# 00856	Test 12	
Setups:	INPUT 1	
Type Mode I.D.	Level (F) TOC 00000	
Reference Linearity Scale factor Offset Delay mSEC	0.000 0.000 10.010 -0.130 50.000	
Step 0 09/02	16:05:31	
Elapsed Time	INPUT 1	
0.0000 0.0033 0.0066 0.0100 0.0133 0.0166 0.0200 0.0233 0.0266 0.0300 0.0333 0.0366 0.0400 0.0433 0.0466 0.0500 0.0533 0.0566 0.0600 0.0633 0.0666 0.0700 0.0733 0.0766 0.0800 0.0833 0.0866 0.0900 0.0933 0.0966 0.1000 0.1000	-0.006 1.908 1.643 0.991 0.673 0.362 0.192 0.091 0.044 0.034 0.015 0.028 0.028 0.025 0.018 0.015 0.018 0.015 0.018 0.015 0.015 0.015 0.015 0.012 0.015 0.012 0	
0.1066 0.1100 0.1133 0.1166 0.1200	0.009 0.009 0.009 0.009 0.009	

0.1233	0.009
0.1300	0.009
0.1333	0.006
0.1366	0.006
0.1433	0.006
0.1466	0.006
0.1533	0.006
0.1566	0.006
0.1600	0.006
0.1666	0.006
0.1700	0.006
0.1766	0.006
0.1800	0.003
0.1833	0.003
0.1900	0.003
0.1933	0.003
0.2000	0.003
0.2033	0.003
0.2100	0.003
0.2133	0.003
0.2166	0.003
0.2233	0.003
0.2266	0.003
0.2333	0.003
0.2366	0.006
0.2400	0.003
0.2466	0.003
0.2500	0.003
0.2566	0.003
0.2600	0.003
0.2633	0.003
0.2700	0.003
0.2733	0.003
0.2800	0.003
0.2833	0.003
0.2866	0.003
0.2933	0.003
0.2966	0.003
0.3033	0.000
0.3066	0.003
0.3100	0.003
0.3166	0.003
0.3200	0.003

0.3233	0.003
0.3266	0.003
0.3300	0.000
0.3333	0.003
0.3500	0.000
0.3666	0.000
0.3833	0.000
0.4000	-0.003
0.4166	-0.003
0.4333	0.000
0.4500	0.000
0.4666	-0.003
0.4833	-0.003
0.5000	0.000
0.5166	0.000
0.5333	0.000
0.5500	-0.003
0.5666	0.000
0.5833	-0.003
0.6000	-0.003
0.6166	0.000
0.6333	-0.003
0.6500	-0.003
0.6666	-0.003
0.6833	-0.003
0.7000	0.000
0.7166	0.000
0.7333	-0.003
0.7500	0.000
0.7666	0.000
0.7833	-0.003
0.8000	-0.003
0.8166	-0.006
0.8333	-0.003
0.8500	-0.003
0.8666	-0.006
0.8833	-0.003
0.9000	-0.006
0.9166	-0.003
0.9333	-0.003
0.9500	-0.003
0.9666	-0.003
0,9833	-0.003
1.0000	-0.003

AQTESOLV RESULTS Version 1.10 09/28/92 09:52:13 TEST DESCRIPTION Data set..... a:\mw14t12.in Data set title.... EAFB - Monitoring Well 14, Test 12 Knowns and Constants: No. of data points..... 95 Radius of well casing..... 0.08333 Radius of well..... 0.3333 Aguifer saturated thickness..... 4.6 Well screen length..... 4.6 Static height of water in well..... 4.6 Log (Re/Rw) 1.907 A, B, C..... 0.000, 0.000, 1.454 ANALYTICAL METHOD Louwer and Rice (unconfined aguifer slug test) RESULTS FROM VISUAL CURVE MATCHING VISUAL MATCH PARAMETER ESTIMATES Estimate K = 2.8162E-001 y0 =6.6365E+265 TYPE CURVE DATA K = 2.81619E-001y0 = 8.89135E+000Time Drawdown Time Drawdown Time Drawdown _____ _____ _____ 0.000E+000 8.891E+000 5.000E-002 5.009E-004

Displacement (ft)

MW 14 TEST2 SE1000C			
Environmental Logger 09/03 07:31			
hit# 00856	Test 13		
Setups:	INPUT 1		
Type Mode I.D.	Level (F) TOC 00000		
Reference Linearity Scale factor Offset Delay mSEC	0.000 0.000 10.010 -0.130 50.000		
Step 0 09/02	16:11:14		
Elapsed Time 0.0000 0.0033 0.0066 0.0100 0.0133 0.0166 0.0200 0.0233 0.0266 0.0300 0.0333 0.0366 0.0400 0.0433 0.0466 0.0500 0.0533 0.0566 0.0600 0.0633 0.0566 0.0600 0.0633 0.0666 0.0700 0.0733 0.0766 0.0800 0.0733 0.0766 0.0800 0.0833 0.0866 0.0900 0.0933 0.0966 0.1000 0.1033 0.1066 0.1100 0.1133 0.1166	INPUT 1 0.059 1.564 0.727 0.406 0.245 0.129 0.066 0.050 0.056 0.040 0.047 0.059 0.066 0.040 0.047 0.059 0.066 0.040 0.047 0.059 0.066 0.040 0.047 0.031 0.031 0.031 0.031 0.031 0.031 0.031 0.031 0.031 0.031 0.028 0.025		

0.1233	0.025
0.1266	0.025
0.1300	0.025
0.1333	0.022
0.1366	0.022
0.1400	0.025
0.1433	0.022
0.1400	0.022
0.1500	0.022
0.1555	0.022
0.1600	0.022
0.1633	0.022
0.1666	0.022
0.1700	0.022
0.1733	0.022
0.1766	0.022
0.1800	0.022
0.1833	0.022
0.1866	0.022
0.1900	0.018
0.1933	0.022
0.1966	0.022
0.2000	0.018
0.2033	0.018
0.2000	0.018
0.2100	0.018
0.2166	0.018
0.2200	0.018
1.2233	0.018
0.2266	0.018
0.2300	0.018
0.2333	0.018
0.2366	0.018
0.2400	0.018
0.2433	0.018
0.2466	0.018
0.2500	0.018
0.2555	0.015
0.2500	0.018
0.2633	0.015
0.2666	0.015
0.2700	0.018
0.2733	0.018
0.2766	0.015
0.2800	0.018
0.2833	0.018
0.2866	0.018
0.2900	0.018
0.2933	0.018
0.2966	0.015
0.3000	0.015
0.3033	0.015
0.3066	0.015
0.3100	0.015
0.3133	0.015
0.3700	0.015
0.3200	0.012

•	
0.3233	0.015
0.3266	0.015
0.3300	0.015
0.3333	0.015
0.3500	0.015
0.3666	0.015
0.3833	0.015
0.4000	0.015
0.4166	0.015
0.4333	0.015
0.4500	0.012
0.4666	0.012
0.4833	0.015
0.5000	0.015
0.5166	0.012
0.5333	0.012
0.5500	0.012
0.5666	0.012
0.5833	0.012
0.6000	0.012
0.6166	0.012
0.6333	0.012
0,6500	0.012
0.6666	0.012
0.6833	0.012
0.7000	0.012
0.7166	0.012
0.7333	0.012
0.7500	0.009
.7666	0.012
0.7833	0.009
0.8000	0.009
0.8166	0.012
0.8333	0.012
0.8500	0.009
0.8666	0.012
0.8833	0.012
0.9000	0.003
0.9166	0.012
0.9333	0.009
0.9500	0.012
0.9666	0.012
0.9833	0.009
1.0000	0.009

AOTESOLV RESULTS Version 1.10 10:04:19 09/28/92 TEST DESCRIPTION Data set..... a:\mw14t13.in Data set title.... EAFB - Monitoring Well 14, Test 13 Knowns and Constants: No. of data points..... 140 Radius of well casing..... 0.08333 Radius of well..... 0.3333 Aguifer saturated thickness..... 4.6 Well screen length..... 4.6 Static height of water in well..... 4.6 Log(Re/Rw)..... 1.907 A, B, C..... 0.000, 0.000, 1.454 _____ ANALYTICAL METHOD Bouwer and Rice (unconfined aquifer slug test) RESULTS FROM VISUAL CURVE MATCHING VISUAL MATCH PARAMETER ESTIMATES Estimate K = 2.3967E-001 v0 =6.6365E+265 TYPE CURVE DATA K = 2.39667E-001 $y_0 = 2.61401E+000$ Time Time Drawdown Time Drawdown Drawdown _____ 0.000E+000 2.614E+000 3.000E-002 1.768E-002

MW 12 TEST1 SE1000 Environmenta 09/03 07)C al Logger 7:37
Unit# 00856	Test 14
Setups:	INPUT 1
Type Mode I.D.	Level (F) TOC 00000
Reference Linearity Scale factor Offset Delay mSEC	0.000 0.000 10.010 -0.130 50.000
Step 0 09/02	16:27:47
Elapsed Time 0.0000 0.0033 0.0066 0.0100 0.0133 0.0166 0.0200 0.0233 0.0266 0.0300 0.0333 0.0366 0.0400 0.0433 0.0466 0.0500 0.0533 0.0566 0.0600 0.0633 0.0666	INPUT 1 -0.025 2.122 0.601 1.335 1.023 0.859 0.774 0.661 0.576 0.519 0.453 0.393 0.340 0.292 0.248 0.214 0.179 0.151 0.125 0.103 0.085
0.0000 0.0733 0.0766 0.0800 0.0833 0.0866 0.0900 0.0933 0.0966 0.1000 0.1033 0.1066 0.1100 0.1133 0.1166 0.1200	0.085 0.069 0.056 0.044 0.034 0.028 0.022 0.015 0.012 0.009 0.006 0.006 0.003 0.000 0.003 0.000 0.000

0.1233	0.000
0.1266	0.000
0 1200	-0.003
0.1300	-0.003
0.1333	-0.003
0.1366	-0.003
0.1400	-0.003
0 1422	-0.003
0.1455	-0.003
0.1466	-0.003
0.1500	-0.003
0.1533	-0.003
0 1566	-0.003
0.1500	-0.005
0.1600	-0.003
0.1633	-0.003
0.1666	-0.006
0 1700	-0 006
0.1700	-0.000
0.1/33	~0.006
0.1766	-0.006
0.1800	-0.006
0 1933	-0 006
0.1000	0.000
0.1866	-0.006
0.1900	-0.006
0.1933	-0.006
0 1966	-0.006
0.1900	-0.000
0.2000	-0.006
0.2033	-0.006
0.2066	-0.006
0 2100	-0.006
0.2100	-0.000
0.2133	-0.008
0.2166	-0.006
0.2200	-0.006
0 2233	-0.006
0.2255	0.000
0.2266	-0.006
0.2300	-0.006
0.2333	-0.006
0.2366	-0.006
0.2500	-0.006
0.2400	-0.006
0.2433	-0.006
0.2466	-0.006
0.2500	-0.006
0 2523	-0.006
0.2533	-0.000
0.2566	-0.009
0.2600	-0.006
0.2633	-0.006
0 2666	-0.006
0.2000	-0.000
0.2700	-0.006
0.2733	-0.006
0.2766	-0.006
0 2800	-0.006
0.2800	0.000
0.2833	-0.009
0.2866	-0.006
0.2900	-0.006
0 2023	-0.006
0.2000	_0.000
0.2966	-0.009
0.3000	-0.006
0.3033	-0.009
0 3066	-0.006
0.000	
0.3100	-0.009
0.3133	-0.006
0.3166	-0.009
0 3200	-0 000
0.3200	-0.009

$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.3233	-0.006
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.3266	-0.009
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.3300	-0.009
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.3333	-0.006
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.3500	-0.006
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.3666	-0.009
$\begin{array}{llllllllllllllllllllllllllllllllllll$	0.3833	-0.009
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.4000	-0.009
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.4166	-0.009
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.4333	-0.009
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.4500	-0.009
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.4666	-0.009
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.4833	-0.009
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.5000	-0.009
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.5166	-0.009
0.5500 -0.009 0.5666 -0.009 0.5833 -0.009 0.6000 -0.009 0.6166 -0.009 0.6333 -0.012 0.6500 -0.009 0.6666 -0.009 0.6833 -0.009 0.7000 -0.009 0.7166 -0.009 0.7500 -0.009 0.7500 -0.009 0.7666 -0.009 0.7833 -0.009 0.8000 -0.009 0.8166 -0.009 0.8500 -0.009 0.8500 -0.009 0.8500 -0.009 0.8833 -0.009 0.9000 -0.012 0.9166 -0.012 0.9333 -0.009 0.9500 -0.012	0.5333	-0.009
0.5666 -0.009 0.5833 -0.009 0.6000 -0.009 0.6166 -0.009 0.6333 -0.012 0.6500 -0.009 0.6666 -0.009 0.6833 -0.009 0.7000 -0.009 0.7166 -0.009 0.7500 -0.009 0.7500 -0.009 0.7666 -0.009 0.7833 -0.009 0.8000 -0.009 0.8166 -0.009 0.8500 -0.009 0.8500 -0.009 0.8500 -0.009 0.8833 -0.009 0.9000 -0.012 0.9166 -0.012 0.9333 -0.009 0.9500 -0.012	0.5500	-0.009
0.5833 -0.009 0.6000 -0.009 0.6166 -0.009 0.6333 -0.012 0.6500 -0.009 0.6666 -0.009 0.6833 -0.009 0.7000 -0.009 0.7166 -0.009 0.7500 -0.009 0.7666 -0.009 0.7833 -0.009 0.8000 -0.009 0.8166 -0.009 0.8500 -0.009 0.8500 -0.009 0.8666 -0.009 0.9000 -0.012 0.9166 -0.012 0.9333 -0.009 0.9500 -0.012	0.5666	-0.009
0.6000 -0.009 0.6166 -0.009 0.6333 -0.012 0.6500 -0.009 0.6666 -0.009 0.6833 -0.009 0.7000 -0.009 0.7166 -0.009 0.7333 -0.009 0.7500 -0.009 0.7666 -0.009 0.7833 -0.009 0.8000 -0.009 0.8166 -0.009 0.8500 -0.009 0.8666 -0.009 0.8833 -0.009 0.9000 -0.012 0.9166 -0.012 0.9333 -0.009 0.9500 -0.012	0.5833	-0.009
0.6166 -0.009 0.6333 -0.012 0.6500 -0.009 0.6666 -0.009 0.6833 -0.009 0.7000 -0.009 0.7166 -0.009 0.7333 -0.009 0.7500 -0.009 0.7666 -0.009 0.7833 -0.009 0.8000 -0.009 0.8166 -0.009 0.8333 -0.009 0.8666 -0.009 0.8833 -0.009 0.9000 -0.012 0.9166 -0.012 0.9500 -0.009 0.9666 -0.012	0.6000	-0.009
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.6166	-0.009
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.6333	-0.012
0.6666 -0.009 0.6833 -0.009 0.7000 -0.009 0.7166 -0.009 0.7333 -0.009 0.7500 -0.009 0.7666 -0.009 0.7833 -0.009 0.8000 -0.009 0.8166 -0.009 0.8333 -0.009 0.8500 -0.009 0.8666 -0.009 0.8833 -0.009 0.9000 -0.012 0.9166 -0.012 0.9333 -0.009 0.9500 -0.012	0.6500	-0.009
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.6666	-0.009
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.6833	-0.009
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.7000	-0.009
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.7100	-0.009
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.7533	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.7500	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.7000	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.7833	-0.009
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.8000	-0.009
$\begin{array}{ccccccc} -0.009 \\ 0.8500 \\ -0.009 \\ 0.8666 \\ -0.009 \\ 0.8833 \\ -0.009 \\ 0.9000 \\ -0.012 \\ 0.9166 \\ -0.012 \\ 0.9333 \\ -0.009 \\ 0.9500 \\ -0.009 \\ 0.9666 \\ -0.012 \end{array}$	0.0100	-0.009
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.8533	-0.009
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.8500	-0.009
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	0.8000	-0.009
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	0.8633	-0.009
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	0.9000	-0.012
0.9500 -0.009 0.9666 -0.012	0.9700	
0.9666 -0.012	0.9555	-0.009
U.JUUU	0.9500	-0.012
0 9833 -0.012	0.9000	-0.012
1.0000 -0.012	1.0000	-0.012

<<<<<<<	<<<<<<	<<<<<<<		·>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>	·>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>
-	A	QTESOI	V RESU	JLTS	
		Ve	ersion 1.10		
09/28/92					10:19:08
	;≈≈≈≈≈≈≈≈≈	TEST	DESCRIPTION	9222227 2 222	
Data set Data set title	a:\m EAFE	w12t14.in 8 - Monitorin	ng Well 12, Te	est 14	
Knowns and Con	stants:				
No. of data	points	• • • • • • • • • • • •	33		
Radius of w	ell casing		0.08333		
Aquifer sat	urated thi	.ckness	3.5		
Well screen	length		3.5		
Static heig	sht of wate	er in well	3.5		
A, B, C	· • • • • • • • • • • • •	• • • • • • • • • • • • • •	0.000,	0.000, 1.	309
, -,			· · · · · · · · · · · · · · · · · · ·		
		ANA	LYTICAL METHO	D	
Bouwer and Ric	e (unconfi	ined aquifer	slug test)		

	F	RESULTS FROM	VISUAL CURVE	MATCHING	
VISUAL MATCH H	PARAMETER I	ESTIMATES			
Est	rimate				
K = 7.57	740E-002				
y0 = 6.63	365E+265				
<<<<<<<	<<<<<<<	<<<<<<<	<<<<>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>	>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>	>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>
TYPE CURVE DAT	ГА				
K = 7.57 y0 = 1.86	7398E-002 6601E+000				
Time I	Drawdown	Time	Drawdown	Time	Drawdown
0.000E+000 1	.866E+000	1.200E-001	8.193E-003		
•					

(ii) tuement (ii)

MW12 TEST2 SE1000)C
Environmenta 09/03 07	al Logger 7:47
nit# 00856	Test 15
Setups:	INPUT 1
Type Mode I.D.	Level (F) TOC 00000
Reference Linearity Scale factor Offset Delay mSEC	0.000 0.000 10.010 -0.130 50.000
Step 0 09/02	16:33:03
Elapsed Time	INPUT 1
0.0033 0.0066 0.0100 0.0133 0.0166 0.0200 0.0233 C.0266 0.0300 0.0333 0.0366 0.0400 0.0433 0.0466 0.0500 0.0533 0.0566 0.0600 0.0633 0.0566 0.0600 0.0633 0.0566 0.0660 0.0700 0.0733 0.0766 0.0800 0.0833 0.0866 0.0900 0.0833 0.0866 0.0900 0.0933 0.0966 0.1000 0.1033 0.1066	0.377 2.333 -0.163 1.136 0.969 0.850 0.746 0.576 0.516 0.437 0.384 0.327 0.286 0.242 0.207 0.173 0.147 0.122 0.103 0.088 0.072 0.059 0.059 0.050 0.040 0.031 0.025 0.022 0.018 0.015
0.1133 0.1166 0.1200	0.012 0.012 0.009

0.1233	0.009
0.1266	0.009
0.1333	0.009
0.1366	0.009
0.1433	0.009
0.1466	0.009
0.1533	0.006
0.1566	0.006
0.1633	0.006
0.1666	0.006
0.1733	0.003
0.1766	0.006
0.1800	0.008
0.1866	0.006
0.1900	0.006
0.1966	0.003
0.2000	0.003
0.2066	0.003
0.2100	0.003
0.2133	0.003
0.2200	0.003
0.2233	0.003
0.2300	0.003
0.2333	0.006
0.2400	0.003
0.2433	0.003
0.2500	0.003
0.2533	0.003
0.2566	0.003
0.2633	0.003
0.2666	0.003
0.2733	0.003
0.2766	0.003
0.2833	0.000
0.2866	0.003
0.2933	0.003
0.2966	0.003
0.3000	0.003
0.3066	0.003
0.3100	0.003
0.3166	0.003
0.3200	0.000

0.3233	0.000
0.3266	0.000
0.3300	0.003
0.3333	0.003
0.3500	0.003
0.3666	0.000
0.3833	0.000
0.4000	0.003
0.4166	0.000
0.4333	0.000
0.4500	0.000
0.4666	0.000
0.4833	0.000
0.5000	0.000
0.5166	0.000
0.5333	0.000
0.5500	0.000
0.0000	0.000
0.5655	0.000
0.6000	0.000
0.6333	0.000
0.6500	0.000
0.6666	0.000
0.6833	0.000
0.7000	0.000
0.7166	0.000
0.7333	0.000
0.7500	0.000
0.7666	0.000
0.7833	0.000
0.8000	0.000
0.8166	0.000
0.8333	0.000
0.8500	0.000
0.8666	0.000
0.8833	0.000
0.9000	0.000
0.9166	0.000
0.9333	0.000
0.9500	0.000
0.9666	0.000
1 0000	0.000
1.0000	0.000
T.2000	-0.003

~~~~~
AOTESOLV RESULTS
Version 1.10
09/28/92 10:27:49
TEST DESCRIPTION
Data set a:\mw12t15.in Data set title EAFB - Monitoring Well 12, Test 15
Knowns and Constants: 96   Radius of well casing
ANALYTICAL METHOD
Bouwer and Rice (unconfined aquifer slug test)
RESULTS FROM VISUAL CURVE MATCHING
VISUAL MATCH PARAMETER ESTIMATES
Estimate K = 7.5600E-002 y0 = 6.6365E+265
<<<<<<<<<<<<>>>>>>>>>>>>>>>>>>>>>>>>>>>
TYPE CURVE DATA
K = 7.55995E-002 y0 = 1.97242E+000
Time Drawdown Time Drawdown Time Drawdown
0.000E+000 1.972E+000 1.400E-001 3.546E-003



15

SE1000C Environmental Logger 09/03 07:51 Unit# 00856 Test 16 INPUT 1 Setups: _____ ____ Level (F) Type Mode TOC I.D. 00000 0.000 Reference Linearity 0.000 Scale factor 10.010 Offset -0.130Delay mSEC 50.000 Step 0 09/02 17:08:01 Elapsed Time INPUT 1 -----____ 0.018 0.0000 0.0033 6.911 0.0066 4.823 0.0100 5.324 0.0133 2.566 0.0166 2.651 0.0200 1.536 1.586 0.0233 0.0266 1.268 1.731 0.0300 0.0333 1.662

0.0366

0.0400

0.0433

0.0500

0.0533

0.0566

0.0600

0.0633

0.0666

0.0700

0.0733

0.0766

0.0800

0.0833

0.0900

0.0933

0.0966

0.1033 0.1066

0.1100

0.1133

0.1156

0.1200

1.432

1.146 0.976

0.831

0.686

0.582

0.484

0.402

0.336

0.286

0.239

0.201

0.173

0.141 0.119

0.103

0.085

0.069

0.066

0.056

0.056

0.044

0.040

3	090	2	-16	•	DAT
---	-----	---	-----	---	-----

0.1233 0.1266 0.1300 0.1333 0.1366 0.1400 0.1433 0.1466 0.1500 0.1533 0.1566 0.1600	$\begin{array}{c} 0.040 \\ 0.040 \\ 0.037 \\ 0.034 \\ 0.037 \\ 0.034 \\ 0.031 \\ 0.031 \\ 0.031 \\ 0.031 \\ 0.031 \\ 0.031 \\ 0.031 \\ 0.031 \\ 0.031 \end{array}$
0.1633	0.031
0.1666	0.025
0.1700	0.031
0.1733	0.031
0.1766	0.031
0.1800	0.031
0.1833	0.028
0.1866	0.028
0.1900	0.028
0.1933	0.028
0.1966	0.031
0.2000	0.031
0.2033	0.031
0.2066	0.031
0.2100	0.028
0.2133	0.028
0.2166	0.031
0.2200	0.031
0.2233	0.028
0.2266	0.031
0.2300	0.031
0.2333	0.031
0.2366	0.031
0.2400	0.031
0.2433	0.031
0.2466	0.031
0.2500	0.031
0.2533	0.031
0.2566	0.031
0.2600	0.031
0.2633	0.031
0.2666	0.031
0.2700 0.2733 0.2766 0.2800 0.2833 0.2866 0.2900 0.2933	$\begin{array}{c} 0.031 \\ 0.031 \\ 0.034 \\ 0.031 \\ 0.031 \\ 0.031 \\ 0.031 \\ 0.031 \\ 0.031 \end{array}$
0.2966	0.031
0.3000	0.031
0.3033	0.031
0.3066	0.031
0.3100	0.031
0.3133	0.028
0.3166	0.031
0.3200	0.031

0.3233	0.031	
0.3266	0.031	
0.3300	0.031	
0.3333	0.031	
0.3500	0.031	
0.3666	0.028	
0.3833	0.031	
0.4000	0.031	
0.4166	0.031	
0.4333	0.028	
0.4500	0.028	
0.4666	0.028	
0.4833	0.031	
0.5000	0.031	
0.5166	0.031	
0.5333	0.031	
0.5500	0.031	
0.5666	0.028	
0.5833	0.031	
0.6000	0.028	
0.6166	0.031	
0.6333	0.031	
0.6500	0.031	
0.6666	0.031	
0.6833	0.031	
0.7000	0.031	
0.7166	0.031	
0.7333	0.031	
0.7500	0.031	
0.7666	0.028	
0.7833	0.028	
0.8000	0.031	
0.8166	0.031	
0.8333	0.031	
0.8500	0.034	
0.8666	0.028	
0.8833	0.028	
0.9000	0.028	
0.9166	0.028	
0.9333	0.034	
0.9500	0.028	
0.9666	0.031	
0.9833	0.028	
1.0000	0.028	
1.2000	0.028	
1.4000	0.028	
1.6000	0.028	
1.8000	0.028	
2.0000	0.028	
2.2000	0.028	
2.4000	0.028	
2.6000	0.028	
2.8000	0.028	
3.0000	0.025	
3.2000		
;#;¶;ネ;=;ネ;ネ;	';";";"; <b>m</b> ;»;";	15

AQTESOLV RESULTS Version 1.10 09/28/92 10:40:07 TEST DESCRIPTION Data set..... a:\mw5t16.in Data set title..... EAFB - Monitoring Well 5, Test 16 Knowns and Constants: No. of data points..... 151 Radius of well casing..... 0.08333 Radius of well..... 0.3333 Aquifer saturated thickness..... 14.35 Well screen length..... 14.35 Static height of water in well..... 14.35 Log (Re/Rw) ..... 2.873 A, B, C..... 0.000, 0.000, 2.400 _________________ ANALYTICAL METHOD Bouwer and Rice (unconfined aquifer slug test) RESULTS FROM VISUAL CURVE MATCHING VISUAL MATCH PARAMETER ESTIMATES Estimate 4.0123E-002 K = v0 =6.6365E+265 TYPE CURVE DATA K = 3.68784E-002y0 = 9.72246E+000Time Drawdown Time Drawdown Time Drawdown _ ~ _ _ _ _ _ _ 0.000E+000 9.722E+000 1.200E-001 1.670E-002 E CURVE DATA K = 3.68784E-002y0 = 9.72246E+000

Time	Drawdown	Time	Drawdown	Time	Drawdown
0.000E+000	9.722E+000	1.200E-001	1.670E-002		





## SE1000C Environmental Logger 09/03 07:54 Unit# 00856 Test 17 Setups: INPUT 1 Type Level (F) Mode TOC L.D. 00000

1.0.	00000
Reference Linearity Scale factor Offset Delay mSEC	0.000 0.000 10.010 -0.130 50.000
<b>Step</b> 0 09/0	2 17:17:31
Elapsed Time	INPUT 1
0.0000	3.586
0.0033	7.311
0.0066	6.612
0.0100	4,143
0.0133	2.972
0.0155	2.372
0.0200	1.687
0.0200	1,294
0.0255	1 665
0.0200	1 536
0.0333	1.338
0.0366	1.098
0.0400	0.938
0.0433	0.796
0.0466	0.661
0,0500	0.532
0.0533	0.469
0.0566	0.377
0.0600	0.318
0.0633	0.258
0.0666	0.229
0.0700	0.182
0.0733	0.160
0.0766	0.113
0.0800	0.107
0.0833	0.094
0.0866	0.075
0.0900	0.066
C.0933	0.053
0.0966	0.040
0.1000	0.069
0.1033	0.047
0.1066	0.050
0.1100	0.037
0.1133	0.031
0.1166	0.028
0.1200	0.028

$\begin{array}{cccccccccccccccccccccccccccccccccccc$
0.1333 0.015   0.1366 0.022   0.1400 0.018   0.1433 0.031   0.1433 0.031   0.1433 0.031   0.1433 0.031   0.1466 0.031   0.1500 0.018   0.1533 0.022   0.1566 0.025   0.1600 0.018   0.1633 0.018   0.1666 0.018   0.1700 0.018   0.1733 0.015   0.1766 0.018   0.1800 0.018   0.1833 0.018   0.1866 0.018   0.1933 0.018   0.1933 0.018   0.1966 0.015   0.2033 0.015   0.2133 0.015   0.2133 0.015   0.2233 0.015   0.2266 0.015   0.2266 0.012   0.2300 0.012
$\begin{array}{cccccccccccccccccccccccccccccccccccc$
0.1433 0.031   0.1466 0.031   0.1500 0.018   0.1533 0.022   0.1566 0.025   0.1600 0.018   0.1633 0.018   0.1666 0.018   0.1666 0.018   0.1666 0.018   0.1700 0.018   0.1733 0.015   0.1766 0.018   0.1800 0.018   0.1833 0.018   0.1866 0.018   0.1933 0.018   0.1966 0.015   0.2033 0.015   0.2066 0.015   0.2100 0.015   0.2233 0.015   0.2233 0.015   0.2266 0.015   0.2266 0.012   0.2300 0.012
0.1466 0.031   0.1500 0.018   0.1533 0.022   0.1566 0.025   0.1600 0.018   0.1633 0.018   0.1666 0.018   0.1700 0.018   0.1766 0.018   0.1800 0.018   0.1833 0.018   0.1866 0.018   0.1900 0.018   0.1933 0.018   0.1966 0.015   0.2033 0.015   0.2033 0.015   0.2100 0.015   0.2133 0.015   0.2200 0.015   0.2233 0.012
0.1533 0.022   0.1566 0.025   0.1600 0.018   0.1633 0.018   0.1666 0.018   0.1700 0.018   0.1733 0.015   0.1766 0.018   0.1800 0.018   0.1833 0.018   0.1866 0.018   0.1900 0.018   0.1933 0.018   0.1966 0.015   0.2033 0.015   0.2066 0.015   0.2100 0.015   0.2133 0.015   0.2200 0.015   0.2233 0.012   0.2266 0.012   0.2300 0.012
$\begin{array}{cccccccccccccccccccccccccccccccccccc$
0.1633 0.018   0.1666 0.018   0.1700 0.018   0.1733 0.015   0.1766 0.018   0.1800 0.018   0.1833 0.018   0.1866 0.018   0.1900 0.018   0.1933 0.018   0.1966 0.015   0.2033 0.015   0.2066 0.015   0.2133 0.015   0.2133 0.015   0.2233 0.015   0.2266 0.015   0.2233 0.012
0.1666 0.018   0.1700 0.018   0.1733 0.015   0.1766 0.018   0.1800 0.018   0.1833 0.018   0.1866 0.018   0.1900 0.018   0.1933 0.018   0.1966 0.015   0.2000 0.015   0.2033 0.015   0.2066 0.015   0.2100 0.015   0.2133 0.015   0.2233 0.015   0.2233 0.012   0.2266 0.012   0.2300 0.012
0.1733 0.015   0.1766 0.018   0.1800 0.018   0.1833 0.018   0.1833 0.018   0.1866 0.018   0.1900 0.018   0.1933 0.018   0.1966 0.015   0.2033 0.015   0.2066 0.015   0.2100 0.015   0.2133 0.015   0.2233 0.015   0.2266 0.015   0.2266 0.012   0.2300 0.012
0.1766 0.018   0.1800 0.018   0.1833 0.018   0.1866 0.018   0.1900 0.018   0.1933 0.018   0.1966 0.015   0.2000 0.015   0.2033 0.015   0.2100 0.015   0.2133 0.015   0.2233 0.015   0.2233 0.012   0.2266 0.012   0.2300 0.012
0.1833 0.018   0.1833 0.018   0.1866 0.018   0.1900 0.018   0.1933 0.018   0.1966 0.015   0.2000 0.015   0.2033 0.015   0.2066 0.015   0.2133 0.015   0.2166 0.015   0.2233 0.015   0.2266 0.012   0.2266 0.012   0.2300 0.012
0.1866 0.018   0.1900 0.018   0.1933 0.018   0.1966 0.015   0.2000 0.015   0.2033 0.015   0.2066 0.015   0.2100 0.015   0.2133 0.015   0.2200 0.015   0.2233 0.012   0.2266 0.012   0.2300 0.012
0.1933 0.018   0.1966 0.015   0.2000 0.015   0.2033 0.015   0.2066 0.015   0.2100 0.015   0.2133 0.015   0.2166 0.015   0.2233 0.015   0.2233 0.012   0.2266 0.012   0.2300 0.012
0.1966 0.015   0.2000 0.015   0.2033 0.015   0.2066 0.015   0.2100 0.015   0.2133 0.015   0.2166 0.015   0.2200 0.015   0.2233 0.012   0.2266 0.012   0.2300 0.012
0.2033 0.015   0.2066 0.015   0.2100 0.015   0.2133 0.015   0.2166 0.015   0.2200 0.015   0.2233 0.012   0.2266 0.012   0.2300 0.012
0.2066 0.015   0.2100 0.015   0.2133 0.015   0.2166 0.015   0.2200 0.015   0.2233 0.012   0.2266 0.012   0.2300 0.012
0.2133 0.015   0.2166 0.015   0.2200 0.015   0.2233 0.012   0.2266 0.012   0.2300 0.012
0.2166   0.015     0.2200   0.015     0.2233   0.012     0.2266   0.012     0.2300   0.012
0.2233   0.012     0.2266   0.012     0.2300   0.012
0.2266 0.012 0.2300 0.012
0.2333 0.015
0.2366 0.015
0.2433 0.015
0.2466 0.015
0.2533 0.015
0.2566 0.015
0.2633 0.015
0.2666 0.015
0.2733 0.015
0.2766 0.015
0.2833 0.015
0.2866 0.015
0.2933 0.012
0.2966 0.012 0.3000 0.015
0.3033 0.012
0.3066 0.012 0.3100 0.012
0.3133 0.012
0.3166 0.012 0.3200 0.012

0.3233	0.012
0.3266	0.012
0.3300	0.012
0.3333	0.015
0.3500	0.012
0.3000	0.015
0.3833	0.012
0.4000	0.012
0.4333	0.006
0.4500	0.012
0.4666	0.015
0.4833	0.012
0.5000	0.012
0.5166	0.012
0.5333	0.012
0.5500	0.012
0.5666	0.012
0.5833	0.012
0.6000	0.012
0.6166	0.012
0.6333	0.012
0.6500	0.012
0.6666	0.015
0.6833	0.012
0.7000	0.012
0.7100	0.012
0.7333	0.012
0.7500	0.012
0.7833	0.012
0.8000	0.012
0.8166	0.012
0.8333	0.012
0.8500	0.012
0.8666	0.012
0.8833	0.012
0.9000	0.012
0.9166	0.012
0.9333	0.015
0.9500	0.012
0.9666	0.012
0.9833	0.012
1.0000	0.012
1.2000	0.015
1.4000	0.015
1.0000	0.015
2 0000	-0.005
2.0000	0.000
2.4000	0.015
2,6000	0.015
2.8000	0.015
3.0000	0.015
3.2000	0.015
3.4000	0.015
3.6000	0.012
3.8000	0.003
4.0000	0.003

<<<<<<<<<<	<<< <b>&lt;&lt;&lt;&lt;</b>	<<<<>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>	>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>	>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>	»»»»»»»»»»»»»»»»»»»»»»»»»»»»»»»»»»»»»»
	AQTESO V	LV REST ersion 1.10	ULTS		
09/28/92				:	11:05:39
	TEST	DESCRIPTION			******
Data set mw5 Data set title EAF	t17.in B - Monitori	ng Well 5, Te	st 17		
Knowns and Constants: No. of data points Radius of well casin Radius of well Aquifer saturated th Well screen length Static height of wat Log(Re/Rw) A, B, C	g ickness er in well	154 0.08333 0.3333 14.35 14.35 14.35 2.873 0.000,	0.000, 2	.400	
RESULTS FROM VISUAL CURVE MATCHING					
VISUAL MATCH PARAMETER	ESTIMATES				
Estimate K = 6.3745E-002 y0 = 0.0000E+000					
<<<<<<<<<<	<<<<<<<	<<<<>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>	>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>	>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>	>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>
TYPE CURVE DATA					
K = 3.76168E-002 y0 = 8.18465E+000					
Time Drawdown	Time	Drawdown	Time	Drawdown	
0.000E+000 8.185E+000	1.200E-001	1.237E-002			



SE1000 Environmenta	C 1 Logger
09/03 07	:59
<b>E</b> nit# 00856	Test 18
Setups:	INPUT 1
Туре	Level (F)
Mode	TOC
I.D.	00000
Reference	0.000
Scale factor	10.010
Offset	-0.130
Delay mSEC	50.000
<b>Step</b> 0 09/02	17:57:23
Elapsed Time	INPUT 1
0.0000	1.111
0.0032	3.976
0.0100	0.503
0.0133	1.684
0.0166	1.379
0.0233	1.130
0.0266	0.941
0.0300	0.821
0.0333	0.629
0.0400	0.551
0.0433	0.481
0.0466	0.421
0.0533	0.324
0.0566	0.286
0.0600	0.251
0.0655	0.195
0.0700	0.173
0.0733	0.154
0.0766	0.138
0.0833	0.110
0.0866	0.100
0.0900	0.091
0.0966	0.075
0.1000	0.072
0.1033	0.062
0.1066	0.056
0.1133	0.053
0.1166	0.047
0.1200	0.040

0.1233	0.040
0.1266	0.037
0.1300	0.034
0.1333	0.031
0.1366	0 031
0.1400	0.028
0.1433	0.028
0.1400	0.025
0.1500	0.025
0.1555	0.023
0.1500	0.022
0.1633	0.022
0.1666	0.022
0.1700	0.022
0.1733	0.018
0.1766	0.018
0.1800	0.018
0.1833	0.018
0.1866	0.015
0.1900	0.015
0.1933	0.015
0.1966	0.015
0.2000	0.012
0.2033	0.012
0.2066	0.012
0.2100	0.012
0.2133	0.012
0.2100	0.012
0.2200	0.012
0.2266	0.012
0.2300	0.012
0.2333	0.009
0.2366	0.009
0.2400	0.012
0.2433	0.009
0.2466	0.009
0.2500	0.009
0.2533	0.009
0.2566	0.009
0.2600	0.009
0.2633	0.009
0.2666	0.009
0.2700	0.009
0.2/33	0.009
0.2766	0.009
0.2800	0.009
0.2855	0.000
0.2900	0.006
0.2933	0.006
0.2966	0.006
0.3000	0.006
0.3033	0.006
0.3066	0.006
0.3100	0.006
0.3133	0.006
0.3166	0.006
0.3200	0.006



0.3233	0.006
0.3266	0.006
0.3300	0.006
0.3333	0.006
0.3500	0.006
0.3666	0.003
0.3833	0.003
0.4000	0.003
0.4166	0.006
0.4333	0.003
0.4500	0.003
0.4666	0.000
0.4833	0.003
0.5000	0.003
0.5166	0.003
0.5333	0.003
0.5500	0.003
0.5666	0.003
0.5833	0.003
0.6000	0.000
0.6166	0.000
0.6333	0.003
0.6500	0.000
0.6666	0.003
0.6833	0.000
0.7000	0.000
0.7166	0.000
0.7333	0.000
0.7500	0.000
0.7666	0.000
0.7833	0.000
0.8000	0.000
0.8166	0.000
0.8333	0.000
0.8500	0.003
0.8666	0.000
0.8833	0.000
0.9000	0.000
0.9166	0.000
0.9333	0.000
0.9500	0.000
0.9666	0.000
0.9833	0.000
1.0000	0.003
1.2000	-0.003
1.4000	-0.003



AQTESOLV RESULTS Version 1.10 09/28/92 11:16:54 TEST DESCRIPTION Data set..... a:\mwl3t18.in Data set title.... EAFB - Monitoring Well 13, Test 18 Knowns and Constants: No. of data points..... 118 Radius of well casing..... 0.08333 Radius of well..... 0.3333 Aquifer saturated thickness..... 7.36 Well screen length..... 5 Static height of water in well..... 7.36 Log (Re/Rw) ..... 2.196 A, B, C..... 0.000, 0.000, 1.498 ______ ANALYTICAL METHOD Bouwer and Rice (unconfined aquifer slug test) ------**RESULTS FROM VISUAL CURVE MATCHING** VISUAL MATCH PARAMETER ESTIMATES Estimate K = 7.6591E-002 y0 =0.0000E+000 TYPE CURVE DATA K = 6.60952E - 002y0 = 2.98187E+000Time Drawdown Time Time Drawdown Drawdown _____ 0.000E+000 2.982E+000 2.000E-001 5.131E-004 TYPE CURVE DATA K = 6.24777E-002y0 = 2.74037E+000

Time	Drawdown	Time	Drawdown	Time	Drawdown
0.000E+000	2.740E+000	2.000E-001	7.577E-004		



SE1000	C
Environmenta	l Logger
09/03 08	3:02
<b>Onit#</b> 00856	Test 19
Setups:	INPUT 1
Туре	Level (F)
Mode	TOC
I.D.	00000
Reference	0.000
Linearity	0.000
Scale factor	10.010
Offset	-0.130
Delay mSEC	50.000
Step 0 09/02	18:03:55
	-
Elapsed Time	INPUT 1
0.0000	-0.006
0.0033	0.982
0.0066	3.662
0.0100	0.721
0.0133	1.599
0.0166	1.530
	1.328
0.0233	1.130
- 0.0266	1.007
0.0300	0.881
0.0333	0.700
0.0300	0.073
0.0400	0.500
0.0455	0.510
0.0400	0.450
0.0500	0.393
0.0533	0.340
0.0500	0.305
0.0000	0.207
0.0000	0.204
0.0000	0.182
0.0700	0.166
0.0755	0.144
0.0700	0.132
0.0000	0.116
0.0055	0.107
0.0900	0.094
0.0933	0.088
0.0966	0.078
0.1000	0.072
0.1033	0.066
0.1066	0.059
0.1100	0,056
0 1122	0.053
0 1166	0.047
0.1200	0,047

0.1233	0.044
0.1266	0.037
0.1300	0.037
0.1333	0.034
0.1366	0.031
0.1400	0.031
0.1433	0.028
0.1466	0.028
0.1500	0.025
0.1555	0.025
0.1500	0.025
0.1633	0.022
0.1666	0.022
0.1700	0.018
0.1733	0.018
0.1766	0.018
0.1800	0.018
0.1833	0.018
0.1866	0.018
0.1900	0.015
0.1933	0.015
0.1966	0.015
0.2000	0.015
0.2033	0.015
0.2000	0.015
0.2133	0.012
0.2166	0.012
0.2200	0.012
0.2233	0.012
0.2266	0.009
0.2300	0.012
0.2333	0.012
0.2366	0.012
0.2400	0.012
0.2433	0.009
0.2466	0.009
0.2500	0.012
0.2533	0.009
0.2500	0.009
0.2600	0.009
0.2055	0.009
0.2700	0.009
0.2733	0.009
0.2766	0.006
0.2800	0.009
0.2833	0.006
0.2866	0.006
0.2900	0.006
0.2933	0.006
0.2966	0.006
0.3000	0.006
0.3033	0.006
0.3066	0.006
0.3100	0.009
0.3133	0.006
0.3166	0.006
0.3200	0.006

0.3233	0.	006
0.3266	0.	006
0.3300	ο.	006
0.3333	ο.	006
0.3500	0.	006
0.3666	Ο.	006
0.3833	ο.	006
0.4000	0.	003
0.4166	0.	003
0.4333	0.	003
0.4500	0.	003
0.4666	0.	003
0.4833	0.	003
0.5000	0.	003
0.5166	0.	003
0.5333	0.	003
0.5500	0.	003
0.5666	0.	003
0.5833	0.	003
0.6000	0.	003
0.6166	0.	000
0.6333	0.	000
0.6500	0.	003
0.6666	0.	003
0.6833	0.	000
0.7000	0.	000
0.7166	0.	000
0.7333	0.	000
0.7500	0.	000
0.7666	0.	000
0.7833	0.	003
0.8000	0.	000
0.8166	0.	000
0.8333	0.	000
0.8500	0.	000
0.8666	0.	000
0.8833	0.	000
0.9000	0.	003
0.9166	0.	000
0.9333	0.	000
0.9500	0.	000
0.9666	0.	000
0.9833	0.	000
1.0000	0.	000

AQTESOLV RESULTS Version 1.10 11:40:21 09/28/92 TEST DESCRIPTION Data set..... a:\mw18t19.in Data set title.... EAFB - Monitoring Well 13, Test 19 Knowns and Constants: No. of data points..... 120 Radius of well casing..... 0.08333 Radius of well..... 0.3333 Aquifer saturated thickness..... 7.36 Well screen length..... 5 Static height of water in well..... 7.36 Log(Re/Rw)..... 2.196 A, B, C..... 0.000, 0.000, 1.498 ANALYTICAL METHOD Bouwer and Rice (unconfined aquifer slug test) **RESULTS FROM VISUAL CURVE MATCHING** VISUAL MATCH PARAMETER ESTIMATES Estimate K = 6.3222E-002 v0 =0.0000E+000 TYPE CURVE DATA K = 6.19572E-002 $y_0 = 2.98538E+000$ Time Drawdown Time Drawdown Time Drawdown ----------------------------0.000E+000 2.985E+000 2.000E-001 8.838E-004





Appendix G

CIVIL SURVEYING DATA



				Top of Steel	Top of PVC	Ground
Designation		Northing	Easting	Casing (cap	Casing (cap	Surface next
	++			removed)	removed)	to Well
CW AA	6	2644454 40	1674775 40	125 22	124 70	122.0
GW 4A	- IL 	806021 241	510472 562	41 246	1.34.79	40 \$1
		800031.341	510472.502	41.240	41.004	40.51
GW 6A	ft	2642648.49	1670730.39	137.74	137.62	135.6
GW 6A	m	805480.871	509239.641	41.983	41.947	41.33
NS3.02		2643600 36	1673577 61	118 44	117.08	115 2
NS3-02	m	805771.001	510107 476	36 101	35 060	35 14
1135-02	+	005771.001			33.700	
NS3-03	ft	2643144.74	1672285.55	109.17	109.13	106.2
NS3-03	m	805632.128	509713.655	33.275	33.263	32.37
	+					
NS3-06	ft	2644144.97	1672841.54	146.84		146.8
NS3-06	m	805936.999	509883.121	44.757		44.74
OU5MW-01	ft	2641440.14	1667083.49	136.82	136.41	134.1
OUSMW-01	m	805112.565	508128.064	41.703	41.578	40.87
OU5MW-02	ft	2642493.14	1668573.89	141.67	140.95	139.2
OU5MW-02	m	805433.520	50 ⁸ 582.339	43.181	42.962	42.43
011010102		0640107.00	1660747.10			
005MW-03	m	2643187.22	1669/4/.10	148.11	147.58	145.7
OUSMW-03	m	803645.076	508939.934	45.144	44.982	44.41
OU4MW-04	ft	2644187.86	1671146.14	157.46	157.09	154.8
OU4MW-04	m	805950.072	509366.362	47.994	47.881	47.18
OU5MW-05	ft	2644958.94	1672552.29	157.82	157.29	155.3
OU4MW-05	m	806185.097	509794.958	48.104	47.942	47.34
OUG ANY OG		0645300 50	1674566 101	171.61	170.00	
OUSMW-06	<u> </u>	2043199.38	10/4000.13	1/4.54	173.99	172.4
003MW-00		800238.443	510408.777	53.200	53.032	52.55
OU5MW-07	ft	2645421.29	1675634.89	179.97	179.42	177.4
OU5MW-07	m	806326.022	510734.536	54.855	54.687	54.07
OU5MW-08	ft	2644734.62	1675474.37	153.88	153.50	151.1
OU5MW-08	m	806116.724	510685.609	46.903	46.787	46.06
OU5MW-09	ft	2643498 85	1672675.46	113.62	113.02	111.0
OUSMW-09	m	805740.061	509832.500	34.631	34.449	33.83
OU5MW-10	ft	2642902.03	1672025.94	106.08	105.25	103.5
OU5MW-10	m	805558.150	509634.526	32.333	32.080	31.55
		0640000 60	100000 10	152.50		
OUSMW-11	n	2043322.68	10/0837.17	153.50	152.95	151.9
005MW-11	<u>m</u>	803080.304	3092/2.188	40./8/	40.019	40.30
OU5MW-12	ft	2641969.40	1670451.81	96.89	96.01	94.1
OU5MW-12	m	805273.884	509154.730	29.532	29.264	28.68
OU5MW-13	ft	2641783.28	1669909.23	91.39	90.81	88.6
OU5MW-13	m	805217.154	508989.351	27.856	27.679	27.01

	ĺ.			Top of Steel	Top of PVC	Ground
Designation	$\downarrow$	Northing	Easting	Casing (cap	Casing (cap	Surface next
				removed)	removed)	to Well
OUG AND 14	-	2641282.00	1660000.06	95.53		
OUSMW-14	m	2041283.98	509733.916	83.32 26.067	25 900	25 30
00544-14		005004.507			23.077	۵.50
OUSMW-15	ft	2640954.48	1668159.38	82.00	81.56	79.6
OU5MW-15	m	804964.535	508455.996	24.994	24.860	24.26
	- L					
OUSMW-16	ft	2640657.86	1667569.69	77.98	77.29	75.4
005MW-16	m	804874.125	508276.258	23.768	23.558	22.98
OUSMW-17	ft	2640111.83	1666837.83	66.38	65.99	63.1
OU5MW-17	m	804707.695	508053.187	20.233	20.114	19.23
OU5MW-30	ft	2643719.87	1673208.63	117.60	117.29	114.7
OU5MW-30	m	805807.428	<b>50999</b> 5.010	35.845	35.750	34.96
01/61/01/ 21		2644051.00	1674222 66	126 72	12616	100.0
OUSMW-31	m	2044051.90	510334 537	127.73	29 140	125.5
005111-51	111	003908.031	510554.557	38.343	50.147	57.04
SP1-01	ft	2640815.84	1667437.25	98.20	97.91	94.8
SP1-01	m	804922.278	508235.890	29.931	29.843	28.89
SP1-02	ft	2641264.68	1668249.57	135.90	135.55	132.5
SP1-02	nı	805059.085	508483.486	41.422	41.316	40.39
SP2/6 01	fr i	2643026 15	1670418 50	152.05	152.75	150.4
SP2/6-01	m	805595.982	509144.577	46.650	46.558	45.84
	-					
SP2/6-02	ft	2643046.73	1670706.58	144.31	144.19	141.3
SP2/6-02	m	805602.255	509232.384	43.986	43.949	43.07
000 / 00		2612251 72	1/71/070 00			
SP2/6-03	<u>_11</u>	2042951.72	500242 422	141.85	141.63	139.1
3F2/0-03		005575.295	307343.423	43.230	45.109	42.40
SP2/6-04	ft	2642799.59	1670895.12	140.49	140.44	137.9
SP2/6-04	m	805526.926	509289.851	42.821	42.806	42.03
SP2/6-05	ft	2642393.82	1670442.28	136.03	135.81	133.1
SP2/6-05	m	805403.247	509151.825	41.462	41.395	40.57
SPA 02	fr	2644118 12	1674412 02	129.45	139 12	125.2
SP4-02	m	805928.815	510362.109	39,152	39.054	38.19
				57152		50.17
SP4/11-01	ft	2644372.91	1674636.15	134.58	134.30	131.3
SP4/11-01	m	806006.475	510430.119	41.020	40.935	40.02
	<u> </u>					
SP4/11-03	n.	2044727.92	1674238.07	171.65	171.06	168.5
354/11-03	m	000114.082	510308.784	52319	52.139	51.36
W-14	ft	2644 578.29	1675043.47	135.35	135.16	133 7
W-14	m	806069.075	510554.271	41.255	41.197	40.75
W-16	ft	2642644.26	1670567.61	138.48	138.18	137.0
W-16	m	805479.581	509190.026	42.209	42.117	41.76
Designation	!	Northing	Fasting	Top of Steel	Genued	
-------------	----------	------------	---------------	--------------	---------	
L-Signation	+		Lesuig	removed)	Surface	
				- Ichio (Qa)	JUIIACE	
OU5GW-25	ft	2643635.94	1673456.25	117.05	114.2	
OU5GW-25	m	805781.846	510070.486	35.677	34.81	
01/01/20	-		1 (2 1000 20)			
OUSGW-Z/	<u> </u>	2644303.85	1674882.70	133.71	130.9	
005GW-27	m	803983.423	510505.208	40.755	39.90	
OU5GW-28	ft	2644379.37	1675291.12	136.54	133.0	
OU5GW-28	m	806008.444	510629.755	41.617	40.54	
OUKCIW 20		2644121 22	1674165 02	100.10		
005GW-29	n	2044121.22	10/4103.03	127.12	123.54	
0030-29	m	803929.700	510280.521	38.740	37.00	
OU5GW-34	ft	2642593.39	1671126.84	102.53	98.8	
OU5GW-34	m	805464.076	509360.479	31.251	30.11	
OU5GW-40	ft	2644431.24	1675424.27	138.01	134.6	
OU5GW-40	m	806024.253	510670.339	42.066	41.03	
OUSGW-41	ft	2643660.91	1675645.34	132.96	129.0	
OU5GW-41	m	805789.456	510737.720	40.526	39.32	
OU5GW-42	ft	2643676.09	1675132.72	126.26	123.7	
OU5GW-42	m	805794.084	510581.475	38.484	37.70	
OUSCW AA	6.	2642775 07	1674666 27	124.96	101.2	
005GW-44	m	805824 528	510439 330	38.057	121.3	
		005024.520	510459.550			
OU5GW-46	ft	2642275.23	1670616.14	101.83	99.1	
OU5GW-46	m	805367.101	509204.818	31.038	30.21	
OUSGW-50	ft	2643474.43	1671992.91	116.14	112.9	
005Gw-50	m	805/32.616	509624.458	35.399	34.41	
OUSGW-51	ft	2642037.23	1670309.83	96.74	93.0	
OU5GW-51	m	805294.558	509111.454	29.486	28.35	
OU5GW-55	ft '	2640021.46	1667822.47	58.20	54.6	
OUSGW-55	m	804680.151	508353.306	17.739	16.64	
OUSGW-58	fr	2640171 51	1668016.26	58 67	55 1	
OU5GW-58	m	804725.884	508412.373	17.882	16.79	
OU5GW-63	ft	2644562.42	1674467.19	133.00	129.8	
OU5GW-63	m	806064.237	510378.620	40.538	39.56	
01/681 07		2641100.85	1668201.08			
OUSSL-07	<u>n</u>	2041199.85	1008391.08	84.77	80.7	
0033L-0/		003037.323	506520.017	43.838	24.59	
OU5SL-10	ft	2641653.82	1669256.27	96.78	93.6	
OU5SL-10	m	805177.694	508790.328	29.499	28.53	
	1					
OUSSL-12	ft	2642359.48	1670514.23	107.04	103.1	
IOUSSL-12	m	805392.782	509173.757	32,626	31.42	

	i I			Top of Steel	
Designation		Northing	Easting	Pipe (cap	Ground
				removed)	Surface
OU5SL-18	ft	2643014.36	1671648.26	110.78	107.3
OUSSL-18	m	805592.389	509519.409	33.766	32.71
OU5SL-20	ft	2643425.54	1672211.50	114.87	110.4
OU5SL-20	m	805717.717	509691.083	35.012	33.65
OUSSL-22	ft	2644571.92	1674234.19	134.29	129.9
OU5SL-22	m	806067.135	510307.603	40.932	39.59
OU5SL-23	ft	2644634.05	1674661.20	136.40	132.1
OU5SL-23	m	806086.069	510437.753	41.575	40.26
OU5SL-25	ft	2642987.35	1671468.82	109.21	105.7
OUSSL-25	m	805584.155	509464.714	33.287	32.22

DOWL Engineers - Revised, December 15, 1992

Elmendorf AFB - Operable Unit 5 - Soil Borings

40 4

ļ

	1			Ground			
Designation		Northing	Easting	Surface	References		
······	$\downarrow$					<u> </u>	
		2 (4) (70 74	1 (17 (2) 22)	122.0	697°E 47 9 Deal		
DUSSB-18	n	2,041,072.74	1,007,384.32	133.0	38/ C. 4/.0-LUD	ex Null in Fower Fo	AC
00358-18		205,000,208		40.54	N20 W, 32.2-Du	Nex Nail in Power I	nie
	-++				1100 11, 20.5 220		
011558-19	6	2 640 845 87	1.666.934.38	131.0	N80"W. 76.9-Du	niez Nail in Power I	Pale
OUSSB-19	m	804.931.430	508.082.615	39.93	S40'E, 41.7-Dup	ex Nail in Power P	sle
					N25'E. 74.0-Dup	lex Nail in Power P	ole
OUSSB-20	ft	2,640,961.98	1,667,210.23	131.7	S22°W, 114.7-De	plex Nail in 8" Asp	ca
OUSSB-20	m	804,966.823	508,166.695	40.14	N72"W, 50.6-De	plex Nail in 6" Birch	<u> </u>
					N54"E, 87.5-Dap	lex Nail in Power P	ole
OUSSB-21	ft	2,641,498.02	1,668,728.49	133.5	\$23"W, 30.0-Day	plex Neil in 12" Cot	tonwood
OUSSB-21		805,130.207	508,629.460	40.68	S57'E, 18.5-Dep	lex Nail in 6" Aspen	3
					N77-W, 75.1-De	DECK MAIL IN POWER	rose
		2 642 601 20	1 660 807 62	129 4	548'TV 60 5 D	lan Neil in Wood S	ion Bust
OU55B-22	$-\frac{\pi}{-1}$	2,042,301.39	509 095 912	42 18	N74 W 37 7-Se	and Limit Sign Post	
00338-22			300,703.012		N44"F. 24.0-Das	Neil in 3" Aspe	<b>n</b>
	-+-+						
OU5SB-23	ft	2,642,590.12	1,670,419.70	147.1	S62°E, 59.7-Dup	lex Nail in Power P	ole
OU5SB-23	m	805,463.078	509,144.942	44.84	N64'E. 44.2-Dug	olex Nail in Wood S	ervice Pole
						w/climbing arms	
					N26'W, 29.6-Du	plex Nail in Southe	ast conser of
					l	Building #22-007	L
					l		l
OU5SB-24	ft	2,643,055.28	1,670,720.22	141.1	S66 W, 16.6-Ce	ater of MW SP2/6-0	2
OU5SB-24	<u>m</u> _	805,604.859	509,236.540	43.01	N70 W. 18.8-De	plex Nail in 3" Asp	
	-+-+				N/2 E, 81.3-300	intwest corner of Q	
OLICER 25		2 642 606 25	1 672 208 11	121 0	530"W 44 0.Dr	nley Neil in 8° Asn	
OUSSB-25		2,043,090.33	509 720 531	37.16	526'E 82.5-Dur	Nex Nail in Power F	ble
00338-25					S70°E. 44.0-Dur	Nex Nail in 8" Aspe	<u>n</u>
						1	[
OUSSB-26	ft	2.644.420.58	1.672.587.92	147.9	S36"E, 68.5-Met	al Light Pole	
OUSSB-26	m	806,021.005	509,805.819	45.08	8 N20"W, 24.0-Ce	enterline of Manhole	Cover
	-+-+				N44'E, 78.5-RR	X-ing Sign Post	
OUSSB-27	ft	2,644,526.12	1,672,976.71	152.0	S18 E. 148.2-To	tem Pole	L
OUSSB-27	m	806,053.173	509,924.320	46.3	3 570°W, 51.5-No	rtheast corner of Co	acrete Structure
					NILOUTIN 42 2 12	Ior Steam Papes	de of C Bol
	_++			<u> </u>	NIU W. 44-3-FU	gged KK Spike ins	
OUEED 274		2 644 610 26	1 672 100 02	161 *	North ST OF	and PR Snike insid	e of S. Reil
OUSSB-2/A	$-\frac{\pi}{2}$	2,044,319.23	500 064 075	49.1	1 West 187 6-No	theast comer of Co	norme Steam Vaul
00338-2/A		800,031.078		47.1.	S36'W 153.3-T	otem Pole	
	-+-+				0.00	T	<u></u>
OUSSB-28	fit	2.644.649.57	1.673.626.25	163.4	4 S24'W, 50.5-Du	plex Nail in 5" Asp	
OUSSB-28	m	806.090.802	510,122.301	49.8	0 S12°E, 29.7-Du	plex Nail in 2" Aspe	a
					East, 66.0-4" BC	C Mon. "TTAN-7"	
	-++				N12"W, 20.3-FI	agged RR Spike ins	ide of S. Rail
OU5SB-29	ft	2,640,824.12	1,667,448.99	95.	3 S16'E, 43.3-Du	plex Nail in 8" Coth	boowing
OU5SB-29	m	804,924.800	508,239.468	29.0	5 553 W, 13.5-Ce	atter MW SP1-01	L
					N20°E, 32.2-Du	plex Nail in 6" Cot	onwood

DOWL Engineers - November 3, 1992

				Top of	Ground	
Designation		Northing	Easting	Flange	Surface	
BW-40		2.646.694.13	1.673.691.11	173.86	171.6	
BW-40	m	806,713.985	510,142.070	52.993	52.30	
BW-50	ft	2,642,551.36	1,680,511.10	200.43	200.2	•
BW-50	m	805,451.264	512,220.807	61.091	61.02	
BW-52	ft	2,642,921.89	1,672,341.57	108.01	106.1	
BW-52	m	805,564.204	509,730.729	32.922	32.34	
		*Finish Floor Next	to Casing at BW-50	,		

ſ

1

1

DOWL Engineers - November 3, 1992

				Top of Steel
Designation	Northing		Easting	Rod
Gauging Station at	ft	2.644.191.91	1.679.417.31	175.89
Davis Highway	m	805,951.306	511,887.421	53.611
Gauging Station Dam	ft	2,642,020.14	1,671,096.71	98.70
	m	805,289.349	509,351.295	30.084

I

Ī

Į

ļ

ļ

DOWL Engineers - November 3, 1992

#### **Beaver Ponds**

Water surface levels were taken at two locations on October 28, 1992.

ļ

- 9:50 AM Surface of pond just east of OU5SL-10 = 87.50 feet (26.670 meters) Project Book 4, Page 6
- 12:40 PM Surface of pond 100' west of NS3-02 = 113.42 feet (34.570 meters) Project Book 4, Page 7

# Appendix H

# DATA VALIDATION

Review of QA/QC Data For Close Support Laboratory Analyses at Elmendorf AFB OU 5

Review of QA/QC Data For Offsite Laboratory Analyses at Elmendorf AFB OU 5

**Field Duplicate Results** 

**Data Validation Summaries** 

# REVIEW OF QA/QC DATA FOR OFFSITE LABORATORY ANALYSES AT ELMENDORF AFB OU 5

# REVIEW OF QA/QC DATA FOR CLOSE SUPPORT LABORATORY ANALYSES AT ELMENDORF AFB OU 5

· ·

## MEMORANDUM

TO: Win Westervelt/ANC

**COPIES:** Susan Schrader/ANC

- FROM: Donna Morgans/CVO
- DATE: November 24, 1992
- SUBJECT: Review of Quality Assurance/Quality Control (QA/QC) Data for Close Support Laboratory Analyses at Elmendorf Air Force Base (AFB), Operable Unit 5

PROJECT: ANC31026.H3.80

## Summary

Overall, the data have met the acceptance criteria as outlined in the Elmendorf AFB Operable Unit 5 (OU-5) Remedial Investigation (RI) Work Plan and are usable for the purposes outlined in the context of the data quality objectives. Minor nonconformances with project data quality objectives or QA/QC criteria are thoroughly discussed, identified, and qualified in this report. The following is a brief summary of the overall quality of the sample results.

The majority of the JP-4/diesel range organics (DRO), gasoline range organics (GRO), and volatile organic compound (VOC) results met all QA/QC criteria for the selected QC parameters. Some minor deviations from the QA/QC criteria were observed as follows:

- 5SB04-25 exceeded the GRO analysis holding time and was qualified as an estimate and flagged with a "J" for positive results, or a "UJ" for nondetected results.
- Twenty-four different samples had compounds qualified as estimates and flagged with a "J" because continuing calibration verification did not meet QC acceptance criteria.
- Six JP-4/DRO results and one GRO result were qualified as estimates and flagged with a "J" because surrogate spike recoveries did not meet QC acceptance criteria.
- 1,1,1-Trichloroethane, trichloroethene, and tetrachloroethene did not meet the completeness objective of 80 percent usable data based on

MEMORANDUM Page 2 November 24, 1992

meeting precision and accuracy criteria. However, all qualified data are considered usable for the purposes outlined in the RI work plan.

• Overall, the completeness criterion of 80 percent was met by all data.

## Introduction

A review has been conducted on data submitted for the Close Support Laboratory (CSL) for the OU-5 Remedial Investigation (RI) at Elmendorf Air Force Base, Alaska. This report summarizes the results of the review of QA/QC data associated with the analysis of JP-4 (jet fuel), DRO, GRO, and nine VOCs. The following VOCs were analyzed by gas chromatography (GC) using a hall electrolytic conductivity detector (ECD): trans-1,2 dichloroethene, 1,1,1-trichloroethane, trichloroethene, tetrachloroethene. The following VOCs were analyzed by GC using a photoionization detector (PID): benzene, toluene, ethylbenzene, and meta, para, and ortho-xylenes. Soil and water samples were collected between August 6 and August 28, 1992. The intent of this review is to assess the appropriate use or "usability" of the analytical data for RI purposes based on the QA/QC data collected by the laboratory.

The usability review focuses on criteria for the following QA/QC parameters and their overall effect on the data.

- Holding times
- Calibration Verification Checks
- Method blanks
- Surrogate spikes
- Matrix spike/matrix spike duplicates
- Field QA/QC (Field blanks and duplicates)

Soil samples were collected from 31 different soil borings from OU-5 and from one soil boring from OU-7. Laboratory QA/QC data were evaluated from analyses associated with this investigation and include the following:

• Seventy-eight soil samples were analyzed for nine halogenated VOCs according to EPA Modified Methods 8010/8020 and gasoline range organics (GRO) according to the State of Alaska Department of Environmental Conservation (ADEC) Modified Method 8015.

- Seventy-eight soil samples were analyzed for JP-4 and DRO according to the ADEC Modified Method 8100.
- Twelve water blanks were analyzed for nine halogenated VOCs according to EPA Modified Methods 8010/8020 and GRO according to the ADEC Modified Method 8015.
- Four water blanks were analyzed for JP-4 and DRO according to the ADEC Modified Method 8100.

All analyses were performed by the Close Support Laboratory (CSL) in the CH2M HILL Applied Science and Technology Laboratory in Corvallis, Oregon.

Soil and water samples were analyzed for VOCs using methods and QA/QC criteria procedures derived from the U.S. EPA SW-846 *Test Methods for Evaluating Solid Waste*, September 1986, Third Edition. Soil and water samples were analyzed for GRO and JP-4/DRO using methods and QA/QC procedures derived from the State of Alaska Department of Environmental Conservation.

A data package similar to that of the EPA Contract Laboratory Program (CLP) was generated for each batch of samples submitted to the CSL. These data packages consisted of modified Forms 1 through 8 derived from the current version of the CLP Statement of Work for Organics Analysis. Two data packages (approximately 20 percent) were reviewed following the *U.S. EPA Functional Guidelines for Evaluating Organics Analyses*, where possible, reviewing all QA/QC data and validating all of the raw data. Because the completeness criteria of 80 percent was met, the remaining data packages were reviewed for all QA/QC data, but validating only 5 percent of the raw data.

# **Holding Times**

Except for two soil samples, all samples were analyzed between one and seven days after collection. Soil samples 5SB22-30 and 5SB04-25 were analyzed for VOCs and GRO 14 and 17 days after collection, respectively. Except for 5SB04-25, all samples were analyzed within their 14-day holding time requirement.

5SB04-25 was qualified as an estimate and flagged with a "J" for positive results, or a "UJ" for nondetected results.

MEMORANDUM Page 4 November 24, 1992

# **Continuing Calibration Verification**

Continuing calibration verification standards monitor instrument performance and reference values used for quantitation of sample concentrations.

Calibration verification checks were required to be performed for each analytical method on a daily basis. Calibrations were verified by analyzing a mid-level concentration standard. Calibration verification results should be within  $\pm$  25 percent of the initial calibration concentration to meet QC acceptance criteria.

For JP-4/DRO analyses, a continuing calibration was performed on a daily basis. All continuing calibrations were performed using a 200 mg/l standard. All calibration verification results met QC acceptance criteria.

For VOC/GRO analyses, a continuing calibration was performed on a daily basis. All continuing calibrations were performed using a 20  $\mu$ g/l standard. Except for samples analyzed on August 14, 20, and 27, 1992, all calibration verifications met QC acceptance criteria. Except for trans-1,2-dichloroethene (t-1,2-DCE), all VOC compounds exceeded the QC acceptance criteria on August 14, 1992. Except for benzene, toluene, ethylbenzene, and xylenes (BTEX), all compounds met QC acceptance criteria on August 20, 1992. Except for t-1,2-DCE, 1,1,1-trichloroethane (1,1,1-TCA), trichloroethene (TCE), and tetrachloroethene, all compounds met QC acceptance criteria on August 27, 1992. All samples associated with continuing calibrations that did not meet QC acceptance criteria were qualified as estimates and flagged with a "J" for positive results. Nondetect results were not qualified. The following six samples analyzed on August 14 had all VOC results, except t-1,2-DCE, qualified as estimates:

- 5SB08-14
- 5SB08-20B
- 5SB08-20B TB-01
- 5SB08-20C
- 5SB30-1
- 5SB30-5

The following eight samples analyzed on August 20 had BTEX qualified as estimates:

- 5SB03-10
- 5SB03-25
- 5SB03-30

10010db2.anc

MEMORANDUM Page 5 November 24, 1992

- 5SB03-30D
- 5SB13-3
- 7SB01-10
- 7SB01-25
- 7SB01-40

The following 18 samples analyzed on August 27 had t-1,2-DCA, 1,1,1-TCA, TCE, and tetrachloroethene qualified as estimates:

- 5SB02-10
- 5SB02-25
- 5SB02-33
- 5SB05-10
- 5SB11-10
- 5SB11-25
- 5SB11-35
- 5SB11-35D
- 5SB05-25
- 5SB05-25D
- 5SB23-0
- 5SB23-58
- 5SB24-25
- 5SB24-30
- 5SB28-0
- 5SB28-10
- 5SB28-25
- 5SB28-38

## **Standard Reference Material**

In addition to calibration verification checks, an standard reference material (SRM) standard was analyzed for each method. The SRM was analyzed once at the beginning of the RI to verify that instruments were correctly identifying and quantifying target compounds. Recoveries for all SRMs should be between 70 and 130 percent to meet QC acceptance criteria. All SRM recoveries met QC acceptance criteria.



MEMORANDUM Page 6 November 24, 1992

## Blanks

Blanks monitor potential laboratory contamination that may result in reporting false positive sample results.

Method blanks were required to be performed for each analytical method on a daily basis. A method blank verifies the analytical system is free of contamination under conditions of the analysis. Except for one VOC method blank, all method blanks were free from contamination, therefore meeting QC acceptance criteria. The method blank analyzed on August 16, 1992, contained 1.6  $\mu$ g/l of tetrachloroethene. However, sample qualification was not required because tetrachloroethene was not detected in any of the samples associated with this blank.

## Sensitivity

Sensitivity criteria monitor achievement of detection limits.

The detection limit achieved for JP-4/DRO analyses was 5 mg/l for waters and 50 mg/kg for soils. The detection limit achieved for VOC analyses was 1  $\mu$ g/l for waters and 0.05 mg/kg for soils. The detection limits achieved for GRO analyses was 1.0 mg/l for waters and 50 mg/kg for soils. Therefore, all method detection limits met QC acceptance criteria. All soil sample results were reported on an "as received" basis.

All soil samples analyzed for JP-4/DRO achieved the target detection limits. Except for four soil samples analyzed for VOCs/GRO, all soil samples achieved the target detection limits. Soil sample 5SB15-07 required a 2-fold dilution, 5SB18-35 required a 10-fold dilution, 5SB29-10 required a 20-fold dilution, and 5SB01-40 required a 40-fold dilution to bring high concentrations of target compounds into the linear range of the instrument. All results and detection limits were correctly multiplied by the dilution factor.

## Surrogate Spike Recovery

Surrogate spike recovery criteria monitor instrument performance and matrix effects on accuracy measurements. For JP4/DRO and GRO analyses, surrogate spike recovery should fall within the QC control limits of 50 to 150 percent for accuracy to meet QC acceptance criteria. For halogenated VOC analyses,

MEMORANDUM Page 7 November 24, 1992

surrogate spike recovery should fall within the QC control limits of 60 to 140 percent for accuracy to meet QC acceptance criteria.

Samples analyzed for JP-4/DRO were spiked with o-terphenyl as a surrogate spike compound. Samples analyzed for VOC compounds detected by the ECD were spiked with 1,2-dichloroethane-d4 (1,2-DCA). Samples analyzed for VOC compounds detected by the PID were spiked with trifluorotoluene. Samples analyzed for GRO were spiked with 4-bromofluorobenzene. Samples submitted between August 6 and 13, 1992, for GRO analyses were not spiked with the GRO surrogate compound because this analysis was not originally requested on the chain of custody.

Except for six JP-4/DRO surrogate recoveries, all surrogate spike recoveries for JP-4/DRO analyses met QC acceptance criteria. The following samples (surrogate recoveries) exceeded the QC acceptance limits. These were qualified as estimates and flagged with a "J" for positive results.

- 5SB09-3 (41%)
- 5SB10-5 (44%)
- 5SB12-8C (154%)
- 5SB19-0 (40%)
- 5SB23-25 (226%)
- 5SB25-05 (44%)

Except for one GRO surrogate recovery, all surrogate spike recoveries for GRO analyses met QC acceptance criteria. The surrogate recovery for 7SB01-40 (0%) was below the QC acceptance limit. 7SB01-40 was qualified as estimate and flagged with a "J" for positive results.

# **Precision and Accuracy**

Precision criteria monitor analytical reproducibility as determined by duplicate analyses and accuracy criteria monitor agreement with "true values" as determined by analytical spike recovery.

# Matrix Spike/Matrix Spike Duplicates

For JP4/DRO analyses, matrix spike recoveries should fall within the QC control limits of 60 to 120 percent for accuracy and  $\pm$  50 relative percent difference (RPD) for precision to meet QC acceptance criteria. For GRO analyses, matrix spike

recoveries should fall within the QC control units of 50 to 100 percent for accuracy and  $\pm$  50 RPD for precision to meet QC acceptance criteria. For VOC analyses, matrix spike recoveries should fall within the QC control limits of 60 to 140 percent for accuracy and  $\pm$  20 RPD for precision to meet QC acceptance criteria. A matrix spike/matrix spike duplicate (MS/MSD) should be analyzed at a 5 percent frequency, or once per batch, whichever is more frequent to meet QC acceptance criteria.

One water (25 percent frequency) and nine soil (12 percent frequency) MS/MSDs were performed with the JP-4/DRO analyses. Frequency QC acceptance criteria for analysis of MS/MSDs were met for both matrices.

Except for recoveries from one soil MS/MSD, all water and soil MS/MSDs met QC acceptance criteria for accuracy and precision. For soil sample 5SB21-10, the MS/MSD spike recoveries for JP-4 were 41 percent and 60 percent, respectively. No samples were qualified as a result of low spike recoveries. Low recoveries can mostly likely be attributed to interferences from the sample matrix.

Two GRO (2.5 percent frequency) and nine VOC (12 percent frequency) MS/MSDs were performed with soil analyses. Except for GRO analyses, frequency criteria for analysis of MS/MSDs were met for soils. Additional water samples were not submitted to perform MS/MSDs.

Except for recoveries from one soil MS/MSD, all soil MS/MSDs met QC acceptance criteria for accuracy and precision. For soil sample 5SB26-25, the MS/MSD spike recoveries for t-1,2-DCE were 35 percent and 49 percent, respectively and the RPD for the same compound was 33 percent. For the same sample, MS/MSD recoveries for m,p-xylenes were 175 percent and 168 percent recovery, respectively. No samples were qualified as a result of matrix spike recoveries or RPDs outside QC acceptance criteria. Recoveries outside QC acceptance criteria can mostly likely be attributed to interferences within the sample matrix.

# Field QA/QC

# **Rinsate, Field, and Travel Blanks**

Rinsate blanks monitor for potential contamination from inadequate decontamination procedures between sample grabs or from other sample handling procedures. Field blanks are used primarily to indicate if contamination has occurred as a result of ambient air conditions. Travel blanks are useful in determining possible MEMORANDUM Page 9 November 24, 1992

contamination occurring during packaging, shipping, and handling. However, rinsate, field, and travel blanks are not totally representative of field conditions, since laboratory contamination can be introduced as well.

A total of four rinsate blanks (5 percent frequency), four field blanks (5 percent frequency), and 16 travel blanks, were submitted as blind samples to the CSL. Field and rinsate blanks were submitted at the minimum frequency of five percent to meet QC acceptance criteria. A travel blank was submitted with every container containing VOC samples. Except for one travel blank, all travel blanks were analyzed for VOCs and GRO only. Travel blank (5SB08-20D) was analyzed for JP-4, DRO, GRO, and VOCs. Except for one field blank, all field blanks were analyzed for VOCs and GRO only. Field blank (5SB08-20B) was analyzed for JP-4, DRO, GRO, and VOCs. All rinsate blanks were analyzed for JP-4, DRO, GRO, and VOCs.

All rinsate, field, and travel blanks met frequency criteria and were free from contamination. Therefore, decontamination procedures, ambient air, or shipping and handling procedures did not attribute to concentrations detected in field samples.

# **Field Duplicates**

Field duplicates are another measure of reproducibility by duplicate analysis. There are no generally accepted QC acceptance criteria or control limits for RPD of field duplicates; therefore, laboratory duplicate criteria were applied. Project QA goals allow control limits of  $\pm$  100 percent RPD with the provisional control limit of plus or minus the CRDL when concentrations are less than five times the method detection limit. Qualifiers are not assigned when field duplicate results do not meet QC acceptance criteria.

A total of four soil samples were submitted as blind field duplicates (5.1 percent frequency). Soil samples 5SB07-25, 5SB18-10, 5SB26-10, and 5SB27-25A were submitted in duplicate. No target compounds were detected in any of the field duplicates. Therefore, field duplicates could not be evaluated for sampling and analytical precision.

# Completeness

Completeness is defined as the percentage of measurements made that are judged to be valid or useable compared to the expected total amount of

MEMORANDUM Page 10 November 24, 1992

measurements. The overall completeness objective or QC acceptance criteria was set at 80 percent for this RI.

Except for 1,1,1-TCA, TCE, and tetrachloroethene, the completeness objective was met for all compounds based on precision and accuracy. The completeness for 1,1,1-TCA, TCE, and tetrachloroethene was 77 percent; this was slightly lower than the objective because sample results were qualified as estimates.

As noted, certain continuing calibration verifications or surrogate spike recoveries did not meet the completeness QC acceptance criteria. However, these data are considered usable for purposes outlined in the RI work plan.

#### MEMORANDUM



TO: Win Westervelt/CH2M HILL/ANC

COPY: Susan Schrader/CH2M HILL/ANC

FROM: Donna Morgans/CH2M HILL/CVO

DATE: February 11, 1993

**SUBJECT:** Review of Quality Assurance/Quality Control (QA/QC) Data for Elmendorf Air Force Base (AFB) Operable Unit 5 (OU-5) Groundwater and Flyash Sample Analyses

PROJECT: ANC31026.H3.80

#### Summary

Overall, the data have met the acceptance criteria as outlined in the Elmendorf AFB OU-5 Quality Assurance Project Plan and are usable for the purposes outlined in the context of the data quality objectives. Minor nonconformances of the data are thoroughly discussed, identified, and qualified in this memorandum. The following is a brief summary of the overall quality of the sample results.

The majority of metal results met all QA/QC criteria for the selected QC parameters and the completeness criterion of 80 percent was met by all data. Some minor deviations from the QA/QC criteria were observed as follows:

- One iron and eight zinc results were qualified as nondetects and flagged with a "U" because of preparation blank contamination.
- Two iron, one lead, seven selenium, and three zinc results were qualified as nondetects and flagged with a "U" because of rinsate blank contamination.
- Five arsenic results were qualified as biased high and flagged with a 'K' because analytical spike recoveries were above QC acceptance criteria.
- Six selenium results were qualified as biased low and flagged with a "L" because analytical spike recoveries were below QC acceptance criteria.
- Seventeen barium, three copper, and three zinc results were qualified as estimates and flagged with a *J* because ICP serial dilutions did not meet QC acceptance criteria.

#### Introduction

A review has been conducted on data submitted for groundwater samples collected for the OU-5 remedial investigation (RI) at Elmendorf AFB, Alaska. This report summarizes the results of the QA/QC data associated with the analysis of total, soluble, and Extraction Procedure for Toxicity (EPTOX) metal analyses performed on samples collected between December 16 and 21, 1992. The intent of this review is to assess the appropriate use or "usability" of the analytical data for remediation purposes based on the QA/QC data submitted by the laboratory.

MEMORANDUM Page 2 February 11, 1993

The usability review focuses on criteria for the following QA/QC parameters and their overall effect on the data.

- Holding times
- Initial and continuing calibrations
- Preparation blanks
- Interference check sample
- Laboratory control sample
- Duplicate sample analysis
- Matrix spike sample analysis
- Furnace atomic absorption QC
- ICP Serial dilution

Seven groundwater samples collected from MW01-37, 5MW01-37A (field duplicate), 5MW02-33, 5MW15-10, 5MW16-11, SP101-9, and SP102-36 and three rinsate blanks collected from 5FA01-02C, 5MW02-33C, and 5MW02-33CS were analyzed for total and/or soluble metals. Two flyash samples collected from 5FA01-02 and 5FA02-02 were analyzed for total and EPTOX metals. Laboratory QA/QC data were evaluated from analyses associated with this RI. The following summarizes the number of samples analyzed and the analytical methods:

- Fourteen groundwater and two rinsate blank samples were analyzed for 23 total and soluble target analyte list (TAL) metals by Inductively Coupled Plasma (ICP) Method, graphite furnace atomic absorption (GFAA), or cold vapor atomic absorption (EPA Methods 6010/7000 series)
- Two flyash and one rinsate blank sample were analyzed for 23 total TAL metals by ICP, GFAA, or CVAA (EPA Methods 6010/7000 series)
- Two fly ash samples were EPTOX extracted using deionized water as the extraction solution according to EPA Method 1310 and analyzed for 23 metals by ICP, GFAA, and CVAA (EPA Method 6010/7471)

All analyses were performed by the CH2M HILL Quality Analytical Laboratory in Redding, California.

Groundwater samples analyzed for metals were analyzed in accordance with, and QA/QC criteria were taken from, the U.S. EPA *Test Methods for Evaluating Solid Waste*, September 1986, Third Edition.

A CLP-like data package was provided with each batch of samples submitted to the laboratory for analysis. Data packages for all analyses included Forms 1 through 14 from the Contract Laboratory Program (CLP) Statement of Work for Inorganics Analysis and all raw data. All samples were reviewed according to the U.S. EPA Functional Guidelines for Evaluating Inorganic Analyses and all raw data were validated. The completeness criterion of 80 percent was met by all data.

MEMORANDUM Page 3 February 11, 1993

#### **Holding Times**

Holding time criteria monitor sample integrity that may be compromised over time.

Except for mercury, all metals have a holding time requirement of 6 months. Mercury has a holding time requirement of 28 days.

All samples were analyzed within the required holding times. Therefore, holding time QC acceptance criteria were met for all samples.

## **Initial and Continuing Calibrations**

An initial calibration should be performed on a daily basis and continuing calibrations should be performed at a frequency of 10 percent. Initial and continuing calibration recoveries should be within the control limits of 90 to 110 percent recovery.

Each instrument was calibrated at the correct frequency and with the proper number of blanks and standards for each element. All initial and continuing calibration recoveries met QC acceptance criteria.

## **Preparation Blanks**

Blank criteria monitor sample contamination through carry-over and instrument sensitivity.

Preparation blanks should be performed at a five percent frequency or once per batch, whichever is more frequent. Blanks should be contamination-free to meet QC acceptance criteria.

Preparation blanks contained concentrations of barium, calcium, iron, selenium, sodium, thallium, or zinc below the contract required detection limit (CRDL).

According to the CLP functional guidelines, when a preparation blank contains an analyte from the target analyte list (TAL), positive results should not be reported unless the concentration found in the sample exceeds five times the concentration found in the blank. Sample results with concentrations of contaminants greater than five times the concentration detected in the preparation blank were considered positive hits. Sample concentrations less than five times the contaminant concentration were considered nondetected results and a "U" qualifier was assigned.

Except for one iron and eight zinc results, groundwater and flyash samples did not require qualification due to preparation blank contamination. The following sample results were qualified as nondetects and flagged with a "U":

Iron results for:

5MW02-33S (5.1 U)

Zinc results for:

- 5MW01-37 (6.6 U)
- 5MW01-37A (6.7 U)

1001123b.anc

MEMORANDUM Page 4 February 11, 1993

- 5MW01-37S (9.7 U)
- 5MW02-33 (14.4 U)
- 5MW02-33S (12.7 U)
- 5MW16-11 (9.7 U)
- SP102-36 (13.1 U)
- SP102-36S (10.7 U)

## Interference Check Sample

Interference check samples monitor the laboratory's interelement and background correction factors.

An inference check sample should be analyzed at the beginning and end of each analytical batch and check sample recoveries should be within the control limits of 80 to 120 percent.

All interference check samples met frequency and recovery QC acceptance criteria.

## Laboratory Control Sample

Laboratory control samples (LCSs) monitor the laboratory's overall performance including sample preparation when analyzing a standard from an independent source.

An LCS should be analyzed with each analytical batch and recoveries should be within the control limits of 80 to 120 percent.

All LCSs met frequency and recovery QC acceptance criteria.

#### **Duplicate Sample Analysis**

Precision criteria monitor analytical reproducibility.

A duplicate sample should be analyzed with each analytical batch and relative percent difference (RPD) results should be within the control limits of  $\pm 20$  or within the provisional criteria of plus or minus the CRDL when the sample concentration is less than five times the CRDL to meet precision criteria.

All laboratory duplicates met frequency and precision QC acceptance criteria.

#### Matrix Spike Sample Analysis

Accuracy criteria monitor agreement with "true values" as determined by matrix spike recovery.

A matrix spike sample should be analyzed with each analytical batch and recoveries should be within the control limits of 75 to 125 percent recovery.

All matrix spike recoveries met frequency and accuracy QC acceptance criteria.

MEMORANDUM Page 5 February 11, 1993

#### **Furnace Atomic Absorption QC**

Analytical spikes monitor the accuracy of individual analyses based on the bias contributed by the instrument and the digested sample matrix.

Analytical spikes should be analyzed with every sample requiring graphite furnace atomic absorption (GFAA) analysis and recoveries should be within the QC control limits of 85 to 115 percent.

According to the CLP functional guidelines, sample results associated with each analytical spike recoveries below the QC control limits should be qualified as biased low and flagged with an "L" for positive results, a "UL" for nondetected results. Analytical spike recoveries above the QC control limits should be qualified as biased high and flagged with a "K" for positive results.

Except for five arsenic and six selenium analytical spike recoveries, all analytical spike recoveries met QC acceptance criteria. The following arsenic results were qualified as biased high and flagged with a "K":

- 5MW15-10
- 5MW16-11
- 5MW16-11S
- SP101-9
- SP102-36

The following selenium results were qualified as biased low and flagged with an "L":

- 5MW01-37A
- 5MW02-33S
- 5MW15-10S
- 5MW16-11S
- SP101-9
- SP102-36

#### **ICP Serial Dilution**

ICP serial dilution analyses determine if significant physical or chemical interferences exist due to the sample matrix.

One ICP serial dilution should be analyzed with each analytical batch and percent difference results should be within the control limits of  $\pm 10$  percent.

Except for one barium, one copper, and one zinc percent difference result, all ICP serial dilution results met the QC acceptance criteria. According to CLP functional guidelines, all samples analyzed with the ICP serial dilution outside the QC acceptance limits were qualified as estimates and flagged with a "J" for positive results, a "UJ" for nondetected results.



MEMORANDUM Page 6 February 11, 1993

Barium results for the following 17 samples were qualified as estimates and flagged with a "J":

- 5FA01-2C
- 5MW01-37
- 5MW01-37A
- 5MW01-37AS
- 5MW01-37S
- 5MW02-33
- 5MW02-33C
- 5MW02-33CS
- 5MW02-33S
- 5MW15-10
- 5MW15-10S
- 5MW16-11
- 5MW16-11S
- SP101-9
- SP101-9S
- SP102-36
- SP102-36S

Copper and zinc results for the following samples were qualified as estimates and flagged with a "J":

- 5FA01-02
- 5FA02-02
- 5FA02-02A

#### Completeness

Completeness is defined as the percentage of measurements made that are judged to be valid compared to the expected total amount of measurements. The overall completeness objective for acceptable analytical data was set at 80 percent based on precision and accuracy.

All metals met the completeness objective based on precision and accuracy.

## Field QA/QC

#### **Rinsate Blanks**

Rinsate blanks monitor for potential contamination from inadequate decontamination procedures between sample grabs or from other sample handling procedures. However, rinsate blanks are not totally representative of field conditions, since laboratory contamination can be introduced as well. Rinsate blanks should be collected at a frequency of five percent.

Three rinsate blanks were submitted as a blind samples. Two rinsate blanks (5MW02-33C and 5FA01-02C) were analyzed for total metals (16 percent frequency) and one rinsate blank (5MW02-33CS) was analyzed for soluble metals (14 percent frequency), therefore meeting frequency QC acceptance criteria.

MEMORANDUM Page 7 February 11, 1993

Calcium (104  $\mu$ g/l), iron (2.7  $\mu$ g/l), selenium (1.7  $\mu$ g/l), sodium (42.9  $\mu$ g/l), and zinc (3.8  $\mu$ g/l) were detected in 5MW02-33C; calcium (148  $\mu$ g/l), iron (12.0  $\mu$ g/l), lead (1.3  $\mu$ g/l), manganese (1.0  $\mu$ g/l), selenium (1.8  $\mu$ g/l), sodium (48.2  $\mu$ g/l), and zinc (4.4  $\mu$ g/l) were detected in 5FA01-02C; and calcium (111  $\mu$ g/l), iron (13.9  $\mu$ g/l), sodium (54.8  $\mu$ g/l), and zinc (4.4  $\mu$ g/l) were detected in 5MW02-33C. Except for two iron, one lead, seven selenium, and three zinc results, groundwater and flyash samples did not require qualification due to rinsate blank contamination. The following metal results were qualified as nondetects and flagged with a "U" as a result of rinsate blank contamination.

Iron results for:

- 5MW01-37AS (14.2 U)
- 5MW15-10S (20.9 U)

Lead results for:

SP101-9 (3.2 U)

Selenium results for:

- 5MW01-37A (0.64 U)
- 5MW02-33 (0.64 U)
- 5MW15-10 (1.0 U)
- 5MW16-11 (0.93 U)
- SP101-9 (0.68 U)
- SP101-9S (1.1 U)
- SP102-36 (2.0 U)

Zinc results for:

- 5MW15-10S (21.3 U)
- 5MW16-11S (16.7 U)
- SP101-9S (11.7 U)

#### **Field Duplicates**

Field duplicate results are used to determine the precision of field sampling and laboratory techniques.

Project QA control limits for field duplicates allow  $\pm 100$  RPD for water samples with the provisional control limit of plus or minus the CRDL when concentrations are less than five times the CRDL. Qualifiers are not assigned when field duplicate results do not meet QC acceptance criteria. Field duplicates should be collected at a minimum frequency of five percent.

One groundwater (5MW01-37) (7.1 percent frequency) was collected as a blind duplicate and analyzed for total and soluble metals. One fly ash sample (5FA02-02A) (50 percent frequency) was collected as a blind field duplicate and analyzed for total metals. Therefore, frequency QC acceptance criteria was met for field duplicate analysis. Tables 1 through 3 show field duplicate RPD results for metal analyses. Field duplicate results are summarized below.

MEMORANDUM Page 8 February 11, 1993

- Table 1 summarizes the hits for the groundwater sample field duplicates collected at 5MW01-37 that were analyzed for total metals. Ten metals were detected in one or both samples analyzed. RPDs for metals detected in both samples ranged between 0.6 and 42.0 percent, therefore field duplicate QC acceptance criteria was met by all metals detected in both samples. Lead was detected in only one sample, therefore an RPD could not be calculated.
- Table 2 summarizes the hits for groundwater sample field duplicates collected at 5MW01-37S that were analyzed for soluble metals. Twelve metals were detected in one or both samples analyzed. RPDs for metals detected in both samples ranged between 0.9 and 73.9 percent, therefore field duplicate QC acceptance criteria was met by all metals detected in both samples. Lead, nickel, selenium, and zinc were detected in only one sample, therefore RPDs could not be calculated.
- Table 3 summarizes the hits for flyash sample field duplicates collected at 5FA02-02 that were analyzed for total metals. Twenty metals were detected in one or both samples analyzed. RPDs for metals detected in both samples ranged between zero and 57.8 percent, therefore field duplicate QC acceptance criteria was met by all metals detected in both samples. Mercury was detected in only one sample, therefore an RPD could not be calculated.

#### **Total and Soluble Metals**

5MW01-37, 5MW01-37A (field duplicate), 5MW02-33, 5MW02-33C (rinsate blank), 5MW15-10, 5MW16-11, SP101-9, and SP102-36 were analyzed for total and soluble metals. Groundwater samples analyzed for total metals were preserved with nitric acid upon collection. Groundwater samples analyzed for soluble metals were filtered upon collection with a 0.45µ filter and then preserved with nitric acid. Soluble metal concentrations should be less than or equal to total metal concentrations.

In all cases, aluminum concentrations showed a significant reduction in concentration as a result of sample filtration; therefore indicating that aluminum was primarily associated with sample particulate. The remaining metals detected in each sample showed a small concentration reduction or no concentration change as a result of sample filtration; therefore indicating that these metals are primarily dissolved in both sample fractions. Tables 4 through 11 show total and soluble metal concentration percent differences. The following paragraphs discuss each metal and concentrations trends as a result of sample filtration.

Aluminum was detected in 5MW02-33, 5MW16-11, SP101-9, and SP102-36 and each sample showed a significant concentration reduction as a result of filtration.

Calcium and sodium were detected in all samples analyzed. Except for equipment blanks, barium, magnesium, manganese, and potassium were detected in all samples analyzed. Each of these metals showed a small concentration reduction or no concentration change as a result of filtration.

Except for equipment blanks, copper was detected in all samples analyzed. For 5MW01-37, 5MW01-37A, 5MW02-33, JMW15-10, and SP102-36 there was a small concentration reduction or

MEMORANDUM Page 9 February 11, 1993

no concentration change as a result of filtration. Copper was not detected in the soluble fraction of 5MW16-11 and SP101-9.

Except for equipment blanks, vanadium was detected in all samples analyzed. There was a significant concentration reduction following filtration for SP101-9. For 5MW01-37, 5MW01-37A, 5MW02-33, 5MW15-10, 5MW16-11, and SP102-36 there was a small concentration reduction or no concentration change as a result of filtration.

Iron was detected in all samples analyzed. There was a significant concentration reduction of iron following filtration for SP102-36. Iron was detected in 5MW02-33C, 5MW16-11, and SP101-9, however there was only a small concentration reduction or no concentration change as a result of filtration. Iron was not detected in the soluble fraction of 5MW01-37, 5MW01-37A, 5MW02-33, and 5MW15-10.

Arsenic was detected in five samples analyzed. Arsenic was detected in 5MW15-10, 5MW16-11, and SP101-9, however there was only a small concentration reduction or no concentration change as a result of filtration. Arsenic was not detected in the soluble fraction of 5MW02-33 and SP102-36.

Selenium was detected in five samples analyzed. Selenium was detected in 5MW16-11, however there was no concentration change as a result of filtration. Selenium was only detected the soluble fraction of 5MW01-37A, 5MW02-33, and 5MW15-10 and was not detected in the soluble fraction of 5MW02-33C.

Lead was detected in three samples analyzed. Lead was not detected in the soluble fraction of 5MW01-37 and SP102-36 and was only detected in the soluble fraction of 5MW01-37A.

Nickel was detected in three samples analyzed. Nickel was not detected in the soluble fraction of SP101-9 and SP102-36 and nickel was only detected in the soluble fraction of 5MW01-37A.

Zinc was detected in three samples analyzed. Zinc was detected in 5MW02-33C, however there was no concentration change as a result of filtration. Zinc was not detected in the soluble fraction of 5MW15-10 and SP101-9 and zinc was only detected in the soluble fraction of 5MW01-37A.

Thallium was detected in two samples analyzed. Thallium was only detected in the soluble fraction of 5MW15-10 and was not detected in the soluble fraction of 5MW02-33.

Chromium was detected in SP101-9 only and was not detected in the soluble fraction.

# TABLE 1ELMENDORF AFB OPERABLE UNIT 5SAMPLE AND DUPLICATE SAMPLE RESULTS FOR TOTAL METALSUNITS = ug/lANC31026.H3.80

Field Sample ID 5MW01-37 (Total Metals)											
Analyte	Sample Results	C	Q	Duplicate Sample Results	C	0	Relative				
			<u> </u>		F						
Aluminum, Al	31.0	υ		31.0	U	┠───┼	N/C				
Antimony, Sb	12.1	U		12.1	U		NVC				
Arsenic, As	0.70	U	1	0.70	U		NXC				
Barium, Ba	15.2	B	EJ	14.8	В	EJ	2.67				
Beryllium, Be	0.50	U		0.50	U		NVC				
Cadmium, Cd	1.2	U	r	1.2	U		NVC				
Calcium, Ca	90,100			87,300			3.10				
Chromium, Cr	3.7	U		3.7	U		N/C				
Cobalt, Co	5.8	U		5.8	U		NVC				
Copper, Cu	3.7	В		3.3	В		11.4				
Iron, Fe	41.5	В		27.1	В		42.0				
Lead, Pb	0.90	В		0.60	U		N/C				
Magnesium, Mg	24,100			23,500			2.5				
Manganese, Mn	329			321			2.40				
Mercury, Hg	0.10	U		0.10	U		NX				
Nickel, Ni	7.7	U	<b></b>	7.7	U		N/C				
Potassium, K	1,800	В	Г <u> </u>	1,790	В		0.5				
Selenium, Se	0.50	U	[	0.64	U	WL	N/C				
Silver, Ag	2.1	U		2.1	U		N/C				
Sodium, Na	11,500			11,400			0.87				
Thallium, TI	0.70	U		0.70	U		N/C				
Vanadium, Vn	1.9	В		2.7	В		-34.8				
Zinc, Zn	6.6	U		6.7	U		N/C				

"B" = Analyte concentration is between the instrument detection limit (IDL) and the method detection limit.

"U" = Analyte not detected.

#### **Q** Laboratory Qualifier

"E" = Analyte is estimated because of interference.

"W" = Analytical spike recovery was outside QC control limits.

## **Q Data Validation Qualifier**

"J" = Analyte concentrations is considered estimate because a direction of bias could not be determined.

"K" = Analyte concentrations is biased high, the expected concentration is expected to be lower.

"L" = Analyte concentrations is biased low, the expected concentration is expected to be higher.

## **Relative % Difference**

# TABLE 2 ELMENDORF AFB OPERABLE UNIT 5 SAMPLE AND DUPLICATE SAMPLE RESULTS FOR SOLUBLE METALS UNITS = ug/l ANC31026.H3.80

Field Sample ID 5MW01-37S (Soluble Metals)											
				Duplicate			Relative				
Analyte	Sample Results	C	<u>a</u>	Sample Results	C	Q	% Difference				
Aluminum, Al	31.0		<b>├</b> ─────	31.0	U		N/C				
Antimony, Sb	12.1	U		12.1	U		N/C				
Arsenic, As	0.70	Ū		0.70	U		N/C				
Barium, Ba	14.6	В	EJ	15.1	В	EJ	-3.37				
Beryllium, Be	0.50	U		0.50	U		N/C				
Cadmium, Cd	1.2	U		1.2	U		N/C				
Calcium, Ca	87,200			89,000			-2.04				
Chromium, Cr	3.7	U		3.7	U		N/C				
Cobalt, Co	5.8	U		5.8	U		N/C				
Copper, Cu	2.9	В		6.3	В		-73.9				
Iron, Fe	2.3	U		14.2	U		N/C				
Lead, Pb	0.60	U		0.80	В		N/C				
Magnesium, Mg	23,400			23,800			-1.69				
Manganese, Mn	317			323			-1.88				
Mercury, Hg	0.10	U		0.10	U		N/C				
Nickel, Ni	7.7	U		9.4	В		N/C				
Potassium, K	1,790	В		2,040	B		-13.05				
Selenium, Se	0.50	U		0.68	В		N/C				
Silver, Ag	2.1	U		2.1	U		N/C				
Sodium, Na	11,400			11,500			-0.87				
Thallium, Tl	0.70	U		0.70	U		N/C				
Vanadium, Vn	2.3	В		3.0	В		-26.4				
Zinc, Zn	9.7	U		24.5			N/C				

C (Concentration) Qualifier

"B" = Analyte concentration is between the instrument detection limit (IDL) and the method detection limit.

## "U" = Analyte not detected.

## Q Laboratory Qualifier

"E" = Analyte is estimated because of interference.

"W" = Analytical spike recovery was outside QC control limits.

#### **Q** Data Validation Qualifier

"J" = Analyte concentrations is considered estimate because a direction of bias could not be determined.

"K" = Analyte concentrations is biased high, the expected concentration is expected to be lower.

"L" = Analyte concentrations is biased low, the expected concentration is expected to be higher.

#### **Relative % Difference**



# TABLE 3ELMENDORF AFB OPERABLE UNIT 5SAMPLE AND DUPLICATE SAMPLE RESULTS FOR TOTAL METALSUNITS = mg/kgANC31026.H3.80

	Field	Sa	mple IC	) 5FA02-02			
Analyte	Sample Results	c	Q	Duplicate Sample Results	c	Q	Relative % Difference
Aluminum Al	6.770	$\left  - \right $	┝───┦	6.900		<u> </u>	-1.90
Antimony, Sb	3.6	lu l	<b> </b>	3.6	lu l		N/C
Arsenic. As	3.5	F	<b>├</b> ───┦	4.0	F	1	-13.3
Barium. Ba	1,600			1,300	$\vdash$	†	20.7
Bervilium. Be	0.58	В	ļ,	0.32	в	t	57.8
Cadmium, Cd	1.1	В	<b> </b>	0.68	В	<u> </u>	47.2
Calcium, Ca	5,090		<b></b>	5,610	F	<b></b>	-9.72
Chromium, Cr	9.8			12.0			-20.2
Cobalt, Co	10.4	В		9.8	В		5.94
Copper, Cu	19.9		EJ	23.0		EJ	-14.5
Iron, Fe	5,360		['	6,660			-21.6
Lead, Pb	10.1			13.5			-28.8
Magnesium, Mg	1,280	В		1,530			-17.8
Manganese, Mn	63.4			91.4			-36.2
Mercury, Hg	0.05	В	$\Box$	0.04	U		NC
Nickel, Ni	22.2		<u> </u>	20.4			8.45
Potassium, K	876	В		838	В		4.43
Selenium, Se	0.15	U	$\Box'$	0.15	U		N/C
Silver, Ag	0.62	U		0.62	U		N/C
Sodium, Na	531	В		526	В		0.95
Thallium, TI	0.21	В	<u> </u>	0.21	В		0.00
Vanadium, Vn	79.9		<u> </u>	71.1			11.7
Zinc, Zn	22.1		EJ	27.4		EJ	-21.4

#### C (Concentration) Qualifier

"B" = Analyte concentration is between the instrument detection limit (IDL) and the method detection limit.

"U" = Analyte not detected.

#### **Q** Laboratory Qualifier

"E" = Analyte is estimated because of interference.

"W" = Analytical spike recovery was outside QC control limits.

## **Q Data Validation Qualifier**

"J" = Analyte concentrations is considered estimate because a direction of bias could not be determined.

"K" = Analyte concentrations is biased high, the expected concentration is expected to be lower.

"L" = Analyte concentrations is biased low, the expected concentration is expected to be higher.

#### **Relative % Difference**

# TABLE 4 ELMENDORF AFB OPERABLE UNIT 5 TOTAL AND SOLUBLE METAL RESULTS UNITS = ug/l ANC31026.H3.80

Field Sample ID 5MW01-37											
Analyte	Total Metals	С	Q	Soluble Metals	C	Q	% Difference				
Atuminum At	31.0	11		31.0			N/C				
Antimony, Sb	12.1	Ŭ.		12.1	ŭ		N/C				
Arsenic. As	0.70	Ū	<u> </u>	0.70	Ū		N/C				
Barium, Ba	15.2	В	EJ	14.6	В	EJ	-3.95				
Beryllium, Be	0.50	U		0.50	U		N/C				
Cadmium, Cd	1.2	υ		1.2	U		N/C				
Calcium, Ca	90,100			87,200			-3.22				
Chromium, Cr	3.7	U		3.7	U		N/C				
Cobalt, Co	5.8	U		5.8	U		N/C				
Copper, Cu	3.7	В		2.9	В		-21.6				
Iron, Fe	41.5	В		2.3	U		N/C				
Lead, Pb	0.90	В		0.60	U		NC				
Magnesium, Mg	24,100			23,400			-2.90				
Manganese, Mn	329			317			-3.65				
Mercury, Hg	0.10	Ū	_	0.10	U		N/C				
Nickel, Ni	7.7	U		7.7	U		N/C				
Potassium, K	1,800	B		1,790	B		-0.56				
Selenium, Se	0.50	U		0.50	υ		N/C				
Silver, Ag	2.1	U		2.1	U		N/C				
Sodium, Na	11,500			11,400			-0.87				
Thallium, TI	0.70	U		0.70	U		N/C				
Vanadium, Vn	1.9	В		2.3	В		21.1				
Zinc, Zn	6.6	U		9.7	U		N/C				
C (Concentration) O:	a lift an										

#### C (Concentration) Qualifier

"B" = Analyte concentration is between the instrument detection limit (IDL) and the method detection limit.

"U" = Analyte not detected.

#### **Q** Laboratory Qualifier

"E" = Analyte is estimated because of interference.

"W" = Analytical spike recovery was outside QC control limits.

## **Q** Data Validation Qualifier

"J" = Analyte concentrations is considered estimate because a direction of bias could not be determined.

"K" = Analyte concentrations is biased high, the expected concentration is expected to be lower.

"L" = Analyte concentrations is biased low, the expected concentration is expected to be higher.

## % Difference



# TABLE 5 **ELMENDORF AFB OPERABLE UNIT 5** TOTAL AND SOLUBLE METAL RESULTS UNITS = ug/l ANC31026.H3.80

Analyte	Total Metale		0	Soluble Metele			Y. Difference
		Ĕ					
Aluminum, Al	31.0	U		31.0	U		N/C
Antimony, Sb	12.1	U		12.1	U		N/C
Arsenic, As	0.70	U		0.70	U		N/C
Barium, Ba	14.8	В	EJ	15.1	В	EJ	2.03
Beryllium, Be	0.50	U		0.50	U		N/C
Cadmium, Cd	1.2	U		1.2	U	1	N/C
Calcium, Ca	87,300			89,000			1.95
Chromium, Cr	3.7	U		3.7	U		N/C
Cobalt, Co	5.8	U		5.8	U		N/C
Copper, Cu	3.3	В		6.3	B		90.9
Iron, Fe	27.1	В		14.2	υ		N/C
Lead, Pb	0.60	U		0.80	B		N/C
Magnesium, Mg	23,500			23,800			1.28
Manganese, Mn	321			323			0.62
Mercury, Hg	0.10	U		0.10	U		N/C
Nickel, Ni	7.7	U		9.4	8		N/C
Potassium, K	1,790	В		2,040	B		14.0
Selenium, Se	0.64	U	WL	0.68	8		N/C
Silver, Ag	2.1	U		2.1	U		N/C
Sodium, Na	11,400			11,500			0.88
Thallium, TI	0.70	U		0.70	U		N/C
Vanadium, Vn	2.7	В		3.0	B		11.1
Zinc, Zn	6.7	υ		24.5			N/C

"B" = Analyte concentration is between the instrument detection limit (IDL) and the method detection limit.

"U" = Analyte not detected.

**Q** Laboratory Qualifier

"E" = Analyte is estimated because of interference.

"W" = Analytical spike recovery was outside QC control limits.

## **Q** Data Validation Qualifier

"J" = Analyte concentrations is considered estimate because a direction of bias could not be determined.

"K" = Analyte concentrations is biased high, the expected concentration is expected to be lower.

"L" = Analyte concentrations is biased low, the expected concentration is expected to be higher.

#### % Difference

# TABLE 6 EILMENDORF AFB OPERABLE UNIT 5 TOTAL AND SOLUBLE METAL RESULTS UNITS - ug/I ANC31026.H3.80

Field Sample ID 5MW02-33										
Analyte	Total Metals	C	Q	Soluble Metals	С	Q	% Difference			
Aluminum, Al	58.1	В		31.0	U		N/C			
Antimony, Sb	14.4	B		12.1	U		N/C			
Arsenic, As	1.8	В		0.70	U		N/C			
Barium, Ba	16.3	В	EJ	15.2	В	EJ	-6.75			
Beryllium, Be	0.50	U		0.50	U		N/C			
Cadmium, Cd	1.2	U		1.2	U		N/C			
Calcium, Ca	84,400			83,300			-1.30			
Chromium, Cr	3.7	U		3.7	U		N/C			
Cobalt, Co	5.8	U		5.8	U		N/C			
Copper, Cu	2.7	B		1.1	В		-59.3			
Iron, Fe	184			5.1	U		N/C			
Lead, Pb	0.60	U		0.60	U		N/C			
Magnesium, Mg	14,600			14,400			-1.37			
Manganese, Mn	27.1			3.9	B		-85.6			
Mercury, Hg	0.10	U		0.10	U		N/C			
Nickel, Ni	7.7	U		7.7	U		N/C			
Potassium, K	1,430	В		1,520	B		6.29			
Selenium, Se	0.64	บ		1.9	В		N/C			
Silver, Ag	2.1	U		2.1	U		N/C			
Sodium, Na	7,820			7,900			1.02			
Thallium, TI	1.2	В		0.70	U		N/C			
Vanadium, Vn	3.0	В		1.9	В		-36.7			
Zinc. Zn	14.4	U		12.7	U		N/C			

C (Concentration) Qualifier

"B" = Analyte concentration is between the instrument detection limit (IDL) and the method detection limit. "U" = Analyte not detected.

Q Laboratory Qualifier

"E" = Analyte is estimated because of interference.

"W" = Analytical spike recovery was outside QC control limits.

#### **Q** Data Validation Qualifier

"J" = Analyte concentrations is considered estimate because a direction of bias could not be determined.

"K" = Analyte concentrations is biased high, the expected concentration is expected to be lower.

"L" = Analyte concentrations is biased low, the expected concentration is expected to be higher.

#### % Difference

# TABLE 7 ELMENDORF AFB OPERABLE UNIT 5 TOTAL AND SOLUBLE METAL RESULTS UNITS = ug/l ANC31026.H3.80

Field Sample ID 5MW02-33C										
Analyte	Total Metals	С	Q	Soluble Metals	С	Q	% Difference			
Aluminum, Al	31.0	U		31.0	U		N/C			
Antimony, Sb	12.1	U		12.1	U		N/C			
Arsenic, As	0.70	U		0.70	U		N/C			
Barium, Ba	0.10	U	EJ	0.10	U	EJ	N/C			
Beryllium, Be	0.50	U		0.50	U		N/C			
Cadmium, Cd	1.2	U		1.2	U		N/C			
Calcium, Ca	104	В		111	B		6.73			
Chromium, Cr	3.7	U		3.7	U		N/C			
Cobalt, Co	5.8	U		5.8	U		N/C			
Copper, Cu	0.90	U		0.90	U		N/C			
Iron, Fe	2.7	В		13.9	B		414.81			
Lead, Pb	0.60	U		0.60	U		N/C			
Magnesium, Mg	14.3	U		14.3	U		N/C			
Manganese, Mn	0.80	U		0.80	U		N/C			
Mercury, Hg	0.10	U		0.10	U		N/C			
Nickel, Ni	7.7	U		7.7	U		N/C			
Potassium, K	191	U		191	U		N/C			
Selenium, Se	1.7	В		0.50	U		N/C			
Silver, Ag	2.1	U		2.1	U		N/C			
Sodium, Na	42.9	В		54.8	В		27.74			
Thallium, Tl	0.70	U		0.70	U		N/C			
Vanadium, Vn	1.9	U		1.9	U		N/C			
Zinc, Zn	3.8	В		4.4	B		15.79			

#### C (Concentration) Qualifier

"B" = Analyte concentration is between the instrument detection limit (IDL) and the method detection limit.

"U" = Analyte not detected.

**Q** Laboratory Qualifier

"E" = Analyte is estimated because of interference.

"W" = Analytical spike recovery was outside QC control limits.

## **Q Data Validation Qualifier**

"J" = Analyte concentrations is considered estimate because a direction of bias could not be determined.

"K" = Analyte concentrations is biased high, the expected concentration is expected to be lower.

"L" = Analyte concentrations is biased low, the expected concentration is expected to be higher.

#### % Difference
## TABLE 8 ELMENDORF AFB OPERABLE UNIT 5 TOTAL AND SOLUBLE METAL RESULTS UNITS = ug/l ANC31026.H3.80

Field Sample ID 5MW15-10							
Analyte	Total Metals	C	Q	Soluble Metals	С	Q	% Difference
Aluminum Al	21.0			21.0	<u> </u>		NIC
Antimony Sh	31.0			31.0			NVC NVC
Anumony, Sb	12.1	10	VALLE	12.1		├──	
Arsenic, As	0.80		VVN	0.90	В		12.5
Banum, Ba	16.8	IR IR	EJ	16.5	в	EJ	-1.79
Beryllium, Be	0.50	U		0.50	U_		N/C
Cadmium, Cd	1.2	<u>U</u>		1.2	<u>U</u>		N/C
Calcium, Ca	86,600		L	88,900			2.66
Chromium, Cr	3.7	U			U		N/C
Cobalt, Co	5.8	U		5.8	U		N/C
Copper, Cu	2.5	В		2.3	В		-8.00
Iron, Fe	57.0	В		20.9	U		NC
Lead, Pb	0.60	U		0.60	υ		N/C
Magnesium, Mg	14,400			14,300			-0.69
Manganese, Mn	99.0			94.1			-4.95
Mercury, Hg	0.10	U		0.10	U		NC
Nickel, Ni	7.7	U		7.7	U		N/C
Potassium, K	1,090	В		1,130	В		3.67
Selenium, Se	1.0	υ		2.2	В	WL	N/C
Silver, Ag	2.1	U		2.1	U		N/C
Sodium, Na	6,970			7,020			0.72
Thallium, TI	0.70	U		0.70	В		N/C
Vanadium, Vn	3.4	В		4.1	B		20.6
Zinc, Zn	32.8			21.3	U		N/C
O (O am a am Amoraliam) Ourol	242						

#### C (Concentration) Qualifier

"B" = Analyte concentration is between the instrument detection limit (IDL) and the method detection limit.

"U" = Analyte not detected.

**Q** Laboratory Qualifier

"E" = Analyte is estimated because of interference.

"W" = Analytical spike recovery was outside QC control limits.

### **Q** Data Validation Qualifier

"J" = Analyte concentrations is considered estimate because a direction of bias could not be determined.

"K" = Analyte concentrations is biased high, the expected concentration is expected to be lower.

"L" = Analyte concentrations is biased low, the expected concentration is expected to be higher.

#### % Difference





## TABLE 9 ELMENDORF AFB OPERABLE UNIT 5 TOTAL AND SOLUBLE METAL RESULTS UNITS = ug/I ANC31026.H3.80

Field Sample ID 5MW16-11							
Analyte	Total Metals	C	Q	Soluble Metals	C	Q	% Difference
Aluminum, Al	392			67.8	В		-82.7
Antimony, Sb	12.1	U		12.1	U		N/C
Arsenic, As	2.2	В	WK	3.0	B	WK	36.4
Barium, Ba	116	В	EJ	103	В	EJ	-11.2
Beryllium, Be	0.50	U		0.50	U		N/C
Cadmium, Cd	1.2	U		1.2	υ		N/C
Calcium, Ca	93,700			94,700			1.07
Chromium, Cr	3.7	U		3.7	U		N/C
Cobalt, Co	5.8	U		5.8	U		N/C
Copper, Cu	1.7	В		0.90	U		N/C
Iron, Fe	6,160			5,230	$\Box$		-15.1
Lead, Pb	0.60	U		0.60	U		N/C
Magnesium, Mg	20,000			18,800			-6.00
Manganese, Mn	1,940			1,630			-16.0
Mercury, Hg	0.10	U		0.10	U		N/C
Nickel, Ni	7.7	U		7.7	U		N/C
Potassium, K	2,130	B		1,960	B		-7.98
Selenium, Se	0.93	В		2.5	В		169
Silver, Ag	2.1	U		2.1	U		N/C
Sodium, Na	10,000			9,570			-4.30
Thallium, TI	0.70	U		0.70	U		N/C
Vanadium, Vn	6.9	В		5.0	В		-27.5
Zinc, Zn	9.7	U		16.7	U		N/C

#### C (Concentration) Qualifier

"B" = Analyte concentration is between the instrument detection limit (IDL) and the method detection limit.

"U" = Analyte not detected.

#### **Q Laboratory Qualifier**

"E" = Analyte is estimated because of interference.

"W" = Analytical spike recovery was outside QC control limits.

### **Q** Data Validation Qualifier

"J" = Analyte concentrations is considered estimate because a direction of bias could not be determined.

"K" = Analyte concentrations is biased high, the expected concentration is expected to be lower.

"L" = Analyte concentrations is biased low, the expected concentration is expected to be higher.

#### % Difference

## TABLE 10 ELMENDORF AFB OPERABLE UNIT 5 TOTAL AND SOLUBLE METAL RESULTS UNITS = ug/l ANC31026.H3.80

Field Sample ID SP101-9							
Analyte	Total Metals	С	Q	Soluble Metals	C	Q	% Difference
		<u> </u>	L			Ļ	
Aluminum, Al	7,840		L	43.9	В		-99.44
Antimony, Sb	12.1	U		12.1	U		N/C
Arsenic, As	5.4	В	WK	3.2	В	WK	-40.74
Barium, Ba	110	В	EJ	61.6	В	EJ	-44.00
Beryllium, Be	0.50	U		0.50	U		N/C
Cadmium, Cd	1.2	U		1.2	U		N/C
Calcium, Ca	77,600			77,800			0.26
Chromium, Cr	12.5			3.7	U		NC
Cobalt, Co	5.8	U		5.8	U		N/C
Copper, Cu	9.9	В		0.90	U		N/C
Iron, Fe	19,300	В		12,600			-34.72
Lead, Pb	3.20	U		0.60	U		N/C
Magnesium, Mg	20,200			18,300			-9.41
Manganese, Mn	4,440			4280			-3.60
Mercury, Hg	0.10	U		0.10	U		N/C
Nickel, Ni	20.8	В		7.7	U		N/C
Potassium, K	2,150	В		2,070	B		-3.72
Selenium, Se	0.68	U	W	1.1	U		N/C
Silver, Ag	2.1	U		2.1	U		N/C
Sodium, Na	6,900			6,790			-1.59
Thallium, TI	0.70	υ		0.70	U		N/C
Vanadium, Vn	18.7	В		3.0	В		-84.0
Zinc, Zn	34.1			11.7	U		N/C
	- Ildi						

C (Concentration) Qualifier

"B" = Analyte concentration is between the instrument detection limit (IDL) and the method detection limit.

"U" = Analyte not detected.

Q Laboratory Qualifier

"E" = Analyte is estimated because of interference.

"W" = Analytical spike recovery was outside QC control limits.

### **Q** Data Validation Qualifier

"J" = Analyte concentrations is considered estimate because a direction of bias could not be determined.

"K" = Analyte concentrations is biased high, the expected concentration is expected to be lower.

"L" = Analyte concentrations is biased low, the expected concentration is expected to be higher.

### % Difference

## TABLE 11 ELMENDORF AFB OPERABLE UNIT 5 TOTAL AND SOLUBLE METAL RESULTS UNITS = ug/l ANC31026.H3.80

Field Sample ID SP102-36							
Analyte	Total Metals	C	Q	Soluble Metals	C	Q	% Difference
Al	1 000					 	
Aluminum, Al	1,090	<u> </u>		31.0	<u></u>	<u> </u>	NC
Antimony, Sb	12.1	<u>h</u>	10.00	12.1	U_	<u> </u>	N/C
Arsenic, As	1.7	B	WK	0.70	U	W	N/C
Barium, Ba	25.9	B	EJ	18.9	B	EJ	-27.0
Beryllium, Be	0.50	U		0.50	U		N/C
Cadmium, Cd	1.2	U		1.2	U		N/C
Calcium, Ca	87,500			84,800			-3.09
Chromium, Cr	3.7	U		3.7	υ		N/C
Cobalt, Co	5.8	U		5.8	U		N/C
Copper, Cu	5.9	В		2.3	B		-61.0
Iron, Fe	1,840			78.3	8		<b>-95</b> .7
Lead, Pb	0.70	В		0.60	U		N/C
Magnesium, Mg	19,000			18,300			-3.68
Manganese, Mn	1,450			1,380			-4.83
Mercury, Hg	0.10	U		0.10	U		NC
Nickel, Ni	11.5	В		7.7	U		· NC
Potassium, K	1,330	B		1,350	В		1.50
Selenium, Se	2.0	U	WL	0.50	U		N/C
Silver, Ag	2.1	U		2.1	U		N/C
Sodium, Na	6,980			7,120			2.01
Thallium, Ti	0.70	U		0.70	U		N/C
Vanadium, Vn	6.1	В		2.3	В		-62.3
Zinc, Zn	13.1	U		10.7	U		N/C

C (Concentration) Qualifier

"B" = Analyte concentration is between the instrument detection limit (IDL) and the method detection limit.

"U" = Analyte not detected.

**Q Laboratory Qualifier** 

"E" = Analyte is estimated because of interference.

"W" = Analytical spike recovery was outside QC control limits.

#### **Q Data Validation Qualifier**

"J" = Analyte concentrations is considered estimate because a direction of bias could not be determined.

"K" = Analyte concentrations is biased high, the expected concentration is expected to be lower.

"L" = Analyte concentrations is biased low, the expected concentration is expected to be higher.

#### % Difference

### MEMORANDUM

CHANHILL

TO: Win Westervelt/CH2M HILL/ANC

- COPIES: Artemis Antipas/CH2M HILL/SEA Susan Schrader/CH2M HILL/ANC
- FROM: Page Birmingham/CH2M HILL/CVO Donna Morgans/CH2M HILL/CVO
- DATE: November 23, 1992
- SUBJECT: Review of Quality Assurance/Quality Control (QA/QC) Data for Offsite Laboratory Analyses at Elmendorf Air Force Base (AFB), Operable Unit 5 (OU-5)
- **PROJECT:** ANC31026.H3.80

A data review has been conducted on data submitted for groundwater, surface water, sediment, and soil samples collected for the Operable Unit five (OU-5) remedial investigation at Elmendorf Air Force Base, Alaska. Samples for this field program were collected between May 28 and September 18, 1992.

Approximately 10 to 20 percent of the organic, inorganic, and conventional analyses were reviewed following the U.S. EPA Functional Guidelines for Evaluating Organics and Inorganics Analyses, where possible, reviewing all quality assurance/quality control (QA/QC) data and validating all of the raw data.

QA/QC data from groundwater, surface water, soil, sediment, travel blanks, rinsate blanks, and field blanks were reviewed. The following table lists the type of analyses performed, together with the respective number and type of sample for each analysis.

### MEMORANDUM Page 2 November 23, 1992

Number of Samples	VOC Analysis EPA Method 8010	Number of Samples	Purgeable VOC Analysis EPA Method 524.2			
7 9 2 2 6	Groundwater samples Soil samples Field blanks Rinsate blanks Travel blanks	6	Groundwater samples			
Number of Samples	Semivolatile Analysis EPA Method 8270	Number of Samples	PCB Analysis EPA Method 8080			
9 11 2	Groundwater samples Soil samples Rinsate blanks	4	Soil Samples			
Number of Samples	TMBE/BTEX/Gas Analysis EPA Modified Method 8015/8020/ADEC AK 101	Number of Samples	TFH Gasoline Analysis EPA Modified Method 8015/ ADEC AK 102			
9 7 1 1 5	Groundwater samples Soil samples Field blanks Rinsate blanks Travel blanks	3	Groundwater Samples			
Number of Samples	TFH Diesel and JP-4 Analysis EPA Modified Method 8015	Number of Samples	Total Metals Analysis EPA Method 6010/7000 Series			
9 8 1	Groundwater samples Soil samples Rinsate blanks	12 10 2	Groundwater samples Soil samples Rinsate blanks			
Number of Samples	Alkalinity Analysis EPA Method 310.1	Number of Samples	Anion Analysis ^a EPA Method 300.0 and 310.1			
2 1	Groundwater samples Rinsate blank	3	Groundwater samples			
Number of Samples	TOC Analysis EPA Method 9060					
3	Soil samples					
*Anion analyses include carbonate, bicarbonate, chloride, nitrate, and sulfate.						

Overall, the data have met the acceptance criteria as outlined in the Elmendorf AFB OU-5 Quality Assurance Project Plan (QAPP) and have also met the QC acceptance criteria as outlined in the U.S. EPA Functional Guidelines for Evaluating MEMORANDUM Page 3 November 23, 1992

Organics and Inorganics Analyses. All data are considered usable for the purposes outlined in the context of the data quality objectives.

The following summarizes the overall results of the data review for each organic analytical method and each QC parameter evaluated.

# **Organic Analyses**

# **Holding Times**

For Method 8270 analyses, except for 5SE09RX, 5SE09ARX, and 5SE10RX, all samples were analyzed within their respective holding time requirements. Sample results for 5SE09RX, 5SE09ARX, and 5SE10RX were qualified as estimates and flagged with a "J" for positive results, or a "UJ" for nondetected results.

# **GC/MS** Tuning

For Methods 524.2 and 8270 analyses, a GC/MS tune was reported for each 12-hour tuning period and ion abundances met QC acceptance criteria.

## **Initial Calibration**

For each analytical method, all target compounds met initial calibration QC acceptance criteria.

# **Continuing Calibration**

Except for several Method 8010 and Method 8270 target compounds, all target compound calibration curves met continuing calibration QC acceptance criteria.

Where continuing calibrations exceeded QC acceptance criteria, no target compounds were detected in the samples. Therefore, no samples were qualified as a result of continuing calibrations.

## **Blanks**

Except for the analyses listed below, all method, travel, field, and rinsate blanks were contamination-free. Samples containing contaminants were qualified as non-detects and flagged with a "U".

MEMORANDUM Page 4 November 23, 1992

Method 8010 analyses:

• Tetrachloroethene result for OU5SE-08 (1,400U)

Method 524.2 analyses:

 Methylene chloride results for 5SW01 (1.4U), 5SW01A (1.6U), and 5SW02 (1.1U)

Method 8270 analyses:

- N-nitrosodiphenylamine results for OU5SW-07 (10U), OU5SW-08 (10U), and OU5SE-07 (540U)
- Diethylphthalate result for 5WS02 (10U)
- Di-n-butylphthalate results for 5SE09RX (420UJ) and 5SE09ARX (420UJ)

# System Monitoring Compounds

Except for the analyses listed below, all surrogate spike recoveries met QC acceptance criteria. Analyses not meeting QC acceptance criteria were qualified as estimates and flagged with a "J" for positive results, or a "UJ" for nondetected results.

- Method 8010 (OU5SE-07)
- Method 8080 (5SE05, 5SE04, and 5SE04A)
- Method 8015/8020 (BTEX/TFH gasoline) (5MW5-30)
- Method 8015 (TFH diesel/JP-4) (5SE10, 5SW11, and 5SE11)

### Matrix Spike/Matrix Spike Duplicates

Except for several matrix spike recoveries and relative percent difference results, all MS/MSDs met QC acceptance criteria. Samples are not qualified on the basis of MS/MSD results.

### **Internal Standards**

All area counts and retention times met QC acceptance criteria.

MEMORANDUM Page 5 November 23, 1992

# **Target Compound Identification**

For Method 8010 analyses, except for OU5SW-07D, all compounds detected in samples were verified by a second column confirmation analysis. The tetrachloroethene result for OU5SW-07D was qualified as an estimate and flagged with a "J".

# **Compound Quantitation and Reported Detection Limits**

The samples listed below required dilution to bring high concentrations of target compounds into the linear range of the instrument. The following samples required dilution and detection limits were increased. Except for VOC, BTEX/TFH gasoline, and TFH diesel/JP-4 results for 5SE09, 5SE09A, and 5SE10, all soil results were correctly adjusted for percent moisture.

Method 8270 analyses:

• OU5SE-08 (20-fold dilution)

Method 8080 analyses:

• OU5SE-07 (2-fold dilution)

Method 8015/8020 (BTEX/TFH gasoline) analyses:

• OU5SE-08 (5-fold dilution)

Method 8015 (JP-4) analyses:

OU5SE-07 (2-fold dilution)

Method 8015 (TFH diesel) analyses:

- OU5SE-07 (5-fold dilution)
- OU5SE-08 (5-fold dilution)
- 5SE09A (detection limit raised from 1  $\mu$ g/kg to 3  $\mu$ g/kg)

Original TFH gasoline analyses were performed by all laboratories according to modified EPA method 8015/8020. Following sample analysis and reporting, it was noticed that the TFH gasoline analyses should have been performed according to method AK 101. The two analytical methods differ based on the type of calibration standard used. Method 8015/8020 uses a 5-point calibration using a commercially

MEMORANDUM Page 6 November 23, 1992

prepared gasoline standard; the ADEC AK 101 method uses a 5-point calibration using a 10-component mix standard. The overall effect is that a larger retention time window was used that covered the major range of gasoline peaks.

Sample results were then recalculated using a newly established retention time window. Recalculation only affects sample results reported above the detection limit. Only results reported by CH2M HILL were recalculated. It is considered that the technique used for recalculating the TFH gasoline results is highly reliable; therefore, sample qualification was not required. The following 13 samples analyzed by CH2M HILL required TFH gasoline recalculation, and amended results were reported by the laboratory:

- OU5SW-05
- OU5SW-08
- OU5SE-04
- OU5SE-05
- OU5SE-06
- OU5SE-08
- OU5SB11-10
- 5SB29-04
- SP10114
- SP01118
- GW-6A38
- OU5-MW13S
- 5MW3-40

TFH gasoline results reported by the ENSECO laboratory did not require qualification because there was no TFH gasoline reported above the detection limit. TFH gasoline results reported by Superior Analytical could not be recalculated; therefore, the following sample results, which were reported above the detection limit, were qualified as estimates and flagged with a "J":

- SL04S12A
- SL04S12AA
- SL04S12A
- SL16S12N
- SL16S24N

Original TFH diesel analyses were performed by all laboratories according to modified EPA method 8015. Following sample analysis and reporting, it was noticed that the TFH diesel analyses should have been performed according to ADEC MEMORANDUM Page 7 November 23, 1992

method AK 102. The two analytical methods differ based on the type of calibration standard used. Method 8015 uses a 5-point calibration using a commercially prepared gasoline standard; the ADEC AK 102 method uses a 5-point calibration using a 10-component mix standard. The overall effect of using method 8015 instead of the ADEC method is that significant peaks were present outside the retention time window used in the original analysis, but within the ADEC-defined retention time window.

TFH diesel results reported by CH2M HILL, ENSECO, and Superior Analytical could not be recalculated because the chromatographic peaks of the commercial diesel standard did not match the peaks of the 10-component mix standard; consequently, a new retention time window could not be established. Because the ADEC-defined retention time window is larger than the original retention time window, it is expected that the TFH diesel results are biased low. The following samples analyzed by the CH2M HILL laboratory are considered biased low and flagged with a "J":

- OU5SE-04
- OU5SE-06
- OU5SE-08
- GW-6A38
- SP2/60540
- 5SB29-0
- SP10114
- 5SB29-04
- 5MW09-7
- 5MW4-35
- 5SE-05

The following samples analyzed by the ENSECO laboratory are considered biased low and flagged with a "J":

- 5SE-09A
- 5SE-11

The following samples analyzed by Superior Analytical are considered biased low and flagged with an "L":

- SL04S12A
- SL04S12AA
- SL04S12N

10010db2.anc

MEMORANDUM Page 8 November 23, 1992

- SL04S12NA
- SL04S12ND
- SL04S12A
- SL04S12N
- SL20S24A
- SL19S12A
- SL29S12N
- SL16S12N
- SL16S24N
- SL19S12N

# **Tentative Identified Compounds (TICs)**

All sample TICs met QC acceptance criteria. Samples OU5SE-07, OU5SE-08, 5SB19-10, 5SB19-52, 5SB01-10, 5SB21-10, 5SB21-25, 5SB21-48, 5WS01, 5WS01A, 5WS02, 5MW16A-14, 5MW5-30, 5SE09ARX, 5SE09RX, and 5SE10RX each contained TICs that were detected in the method blank as well as the sample; these TIC results were rejected and flagged with an "R". All TICs detected are considered estimate concentrations and flagged with a "JN".

### System Performance

Chromatograms and instrument performance for each sample analysis were considered acceptable.

## **Inorganic and Conventional Parameter Analyses**

The following summarizes the overall results of the data review for each inorganic analytical method and each QC parameter evaluated. All sample results were qualified in accordance with the criteria outlined in the functional guidelines.

### **Holding Times**

 $F_{\odot}$  metals and conventional parameters, all samples were analyzed within their respective holding time requirements. Therefore, all samples met holding time QC acceptance criteria.

MEMORANDUM Page 9 November 23, 1992

# **Calibration Check**

All initial and continuing calibrations met QC acceptance criteria.

## **Blanks**

Except for three aluminum, two iron, three mercury, five potassium, four selenium, and two zinc results, samples did not require qualification as a result of blank contamination. The following sample results were qualified as nondetects and flagged with a "U" as a result of preparation blank contamination.

Aluminum results:

- 5SW03 (67.4U)
- 5SW02 (109U)
- 5SW03A (59.8U)

Iron results:

- 5SW03A-S (10.7U)
- 5SW03-S (12.6U)

Mercury results:

- 5SB21-10 (0.09U)
- 5SB21-25 (0.07U)
- 5SB21-48 (0.08U)

Potassium results:

- 5SW03-S (571U)
- 5SW03 (47.0U)
- 5SW03A (509U)
- 5SW02 (376U)
- 5SW03A-S (454U)



MEMORANDUM Page 10 November 23, 1992

Selenium results:

- OU5SE-07 (0.22U)
- OU5SE-08 (0.25U)
- 5SW03 (0.78U)
- 5SW02 (0.69U)

Zinc results:

- 5SW03-S (12.4U)
- 5SW03A-S (4.6U)

# **ICP Interference Check Samples**

All ICP interference check sample recoveries met QC acceptance criteria.

# Laboratory Control Samples (LCS)

All LCS recoveries met QC acceptance criteria.

# **Laboratory Duplicates**

All duplicate results met QC acceptance criteria.

## Matrix Spikes

Except for one lead and two manganese matrix spike recoveries, all matrix spike recoveries met QC acceptance criteria. The lead results for OU5SE-07 and OU5SE-08 and the manganese results for 5SB01-25, 5SB21-10, 5SB21-25, 5SB21-35, and 5SB21-48 were qualified as biased low and flagged with an "L". The manganese results for OU5SE-07 and OU5SE-08 were qualified as biased high and flagged with a "K".

# **Analytical Spike Recoveries**

Except for four selenium and three thallium analytical spike recoveries, all analytical spike recoveries met QC acceptance criteria. The selenium results for 5SB21-10, 5SB21-25, 5SB21-35, and 5SB21-48 and the thallium results for OU5SE-07, OU5SE-08, and 5SB21-48 were qualified as biased low and flagged with an "L".

MEMORANDUM Page 11 November 23, 1992

## **ICP Serial Dilution**

Except for three barium, one calcium, and two zinc, all serial dilutions met QC acceptance criteria. The following sample results not meeting QC acceptance criteria were qualified as estimates and flagged with a "J" for positive results.

Barium results:

- OU5SW-07
- OU5SW-07S
- OU5SW-08
- OU5SW-08C
- OU5SW-08S
- 5SB12-8C
- 5SW03
- 5SW03-S
- [•]5SW03A
- 5SW03A-S
- 5SW02

Calcium results:

- OU5SE-07
- OU5SE-08

Zinc results:

- OU5SE-07
- OU5SE-08
- 5SB01-25
- 5SB21-10
- 5SB21-25
- 5SB21-35
- 5SB21-48

## **Sample Result Verification**

All sample results and detection limits were calculated correctly. All soil results were correctly adjusted for percent moisture.

### MEMORANDUM Page 12 November 23, 1992

The attached sections provide complete validation results on a batch basis, for each medium.

FIELD DUPLICATE RESULTS

## **Field Duplicate Results**

Seven water samples (12 percent frequency) and six soil samples (9 percent frequency) were collected and analyzed as blind field duplicates. Project quality assurance (QA) control limits for field duplicates allow  $\pm 100$  relative percent difference (RPD) for water and soil samples with the provisional control limit of plus or minus the contract-required detection limit (CRDL) when concentrations are less than five times the CRDL. There are no specific review criteria used to compare field sample result comparability. Field duplicate results are used to determine the precision of field sampling and laboratory techniques. Qualifiers are not assigned when field duplicate results do not meet QC acceptance criteria.

Field duplicates 5SW03, 5WS01, 5SE03, 5SE04, and 5SB29-0 were analyzed for the full suite of analytical parameters. 5MW7-40, 5MW6-35, and 5SE09 were analyzed for organic parameters. NS30215 was analyzed for BTEX, TFH gasoline, TFH diesel, and JP-4. 5GW4A-5 was analyzed for semivolatile organic compounds. SL04S12A and SL04S12N were analyzed for metals and conventional parameters. Tables 1 through 11 show field duplicate RPD results for organic, metal, and conventional parameters that were detected in one or both of the samples analyzed.

Field duplicate results for samples collected are summarized below.

- Table 1 summarizes the hits for the surface water sample field duplicates collected at 5SW03. Twelve total metals, eight dissolved metals, and alkalinity were detected in one or both samples. RPDs for metals detected in both samples ranged between 0.5 and 128 percent. Except for alkalinity and manganese, all metals met the project quality control (QC) acceptance criteria of ±100 RPD for field precision. The manganese RPD met the provisional QC acceptance criteria of plus or minus the CRDL. The RPD for alkalinity was 130 percent, which exceeded the QC acceptance criteria. All total metals concentrations were greater than dissolved metals concentrations.
- Table 2 summarizes the hits for the surface water sample field duplicates collected at 5SW03. Seven total metals, seven dissolved metals, and alkalinity were detected in one or both samples. RPDs for metals detected in both samples and alkalinity ranged between 0.7 and 11.6 percent; therefore, all parameters detected met the project QC acceptance criteria of ±100 RPD for field precision. All total metals concentrations were the same or slightly greater than dissolved metals concentrations.
- Table 3 summarizes the hits for the groundwater sample field duplicates collected at 5WS01. Five total metals, alkalinity, bicarbonate, carbonate, chloride, and sulfate were detected in one or both samples. RPDs for metals and conventional parameters detected in both samples ranged between zero and 10.9 percent; therefore, all parameters detected met the project QC acceptance criteria of ±100 RPD for field precision.
- Table 4 summarizes the hits for the soil sample field duplicates collected at SE03. Bis(2-ethylhexyl)phthalate and 20 total metals were detected in one or both samples. RPDs for metals detected in both samples ranged between 0.7 and 28.9 percent; therefore, all parameters detected met the project QC acceptance criteria

of  $\pm 100$  RPD for field precision. Bis(2-ethylhexyl)phthalate was detected in only one sample; therefore, RPD could not calculated.

- Table 5 summarizes the hits for the soil sample field duplicates collected at 5SE04. Bis(2-ethylhexyl)phthalate and 19 total metals were detected in one or both samples. RPDs for metals detected in both samples ranged between zero and 36.2 percent; therefore, all parameters detected met the project QC acceptance criteria of ±100 RPD for field precision.
- Table 6 summarizes the hits for the soil sample field duplicates collected at 5SB29-0. Nineteen semivolatile organic compounds, TFH diesel, and 20 total metals were detected in one or both samples. RPDs for semivolatiles and metals detected in both samples ranged between 4.6 and 182 percent. Except for bis(2ethylhexyl)phthalate, all semivolatiles (phenanthrene, fluoranthene, and pyrene) detected exceeded the project QC acceptance criteria of ±100 RPD for field precision. Except for lead, all metals detected met the QC acceptance criteria for ±100 percent for field precision. TFH diesel was detected in only one sample; therefore, an RPD could not be calculated.
- Table 7 summarizes the hits for the groundwater sample field duplicates collected at 5MW7-40. Trichloroethene and 1,1,2,2-tetrachloroethane were detected in both samples. RPDs for these VOCs ranged between 2.5 and 14.3 percent; therefore, both VOCs detected met the project QC acceptance criteria of ±100 RPD for field precision.
- Table 8 summarizes the hits for the groundwater sample field duplicates collected at 5MW6-35. Trichloroethene, toluene, ethylbenzene, total xylenes, and bis(2ethylhexyl)phthalate were detected in one or both samples. RPDs for these parameters ranged between 3.3 and 25.0 percent; therefore, all parameters detected met the project QC acceptance criteria of ±100 RPD for field precision.
- Table 9 summarizes the hits for the soil sample field duplicates collected at SL04S12A. Eighteen total metals, three water soluble metals, four ammonium acetate extractable metals, phosphate, TKN, conductivity, and TOC were detected in one or both samples. RPDs for all parameters detected in both samples ranged between zero and 40 percent; therefore, all parameters detected met the project QC acceptance criteria of ±100 RPD for field precision.
- Table 10 summarizes the hits for the soil sample field duplicates collected at SL04S12N. Seventeen total metals, three water soluble metals, four ammonium acetate extractable metals, phosphate, TKN, conductivity, and TOC were detected in one or both samples. RPDs for all parameters detected in both samples ranged between zero and 78.9 percent; therefore, all parameters detected met the project QC acceptance criteria of ±100 RPD for field precision.
- Table 11 summarizes the hits for the soil sample field duplicates collected at 5SE09. Phenol and JP-4 were detected in one or both samples. The RPD for phenol was 32.3 percent; therefore, all parameters detected met the project QC acceptance criteria of ±100 RPD for field precision. JP-4 was detected in only one sample; therefore, an RPD could not be calculated.

TABLE 1. Field Duplicate Results for 5SW03 on 30 May 92				
Compounds	Sample Result (µg/l)	Duplicate Result (µg/l)	Relative Percent Difference	
Total Metals				
Aluminum	315	557	55.5	
Arsenic	0.70	0.80	13.3	
Barium	16.2	13.0	21.9	
Calcium	27,400	18,300	39.8	
Copper	1.4	1.6	13.3	
Iron	562	835	39.1	
Lead	0.70	0.60 U	N/C	
Magnesium	4,010	2,920	31.5	
Manganese	189	90.1	70.6	
Potassium	559	468	17.7	
Sodium	2,170	2,160	0.46	
Vanadium	2.0	2.8	33.3	
Dissolved Metals				
Barium	4.0	3.8	5.1	
Calcium	14,500	19,300	28.4	
Iron	26.4	54.3	69.1	
Magnesium	2,250	2,890	24.9	
Manganese	16.2	73.9	128	
Potassium	391	285	31.4	
Sodium	1,580	2,180	31.9	
Vanadium	1.3	1.3 U	N/C	
Akalinity (mg/l)	138	40	110	
N/C = Not Calculable U = Nondetected result				

TABLE 2. Field Duplicate Results for 5SW03 on 27 Aug 92				
Compounds	Sample Result (µg/l)	Duplic <b>ate</b> Result (µg/l)	Relative Percent Difference	
Total Metals				
Barium Calcium Copper Magnesium Manganese Sodium Zinc	9.0 24,400 1.0U 3,600 47.9 2,360 2.2U	9.3 24,700 130 3,660 48.2 2,390 79.9	3.3 1.2 N/C 1.7 0.62 1.3 N/C	
Dissolved Metals				
Barium Calcium Copper Magnesium Manganese Sodium	8.8 24,600 1.7 3,640 44.1 2,650	8.8 24,400 0.90U 3,620 43.8 2,360	0.0 0.82 N/C 0.55 0.68 11.6	
Akalinity (mg/l)	60	57	5.1	
Akalinity (mg/l) N/C = Not Calculable U = Nondetected result	60	57	5.1	

TABLE 3. Field Duplicate Results for 5WS01 on 1 Sep 92				
Compounds	Sample Result (µg/l)	Duplicate Result (µg/l)	Relative Percent Difference	
Total Metals				
Calcium Iron Magnesium Potassium Sodium	10,500 118 6,330 1,990 41,900	10,400 129 6,300 1,800 41,600	0.96 8.9 0.48 10.0 0.72	
Conventional Parameters (mo	g/l)			
Alkalinity Bicarbonate Carbonate Cloride Sulfate	141 165 3.6 3.63 13.7	127 148 3.6 3.64 13.7	10.4 10.9 0.0 0.28 0.0	
N/C = Not Calculable U = Nondetected result			<u>*</u>	

TABLE 4. Field Duplicate Results for 5SE03 on 30 May 92						
Compounds	Sample Result (µg/kg)	Duplicate Result (µg/kg)	Relative Percent Difference			
Semivolatile Organic Compounds						
bis(2-Ethylhexyl)phthalate	57	520U	N/C			
Total Metals (mg/kg)						
Aluminum Arsenic Barium Beryllium Cadmium Calcium Chromium Cobalt Copper Iron Lead	18,000 5.6 90.3 0.73 1.8 7,510 40 13.3 29.4 33,100 5.8	16,500 5.8 80.4 0.64 1.9 5,930 38.2 11.8 27.7 32,400 6.1	8.7 1.8 11.6 13.1 5.4 23.5 4.6 12.0 6.0 2.1 5.0			
Magnesium Manganese Nickel Potassium Selenium Silver Sodium Vanadium Zinc	10,100 787 40.9 1,080 0.22 0.84 433 70.5 79.1	10,200 710 40.6 808 0.12 U 1.6 364 60.5 76.3	1.0 10.3 0.74 28.9 N/C 62.3 17.3 15.3 3.6			
N/C = Not Calculable U = Nondetected result						

TABLE 5. Field Duplicate Results for 5SE04 on 29 Aug 92						
Compounds	Sample Result (µg/kg)	Duplicate Result (µg/kg)	Relative Percent Difference			
Semivolatile Organic Compounds						
Bis(2-ethylhexyl)phthalate	1,300U	210	N/C			
Total Metals (mg/kg)	Total Metals (mg/kg)					
Aluminum Arsenic Barium Cadmium Calcium Chromium Cobalt Copper Iron Lead Magnesium Manganese Mercury Nickel Potassium Silver Sodium	9,580 38.1 441 1.7 12,000 23.5 23.7 26.3 69,300 24.5 5,390 37,900 0.11U 71.5 634 5.6 609	13,400 29.4 366 2.4 12,000 28.6 22.4 27.6 67,200 22.9 7,050 29,300 0.10 61.5 914 4.7 521	33.2 25.8 18.6 34.1 0.0 19.6 5.6 4.8 3.1 6.8 26.7 25.6 N/C 15.0 36.2 17.5 15.6			
Zinc N/C = Not Calculable	108	102	5.7			
U = Nondetected result						

TABLE 6. Field Duplicate Results for 5SB29-0 on 4 Sep 92				
Compounds	Sample Result (µg/kg)	Duplicate Resuit (µg/kg)	Relative Percent Difference	
Semivolatile Organic Compo	unds		••••••••••••••••••••••••••••••••••••••	
Napthalene	380U	110	N/C	
2-Methylnaphthalene	380U	50	N/C	
Acenaphthene	380U	120	N/C	
Dibenzofuran	380U	93	N/C	
Fluorene	380U	140	N/C	
Phenanthrene	39	830	182	
Anthracene	380U	150	N/C	
Carbazole	380U	83	N/C	
Fluoranthene	63	840	172	
Pyrene	67	820	170	
Benzo(a)anthracene	380U	350	N/C	
Chrysene	380U	410	N/C	
Bis(2-ethylhexyl)phthalate	49	39	22.7	
Benzo(b)fluoranthene	380U	260	N/C	
Benzo(k)fluoranthene	43	310	151	
Benzo(a)pyrene	380U	330	N/C	
Ideno(1,2,3-cd)pyrene	380U	160	N/C	
Dibenz(a,h)anthracene	380U	40	N/C	
Benzo(g,h,i)perylene	380U	330	N/C	
TFH Diesel (mg/kg)	6.1	4.6U	N/C	
Metais (mg/kg)				
Aluminum	16,000	9,360	52.4	
Arsenic	6.3	5.2	19.1	
Barium	125	283	77.5	
Cadmium	1.5	1.3	14.3	
Calcium	6,770	4,850	33.0	
Chromium	29.0	23.4	21.4	
Cobalt	11.6	7.3	45.5	
Copper	33.3	22.3	39.6	
Iron	30,900	17,300	56.4	
Lead	23.9	193	156	
Magnesium	9,080	5,340	51.9	
Manganese	612	400	41.9	
mercury	0.05	0.06	18.2	
Nickel	31.2	24.9	22.5	
Potassium <	662	468	34.3	
Selenium	0.11U	0.16	N/C	
Silver	0.60	0.480	N/C	
Sodium	259	22	15.4	
Vanadium	83.3	37.2	76.5	
	63.5	66.5	4.6	
N/C = Not Calculable				

U = Nondetected result

TABLE 7. Field Duplicate Results for 5MW7-40 on 1 Sep 92						
Compounds	Sample Result (µg/l)	Duplicate Result (µg/1)	Relative Percent Difference			
VOCs						
Trichloroethene 1,1,2,2-tetrachloroethane	13 8.0	15 8.2	14.3 2.5			
N/C = Not Calculable U = Nondetected result						

TABLE 8. Field Duplicate Results for 5MW6-35 on 3 Sep 92			
Compounds	Sample Result (µg/l)	Duplicate Result (µg/l)	Relative Percent Difference
Purgeable VOCs			
Trichloroethene Toluene Ethylbenzene Total Xylenes	52 1.4 0.67 2.7	54 1.2 0.60 2.1	3.8 15.4 11.0 25.0
Semivolatile Organic Compounds			
Bis(2-ethylhexyl)phthalate	10U	11	N/C
TFH gasoline (mg/l)	92	89	3.3
N/C = Not Calculable U = Nondetected result			

.

TABLE 9. Field Duplicate Results for SL04S12A on 4 Sep 92			
Compounds	Sample Result (mg/kg)	Duplicate Result (mg/kg)	Relative Percent Difference
Ethylbenzene	200	390	64.4
Total Xylenes	3,100	8,400	92.2
TFH Gasoline	310	670	73.5
TFH Diesel	83	151	58.1
Metals	······		
Aluminum Arsenic Barium Cadmium Calcium Chromium Cobalt Copper Iron Lead Magnesium Manganese Mercury Nickel Potassium Silver	14,000 7.4 75.6 1.5 5,400 24.9 9.8 21.7 29,300 23.0 6,840 2,240 0.09 25.7 536 0.76	11,800 8.1 89.9 1.5 5,760 22.0 9.4 21.3 27,900 27.3 5,550 3,190 0.06 24.9 361 0.68	17.1 9.0 17.3 0.0 6.5 12.4 4.2 1.9 4.9 17.1 20.8 35.0 40.0 3.2 39.0 11.1
Vanadium Zinc	44.8 53.9	38.0 49.4	16.4 8.7
Water Soluble Metals (meq/1	00g)		
Calcium Magnesium Sodium	0.28 0.12 0.06	0.26 0.11 0.05	7.4 8.7 18.2
Ammonium Acetate Extractal	ble Metals (meq/10	0g)	
Calcium Magnesium Potassium Sodium	10.3 1.42 0.14 0.27	8.9 1.21 0.12 0.24	14.6 16.0 15.4 11.8
Conventional Parameters			
Electrical conductivity (mmhos/cm) Phosphate Total kjeidahl nitrogen Ammonia	0.73 16 1,900 9.04	0.65 17 1,770 11.8	11.6 6.1 7.1 26.5
Total organic carbon	35,300	44,100	22.2
N/C = Not Calculable U = Nondetected result			

TABLE 10. Field Duplicate Results for SL04S12N on 4 Sep 92			
Compounds	Sample Result (mg/kg)	Duplicate Result (mg/kg)	Relative Percent Difference
TFH Diesel	10	9	10.5
Metals	••		
Aluminum Barium Cadmium Calcium Chromium Cobalt Copper Iron Lead Magnesium Manganese Mercury Nickel Potassium	18,400 87.1 1.6 6,800 35.4 12.5 26.6 27,900 10.2 8,850 444 0.04 34.1 720	16,700 84.2 1.5 4,420 31.9 10.8 24.1 26,300 8.0 8,200 430 0.05 35.5 565	9.7 3.4 6.5 42.4 10.4 14.6 9.9 5.9 24.2 7.6 3.2 22.2 4.0 24.1
Silver Vanadium Zinc Water Soluble Metais (meg/100	0.49 66.4 56.9	0.70 55.4 54.6	35.3 18.1 4.1
Calcium Magnesium Sodium	0.04 0.02 0.02	0.04 0.02 0.02	0.0 0.0 0.0
Ammonium Extractable Metals	(meq/100g)		
Calcium Magnesium Potassium Sodium	2.5 0.61 0.12 0.17	2.7 0.66 0.13 0.17	7.7 7.9 0.1 0.0
Conventional Parameters			
Electrical conductivity (mmhos/cm) Phosphate Total kjeidahl nitrogen Ammonia	0.24 7.6 857 6.62	0.28 3.3 829 5.63	15.4 78.9 3.3 16.2
Total organic carbon	14,400	15,400	6.7
N/C = Not Calculable U = Nondetected result		<u> </u>	<u> </u>

TABLE 11. Field Duplicate Results for 5SE09 on 3 Sep 92			
Compounds	Sample Result (µg/kg)	Duplicate Result (µg/kg)	Relative Percent Difference
Semivolatile Organic Compounds			
Phenol	52	72	32.3
JP-4 (mg/kg)	1.0U	1.1	N/C

DATA VALIDATION SUMMARIES

# Volatile Organic Compounds (EPA Method 8010) Surface Water/Sediment Batch 33061

Surface water and sediment samples 5SE07, 5SW07, 5SW07D, 5SE08, 5SE08C, and 5SW08 were validated from analytical batch 33061, following criteria outlined in the U.S. EPA Functional Guidelines for Evaluating Organic Analyses.

# I. Holding Times

All samples were analyzed within 14 days, therefore all samples met holding time QC acceptance criteria.

## **III. Initial Calibration**

Five-point calibration curves were generated for all target compounds. The correlation determination factor ( $R^2$ ) for this calibration curve was within the QC control limit of 0.9025. Therefore, the target compound calibration curve met initial calibration QC acceptance criteria.

# **IV.** Continuing Calibration

Except for several target compounds, the percent difference for all compounds were within the QC control limits of 20 percent or the method specified limit, thereby meeting continuing calibration QC acceptance criteria. Target compounds that did not meet QC acceptance criteria are listed in Table 1.

Where continuing calibrations exceeded QC acceptance criteria, no target compounds were detected in the samples. Therefore, no samples were qualified as a result of continuing calibrations.

# V. Blanks

Except for chloroform and tetrachloroethene, the method, travel, and rinsate blanks associated with this analytical batch were free of contaminants, thereby meeting QC acceptance criteria. Chloroform was detected in rinsate blank, 5SE08C, at a concentration of 52  $\mu$ g/L. No samples were qualified as a result of chloroform contamination. Tetrachloroethene was detected in travel blank, 5SW07D, at a concentration of 6.2  $\mu$ g/L. The tetrachloroethene result for 5SE08 (1,400 U) was qualified as a nondetect and flagged with a "U."

Table 1		
Compound	Percent Difference	
Continuing Calibration (6/16/92 1345 GC-2 HECD)		
chloromethane	-75.21	
Continuing Calibration (6/17/92 1605 GC-2 HECD)		
chloromethane	-85.86	
Continuing Calibration (6/18/92 0638 GC-1 HECD)		
tetrachiorothene	+25.47	
chloroethane	+26.01	
methylene chloride	+25.36	
chloroform	+31.76	
1,1,1-trichloroethane	+31.35	
1,2-dichloropropane	+26.09	
bromodichloromethane	-32.95	
1,1,2-trichloroethane	+22.18	
Continuing Calibration (6/18/92 1346 GC-1 HECD)		
bromodichloromethane	-41.22	
Continuing Calibration (6/18/92 0918 GC-2 HECD)		
chloromethane	-85.78	
1,1-dichloroethene	+23.66	
tetrachloroethene	+32.31	

# VI. System Monitoring Compounds (Surrogates)

Except for 5SE07, all surrogate spike recoveries were within QC control limits of 60 to 130 percent for water samples and 80 to 130 percent for sediment samples, thereby meeting QC acceptance criteria. Because holding times were exceeded, this sample was not reanalyzed to verify the surrogate recovery. Therefore, all results for 5SE07 were qualified as estimates and flagged with a "J" for positive results, a "UJ" for nondetected results.

## XI. Target Compound Identification

Except for compounds detected in 5SW07D, all compounds detected in samples were verified with a second column confirmation analysis. Therefore, target compound identification QC acceptance criteria were met for the majority of samples. Target compounds were reported only when retention times were within their specified windows. For 5SW07D, tetrachloroethene was qualified as an estimate and flagged with a "J."

# XII. Compound Quantitation and Reported Detection Limits

All sample results were calculated correctly, thereby meeting compound quantitation acceptance criteria. All sample results and detection limits were reported correctly and all results were correctly adjusted for percent moisture and dilution factors. Sample 5SE08 required a 500-fold dilution and sample 5SE08C required a 10-fold dilution to bring high concentrations of target compounds into the linear range of the instrument.

# **XV. System Performance**

Chromatograms from each sample analysis and instrument performance were considered acceptable.

# Semivolatile Organic Compounds (EPA Method 8270) Surface Water/Sediment Batch 33061

Surface water and sediment samples 5SW07, 5SE07, 5SW08, 5SE08, 5SE08C, 5SW07 MS/MSD, and 5SE07 MS/MSD were validated from analytical batch 33061, following criteria outlined in the U.S. EPA Functional Guidelines for Evaluating Organic Analyses.

# I. Holding Times

All water samples were extracted within 7 days; all sediment samples were extracted within 14 days. All samples were analyzed within 40 days. Therefore, all samples met extraction and analys.s holding time QC acceptance criteria.

# II. GC/MS Tuning

GC/MS tuning was performed for every 12-hour period. Each GC/MS tune met ion abundance QC acceptance criteria.

# III. Initial Calibration

All initial calibration average relative response factors (RRFs) and percent relative standard deviations (RSDs) met QC acceptance criteria. Therefore, all initial calibration met QC acceptance criteria.

# **IV.** Continuing Calibration

Except for several target compounds, all continuing calibration RRFs and percent differences met continuing calibration QC acceptance criteria. Compounds that did not meet QC acceptance criteria are listed in Table 2.

According to the CLP functional guidelines, all compounds with continuing calibration percentage differences greater than 25 percent should be qualified as estimates and positive results flagged with a "J." Compounds that exceeded calibration criteria were not detected in any of the samples analyzed; therefore, no samples were qualified.

Table 2		
Compound	Percent Difference	
Continuing Calibration (7/4/92 1239)		
4-chloroaniline	+37.8	
3-nitroaniline	+52.1	
2,4-dinitrophenol	+46.9	
4-nitrop <b>henol</b>	+39.3	
4-nitroaniline	+51.2	
hexachiorobenzene	-30.7	
pyrene	-39.3	
di-n-octylphthalate	-34.0	
benzo(k)fluoranthene	-28.2	
Continuing Calibration (7/8/92 1054)		
4-chloroaniline	+49.9	
3-nitroaniline	+42.1	
2,4-dinitrophenol	+52.6	
4-nitroaniline	+42.0	
4,6-dinitro-2-methylphenol	+36.2	
Continuing Calibration (7/12/92 1109)		
3-nitroaniline	-51.4	
4-nitrophenol	-29.7	
Carbazole	-26.1	
Di-n-octyphthalate	-30.4	
2,4,6-tribromophenol	-28.2	
Continuing Calibration (7/13/92 0626)		
2,4-dichlorophenol	+29.9	
4-chloroaniline	+32.8	
4-methylnaplthalene	+28.5	
3-nitroaniline	+26.1	
2,4-dinitrophenol	+28.5	
4-nitrophenol	+41.0	
pentach <b>lorophe</b> nol	+37.8	
3,3'-dichlorobenzidine	+33.2	

## V. Blanks

Except for n-nitrosodiphenylamine, the method and rinsate blanks associated with this analytical batch were contamination free. N-nitrosodiphenylamine was detected in two method blanks and one rinsate blank associated with these samples. N-nitrosodiphenylamine was detected in SBLKW (June 11) at a concentration of 2  $\mu$ g/L; SBLKS (June 13) at a concentration of 71  $\mu$ g/kg; and rinsate blank (5SE08C) at a concentration of 2  $\mu$ g/L. N-nitrosodiphenylamine results for the following samples were qualified as nondetected and flagged with "U":

- 5SW07 (10U)
- 5SW08 (10U)
- 5SE07 (540U)

# VI. System Monitoring Compounds (Surrogates)

Except for 5SE06 and 5SW02, all surrogate spike recoveries were within the CLP QC control limits, thereby meeting QC acceptance criteria. Sample 5SE06 contained 2,4,6-tribromophenol above QC control limits and 5SW02 contained 1,2-dichlorobenzene-d4 above QC control limits. According to the CLP functional guidelines, samples are qualified when two or more surrogate spike recoveries are outside QC control limits. Therefore, no sample results were qualified.

# VII. Matrix Spike/Matrix Spike Duplicate

All MS/MSD recoveries were within the CLP QC control limits, thereby meeting QC acceptance criteria for accuracy. Except for one RPD, all RPDs were within the CLP QC control limits, thereby meeting QC acceptance criteria for precision. For 5SE07 MS/MSD, the acenaphthene RPD (24 percent) was outside the RPD control limit of 19 percent. According to the CLP functional guidelines, samples are not qualified on the basis of MS/MSD results.

# X. Internal Standards

All area counts and retention times were within the CLP QC control limits. Therefore, all samples met QC acceptance criteria for internal standards.

# XI. Target Compound Identification

All target compound RRTs were within 0.06 units of the standard RRT. All target compound mass spectra matched standard mass spectra and met QC acceptance criteria. Therefore, all samples met target compound identification QC acceptance criteria.

# XII. Compound Quantitation and Reported Detection Limits

All sample results were calculated using the correct internal standard, quantitation ion, and relative response factor. Therefore, all samples met compound quantitation QC acceptance criteria. All sample results and detection limits were correctly adjusted for percent moisture and dilution factors. Sample 5SE08 required a 20-fold dilution to bring high concentrations of target compounds into the linear range of the instrument.
# XIII. Tentatively Identified Compounds (TICs)

All sample TICs met QC acceptance criteria. A library search was conducted for each sample results reported on Form I. Sample mass spectra for each TIC identified matched standard mass spectra. When sample mass spectra did not match standard mass spectra, the TIC was designated as an "unknown." Samples 5SE07 and 5SE08 contained three TICs that were also detected in the method blanks; these TICs were rejected and flagged with an "R." All TICs detected are considered estimated concentrations and flagged with a "JN."

#### **XV. System Performance**

Chromatograms and mass spectra from each sample analysis and instrument performance were considered acceptable.

## Polychlorinated Biphenyls (EPA Method 8080) Sediment Samples Batch 33061

Sediment sample 5SE07 was validated from analytical batch 33061, following criteria outlined in the U.S. EPA Functional Guidelines for Evaluating Organic Analyses.

## I. Holding Times

This sample was extracted within 14 days and analyzed within 40 days, thereby meeting extraction and analysis holding time QC acceptance criteria.

#### III. Initial Calibration

All percent RSDs were within the QC control limits of  $\pm 30$  percent, thereby meeting initial calibration QC acceptance criteria.

#### **IV. Continuing Calibration**

All percent differences were within the control limit of  $\pm 15$  percent, thereby meeting continuing calibration QC acceptance criteria.

#### V. Blanks

The method blank associated with this analytical batch was free of contaminants, thereby meeting QC acceptance criteria.

# VI. System Monitoring Compounds (Surrogates)

All samples were spiked with tetrachloro-m-xylene and decachlorobiphenyl as surrogate compounds prior to analysis. All surrogate spike recoveries were within QC control limits of 60 to 150 percent, thereby meeting QC acceptance criteria.

### XI. Target Compound Identification

The presence of Aroclor 1260 was verified by a second column confirmation analysis and by comparing the sample chromatogram with a standard chromatogram of Aroclor 1260. Therefore, this sample met target compound identification QC acceptance criteria.

# XII. Compound Quantitation and Reported Detection Limits

Sample results were calculated correctly, thereby meeting compound quantitation acceptance criteria. All sample results and detection limits were reported correctly and correctly adjusted for percent moisture and dilution factors. Sample 5SE07 required a 2-fold dilution to bring high concentrations of target compounds into the linear range of the instrument.

#### **XV.** System Performance

Chromatograms from each sample analysis and instrument performance were considered acceptable.

## BTEX and TFH Gasoline (EPA Modified Method 8015/8020/ADEC AK 101) Surface Water/Sediment Batch 33061

Surface water and sediment samples 5SE07, 5SW07, 5SW07D, 5SE08, 5SE08C, and 5SW08 were validated from analytical batch 33061, following criteria outlined in the U.S. EPA Functional Guidelines for Evaluating Organic Analyses.

#### I. Holding Times

All water samples were analyzed within 14 days. All sediment samples were extracted and analyzed within 14 days. Therefore, all samples met holding time QC acceptance criteria.

#### III. Initial Calibration

All percent RSDs were within the control limit of  $\pm 30$  percent, thereby meeting initial calibration QC acceptance criteria.

### **IV. Continuing Calibration**

All percent differences were within the QC control limit of  $\pm 15$  percent, thereby meeting continuing calibration QC acceptance criteria.

#### V. Blanks

The method, rinsate, and travel blanks associated with this analytical batch were free of contaminants, thereby meeting QC acceptance criteria.

### VI. System Monitoring Compounds (Surrogates)

All surrogate spike recoveries were within QC control limits of 80 to 120 percent, thereby meeting QC acceptance criteria.

### XI. Target Compound Identification

For BTEX analyses, compounds detected were verified by a second column confirmation analysis. Therefore, BTEX analyses met target compound identification QC acceptance criteria. TFH gasoline analyses do not require second column confirmation.

## XII. Compound Quantitation and Reported Detection Limits

Sample results were calculated correctly, thereby meeting compound quantitation acceptance criteria. All sample results and detection limits were reported correctly and all results were correctly adjusted for percent moisture and dilution factors. Sample 5SE08 required a 5-fold dilution to bring high concentrations of target compounds into the linear range of the instrument.

All TFH gasoline analyses were calculated incorrectly because Method 8015/8020 was used instead of ADEC Method AK 101. the retention time window and type of calibration standard used for Method 8015/8020 differed when compared to the ADEC method. The retention time window was larger for the EPA method and included the major range of gasoline peaks when compared to the ADEC standards. A new retention time window was established that included peaks similar to standards used for both methods. TFH-gasoline recalculations affected results reported above the detection limit only. Only OU5SE-08 was recalculated from this analytical batch using the new retention time window. No sample results required qualification based on recalculation.

#### **XV. System Performance**

Chromatograms from each sample analysis and instrument performance were considered acceptable.

## TFH Diesel and JP-4 (EPA Modified Method 8015/ADEC Method AK 102) Surface Water/Sediment Batch 33061

Surface water and sediment samples 5SE07, 5SW07, 5SE08, 5SW08, 5SW08C, 5SE07 MS/MSD, and 5SW07 MS/MSD were validated from analytical batch 33061, following criteria outlined in the U.S. EPA Functional Guidelines for Evaluating Organic Analyses.

## I. Holding Times

All samples were extracted and analyzed within 14 days. Therefore, all samples met holding time QC acceptance criteria.

#### III. Initial Calibration

All percent RSDs were within the QC control limit of  $\pm 30$  percent, thereby meeting initial calibration QC acceptance criteria.

## **IV.** Continuing Calibration

All percent differences were within the QC control limit of  $\pm 15$  percent, thereby meeting continuing calibration QC acceptance criteria.

### V. Blanks

The method and travel blanks associated with this analytical batch were free of contaminants, thereby meeting QC acceptance criteria.

# VI. System Monitoring Compounds (Surrogates)

All surrogate spike recoveries were within QC control limits of 50 to 150 percent, thereby meeting QC acceptance criteria.

# VII. Matrix Spike/Matrix Spike Duplicates

For JP-4 analyses, MS/MSD recoveries and RPD for sediment analyses could not be determined because spiking compounds were diluted from the matrix. MS/MSD recoveries for water analysis of JP-4 were below the QC acceptance criteria of 60 to 120 percent recovery. The RPD for water analysis of JP-4 met the QC acceptance criteria of  $\pm 20$  RPD. For diesel analyses, MS/MSD recovery for sediment analyses met the QC acceptance criteria of 60 to 120 percent. The RPD for sediment analyses exceeded the QC acceptance criteria of  $\pm 20$  RPD. The MS/MSD recoveries for water analysis of diesel was below the QC acceptance criteria of 60 to 120 percent recovery. The RPD for water analyses of diesel exceeded the QC acceptance criteria of  $\pm 20$  RPD.

According to the CLP functional guidelines, samples are not qualified on the basis of MS/MSD results, therefore no samples were qualified.

#### XI. Target Compound Identification

Target compounds were reported when retention times were within the specified windows and when chromatograms matched standard fingerprint pattern associated with diesel or JP-4. Therefore, all JP-4 analyses met target compound identification QC acceptance criteria.

All TFH diesel analyses were calculated incorrectly because Method 8015 was used instead of ADEC Method AK 102. The retention time window and type of calibration standards used differed when compared to the ADEC method. TFH diesel results could not be recalculated because the chromatographic peaks from Method 8015 and the ADEC method did not match; consequently, a new retention time window could not be established. Because the ADEC-defined retention time window is larger than the original retention time, it is expected that TFH diesel results are biased low. This only affects results reported above the detection limit. Therefore, OU5SE-08 was qualified as biased low and flagged with a "J".

### XII. Compound Quantitation and Reported Detection Limits

Sample results were calculated correctly, thereby meeting compound quantitation acceptance criteria. All sample results and detection limits were reported correctly and all results were correctly adjusted for percent moisture and dilution factors. Diesel results for samples 5SE07 and 5SE08 required a 5-fold dilution and JP-4 results for sample 5SE07 required a 2-fold dilution to bring high concentrations of target compounds into the linear range of the instrument.

#### **XV. System Performance**

Chromatograms for each sample analysis and instrument performance were considered acceptable.

## Metals (EPA Methods 6010 and 7000 Series) Surface Water/Sediment Batch 33061

Surface water and sediment samples 5SE07, 5SW07, 5SW07S, 5SE08, 5SW08, 5SW08C, and 5SW08S were validated from analytical batch 33061, following criteria outlined in the U.S. EPA Functional Guidelines for Evaluating Inorganic Analyses.

# I. Holding Times

Mercury analyses were performed within 28 days and all other metals were performed within 6 months. Therefore, all samples met holding time QC acceptance criteria.

## **II. Calibration Check**

Each instrument was calibrated at the correct frequency and with the proper number of blanks and standards for each element. All initial and continuing calibration recoveries were within QC control limits of 90 to 110 percent. Therefore, all calibrations met QC acceptance criteria.

### **III. Preparation and Rinsate Blanks**

Twelve different elements were detected in the preparation blank. However, blank contaminant concentrations were below the contract required detection limit (CRDL).

Seven different elements were detected in the rinsate blank associated with these samples. However, contaminant concentrations were below CRDL.

Except for two selenium results, no samples required qualification as a result of blank contamination. The following selenium results were qualified as nondetected and flagged with a "U" as a result of preparation blank contamination:

- 5SE07 (0.22U)
- 5SE08 (0.25U)

### **IV. ICP Interference Check Samples**

All ICP interference check sample recoveries were within QC control limits of 80 to 120 percent, thereby meeting QC acceptance criteria.

# V. Laboratory Control Sample (LCS)

All LCS recoveries were within QC control limits of 80 to 120 percent, thereby meeting QC acceptance criteria.

### **VI. Duplicates**

All duplicate results were within the QC control limits of  $\pm 20$  RPD for water samples and  $\pm 35$  RPD for sediment samples, thereby meeting QC acceptance criteria.

## VII. Matrix Spike Sample Analysis

For water samples, matrix spike recoveries were within the QC control limits of 75 to 125 percent, thereby meeting QC acceptance criteria. For sediment samples, except for lead and manganese, all matrix spike recoveries were within the QC control limits of 75 to 125 percent, thereby meeting QC acceptance criteria. The matrix spike recovery for lead (54.0 percent) was below the QC control limits, therefore lead results were qualified as biased low and flagged with an "L":

- 5SE07 (10.8L)
- 5SE08 (22.9L)

The matrix spike recovery for manganese (154.5 percent) was above the QC control limits, therefore manganese results were qualified as biased high and flagged with a "K":

- 5SE07 (905K)
- 5SE08 (650K)

# VIII. Furnace Atomic Absorption QC (Analytical Spikes)

Except for two thallium spike recoveries, all furnace analytical spike recoveries were within the QC control limits of 85 to 115 percent, thereby meeting QC acceptance criteria. Thallium analytical spike recoveries for 5SE07 (81.4 percent) and 5SE08 (83.5 percent) were below QC acceptance criteria. Thallium results for 5SE07 (0.26BL) and 5SE08 (0.23UL) were qualified as biased low and flagged with an "L" for detected results, a "UL" for nondetected results.

### IX. ICP Serial Dilution

For water analyses, except for barium, all serial dilutions met QC acceptance criteria. The following barium results were qualified as estimates and flagged with a "J" for positive results:

- 5SW07 (200BJ)
- 5SW07S (160BJ)
- 5SW08 (123BJ)
- 5SW08C (0.65BJ)
- 5SW08S (28.0BJ)

For sediment analyses, except for calcium and zinc, all serial dilutions met the QC acceptance criteria of  $\pm 10$  percent difference. The following calcium results were qualified as estimates and flagged with a "J" for positive results:

- 5SE07 (6340J)
- 5SE08 (5140J)

The following zinc results were qualified as estimates and flagged with a "J":

- 5SE07 (36.8J)
- 5SE08 (77.2J)

# X. Sample Result Verification

All sample results were calculated correctly, thereby meeting compound quantitation acceptance criteria. All sample results and detection limits were correctly adjusted for percent moisture.

### General Chemistry-Alkalinity (EPA Method 310.1) Surface Water/Sediment Batch 33061

Surface water samples 5SW07, 5SW08, and sediment sample 5SE08C were validated from analytical batch 33061, following criteria outlined in the U.S. EPA Functional Guidelines for Evaluating Inorganic Analyses.

### I. Holding Times

All samples were analyzed within 14 days, therefore all samples met holding time QC acceptance criteria.

## II. Initial and Continuing Calibration

All initial and continuing calibration recoveries were within QC control limits of 80 to 120 percent, correby meeting QC acceptance criteria.

## V. Laboratory Control Sample

LCS results were within QC control limits of 80 to 120 percent, thereby meeting QC acceptance criteria.

### VI. Duplicates

All duplicate results were within the QC control limits of  $\pm 20$  RPD, thereby meeting QC acceptance criteria.

### Semivolatile Organic Compounds (EPA Method 8270) Soil and Groundwater Batch 33605

Soil and water samples 5SB19-52, 5SB19-10, and 5SB08-20C were validated from analytical batch 33605, following the criteria outlined in the U.S. EPA Functional Guidelines for Evaluating Organic Analyses.

### I. Holding Times

All water samples were extracted within 7 days; all soil samples were extracted within 14 days. All samples were analyzed within 40 days. Therefore, all samples met extraction and analysis holding time QC acceptance criteria.

### II. GC/MS Tuning

GC/MS tuning was performed for every 12-hour period. Each GC/MS tune met ion abundance QC acceptance criteria.

### **III. Initial Calibration**

All initial calibration average relative response factors (RRFs) and percent relative standard deviations (RSDs) met QC acceptance criteria. Therefore, all initial calibration met QC acceptance criteria.

### **IV.** Continuing Calibration

Except for several target compounds, all continuing calibration RRFs and percent differences met continuing calibration QC acceptance criteria. Compounds that did not meet QC acceptance criteria are listed in Table 3.

Table 3				
Compound	Percent Difference			
Continuing Calibration (8/21/92 1534)				
naphthalene	-30.8			
hexachlorocyclopentadiene	-39.3			
acenaphthylene	-25.1			
3-nitroaniline	-54.5			
4-nitrophenol	-43.1			
pentachlorophenol	+36.0			
3,3 ¹ -dichlorobenzidine	-44.4			
Continuing Calibration (8/24/92 1432)				
hexachlorobutadiene	-37.5			
hexachlorocyclopentadiene	-42.1			
4-chlorophenyl-phenylether	-32.2			

According to the CLP functional guidelines, all compounds with continuing calibration percentage differences greater than 25 percent should be qualified as estimates and positive results flagged with a "J." Compounds that exceeded calibration criteria were not detected in any of the samples analyzed, therefore no samples were qualified.

### V. Blanks

All method and rinsate blanks associated with these samples were free of contaminants, thereby meeting QC acceptance criteria.

# VI. System Monitoring Compounds (Surrogates)

All surrogate spike recoveries were within the CLP QC control limits, thereby meeting QC acceptance criteria.

### X. Internal Standards

All area counts and retention times were within the CLP QC control limits. Therefore, all samples met QC acceptance criteria for internal standards.

# XI. Target Compound Identification

All target compound relative retention times (RRTs) were within 0.06 units of the standard RRT. All target compound mass spectra matched standard mass spectra and met QC acceptance criteria. Therefore, all samples met target compound identification QC acceptance criteria.

# XII. Compound Quantitation and Reported Detection Limits

All sample results were calculated using the correct internal standard, quantitation ion, and relative response factor. Therefore, all samples met compound quantitation QC acceptance criteria. All sample results and detection limits were reported correctly and all results were correctly adjusted for percent moisture.

# XIII. Tentatively Identified Compounds (TICs)

All sample TICs met QC acceptance criteria. A library search was conducted for each sample result reported on Form I. Sample spectra for each TIC identified matched standard mass spectra. When sample mass spectra did not match standard mass spectra, the TIC was designated as an "unknown." Samples 5SB19-10 and 5SB19-52 contained TICs that were also detected in the method blanks; these TICs were rejected and flagged with an "R." All TICs detected are considered estimated concentrations and flagged with a "JN."

# **XV. System Performance**

Chromatograms and mass spectra from each sample analysis and instrument performance were considered acceptable.

## Volatile Organic Compounds (EPA Method 8010) Soil Batch 33632

Soil samples 5SB01-10, 5SB01-45D, 5SB21-10, 5SB21-25, 5SB21-48, and 5SB21-25 MS/MSD were validated from analytical batch 33632, following criteria outlined in the U.S. EPA Functional Guidelines for Evaluating Organic Analyses.

## I. Holding Times

All samples were analyzed within 14 days, therefore all samples met holding time QC acceptance criteria.

## **III. Initial Calibration**

All percent relative standard deviations (RSDs) were within the QC control limits of  $\pm 30$  percent, thereby meeting initial calibration QC acceptance criteria.

## **IV.** Continuing Calibration

Except for several target compounds, the continuing calibration concentration for all compounds were within the method specified QC control limits, thereby meeting continuing calibration QC acceptance criteria. Target compounds that did not meet QC acceptance criteria are listed in Table 4.

Table 4			
Compound	Concentration	QC Control Limits	
Continuing Calibration (8/26/92 0951)			
chloromethane	7.8	11.9-28.1	
Continuing Calibration (8/26/92 2048)			
chloromethane	6.8	11.9-28.1	
Continuing Calibration (8/27/92 0815)			
chloromethane	6.6	11.9-28.1	
dichloromethane	15.4	15.5-24.5	
bromoform	13.3	14.7-25.3	

Where continuing calibrations exceeded QC acceptance criteria, no target compounds were detected in the samples. Therefore, no samples were qualified as a result of continuing calibrations.

# V. Blanks

The method blank associated with this analytical batch was free of contaminants, thereby meeting QC acceptance criteria.

# VI. System Monitoring Compounds (Surrogates)

All surrogate spike recoveries were within QC control limits of 80 to 130, thereby meeting QC acceptance criteria.

# VII. Matrix Spike/Matrix Spike Duplicate

All MS/MSD recoveries were within the method specified QC control limits, thereby meeting QC acceptance criteria for accuracy. Except for one RPD, all RPDs were within the QC control limits of  $\pm$ 30, thereby meeting QC acceptance criteria for precision. The RPD for 1,1,2,2-tetrachlorethane (31.9 percent) was outside the control limit of 30 percent. According to the CLP functions guidelines, samples are not qualified on the basis of MS/MSD results; therefore, no sample results were qualified.

## XI. Target Compound Identification

No target compounds were detected above the method detection limit (MDL).

### XII. Compound Quantitation and Reported Detection Limits

No target compounds were detected above the MDL. All detection limits were reported correctly and all results were correctly adjusted for percent moisture.

# **XV. System Performance**

Chromatograms from each sample analysis and instrument performance were considered acceptable.

# Semivolatile Organic Compounds (EPA Method 8270) Soil Batch 33632

Soil samples 5SB01-10, 5SB21-10, 5SB21-25, 5SB21-48, and 5SB21-25 MS/MSD were validated from analytical batch 33632, following the criteria outlined in the U.S. EPA Functional Guidelines for Evaluating Organic Analyses.

### I. Holding Times

All samples were extracted within 14 days and analyzed within 40 days. Therefore, all samples met extraction and analysis holding time QC acceptance criteria.

## II. GC/MS Tuning

GC/MS tuning was performed for every 12-hour period. Each GC/MS tune met ion abundance QC acceptance criteria.

### **III.** Initial Calibration

All initial calibration average relative response factors (RRFs) and percent relative standard deviations (RSDs) met QC acceptance criteria. Therefore, all initial calibration met QC acceptance criteria.

# **IV.** Continuing Calibration

Except for several target compounds, all continuing calibration RRFs and percent differences met continuing calibration QC acceptance criteria. Compounds that did not meet QC acceptance criteria are listed in Table 5.

According to the CLP functional guidelines, all compounds with continuing calibration percentage differences greater than 25 percent should be qualified as estimates and positive results flagged with a "J." Compounds that exceeded calibration criteria were not detected in any of the samples analyzed, therefore no samples were qualified.

### V. Blanks

The method blank associated with this analytical batch was free of contaminants, thereby meeting QC acceptance criteria.

# VI. System Monitoring Compounds (Surrogates)

All surrogate spike recoveries were within the CLP QC control limits, thereby meeting QC acceptance criteria.

Table 5			
Compound	Percent Difference		
Continuing Calibration (8/29/92 0809)			
napthalene	-29.1		
acenaphthylene	-25.7		
Continuing Calibration (8/31/92 1649)			
4-chloroaniline	+40.2		
3-nitroaniline	+42.8		
2,4-dinitrophenol	+41.4		
4-nitroaniline	+27.6		
4,6-dinitro-2-methylphenol	nenol +27.2		
3,3'-dichlorobenzidine	+25.9		
Continuing Calibration (9/1/92 0459)			
4-chloroaniline	+49.1		
3-nitroaniline	3-nitroaniline +56.9		
2,4-dinitrophenol	2,4-dinitrophenol +30.2		
4-nitroaniline	+27.6		

# VII. Matrix Spike/Matrix Spike Duplicates

All MS/MSD recoveries and RPDs were within the CLP QC control limits, thereby meeting QC acceptance criteria for both accuracy and precision.

# X. Internal Standards

All area counts and retention times were within the CLP QC control limits. Therefore, all samples met QC acceptance criteria for internal standards.

# XI. Target Compound Identification

All target compound relative retention times (RRTs) were within 0.06 units of the standard RRT. All target compound mass spectra matched standard mass spectra and met QC acceptance criteria. Therefore, all samples met target compound identification QC acceptance criteria.

# XII. Compound Quantitation and Reported Detection Limits

All sample results were calculated using the correct internal standard, quantitation ion, and relative response factor. Therefore, all samples met compound quantitation QC acceptance criteria. All sample results and detection limits were reported correctly and all results were correctly adjusted for percent moisture.

## XIII. Tentatively Identified Compounds (TICs)

All sample TICs met QC acceptance criteria. A library search was conducted for each sample result reported on Form I. Sample spectra for each TIC identified matched standard mass spectra. When sample mass spectra did not match standard mass spectra, the TIC was designated as an "unknown." Samples 5SB01-10, 5SB21-10, 5SB21-25, and 5SB21-48 contained TICs that were also detected in the method blank; these TICs were rejected and flagged with an "R." All TICs detected are considered estimated concentrations and flagged with a "JN."

## **XV. System Performance**

Chromatograms and mass spectra from each sample analysis and instrument performance were considered acceptable.

# TBME, BTEX, and TFH Gasoline (EPA Modified Method 8015/8020/ADEC Method AK 101) Soil Batch 33632

Soil samples 5SB01-10, 5SB21-10, 5SB21-25, 5SB21-48, and 5SB21-25 MS/MSD were validated from analytical batch 33632, following the criteria outlined in the U.S. EPA Functional Guidelines for Evaluating Organic Analyses.

### I. Holding Times

All soil samples were extracted and analyzed within 14 days. Therefore, all samples met holding time QC acceptance criteria.

### **III. Initial Calibration**

All percent RSDs were within the control limit of  $\pm 30$  percent, thereby meeting initial calibration QC acceptance criteria.

## **IV.** Continuing Calibration

All percent differences were within the QC control limits of  $\pm 15$  percent, thereby meeting continuing calibration QC acceptance criteria.

### V. Blanks

The method blank associated with this analytical batch was free of contaminants, thereby meeting QC acceptance criteria.

### VI. System Monitoring Compounds (Surrogates)

All surrogate spike recoveries were within the QC control limits of 80 to 120 percent, thereby meeting QC acceptance criteria.

### VII. Matrix Spike/Matrix Spike Duplicates

All MS/MSD recoveries were within the QC control limits of 80 to 120 percent and RPDs were within QC control limits of  $\pm 20$ , thereby meeting QC acceptance criteria for both accuracy and precision.

### XI. Target Compound Identification

No target compounds were detected above the reporting limits.

# XII. Compound Quantitation and Reported Detection Limits

No target compounds were detected above the reporting limits. All detection limits were reported correctly and all results were correctly adjusted for percent moisture.

All TFH gasoline analyses were calculated incorrectly because Method 8015/8020 was used instead of ADEC Method AK 101. The retention time windows and type of calibration standard used for Method 8015/8020 differed when compared to the ADEC method. The retention time window was larger for the EPA method and included the major range of gasoline peaks when compared to the ADEC standards. A new retention time window was established that included peaks similar to standards used for both methods. TFH-gasoline recalculations affected results reported above the detection limit only; therefore, no sample results were recalculated from this analytical batch.

### XV. System Performance

Chromatograms for each sample analysis and instrument performance were considered acceptable.

# TFH Diesel and JP-4 (EPA Modified Method 8015/ADEC Method AK 102) Soil Batch 33632

Soil samples 5SB01-10, 5SB21-10, 5SB21-25, 5SB21-48, and 5SB21-25 MS/MSD were validated from analytical batch 33632, following criteria outlined in the U.S. EPA Functional Guidelines for Evaluating Organic Analyses.

#### I. Holding Times

All samples were extracted and analyzed within 14 days. Therefore, all samples met holding time QC acceptance criteria.

#### III. Initial Calibration

All percent RSDs were within the QC control limits of  $\pm 30$  percent, thereby meeting initial calibration QC acceptance criteria.

## **IV.** Continuing Calibration

All percent differences were within the QC control limits of  $\pm 15$  percent, thereby meeting continuing calibration QC acceptance criteria.

### V. Blanks

The method blank associated with this analytical batch was free of contaminants, thereby meeting QC acceptance criteria.

# VI. System Monitoring Compounds (Surrogates)

All surrogate spike recoveries were within the QC control limits of 50 to 150 percent, thereby meeting QC acceptance criteria.

### VII. Matrix Spike/Matrix Spike Duplicates

The MS/MSD recoveries were within the QC control limits of 60 to 120 percent and RPDs were within the QC control limits of  $\pm 20$ , thereby meeting QC acceptance criteria for both accuracy and precision.

# XI. Target Compound Identification

No target compounds were detected above the reporting limits.

## XII. Compound Quantitation and Reported Detection Limits

No target compounds were detected above the reporting limits. All detection limits were reported correctly and all results were correctly adjusted for percent moisture.

All TFH diesel analyses were calculated incorrectly because Method 8015 was used instead of ADEC Method AK 102. The retention time windows and type of calibration standards used differed when compared to the ADEC method. TFH diesel results could not be recalculated because the chromatographic peaks from Method 8015 and the ADEC method did not match. Consequently, a new retention time window could not be established. Because the ADEC-defined retention time window is larger than the original retention time, it is expected that TFH diesel results are biased low. This only affects results reported above the detection limit; therefore, no sample results from this analytical batch were qualified.

#### XV. System Performance

Chromatograms for each sample analysis and, therefore, instrument performance were considered acceptable.

## Metals (EPA Methods 6010 and 7000 Series) Soil Batch 33632

Soil samples 5SB01-25, 5SB21-10, 5SB21-25, 5SB21-35, and 5SB21-48 were validated from analytical batch 33632, following criteria outlined in the U.S. EPA Functional Guidelines for Evaluating Inorganic Analyses.

## I. Holding Times

Mercury analyses were performed within 28 days and all other metals were performed within 6 months. Therefore, all samples met holding time QC acceptance criteria.

### **II.** Calibration Check

Each instrument was calibrated at the correct frequency and with the proper number of blanks and standards for each element. All initial and continuing calibration recoveries were within QC control limits of 90 to 110 percent. Therefore, all calibrations met QC acceptance criteria.

#### **III.** Preparation Blanks

Seven different elements were detected in the preparation blank. However, blank contaminant concentrations were below the contract required detection limit (CRDL).

Except for three mercury results, no samples required qualification as a result of blank contamination. The following mercury results were qualified as nondetected and flagged with a "U":

- 5SB21-10 (0.09U)
- 5SB21-25 (0.07U)
- 5SB21-48 (0.08U)

### **IV. ICP Interference Check Samples**

All ICP interference check sample recoveries were within QC control limits of 80 to 120 percent, thereby meeting QC acceptance criteria.

# V. Laboratory Control Sample (LCS)

All LCS recoveries were within QC control limits of 80 to 120 percent, thereby meeting QC acceptance criteria.

### **VI.** Duplicates

All duplicate results were within the QC control limits of  $\pm 35$  RPD for soil samples, thereby meeting QC acceptance criteria.

### VII. Matrix Spike Sample Analysis

Except for manganese, all matrix spike recoveries were within QC control limits of 75 to 125 percent, thereby meeting QC acceptance criteria.

The matrix spike recovery for manganese (68.0 percent) was below the QC control limits, therefore the sample results were qualified as biased low and flagged with an "L":

- 5SB01-25 (410L)
- 5SB21-10 (551L)
- 5SB21-25 (413L)
- 5SB21-35 (490L)
- 5SB21-48 (658L)

### VIII. Furnace Atomic Absorption QC (Analytical Spikes)

Except for four selenium spike recoveries and one thallium spike recovery, all furnace analytical spike recoveries were within QC control limits of 85 to 115 percent, thereby meeting QC acceptance criteria. Selenium and thallium analytical spikes were below QC acceptance criteria, therefore, sample results were qualified as biased low and flagged with an "L" for positive results, a "UL" for nondetected results:

•	5SB21-10	selenium	(0.11UL)
•	5SB21-25	selenium	(0.15BL)
•	5SB21-35	selenium	(0.11UL)
•	5SB21-48	selenium	(0.24BL)
•	5SB21-48	thallium	(0.17UL)

### **IX. ICP Serial Dilution**

Except for zinc, all serial dilutions met the QC acceptance criteria of  $\pm 10$  percent difference. The following zinc results were qualified as estimates and flagged with a "J" for positive results:

•	5SB01-25	(47.1J)
	÷	

- 5SB21-10 (62.9J)
- 5SB21-25 (48.8J)
- 5SB21-35 (45.3J)
- 5SB21-48 (81.3J)

# X. Sample Result Verification

All sample results were calculated correctly, thereby meeting compound quantitation acceptance criteria. All sample results and detection limits were correctly adjusted for percent moisture.

### General Chemistry Total Organic Carbon (EPA Method 415.1) Soil Batch 33632

Soil samples 5SB01-5, 5SB01-15, and 5SB21-28 were validated from analytical batch 33632, following criteria outlined in the U.S. EPA Functional Guidelines for Evaluating Inorganic Analyses.

### I. Holding Times

All samples were analyzed within 28 days, therefore meeting holding time QC acceptance criteria.

# II. Initial and Continuing Calibration

All initial and continuing calibration recoveries were within QC control limits of 80 to 120 percent, thereby meeting QC acceptance criteria.

### III. Blanks

Method blanks were free of contamination, thereby meeting QC acceptance criteria.

# V. Laboratory Control Sample

All LCS results were within QC control limits of 80 to 120 percent, thereby meeting QC acceptance criteria.

# VI. Duplicates

All duplicate results were within the QC control limits of  $\pm 20$ , thereby meeting QC acceptance criteria.

# VII. Matrix Spike Sample Analysis

All matrix spike recoveries were within QC control limits of 75 to 125 percent, thereby meeting QC acceptance criteria.

# Volatile Organic Compounds (EPA Method 8010) Soil Batch 33744

Soil samples 5SB12-8D, 5SB16-0B, and 5SB12-8C were validated from analytical batch 33744, following criteria outlined in the U.S. EPA Functional Guidelines for Evaluating Organic Analyses.

#### I. Holding Times

All samples were analyzed within 14 days, therefore all samples met holding time QC acceptance criteria.

### III. Initial Calibration

All percent relative standard deviations (RPDs) were within the QC control limits of  $\pm 30$  percent, thereby meeting initial calibration QC acceptance criteria.

## **IV.** Continuing Calibration

Except for several target compounds, the continuing calibration concentration for all compounds were within the method specified QC control limits, thereby meeting continuing calibration QC acceptance criteria. Compounds that did not meet QC acceptance criteria are listed in Table 6.

Table 6			
Compound	Concentration	QC Control Limits	
Continuing Calibration (9/2/92 0913)			
dichlorodifluoromethane	3.7	15.0-25.0	
chloromethane	6.0	11.9-28.1	
vinyl chloride	12.1	13.7-26.3	
bromoform	10.6	14.7-25.3	
Continuing Calibration (9/3/92 0118)			
dichlorodifluoromethane	4.0	15.0-25.0	
chloromethane	5.1	11. <b>9-28</b> .1	
chloromethane	15.1	15.4-24.6	
bromoform	13.8	14.7-25.3	

Where continuing calibrations exceeded QC acceptance criteria, no target compounds were detected in the samples. Therefore, no samples were qualified as a result of continuing calibrations.

#### V. Blanks

All method, travel, rinsate, and field banks associated with this analytical batch were free of contaminants, thereby meeting QC acceptance criteria.

# VI. System Monitoring Compounds (Surrogates)

All surrogate spike recoveries for these samples were within QC control limits, thereby meeting QC acceptance criteria.

# XI. Target Compound Identification

No target compounds were detected above the method detection limit (MDL).

# XII. Compound Quantitation and Reported Detection Limits

No target compounds were detected above the MDL. All detection limits were reported correctly and all results were correctly adjusted for percent moisture.

# **XV. System Performance**

Chromatograms from each sample analysis and instrument performance were considered acceptable.

## Metals (EPA Methods 6010 and 7000) Groundwater Batch 33744

Water sample 5SB12-8C was validated from analytical batch 33744, following criteria outlined in the U.S. EPA Functional Guidelines for Evaluating Inorganic Analyses.

### I. Holding Times

Mercury analyses were performed within 28 days and all other metals were performed within 6 months. Therefore, the sample met holding time QC acceptance criteria.

#### **II. Calibration Check**

Each instrument was calibrated at the correct frequency and with the proper number of blanks and standards for each element. All initial and continuing calibration recoveries were within QC control limits of 90 to 110 percent. Therefore, all calibrations met QC acceptance criteria.

#### **III. Preparation and Rinsate Blanks**

Eleven different elements were detected in the preparation blank. However, blank contaminant concentrations were below the contract required detection limit (CRDL).

Seven different elements were detected in the rinsate blank. However, contaminant concentrations were below the CRDL. No samples required qualification as a result of blank contamination.

### **IV. ICP Interference Check Samples**

All ICP interference check sample recoveries were within QC control limits of 80 to 120 percent, thereby meeting QC acceptance criteria.

# V. Laboratory Control Sample (LCS)

All LCS recoveries were within the QC control limits of 80 to 120 percent, thereby meeting QC acceptance criteria.

# **VI.** Duplicates

All duplicate results were within the QC control limits of  $\pm 20$  RPD, thereby meeting QC acceptance criteria.

# VII. Matrix Spike Sample Analysis

All matrix spike recoveries were within the QC control limits of 75 to 125 percent, thereby meeting QC acceptance criteria.

# VIII. Furnace Atomic Absorption QC (Analytical Spikes)

All furnace analytical spike recoveries were within the QC control limits of 85 to 115 percent, thereby meeting QC acceptance criteria.

# **IX. ICP Serial Dilution**

Except for barium, all serial dilutions met the QC acceptance criteria of  $\pm 10$  percent difference. For sample 5SB12-8C the barium result was qualified as an estimate and flagged with a "UJ" for the nondetected result.

# X. Sample Result Verification

All sample results were calculated correctly, thereby meeting compound quantitation acceptance criteria.

# TBME, BTEX, and TFH Gasoline (EPA Modified Method 8015/8020/ADEC Method AK 101) Groundwater Batch 33756

Water samples 5SW03, 5SW03A, 5SW02D, 5SW02, and 5SW02 MS/MSD were validated from analytical batch 33756, following criteria outlined in the U.S. EPA Functional Guidelines for Evaluating Organic Analyses.

## I. Holding Times

All samples were analyzed within 14 days. Therefore, all samples met holding time QC acceptance criteria.

### **III. Initial Calibration**

All percent RSDs were within the control limit of  $\pm 30$  percent, thereby meeting initial calibration QC acceptance criteria.

## **IV. Continuing Calibration**

All percent differences were within the QC control limit of  $\pm 15$  percent, thereby meeting continuing calibration QC acceptance criteria.

### V. Blanks

The method and travel blank associated with this analytical batch were free of contaminants, thereby meeting QC acceptance criteria.

# VI. System Monitoring Compounds (Surrogates)

All surrogate spike recoveries were within QC control limits of 80 to 120 percent, thereby meeting QC acceptance criteria.

# VII. Matrix Spike/Matrix Spike Duplicates

All MS/MSD recoveries were within the QC control limits of 80 to 120 percent and RPDs were within QC control limits of  $\pm 20$ , thereby meeting QC acceptance criteria for both accuracy and precision.

# XI. Target Compound Identification

No target compounds were detected above the reporting limits.

## XII. Compound Quantitation and Reported Detection Limits

No target compounds were detected above the reporting limits. All detection limits were reported correctly.

All TFH gasoline analyses were calculated incorrectly because Method 8015/8020 was used instead of ADEC Method AK 101. The retention time windows and type of calibration standard used for Method 8015/8020 differed when compared to the ADEC method. The retention time window was larger for the EPA method and included the major range of gasoline peaks when compared to the ADEC standards. A new retention time window was established that included peaks similar to standards used for both methods. TFH-gasoline recalculations affected results reported above the detection limit only; therefore, no sample results were recalculated from this analytical batch.

#### **XV. System Performance**

Chromatograms from each sample analysis and instrument performance were considered acceptable.

## Metals (EPA Methods 6010 and 7000 Series) Surface Water Batch 33756

Water samples 5SW02, 5SW02-S, 5SW03, 5SW03-S, 5SW03A, and 5SW03A-S were validated from analytical batch 33756, following criteria outlined in the U.S. EPA Functional Guidelines for Evaluating Inorganic Analyses.

### I. Holding Times

Mercury analyses were performed within 28 days and all other metals were performed within 6 months. Therefore, all samples met holding time QC acceptance criteria.

## **II. Calibration Check**

Each instrument was calibrated at the correct frequency and with the proper number of blanks and standards for each element. All initial and continuing calibration recoveries were within the QC control limits of 90 to 110 percent. Therefore, all calibrations met QC acceptance criteria.

#### **III. Preparation Blanks**

Eleven different elements were detected in the preparation blank. However, blank contaminant concentrations were below the contract required detection limit (CRDL).

Except for three aluminum, two iron, five potassium, two selenium, and two zinc results, no samples required qualification as a result of blank contamination.

The following aluminum results were qualified as nondetected and flagged with a "U":

- 5SW03 (67.4U)
- 5SW02 (109U)
- 5SW03A (59.8U)

The following iron results were qualified as nondetected and flagged with a "U":

- 5SW03A-S (10.7U)
- 5SW03-S (12.6U)

The following potassium results were qualified as nondetected and flagged with a "U":

- 5SW03-S (571U)
- 5SW03 (47.0U)
- 5SW03A (509U)
- 5SW02 (376U)
- 5SW03A-S (454U)

The following selenium results were qualified as nondetected and flagged with a "U":

- 5SW03 (0.78U)
- 5SW02 (0.69U)

The following zinc results were qualified as nondetected and flagged with a "U":

- 5SW03-S (12.4U)
- 5SW03A-S (4.6U)

### **IV. ICP Interference Check Samples**

All ICP interferences check sample recoveries were within QC control limits of 80 to 120 percent, thereby meeting QC acceptance criteria.

## V. Laboratory Control Sample (LCS)

All LCS recoveries were within QC control limits of 80 to 120 percent, thereby meeting QC acceptance criteria.

### **VI. Duplicates**

All duplicate results were within the QC control limits of  $\pm 20$  RPD, thereby meeting QC acceptance criteria.

### VII. Matrix Spike Sample Analysis

All matrix spike recoveries were within the QC control limits of 75 to 125 percent, thereby meeting QC acceptance criteria.

# VIII. Furnace Atomic Absorption QC (Analytical Spikes)

All furnace analytical spike recoveries were within the QC control limits of 85 to 115 percent, thereby meeting QC acceptance criteria.

### IX. ICP Serial Dilution

Except for barium, all serial dilutions met the QC acceptance criteria of  $\pm 10$  percent difference. The following barium results were qualified as estimates and flagged with a "J" for positive results:

- 5SW03 (9.0BJ)
- 5SW03-S (8.8BJ)
- 5SW03A (9.3BJ)
- 5SW03A-S (8.8BJ)
- 5SW02 (9.5BJ)

### X. Sample Result Verification

All sample results were calculated correctly, thereby meeting compound quantitation acceptance criteria.
## Polychlorinated Biphenyls (EPA Method 8080) Sediment Batch 33781

Sediment samples 5SE05, 5SE04, 5SE04A, and 5SE05 MS/MSD were validated from analytical batch 33781, using the criteria outlined in the U.S. EPA Functional Guidelines for Evaluating Organic Analyses.

### I. Holding Times

All samples were extracted within 14 days and analyzed within 40 days, thereby meeting extraction and analysis holding time QC acceptance criteria.

### **III. Initial Calibration**

All percent RSDs were within the QC control limits of  $\pm 30$  percent, thereby meeting initial calibration QC acceptance criteria.

### **IV. Continuing Calibration**

All percent differences were within the control limit of  $\pm 15$  percent, thereby meeting continuing calibration QC acceptance criteria.

### V. Blanks

The method blank associated with this analytical batch was free of contaminants, thereby meeting QC acceptance criteria.

# VI. System Monitoring Compounds (Surrogates)

All samples were spiked with tetrachloro-m-xylene and decachlorobiphenyl as surrogate compounds prior to analysis. All tetrachloro-m-xylene surrogate spike recoveries were within QC control limits of 60 to 150 percent, thereby meeting QC acceptance criteria. All decachlorobiphenyl surrogate spike recoveries were below the QC control limits. Therefore, all sample results were qualified as estimates and flagged with a "J" for positive results, a "UJ" for nondetected results.

## VII. Matrix Spike/Matrix Spike Duplicates

All matrix spike recoveries were within the QC control limits of 50 to 150 and RPDs were within QC control limits of  $\pm 20$ , thereby meeting QC acceptance criteria for both accuracy and precision.

# XI. Target Compound Identification

No target compounds were detected above the reporting limits.

#### XII. Compound Quantitation and Reported Detection Limits

No target compounds were detected above the reporting limits. Detection limits were reported correctly and all results were correctly adjusted for percent moisture.

#### XV. System Performance

Chromatograms from each sample analysis and instrument performance were considered acceptable.

## Volatile Organic Compounds (EPA Method 8010) Groundwater Batch 33799

Water samples 5MW5-30, 5MW5030D, 5MW16A-14, 5MW16A-14D, and 5CF02 were validated from analytical batch 33799, following criteria outlined in the U.S. EPA Functional Guidelines for Evaluating Organic Analyses.

### I. Holding Times

All samples were analyzed within 14 days, therefore all samples met holding time QC acceptance criteria.

### **III. Initial Calibration**

All percent relative standard deviations (RPDs) were within the QC control limits of  $\pm 30$  percent, thereby meeting initial calibration QC acceptance criteria.

## **IV. Continuing Calibration**

Except for dichlorodifluoromethane, the continuing calibration concentration for all compounds were within the method specified QC control limits, thereby meeting continuing calibration QC acceptance criteria. For the continuing calibration performed on September 14, the dichlorodifluoromethane continuing concentration was 9.16; below the method specified limits of 15.0 to 25.0. Dichlorodifluoromethane was not detected in any of the samples. Therefore, no samples were qualified as a result of continuing calibration criterias.

### V. Blanks

The method and travel blanks associated with this analytical batch were free of contaminants, thereby meeting QC acceptance criteria.

## VI. System Monitoring Compounds (Surrogates)

All surrogate spike recoveries were within QC control limits of 80 to 130, thereby meeting QC acceptance criteria.

## **XI. Target Compound Identification**

No target compounds were detected above the method detection level (MDL).

# XII. Compound Quantitation and Reported Detection Limits

No target compounds were detected above the MDL. All detection limits were reported correctly.

### **XV.** System Performance

Chromatograms from each sample analysis and instrument performance were considered acceptable.

### Purgeable Volatile Organic Compounds (EPA Method 524.2) Groundwater Batch 33799

Water samples 5WS01, 5WS01A, 5WS02, 5WS01B, 5WS01D, 5WS02D, and 5WS02 MS/MSD were validated from analytical batch 33799, following criteria outlined in the U.S. EPA Functional Guidelines for Evaluating Organic Analyses.

### I. Holding Times

All samples were analyzed within 14 days, therefore all samples met holding time QC acceptance criteria.

## II. GC/MS Tuning

GC/MS tuning was performed for every 12-hour period. Each GC/MS tune met ion abundance QC acceptance criteria.

### III. Initial Calibration

All average relative response factors (RRFs) met QC acceptance criteria. Except for methylene chloride, the percent relative standard deviations (RSDs) were within the QC control limits of  $\pm 30$  percent, thereby meeting initial calibration QC acceptance criteria. Methylene chloride had a RSD of 60.3 percent.

According to the CLP functional guidelines, all compounds with RSDs greater than 30 percent should be qualified as estimates and positive results flagged with a "J." Methylene chloride was not detected in these samples, therefore qualification was not required.

## **IV.** Continuing Calibration

All continuing calibration RRFs met QC acceptance criteria. Except for methylene chloride, all percent differences were within the QC control limits of  $\pm 15$  percent, thereby meeting continuing calibration QC acceptance criteria. Methylene chloride had a percent difference of 54.4 percent. According to the CLP functional guide-lines, all compounds with continuing calibration percent differences greater than 25 percent should be qualified as estimates and positive results flagged with a "J." Methylene chloride was not detected in these samples, therefore qualification was not required.

#### V. Blanks

Methylene chloride was detected in the method blank associated with this analytical batch. Methylene chloride was detected in SBLKW (September 11), at a concentration of 1.2  $\mu$ g/L. Methylene chloride results for the following samples were qualified as nondetected and flagged with a "U":

- 5WS01 (1.4U)
- 5WS01A (1.6U)
- 5WS02 (1.1U)

### VI. System Monitoring Compounds (Surrogates)

All surrogate spike recoveries for these samples were within QC control limits of 70 to 130 percent, thereby meeting QC acceptance criteria.

#### VII. Matrix Spike/Matrix Spike Duplicates

MS/MSD recoveries were within the QC control limits of 60 to 140 percent and relative percent differences (RPDs) were within the QC control limits of  $\pm 20$ , thereby meeting QC acceptance criteria for both accuracy and precision.

#### X. Internal Standards

All area counts and retention times were within the method specified QC control limits. Therefore, all samples met QC acceptance criteria for internal standards.

### XI. Target Compound Identification

All target compound relative retention times (RRTs) were within 0.06 RRT units of the standard RRT. All target compound mass spectra matched standard mass spectra and met QC acceptance criteria. Therefore, all samples met target compound identification QC acceptance criteria.

### XII. Compound Quantitation and Reported Detection Limits

All sample results were correctly calculated, thereby meeting compound quantitation acceptance criteria. All detection limits were reported correctly.

## **XV. System Performance**

Chromatograms and mass spectra from each sample analysis and instrument performance were considered acceptable.

### Semivolatile Organic Compounds (EPA Method 8270) Groundwater Batch 33799

Water samples 5MW5-30, 5MW16A-14, 5WS01, 5WS01A, 5WS02, and 5WS02 MS/MSD were validated from analytical batch 33799, following criteria outlined in the U.S. EPA Functional Guidelines for Evaluating Organic Analyses.

### I. Holding Times

All water samples were extracted within 7 days and analyzed within 40 days. Therefore, all samples met extraction and analysis holding time QC acceptance criteria.

### II. GC/MS Tuning

GC/MS tuning was performed for every 12-hour period. Each GC/MS tune met ion abundance QC acceptance criteria.

#### **III. Initial Calibration**

All initial calibration average RRFs and percent RSDs met QC acceptance criteria. Therefore, all initial calibration met QC acceptance criteria.

### **IV.** Continuing Calibration

Except for several target compounds, all continuing calibration RRFs and percent differences met continuing calibration QC acceptance criteria. The compounds that did not meet QC acceptance criteria are listed in Table 7.

Table 7		
Compound	Percent Difference	
Continuing Calibration (9/14/92 1009)		
4-chloroaniline hexachlorobutadiene hexachlorocyclopentadiene bis (2-ethylhexyl) phthalate	+41.6 -26.9 -28.4 -29.9	
Continuing Calibration (9/15/92 1529)	· · · · · · · · · · · · · · · · · · ·	
4-chloroaniline 3-nitroaniline 4-nitroaniline	+55.7 +31.2 +43.9	

According to the CLP functional guidelines, all compounds with continuing calibration percentage differences greater than 25 percent should be qualified as estimates and positive results flagged with a "J." Compounds that exceeded calibration criteria were not detected in any of the samples analyzed, therefore no samples were qualified.

### V. Blanks

Except for diethylphthalate, the method blank associated with this analytical batch was contamination free. Diethylphthalate was detected in method blank SBLKW1 (September 5) at a concentration of 2  $\mu$ g/L. The diethylphthalate result for 5WS02 (10 U) was qualified as nondetected and flagged with a "U."

### VI. System Monitoring Compounds (Surrogates)

All surrogate spike recoveries were within the CLP QC control limits, thereby meeting QC acceptance criteria.

# VII. Matrix Spike/Matrix Spike Duplicate

All MS/MSD recoveries and RPDs were within the CLP QC control limits, thereby meeting QC acceptance criteria for both accuracy and precision.

## X. Internal Standards

All area counts and retention times were within the CLP QC control limits. Therefore, all samples met QC acceptance criteria for internal standards.

## XI. Target Compound Identification

All target compound RRTs were within 0.06 units of the standard RRT. All target compound mass spectra matched standard mass spectra and met QC acceptance criteria. Therefore, all samples met target compound identification QC acceptance criteria.

## XII. Compound Quantitation and Reported Detection Limits

All sample results were calculated using the correct internal standard, quantitation ion, and relative response factor. Therefore, all samples met compound quantitation QC acceptance criteria. All detection limits were reported correctly.

## XIII. Tentatively Identified Compounds (TICs)

All sample TICs met QC acceptance criteria. A library search was conducted for each sample result reported on Form I. Sample mass spectra for each TIC identi-

fied matched standard mass spectra. When sample mass spectra did not match standard mass spectra, the TIC was designated as an "unknown." Samples 5WS02, 5WS01, 5WS01A, 5MW16A-14, and 5MW5-30 contained TICs that were also detected in the method blanks; these TICs were rejected and flagged with an "R." All TICs detected are considered estimated concentrations and flagged with a "JN."

### XV. System Performance

Chromatograms and mass spectra from each sample analysis and instrument performance were considered acceptable.

### TBME, BTEX, and TFH Gasoline (EPA Modified Method 8015/8020/ADEC Method AK 101) Groundwater Batch 33799

Water samples 5MW5-30, 5MW5-30D, 5MW16A-14, 5MW16A-14D, and 5CF02 were validated from analytical batch 33799, following criteria outlined in the U.S. EPA Functional Guidelines for Evaluating Organic Analyses.

## I. Holding Times

All samples were analyzed within 14 days. Therefore, all samples met holding time QC acceptance criteria.

### **III. Initial Calibration**

All percent RGDs were within the control limit of  $\pm 30$  percent, thereby meeting initial calibration QC acceptance criteria.

## **IV.** Continuing Calibration

All percent differences were within the QC control limit of  $\pm 15$  percent, thereby meeting continuing calibration QC acceptance criteria.

### V. Blanks

The method and travel blank associated with this analytical batch were free of contaminants, thereby meeting QC acceptance criteria.

# VI. System Monitoring Compounds (Surrogates)

Except for 5MW5-30, all surrogate spike recoveries were within QC control limits of 80 to 120 percent. Therefore, the majority surrogate spike recoveries met QC acceptance criteria. All results for 5MW5-30 were qualified as estimates and flagged with a "J" for positive results, a "UJ" for nondetected results.

# XI. Target Compound Identification

For BTEX analyses, compounds detected were verified by a second column confirmation analysis. Therefore, BTEX analyses met target compound identification QC acceptance criteria. TBME and TFH gasoline analyses do not require second column confirmation.

## XII. Compound Quantitation and Reported Detection Limits

Sample results were correctly calculated, thereby meeting compound quantitation acceptance criteria. All detection limits were reported correctly.

All TFH gasoline analyses were calculated incorrectly because Method 8015/8020 was used instead of ADEC Method AK 101. The retention time windows and type of calibration standard used for Method 8015/8020 differed when compared to the ADEC method. The retention time window was larger for the EPA method and included the major range of gasoline peaks when compared to the ADEC standards. A new retention time window was established that included peaks similar to standards used for both methods. TFH-gasoline recalculations affected results reported above the detection limit only; therefore, no sample results were recalculated from this analytical batch.

### **XV. System Performance**

Chromatograms from each sample analysis and instrument performance were considered acceptable.

## TFH Gasoline (EPA Modified Method 8015/ADEC Method AK 102) Groundwater Batch 33799

Water samples 5WS01, 5WS01A, 5WS02, and 5WS02 MS/MSD were validated from analytical batch 33799, following criteria outlined in the U.S. EPA Functional Guidelines for Evaluating Organic Analyses.

#### I. Holding Times

All samples were analyzed within 14 days. Therefore, all samples met holding time QC acceptance criteria.

### **III. Initial Calibration**

All percent RSDs were within the control limit of  $\pm 30$  percent, thereby meeting initial calibration QC acceptance criteria.

### **IV.** Continuing Calibration

All percent differences were within the QC control limit of  $\pm 15$  percent, thereby meeting continuing calibration QC acceptance criteria.

#### V. Blanks

The method blanks associated with these analytical batches were free of contaminants, thereby meeting QC acceptance criteria.

## VI. System Monitoring Compounds (Surrogates)

All surrogate spike recoveries were within QC control limits of 80 to 120 percent, thereby meeting QC acceptance criteria.

### VII. Matrix Spike/Matrix Spike Duplicates

The MS/MSD recoveries were within the QC control limits of 80 to 120 percent and RPD were within the QC control limits of  $\pm 20$ , thereby meeting QC acceptance criteria for both accuracy and precision.

### XI. Target Compound Identification

No target compounds were detected above the reporting limits.

## XII. Compound Quantitation and Reported Detection Limits

No target compounds were detected above reporting limits. Detection limits were reported correctly.

All TFH gasoline analyses were calculated incorrectly because Method 8015/8020 was used instead of ADEC Method AK 101. The retention time windows and type of calibration standard used for Method 8015/8020 differed when compared to the ADEC method. The retention time window was larger for the EPA method and included the major range of gasoline peaks when compared to the ADEC standards. A new retention time window was established that included peaks similar to standards used for both methods. TFH-gasoline recalculations affected results reported above the detection limit only; therefore, no sample results were recalculated from this analytical batch.

### **XV. System Performance**

Chromatograms from each sample analysis and instrument performance were considered acceptable.

### TFH Diesel and JP-4 (EPA Modified Method 8015/ADEC Method AK 102) Groundwater Batch 33799

Water samples 5MW5-30, 5MW16A-14, 5WS01, 5WS01A, 5WS02, and 5WS02 MS/MSD were validated from analytical batch 33799, following criteria outlined in the U.S. EPA Functional Guidelines for Evaluating Organic Analyses.

### I. Holding Times

All samples were extracted and analyzed within 14 days. Therefore, all samples met holding time QC acceptance criteria.

### III. Initial Calibration

All percent RSDs were within the QC control limit of  $\pm 30$  percent, thereby meeting initial calibration QC acceptance criteria.

### **IV.** Continuing Calibration

All percent differences were within the QC control limit of  $\pm 15$  percent, thereby meeting continuing calibration QC acceptance criteria.

### V. Blanks

The method blank associated with this analytical batch was free of contaminants, thereby meeting QC acceptance criteria.

## VI. System Monitoring Compounds (Surrogates)

All surrogate spike recoveries were within QC control limits of 50 to 150 percent, thereby meeting QC acceptance criteria.

### VII. Matrix Spike/Matrix Spike Duplicates

For JP-4 analyses, MS/MSD recoveries were below the QC acceptance criteria of 60 to 120 percent. The RPD for this analysis met the QC acceptance criteria of  $\pm$ 20 RPD. According to the functional guidelines, samples are not qualified on the basis of MS/MSD results. For diesel analyses, MS/MSD recoveries were within the QC control limits of 60 to 120 percent and RPDs were within the QC control limits of  $\pm$ 20, thereby meeting QC acceptance criteria.

# XI. Target Compound Identification

No target compounds were detected above the reporting limit.

#### XII. Compound Quantitation and Reported Detection Limits

No target compounds were detected above the reporting limit. Detection limits were reported correctly.

All TFH diesel analyses were calculated incorrectly because Method 8015 was used instead of ADEC Method AK 102. The retention time windows and type of calibration standards used differed when compared to the ADEC method. TFH diesel results could not be recalculated because the chromatographic peaks from Method 8015 and the ADEC method did not match. Consequently, a new retention time window could not be established. Because the ADEC-defined retention time window is larger than the original retention time, it is expected that TFH diesel results are biased low. This only affects results reported above the detection limit; therefore, no sample results from this analytical batch were qualified.

### **XV. System Performance**

Chromatograms for each sample analysis and instrument performance were considered acceptable.

### Cations (EPA Methods 6010 and 7000) Groundwater Batch 33799

Water samples 5WS01, 5WS01A, and 5WS02 were validated from analytical batch 33799, following criteria outlined in the U.S. EPA Functional Guidelines for Evaluating Inorganic Analyses.

All samples were analyzed for the following cations by Inductively Coupled Plasma (ICP) method; calcium, iron, magnesium, potassium, and sodium.

### I. Holding Times

All metal analyses were analyzed within 6 months. Therefore, all samples met holding time QC acceptance criteria.

### **II. Calibration Check**

Each instrument was calibrated at the correct frequency and with the proper number of blanks and standards for each element. All initial and continuing calibration recoveries were within QC control limits of 90 to 110 percent. Therefore, all calibrations met QC acceptance criteria.

### **III. Preparation Blanks**

Two different elements were detected in at least one of the preparation blanks. However, blank contaminant concentrations were below the CRDL.

No samples required qualification as a result of blank contamination.

### **IV. ICP Interference Check Samples**

All ICP interference check sample recoveries were within the QC control limits of 80 to 120 percent, thereby meeting QC acceptance criteria.

## V. Laboratory Control Sample (LCS)

All LCS recoveries were within QC control limits of 80 to 120 percent, thereby meeting QC acceptance criteria.

### **VI. Duplicates**

All duplicate results were within the QC control limits of  $\pm 20$  RPD, thereby meeting QC acceptance criteria.

### VII. Matrix Spike Sample Analysis

All matrix spike recoveries were within the QC control limits of 75 to 125 percent, thereby meeting QC acceptance criteria.

### **IX. ICP Serial Dilution**

All serial dilutions met the QC control acceptance criteria of  $\pm 10$  percent difference.

### X. Sample Result Verification

All sample results were calculated correctly, thereby meeting compound quantitation acceptance criteria.

### General Chemistry-Conventional Parameters (EPA Method 310.1/300.0) Groundwater Batch 33799

Water samples 5WS01, 5WS01A, and 5WS02 were validated from analytical batch 33799, following criteria outlined in the U.S. EPA Functional Guidelines for Evaluating Inorganic Analyses.

All samples were analyzed for alkalinity, bicarbonate, carbonate, chloride, nitrate, and sulfate.

### I. Holding Times

All nitrate analyses were performed within 2 days; all alkalinity, bicarbonate, and carbonate analyses were performed within 14 days, and all chloride and sulfate analyses were performed within 28 days, therefore all samples met holding time QC acceptance criteria.

### II. Initial and Continuing Calibration

All initial and continuing calibration recoveries were within QC control limits of 80 to 120 percent, thereby meeting QC acceptance criteria.

#### III. Blanks

Methods blanks were free of contamination, thereby meeting QC acceptance criteria.

### V. Laboratory Control Sample

All LCS recoveries were within QC control limits of 80 to 120 percent, thereby meeting QC acceptance criteria.

#### **VI. Duplicates**

All duplicate results were within the QC control limits of  $\pm 20$  RPD, thereby meeting QC acceptance criteria.

### VIII. Matrix Spike Recovery

Chloride, nitrate, and sulfate matrix spike recoveries were within QC control limits of 80 to 120 percent, thereby meeting QC acceptance criteria. Matrix spikes are not performed with alkalinity, bicarbonate, and carbonate analyses.

### Volatile Organic Compounds (EPA Method 8010) Surface Water/Sediment Batch 33862

Surface water and sediment samples 5SW09B, 5SW09, 5SW09D, 5SW10, 5SE09, 59SE09A, 5SE10, 5SW10 MS/MSD, and 5SE10 MS/MSD were validated from analytical batch 33862, following criteria outlined in the U.S. EPA Functional Guide-lines for Evaluating Organic Analyses.

### I. Holding Times

All samples were analyzed within 14 days, therefore all samples met holding time QC acceptance criteria.

#### III. Initial Calibration

All percent relative standard errors (RSEs) were within the QC control limits of  $\pm 30$  percent, thereby meeting initial calibration QC acceptance criteria.

## **IV.** Continuing Calibration

Except for several target compounds, the percent difference for all compounds were within the QC control limits of  $\pm 15$  percent, thereby meeting continuing calibration QC acceptance criteria. Target compounds that did not meet QC acceptance criteria are listed in Table 8.

Where continuing calibrations exceeded QC acceptance criteria, no target compounds were detected in the samples. Therefore, no samples were qualified as a result of continuing calibrations.

### V. Blanks

The method and travel blanks associated with this analytical batch were free of contaminants, thereby meeting QC acceptance criteria.

## VI. System Monitoring Compounds (Surrogates)

All surrogate spike recoveries were within QC control limits of 60 to 130 percent, thereby meeting QC acceptance criteria.

# VII. Matrix Spike/Matrix Spike Duplicates

All MS/MSD recoveries were within the method specified QC control limits and relative percent differences (RPDs) were within the QC control limits of  $\pm 20$ , thereby meeting QC acceptance criteria for both accuracy and precision.

Table 8		
Compound	Percent Difference	
Continuing Calibration (9/15/92 FA RTX-1)		
chloromethane vinyl chloride 1,1-dichloroethene tetrachloroethene	34.6 22.2 19.4 22.8	
Continuing Calibration (9/16/92 GC3A RTX-1)		
chloromethane vinyl chloride bromomethane chloroethane 1,1-dichloroethene chlorobenzene	31.4 24.4 17.0 19.7 17.5 18.0	
Continuing Calibration (9/16/92 GC3C RESTEK 502.2)		
bromomethane/chloromethane 1,1-dichloroethene methylene chloride trans-1,2-dichloroethene 1,1-dichlorethane cis-1,2-dichloroethene chloroform 1,2-dichloroethane carbon tetrachloride 1,2-dichloropropene bromodichloromethane trichloroethene	23.0 29.8 38.5 21.1 23.1 20.4 21.4 23.7 19.6 17.1 18.5 17.8	
cis-1,3-dichloropropene 1,1,2-trichloroethane dibromochloromethane 1,2-dibromoethane bromoform 1,1,2,2-tetrachloroethene	19.7 18.7 22.9 26.9 20.7 15.7	

# XI. Target Compound Identification

Compounds detected in samples were verified by a second column confirmation analysis, thereby meeting target compound identification QC acceptance criteria.

### XII. Compound Quantitation and Reported Detection Limits

All sample results were calculated correctly, thereby meeting compound quantitation acceptance criteria. For water samples, all detection limits were reported correctly. For soil samples, detection limits and results were reported without adjustment for percent moisture.

### **XV. System Performance**

Chromatograms from each sample analysis and instrument performance were considered acceptable.

### Semivolatile Organic Compounds (EPA Method 8270) Surface Water/Sediment Batch 33862

Surface water and sediment samples 5SW09, 5SW10, 5SE09RX, 5SE09ARX, 5SE10R, 5SW10 MS/MSD, and 5SE10RX MS/MSD were validated from analytical batch 33862, following criteria outlined in the U.S. EPA Functional Guidelines for Evaluating Organic Analyses.

### I. Holding Times

All water samples were extracted within 7 days and analyzed within 40 days. Therefore, all water samples met extraction and analysis holding time QC acceptance criteria. All soil samples exceeded the 14-day extraction holding time requirement and were analyzed within 40 days. Therefore, all soil sample results were qualified as estimates and flagged with a "J" for positive results, a "UJ" for nondetected results.

### II. GC/MS Tuning

GC/MS tuning was performed for every 12-hour period. Each GC/MS tune met ion abundance QC acceptance criteria.

#### III. Initial Calibration

Except for 2,4-dinitrophenol, all initial calibration average relative response factors (RRFs) and percent relative standard deviations (RSDs) met QC acceptance criteria. Therefore, the majority of initial calibration results met QC acceptance criteria. The percent RSD for 2,4-dinitrophenol was 31.6, which was outside the QC control limit of  $\pm$ 30 percent RSD. 2,4-Dinitrophenol was not detected in any of the samples analyzed, therefore no samples were qualified.

### **IV. Continuing Calibration**

Except for several target compounds, all continuing calibration RRFs and percent differences met continuing calibration QC acceptance criteria. The compounds that did not meet QC acceptance criteria are listed in Table 9.

Where continuing calibrations exceeded QC acceptance criteria, no target compounds were detected in the samples. Therefore, no samples were qualified as a result of continuing calibrations.

Table 9	
Compound	Percent Difference
Continuing Calibration (10/5/92 948)	
2,4-dinitrophenol 4-nitroaniline 4,6-dinitro-2-methylphenol	72.9 43.4 26.4
Continuing Calibration (10/5/92 1005)	
nitrobenzene isophorone bis (2-chloroethoxy)methane 4-chloro-3-methylphenol 4-nitroaniline	36.7 31.0 25.4 31.4 37.5
Continuing Calibration (10/22/92 2121)	
3,3'-dichlorobenzedine	+27.2

## V. Blanks

Except for di-n-buytlphthalate, method blanks associated with this analytical batch were contamination free. Di-n-buytlphthalate was detected in SBLK4RX (October 19) at a concentraion of 39  $\mu$ g/kg. Di-n-buytlphthalate results for 5SE09RX (420UJ) and 5SE09ARX (420UJ) were qualified as nondetected and flagged with a "U" as a result of method blank contamination.

## VI. System Monitoring Compounds (Surrogates)

All surrogate spike recoveries were within the CLP QC control limits, thereby meeting QC acceptance criteria.

## VII. Matrix Spike/Matrix Spike Duplicate

Except for two MSD recoveries and nine RSDs, all MS/MSD recoveries and RPDs were within the CLP QC control limits, thereby meeting QC acceptance criteria for both accuracy and precision. According to the CLP functional guidelines, samples are not qualified on the basis of MS/MSD results, therefore no sample results were qualified.

## X. Internal Standards

All area counts and retention times were within the CLP QC control limits. Therefore, all samples met QC acceptance criteria for internal standards. Sample retention times were not reported by the laboratory on computer printouts. Therefore, it was not possible to verify if retention times were reported correctly.

### XI. Target Compound Identification

All target compound relative retention times (RRTs) were within 0.06 units of the standard RRT. All target compound mass spectra matched standard mass spectra. Therefore, all samples met target compound identification QC acceptance criteria.

### XII. Compound Quantitation and Reported Detection Limits

All sample results were calculated using the correct internal standard, quantitation ion, and RRF. Therefore, all samples met compound quantitation QC acceptance criteria. For water samples, all detection limits were reported correctly. For soil samples, all detection limits were correctly adjusted for percent moisture.

#### XIII. Tentatively Identified Compounds (TICs)

All sample TICs met QC acceptance criteria. A library search was conducted for each sample result reported on Form I. Sample mass spectra for each TIC identified matched standard mass spectra. When sample mass spectra did not match standard mass spectra, the TIC was designated as an "unknown." Samples 5SE09ARX, 5SE09RX, and 5SE10RX contained TICs that were also detected in the method blanks; these TICs were rejected and flagged with an "R." All TICs detected are considered estimated concentrations and flagged with a "JN."

### **XV.** System Performance

Chromatograms and mass spectra from each sample analysis and instrument performance were considered acceptable.

### BTEX and TFH Gasoline (EPA Modified Method 8015/8020/ADEC Method AK 101) Surface Water/Sediment Batch 33862

Surface water and sediment samples 5SW09B, 5SW09, 5SW09D, 5SW10, 5SE09, 5SE09A, 5SE10, 5SW10 MS/MSD, and 5SE10 MS/MSD were validated from analytical batch 33862, following criteria outlined in the U.S. EPA Functional Guidelines for Evaluating Organic Analyses.

### I. Holding Times

All water samples were analyzed within 14 days. All soil samples were extracted and analyzed within 14 days. Therefore, all samples met holding time QC acceptance criteria.

### **III. Initial Calibration**

For TFH gasoline analyses, all percent RSDs were within the QC control limit of  $\pm 30$  percent. For BTEX analyses, percent RSEs were within the QC control limits of  $\pm 30$  percent. Therefore, all compounds met initial calibration QC acceptance criteria.

## **IV.** Continuing Calibration

All percent differences were within the QC control limit of  $\pm 15$  percent, thereby meeting continuing calibration QC acceptance criteria.

## V. Blanks

The method and travel blank associated with this analytical batch were free of contaminants, thereby meeting QC acceptance criteria.

## VI. System Monitoring Compounds (Surrogates)

All surrogate spike recoveries were within QC control limits of 80 to 120 percent, thereby meeting QC acceptance criteria.

## VII. Matrix Spike/Matrix Spike Duplicates

All MS/MSD recoveries were within the QC control limits of 60 to 120 percent and all RPDs were within the QC control limits of  $\pm 20$ , thereby meeting QC acceptance criteria for both accuracy and precision.

# XI. Target Compound Identification

No target compounds were detected above the reporting limits.

#### XII. Compound Quantitation and Reported Detection Limits

No target compounds were detected above the reporting limits. For water samples, detection limits were reported correctly. For soil samples, detection limits and results were reported without adjustment for percent moisture.

All TFH gasoline analyses were calculated incorrectly because Method 8015/8020 was used instead of ADEC Method AK 101. The retention time windows and type of calibration standard used for Method 8015/8020 differed when compared to the ADEC method. The retention time window was larger for the EPA method and included the major range of gasoline peaks when compared to the ADEC standards. A new retention time window was established that included peaks similar to standards used for both methods. TFH-gasoline recalculations affected results reported above the detection limit only; therefore, no sample results were recalculated from this analytical batch.

## **XV. System Performance**

Chromatograms from each sample analysis and instrument performance were considered acceptable.

## TFH Diesel and JP-4 (EPA Modified Method 8015/ADEC Method AK 102) Surface Water/Sediment Batch 33862

Surface water and sediment samples 5SW09, 5SW10, 5SE09, 5SE09A, 5SW10 MS/MSD, and 5SE10 MS/MSD were validated from analytical batch 33862, following criteria outlined in the U.S. EPA Functional Guidelines for Evaluating Organic Analyses.

### I. Holding Times

All samples were extracted and analyzed within 14 days. Therefore, all samples met holding time QC acceptance criteria.

#### III. Initial Calibration

All percent RSEs were within the QC control limit of  $\pm 30$  percent, thereby meeting initial calibration QC acceptance criteria.

### **IV.** Continuing Calibration

All continuing calibration compound recoveries were within the QC control limit of 85 to 115 percent, thereby meeting continuing calibration QC acceptance criteria.

### V. Blanks

The method blank associated with this analytical batch was free of contantinants, thereby meeting QC acceptance criteria.

## VI. System Monitoring Compounds (Surrogates)

Except for 5SE10 (48 percent), 5SW11 (209 percent), and 5SE11 (38 percent), all surrogate spike recoveries were within the QC control limits of 50 to 150 percent. Therefore, the majority of surrogate spike recoveries met QC acceptance criteria.

Sample results were qualified as estimates and flagged with a "J" for positive results, a "UJ" for nondetected results.

## VII. Matrix Spike/Matrix Spike Duplicates

All MS/MSD recoveries were within the QC control limit of 60 to 120 percent and all RPDs were within the QC control limit of  $\pm 20$ , thereby meeting QC acceptance criteria for both accuracy and precision.

# XI. Target Compound Identification

Target compounds were reported when retention times were within the specified windows and when the chromatograms matched standard fingerprint pattern associated with diesel or JP-4. Therefore, all samples met target compound identification QC acceptance criteria.

All TFH diesel analyses were calculated incorrectly because Method 8015 was used instead of ADEC Method AK 102. The retention time windows and type of calibration standards used differed when compared to the ADEC method. TFH diesel results could not be recalculated because the chromatographic peaks from Method 8015 and the ADEC method did not match. Consequently, a new retention time window could not be established. Because the ADEC-defined retention time window is larger than the original retention time, it is expected that TFH diesel results are biased low. This only affects results reported above the detection limit. Therefore, OU5SE-09A was qualified as biased low and flagged with a "J".

### XII. Compound Quantitation and Reported Detection Limits

Sample results were calculated correctly, thereby meeting compound quantitation acceptance criteria. For soil samples, detection limits and results were reported without adjustment for percent moisture. For 5SE09A, the detection limit for TFH diesel was raised from 1  $\mu$ g/kg to 3  $\mu$ g/kg. Due to the presence of JP-4 and unknown hydrocarbons in the sample, it was not possible to confidently identify peaks found in the diesel range, therefore the TFH diesel detection limit was raised.

## **XV. System Performance**

Chromatograms for each sample analysis and instrument performance were considered acceptable.

### Metals (EPA Methods 6010 and 200.7) Soil Batch 33822

Soil samples SL19HA, SL19HN, and SL20FA were validated from analytical batch 33822, following criteria outlined in the U.S. EPA Functional Guidelines for Evaluating Inorganic Analyses. Samples were analyzed for 17 metals by ICP.

#### I. Holding Times

All metals were analyzed within 6 months. Therefore, all samples met holding time QC acceptance criteria.

### **II. Calibration Check**

Each instrument was calibrated at the correct frequency and with the proper number of blanks and standards for each element. All initial and continuing calibration recoveries were within QC control limits of 90 to 110 percent. Therefore, all calibrations met QC acceptance criteria.

### **III. Preparation Blanks**

Three different elements were detected in the preparation blank. No samples required gualification as a result of blank contamination.

## **IV. ICP Interference Check Samples**

All ICP interference check samples recoveries were within QC control limits of 80 to 120 percent, thereby meeting QC acceptance criteria.

## V. Laboratory Control Sample (LCS)

All LCS results were within QC control limits, thereby meeting QC acceptance criteria.

### **VI.** Duplicates

All duplicate results were within the QC control limit of  $\pm 35$  RPD, thereby meeting QC acceptance criteria.

## VII. Matrix Spike Sample Analysis

Post-digestion matrix spikes were performed instead of predigestion matrix spikes. All post-digestion matrix spike recoveries were within the QC control limits of 75 to 125 percent, thereby meeting QC acceptance criteria.

### **IX. ICP Serial Dilution**

A serial dilutions was not performed with this analytical batch.

### X. Sample Result Verification

All sample results were calculated correctly, thereby meeting compound quantitation acceptance criteria. All sample results and detection limits were correctly adjusted for percent moisture.

### Volatile Organic Compounds (EPA Method 8010) Soil Batch 55500

Water and soil samples SL04S12ND, SL04S12A, SL04S12AA, and SL04S12N were validated from analytical batch 55500, following criteria outlined in the U.S. EPA Functional Guidelines for Evaluating Organic Analyses.

### I. Holding Times

All samples were analyzed within 14 days, therefore all samples met holding time QC acceptance criteria.

### **III. Initial Calibration**

All percent relative standard deviations (RSDs) were within the QC control limits of  $\pm 30$  percent, thereby meeting initial calibration QC acceptance criteria.

### **IV.** Continuing Calibration

The continuing calibration concentration for all compounds were within the method specified QC control limits, thereby meeting continuing calibration QC acceptance criteria.

### V. Blanks

The method blank associated with this analytical batch was free of contaminants, thereby meeting QC acceptance criteria.

# VI. System Monitoring Compounds (Surrogates)

All surrogate spike recoveries were within QC control limits of 71 to 121 for water samples and 52 to 129 for soil samples, thereby meeting QC acceptance criteria.

### VII. Matrix Spike/Matrix Spike Duplicate

All MS/MSD recoveries and RPDs were within the method specified QC control limits, thereby meeting QC acceptance criteria for both accuracy and precision.

## XI. Target Compound Identification

No target compounds were detected above the method detection limit (MDL).

### XII. Compound Quantitation and Reported Detection Limits

No target compounds were detected above the MDL. All detection limits were reported correctly and all results were correctly adjusted for percent moisture.

### XV. System Performance

Chromatograms from each sample analysis and instrument performance were considered acceptable.

### BTEX and TFH Gasoline (EPA Modified Method 8015/8020/ADEC AK 101) Soil Batch 55500

Soil samples SL04S12A, SL04S12AA, and SL04S12N were validated from analytical batch 55500, following the criteria outlined in the U.S. EPA Functional Guidelines for Evaluating Organic Analyses.

## I. Holding Times

All soil samples were extracted and analyzed within 14 days. Therefore, all samples met holding time QC acceptance criteria.

### **III. Initial Calibration**

All percent RSDs were within the control limit of  $\pm 30$  percent, thereby meeting initial calibration QC acceptance criteria.

### **IV.** Continuing Calibration

All percent differences were within the QC control limits of  $\pm 15$  percent, thereby meeting continuing calibration QC acceptance criteria.

### V. Blanks

The method blank associated with this analytical batch was free of contaminants, thereby meeting QC acceptance criteria.

## VI. System Monitoring Compounds (Surrogates)

All surrogate spike recoveries were within the QC control limits of 50 to 120 percent, thereby meeting QC acceptance criteria.

### VII. Matrix Spike/Matrix Spike Duplicates

All MS/MSD recoveries and RPDs were within the method specified QC control limits, thereby meeting QC acceptance criteria for both accuracy and precision.

## XI. Target Compound Identification

Target compounds were reported only when retention times were within their specified windows. Therefore, target compound identification QC acceptance criteria were met for all samples.

## XII. Compound Quantitation and Reported Detection Limits

All sample results were calculated correctly, thereby meeting compound quantitation acceptance criteria. All sample results and detection limits were reported correctly and all results were correctly adjusted for percent moisture. Samples SL04S12A and SL04S12AA required a medium-level (tenfold dilution) analysis to bring high concentrations of target compounds into the linear range of the instrument.

All TFH gasoline analyses were calculated incorrectly because Method 8015/8020 was used instead of ADEC Method AK 101. The retention time windows and type of calibration standard used for method 8015/8020 differed when compared to the ADEC method. The retention time window was larger for the EPA method and included the major range of gasoline peaks when compared to the ADEC standards. A new retention time window could not be established for samples analyzed by Superior Analytical, and results reported above the detection limit could not be recalculated. Therefore, TFH-gasoline results for SL04S12A and SL04S12AA are considered estimates and flagged with a "J".

#### **XV. System Performance**

Chromatograms for each sample analysis and instrument performance were considered acceptable.

### TFH Diesel and JP-4 (EPA Modified Method 8015/ADEC Method AK 102) Soil Batch 55500

Water and soil samples SL04S12ND, SL04S12A, SL04S12AA, SL04S12N, and SL04S12NA were validated from analytical batch 55500, following criteria outlined in the U.S. EPA Functional Guidelines for Evaluating Organic Analyses.

## I. Holding Times

All samples were extracted and analyzed within 14 days. Therefore, all samples met holding time QC acceptance criteria.

### **III. Initial Calibration**

All percent RSDs were within the QC control limits of  $\pm 30$  percent, thereby meeting initial calibration QC acceptance criteria.

### **IV.** Continuing Calibration

All percent differences were within the QC control limits of  $\pm 15$  percent, thereby meeting continuing calibration QC acceptance criteria.

### V. Blanks

The method blank associated with this analytical batch was free of contaminants, thereby meeting QC acceptance criteria.

## VI. System Monitoring Compounds (Surrogates)

All surrogate spike recoveries were within the QC control limits of 50 to 120 percent, thereby meeting QC acceptance criteria.

## VII. Matrix Spike/Matrix Spike Duplicates

The MS/MSD recoveries were within the QC control limits of 61 to 145 percent and RPDs were within the QC control limits of  $\pm$ 14, thereby meeting QC acceptance criteria for both accuracy and precision.

## XI. Target Compound Identification

Target compounds were reported only when retention times were within their specified windows. JP-4 results for samples SL04S12A, SL04S12AA, and SL04S12N

were flagged with an "X" because sample JP-4 chromatograms did not match standard JP-4 chromatograms. JP-4 results for these samples were qualified as nondetects and the original "X" qualifier was replaced with a "J".

### XII. Compound Quantitation and Reported Detection Limits

All sample results were calculated correctly, thereby meeting compound quantitation acceptance criteria. All sample results were reported correctly and all results were correctly adjusted for percent moisture. Detection limits were raised for samples SL04S12A (108-fold), SL04S12AA (143-fold), and SL04S12N (4-fold) due to the presence of interferents in the samples.

All TFH gasoline analyses were calculated incorrectly because Method 8015 was used instead of ADEC Method AK 102. The retention time windows and type of calibration standards used differed when compared to the ADEC method. TFH diesel results could not be recalculated because the chromatographic peaks from Method 8015 and the ADEC method did not match. Consequently, a new retention time window could not be established. Because the ADEC-defined retention time window is larger than the original retention time, it is expected that TFH diesel results are biased low. This only affects results reported above the detection limit. Therefore, SL04S12A, SL04S12AA, SL04S12N, SL04S12NA, and SL04S12ND were qualified as biased low and flagged with an "L".

### **XV. System Performance**

Chromatograms for each sample analysis and instrument performance were considered acceptable.
This appendix has been left blank intentionally.

## Appendix J

.

.

## **AQUATIC SURVEY DATA**

Maps of Sampling LoCations Field Survey Data Quantitative Results For Macroinvertebrate Surveys Rapid Bioassessment Protocol 1 Data—Spring 1992 Rapid Bioassessment Protocol 1 Data—Late Summer 1992

MAPS OF SAMPLING LOCATIONS

٠

Map on our - of only inte . . Approv. 1000 Ft. ipstream of FT. R. cliardon - EAFB *= Sodirect sauch sites = SW sample ite Eimendorf JUS Sufface Water ★ 5SW/SEOI SHIP CREEK T. R 1 2 6 T K 20 (crue) ľ.  $\overline{C}$ 2 Star fete al. 192 Oc chede SCK stube 5

f<del>u</del> Elmondoef ous ★ = Sulliment saupic sites D= Inte summer sediment sample si A Flow ¥ 55W/SEO2 * a SHIPCREEK Gradi Gat * Sediment sample site on 29/8/92 at 1414 A CONTRACT * is the state 1 JSK Ð  $\zeta_{j}$ Saliliri Rul Fark A J Ċ t'ag i ۱ é G1192 -too date QC check NCK 8/4/an

2- 13 - 2419:18=F-Elmendoel ous 111.21 · Intertion upstream of EAF3 light up =: 213 Fisti HIJIOru * = = V samp print Dave 5 SW/SEO3 SHIPCREEK ≭ ĥ, 5 Ł . in in GAJ. ..... Flow 徉 Grave Ramp alitar Star top Oc charle SCK Stylen Ŧ .

1114 DT ULLS - DH 1 SHETHERE OF SOUND 1013142 ALL DIUNG HA. 20 P3 21 += SUL SAUL - COUT + Seducer Saul - POTT # Seducer Saul - POTT ## = Renniant tree trunks from dead trees ★ Flow V ¥ ¥ 5 SW/SE04 ¥ SOUTHERN END OF BEAVER POND Fresal Boaler Price Utainage 2 ¥ * * * F. ۰. Old Bealler Down Colslan Steer Hope OC Check DCK. 8/4/92

**193**27 += SW source port #= Pornigant tranks for dood tras (1 to 6 chameters) 55W/SE05 NORTHERN END OF BENNER BAD . 6 * × D'ALLE 5014:3 Ň 5 200 ல் र Ge check NCK 8/19/ 51 Steed Hope -6/2/92

Elmendoef OUS we have good below 55-42 The pg 22 += Su' = ample point Le la 5 SW/SE 06 LOWER BLUFF Ŧ WETLAND POND ¥ A. * λ 1 Ř Z 1 4 Steve Hopo Glajan CxC chuck NCK 8/4/92 •

Old Enver Ford being ST-38 & Shaw disposal pile F += SW sample point *- Suchment sample points 55W/SEO7 LOWER BUFF ٢ BEANER POND /SNOW DISPOSAL ADEA ¥ ¥ ¥ ⋇ ★ 7 7 늵  $\overline{\langle}$ 7 <del>.</del> N M M 613/92 Store Hepe Oc check NCK 8/4/92

(Find below ST-37 and reliant to seep SL-CE) Pa 24 Elmudad ous + SW Saude point * = Seduret someto points 513 2 末 ⊁ 55W/SEOB LOWER BWFF SEEP AND POND 1 ⋇ × × ٭ 1.91/9.1 See Hope. Oc check DEK 8/4/92

Elmendord ous	Map of OUL	5-0971	Taxic ty t	set scrup's station	pgas
T-Sill sauple	peint				
*= Sed 11	points				
	-		<u></u>		
				N.	
E ew/se pa				$\sim$	
5 510/32 0-1					•
DEAINAGE DITCH	-	<u> </u>			
				÷	
					·····
€	: 	<u></u>	<b>.  ×</b>		
			- <del>  ×</del>		
			×		
			• *		, , , , , , , , , , , , , , , , , , ,
8				1	
			-		
······································		<u> </u>	*	G (	
		<u> </u>	*	\$ 7,7	
		<u> </u>		2	
<b>1</b>		"	11	[-	
2				· · · · · · · · · · · · · · · · · · ·	
8					
<b>)</b>					• • • • • • • • • • • • • • • • • • • •
- 				<u>م.</u>	
					<u> </u>
B					
			1	· · · · · ·	
				,	
1					
I Tank A	Mel-		<u> </u>	· · · · · · · · · · · · · · · · · · ·	
1		Deck NCt	84192		

FIELD SURVEY DATA

TABLE J.1. Phy	ysical Measuremen	its Observed in Sh	ip Creek-1992 (Spr	ing and Fall)	
	-		Stations		
	5 MI01	5 MI02	5 M103	5 MI11	5 M112
Riparian Zone/Water					
Predominant Surrounding Land Use	Forest/Wetland	Commercial	Commercial	Industrial	Commercial
High Water Mark (m)	0.5-1	0.5-1	0.5-1	•	0.5-1
Canopy Cover	Open	Open	Open	Open	
River Width (m)	39	30	25	10	23
River Depth (m)	0.5 (avg)	0.5 (avg)	0.5 (avg)	0.5 (avg)	0.5 (avg)
Undercut Banks	Present	Present	Present	Present	Present
Sediment/Substrate					
Sediment Odors	Normal	Normal	Normal	Normal	Normal
Sediment Oils	Absent	Absent	Absent	Absent	Absent
Sediment Deposits	Some sand	Some sand	Some sand	Some sand	Some sand
Inorganic Substrate Components	,	ľ	(	Ç	F
(%) Cobble	0 08	0 0 8	08	000	25 2
Gravel	<10	<15	<10	10	S
Sand Silt	~	•	₽	0	0
Organic Substrate Components (%) Detritus (CPOM) Muck-Mud (FPOM)	~ 90 < 10	00 00	80	00 00	00 0

,

1001100c.anc

TABLE	J.2. Water Qualit	y Measurements	s (In Situ) Take	n in Ship Creek-	1992
Station	Sampling Period	DO (mg/L)	Temp (*C)	Cond (umhos/cm)	pН
5 MI01	Spring	12.8	5.6	58	6.4
	Fall	11.1	8.5	89	7.4
5 MI02	Spring	12.8	7.3	70	6.6
	Fall	10.2	10.0	109	7.1
5 MI03	Spring	12.8	7.2	99	6.7
	Fall	8.7	8.7	110	7.1
5 MI11	Spring	NS	NS	NS	NS
	Fall	8.9	9.0	390	7.7
5 MI12	Spring	NS	NS	NS	NS
	Fall	11.1	8.3	101	7.3

TABLE J.	3. Habitat	Assessm	ent, S	hip Creek-S	itation	5 MI01		
				Categ	iory			
Habitat Parameter	Exce S	ilent (F)	S	Good (F)	S	Fair (F)	S	Poor (F)
Substrate								
Bottom substrate/available cover		(18)	15					
Embeddedness		(18)	15					
Flow/velocity	20	(18)						
Channel Morophology								
Channel alteration	14	(12)						
Bottom scouring and deposition			10	(10)				
Pool/riffle, run/bend ratio	12	(15)						
Bank Structure								
Bank stability		(9)	8					
Bank vegetation	9	(10)						
Streamside cover			8			(5)		
Column totals	55	(100)	56	(10)				
Total Score 111	(115)	S (F)	= Sp = Fall	ring				

Hal	bitat Ass	TABLE J.: essment, S	3. (Cor hip Cre	<b>nt'd)</b> ek-Station	5 MI02			
			_	Categ	ory		·	
Habitat Parameter	Ex S	cellent (F)	s	300d (F)	s I	Fair (F)	F	Poor (F)
Substrate	• <i>;</i>							
Bottom substrate/available cover	18	(16)						
Embeddedness			13	(13)				
Flow/velocity	17	(15)						
Channel Morophology								
Channel alteration	13	(13)						
Bottom scouring and deposition		(13)	9					
Pool/riffle, run/bend ratio			10	(11)				
Bank Structure								
Bank stability			7	(8)				
Bank vegetation			7	(8)				
Streamside cover			7			(5)		
Column totals	48	(57)	53	(40)		(5)		
Total Score 101	(102)	S (F)	= Spr = Fall	ing				

Hat	oitat Asso	TABLE J.: Issment, S	3. (Coi hip Cre	<b>nt'd)</b> Hek-Station	5 MI03	ł			
	Category								
Habitat Parameter	Exc S	;ellent (F)	s	Good (F)	S	Fair (F)	P S	oor (F)	
Substrate					_				
Bottom substrate/available cover	16			(15)					
Embeddedness	16			(15)					
Flow/velocity	18	(16)							
Channel Morophology									
Channel alteration	13	(13)							
Bottom scouring and deposition			8	(11)					
Pool/riffle, run/bend ratio			9	(10)					
Bank Structure									
Bank stability				(8)	5				
Bank vegetation			8	(8)					
Streamside cover			8			(4)			
Column totals	63	(29)	33	(67)	5	(4)			
Total Score 101	(100)	S (F)	= Spr = Fall	ring					

Hab	TABLE J.3. (Cont'd)         Habitat Assessment, Ship Creek-Station 5 Mi11							
		Categ	lory					
Habitat Parameter	Excellent S (F)	Good S (F)	Fair S (F)	Poor S (F)				
Substrate			······································					
Bottom substrate/available cover		(11)						
Embeddedness			(10)					
Flow/velocity			(10)					
Channel Morophology	<u></u>							
Channel alteration			(7)					
Bottom scouring and deposition		(11)						
Pool/riffle, run/bend ratio		(10)						
Bank Structure		• • • • • • • • • • • • • • • • • • •						
Bank stability			(5)					
Bank vegetation			(5)					
Streamside cover			(5)					
Column totals		(32)	(42)					
Total Score (74)	S = Spri (F) = Fall	ng (no assessmen	t)					

Hab	TABLE J.3. (Cont'd) Habitat Assessment, Ship Creek-Station 5 MI12							
		Categ	jory					
Habitat Parameter	Excellent S (F)	Good S (F)	Fair S (F)	Poor S (F)				
Substrate								
Bottom substrate/available cover		(15)						
Embeddedness		(15)						
Flow/velocity	(15)							
Channel Morophology								
Channel alteration	(14)							
Bottom scouring and deposition		(11)						
Pool/riffle, run/bend ratio		(11)						
Bank Structure								
Bank stability		(8)						
Bank vegetation	(9)							
Streamside cover		(6)	·····					
Column totals	(38)	(66)						
Total Score (104)	S = Spri (F) = Fall	ng (no assessmen	t)					

TABLE J.4. Physical Characte	ristics, Beaver Pond-1	992
	Sta	tions
	5 MI04	5 MI05
Riparian Zone/Water		
Predominant Surrounding Land Uses	Commercial	Commercial ¹
Dam Present (Beaver)	Yes	Yes
Canopy Cover	Open	Open
Sediment/Substrate	• • • • • • • • • • • • • • • • • • •	· · · · · · · · · · · · · · · · · · ·
Sediment Odors	Normal	Petroleum
Sediment Oils	Slight	Moderate
Sediment Deposits	None	Detritus/sand
Inorganic Substrate Components (%) Gravel Sand Silt Clay	20 50 20 10	10 90
Organic Substrate Components (%) Detritus (CPOM) ² Muck-Mud (FPOM) ³	20 80	80 20
¹ Railroad grade to the north; golf course to the so ² Coarse particulate organic matter ³ Fine particulate organic matter	uth	

ļ

TABLE J.5. Physica	I Characteristics, Se	eeps and Pools-19	92
		Stations	· ·
	5 MI06	5 MI07	5 MI08
Riparian Zone / Water			······································
Predominant Surrounding Land Uses	Commercial ¹	Commercial ¹	Commercial ¹
Canopy Cover	Shaded	Open	Shaded
Sediment / Substrate			
Sediment Odors	Petroleum	None	Petroleum
Sediment Oils	None	• None	None
Sediment Deposits	Iron bacteria	None	Detritus
Inorganic Substrate Components (%) ² Gravel Sand Silt Clay	10 80 10	10 80 10	90 10
Organic Substrate Components (%) ² Detritus (CPOM) ² Muck-Mud (FPOM) ³	80 20	10 90 ³	90 10
¹ Alaskan Railroad tracks and yard to ² Qualitative assessment ³ Very little organic material present; th	south of these sites; nat present was FPC	Air Force to the n	orth

•

TABLE J.6. Wate	TABLE J.6. Water Quality Measurements and Qualitative Assessments         Seeps and Pools—1992								
	Sempling		Stations						
Parameters	Period	5 MI06	5 MI07	5 MI08					
D.O. (mg/L)	Spring	4.5	9.6	2.8					
Temperature (°C)	Spring	10.0	14.0	12.5					
Conductivity (umhoes/cm)	Spring	382	425	435					
рН	Spring	6.9	7.1	7.0					
Water odors		Petroleum	None	Petroleum					
Water surface oils		Sheen	None	None					

1001100c.anc

٠

Г

QUANTITATIVE RESULTS FOR MACROINVERTEBRATE SURVEYS

1. Aquatic Benthic Macroinvertebrates from Station 1, Elmendorf Air Force 5/28/92

SPECIES	STA 1 REP1	STA 1 REP2	STA 1 REP3	STA 1 TOTAL
NEMATODA				
ANNELIDA				
Oligochaeta				
Lumbriculidae	4		1	5
Kincaidiana hexatheca				
Lumbriculus sp.				
Niadidae				
Nais sp.	2	18	21	41
Nais communis				
Nais cf.simplex				
Pristinella sp.				
Stavina appendiculata				
Tubificidae w b c				
Tubificidae w o h c				
Limnodrilus sp.				
Limnodrilus cf. hoffmeisteri				
Rhyacodrilus montana				
-				
PLATYHELMINTHES				
Turbellaria				
Tricladida				
ARTHOPODA				
Arachnoidea				
Hydracarina				
Crustacea				
Amphipoda				
Talitridae				
Hyalella azteca				
Cladocera				
Daphnidae				
Daphnia cf. pulex				
Copepoda				
OSTIACODA				
Insecta				
Ephemeroptera				
Baetidae				
Baetis sp.	1	2	1	4
Ephemerellidae				
Drunella doddsi	1		1	2
Ephemerella inermis				
Heptageniidae			-	_
Cinygmula sp.	-	-	1	1
Epeorus sp.	4	1		5
Stenonema sp.				

SPECIES	STA 1 REP1	STA 1 REP2	STA 1 REP3	STA 1 TOTAL
Plecoptera				
Choroperlidae				
Suwallia sp.	3		3	6
Nemouridae				
Zapada sp.				
Perlodidae				
Isoperla sp.				
Heteroptera				
Corixidae				
Arctocorisa sp.				
Corisella sp.				
Trichoptera				
Glossosomatidae				
Glossosoma sp.				
Hydropsychidae				
Cheumatonsyche sp.				
Limnephilidae				
Ecclisomyja sp				
Nemotaulius hostilis				
Rhyacophilidae				
Rhyacophila sp			1	1
Dintera			-	
Ceratopogonidae				
Bezzia/Palnomyja sp. m.	1			1
Chironomidae	8	11		19
Brillia sp	· ·			
Cardiocladius sp				
Chaetocladius sp.				
Chiropominae A				
Chironomus sp				
Cricotopus sp	5	8	1	14
Diamesa sp	5	1	4	5
Dicrotendines sp		-	-	
Diplocladius cultriger				
Dipiocialita cultilger Dikiefferiella en				
Eukiefferiella				
of claripennis en m				
Eukiefferielle gracei sp. m	1	2	2	5
Clumtotendines en	-	-	-	-
Orthogladiinae A				
Orthogladiinae R				
Orthoglading on	2	3		5
Degestie ge	2			2
Pagastiallo en	2			-
Pagastiella sp.				
Paramerina sp.				
Paraciadopeima sp.				
Parakierieriella bathophila				
Paratanytarsus sp.				
Phaenopsectra sp.				
Polypedilum sp.				
Polypedilum cf. convictum				
Potthastia sp.				
Procladius sp.				
Prodiamesa sp.				

SPECIES	STA 1 REP1	STA 1 REP2	STA 1 REP3	STA 1 TOTAL
Psectrocladius sp.				
Psectrotanypus sp.				
Rheocricotopus sp.				
Rheotanytarsus sp.				
Synorthocladius semivirens				
Tanypus sp.				
Tanytarsus sp.				
Tvetenia bavarica sp.gp.	1			1
Empididae				
Chelifera sp.				
Muscidae				
Limnophora sp.				
Psychodidae				
Pericoma sp.				
Simuliidae				
Cnephia sp.			1	1
Tipulidae				
Dicranota sp.				
Ormosia sp.				
Coleoptera				
Dytiscidae				
Acililus sp.				
Dytiscus sp.				
MOLLUSCA				
Gastropoda				
Planorbidae			1	1
Gyraulus (Torquis ) sp.				
Pelecypoda				
Sphaeriidae				
Pisidium milium				
TOTAL NUMBER OF ORGANISMS	35	46	38	119
TOTAL NUMBER OF SPECIES	13	8	12	18





Table 2. Aquatic Benthic Macroinvertebrates from Station 1, Elmendorf Air Force Base, 9/01/92.

SPECIES	STA 1 REP1	STA 1 REP2	STA 1 REP3	STA 1 TOTAL
NEMATODA				
ANNELIDA				
Oligochaeta				
Lumbriculidae	18	1	7	26
Kincaidiana hexatheca	1			1
Lumbriculus sp.				
Niadidae	_			
Nais sp.	2	2		4
Nais communis				
Nais cf.simplex				
Pristinella sp.				
Slavina appendiculata				
Stylaria lacustris				
Tubificidae w.o.h.c.	1		2	з
Limpodrilus sp	L		2	
Limnodrilus of hoffmeisteri				
Rhyacodrilus montana				
PLATYHELMINTHES				
Turbellaria				
Tricladida			1	1
ARTHOPODA				
Arachnoldea				2
Hydracarina	T	1	1	3
Crustacea				
Amphipoda				
Talitridae				
Hyalella azteca				
Daphnia of puloy				
Companda				
Cvclopoida				
Ostracoda				
Insecta				
Ephemeroptera				
Baetidae				
Baetis sp.			3	3
Ephemerellidae				
Drunella doddsi	99	69	34	202
Ephemerella inermis			6	6
Heptageniidae				
Cinygmula sp.	13	9	6	28
Epeorus sp.	42	23	26	91
Stenonema sp.				
Plecoptera				
Choroperlidae				
Suwallia sp.				

Table 2. Aquatic Benthic Macroinvertebrates from Station 1, Elmendorf Air Force Base, 9/01/92.

Nemouridae Zapada sp				
Perlodidae				
Isoperla sp			1	1
Heteroptera			-	-
Corividae				
Arctocorisa sp				
Coricella sp.				
Trichontera				
Clossosoma sp	21	10	23	56
Grossosoma sp.	41	16	23	50
Choumatonsyche sp	1			1
Limpophilidae	1			*
	1			1
Neretaulius bostilis	1			*
Nemocaulius noscills				
Rhyacophilia en				
Rnyacophila Sp.				
	1			1
Bezzia/Paipomyia Sp. gp.	1	1		4
	2	*		*
Brillia sp.	1			1
Cardiociadius sp.	T			1
Chaetociadius sp.				
Chironominae A				
Chirohomus sp.				
Cricotopus sp.				
Diamesa sp.				
Dictotendipes sp.				
Dipiociadius cuiciiger	1			1
Eukiefferielle Sp.	+			1
Cr. Claripennis sp.gp.				
Euklefferfeila gradel sp.gp.				
Gryptotendipes sp.				
Orthocladiinae A				
Orthocladiinae B				
Orthocladius sp.	2		F	7
Pagastia sp.	2		5	'
Pagastiella sp.				
Paramerina sp.				
Paraciadopeima sp.				
Parakierreriella batnophila				
Paratanytaisus sp.				
Phaenopsectra sp.				
Polypedilum sp.				
Polypedilum Cr. Convictum				
Potthastla sp.				
Prodiences on				
Proglamesa sp.				
rsectrociacius sp.				
Psectrotanypus sp.				
kneocricotopus sp.				
kneotanytarsus sp.				
Synorthocladius semivirens				

Table 2. Aquatic Benthic Macroinvertebrates from Station 1, Elmendorf Air Force Base, 9/01/92.

		1	1	
	1		1	
4	1	3	8	
212	120	119	451	
17	10	14	23	
	<b>4</b> 212 17	1 4 1 212 120 17 10	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1 1 1 1 4 1 3 8 212 120 119 451 17 10 14 23

Table 3. Aquatic Benthic Macroinvertebrates from Station 2, Elmendorf Air Force Base, 5/29/92.

SPECIES	STA 2 REP1	STA 2 REP2	STA 2 REP3	STA 2 TOTAL
NEMATODA				
ANNELIDA				
Oligochaeta				
Lumbriculidae	1	10	4	15
Kincaidiana hexatheca				
Lumbriculus sp.				
Niadidae				
Nais sp.	2	23	22	47
Nais communis				
Nais cf.simplex				
Pristinella sp.				
Slavina appendiculata				
Stylaria lacustris				
Tubificidae w.h.c.				
Tubificidae w.o.h.c.				
Limnodrilus sp.				
Limnodrilus cf. hoffmeisteri				
Rhyacodrilus montana				
PLATYHELMINTHES				
Turbellaria				
Tricladida				
ARTHOPODA				
Arachnoidea				
Hydracarina			2	2
Crustacea				
Amphipoda				
Talitridae				
Hyalella azteca				
Cladocera				
Daphnidae				
Daphnia cf. pulex				
Copepoda				
Cyclopoida				
Ostracoda				
Insecta				
Ephemeroptera				
Baetidae			_	
Baetis sp.		3	7	10
Ephemerellidae			-	6
Drunella doddsi	1		5	6
Ephemerella inermis				
Heptageniidae			•	2
Cinygmula sp.		~	2	2
Lpeorus sp.		2		4
Stenonema sp.				
Piecoptera Change and idea				
Choroperlidae			4	-
Suwallia sp.			1	T

Table 3. Aquatic Benthic Macroinvertebrates from Station 2, Elmendorf Air Force Base, 5/29/92.

Nomersetile				
Nemouridae				
Zapada sp.				
Perlocidae				
Isoperla sp.				
Heteroptera				
Corixidae				
Arctocorisa sp.				
Corisella sp.				
Trichoptera				
Glossosomatidae				
Glossosoma sp.				
Hydropsychidae				
Cheumatopsyche sp.				
Limnephilidae				
Ecclisomyia sp.				
Nemotaulius hostilis				
Rhyacophilidae				
Rhyacophila sp.				
Diptera				
Ceratopogonidae				
Bezzia/Palpomyia sp. qp.		2		2
Chironomidae	5	4	10	19
Brillia sp.	1			1
Cardiocladius sp.	-			
Chaetocladius sp.				
Chironominae A				
Chironomus sp.				
Cricotopus sp.	1	5	7	13
Diamesa sp	*	2	7	
Dicrotendines sn		-		-
Diplocladius cultriger				
Fukiefferiella sp				
Eukiefferiella				
cf claripannis en m				
El. Claripennis sp.yp.	2	5	<b>^</b> 7	29
Clumtotondines on	4	5	22	27
Orthogladijnae A				
Orthogladiinae A				
			2	2
Decentia en			2	2
Pagastia Sp.			-	+
Pagastiella sp.				
Paramerina sp.				
Paraciadopeima sp.				
Parakierieriella batnopnila				
Paratanytarsus sp.				
Phaenopsectra sp.	1			1
Polypedilum sp.				
Polypedilum cf. convictum				
Potthastia sp.				
Procladius sp.				
Prodiamesa sp.				
Psectrocladius sp.				
Psectrotanypus sp.				
Rheocricotopus sp.				
Rheotanytarsus sp.				
Synorthocladius semivirens			1	1

Table 3. Aquatic Benthic Macroinvertebrates from Station 2, Elmendorf Air Force Base, 5/29/92.

Tanypus sp.				
Tanytarsus sp.				
Tvetenia bavarica sp.gp.		5	1	6
Empididae				
Chelifera sp.		3		3
Muscidae				
Limnophora sp.				
Psychodidae				
Pericoma sp.				
Simuliidae				
Cnephia sp.			1	1
Tipulidae				
Dicranota sp.	2		1	3
Ormosia sp.				
Coleoptera				
Dytiscidae				
Acililus sp.				
Dytiscus sp.				
MOLLUSCA				
Gastropoda				
Planorbidae				
Gyraulus (Torquis ) sp.				
Pelecypoda				
Spha <b>eriidae</b>				
Pisidium milium				
TOTAL NUMBER OF ORGANISMS	16	64	96	176
TOTAL NUMBER OF SPECIES	9	11	17	22

Table 4. Aquatic Benthic Macroinvertebrates from Station 2, Elmendorf Air Force Base, 9/01/92.

SPECIES	STA 2 REP1	STA 2 REP2	STA 2 REP3	STA 2 TOTAL
NEMATODA				
ANNELIDA				
Oligochaeta				
Lumbriculidae				
Kincaidiana hexatheca				
Lumbriculus sp.				
Niadidae				
Nais sp.	24	16		40
Nais communis				
Nais cf.simplex				_
Pristinella sp.	1			1
Slavina appendiculata				
Stylaria lacustris				
Tubificidae w.h.c.		2		2
Tubificidae w.o.n.c.		2		2
Limnodrilus sp. Limnodrilus af haffmaistari				
Rhyacodrilus montana				
Myacourras moneana				
PLATYHELMINTHES				
Turbellaria				
Tricladida				
ARTHOPODA				
Arachnoidea				
Hydracarina				
Crustacea				
Amphipoda				
Talitridae				
Hyalella azteca				
Cladocera				
Daphnidae				
Daphnia cf. pulex				
Copepoda				
Cyclopoida				
Ostracoda				
Insecta				
Ephemeroptera				
Baetidae				
Baetis sp.				
Ephemerellidae				
Drunella doddsi	35	27	13	75
Ephemerella inermis				
Heptageniidae				
Cinygmula sp.	_	_		
Epeorus sp.	5	5	1	11
Stenonema sp.				
Plecoptera				
Choroperlidae				
Suwallia sp.				

Table 4. Aquatic Benthic Macroinvertebrates from Station 2, Elmendorf Air Force Base, 9/01/92.

Nemouridae Zapada sp.	2	1		3
Perlodidae				
Isoperla sp.				
Heteroptera				
Corixidae				
Arctocorisa sp.				
Corisella sp.				
Trichoptera				
Glossosomatidae				
Glossosoma sp.	45	37	37	119
Hydropsychidae				
Cheumatopsyche sp.				
Limnephilidae				
Ecclisomyia sp.	3			3
Nemotaulius hostilis				
Rhyacophilidae				
Rhyacophila sp.				
Diptera				
Ceratopogonidae				
Bezzia/Palpomyia sp. gp.				
Chironomidae	2	6	3	11
Brillia so.				
Cardioc us sp.				
Chaetocladius sp.				
Chironominae A				
Chironomus sp.				
Cricotopus sp.	5	18		23
Diamesa sp.				
Dicrotendipes sp.				
Diplocladius cultriger				
Eukiefferiella sp.				
Eukiefferiella				
cf. claripennis sp.gp.				
Eukiefferiella gracei sp.gp.		4	1	5
Glyptotendipes sp.				
Orthocladiinae A				
Orthocladiinae B				
Orthocladius sp.		_		
Pagastia sp.	8	3		11
Pagastiella sp.				
Paramerina sp.				
Paracladopelma sp.				
Parakiefferiella bathophila				
Paratanytarsus sp.				
Phaenopsectra sp.				
Polypedilum sp.				
Polypedilum cf. convictum				-
Potthastia sp.		1		1
Procladius sp.				
Prodiamesa sp.				
Psectrocladius sp.				
Psectrotanypus sp.				
Rheocricotopus sp.				
Rheotanytarsus sp.				
Synorthocladius semivirens				



Table 4. Aquatic Benthic Macroinvertebrates from Station 2, Elmendorf Air Force Base, 9/01/92.

Tanypus sp. Tanytarsus sp. Tvetenia bavarica sp.gp. Empididae Chelifera sp. Muscidae Limnophora sp. Psychodidae Pericoma sp. Simuliidae Cnephia sp. Tipulidae Dicranota sp. Ormosia sp. Coleoptera Dytiscidae Acililus sp. Dytiscus sp.	2	1	1	1 1 2
MOLLUSCA				
Gastropoda Planorbidae				
Gyraulus (Torquis ) sp.				
Pelecypoda				
Sphaeriidae				
Pisidium milium				
TOTAL NUMBER OF ORGANISMS	132	121	56	309
TOTAL NUMBER OF SPECIES	11	12	6	16
#### Table 5. Aquatic Benthic Macroinvertebrates from Station 3, Elmendorf Air Force Base, 5/30/92.

SPECIES	STA 3	STA 3	STA 3	STA 3
	REP1	REP2	REP3	TOTAL
NEMATODA				
ANNELIDA	ļ			
Oligochaeta				
Lumbriculidae	8	9	11	28
Kincaidiana hexatheca				
Lumbriculus sp.	·			
Niadidae				
Nais sp.	50	25	35	110
Nais communis				
Nais cf.simplex				
Pristinella sp.	ļ			
Slavina appendiculata				
Stylaria lacustris				
Tubificidae w.h.c.	ļ		1	1
Tubificidae w.o.h.c.				
Limnodrilus sp.				
Limnodrilus cf. hoffmeisteri	ļ			
Rhyacodrilus montana				
	<b></b>			
PLATYHELMINTHES				
Turbellaria	<u> </u>			
Tricladida				ļ
ARTHOPODA				
Arachnoidea				
Hydracarina	<u> </u>			
Crustacea	+			
Ampnipoda	+			
	+			
Hyalella azteca	<u> </u>			
	<u> </u>			
Daphnia Cr. pulex				ļ
Copepoda			h	
	·			
Ostracoda				
Tessets				
Postidoo	+			
Baetidae		· · · · ·		
Baetis sp.			4	ļ
Epnemerellidae				
		<u> </u>	3	
	+	<u> </u>		
Heptagen11dae	+			
Cinygmula sp.		· · · · · · · · · · · · · · · · · · ·		
Epeorus sp.	·			
Stenonema sp.				
Plecoptera	l			<u> </u>
Choroperlidae	+			
Suwallia sp.	L	L	4	4







Nemouridae			· · · · · ·	
Zapada sp.	11			1
Perlodidae				
Isoperla sp.			1	1
Heteroptera				
Corixidae		T		
Arctocorisa sp.				
Corisella sp.	1			
Trichoptera				
Glossosomatidae			1	
Glossosoma sp.	+		<u>+</u>	+
Hydropsychidae	+		1	1
Cheumatopsyche sp	+		+	1
Limnenhilidae	+	•	+	+
Ecclisomyja sp	+			+
Nemotaulius hostilis	+		ł	
Physcophilidae	+	+	<u> </u>	+
Dhua conhila co	+		+	+
Riyacopiiria sp.			+	+
	+	+	<b> </b>	
	+			
Bezzia/Paipomyia sp. gp.	+	+	3	
Chironomidae	<u>  11</u>	3	12	26
Brillia sp.	<b> </b>	+	<u> </u>	ļ
Cardiocladius sp.	<b>↓</b>	·····		<u> </u>
Chaetocladius sp.	·	-	<b>.</b>	J
Chironominae A	<u> </u>		<b>_</b>	
Chironomus sp.	ļ		L	
Cricotopus sp.	9	5	38	52
Diamesa sp.	5	4	12	21
Dicrotendipes sp.	ļ		L	
Diplocladius cultriger		L	L	
Eukiefferiella sp.				<b>_</b>
Eukiefferiella				
cf. claripennis sp.gp.				
Eukiefferiella gracei sp.gp.	23		13	36
Glyptotendipes sp.	1			
Orthocladiinae A	1		1	
Orthocladiinae B	<u> </u>	1		1
Orthocladius sp.	1	5	4	9
Pagastia sp.	3		<u> </u>	3
Pagastiella sp.	<u> </u>	+	<u> </u>	<u>+</u>
Paramerina sp	<u> </u>		1	<u>}</u>
Paracladopelma sp	+	+	+	+
Darakiefferiella hathenhila	+	+	<del> -</del>	+
Daratanytareus en	+		+	+
Bhapponceatra co	<u>+</u>	+	ŧ	ł
Polymodilym co	<u> </u>		+	+
Polypearium sp.	<u> </u>		+	+
Polypeallum CI. CONVICTUM	<u> </u>			
Pottnastia sp.			l	
Procladius sp.			ļ	
Prodiamesa sp.	l			
Psectrocladius sp.	. <b> </b>			L
Psectrotanypus sp.				
Rheocricotopus sp.		1		1
Rheotanytarsus sp.				
Synorthocladius semivirens				

Table 5. Aquatic Benthic Macroinvertebrates from Station 3, Elmendorf Air Force Base, 5/30/92.

Table 5. Aquatic Benthic Macroinvertebrates from Station 3, Elmendorf Air Force Base, 5/30/92.

Tanypus sp.				
Tanytarsus sp.	1		1	2
Tvetenia bavarica sp.gp.	4	2	16	22
Empididae				
Chelifera sp.	· · · · · · · · · · · · · · · · · · ·		6	6
Muscidae				
Limnophora sp.				
Psychodidae		· · · · · · · · · · · · · · · · · · ·		
Pericoma sp.	1			1
Simuliidae				
Cnephia sp.	3			3
Tipulidae				
Dicranota sp.	1	3	1	5
Ormosia sp.				
Coleoptera				
Dytiscidae			1	
Acililus sp.				
Dytiscus sp.				
MOLLUSCA				
Gastropoda				
Planorbidae				
Gyraulus (Torquis ) sp.				
Pelecypoda				
Sphaeriidae				
Pisidium milium				
TOTAL NUMBER OF ORGANISMS	126	57	163	346
TOTAL NUMBER OF SPECIES	15	9	17	22
		1		





SPECIES	STA 3 REP1	STA 3 REP2	STA 3 REP3	STA 3 TOTAL
				· · · · · ·
NEMATODA				
ANNELIDA				
Oligochaeta				
Lumbriculidae		3		3
Kincaidiana hexatheca				
Lumbriculus sp.				
Niadidae				
Nais sp.	2	10	26	38
Nais communis				
Nais cf.simplex				
Pristinella sp.				
Slavina appendiculata				
Stylaria lacustris				
Tubificidae w.h.c.				
Tubificidae w.o.h.c.				
Limnodrilus sp.				
Limnodrilus cf. hoffmeisteri				
Rhyacodrilus montana				
PLATYHELMINTHES		<u> </u>	<u> </u>	
Turbellaria	<u> </u>			
Tricladida	· · · · · · · · · · · · · · · · · · ·	†		
		· · · ·		
ARTHOPODA		1		[
Arachnoidea		· · · · · · · · · · · · · · · · · · ·		
Hydracarina				
	[			
Crustacea				
Amphipoda				
Talitridae				
Hyalella azteca				
Cladocera				
Daphnidae				
Daphnia cf. pulex				
Copepoda				
Cyclopoida		L		
Ostracoda		L		
Theoretic				
Insecta	<u>}</u>	}	+	<u> </u>
Epnemeroptera		<u> </u>	<b> </b>	
Ddetlade Protia an	<b> </b>	ļ	<u>├</u>	1
Daetis sp.		<u> </u>	<b>↓</b>	L
	15		22	01
Drunella doddsl	12			81
Lonemerella inermis				
	}	<u>}</u>	}	
Cinygmula sp.			1	1 77
Epeorus sp.	8	8	L	±/
Stenonema sp.		<u> </u>		
riecoptera	+	<u> </u>	<u> </u>	<u> </u>
Churchlia an	+	ļ	<b></b>	· - · · <b></b>
Suwallia Sp.		I	1	1

Table 6. Aquatic Benthic Macroinvertebrates from Station 3, Elmendorf Air Force Base, 8/30/92.

# Table 6. Aquatic Benthic Macroinvertebrates from Station 3, Elmendorf Air Force Base, 8/30/92.



	······		1	1
Nemouridae	- <b> </b>	-+		·
Zapada sp.		1		↓ · <b>1</b>
Perlodidae			ļ	
Isoperla sp.		_ <b>_</b>	l	
Heteroptera		-	<b>_</b>	l
Corixidae				
Arctocorisa sp.				
Corisella sp.				
Trichoptera				
Glossosomatidae				
Glossosoma sp.	12	28	14	54
Hydropsychidae	-			
Cheumatopsyche sp.			T	
Limnephilidae	1			
Ecclisomyia sp.	1		1	1
Nemotaulius hostilis	1	1	1	
Rhyacophilidae		1	1	1
Rhyacophila sp	+		1	+
Diptera		+	1	1
Ceratopogonidae	+	+	+	t
Bezzia/Palnomvia en m	+	+	+	<u> </u> i
Chironomidae	<u> </u>	5	5	1.2
Brillia co		+		10
Dillia Sp.		.+	<u>+</u>	<b> </b>
Chaotoglading an		+	<u> </u>	
Chivenerica Chiveneri Chivenerica Chivenerica Chivenerica Chivenerica Chivener			<u>+</u>	<u> </u>
	+	+	<u>}</u>	<b>+</b>
Unironomus sp.	<u> </u>			10
Cricotopus sp.	+	<u>+ + + + + + + + + + + + + + + + + + + </u>	<u> </u>	18
Diamesa sp.	+		+	
Dicrotendipes sp.	+		+	
Diplocladius cultriger	<b>_</b>		<b></b>	<u> </u>
Eukiefferiella sp.		+	<u> </u>	ļ
Eukiefferiella		+		
cf. claripennis sp.gp			+	+
Eukiefferiella gracei sp.gp.	10	37	42	89
Glyptotendipes sp.	L			L
Orthocladiinae A		· [	·	
Orthocladiinae B	· · · · · · · · · · · · · · · · · · ·			.l
Orthocladius sp.	2		56	58
Pagastia sp.	1	4	8	13
Pagastiella sp.				
Paramerina sp.				
Paracladopelma sp.				
Parakiefferiella bathophila				
Paratanytarsus sp.			1	
Phaenopsectra sp.		1	1	1
Polypedilum sp.	1			1
Polypedilum cf. convictum	+	+		1
Potthastia sp.		1	1	1
Procladius sp	1	+	1	1
Prodiamesa sp	+			1
Psectrocladius en	+	-	+	4
Peactrotaning on			+	+
Bhagari antonua an	+	-	+	1
Theotomytargue an	+		+	
kneotanytarsus sp.	+		+	+
Synorthocladius semivirens		1		<u> </u>



<u> </u>				······································
Tanypus sp.				
Tanytarsus sp.				
Tvetenia bavarica sp.gp.				
Empididae			· · · · · · · · · · · · · · · · · · ·	
Chelifera sp.				
Muscidae				
Limnophora sp.				
Psychodidae				
Pericoma sp.				
Simuliidae				
Cnephia sp.	4	2	5	11
Tipulidae				
Dicranota sp.				
Ormosia sp.				
Coleoptera			Τ	
Dytiscidae				
Acililus sp.				
Dytiscus sp.				
MOLLUSCA				
Gastropoda				
Planorbidae				
Gyraulus (Torquis ) sp.			<u></u>	
Pelecypoda				
Sphaeriidae				
Pisidium milium				
TOTAL NUMBER OF ORGANISMS	69	142	192	403
TOTAL NUMBER OF SPECIES	10	11	11	14
			1	1
			1	
		-		

Table 6. Aquatic Benthic Macroinvertebrates from Station 3, Elmendorf Air Force Base, 8/30/92.

Table 7. Aquatic Benthic Macroinvertebrates from Station 11, Elmendorf Air Force Base, 9/04/92.

ł

SPECIES	STA 11	STA 11	STA 11	STA 11
· · · · · · · · · · · · · · · · · · ·	REP1	REP2	REP3	TOTAL
	1			
NEMATODA				1
ANNELIDA				
Oligochaeta				
Lumbriculidae	3	3		6
Kincaidiana hexatheca				
Lumbriculus sp.				
Niadidae				
Nais sp.	51	25		76
Nais communis				
Nais cf.simplex				
Pristinella sp.				
Slavina appendiculata				
Stylaria lacustris				
Tubificidae w.h.c.				
Tubificidae w.o.h.c.		3	22	25
Limnodrilus sp.		1	6	7
Limnodrilus cf. hoffmeisteri				
Rhyacodrilus montana				
PLATYHELMINTHES				
Turbellaria				
Tricladida				
ARTHOPODA				
Arachnoidea		l		
Hydracarina		2		2
			ļ	
Crustacea				
Amphipoda				
Talitridae			l	
Hyalella azteca	·			
<u>Cladocera</u>	·   · · · · · · · · · · · · · · · · · ·			
Daphnidae				
Daphnia cf. pulex				
Copepoda			l	
Cyclopoida	+		<b> </b>	
Ostracoda			<b> </b>	<b> </b>
	·   · · · - ·-			ļ
Insecta				
Lephemeroptera			<u> </u>	
Baetidae		<u>}</u>	<b>}</b>	<b></b>
Baetis sp.	+			<b> </b>
Ephemerellidae				
Drunella doddsi	·   · · · · · · · · · · · · · · · · · ·	<u> </u>	<b>├</b> ┻	4
Ephemerella inermis		<u> </u>	<u> </u>	<u> </u>
Heptageniidae	·	· · · · · · · · · · · · · · · · · · ·		l
Cinygmula sp.	ļ	h		
Epeorus sp.	·			
Stenonema sp.			<b></b>	
Plecoptera	.l	ļ		
Choroperlidae			ļ	
Suwallia sp.	<u> </u>	L		





Nemouridae			l	· · · · · · · · · · · · · · · · · · ·
Zapada sp.	l	1		1
Perlodidae				
Isoperla sp.				
Heteroptera				
Corixidae				
Arctocorisa sp.				
Corisella sp.	1			
Trichoptera			<u>+</u>	
Glossosomatidae			<b> </b>	
Glossosoma sp	<u> </u>	26		26
Hydronsychidae				
Cheumatonsyche sp				-
Limpophilidae				<u>+</u>
	<b>}</b>			
Ecclisomyla sp.		<u> </u>	ļ	
Nemotaulius nostilis	<b>L</b>			
knyacophilidae	<b>}</b>	-+		41
Rhyacophila sp.	ļ		ļ	l
Diptera		_ <b>_</b>	Ì	d
Ceratopogonidae	L			I
Bezzia/Palpomyia sp. gp.	L		· · · · · · · · · · · · · · · · · · ·	
Chironomidae	7	4		11
Brillia sp.	2			2
Cardiocladius sp.				
Chaetocladius sp.				
Chironominae A				1
Chironomus sp.	[		[	1
Cricotopus sp.	19	1		19
Diamesa sp.		1	<del>• • • • • • • • • • • • • • • • • • • </del>	
Dicrotendipes sp.	t	1	1	
Diplocladius cultriger		1	]	:
Eukiefferiella sp.	t		i	
Eukiefferiella	<u> </u>	1		
cf clarinennis sn m	6		· · ·	6
Fukiefferielle gracei en m		10	<u> </u>	10
Glumtotendines en			•	
Orthogladiings 3	Į	- <del>{</del>	t	
			ļ	
	<u> </u>			
Orthocladius sp.		24	4	28
Pagastia sp.		5	<u> </u>	6
Pagastiella sp.			i	
Paramerina sp.	l	l	•	
Paracladopelma sp.				
Parakiefferiella bathophila				
Paratanytarsus sp.				
Phaenopsectra sp.				
Polypedilum sp.			!	;
Polypedilum cf. convictum	1	1		1
Potthastia sp.	t	+	<u>+</u>	
Procladius sp.	t		1	
Prodiamesa sp	<u> </u>	+	•	
Psectrocladius en	<u>+</u>	+	<u>.</u>	·
Desctrotaning on	<u> </u>	+	<u> </u>	
Phoneniastorya ar		+	1 	
KNEOCTICOLOPUS SP.	<u> </u>	+	<u>.</u>	
Rneotanytarsus sp.	ļ		· · · · · · · · · · · · · · · · · · ·	
Synorthocladius semivirens	L	1	1	

Table 7. Aquatic Benthic Macroinvertebrates from Station 11, Elmendorf Air Force Base, 9/04/92.

# Table 7. Aquatic Benthic Macroinvertebrates from Station 11, Elmendorf Air Force Base, 9/04/92.



Tanypus sp.				
Tanytarsus sp.				
Tvetenia bavarica sp.gp.				
Empididae				
Chelifera sp				
Muscidae				
Limnophora sp.		3	1	3
Psychodidae				
Pericoma sp.			1	1
Simuliidae				
Cnephia sp.			1	
Tipulidae			1	
Dicranota sp.			1	
Ormosia sp.	1	4		5
Coleoptera				
Dytiscidae		1	1	1
Acililus sp.		1		
Dytiscus sp.				
MOLLUSCA			1	1
Gastropoda				
Planorbidae				
Gyraulus (Torquis ) sp.		1		
Pelecypoda				
Sphaeriidae				
Pisidium milium				1
			1	
TOTAL NUMBER OF ORGANISMS	90	126	34	250
TOTAL NUMBER OF SPECIES	8	16	5	20





SPECIES	STA 12	STA 12	STA 12	STA 12
	REP1	REP2	REP3	TOTAL
NEMATODA	<u> </u>			1
NETAIODA				· · · · • • •
ANNELIDA			• • • • • • • •	
Oligochaeta	+		<b>1</b>	
Lumbriculidae	15	3	• · ·	18
Kincaidiana hexatheca	1			
Lumbriculus sp.				
Niadidae				
Nais sp.	5			5
Nais communis				
Nais cf.simplex				
Pristinella sp.				
Slavina appendiculata	l			
Stylaria lacustris				
Tubificidae w.h.c.			· · · · · · · · · · · · · · · · · · ·	
Tubificidae w.o.h.c.			ļ	
Limnodrilus sp.	+			
Limnodrilus cf. hoffmeisteri	+	ļ		
Rhyacodrilus montana	+		<b> </b>	
PLATYHELMINTHES	+			
Turbellaria	+			
Tricladida				
ARTHOPODA	<u>}</u>			·
Arachnoidea	<u> </u>		<u>↓</u>	
Hydracarina	1			
	1			
Crustacea	1			
Amphipoda				
Talitridae				
Hyalella azteca				
Cladocera				
Daphnidae	L			
Daphnia cf. pulex				
Copepoda				
Cyclopoida	ļ			
Ostracoda	<b> </b>		<b> </b>	
Tacacha	·}			
Insecta	+		<b>}</b>	
Ephemeroptera	· { · · · · · · · · · · · · · · · ·		<u> </u>	
Pactic co	+		<b>h</b>	
Daeuro Sp.	+	<u> </u>	<b> </b>	
Drupolla doddai	12	6	1	
Enhomorolla incernia	16	0	<b>4</b>	
Lonemerella inermis	+			
neptageniidae	+	· · · · · · · · · · · · · · · · · · ·	<b> </b>	
Cinygmula sp.	+	6		
Epeorus sp.	42	0	L	<del>-</del>
Stenonema sp.	+			
Flecoptera			<b> </b>	
Suwallia sp.	1			

Table 8. Aquatic Benthic Macroinvertebrates from Station 12, Elmendorf Air Force Base, 9/05/92.

Table 8. Aquatic Benthic Macroinvertebrates from Station 12, Elmendorf Air Force Base, 9/05/92.

Nemouridae	······	1		
7 anada en	+		· · · ·	
Demledidee	•	•		•··· · ···
Periodidae		• • • • • • • • •		
Isoperla sp.		↓ ★		
Heteroptera				
Corixidae		1		
Arctocorisa sp.				
Corisella sp.				
Trichoptera				
Glossosomatidae		1		
Glossosoma sp	1	47	8	56
Hydronsychidae	+	+		
Choumatonsyche en	+	<u></u>		
Limeshilidaa	+	· · · · · · · · · · · · · · · · · · ·	1	
	+	<u>}</u>	<u> </u>	
Ecclisomyla sp.			<b>Å</b>	<b>L</b>
Nemotaulius hostilis	<u> </u>			
Rhyacophilidae				
Rhyacophila sp.	L			
Diptera				
Ceratopogonidae				
Bezzia/Palpomyia sp. gp.				
Chironomidae	6		1	7
Brillia sp.	1			
Cardiocladius sp.	7			7
Chaetocladius sp.				
Chironominae A		1	· · · · · · · · · · · · · · · · · · ·	
Chiropomus sp				
Cricotopus cp	10		1	10
Diamaga an	10	<u>.</u>	<u> </u>	13
Diamesa sp.				
Dicrotendipes sp.				
Diplociadius cultriger				
Eukiefferiella sp.	<u> </u>			
Eukiefferiella	ļ			
cf. claripennis sp.gp.				
Eukiefferiella gracei sp.gp.			1	1
Glyptotendipes sp.				
Orthocladiinae A				
Orthocladiinae B				
Orthocladius sp.				
Pagastia sp.		1	1	2
Pagastiella sp.				· · · · · · · · · · · · · · · · · · ·
Paramerina sp	1	<b> </b>		
Paracladopelma sp	1	<u>†</u>		
Parakiefferiella hathenhila	+	+		<b></b>
Paratanutarque en	·			
Phaenoncestra an				
Phaenopsectra sp.	<b>+</b>			·
Polypealium sp.	+			
Polypedilum cf. convictum	<b></b>	ļ		
Potthastia sp.	L			<b>.</b>
Procladius sp.				
Prodiamesa sp.				
Psectrocladius sp.				
Psectrotanypus sp.				
Rheocricotopus sp.	1	•		
Rheotanytarsus sp.	<u>+</u>	•		
Synorthocladius semivirens	1	<u> </u>		
Dintenocrating semitariens		<u></u>		



Table 8. Aquatic Benthic Macroinvertebrates from Station 12, Elmendorf Air Force Base, 9/05/92.

Manual an		7	· · · · · · · · · · · · · · · · · · ·	1
Tanypus sp.			• • • • •	· · · · · · · · · · · · · · · · · · ·
Tally carsus sp.			• • • • • • • • • • • • • • • • • • • •	· · · · · · · · · · · · · · · · · · ·
Empididae				*
Cholifora cn		· •	•	···
Mugaidao		·	•	
Muscidae				•
Bruchodidao		· <del>  </del>	·	ł
Poricona an		· <del> </del>	+	<u>↓</u> ┩
Cimuliidaa		+		
Simullidae				
minulida		<u> </u>	<u> </u>	<b>_</b>
				·
Dicranota sp.				I
Ormosia sp.				
Coleoptera		+		
Dytiscidae		<b> </b>	·   · · · · · · · · · · · · · · · · · ·	l
Acililus sp.		<b></b>	÷	<b>├</b> ────────────────────────────────────
Dytiscus sp.			+	·
			+	
MULLUSCA			<u> </u>	
			+	<u> </u>
			+	
Gyraulus (Torquis ) sp.		+	+	
			<u> </u>	
Dicidium milium				
		·		
TOTAL NUMBER OF ORCANISCOS	69	65	21	155
TOTAL NUMBER OF ORGANISMS		- 05	61	100
TOTAL NUMBER OF SPECIES	11	6	10	15
		1		
			· · · · · · · · · · · · · · · · · · ·	
		1	1	1
		1		
		1	1	t
			1	
	- +		1	1
		1	1	
			1	

Table 9. Aquatic Benthic Macroinvertebrates from Station 4, Elmendorf Air Force Base, 6/03/92.

SPECIES	STA 4	STA 4	STA 4	STA 4
	REP1	REP2	REP3	TOTAL
NEMATODA				
ANNELIDA			۱ ۲	
Oligochaeta		L		
Lumbriculidae			44	44
Kincaidiana hexatheca			13	13
Lumbriculus sp.	11	3		4
Niadidae	·		8	8
Nais sp.		1		1
Nais communis	ļ		12	12
Nais cf.simplex			-	
Pristinella sp.				
Slavina appendiculata		ļ	4	4
Stylaria lacustris			4	4
Tubificidae w.h.c.				
Tubificidae w.o.h.c.			4	4
Limnodrilus sp.				
Limnodrilus cf. hoffmeisteri	1			1
Rhyacodrilus montana	7	LL		8
PLATINELMINTHES				
Triciadida				
ARTHODODA				
Arachnoidea	<u> </u>			
Hydracarina				
Crustacea				
Amphipoda				
Talitridae				
Hyalella azteca			1	1
Cladocera				
Daphnidae				
Daphnia cf. pulex				
Copepoda				
Cyclopoida				
Ostracoda				
Insecta				
Ephemeroptera				
Baetidae				
Baetis sp.				
Ephemerellidae				
Drunella doddsi				
Ephemerella inermis				
Heptageniidae				
Cinygmula sp.		l		
Epeorus sp.				
Stenonema sp.		1		1
Plecoptera				
Choroperlidae				
Suwallia sp.		<u> </u>		



Table 9. Aquatic Benthic Macroinvertebrates from Station 4, Elmendorf Air Force Base, 6/03/92.

		·····		
Nemouridae				
Zapada sp.	+			
Perlodidae				
Isoperla sp.			· · · · · · · · · · · · · · · · · · ·	
Heteroptera		·····		
Corixidae				
Arctocorisa sp.	L			
Corisella sp.				
Trichoptera	L			
Glossosomatidae				
Glossosoma sp.	L			
Hydropsychidae				
Cheumatopsyche sp.	<b>_</b>			
Limnephilidae				
Ecclisomyia sp.	ļ			
Nemotaulius hostilis				
Rhyacophilidae				
Rhyacophila sp.				
Diptera				
Ceratopogonidae				
Bezzia/Palpomyia sp. gp.	1		1	2
Chironomidae		9	36	45
<u> </u>				
Cardiocladius sp.				
Chaetocladius sp.				
Chironominae A				
Chironomus sp.				
Cricotopus sp.			59	59
Diamesa sp.		L		
Dicrotendipes sp.				
Diplocladius cultriger				
Eukiefferiella sp.				
Eukiefferiella				
cf. claripennis sp.gp.				
Eukiefferiella gracei sp.gp.				
Glyptotendipes sp.				
Orthocladiinae A				
Orthocladiinae B				
Orthocladius sp.				
Pagastia sp.				
Pagastiella sp.				
Paramerina sp.				
Paracladopelma sp.			5	5
Parakiefferiella bathophila				
Paratanytarsus sp.			39	39
Phaenopsectra sp.				
Polypedilum sp.				
Polypedilum cf. convictum			5	5
Potthastia sp.				
Procladius sp.	1	23	20	44
Prodiamesa sp.				
Psectrocladius sp.		8	25	33
Psectrotanypus sp.				
Rheocricotopus sp.				
Rheotanytarsus sp.		4		4
Synorthocladius semivirens		· · · · · · · · · · · · · · · · · · ·		

Table 9. Aquatic Benthic Macroinvertebrates from Station 4, Elmendorf Air Force Base, 6/03/92.



<u>ىي مىڭ الارىمى بىلىكى بىلەر بىرىمىيە بىلىكە تەكەر بىرىمىيە بىلەر بىرىمىيە بىرىمىيە بىلەر بىرىمىيە بىلەر بىلەر ب</u>				
Tanypus sp.				
Tanytarsus sp.	40	333	356	729
Tvetenia bavarica sp.gp.				
Empididae				
Chelifera sp.				
Muscidae				
Limnophora sp.				
Psychodidae				
Pericoma sp.				
Simuliidae				1
Cnephia sp.				
Tipulidae				
Dicranota sp.				
Ormosia sp.				
Coleoptera			Ι	
Dytiscidae				
Acililus sp.				
Dytiscus sp.				
MOLLUSCA				
Gastropoda				
Planorbidae				
Gyraulus (Torquis ) sp.			4	4
Pelecypoda				
Sphaeriidae		_		
Pisidium milium	1	2	3	6
TOTAL NUMBER OF ORGANISMS	52	385	643	1080
TOTAL NUMBER OF SPECIES	7	10	19	25





Table 10. Aquatic Benthic Macroinvertebrates from Station 4, Duplicate Samples, Elmendorf Air Force Base, 6/03/92.

SPECIES	STA 4D	STA 4D	STA 4D	STA 4D
	REP4	REP5	REP6	TOTAL
	+			
ANNELIDA	+			··· ··· · · · · · · · · · · · · · ·
Oligochaeta				
Lumbriculidae	+			
Kincaidiana hexatheca	1		2	3
Lumbriculus sp.	11		2	13
Niadidae				
Nais sp.		1		1
Nais communis				
Nais cf.simplex	3			3
Pristinella sp.				
Slavina appendiculata	ļ			
Stylaria lacustris				
Tubificidae w.h.c.	+	1	4	5
Tubificidae w.o.h.c.		2	5	7
Limnodrilus sp.	+			
Limnodrilus cr. norrmeisteri	·}			
Rhyacodrifus montana				
DI ATTYHEI MINTHES	╂			
Turbellaria	ł			
Tricladida				
ARTHOPODA	1			
Arachnoidea				
Hydracarina				
Crustacea				
Amphipoda				
Talitridae				
Hyalella azteca	4		ļ	4
Cladocera	ļ			
Daphnidae			<u>}</u>	
Daphnia Cr. pulex	+			
Cyclopeida	A		· · · · · · · ·	
Ostracoda				*
	+	<u> </u>	<u> </u>	
Insecta	1		┨─────────	<b> </b>
Ephemeroptera				
Baetidae				
Baetis sp.				
Ephemerellidae				
Drunella doddsi	1			
Ephemerella inermis				
Heptageniidae				
Cinygmula sp.				
Epeorus sp.				
Stenonema sp.				
Plecoptera				
Choroperlidae				
Suwallia sp.				

### Table 10. Aquatic Benthic Macroinvertebrates from Station 4, Duplicate Samples, Elmendorf Air Force Base, 6/03/92.



<b></b>				
Nemouridae			· · · · · · · · · ·	
Zapada sp.		ļ	L	
Perlodidae	L		L	
Isoperla sp.			l	l
Heteroptera				
Corixidae	3			3
Arctocorisa sp.				
Corisella sp.	1			1
Trichoptera				1
Glossosomatidae	1			
Glossosoma sp.			1	1
Hydropsychidae	1		1	1
Cheumatopsyche sp.	1	1	1	1
Limnephilidae	1		1	
Ecclisomyia sp.	1	1	1	1
Nemotaulius hostilis	1	1	1	1
Rhyacophilidae	1	†	<u>†</u>	1
Rhyacophila sp.	1	1	<u> </u>	+
Diptera		1	1	1
Ceratopogonidae		†	1	1
Bezzia/Palpomvia sp. gp.	8	5	1	14
Chironomidae	37	10	† <b>-</b>	47
Brillia sp.	+	<u> </u>	1	
Cardiocladius sp.	<u>+</u>		<u> </u>	<u>}</u>
Chaetocladius sp.	5	1	1	5
Chironominae A	1	1	+	† <u>-</u>
Chironomis sp	+	+	t	<u>†</u>
Cricotopus sp	+		<u> </u>	1
Diamesa sp.	+	+	<u>†                                    </u>	+
Dicrotendines sn	<u> </u>	+	†·	
Diplocladius cultriger	2	+	+	2
Eukiefferiella sn	<u>+</u>	<u> </u>		
Enkiefferiella	+	+	+	1
cf. clarinennis en m	+	+	+	+
Eukiefferielle gracei en m	<u>+</u>	+	+	<u>+</u>
Giventerierra gracer sp.yp.	+	+	+	
Orthocladiinao A	<u>+</u>		+	+
Orthogladiinae R	+		+	
Orthogladius en	+	<u> </u>	<u> </u>	1
Pagagtia co	+	+	+	<u>+</u>
Pagastialla sp		·{	<u>+</u>	1
Paramerina co		<u> </u>		
Paradaderalma sp.	+	+	<b> </b>	+
Paraciadopeima sp.	6	<b>+</b>	+	4
Parakierreriella Datnophila	<u> </u>	<u> </u>		+
Paratanytarsus sp.	<b>+</b>	<u> </u>	·	+
Phaenopsectra sp.	+	····		
Polypedilum sp.	ļ	l	·	+
Polypedilum cf. convictum	ļ		<b>_</b>	4
Potthastia sp.			<b> </b>	+
Procladius sp.	7	21	<u> </u>	28
Prodiamesa sp.	ļ		l	l
Psectrocladius sp.	17	7	ļ	24
Psectrotanypus sp.	L	3	ļ	3
Rheocricotopus sp.	<u> </u>			
Rheotanytarsus sp.	21			21
Synorthocladius semivirens				



Table 10. Aquatic Benthic Macroinvertebrates from Station 4, Duplicate Samples, Elmendorf Air Force Base, 6/03/92.

Tanypus sp.				
Tanytarsus sp.	172	317	5	494
Tvetenia bavarica sp.gp.				
Empididae			1	
Chelifera sp.				
Muscidae				
Limnophora sp.				
Psychodidae				
Pericoma sp.				
Simuliidae				
Cnephia sp.				
Tipulidae				
Dicranota sp.				
Ormosia sp.				
Coleoptera				
Dytiscidae				
Acililus sp.	1		L	1
Dytiscus sp.				
MOLLUSCA				
Gastropoda			ļ	
Planorbidae		<b>_</b>	I	
Gyraulus (Torquis ) sp.			ļ	
Pelecypoda				
Sphaeriidae			ļ	
Pisidium milium		<u></u>		
TOTAL NUMBER OF ORGANISMS	301	367	19	687
		1		
TOTAL NUMBER OF SPECIES	18	9	6	22
			+	
			<b>_</b>	
			+	
		· · · · · · · · · · · · · · · · · · ·	<b> </b>	-+
			<u> </u>	
			+	
		· <b> </b>	<b>_</b>	
			+	
		+	·}	

Table 11. Aquatic Benthic Macroinvertebrates from Station 4, Elmendorf Air Force Base, 8/31/92.

SPECIES	STA 4	STA 4	STA 4	STA 4
	REP1	REP2	REP3	TOTAL
	t			
NEMATODA	+			··· · · · · · · · · · · · · · · · · ·
		<b>+</b>		
ANNELIDA				
Oligochaeta	1			
Lumbriculidae	117	3		120
Kincaidiana hexatheca		5	2	7
Lumbriculus sp.			5	5
Niadidae		<b>1</b>		
Nais sp.			10	10
Nais communis				
Nais cf.simplex	1			
Pristinella sp.			7	7
Slavina appendiculata				
Stylaria lacustris	1		· · · · · · · · · · · · · · · · · · ·	
Tubificidae w.h.c.	1		7	7
Tubificidae w.o.h.c.	1	1		
Limnodrilus sp.	1			
Limnodrilus cf. hoffmeisteri				
Rhyacodrilus montana	1	<u> </u>	·	
				<b></b>
PLATYHELMINTHES	1			· · · · · · · · · · · · · · · · · · ·
Turbellaria	1			
Tricladida	1			· · · · · · · · · · · · · · · · · · ·
ARTHOPODA				
Arachnoidea		[		
Hydracarina		1	1	2
Crustacea				
Amphipoda				
Talitridae				
Hyalella azteca	14		1	15
Cladocera				
Daphnidae				
Daphnia cf. pulex			3	3
Copepoda				
Cyclopoida				
Ostracoda			1	1
	L	•		
Insecta	L			
Ephemeroptera				
Baetidae				
Baetis sp.	11			1
Ephemerellidae	L			
Drunella doddsi				
Ephemerella inermis				
Heptageniidae	L		· · · · · · · · · · · · · · · · · · ·	
Cinygmula sp.				
Epeorus sp.				
Stenonema sp.				
Plecoptera				
Choroperlidae				
Suwallia sp.				





Table 11. Aquatic Benthic Macroinvertebrates from Station 4, Elmendorf Air Force Base, 8/31/92.

Nomouridae	1	· · · · · · · · · · · · · · · · · · ·	1	[]
Zanada en	+			
Lapada Sp.	· · · · · · · · · · · · · · · · · · ·	+		·
	+·		·	
lisoperia sp.		+	+	
	<b>_</b>			
	<u>∔</u>			
Arctocorisa sp.	<u></u>		+	
Corisella sp.		+		
Trichoptera				
Glossosomatidae	<u> </u>	-	·	
Glossosoma sp.				
Hydropsychidae	ļ	+		
Cheumatopsyche sp.			<b></b>	
Limnephilidae				
Ecclisomyia sp.	ļ			
Nemotaulius hostilis			L	
Rhyacophilidae			· · · · · · · · · · · · · · · · · · ·	
Rhyacophila sp.		ļ	ļ	
Diptera	ļ			
Ceratopogonidae	L		l	
Bezzia/Palpomyia sp. gp.	2	1	2	5
Chironomidae	5	3	1	9
Brillia sp.			L	
Cardiocladius sp.				
Chaetocladius sp.			L	
Chironominae A			L	
Chironomus sp.			L	
Cricotopus sp.			1	1
Diamesa sp.				
Dicrotendipes sp.	·L	11	L	11
Diplocladius cultriger				
Eukiefferiella sp.				
Eukiefferiella	·			
cf. claripennis sp.gp.				
Eukiefferiella gracei sp.gp.			L	
Glyptotendipes sp.	1			1
Orthocladiinae A				
Orthocladiinae B	<u> </u>		L	
Orthocladius sp.				
Pagastia sp.				
Pagastiella sp.				
Paramerina sp.				
Paracladopelma sp.	L	<u> </u>		
Parakiefferiella bathophila				
Paratanytarsus sp.				
Phaenopsectra sp.		1		
Polypedilum sp.				L
Polypedilum cf. convictum			ļ	
Potthastia sp.	3	35		38
Procladius sp.	23		6	29
Prodiamesa sp.	L		L	
Psectrocladius sp.	1	3	7	11
Psectrotanypus sp.				
Rheocricotopus sp.			l	
Rheotanytarsus sp.		3	L	3
Synorthocladius semivirens	<u> </u>		l	

Table 11. Aquatic Benthic Macroinvertebrates from Station 4, Elmendorf Air Force Base, 8/31/92.



Tanyous sp.		·····		
Tanytarsus sp.	13	216	6	235
Tvetenia bavarica sp.gp.		+		
Empididae				
Chelifera sp.	+	+	1	1 1
Muscidae				
Limnophora sp.			+	
Psychodidae				
Pericoma sp.		1	<b>_</b>	
Simuliidae				
Cnephia sp.				1
Tipulidae			1	
Dicranota sp.		1		
Ormosia sp.				
Coleoptera				
Dytiscidae				1
Acililus sp.				
Dytiscus sp.				
MOLLUSCA				
Gastropoda				
Planorbidae				
Gyraulus (Torquis ) sp.				
Pelecypoda			<u> </u>	
Sphaeriidae				
Pisidium milium		20		· 20
TOTAL NUMBER OF ORGANISMS	180	301	61	542
TOTAL NUMBER OF SPECIES	10	11	16	23
		· <b> </b>		
		·		
·				
			·	+
			<u> </u>	
		+		
		+	+	+
	·	· <del> </del>	<b></b>	
			1	



SPECIES	STA 5	STA 5	STA 5	STA 5
	REP1	REP2	REP3	TOTAL
NEMATODA	1			1
ANNELIDA				
Oligochaeta				
Lumbriculidae	{·		1	1
Kincaidiana hexatheca				
Lumbriculus sp.				
Niadidae	· ·			
Nais sp.				
Nais communis	······			<u> </u>
Nais cf.simplex				
Pristinella sp.	f			
Slavina appendiculata				
Stylaria lacustris				
Tubificidae w.h.c.				
Tubificidae w.o.h.c.				· · · · ·
Limnodrilus sp.				
Limnodrilus cf. hoffmeisteri				
Rhyacodrilus montana				
				· · · · · · · · · · · · · · · · · · ·
LATYHELMINTHES				P&K
Turbellaria				······
Tricladida				· · · · · · · · · · · · · · · · · · ·
RTHOPODA				
Arachnoidea				<u> </u>
Hydracarina				
Crustacea				
Amphipoda				
Talitridae				
Hyalella azteca				
Cladocera				
Daphnidae				
Daphnia cf. pulex	11	1		12
Copepoda				
Cyclopoida				
Ostracoda				
Insecta				
Ephemeroptera				
Baetidae				
Baetis sp.				
Ephemerellidae				
Drunella doddsi				
Ephemerella inermis				
Heptageniidae				
Cinygmula sp.				
Epeorus sp.				
Stenonema sp.				
Plecoptera				
Choroperlidae				
Suwallia sp.		·		

Table 12. Aquatic Benthic Macroinvertebrates from Station 5, Elmendorf Air Force Base, 6/02/92.

### Table 12. Aquatic Benthic Macroinvertebrates from Station 5, Elmendorf Air Force Base, 6/02/92.



	······	T		
Nemouridae		+	+	
Zapada sp.				
Perlodidae			L	
Isoperla sp.		ļ		
Heteroptera		l		
Corixidae				
Arctocorisa sp.	1			1
Corisella sp.				
Trichoptera				
Glossosomatidae				
Glossosoma sp.	1	T		
Hydropsychidae	1	1	-	
Cheumatopsvche sp.		†	1	<u>                                      </u>
Limnephilidae	-	1		1
Ecclisomvia sp.		1	1	+
Nemotaulius hostilis	+	+	- <del> </del>	+
Rhyacophilidae	+	1		1
Rhyacophila en	+	+	-	+
Diptora		+	·	+
Ceratopogonidao	+	+	+	4
Boggia/Dalbomuia co	+	<u> </u>	+	+
Chironomidae		<u> </u>	+	
		<u>↓</u>		
DIIIIIa Sp.	+	ł	+	+
Charalociadius Sp.		<b> </b>	+	·
Chaetocladius sp.		<u> </u>		÷
Chironominae A	+	·	+	<u> </u>
Chironomus sp.	+	+	3	
Cricotopus sp.	+		·	
Diamesa sp.			+	ļ
Dicrotendipes sp.	+	<b></b>	+	
Diplocladius cultriger	<u> </u>		-	
Eukiefferiella sp.		1		
Eukiefferiella		<u></u>		ļ
cf. claripennis sp.gp.		ļ		ļ
Eukiefferiella gracei sp.gp.	L		ļ	
Glyptotendipes sp.	1		2	3
Orthocladiinae A				
Orthocladiinae B				
Orthocladius sp.				
Pagastia sp.				
Pagastiella sp.				
Paramerina sp.				
Paracladopelma sp.			1	
Parakiefferiella bathophila		T	2	2
Paratanytarsus sp.			10	10
Phaenopsectra sp.	1	1	2	3
Polypedilum sp.		<u>†                                    </u>		
Polvpedilum cf. convictum	+	1		11
Potthastia sp.	+			
Procladius sp	1	<u>+</u>	3	3
Prodiamesa sp		<u>+</u>	+	+
Depetrocladius en	+	2	+	2
Prectrotaurus sp.		<u> </u>	+	²
Phenericatory and	<u> </u>	ł	+	
Rneocricotopus sp.	·	+	+	1
kneotanytarsus sp.	<u> </u>	2	<u> </u>	+ <u>+</u>
Synorthocladius semivirens			<u> </u>	

			·····	
Tanypus sp.				
Tanytarsus sp.	5	11	132	148
Tvetenia bavarica sp.gp.				
Empididae			1	
Chelifera sp.				
Muscidae				
Limnophora sp.				
Psychodidae				
Pericoma sp.				
Simuliidae				
Cnephia sp.				
Tipulidae				
Dicranota sp.				
Ormosia sp.				
Coleoptera				
Dytiscidae				
Acililus sp.				
Dytiscus sp.	1	1		2
MOLLUSCA				
Gastropoda				
Planorbidae				
Gyraulus (Torquis ) sp.				
Pelecypoda				
Sphaeriidae				
Pisidium milium				
TOTAL NUMBER OF ORGANISMS	23	19	170	212
TOTAL NUMBER OF SPECIES	7	7	10	15
		1		
			L	
			l	l

Table 12. Aquatic Benthic Macroinvertebrates from Station 5, Elmendorf Air Force Base, 6/02/92.

Table 13. Aquatic Benthic Macroinvertebrates from Station 5, Elmendorf Air Force Base, 8/31/92.

SPECIES	STA 5	STA 5	STA 5	STA 5
	REP1	REP2	REP3	TOTAL
NEMATODA				
	+		······································	
ANNELIDA	+			· · · · · · · · · · · · · · · · · · ·
Oligochaeta	+			
Lumbriculidae	A			Α
Kincaidiana hevatheca				
Lumbriculus en	+			
Niadidae	+			
Naig cp	A		0	12
Nais sp.	*****	·	0	12
	+			
Pristinella sp.	<u> </u>	<u>↓</u>		<b>L</b>
Slavina appendiculata		l		Į
Stylaria lacustris				
Tubificidae w.n.c.				
Tubificidae w.o.h.c.	· · · · · · · · · · · · · · · · · · ·			
Limnodrilus sp.				
Limnodrilus cf. hoffmeisteri	<u> </u>			
Rhyacodrilus montana				
PLATYHELMINTHES				
Turbellaria				
Tricladida	l			
	L			
ARTHOPODA				
Arachnoidea				
Hydracarina				
Crustacea				
Amphipoda				
Talitridae				
Hyalella azteca				
Cladocera				
Daphnidae				
Daphnia cf. pulex	1	3		4
Copepoda				
Cyclopoida				
Ostracoda	1	1		2
Insecta				
Ephemeroptera				
Baetidae				
Baetis sp.				
Ephemerellidae				
Drunella doddsi	1			t
Ephemerella inermis	<u> </u>			1
Heptageniidae	1			
Cinvomula sp	+	{		
Epeorus sp	1			
Stenonema sp	1	<b> </b>	<u> </u>	t
Discontora	+			
Choroporlidae	+			<b>├</b> ───
	+	·····	<b> </b>	·
Suwallia Sp.		L	L	L



Nemouridae				
Zapada sp.		<b>*</b>	<b>,</b>	
Perlodidae		<b>}</b>	}	
Isoperla sp.				
Heteroptera		· · · · · · · · · · · · · · · · · · ·		
Corixidae	· · · · · · · · · · · · · · · · · · ·	<u></u>		
Arctocorisa sp	+	+	<u>↓</u>	
Coricella sp.		<u> </u>	<u></u>	
Trichoptera			<b>-</b>	
	+	<u>↓</u> ·	<u> </u>	
	+	<b> </b>		ļ
Giossosoma sp.				
hydropsychidae				
Cneumatopsyche sp.	+			
Limnephilidae			• ·····	
Ecclisomyia sp.	+	ļ		
Nemotaulius hostilis		<b></b>		
Rhyacophilidae		ļ	ļ	
Rhyacophila sp.		L	ļ	
Diptera	.l	ļ		
Ceratopogonidae	.l			
Bezzia/Palpomyia sp. gp.				
Chironomidae	1		1	1
Brillia sp.				
Cardiocladius sp.				
Chaetocladius sp.				
Chironominae A				
Chironomus sp.	1	1	5	6
Cricotopus sp.			1	1
Diamesa sp.	1	·		
Dicrotendipes sp.	2			2
Diplocladius cultriger	1		· · · · · · · · · · · · · · · · · · ·	1
Eukiefferiella sp.				<u>↓</u>
Eukiefferiella			·····	
cf. claripennis sp.gp.	+			
Eukiefferiella gracei sp.gp.		<u> </u>		
Glyptotendipes sp	1			
Orthocladiinae A		·····	1	
Orthocladiinae B	+	<u> </u>		
Orthocladius sp	+	<u> </u>	<u> </u>	<u> </u>
Pagastia en	+	<u>+</u>		
Pagastiella en	+		<u> </u>	·····
Paramerina on	+	<u> </u>	1	1
Paradiadapalan an		}	<b>↓↓</b>	<b>↓</b>
Paraciadopeima sp.			<u> </u>	<u> </u>
Parakierreriella Datnophila	-+	<u> </u>		<u>-</u>
Paratanytarsus sp.	+			
Phaenopsectra sp.	12	27	1 7	46
Polypedilum sp.	- <b> </b>	<b> </b>	L	ļ
Polypedilum cf. convictum		ļ		
Potthastia sp.	l			
Procladius sp.	22	15	3	40
Prodiamesa sp.				
Psectrocladius sp.				
Psectrotanypus sp.	52	34	31	117
Rheocricotopus sp.				
Rheotanytarsus sp.		1	6	7
Synorthocladius semivirens	1	T		

Table 13. Aquatic Benthic Macroinvertebrates from Station 5, Elmendorf Air Force Base, 8/31/92.

Table 13. Aquatic Benthic Macroinvertebrates from Station 5, Elmendorf Air Force Base, 8/31/92.



Tanypus sp.		5		5
Tanytarsus sp.	7	12	13	32
Tvetenia bavarica sp.gp.				
Empididae		1		
Chelifera sp.		1		
Muscidae		1		
Limnophora sp.				
Psychodidae				
Pericoma sp.				
Simuliidae				
Cnephia sp.				
Tipulidae				
Dicranota sp.				
Ormosia sp.				
Coleoptera				
Dytiscidae				
Acililus sp.				
Dytiscus sp.				
MOLLUSCA				
Gastropoda				
Planorbidae				
Gyraulus (Torquis ) sp.				
Pelecypoda				
Sphaeriidae				
Pisidium milium				
TOTAL NUMBER OF ORGANISMS	107	99	76	282
TOTAL NUMBER OF SPECIES	11	9	10	17
			1	
			1	
		ļ		
			.l	
		ļ	-	
		ļ		
		<u> </u>	<u> </u>	
		<u> </u>		





SPECIES	STA 6	STA 6	STA 6	STA 6
	REP1	REP2	REP3	TOTAL
TEMATODA			·	
		·		
ANNELIDA		ļ		
Oligochaeta	<b>_</b>			
Lumbriculidae		25	31	56
Kincaidiana hexatheca	2	10	10	22
Lumbriculus sp.				
Niadidae				
Nais sp.				
Nais communis				
Nais cf.simplex		ļ		
Pristinella sp.			·	
Slavina appendiculata				
Stylaria lacustris			=	
Tubificidae w.h.c.	1	5		6
Tubificidae w.o.h.c.	1	2	31	34
Linnodrilus sp.		5	135	140
Limnodrilus cf. hoffmeisteri				
Rhyacodrilus montana				
	<b> </b>			
PLATTHELMINTHES	<u> </u>			
Turbellaria			<u> </u>	
Triciadida				
Arachpoidea	<u> </u>	<del> </del>		
Nudracarina		<u> </u>		
nyulacalina		l		
Crustação				
Amphipoda				
Talitridae		· · · · · · · · · · · · · · · · · · ·		
Hyalalla aztaca				
Cladocera				
Danbnidae				
Daphnia cf nuler	<u> </u>	<u> </u>		
Copepoda				
Cvclopoida	<u> </u>			· · ···
Ostracoda				
Insecta				
Ephemeroptera		<u> </u>		
Baetidae	1	↓		• • • • • • • • • • • • • • • • • • • •
Baetis sp	1			
Ephemerellidae	<u> </u>			ł
Drupella doddsi				
Enhemerella inermis		<u> </u>		
Hontagonijdao		<u> </u>		<u> </u>
Cinvomila en				
	<u> </u>		· <u></u>	
Ctopopoma cp	ł			<u> </u>
Scenonema sp.		<u> </u>		
Charaparlidaa	<u>+</u>		<u> </u>	
Churallia co	<u> </u>	l		<u> </u>
Suwallia sp.	L	L	l	L

Table 14. Aquatic Benthic Macroinvertebrates from Station 6, Elmendorf Air Force Base, 6/03/92.

## Table 14. Aquatic Benthic Macroinvertebrates from Station 6, Elmendorf Air Force Base, 6/03/92.



Namaunidas	T	<u> </u>	- <u>T</u>	
Nemouridae	.}	-+	··· · ·	
Zapada sp.				
Perlodidae				_
Isoperla sp.	ļ		·	
Heteroptera	ļ			
Corixidae				L
Arctocorisa sp.				
Corisella sp.	]		1	
Trichoptera	1	T		
Glossosomatidae	1		1	
Glossosoma sp.	1		1	1
Hydropsychidae	1	1	1	1
Cheumatopsyche sp.	1			1
Limnephilidae	1	1	1	
Ecclisonvia sp.	1		1	
Nemotaulius hostilis	1			
Rhyacophilidae	<u>+</u>	+	+	+
Rhyacophila sp	+		-+	+
Dintera		+		· <del> </del> · · · · · · · · · · · · · · · · · · ·
Ceratonogonidae			· <del> </del> · · · · · · · · · · · ·	
Rezzia (Palaomia co co	+			
Dezzia/Palpomyla Sp. gp.	<b> </b>			4
Chironomidae	+		- <b></b>	-+ <u>-</u>
Brillia sp.	ł			+
Cardiociadius sp.	}	+		+
Chaetocladius sp.	+ 1		61	63
Chironominae A	1	<u> </u>		2
Chironomus sp.	8		12	20
Cricotopus sp.	2		6	8
Diamesa sp.	ļ			
Dicrotendipes sp.	L	·   · · · · · · · · · · · · · · · · · ·		
Diplocladius cultriger	L.			
Eukiefferiella sp.				
Eukiefferiella	L			1
cf. claripennis sp.gp.	I			ļ
Eukiefferiella gracei sp.gp.				
Glyptotendipes sp.				
Orthocladiinae A	10			10
Orthocladiinae B	1	1		2
Orthocladius sp.	2		37	39
Pagastia sp.	1			1
Pagastiella sp.	1		1	
Paramerina sp.	4	4	1	8
Paracladopelma sp.	+		1	1
Parakiefferiella bathophila	1			+
Paratanytarsus en	+	+	+	+
Dhapponsectra en	65	2	485	552
Polymedilum en	<u> </u>	· <u> </u>		1 1
Polypeurium sp.	<u> </u>	·		· <b></b>
Potypeutium cr. convictum	ł		·	
Pottnastia sp.	<b>+</b> ·····		· <del> </del> · · · · · · · · · · · · · · · · · · ·	
Procladius sp.	+			+
Prodlamesa sp.	ļ		+	+ <u>+</u>
Psectrocladius sp.	<b> </b>		12	12
Psectrotanypus sp.	<b>_</b>			
Rheocricotopus sp.	l			
Rheotanytarsus sp.				
Synorthocladius semivirens				



Tanypus sp.		1		[
Tanytarsus sp.		5		5
Tvetenia bavarica sp.gp.		1		
Empididae		1		
Chelifera sp.			1	
Muscidae		1		
Limnophora sp.				
Psychodidae		1		
Pericoma sp.				
Simuliidae		1	T	
Cnephia sp.				
Tipulidae				
Dicranota sp.				
Ormosia sp.				
Coleoptera				
Dytiscidae			1	1
Acililus sp.				
Dytiscus sp.				
MOLLUSCA		<u> </u>		
Gastropoda				
Planorbidae				
Gyraulus (Torquis ) sp.				
Pelecypoda				
Sphaeriidae				
Pisidium milium				
TOTAL NUMBER OF ORGANISMS	100	62	826	988
TOTAL NUMBER OF SPECIES	14	12	13	22
				<u>+</u>
				<u> </u>
				<u> </u>
		Į		

Table 14. Aquatic Benthic Macroinvertebrates from Station 6, Elmendorf Air Force Base, 6/03/92.

				Ship	Creek			
	5MI01-M	5MI01-S	5MI02-M	5MI02-S	5MI03-M	5M103-S	5MI11-S	5MI12-S
5MI01-M	1	15.6	67.4	31.1	72.8	34.5	55.3	31.3
5MI01-S	15.6		16.1	44.8	11.8	43	19.7	43.5
5M102-M	67.4	16.1		30.9	77.2	42.7	53.2	30.6
5MI02-S	31.1	44.8	30.9		28.8	60.2	42.5	71
5MI03-M	72.8	11.8	77.2	28.8		35.5	58.8	32.3
5M103-S	34.5	43	42.7	60.2	35.5		52.7	49.6
5MI11-S	55.3	19.7	53.2	42.5	58.8	52.7		32.2
5MI12-S	31.3	43.5	30.6	71	32.3	49.6	32.2	
		Beaver	Pond/We	tland Pond	t			
	5MI04-J	5MI04-A	5MI05-J	5MI05-A	5MI006-J	•		
5MI04-J	1	82.3	77.1	18	8.5			
5M104-A	82.3		78.5	19.1	6.9			
5MI05-J	77.1	78.5		20.3	4.9			
5M105-A	18	19.1	20.3		21.1			
5M106-J	8.5	6.9	4.9	21.1				
Percent	r Similarity =	SUM OF (	iowest per	centage f	or each ta	XO)		
	Within ead	ch commu	inity taxa c	bundanc	e is tabulat	ted as a p	ercentage	·.
				• •			•••	

M = May, S = September, J = June, A = August

f

RAPID BIOASSESSMENT PROTOCOL 1 DATA-SPRING 1992

H.M.		A.1	1. Way in
052892 Document	#1-MI	That	modul
PHYSICAL CHARACTER FIELD D	IZATION/WATER QUAL ATA SHEET	YTI	
PHYSICAL CHARACTERIZATION			
RIPARIAN ZONE/WATER			
Predominant Surrounding Land Use:			
Forest Field/Pasture Agricultural Residential C	ommercial Industri	al Other M. Lit	tary
High Water Mark (m) Velocity 21 cfa Dam Presen	1: Yes No 🙀 🕚	Channelized: Yes N	^{lo} <b>X</b>
Canopy Cover: Open Partly Open Partly Shaded Si	naded		
SEDIMENT/SUBSTRATE:			
Sediment Odors: Normal Sewage Petroleum Chemical A	naerobic None	Other	
Sediment Oils: Absent Slight Moderate Profuse			
Sediment Deposits: Sludge Sawdust Paper Fiber Sand R	clict Shells Node	Other	
Are the undersides of stones which are not deeply embedded black? Y	œ № <u>X</u>		
Inorganic Substrate Components	O	rganic Substrate Components	i
		· ·	
Percent Composition			Percent Composition
Substrate Type Diameter in Sampling Area	Substrate Type	Characteristic	in Sampling Area
Bodrock	Detritus	Sticks, Wood.	90
Boulder >256mm (10 in.)		Materials (CPOM)	
Cobble 64-256mm (2.5-10 in.) 40 20 A	1		
Gravel 2-64mm (0.1-2.5 in.) 20 40 m	Muck-Mud	Black, Very Fine	10
Sand 0.06-2.00mm (gritty) 40	1	Organic (110M)	
Silt 0.00406mm	Mart	Grey, Shell	1
Clay <0.004mm (slick)			
WATER QUALITY			
Stream Type: Coldwater Warmwater			
Water Odors: Normal Sewage Petroleum Chemical N	one Other		
Water Surface Oils: Slick Sheen Globs Flecks None			
Turbidity: Clear Slightly Turbid Turbid Opaque W	/ater Color		
Some sediment transport (fine) er	n water Colum	m cousing a	alight
tueliding 7 Ph -	6.34 (Tery 5.6%	c) ( wote-	
Water Temp 6.9 C ( A CD D.O:	12.50	Chen	
Cond 58 un has juster chim Cond?	58 unhas	1 96 0192	
0H - 5.8 052692			
Deoth	of River avera	a - few unchat in	riffle preus
to 3 f	t in cut bank h	and Chute Areas	
Figure 5.1-1. Physical Characterization/Water Quality Field	Data Sheet for use w	ith all Rapid Bioassess	ment Protocols.
MI= MACroinvertebrates Width	- Approx 5000 60	14	

4

-

Document # 2-MT

Page 2 cf2 .

-

4					
		31121123UB	2007	1181	1004
÷	•Bottom substrated available cover	Greater than 50% cubble. Gravel, submerged logs. undercut banks, or other stable habitet. 16-20	JO-SON FUBBIO, GEAVOL of othor stable habitet. Adoquate habitet. 11 (5)	10-10% rubble, gravel or other stable habitat. Mabitat availability less then desirable 6-10	Less them 10% rubble gravel of other stable habitat. Lack of habitat is obvious. 0-5
~ ~	Eaboddodnoss (b)	Gravel, cobble, and boulder particles are between 0 and 25 A autreunded by fine aediaent 16-20	beutder peries and beutder peries and betrenn 23 and 50 (	Gravel, cobble, and boulder particies are briven 50 and 75 1 surrounded by fine fello	dravel, cobble, and beulder particise are ever 75 1 surreunded by fine sediment
	\$0.15 cms (5cfs) - "Floyd ₎ at rop. lou flou ^d d	Cald 10.05 cms (2 cfa) Macm 10.15 cms (5 cfa) 10-20	0.03-0.05 cms (1-2 cfs) 0.03-0.15 cms (2-5 cfs) 11-15	0.01-0.03 cas 1.5-1 cfs1 0.03-0.05 cas 11-2 cfs1 6-10	(0.01 cms (.5 cfs) (0.03 cms (1 cfs) 0-5
	ac 30.15 cma (3cfa) ↔ Valocity/depth	Blev ((0.3 m/s), deep (20.3 m); alov, ahallov (20.3 m); fast (20.3 m/s), dest (20.3 m/s), dest (20.1 m/s), d	Only $3$ of the 4 habitat categories present (aissing rif(195 or runs receive lever score than aissing pools). (11-15)	Only 2 of the 4 habitat categories present inising tiffles/runs receive lever scorel. 6-10	Deminated by ene velecity/depth cetegery (ustally peell. 0-5
<b>↓</b>	• Channel alteration ^(a)	Little of no enlarge- ment of islands of point bars, and/of no channelisation: 12-15	Some new Increase in bar formation, mostly from costma gravel; and/or some channelisation present. 8-11	Mederate dependation of now gravel, contro and on old and now bers; pools partially filled w/silt; and/or ombuh- monts on both banks. 4-7	Haavy deposits of fine material, increased be development: mest pool filled w/silt; and/or estensive channeliseti
	Betton scoyfing and deposition tion	Loss than 51 of the bottom affacted by scouting and deposition.	5-10% affacted. scur at constructions and where grades streps. same deposition in pools.	10-50% affocted. Deposite and scour at Destructions, con- strictions and bonds. Some filling of pools.	More than 90% of the bottom changing mostly year lang. Posis almost absont due to deposition. Oaly large rects in riffle argened. O-1

Habitat Assessment Field Data Sheet for use with all Rapid Bioassessment Protocols.

Page 2012

•

Unstable. Rany stoded ates. Side stopes 560 commen. "Rav" atess frequent along straight sections and bende. Over 30% of the atream-bank has no vegetation and deminant material is soil, rock, bridge ascerials, culvers, Less than 251 of the streambank surfaces covered by vegetation. gravel, of larger material. :-0 ~-0 ~-0 ~-0 atraight atream. Generally all flat vater or shallow tiffle. Peer >25. Essentially a er sine tellinge. 1004 habitat. Mederately unstable. Underate frequency and entry sites of erectional areas. Elder slopes up to 661 erection betweetel light entry erection petential 15-25. Occassional riffie et bond. Bettob centeurs provide some habitat. <u>(-</u>) 2-2 1 25-49% of the stream-bank surfaces covered by vegetation, gravel. er larger material. during extreme high flow. Dominant vegetation is grass er forbes. 111 MABITAT ASSESSMENT FIELD DATA SHEET (CONC.) Categery Mederately stable. Infrequent, small areas of ereaten mattly healed ever. Bide slepps up to 40% on one bank. Slight petential in artram fleeds. Ø 0 50-79% of the streambank 11-1 ; 긙 7-15. Adequate depth in poels and ciffles. Bends provide habitat. surfaces covered by vegetation, gravel or larger material. Dominant vegetation is of tree ferm. 6000 Ö 5-7. Variety of habitat. Deep riffles and peels. 01-6 Ö 9-10 vegetation or boulders and cobbie: Stable. We evidence of erosion of bank failure. Side slopes gener-ally (30%, Little peterial for future problem. ß streambank surfaces cevered by Dominant vegetation is shrub. Excellent Over 101 of the 3000 111 Pool/fifto, run/bond ratio (distance between riftles divided by stream vidth) (a) Bank stability^(a) 9. Streamside cever Bank vegefåtive stability Mabitat Parameter Column Totals |. . .

(Cont.).

:

١

-----

. ....

.

.

•

State and a second

Ì

mindal	F	lapid Bioasse	ssment Protoc	ol I		
		Biosurvey F	ield Data Sheet			
RELATIVE ABUNDANCE Periphyton Filamentous Algae Macrophytes 0 0 = Absent/Not Observed		BIOTA 3 4 3 4 3 4 - Pare 2	Silmes Macroinvert Flah = Common	ebrates 0 1 0 1 3 = Abundant	2 3 4 2 3 4 2 3 4 4 - Dominant	
MACROBENTHOS QUAL	ITATIVE SAM	PLE LIST (Indicate Re	lative Abundance R - Re	re, C - Common, A - Abu	ndert, 0 - Cominant)	
Portiera	<u>R_</u> _	Anieopiera	<u>K</u>	Chironomidae	<u>A</u>	
Alexholmiothes	<u>K</u>	Lygopiera	<u>K</u>	Frecopiers	<u>A</u>	
Turbellaria		Coleontera		Tichontern		
Hirudines		Leoidontera		Other	<u>K</u>	
Oligochaeta		Sielidae			<u> </u>	
	9	Corydalidae				
Isopoda		Tipulidae	P			
Isopoda Amphipoda	2					
Isopoda Amphipoda Decepoda	<u> </u>	Empididae	Ê			
Isopoda Amphipoda Decapoda Gastropoda		Empididee Simuliidae	<u>P</u>			1
Isopoda Amphipoda Decepoda Gastropoda Bivalvia	RR	Empididae Simuliidae Tabanidae	R R			
Isopoda Amphipoda Decapoda Gastropoda Bivatvia	R R R	Empididae Simulidae Tabanidae Culicidae	R R C			
Isopoda Amphipoda Decepoda Gastropoda Bivatvia Rare < 3 Observations	R R R Common 3	Empididae Simuliidae Tabanidae Culicidae	R R C Abundant > 10	Domin	ant > 50 (Estimate)	

Biosurvey Field Data Sheet for use with Rapid Bioassessment Protocol I.


	Page 1 of 1
-se-oot	OUS-MI-01 Document # 4-ADI
1300 HRS	
052992	
mil made	he l
· · ·	INPAIRMENT ASSESSMENT SHEET
1.	Detection of impairment: Impairment detected No impairment
••	(Complete items 2-6) detected (Stop here)
2.	Biological impairment indicator:
	Benthic macroinvertebrates Other aquatic communities
	absence of EPT taxaPeriphyton
	dominance of tolerant groups filamentous
	low benchic abundance other
	IOU Taxa Ficaness nacrophytes
	Fish
3.	Brief description of problem:
	Year and date of previous surveys:
	Survey data available in:
4.	Cause: (indicate major cause) organic enrichment toxicants flow
	habitat limitations other
5.	Estimated areal extent of problem $(n^2)$ and length of stream reach
	affected (m), where applicable:
6.	Suspected source(s) of problem:
_	point course discharge (name type of facility location)
	construction site runoff
	combined sever outfall silviculture runoff
	animal feedlot
	urban runoff
	ground vater other
	unknovn
81	riefly explain:

.

Impairment Assessment Sheet for use with macroinvertebrate Rapid Bioassessment Protocols.

11201 MT-02	
052992	Document # 5-MI
PHYSICAL CHARACTER FIELD D	IZATION/WATER QUALITY ATA SHEET
PHYSICAL CHARACTERIZATION	
RIPARIAN ZONE/WATER	
Predominant Surrounding Land Use:	
Forest Field/Pasture Agricultural Residential # C	ommercial Industrial Other Golf Course
High Water Mark 21 (m) Velocity 21 \$ ps (1-5) Dam Preser	I: Yes No Channelized: Yes <u>K</u> No Some Amar
Canopy Cover: Open Partly Open Partly Shaded S	naded Sample Area
SEDIMENT/SUBSTRATE:	
Sediment Odors: Normal Sewage Petroleum Chemical A	nacrobic None Other
Sediment Oils: Absent Slight Moderate Profuse	
Sediment Deposits: Sludge Sawdust Paper Fiber Sand R	elict Shells Nore. Other
Are the undersides of stones which are not deeply embedded black? $\mathcal{A}$ Y	S X No_ Dome stores dot were digity
Inorganic Substrate Components	Organic Substrate Components
Percent Composition	Percent Composition
Substrate Type Diameter in Sampling Area	Substrate Type Characteristic in Sampling Area
Bedrock	Detritus Sticks, Wood.
Boulder >256mm (10 in.)	Materials (CPOM)
Cobble 64-256mm (2.5-10 in.) 5%	
Gravel . 2-64mm (0.1-2.5 in.) 705	Muck-Mud Black, Very Fine
Sand 0.06-2.00mm (gritty) 25%	Organic (FPOM) 2000
Silt 0.00406mm 5%	Marl Grey, Shell
Clay <0.004mm (slick)	Fragments
WATER QUALITY	
Stream Type: Coldwater Warmwater	
Water Odors: Normal Sewage Petroleum Chemical (No	me) Other
Water Surface Oils: Slick Sheen Globs Flecks (None)	
Turbidity: Clear Slightly Turbid Turbid Opaque W	iter Color
MI - Macroinvertebrote Somple	
* Dolf Course exotrem.	
brout from Beaver por (system) ale	at 0.6 teroto mike
Creek wedet in Sampling area 25 e 30	ff. are., Sample station larger 15 yes.
PH=6.57 (7.3°C) ? Somple	{
Could = TO makers 7.12 7 In 5.14 of	
D.O. = 12.8 mg/L ) 060192 MAP	OF Invert. Somple hausbins)
	(outik)

Figure 5.1-1. Physical Characterization/Water Quality Field Data Sheet for use with all Rapid Bioassessment Protocols.

ATLR28/066.51

045-MI - 02-5

OUS-MI-02



05 29 92 DUS - MT - 02

1

.

1					7 1 2
		HABITA	T ASSESSMENT FIELD DATA SHE	111	ma In
-			Catagury		
			0000	1161	7007
•	·Bottom substraff	Greater than 50% tubble. gravel, submerged logs, undercut banks, or other stable habitat. 15520	30-50% rubble, gravel of other stable habitat. Adequate habitat. 11-15	10-101 tubble, graval of other stable habitat. Nabitat availability less than desirable. 6-10	Loss than 101 rubble gravel of other stable habitat. Lack of habitat is obvieus.
~	Enboddedness ^(b)	Gravel, cobble, and boulder partiries are between 0 and 25 4 surreunded by fine sediment 16-20	Gravel, cobble, and boulder perticies are between 25 and 50 1 autrounded by fine $1\frac{3}{2}15$	Grevel, cobble, and beulder particies are betveen 50 and 75 1 aurreunded by fine rediment 6-10	dravel, cobble, and boulder partician are ever 79 t aucrounded by fine aediment 0-5
	60.15'cms (5cfs) - •Ployajat rop. lov flow ¹ aj	(10-20) (10-20) (10-20) (10-20) (10-20) (10-20) (10-20) (10-20) (10-20) (10-20) (10-20) (10-20) (10-20) (10-20) (10-20) (10-20) (10-20) (10-20) (10-20) (10-20) (10-20) (10-20) (10-20) (10-20) (10-20) (10-20) (10-20) (10-20) (10-20) (10-20) (10-20) (10-20) (10-20) (10-20) (10-20) (10-20) (10-20) (10-20) (10-20) (10-20) (10-20) (10-20) (10-20) (10-20) (10-20) (10-20) (10-20) (10-20) (10-20) (10-20) (10-20) (10-20) (10-20) (10-20) (10-20) (10-20) (10-20) (10-20) (10-20) (10-20) (10-20) (10-20) (10-20) (10-20) (10-20) (10-20) (10-20) (10-20) (10-20) (10-20) (10-20) (10-20) (10-20) (10-20) (10-20) (10-20) (10-20) (10-20) (10-20) (10-20) (10-20) (10-20) (10-20) (10-20) (10-20) (10-20) (10-20) (10-20) (10-20) (10-20) (10-20) (10-20) (10-20) (10-20) (10-20) (10-20) (10-20) (10-20) (10-20) (10-20) (10-20) (10-20) (10-20) (10-20) (10-20) (10-20) (10-20) (10-20) (10-20) (10-20) (10-20) (10-20) (10-20) (10-20) (10-20) (10-20) (10-20) (10-20) (10-20) (10-20) (10-20) (10-20) (10-20) (10-20) (10-20) (10-20) (10-20) (10-20) (10-20) (10-20) (10-20) (10-20) (10-20) (10-20) (10-20) (10-20) (10-20) (10-20) (10-20) (10-20) (10-20) (10-20) (10-20) (10-20) (10-20) (10-20) (10-20) (10-20) (10-20) (10-20) (10-20) (10-20) (10-20) (10-20) (10-20) (10-20) (10-20) (10-20) (10-20) (10-20) (10-20) (10-20) (10-20) (10-20) (10-20) (10-20) (10-20) (10-20) (10-20) (10-20) (10-20) (10-20) (10-20) (10-20) (10-20) (10-20) (10-20) (10-20) (10-20) (10-20) (10-20) (10-20) (10-20) (10-20) (10-20) (10-20) (10-20) (10-20) (10-20) (10-20) (10-20) (10-20) (10-20) (10-20) (10-20) (10-20) (10-20) (10-20) (10-20) (10-20) (10-20) (10-20) (10-20) (10-20) (10-20) (10-20) (10-20) (10-20) (10-20) (10-20) (10-20) (10-20) (10-20) (10-20) (10-20) (10-20) (10-20) (10-20) (10-20) (10-20) (10-20) (10-20) (10-20) (10-20) (10-20) (10-20) (10-20) (10	0.01-0.05 cms (1-2 cfs) 0.05-0.15 cms (2-5 cfs) 11-15	0.01-0.03 cms 1.5-1 cfs) 0.03-0.03 cms 11-2 cfs) 6-10	(0.01 cms (.5 cfs) (0.03 cms (1 cfs) 0-5
	>0.15 €m (Sefs) • Velocity/depth	<pre>\$low (&lt;0.3 m/s), deep (&gt;0.5 m); slov, shallow (&lt;0.5 m); fast (&gt;0.1 m/s), deep; fast, shallow habitats all present. 16-20</pre>	Only 3 of the 4 habitat categorias present (missing tiffles or runs receive lover score than missing pools). [11-15	Only 2 of the 4 habitat categories present (missing riffles/rune receive lever score). 6-10	Deminated by one velocity/depth categery (ustally peell. 0-5
14	· Channel alteration ^[a]	Little or no enlarge- ment of islands or point bars, and/or no channelisation. 1335	Some new Increase in ber formation, mostly from coarse gravel; and/or some channelisation present. B-11	Moderate deposition of new gravel, coerce and on old and new bars; yous partially filled vosit; and/or emonk- works on beth bank.	Heavy deposits of fine material, increased bar development; most peels filled wyshit; and/or estensive channelisation. 8-3
<i></i>	Botton scouljng and deposition	Loss than 31 of the bottom affocted by scouring and deposition. 12-15	5-101 affacted. Scour at constructions and where grades strepen. Some deposition in pools.	10-501 affected. Deposits and secur at obstructions, con- strictions and bonds. Som filling of pools.	More than 301 of the bettem changing aseriy year long. Pouls almost mbeant due to depention. Only large recta in tiffle expend.

Habitat Assessment Field Data Sheet for use with all Rapid Bioassessment Protocols.

Page 20f2 <u>Document # 6-mI</u>

.

.

05 29 92 <u>045 - MI</u> -02

ì

Unstable. Nany ereded areas. Side sippes J60 common. Tav" areas frequent along artaight acctions and bends. Over 50% of the streambank has a vegetation and deminent material ~-0 0 ~-0 streambank surfaces covered by vegetation. gravel, er larger material. is soil, reck, bridge materials, culverts, er sime tailings. Less than 25% of the atraight stream. Generally all flat water or shallow riffla. Poor >25. Essentially a Poor hebitat. Moderately unatable. Un Moderate frequency and eite of erosional areas. al side alopes up to 601 -7 Side alopes up to 601 -7 erosion perential during extreme high 13-25. Occassional riffle or bend. Bettem a conteurs provide seme G habitat. 1 1 -: bank surfaces covered by vegetation, gravel, or larger material. 0 25-19% of the stream-Deminant vegetation is grass or forbes. 111 HABITAT ASSESSMENT FIELD DATA SHEET (CONL.) flov. Noderately stable. Infrequent, small areas of ereston mestly healed ever. Stde stepes up to dot on one bank. Siight potential in extreme floods. Catagory 50-79% of the streambank surfaces covered by ⊳; 22 Ŋ **~**] **-**; 7-15. Adequate depth in pools and riffles. Bends provide habitat. vegetation, gravel or larger material. r Dominant vegetation is of tree form. 6000 5-7. Variety of habitat. Deep riffles and poels. 9-10 9-1-6 9-10 12-15 vegetation or boulders and cobble. đ Stable. No evidence 6 erosion of bank failure. Side slopes gener-ally (30%. Little petential for future problem. Dominant vegetation is shrub. streambank surfaces covered by Over 80% of the Excellent 107 ..... ratio^(a) (distance between riffles divided by stream width) Pool/fifile, run/bend ratio (distance 9. Streamside cover^(b) 7. Bank stability^(a) Bank vegefåtive stability MADLEAL PARAMACAN Column Totals 5

(Cont.).

:• •

	R	apid Bioasses	sment Protoc	oli	
		Ricencer Fi	eki Deta Sheet		
RELATIVE ARIMDAM	E OF ADHATIC	RICTA			
Periphyton (		3 4	Slimes	<b>()</b> 1	2 3 4
Filementous Algee Macrophytes (	0 (1) 2 0 1 2	3 4 3 4	Macroinvert Fish	lebretes Ö 1 0 (Tu	
0 - Absent/Not Obsen	red 1	=Rare 2:	- Common	3 - Abundant	4 - Dominant
MACROBENTHOS QU		LE LIST (Indicate Rela	eve Abundance R - Ri	Ins. C - Common, A - Abu	indent, 9 - Deminent)
Pomera Hudenzoa	<u>K</u>	Zurogtera	<u>P</u>	Riscontern	A
Platybelminthes		Hemiptera	<u>R</u>	Enheriternotern	
Turbellaria	<u>P</u>	Coleoptera	P	Trichoptera	ρ
Hirudines	P	Lepidoptera	P	Other	
Oligochaeta	R	Slalidae	R		
lsopoda	R	Corydalidae	R		
Amphipoda	R	Tipulidae	C		
Decapoda	<u> </u>	Empididae	<u>R</u>	ļ	
Gastropoda	<u> </u>	Simuliidae	<u>P</u>	ļ	
Bivalvia	<u>R</u>	Tabanidae	<u> </u>	<u> </u>	<u></u>
Ram < 3	Common 1			Domin	ent > 50 (Entimate)
Observations					
Timber sau	ual gen	un of me	reflie (L	Soutie, Lya	gallebits,
of a line	0 91.1	is allerin "	<b>5</b> .	-	
toneftus ( ser	a our	<i><i>p</i>-<i>p</i>-<i>i</i>-<i>i</i>-<i>i</i>-<i>i</i>-<i>i</i>-<i>i</i>-<i>i</i>-<i>i</i>-<i>i</i>-<i>i</i></i>	/		
S. Daine					

29.82	un Proge 1 at 1
	Document # 8-MI Brike Brischel
-	IMPAIRMENT ASSESSMENT SHEET Detection of impairment: Impairment detected (Complete items 2-6) detected (Stephene)
2.	Biological impairment indicator: Benthic macroinvertebrates Other aquatic communities absence of EPT taxaPeriphyton dominance of tolerant groupsfilamentous lov benthic abundanceother lov taxa richnessMacrophytes otherSlimes Fish
3.	Brief description of problem: Year and date of previous surveys: Survey data available in: Cause: (indicate major cause) organic enrichment toxicants flow
5.	habitat limitations other Estimated areal extent of problem (m ² ) and length of stream reach affected (m), where applicable:
6.	Suspected source(s) of problem: point source discharge (name, type of facility, location) construction site runoff combined sever outfall silviculture runoff animal feedlot agricultural runoff urban runoff ground vater other unknovn
Br	iefly explain:

.

Impairment Assessment Sheet for use with macroinvertebrate Rapid Bioassessment Protocols.

CS 3092	ASA . DA Hagener
DUS-03 Document	#9-MI Mile Mischel
PHYSICAL CHARACTER FIELD D	IZATION/WATER QUALITY
PHYSICAL CHARACTERIZATION	
RIPARIAN ZONE/WATER	
Predominant Surrounding Land Use:	
Forest Field/Pasture Agricultural Residential	ommercial Industrial Other
High Water Mark	t: Yes X No Channelized: Yes No X
Canopy Cover: Open Partly Open Partly Shaded Si	vaded
SEDIMENT/SUBSTRATE:	•
Sediment Odors: Normal Sewage Petroleum Chemical A	nacrohic None Other
Sediment Oils: (Absent) Slight Moderate Profuse	
Sediment Deposits: Sludge Sawdust Paper Fiber Sand R.	clici Shells Other Same Sift
Are the undersides of stones which are not deeply embedded black? Y	
Inorganic Substrate Components	Oreanic Substrate Composents
Percent	Percent
Substrate Type Diameter in Sampling Area	Composition Substrate Type Characteristic in Sampling Area
Bedrock	Detritus Sticks, Wood,
Boulder >256mm (10 in.)	Coarse Plant 5%
Cobble 64-256mm (2.5-10 in.) 5%	
Gravel . 2-64mm (0.1-2.5 in.) 70-3	Muck-Mud Black, Very Fine 0,72
Sand 0.06-2.00mm (gritty) 207	Organic (FPOM)
Silt 0.00406mm 5%	Mari Grey, Sheli
Clay <0.004mm (slick)	Fragments
WATER QUALITY	
Stream Type: Coldwater Warmwater	
Water Odors: Normal Sewage Petroleum Chemical No	ne Other
Water Surface Oils: Slick Sheen Globs Flecks (None)	
Turbidity: Clear Slightly Turbid ) Turbid Omague W	Ner Color
* Sample area just below input culver	t han see and chained in vicinity
OUS-S-16 Gainstein & Salmon Run Pas	i Tis Hotocley of ABFG udjocat the
siti, above Dam.	
+ + allove Warn	
Ph: 6.72 (7.2 C) Measured on A 1- 09 makers (rund C) A 60182	
D.U 12. 8 mg/h In Stu	
	MADAF
	Tanada Sites

Figure 5.1-1. Physical Characterization/Water Quality Field Data Sheet for use with all Rapid Bioassessment Protocols.

ATLR28/066.51



053012 045-03

Document # D-MI

hile huch

Mabitat Parameter	Escellent	Good	farr	7002
1. "Bottom substrafgf available cover	Greater than 901 rubble. gravel, aubmorged logs. undercut banks, or ether stable habite.	10-50% tubble, gravel of other stable hebitet. Adequate habitat. ]1-15	19-30% tubble, gravel er other stable habitet. Habitet availability 1955 than dealrable. 6-10	Loss than 10% rubble gravel or other stable habitat. Lack of habitat is obvious. 0-5
2. Enbeddedness ^(b)	Gravel, cobble, and boulder particies are between 0 and 25 1 autrended by fine andiment 10 16-20	Gravel, cobble, and boulder particles are betuen 25 and 50 1 surrounded by fine 11-15	Gravel, cebble, and beutder particles are between 50 and 75 1 betweended by fine serreunded by fine field	draval, cabbla, and boulder particlas ars ever 75 4 aurreunded by fine aedieent
]. \$0.15'cms (5cfs) - *floy4 ₁ at rop. lov flov ⁴ 1	(Cold 19.03) cm (2 cf.) WACH 18.15 cm (3 cf.) 10-20 8	0.01-0.05 cms (1-2 cfs) 0.05-0.15 cms (1-5 cfs) 11-15	0.01-0.03 cms (.5-1 cfs) 0.03-0.05 cms (1-2 cfs) 6-10	(0.01 cm (.5 cfs) (0.03 cm (1 cfs) 0-5
10.15 ⊂ms (5cfs) • Velocity/depth	Slav (<0.3 m/s), deep (>0.5 m); slov, shallov (<0.5 m); fatt (>0.3 m/s); deep; fat, shallov hebitats all present. 16-20	Only 3 of the 4 habitat categories present faishing riffles of tuns receive lover score than missing pools1. .11-15	Only 2 of the 4 habitat categories present (missing tiffles/runs receive lever score). 6-10	Deminated by ane velocity/dopth catogory (usually pool). 0-5
4. • Channel alteration ^[a]	Little or no enlorge- ment of Islands or point bars, and/or ne channelleation. 12-15	Boso nov increase in bar formation, motify from costs gravel, and/or sees chanalitation present.	Moderate dependition of nov gravel, coarte sand on eld and nov bers; pois partially filled v/silit; and/or eshank- sents on beth banks. 4-7	Hoavy depeals of fine material, increased bar development; mest pools filled v/silt; and/or estensive channelletion
s botton scouting and deposition	Less than 51 of the bottom affocted by acouting and deposition. 12-15	5-101 affocted. Scour at constructions and where grades stoopen. Some doposition in pools. A-11	JO-501 affected. Deposits and aceut at obstructions, con- strictions and bonds. Some filling of pools.	More than 901 of the bottom changing matity yaar lang. Pools almost absont due to deputition. Only large rocks in riffle ampused. 0-3

Habitat Assessment Field Data Sheet for use with all Rapid Bioassessment Protocols.

		Categor		
abitat Parameter	Excellent	Geed	715	Peer
· Pool/fiftle, tun/bond ratio (distance between ciffles divided by atream vidth)	5-7. Variety of Aabitat. Deep riffles and pools.	7-15. Adoquato dopth in poola and riffios. Benda provido habitat.	15-25. Occassional rifflo or bond. Botton contours provide some habitat.	>25. Essentially a straight stream. Generally all flat ustor of shallow fifte. Poor
	12-15	11-0	+	(~0
. Bank stability ^(a)	stable. We evidence ef areaien er ef areaiure. Side slopes gener- ally 4309. Little petential for future problem. 9-10	Moderately stable. Infrequent, small areas areation merity healed ever. Side slopes up to 40% on one bank. Slight petential in errose floods.	Moderately unstable. Moderate frequency and addition of the second states and second second and during attress high file.	Unstable. Many erodod areas. Bido siopa 160 comann. "Ray" areas troquent along artalght section and bends. 0-2
. Bank vogofallvo stability	Over 99% of the streambank surfaces ceverad by vegetation or boulders and cobble. 9-10	90-794 of the streambank surfaces covered by vegetation, gravel or larger material.	25-49% of the stream- bank surfaces covered by vegetation, gravel, or larger material. ]-5	Loss than 23, of the treamback surfaces everade by vogetation. gravel, or larger material. 0-2
Btreamide cover (b)	Deminant vegetation is ehrub. 9-10	boninant vogetetion is of troo form. 81	Dominant vogetation is grass or forbos. ]-5	Over 50% of the stream bank has no vegetation and deminant meterial is soll, rock, bridge meterials, culverts, er bias tailings. 0-2
ieluan Tetels	201 22	ন্ন	A	

Ì.

(Cont.).

	Desid	Bianana		-11			
	нарю	Diograficari					
	8	osurvey Fiek	d Data Sheet				
RELATIVE ABUNDAD	ICE OF AQUATIC BIOTA			-			
Periphyton Filamentous Algae Macrophytes		4 4	Silmes Mecroinvert Fish	iebrates 0 0	1 2 1 2 1 2		
0 - Absent/Not Ober	rved 1 – Rare	2=(	Common	3 - Abundani	. 4	- Dominent	
MACROBENTHOS Q	MALITATIVE SAMPLE LIS	findloate Relativ	re Abundance R - Re	ire, C = Common,	A - Abundant, I	D - Deminant)	
Portiera	R Anier	ptera	<u> </u>	Chironomidae	)	_ <u>D</u>	
Hydrozoe	R 2990	plera	<u>Ķ</u>	Plecopiera		<u> </u>	
Platyheiminthes	<u>P</u> Hemi	ptera	<u>k</u>	Ephemeropte	<u> </u>	<u> </u>	
Turbellaria	K Colex	ptera	<u>k</u>	Trichoptera	·	<u> </u>	
Hirudinea	<u><u><u>R</u></u>Lepid</u>	optera	<u> </u>	Other Acc	Mia		
Oligochaeta		<b></b>	<u> </u>		· · · · · · · · · · · · ·		
isopoda	P Conye		<u> </u>	+			
Amphipoda			<u> </u>	<u> </u>			
Decapoda	<u> </u>		<u> </u>	<u> </u>		<u>_</u>	
Gastropoda	<u>R</u> Simu	Mase Notes	<u>4 Č</u>				
<b>Bivel</b> via			<u>K</u>		<u> </u>		
				L			
	Common 3-5						
Colemannet mary diff Difterene Very small	and demister and chim ( the day & streffic	la a vila a chuim	Bartin Seil dor El.) pres	rinted elect	Dong	le	

	110- 20-
053292 045-03	Decument # 12-MI Prile Mischel
-	
	INPAIRMENT ASSESSMENT SHEET
1.	Detection of impairment: Impairment detected (Complete items 2-6) detected (Stop here)
2.	Biological impairment indicator:
	Benthic macroinvertebrates       Other aquatic communities        absence of EPT taxa      Periphyton        dominance of tolerant groups      filamentous        low benthic abundance      other        low taxa richness      Hacrophytes        other      Slimes        Fish      Fish
3.	Brief description of problem: Year and date of previous surveys: Survey data available in:
4.	Cause: (indicate major cause) organic enrichment toxicants flow
5.	Estimated areal extent of problem (m ² ) and length of stream reach affected (m), where applicable:
6.	Suspected source(s) of problem: point source discharge (name, type of facility, location) construction site runoff combined sever outfall silviculture runoff animal feedlot agricultural runoff urban runoff ground vater other unknovn
Br	lefly explain:

.

Impairment Assessment Sheet for use with macroinvertebrate Rapid Bioassessment Protocols.

060392	2		1211.1	6
<u>045 - MI - 04</u>	Docum	nevit # 15-111	/ nute Musel	<u></u>
Qualitative Ass Bear Pard Sta SLOTE 10125 END: 1	-cs.nevt 5/101 #2_			
	* Rapid Bioassessn	nent Bestorel I		
	Blosurvey Field	Data Sheet		
RELATIVE ABUNDANCE	of Aquatic Biota			
Periphyton 0 Filementous Algee 0 Macrophytes 0	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Silmes 0 Macroinvertabrates 0 Fish 0	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	
0 - Absent/Not Observed	1 - Rare 2 - Co	ommon 3 - Abundent	4 - Dominant	
MACEORENTUSE OUN			A - Abundant D - Deminerati	
nyorozon Bietek elminte				
		<u> </u>		
Oligochaeta				
isopoda				
Amphipode		<u> </u>		1
Centranda				
Gastropoda				
	Common 9 0			
Rare < 3	Common J-J AL	10000000000000000000000000000000000000		
Plant 1	Chireman.	As Abe most (	Diesent Scud	s,
11-1.06	Or opoi sons		In cale colour	a ha
C 1. 200 1 In	situ Woter ber	Custonal Via	nie nome za	el den
Luna - 11 10- 1 (10)	(hro) (augurra	July a contract	TA DA	& fach
Jend - 11.0 C	A (PI+P4) Hard	otten very much	chay, sepany,	
Sumple site	B (P2+PS) More A	ilt, less clay wa	Course some	
gravel in	der sitt.	. N	0 . 1	'
Sample site	C (P30P6) Jene s	It 1 to 2 Coverge	y sover, grant	•
Tresh	the sporges on tree	e stimps.	1	
	, U Biosurvey Field Data Sheet for	use with Rapid Bioassessn	vent Ersteesid. n	0
alitatie De	notes were about	they seeming a	dip met strong	of centr
lotton.			Map Quer	
	onds		/	
* NO NOF TON 1	A-7			

P1-3 = Regular Soupe P4-6 = QA/QC Soupe - Guardi contine Sporple Q X. K ¥ Å ¥ × × × X ì 65 * * * * ¥ × K ¥ ¥ Moin flow of Brance Nore Nore ¥ OPEN AREA very shallow 1 ft Q " K PI + Py Carlei Broke Beaut put × 1

06 0292 Inite miser OUS-MILOSQ Document # 14-MI Bearer Pore " Scation 1 Ropid Biosserment Rapid Bioassessment Protocol 1 **Biosurvey Field Deta Sheet** RELATIVE ABUNDANCE OF AQUATIC BIOTA 0 Periphyton 1 3 Macrophytes 0 - Absent/Not Observed MACROBENTHOS QUALITATIVE SAMPLE LIST and ce R - Rere, C - Cen n. A - Abundant. D - De D Porifera Chironomidae Anisopters None Hydrozoa Zygopters Plecopters P Um'l Dove Platyhelminthes Hemiptera Ephemeroplera <u>None</u> P Turbellaria Coleopters Trichoptera ONQ None Hirudinea Lepidoptera NUAR Other Inwole column Joule Oligochaeta Sialidae loaq Opphie Sp. Scubs plony sur Price butter Corydalidae Isopoda Nene )on P Amphipoda Tioulidae A LOAR Empididae Decapoda None OAR UDAR Gastropoda Simuliidae NULE Bivalvia Tabanidae JULR NJAR Culicidae C Dominant > 50 (Estimate) Abundant > 10 Common 3-9 Rare < 3 Observations & Qualitative Cullection Dashner in the water column demented all invertible. Scuds and midges were abundant near de susface sedenaits. O de midges were water netes ( Oscande ), magneto lance ( aluthe present were water netes ( Ascande ), Byggiano, Mayfig 1 water boatmen ( Henrystere), Gyclops, Bryogano, Mayfly, hote & The boar material was light sedinut over your leget near the input area of the destal fiel spill. This area bad a lite admit over ormat alon a black iling materia le matura MAP of Somple Arcas (OUER) PH 6.85 Pera Bener D.0, 3.70 Biosurvey Field Data Sheet for use-with Rapid Disaspessment Removal 1. Cond. 320 1 In Sta Word Chem. Texp. 9.0 C) * No RBP for Pards A-7



		ment Protocol 1	
	Biosurvey Field	I Data Sheet	
RELATIVE ABUNDAN	CE OF AQUATIC BIOTA		
Periphyton Filementous Alges Macrophytes	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Silmes 0 1 2 3 Macroinvertebrates 0 1 2 3 Fish 0 1 2 3	4
0 = Absr nt/Not Obser	ved 1 <b>- Rare</b> 2 - C	Xommon 3 - Abundant 4 - Do	minent
MACROBENTHOS OU	AL ITATIVE SAMPLE LIST Redente Briefe	Abundance B., Rep. C., Common. A., Abundant. D., Di	
Porifera	Anisoptera		
Hydrozoe	O Zygoptera	C Plecoptera	5
Platyheiminthes	O Hemiptera	Ephermeropters ,	ð
Turbellaria	Coleoptera	Trichopters	RC
Hirudinea	() Lepidoptera	O Other Zcoplanktons	(Mmy
Oligochaeta	C ? Sialidae	O could be cyclica.	) )
Isopoda	Conydalidae	0	
Amphipoda	O Tipulidae	0	
Decapoda	Ø Empididae	0	
Gastropoda	O Simuliidae	0	
Bivalvia	O Tabanidae	0	
	Culicidae	<u> </u>	
Rare < 3	Common 3-9 A	bundant > 10 Dominant > 50 (Est	imate)
Observations	the Corrected Sy Ch mapping or Estimat.	many crock yaplenters (	nor
Lientere song as builde, de Sonies) prelab	h cycleges ( coper 43)	Water dem ph= 6.86	
dicature son a builde, the Sonies) pretable station som Smelled ( un	y cyclips ( Cupoports) ples , story) of clearl feel	Wale Clem ph= 6.86 D.o. = 4.5 mg Con = 382	lL (mhus/
dicature son a builder, de Sonies) pretable statistica som Smilled (any Color not co	y cycleps ( Cupoports) ples strong) of clearl feel string	Wale Clem ph= 6.86 D.o. = 4.5 mg Con = 382 Waln temp.	L (mhus/ : /0.0%



U	60492	5)						_				R	11
₩ <del>%</del> [	Dus-MI-07	- G ud	~		]	)000	ment #16	- <i>m</i> 1				$\underline{\mathcal{D}}$	une Mes
17	Justication												
							きょ						
				Ra	ipid B	lioasse	essment Protec	el-l-					
					<b>8</b> ia	survey	Field Data Sheet						
	RELATIVE ABUNDA	NCE O	F AQU	ATIC E	NOTA								
	Periphyton Filamentous Algae Macrophytes	0 0 0	1 1 1	2 2 2	3 3 3	4 4 4	Slimes Macroinvert Fish	lobrates	0 0 0	1 1 1	2 2 2	3 3 3	4 4 4
	0 - Absent/Not Obe	erved		1 -	Rare		2 - Common	3 - Ab	undani	t	4	- Domi	inent
	MACROBENTHOS C	WALITZ		BAMPL	E LIST(	Indicate R	Mative Abundance R - M	ira, C = Ca		A - Alex	indent, (	) - Demi	inant)
	Portiera				Anisop	tera		Chiron	omidad	•			
	Hydrozoa				Zygopt	era		Piecop	tera				
	Pistyhekminthes				Hemip	era		Ephern	eropte				
	Turbellaria				Coleop	tera		Trichop	otora				
	Hirudinee				Lepido	ptera		Other					
	Oligochaeta				Sialida	•		ļ					
	lsopoda				Coryda	Hdae							
	Amphipoda				Tipulid								
	Decapoda		<u>.</u>		Empldi	dee							
	Gastropoda			-+	Simulik		<u>.</u>						
					Culleda		·						
	Race < 3		Comm	00.3-9			Abundant > 10	<u> </u>		Domin	ent > 50	Estim	
	Observations : Somple to field pre mosquito	her Leo.		or n Cupl pres	macr konia	anier pres	thek, was	prese n cole	und sed	, b	nt N mid	not Ques	and
	Sectiment de ce fine su pedene.	comp It	Je Je	yer	Cons	se. D złi	ond and g top. he	olor	~ <i>M</i>	sti	l'a	i	~
L	w al. Ri	5	<u>C</u>	. 5	alar )	Mel	+ Poul						
			_				6 / F + + + G						

					*							
		R	<b>api</b> d Bi	085895	sment <del>Protoc</del> o	<del>5 - </del>						
			Bios	wrvey Fie	ld Data Sheet							
RELATIVE ABUNDAN	ICE OF A		BIOTA									
Periphyton Filementous Algae Macrophytes	0 1 0 1 0 1	1 2 1 2 1 2	3 3 3	4 4 4	Slimes Macroinverte Fish	brates	0 C 0	1 1 1	2 2 2	3 3 3	4 4	
0 - Absent/Not Obse	rved	1	- Rare	2 -	Common	3 = Ab	undent		4	- Dom	inent	
MACROBENTHOS Q	JALITATIN	/E SAMP	LE LISTA	ndicate Reis	ive Abundance R - Rai	n, C - Ce	mmon, /	\ = Abu	ndent, C	) - 0em	inent)	ļ
Porifera			Anisopt	era		Chiron	omidae					
Hydrozoa			Zygopte			Plecop	tora		_			
Platyheiminthes			Hemipte	H 8		Ephem	eropter	2				
Turbellaria			Coleopt	era		Trichop	tera .					
Hirudinea			Lepidop	tera		Other						
Oligochaeta		<u></u>	Stalidae									
isopoda			Corydali	dae								
Amphipoda			Tipulida	•								
Gastmoods			Emploid									
Rivehrie	<u> </u>		Tabanida									
			Culicida	•					<u> </u>			
	Cor	nmon 3-			Abundant > 10					(Eatio		
Rare < 3	4	b of	sur	ace was	ten domen	stel	ly	d'i	y have	، ریخت ا	and	

.

-

## 

				RAPID BIOASSESS.	ROTOCOL	
				Biosurvey Fleid Data Sh	ieet	
Date <u>9-1-92</u> Time <u>  35</u> Project ≢ <u>∆∆C 3/ø∕x. H</u>	2.20				Location Sample # Biologist//	Ship Crek S: MI-OI-Q Asst. M. Mischuk /S. Hope
Relative Abundance of Aquatic E	lota					
Periphyton	-	8	3	4	Silmes	0 1 2 3 4
Flamentous Agae 0	-	2	ຕ	4	Macrolme	rtebrates 0 1 2 3 (4)
Macrophytes	-	2	g	•	Fish	0 1 2 3 4
0 = Absent/Not Observed	1 <b>-</b> Ra	2		2 = Common 3 = /	Abundant	4 = Dominant
MACROBENTHOS QUALITATIV	E SAMPI	ELIST	[Indic	ate Relative Abundance R = F	Rare, C = Common,	A - Abundant, D - Dominant)
Portiera			2	Anisoptera	4	Chironomidae C
Hydrozoa			2	Zygoptera	Z	Plecoptera C
Platyheiminthes			R	Hemipters	2	Ephemeroptera
Turbellaria			Z	Coleoptera	٩	Trichoptera C
Hirudines			R	Lepidoptera	ð	Other
Olgochaeta			2	Sialidae	ح	
lsopoda			2	Corydalidae	۹.	
Amphipoda			と	Tipulidae	9	
Decopoda			2	Empldidae	2	
Gastropoda			Y	Simulikae	ບ	
Bivalvia			2	Tabanidae	2	
				Culicidae	J	
Rare < 3 Con	1mon 3 -	0		Abundant >	> 10	Dominant > 50 (Estimate)
Observationss Doutinet organisaris p	react	i, 9	کمعار	sample (Kich het cal	am caw (roiboil	ystics / E. house
Pleapters present, Sim	ردانات	Fred.	- ayd	( Linnphilids, Bradyra	mt:4s) A few	chinese ( chinese chinese

Document #1

RAPID BIOASSESS. PROTOCOL

## Biosurvey Field Data Sheet

Date <u>9-1-92</u> Time <u>1656</u> Project # <u>Avc 21026 · H2 · 20</u>				Location Sample Biologist	Ship * S-MI-1	Ceck 22-0		Hepr		
Relative Abundance of Aquatic Blota										
Periphyton 0 (1	8	0	4	Silmes		0	-	~	e	4
Flamentous Agae	0	3	•	Macrolm	vertebrates	0	-	2	3	$\odot$
Macrophytes	2	3	. 4	Fish		0	-	2	n	-
0 = Absent/Not Observed 1 =	Rare		2 <b>- Comm</b> on	3 = Abundant	4 = Domi	nant				
MACROBENTHOS QUALITATIVE SA	MPLE LIST		ate Relative Abundar	ice R = Rare, C = Common L	n, A - Abunc	lant, D	Don	ant)		
Pontera Hivdinzna		XQ	Zygoptera		> Plecopter					
Platyheiminthes		<b>4</b> ~	Hemiptera		Ephemen	optera				4
Turbeliaria		٢	Coleoptera	6	Trichopte	2				◄
Hirudines		Р	Lepidoptera	4	Other					
Oligochaeta		2	Sialidae	~						
Isopoda		2	Corydalidae							
Amphipoda			Tipulidae	Z	-+					
Decopoda			Empldidae							l
Gastropoda		1	Simulidae							
Bivaivia			Tabanidae	2						l
			Culicidae	~						
Rare < 3 Common	3-9		Ab	undant > 10		Dom				
Observations Ephenorytox dominumt (Eph Coddisally represented keptucar	the ar	and .	Ephane: Jue),	Chironamidae preva uido o Limnephilids),	lank, mar Star Alice	) - a >	a rest	1	î p-	

Donert #2

					Biosurvey Field D	lata Sheet							
Date <u>8-30-92</u> Time <u>1449</u> Project # <u>AuC 3102</u>	6. 42.	2					Location Sample # Biologist/	Asst. M.	Crel 7:23	0	S. Aug		
Relative Abundance of Aq	<b>Juatic Blo</b>	g											
Periphyton	0	0	2	n	4	v	Silmes		0	-	2	3	4
Flamentous Agae S B-yo k	ytes	Θ	~	3	*	•	Macroinv	ertebrates	0	-	2	S	✐
Macrophytes	6	-	2	3	4	ų,	Fish		0	Θ	~	n	4
0 = Absent/Not Observe	-	= Rar	ø		2 = Common	3 = Abundant		4 = Dom	hant				
MACROBENTHOS QUAL	ITATIVE (	MPL	E LIST	(Indice	ite Relative Abundance	e R = Rare, C = C	Sommon,	A - Abunc	lant, D	E D O U	inant)		
Portiera				Ā	Anisoptera		~	Chironon	nidae				9
Hydrozoe				Z	Zygoptera		4	Plecopte	2				8
<b>Platyhelminthes</b>				と	Hemiptera		Y	Ephemer	optera				۵
Turbellaria				Z	Coleoptera		٩	Trichopti	2				◄
Hirudinee				R	Lepidoptera		م	Other					
Oligochaeta				2	Sialidae		4						
Isopoda				م	Corydalidae		4						
Amphipoda					Tipulidae		2						
Decopoda				مام	Empididae		مل						
BivaMa				4	Tabanidae		4~						
				Ī	Culicidae		J						
Rare < 3	Comm	01 3 -			Abur	ndant > 10			Domlr	< tueu	50 (Es	timet	
Observations 2 Chironamidae Ver Hepthgenaids/	y abus	المرا	نه کا		r ganall, probabl water miter wet	Y Criticial	× 4	1 2415 E	Jan Contract	ter.	· .	5	
Decument # 3													

RAPID BIOASSESS. .: PROTOCOL

÷

Þ

## **Biosurvey Field Data Sheet**

Date 8-31-92 Time 1700 Project # <u>A.N.C 31@24.42</u>	2 2				Location Sample # Biologist/	Beauch for Asst. M. M.		S.	विम		
Relative Abundance of Aquatic	: Biota										
Periphyton	-	2	S	4	Silmes		0	$\odot$	8	3	4
Flamentous Agae	- 6	~	3	4	Macroinve	ertebrates	0	-	2	0	✐
Macrophytes	-	~	n		Fish		$\odot$	-	~	3	4
0 = Absent/Not Observed		Rare		2 = Common	3 = Abundant	4 = Domini	ant				
MACROBENTHOS QUALITAT	IVE SAA	PLEU	st (Indk	ate Relative Abundanc	a R = Rare, C = Common,	A - Abunda	o ž	Dom	nant)		Γ
Portiera			4	Anisopters	æ	Chironomi	da e				6
Hydrozoa			م	Zygoptera	<b>ں</b>	Plecoptera					م
Platyhelminthes				Hemiptera	~	Ephemero	ptera				R
Turbellaria				Coleoptera	R	Trichopten					٩
Hirudinee				Lepidoptera	2	Other					
Oligochaeta			ບ	Sialidae	P						
Isopoda			2	Corydalidae	6						
Amphipoda			ට	Tipulidae	٦						
Decopoda			م	Empididae	٩						
Gastropoda			٨	Simuliidae	<i>چ</i>						
Bivahia			W	Tabanidae	<b>ح</b> ـ						
				Culicidae							
Rare < 3 Co	nommo	3-9		Abur	ndant > 10		Domin	- tu	50 (Eat	ime to	
Observations 2	2-200	ہر م	hires.	anide offeedby	der number Dack	to allow by the	3.9.	ってい	s.	-	
imas saldwas . Ivan)		, , .		Da		T de	( Did	()	e l	-4-1-0	
deta: 15, Junger +1	र्छ उ	Deter M	3	JUNCSAL . INCOM	id Bramples AS U-r	1-1-A-1-7-		¢		_	,

ment #4

	. PROTOCOL
7	RAPID BIOASSESS.

Decument # 5

DIOCOL
~
π.
Ś
Ö
m.
Ś
9
z
2
Ø
0
ā
å

## **Biosurvey Field Data Sheet**

Date <u>9-4-92</u> Time <u>153@ Cene</u> Project # <u>AUC 3/@</u> 2	1. H.	2.2				Locatic Sample Blologi	n <u>Shie (</u> af <u>Sast M. N</u>	L'et		. H.		
Relative Abundance of Aqu	atic Blo	g										
Periphyton	0	-	2	3	4	Silmes		0	-	2	0	-
Flamentous Algae	0	-	2	g	4	Macrol	invertebrates	0	-	~	6	-
Macrophytes	Ð	-	N	3		Fish		0		2	<b>6</b>	-
0 = Absent/Not Observed	-	- 2	9		2 = Common	3 = Abundant	4 = Domin	art				[

MACRORENTHOS OUAL	TATIVE SAMPLE LIST (Indic	cate Relative Abundance R = Rare, C = Common,	A = Abundant, D = Dominant)
Dortiers	0	Anisoptera	Chironomidae
Hudrozoa		Zygoptera	Piecoptera
Platvheiminthes		Hemiptera	Ephemeroptera
Turbellaria		Coleoptera	Trichopters C
Hindines	4	Lepidoptera	Other
Ollaochaeta	A	Sialidae R	
lsopoda	0	Corydalidae	
Amphipoda	Z	Tipulidae	
Decopoda		Empididae	
Gastropoda	2	Simulidae	
Bivalvia	8	Tabankiae	
		Culicidae	
Ram < 3	Common 3 - 9	Abundant > 10	Dominant > 50 (Estimate)

Observations 2

Rare < 3

Common 3 - 9

Oligochooles the most dominant group (Tubiticidae), followed by chinemaiche (Ciuther 19.2), Sourd Crose building callierlies, Ephenomytera (Hoptogonids, Ephenoullids), Lovely, Indumina. Scamples wonceder in obern going from obern drain to Ship Greek and allerg a tree truck the dirored die 50 worke from nois cheminat.

acht # 6 り

		ip Creek MI-12-0 1. Mischek / S. Hope		0 1 2 3 4	<b>a</b> 0 1 2 3 4	0 () 2 3 4	yminaint	underr, D = Dominant) nomidae A neroptera C neroptera D ptera D ptera So (Estimate) l'a presed (Filipal piand, P: Sde (Sd) and	
		cation <u>Sh</u> mple # <u>S-</u> isogist/Asst. <u>N</u>		nes	croinvertebrat	£	4	The second of th	
, PROTOCOL	Data Sheet	3 8 X		IS	Me	Fig	3 = Abundant	BR = Rare, C = Co Adant > 10 Cphen crell; Jan thinn ani dan	
APID BIOASSESS.	Blosurvey Fleid			4	*		- Common	e Relative Abundanc risoptera emiptera emiptera emiptera orydalidae orydalidae orydalidae pulidae mpldidae itae, Back: Jae, itae, Back: Jae, itae, Back: Jae, itae, Back: Jae,	
æ				3	0	0	~		
		. H2. 2¢	ic Blota	0 1 2	<b>(</b> ) 1 2	0 1 2	1 = Rare	INE SAMPLE LIS ommon 3 - 9 on und ant (H C Buady reater tooke (Tubiss	
		Date 9-5-92 Time 11.07 Project # ANC 310/26	Relative Abundance of Aquati	Periphyton	Fliamentous Agae (	Macrophytes	0 = Absent/Not Observed	MACROBENTHOS QUALITA Portiera Hydrozoa Platyhalminthes Turbeliaria Hirudinea Oligochaeta Isopoda Isopoda Bartopoda Gastropoda Gastropoda Bivalvia Bivalvia Bivalvia Bivalvia Decopoda Gastropoda Bivalvia Decopoda Decopoda Decopoda Decopoda Decopoda Decopoda Decopoda Decopoda Decopoda Decopoda Decopoda Decopoda Decopoda Decopoda Decopoda Decopoda Decopoda Decopoda Decopoda Decopoda Decopoda Decopoda Decopoda Decopoda Decopoda Decopoda Decopoda Decopoda Decopoda Decopoda Decopoda Decopoda Decopoda Decopoda Decopoda Decopoda Decopoda Decopoda Decopoda Decopoda Decopoda Decopoda Decopoda Decopoda Decopoda Decopoda Decopoda Decopoda Decopoda Decopoda Decopoda Decopoda Decopoda Decopoda Decopoda Decopoda Decopoda Decopoda Decopoda Decopoda Decopoda Decopoda Decopoda Decopoda Decopoda Decopoda Decopoda Decopoda Decopoda Decopoda Decopoda Decopoda Decopoda Decopoda Decopoda Decopoda Decopoda Decopoda Decopoda Decopoda Decopoda Decopoda Decopoda Decopoda Decopoda Decopoda Decopoda Decopoda Decopoda Decopoda Decopoda Decopoda Decopoda Decopoda Decopoda Decopoda Decopoda	

Document #7

Decument #	8				Hage				
9-1-92 M. Mischek / S. Hype PHYSICAL CHARACTERIZATION/WATER QUALITY ANC 3/926. H2.20 FIELD DATA SHEET 5-MJ-01 12 5- Ha									
RIPARIAN ZONE/W	ATER								
Predominant Surrounding Land Like									
Forest Field/Pastur		Residential Co	MrDe industrial Other						
High Water Mark 2	(III) Velocity 5.7 ft	Set Dam Present:	Yes No X	Channelized: Yes	No X				
Canopy Cover: Open Partly Shaded Shaded									
SEDIMENT/SUBSTRATE:									
Sediment Odors:	formal) Sewage Petroleum	n Chemical Aa	acrobic None	Other					
Sediment Oiks: Absent) Slight Moderate Profuse									
Sediment Deposits: S	ludge Sawdust Paper Fib	er Sand Re	lict Shells	Other None - S	balance and at				
Are the undersides of	stones which are not deeply	mbedded black? Ye	s No _X	ent of g	rand leaves				
Inorganic Substrate Components			Organic Substrate Components						
		Percent			Percent Composition				
Substrate Type	Diameter	in Sampling Area	Substrate Type	Characteristic	in Sampling Area				
Bedrock			Detritus	Sticks, Wood.	Mostly				
Boulder	>256mm (10 in.)			Coarse Plant Materials (CPOM)	Litergent				
Cobble	64-256mm (2.5-10 in.)	10%							
Gravel .	2-64mm (0.1-2.5 in.)	807	Muck-Mud	Black, Very Fine	< 107.				
Sand	0.06-2.00mm (gritty)	1070		Organic (Fr Om)					
Silt	0.00406mm		Mari	Grey, Shell					
Clay	<0.004mm (slick)								
WATER QUALITY									
Stream Type: Coldwater Warmwater									
Water Odors: Normal Sewage Petroleum Chemical None Other									
Water Surface Oils: Slick Sheen Globs Flecks None									
Turbidity: Clear Slightly Turbid Turbid Opaque Water Color									
Many riffle + pod sross. Richles very shallow 1 to 2" of water, pools 4-6' deep in									
places. Chutes 2 to 3' in depth D.U 11.1 mg/L									
High woto mand at 2 ft alme earlie at water 0.0. 1 cap - 8.62									
Velocity measured by trasting beien the ph Temp 5.28									
Conductionly - 87 unha lon									
Conductories Temp 8.52									
(MAP OD BACK)									

Figure 5.1-1: Physical Characterization/Water Quality Field Data Sheet for use with all Rapid Bioassessment Protocols.

•

. .

Document #9 ب الحري به محمد ماليه در المما فرمد . Takes ••• and P 2 le ¥.5" 10 20 12 11 Ś いった **||** 1 ca' 2 х 6 11 1111 といつ Elia Men Kicks C Q Kicks Swips lercut z or an a۰ book Grave • * : : • mat ÷. x e, SIG 125. 1.3 . • • (// ď. • . . . ÷., K 21 76 292 30 . ha in the B1-58

	tinge + or -							
1) clument # 10 0+92 PHYSICAL CHARACTERIZATION/WATER QUALITY Ship Creek 1765 FIELD DATA SHEET S-MI-ØZ PHYSICAL CHARACTERIZATION PHYSICAL CHARACTERIZATION PHYSICAL CHARACTERIZATION								
KIFAKIAN LUNC/WAIEK								
Prodominant Surrounding Land Use: Golf Cours <								
Forest     Field/Pasture     Agricultural     Residential     Commercial     Industrial     Other       High Water Mark     2 (m)     Velocity     7.7 fps     Dam Present:     Yes     No								
Canopy Cover: Open Partly Open Partly Shaded Sha	Less strang							
SEDIMENT/SUBSTRATE:								
Sediment Odors: Normal Sewage Petroleum Chemical Anaerobic None Other								
Sediment Oils: Absent Slight Moderate Profuse								
Sediment Deposits: Sludge Sawdust Paper Fiber Sand Rel	lict Shells Other fine sand openite Cut							
Are the undersides of stones which are not deeply embedded black? Yes	s No K gravel bars							
Inorganic Substrate Components	Organic Substrate Components							
Percent Composition Substrate Type Diameter in Sampling Area	Percent Composition Substrate Type Characteristic in Sampling Area							
Bedrock	Detritus Sticks, Wood. Coarse Plant (Dery little							
Boulder >256mm (10 in.)	Materials (CPOM)							
Cobble 64-256mm (2.5-10 in.)								
Gravel . 2-64mm (0.1-2.5 in.)	Muck-Mud Black, Very Fine Note Organic (FPOM)							
Sand 0.06-2.00mm (gritty) 5 75	wine							
Silt 0.00406mm ∠ \$ 95	Mari Grey, Shell Fragments							
Clay <0.004mm (slick)								
WATER QUALITY								
Stream Type: Coldwater Warmwater								
Water Odors: Normal Sewage Petroleum Chemical None Other								
Water Surface Oils: Slick Sheen Globs Flecks None								
Turbidity: Clear Slightly Turbid Turbid Opaque Water Color								
2 Riffle Areas (major) mostly chutes, first water								
* Stream velocity based on floating stick at surface								
D.O 10.2 mg/L								
D.o. lemp loot								
1 - 6-T								
Kind 109 unhocs/en								
Contractivity Temp 10.02	(map on Bat)							

Figure 5.1-1: Physical Characterization/Water Quality Field Data Sheet for use with all Rapid Bioassessment Protocols.

ATLR28/066.51



Decument #12								
8-39-92/1599 ANC 31926. H2.20 PHYSICAL CHARACTERIZATION/WATER QUALITY Ship Creek FIELD DATA SHEET 5-MI-05								
PHYSICAL CHARACTERIZATION M. Mischuk/S. Hope								
RIPARIAN ZONE/WATER								
Predominant Surrounding Land Use:								
Forest Field/Pasture Agricultural Residential Commercial Industrial Other								
High Water Mark(m) Velocity Dam Present: Yes X No Channelized: Yes No X								
Canopy Cover: Open Partly Open Partly Shaded Shaded								
SEDIMENTAUBSTRATE								
Sediment Odors: Normal Sewage Petroleum Chemical And	erobic None O	iher	[					
Sediment Oils: Absent Slight Moderate Profuse								
Sediment Deposits: Sludge Sawdust Paper Fiber Sand Rel	lict Shells Dere 0	ther						
Are the undersides of stones which are not deeply embedded black? Yes	<u>No X</u>							
Inorganic Substrate Components	Organic Substrate Components							
Percent Composition	•		Composition					
Substrate Type Diameter in Sampling Area	Substrate Type	Characteristic	in Sampling Area					
Bedrock	Detritus St	icks, Wood.	(very little					
Boulder >256mm (10 in.)	M M	alerials (CPOM)	Actually					
Cobble 64-256mm (2.5-10 in.) /0 %								
Gravel . 2-64mm (0.1-2.5 in.) 50%	Muck-Mud B	lack, Very Fine	None C					
Sand 0.06-2.00mm (gritty) 10 %		rganic (Fr Om)						
Silt 0.00406mm	Mari G	rey, Shell	a) and e					
Clay <0.004mm (slick)			<i>p</i> = 1 = 1					
WATER QUALITY								
Stream Type: Coldwater Warmwater								
Water Odors: Normal Sewage Petroleum Chemical None Other								
Water Surface Oils: Slick Sheen Globs Flecks None								
Turbidity: Clear Slightly Turbid Opaque Water Color								
D.O 8.7 mg/L								
D.o. Temp 9.5°C								
Conductivity - 110 junhors lem								
Conductivity Temp 9.0 °C								
p# - 7.1								
pH Temp 9.0°C		(MAP M	Back)					

Page Los

Figure 5.1-1. Physical Characterization/Water Quality Field Data Sheet for use with all Rapid Bioassessment Protocols.


December 14 14			Lage to a
S-31-92 PHYSICAL CHARACTERIZ FIELD DA	ATION/WATER QUALIT	TY BEAM Poid ANC 31026. 42.	295
PHYSICAL CHARACTERIZATION			
RIPARIAN ZONE/WATER			
Predominant Surrounding Land Use:			
Forest Field/Pasture Agricultural Residential (Co	mmercial Industrial	Other	
High Water Mark <u>D/A (m)</u> Velocity <u>D/A</u> Dam Present:	Yes X No	Channelized: Yes No	°—
Canopy Cover: Open Parily Open Parily Shaded Shu SEDIMENT/SUBSTRATE:	ded		
Sediment Odors: Normal Sewage Petroleum Chemical An	aerobic None	Other	
Sediment Oils: Absent Slight Moderate Profuse			
Sediment Deposits: Sludge Sawdust Paper Fiber Sand Re	lict Shelts	Other	
Are the undersides of stones which are not deeply embedded black? M/DYe Inorganic Substrate Components	s No Org	anic Substrate Components	
Percent Composition Substrate Type Diameter in Sampling Area		Characteristic	Percent Composition in Sampling Area
Bedrock	Detrive	Stickt Wood	
Boulder >256mm (10 in.)	Demus	Coarse Plant Materials (CPOM)	20%
Cobble 64-256mm (2.5-10 in.)			:
Gravel 2-64mm (0.1-2.5 in.) 202	Muck-Mud	Black, Very Fine	8070
Sand 0.06-2.00mm (gritty) 50 %		Organic (PPOM)	
Silt 0.00406mm 20%	Mari	Grey, Sheli	
Clay <0.004mm (slick) 1070			
WATER QUALITY Pand Surnam Type: Coldwater Water Odors: Normal Stwage Petroleum Chemical No Water Surface Oils: Slick Sheen Globs Flecks None	me Other		
Turbidity: Clear Slightly Turbid Turbid Opaque W	ater Color		
D 8.2 mg/h			
0-0. Temp - 10.2 °C			
Cond 289 markoa /em			
Cond. Temp 10.1 °C			
pH - 7.09			
pH Teng 10.2°c			
		(MAP on 1	Back)

Figure 5.1-1. Physical Characterization/Water Quality Field Data Sheet for use with all Rapid Bioassessment Protocols.

ATLR28/066.51



Document # 110					
8-31-92 13#6	рнуз	ICAL CHARACTERIZ FIELD DA	ZATION/WATER QUALI TA SHEET	TY Benver Pond AUC 31926.	H2.2¢
PHYSICAL CHARACTERIZ	ATION			5-MI-05	
RIPARIAN ZONE/WATER					
Predominant Surrounding Lan	id Use:				
Forest Field/Pasture	Agricultural	Residential Co	mmercial) Industria	l Other	
High Water Mark <u>J/A (</u> m)		Dam Present:	Yes X No	Channelized: Yes N	•¥
Canopy Cover. Open	Partly Open	Partly Shaded Shi	Beautr		-
SEDIMENT/SUBSTRATE:		•			
Sediment Odors: Normal	Sewage Petroleum	) Chemical An	aerobic None	Other	
Sediment Oils: Absent	Slight Moderate	Proluse			
Sediment Deposits: Sludge	Sawdust Paper Fibe	T Sand Re	lict Shells	Other Voyitable de Sticks	hiles, leaves,
Incomaic	Substrate Composed				
	Suddance Composed	>	O	Marc Substrate Components	
Substrate Type	Diameter	Percent Composition in Sampling Area	Substrate Type	Characteristic	Percent Composition in Sampling Area
Boulder >25	i6mm (10 in.)		Dennus	SUCIS, WOOD. Coarse Plant Materials (CPOM)	80%
Cobble 64-2	256mm (2.5-10 in.)			•	
Gravel . 2-64	imm (0.1-2.5 in.)		Muck-Mud	Black, Very Fine	207.
Sand 0.06	-2.00mm (gritty)	(0 %		Organic (FPOM)	<i>m.m.</i>
Silt 0.00	406mm	9070	Mari	Grey, Shell	
Clay <0.0	004mm (slick)			r ragments	
WATER QUALITY Pond Stream.Type: Coldwate Water Odors: Normal Water Surface Oils: Slick ( Turbidity: Clear - D.O 6. D.O. Temp 10. Curd 310 Curd 310 Curd 7. PH Temp - 9.8	Sewage Petroleum Sheen Globs Slightly Turbid 3 Apan 2.1 °C 9 Junhae / em 1 °C 3	r ) Chemical No Flecks None Turbid Opaque W	one Other		
					) on Brok)

Figure 5.1-1. Physical Characterization/Water Quality Field Data Sheet for use with all Rapid Bioassessment Protocols.



Document	# 18				+
9-4-92 ANC 31\$26.	H7.20 PHYS	ICAL CHARACTERIZ	ATION/WATER QUALIT	Ship Creek 5-MI-11-0	1530
PHYSICAL CHAR	ACTERIZATION			M. Mische	k / S. Hype
RIPARIAN ZONE/	WATER				
Predominant Surrou	inding Land Use:			Creek man	along juck you
Forest Field/Past	ure Agricultural	Residential Co	mmercial Industrial	Other	
ligh Water Mark	3 (M) Velocity 4.3 Spe	Mola flo Dam Present:	Yes No 🗶	Channelized: Yes	No <u>X</u>
Сапору Сочег.	Open Partiy Open	Partly Shaded Sha	nded		
EDIMENT/SUBS	TRATE:				
iediment Odors: (	Normai Sewage Petroleum	Chemical An	acrobic None	Other	
jediment Oils:	Absent Slight Moderate	Profuse			
ediment Deposits:	Sludge Sawdust Paper Fib	er Sand Re	lict Shells	Other	
tre the undersides	of stones which are not deeply e	mbedded black? Ye	s <u>No</u> wit of	soned	
······	Inorganic Substrate Componen	LS	Org	anic Substrate Compone	B(S
		Percent Composition			Percent Composition
Substrate Type	Diameter	in Sampling Area	Substrate Type	Characteristic	in Sampling Area
Bedrock Boulder	>256mm (10 in.)		Detritus	Slicks, Wood. Coarse Plant Materials (CPOM)	very little
Cobble	64-256mm (2.5-10 in.)	10%			
Gravel	2-64mm (0.1-2.5 in.)	8	Muck-Mud	Black, Very Fine	.2
Sand	0.06-2.00mm (gritty)	0073 10 <b>7</b> 0		Organic (FPOM)	None
Silt	0.00406mm	,	Mari	Grey, Shell	1)
Clay	<0.004mm (slick)			Fragments	
WATER QUALIT	Y				
Stream Type: (	Coldwater Warmwat	er			
Water Odors:	Normal Sewage Petroleum	n Chemical N	one Other		
Water Surface Oils	: Slick Sheen Globs	Flecks None No	ne anded at tim	e of sampli	4
Turbidity:	Clear Slightly Turbid	Turbid Opaque W	ater Color		-
liver tokes	a sharp bend to the	left. Rip/in	along vight side	of book to hel	p stabilizs.
Stundenia	in question enters :	river from the s	right (Lokein Jon	mertman). Su	all channel
exided this	stine between stan	n drais (50)	and main flow of	rion. Flow t	in the SD
is diversed	by the boy at the en	tomac to the	creek.		
Water Cha	nistry of out the	( Cond. Tom	. 9.0° f	(no from 50 to	, creak Aprix 1.1
0.0. Temp.	- 9.02	pa h	1.71	-	
Cand.	- 310 un have /ca	a all Tomas	9.0 %	(Map an B	ack)

Figure 5.1-1. Physical Characterization/Water Quality Field Data Sheet for use with all Rapid Bioassessment Protocols.

.

Document #19 29-4-9 ANC 311 24. HO. 20 0.11-In.7 M. Misshel 15. 1. 00 plan junk 4 M 3411 Acre £ w? tir γ. Q Gravel BAI 1. 66 . : .1 5 pris' simple ?. whee As Silve as anois greene a states 31.2 1941 ide of books in its e relate. Sources Channel Stanning in question enters view tyme the I marrison messe 38 4 111.3 Stene: diaid ( 50) inclus -: 4 . win the ist in a eke S 🖔 36 by to ine be the extension of the intra in 2 Sec K elater themister of ant flow ( thick at files They 14 7 20 24 3c.3 5 8.0 unsi to Sec. Times. મ્લ 5 **.**? 398 Hq. 14.3 1 2 mil M مراد ! · 405. Junkyond Ø Deel ( )

Drument # 20		All AL
9-5-92 / // 3 PHYSICAL CHARACTERIZ AUC 3/926.H2.29 FIELD DA	ATION/WATER QUALITY	Ship Creek S-MI-12
PHYSICAL CHARACTERIZATION		M. Mischel / S. Nope
RIPARIAN ZONE/WATER	Leepla	e
Predominant Surrounding Land Use:	ont to what prover Ju	adjust below sample area
Forest Field/Pasture Agricultural Residential	mmercial Industrial	Other
High Water Mark 2 (m) Velocity 4.0 Ses Dam Present:	Yes <u>K</u> No Char	nnelized: Yes No X
Canopy Cover: Open Partly Open Partly Shaded Sha	ded	}
SEDIMENT/SUBSTRATE		
Sediment Odors: Normal Sewage Patroleum Chemical An	aerobic None Othe	r
Sediment Oils: Absent) Slight Moderate Profuse	1 Amas	
Sediment Deposits: Sludge Sawdust Paper Fiber	lict Shells Othe	er
Are the undersides of stones which are not deeply embedded black? Ye	No X	
Inorganic Substrate Components	Organic :	Substrate Components
Percent		Percent
Composition Substrate Type Diameter in Sampling Area	Substrate Type	Composition Characteristic in Sampling Area
Bedrock	Detritus Stick	s, Wood.
Boulder >256mm (10 in.)	Coar Mate	rials (CPOM) (CIM January Little
Cobble 64-256mm (2.5-10 in.) 70%		preset)
Gravel 2-64mm (0.1-2.5 in.) 7 5 20	Muck-Mud Blac	k. Very Fine
Sand 0.06-2.00mm (gritty)	Orga	anic (FPOM)
Silt 0.00406mm	Marl Grey	y, Shell
Clay <0.004mm (slick)	Frag	ments
WATER QUALITY		
Stream Type: Coldwater Warmwater		
Water Odors: Normal Sewage Petroleum Chemical N	one Other	
Water Surface Oils: Slick Sheen Globs Flecks None		-
Turbidity: (Clear) Slightly Turbid Turbid Opaque W	ater Color	
Sagale area inst downstrem of bridge and out	Fall pres of State fie	4 that charge. In site water
quelit/ Mensur unaits		/ ==
D.o. ' - 11.1 mg/L		
0.0. Teng 8.5°C		
Conductivity - 10 1 perghan tean		
Conductivity Temp - 8.8 °C		
pH Temp 8,1 °C		(Map on Back)

Gigure 5.1-1. Physical Characterization/Water Quality Field Data Sheet for use with all Rapid Bioassessment Protocols.

.

ATLR28/066.51

out Soll from Hotchary "Document #2/ 4-17-41. 17.80 ADC B1+24.47.75 ent. citi 1 . .... squit in the last (  $\dot{\tau}^{2}$ ٢ See of the X Bighe 600 Qu N M. Milli No. 5  $hl_I$ Uner Side, fust flaming 1/1/ Q Run / R: 100% y noq 40 ft . tne 1. Bon will tratery -1.1 9 Lovel ر بو Ru. Rash 32 ff to ste South Free materials loss and Same · ··· xHis ftiste in 1 te :----•7:**%**% -1 San TY A HE SHAR MARCH . . . . Lipters ÷. . 1, Sugar · my ken , En All Buch **.**, H-: • • **3** stat ..... 1.17 NO U) Juin (10 ( 2 Calo

9-1-92 M.Mischuk /S. Hope

Elmendarf AFB

1255 HP3. AUC 31076 HR.20 5-MI-01

 $\square X$ 

			1062123		
HADI	tat Parameter	Excellent	Good	FALT	Poor
<u>.</u>	*Bottom substrafaf avsilable cover	Greater than 50% rubble. gravel, submerged logs. undercut banks, or ether stable habitat. {\$ 16-20	10-501 tubble, gravel or other stable habitat. Adequate habitat. 11-15	10-101 rubbie, gravel or other stable habitat. Mabitat availability less than desirable. 6-10	Less than 10t rubble gravel or other stable habitat. Lack of habitat is obvious. 0-5
	Enbeddedness (b)	Gravel, cobble, and boulder partirias are bourder d and 25 1 aurrounded by fine aediment (\$ 16-20	Gravel, cobble, and boulder perticies a: between 23 and 50 t sutreunded by fine sediment 11-15	Gravel, cobble, and boulder particles are betuen 50 and 75 1 surcounded by fin totaent 6-10	Gravel, cobble, and beulder particles ar ever 75 % surreunded by fine sediment Q-S
	50.15° cms (5 cfs) • • Floy _{4 )} at fep. lou flow	Cold >0.05 cms (2 cfs) Marm >0.15 cms (5 cfs) ZE 10-20	0.03-0.05 cms (1-2 cfs) 0.05-0.15 cms (2-5 cfs) 11-15	0.01-0.01 cms (.5-1 cfs) 0.01-0.05 cms (1-2 cfs) 6-10	(0.01 cms (.5 cfs) (0.03 cms (1 cfs) 0-5
	or J0.15 cms (5cfs) • Velocity/depth	<pre>\$iou (&lt;0.3 m/s), deep (&gt;0.5 m); slow, shallow (&lt;0.5 m); fast (&gt;0.3 m/s), deep; fast, shallow habitats all present. 16-20</pre>	Only 3 of the 4 habitat catagorias present (aussing rifflas or runs receive lover score than missing pools!. ,11-15	Only 2 of the 4 habitat categories present (missing ciffles/runs receive lower score). 6-10	Dominated by one velocity/dapth category (ustally peel). 0-5
1.	• Channel alteration ¹²⁾	Little of no onlotte- ant of Islands of point bars, and/of no channelization. 12 12-15	Some new Increase in ber formtion, mostly from costs gruel; and/er some channelisation present.	Mederate deposition of new gravel, coarse sand on old and new bars; pools partially filled v/silt; and/or embank- sents on both banks.	Heavy deparits of fine material, increased ber development: mest pools filled w/silt; and/or attentive channelization
<u>.</u>	Bettom scoufing and deposition	Less than 51 of the bottom affocted by acouring and deposition. 12-15	5-101 Affacted. Scour at constrictions and unste grades steepen. Scae deposition in pools.	30-50% affactad. Deposits and acour at obstructions, con- attictions and beads. Some filling of pools.	Hore than 50% of the bottom changing rouly year lang. Pools almost absent due te deposition. Only large focks in fiftle argosod. 0-3

Habitat Assessment Field Data Sheet for use with all Rapid Bioassessment Protocols.

Document # 22

$\frac{1}{12}  12-15 \qquad 1-11 \qquad 1-$	Excellent 7. Variety of bitat. Deep riffles d pools.	Category Good Category 1-15. Adequate depth In pools and titites.	cont. I Fair 15-25. Occasional riffle of bend. Bottom contours provide some	Poor >23. Essentially a straight stream. Generally all flat
$\frac{7}{100} = \frac{1}{100} = \frac{1}$	() 12-15 La. Mo evidence Foilon of failure. failoper gener- aloper gener- aloper future ntial for future liem.	A-11 Moderately stable. Infrequent, small areas of eroston mostly healed over. Side slope up to dot on one bank. Slight potential in extreme	habitat. Moderat / unstable Moderate frequency and side slopes up to 601 on some banks. Migh during extreme high flow	ruttie. Poor habitat. Poor Unatable. Many Unatable. Many stoded areas. Bide stoded areas frequent and bends.
	abont surfaces abont surfaces red by retion or boulders coble. (0 9-10 rub. vegetation hrub.	50-79% of the streambank surfaces covered by vegetation, gravel of larger material. 6-4 bominant vegetation is of tree form.	25-494 of the stream bank surfaces covered by vegetation, gravel. or larger material. J-5 Dominant vegetation is grass of forbes.	Less than $354$ of the streambark surfaces covered by vegetation. paterial. I reger naterial. $0-2$ Over 594 of the stream- bank has no vegetation and dominant material is soil. rech. bridge areatals. cultorts.
	11-4 11-4 11-4		. <b>`</b> ∙ <b>a</b>	

L

! ;

į

|. |

Elmendurf AFB OUS AUC 31026. H2.20

S. Hupe m. m. scheh 28-1-62

S.MI-BL

7 de Kus

HABITAT ASSESSMENT FIELD DATA SHEET

Gravel, cobble, and boulder particles are over 75 % surreunded by fine sediment

S-0

6-10

11-15

gravel or other stable hebitat. Lack of

10-30% rubble, gravel or ocher stable habitat. Habitat availability less than desirable.

Greater than 50% rubble, 10-50% rubble, gravel gravel, submerged logs, or other stable habitat. undercut banks, or Adequate habitat.

gravel, submerged logs. undercut banks, or

·Bottom substraf24 available cover

.

Habitat Parameter

other stable habitat.

Less than 10% rubble habitat. Lack of habitat is obvious.

P 00 C

1157

Categury

6000

Cacel lent

- **·** 

6-10

sediment.

11-15

?

sediment

16-20

Gravel, cobble, and boulder particles are between 50 and 75 1 aurrounded by fine

Gravel, cobble, and boulder particiss are between 25 and 50 1 surrounded by fine

Gravel, cobble, and boulder particles are between 0 and 25 1

ه

Embeddedness

~

surrounded by fine

sediment

S-0

0.01-0.03 cms (.5-1 cfs) (0.01 cms (.5 cfs) 0.03-0.05 cms (1-2 cfs) (0.03 cms (1 cfs) Dominated by one velocity/depth category (usually 9-1-9 Only 3 of the 4 habitat categories present (mussing tiffles or runs receive lever score than 0.03-0.05 cms [1-2 cfs] 0.05-0.15 cms [2-5 cfs] 11-15

peeli. Only 2 of the 4 habitat categories present (missing riffles/runs receive lover score).

Slav (<0.3 m/s), deep (>0.5 m); slov, shallov (<0.5 m); fast

>0.15 cma (5cfa) + Velocity∕depth

5

Cold >0.05 cms (2 cfs) Warm >0.15 cms (5 cfs) 0 3 10-20

•Floy₄,at rep. lou flow

\$0.15 cms (5cfs) +

.

[>0.] m/s], deep; fast, shallow habitats all

present.

Channel alteration

.

16-20

material, increased bar development; most pools filled w/silt; and/or extensive channelization. Heavy depesits of fine 9-10 Moderate deposition of .11-15 missing pools).

0-S

bottom changing nearly year leng Pools almost absent due to deposition More than 50% of new gravel, coarse sand en old and new bars; pools pertially filled v/silt; and/er embank-1-1 Deposits and scour at obstructions, con-strictions and bends. Some filling of peols. sents on both banks. 30-501 affected. Sose nov increase in bar formation, mostly from costse gravel; and/or cost channelisation 5-30% affected. Scour at constrictions and where grades steepen. Some deposition in pools. 8-11 present. 13 12-11 Little of no enlarge-ment of islands of point bars, and/of ne channelisation.

:

t he

--

1

11-0

12-15

3

Less than 51 of the bottom affected by scouring and

Bottom scougjng and deposition

, •

deposition.

Only large rocks in riffle exposed.

From Ball 1942. From Platts et al. 1981. : • • Mabitat parameters not currently incorporated into Blos lb) Note:

Habitat Assessment Field Data Sheet for use with all Rapid Bioassessment Protocols.

Document # 23

	KABITAT AS	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	1.5005.1	
tat Parameter	Excellent	Good	Fair	Peor
Pool/fiftle, cun/bend tation (distance between ciffles divided by stress width)	5-7. Variety of habitet. Deep tiffles and pools. 12-15	7-15. Adequate depth in pools and ciffles. Bends provide habitat. // 1-11	15-25. Occassional tiffle at bend. Botton contouts provide seme habitat. f-7	>25. Essentially a straight atreas. Generally all flat vector shallou rifflo. Poor habitat. 0-3
Bank stability ^(a)	stable. Mo evidence of erosion of benk failure. side slopes gener- ally 4304. Little problem. 9-10	Moderately stable. Infrequent, small areas of areain marily helled over. Side alops up to 40% on one bank. Slight potential in extreme floods.	Moderately unstable. Moderate frequency and Moderate frequency and size of erosianal areas. Side slopes up to 601 on some banks. Nigh erosion potential during attreme high flou.	Unstable. Many scoded areas. Side slopes JGOL comeon: Raw' areas froquent and bends. 0-2
Bank vogofgåive stability	Over 80% of the streambank surfaces covered by vegetation or boulders and cobble. 9-10	50-791 of the atreambank auctaces covered by vegetation, gravel of larger material.	23-49% of the stream- bank suctaces covered by vegetation, gravel. or larger material. 3-5	Less than 25% of the streambank surfaces covered by vegetation. gravel, of larger material. 0-2
Streamside cover (b)	Dominant vegetation ts shrub. 9-10	Dominant vegetation is of tree form.	boainant vogetation is grass or forbes. 3-5	Over 50% of the stream- bank has no vegetation and dominant meterial is soil, reck, bridge materials, culverts, or sine tailings. 9-2
uen Totala	seere 1 0 2	\$	M	s.

i

	itat Parameter Excellen	"Bottom substrafaf Greater than " gravel, submor available cover and order atable h	Eabeddedness (b) Gravel. cobbi- boulder partir bourceunded by aurreunded by aediment	g0.15'cms (5.cfs) • Cold >0.05 cms •floy ₄ ]at rep. lov Warm >0.15 cms flow	of >0.15 cms (5cfs) •	<ul> <li>Channel alteration^[a] Little of no - ment of islan.</li> <li>point bara, al no channelisa.</li> </ul>	Bottom scouging and Less than 51 ( deposition affect scouting and deposition.	r <u>From</u> Ball 1982. 1 From Platts et al. 1903. 1e: • = Mabitat parameters not currently
	ŗ	04 rubble, 30 9ed logs, 91 , 9t 16-20 16-20	, and 11, and 25, are 6, br 11, - 16, -20	(2 cfs) 0. (5 cfs) 0. 10-20	<pre>% deep % shallow co co sep; faat. fa faat. fa fa faat. fa fa faat. fa fa faat. fa fa fa faat. fa fa fa fa fa fa fa fa fa fa fa fa fa f</pre>	da or da or nd/or tion. P	if the 5- od by 2- 12-15	t n corporatod
Categury.	Good	-50% rubble, gravel : othor stable habitat. ioquate habitat. <b>f</b> \$11-15	ravel, cobble, and buider particies are truen 25 and 50 ( rirounded by fine disent (5 11-15	03-0.05 cms (1-2 cfs) 05-0.13 cms (2-5 cfs) 11-15	<pre>ify 3 of the 4 habitat tegorias present aissing rifflas or runs cesive lover score than issing pools1</pre>	ome new Increme In Der ormation, mostly from omra gravel; and/or ome channelisation resent. 8-11	191 affacted. Scour t constrictions and nore grades steepen. one deposition in pools. # 4-11	inte <b>1</b> 105.
	faic	10-10% rubble, gravel or other stable habitat. Mabitat availability less than desirable. 6-10	Gravel, cobble, and boulder particles are between 50 and 75 1 surrounded by fine tediaent 6-10	0.01-0.01 cms (.5-1 cfs) 0.01-0.05 cms (1-2 cfs) 6-10	Only 2 of the 4 habitat categories present (aissing riffles/runs receive lower score). 6-10	Moderate deposition of new gravel, coarse sand on old and new bars; pools partially filled v/silt; and/or ombank- sents on both banks. 4-7	10-50% affected. Deposits and scour at obstructions, con- strictions and bonds. Some filling of pools. 4-7	
	Poor	Loss than 10% rubble gravel or other stable habitat. Lack of habitat (s obvious. 0-5	Gravel, cobbla, and boulder particias are ever 75 % surrounded by fine sediment 0-5	(0.01 cms (.5 cfs) (0.03 cms (1 cfs) 0-5	Dominated by ene velocity/depth category (umumily poel). 0-5	Meavy deposits of fine material, increased bar development: most pools filled wailt; and/or estensive channelisatio estensive channelisatio	More than 501 of the bottom changing natriy year long. Pools alast absent due to depesition. Only large rocks in tiffle exposed. 0-3	

Habitat Assessment Field Data Sheet for use with all Rapid Bioassessment Protocols.

_	

-
1
5
빋
-
5
ž
E
2
9
5
2
ы
곱
Z.
S
. v
H
1
1
1

riffles 1-15. Adequate depth in pools and riffles. ands provide habitat. I2-15 [0 4-11] dence Mederately stable. dence Mederately stable. after the stable. it of forthom antily haved over. side slopes up to the potential in entreme floods. 9-10 8 6-4	15-25. Occessional riffla or bend. Bottom concours provide some habitat. Moderately unitable. Moderately unitable. Moderate frequency and side slopes up to 601 side slopes up to 601 during attrame high flov. 3-5	>25. Essentially a straight stream. Ganerally all flat vater or shallow riffle. Poor habitat. Poor habitat. Poor habitat. Bol Unstable. Many Unstable. Many ereded areas. Bide stogen 560 common. Tav" areas froquent along straight sections and bends.
12-15 / 0 1-11 dence Moderately stable. Infrequent, stable. infrequent, stable. over. side slopes up to ever. side slopes up to thure potental in extreme floods. 9-10 8 6-1	4-7 Moderately unstable. Moderate trequency and size of ercatonal areas. Side alopes up to 601 er some banks. Migh erosion perential during extreme high flov.	0-) Unstable. Many eroded areas. Bide alopes )60% common. Rav" areas frequent and bends.
dence Moderately stable. Infrequent, stall stess of erosion metry healed ere: over, side slopes up to title potential in extreme titure potential in extreme 100ds. 9-10 8 6-8	Moderate frequency and moderate frequency and size of erosional areas. Side alopes up to 601 on some banks. Migh erosion perential during extreme high flov.	Unstable. Many ereded areas. Bide siopes >60% common. "Raw" areas frequent along straight sections and bends.
		6-2
50-794 of the streambank isces surfaces covered by vegetation, gravel or boulders larger material. 9-10	25-49% of the stream- bank surfaces covered by vegetation, gravel, or larger material. 3-5	Less than 25% of the streambank surfaces covered by vestation. gravel, or larger material. 0-2
ition Dominant vegetation is of tree form. 9-10 6-6	Dominant vogstation is grass or forbes. 4 3-5	Over 50% of the stream- bank has no vegetation and deminant material is soil, reck, bridge materials, culvetts, or mine tailings. 0-2
29 67	3	ral.
	22 E1	22 62 62 4 3-3

Page 2 042

Document # 29 (coni.).

: ; ;

9-4-92 AUC 51026.H2.20

Elmendarf AFB ass-

1530 Ship Crek 5.ML-11. Q M.M:Eluk/S.Hop

í		TRCellenc	6000		Poor
	Bottom substratia: available cover	Greater than 90% rubble. Gravel, submerged logs, undercut banks, or ether stable habitet. 16-20	10-501 cubble, gravel or other stable habitat. Adequate habitat. <b>1</b> 11-15	10-301 tubble, gravel or other stable habitat. Mabitat availability less them desirable. 6-10	Less them 19% rubble gravel of other stable habitat. Lack of habitat is obvious. 0-5
	Eabeddedness (b)	Grevel, cobble, and boulder particles are between 0 and 25 1 surrounded by fine sediment 16-20	Gravel, cobbie, and boulder particles are between 25 and 50 1 surrounded by fine sediment	Gravel, cobble, and boulder particles are between 50 and 75 1 autremaded by fine undiant 20 4-10	Gravel, cebble, and boulder particles are ever 75 4 surrounded by fine sediment 0-5
1	10.15 cms (Sefs) - • Floy4) at rep. low flou	Cold 10.05 cas (2 cfs) Werm 10.15 cas (5 cfs) 10-20	0.03-0.05 cms (1-2 cfs) 0.03-0.15 cms (2-5 cfs) 11-15	0.01-0.03 cms 1.5-1 cfs) 0.01-0.05 cms 11-2 cfs) 6-10	(0.01 cm (.5 cfs) (0.01 cm (1 cfs) 0-5
	or >0.15 cms (5cfs) • Velocity/depth	Slow (c0.3 m/s), doop (20.5 m); slow, shallow (c0.5 m); faat (20.3 m/s), doop; faat, shallow habitata all present. 16-20	Only 3 of the 4 habitat categories present (aissing riffles or runs receive lover score than aissing prels]	Only 2 of the 4 habitat categories present (aissing ciffles/runs receive lover score). /0 4-10	Dominated by ane velocity/depth category fustally pool). 0-5
1.	· Channel alteration ia .	Little or no enlarge- ment of islands or point bars, and/or no channelisation. 12-15	some new increme in bar formation, mostly from coarse gravel; and/or some channelisation present. 8-11	Noderate deposition of now gravel, coarse send on old and new bers: pools partially filled visit: and/or ember- sents on both banks.	Moury depeats of fine material, increased ber development: most peels filled wysilt; and/or stematve channellation.
1.	Bottom scouting and deposition	Less than 51 of the bottom affected by scouring and deposition. 12-15	5-101 affacted. Scour at constrictions and where grades steepen. Scae deposition in pools.	10-501 affected. Deposits and scour at obstructions, con- strictions and bends. Some filling of pools.	More than 90% of the bettom changing mearly year long. Pouls algost long. due to deposition. Oaly large fochs in tifile expeced. 0-1

Habitat Assessment Field Data Sheet for use with all Rapid Bioassessment Protocols.

Document # 25

Page 1 452



4-5-92 / 1130 ADC 21026.42.20

Elmendurf AFR OUS

Ship Creek S-MI-12 M. Mischek / S. Hope

<u>نا</u>	·Bottom substrafif available cover	Greater than 50% rubble. gravel, submerged logs. undercut banks, or other stable habitat.	30-501 rubble, gravel or other stable habitat. Adequete habitat. <b>\$6</b> 11-15	10-10% rubble, gravel or other stable habitat. Mabitat availability less than desirable. 6-10	Less them 10% rubble gravel or other stable habitat. Lack of habitat is obvious. g-5
1	Esboddedness ^{(b} )	Graval, cobble, and boulder partirles are between 0 and 25 A aurrounded by fine sediment 16-20	Gravel, cobble, and boulder perticies are between 23 and 30 1 between 24 by Eine sediment 16 11-15	Gravel, cobble, and boulder pericipe are bolucen 50 and 75 1 surrounded by fine felgent	Graval, cobblo, and builder particlas are aver 75 1 aurrounded by fine sodiment 0-5
	g0.15 cms (5 cfs) + "flov[≜]at tep. lou flow[≜]at tep. lou	Cold 70.05 cms 12 cfs) Marm 20.15 cms 15 cfs) 10-20	0.03-0.05 cms (1-2 cfs) 0.05-0.15 cms (2-5 cfs) 11-15	0.01-0.03 cms (.5-1 cfs) 0.03-0.05 cms (1-2 cfs) 6-10	(0.01 cms (.5 cfs) (0.01 cms (1 cfs) 0-5
	oc (3cfs) • Velocity/depth	Slow ((0.] m/sl, deep (>0.5 m); slow, shallow (0.5 m); fatt (10.3 m/sl, deep; fat, shallow habitata all present. 16-20	Only 3 of the 4 habitat categories present laisaing ciffles of funs receive lover score than aissing poola! [1-15	Only 2 of the 4 habitat categories present instaing tiffles/runs receive lever score). 6-10	Dominated by ane velocity/depth categery (ustally pooll. 0-5
l 🕹	· Channel alteration ¹ a)	Little of no enlarge- ment of islands of point bars, and/of no channelitation. 1412-15	gono nev increase in bar formation, mostly from costma gravel: and/or some channelisation present. B-Li	Moderate deposition of new gravel, coarre and on old and new bars; pools partially filled v/silt; and/or embank- sonts on both banks. 4-7	Meavy deposite of fine material, increased ber development: meat pools filled w/sillt; and/or artensive channelisation. 0-3
1	Bottom scouging and deposition	Less than 51 of the bottom affected by acouring and depesition.	5-10% affected. Scour at constrictions and where grades steepen. Some deposition in pools.	JO-501 affected. Deposits and acour at obstructions, con- strictions and bonds. Some filling of pools.	More than 50% of the bettom changing meatly yeat long. Pools almost absont due to deposition. Oaly large focks in tiffle exposed.
		12-15	11-0 11	4-7	6 - 1

bocument #26Habitat Assessment Field Data Sheet for use with all Rapid Bioassessment Protocols.

Page Lot 2

Pryc 2 JF2 Unstable. Many ecoded aceas. Side . Siepes >60% common. "Rav" areas frequent along straight sections and bends. over 50% of the stress-back has no vegetation and deminant material is seil, rock, bridge materials, culverts, er mine tailings. Less them 25% of the streambank surfaces covered by vegetation. gravel, or larger material. ~-0 e 0-1 --0 ~-0 straight stream. Generally all flat water or shallow riffla. Peer >25. Essentially a P005 habitat. Moderately unstable. Ur Noderate frequency and en side slopes up to 663 "M on some banks. Migh al ducing aktrese high 15-25. Occassional ciffle or bend. Bottom contours provide seme habitat. -1 1-5 -35-49% of the stream-bank surfaces covered by vegetation, gravel. or larger material. 6 Dominant vegetation is grass or forbes. ہ\ 711 HABITAT ASSESSMENT FIELD DATA SHEET (CONL.) 26 Moderately stable. Infrequent, small areas of erosion mostly healed over. Side slopes up to 40% on one bank. Siight potential in artram Category FL. 50-79% of the streambank surfaces covered by vegetation, gravel or larger material. : حر 11-1 11 1 Ţ 4 7-15. Adequate depth in pools and riffles. Bends provide habitat. Daument (Cont.). Dominant vegetation 15 of tree form. 600d tloods. Over 80% of the streadbank surfaces covered by vegetation or boulders and cobbie. 01-6 9-1-6 5-7. Variety of habitat. Deep riffles and pools. 9-10 2 12-15 stable. No evidence of evidence bank failure. Side alopes gener-ally (30%. Little potential for future problem. Dominant vegetation is shrub. 0 0 Excellent \$ C O L O ratio¹⁴¹ (distance between riffles divided by stream width) Pool/fiftle, run/bend ratio 9. Streamside cover (b) E Bank vogetative stability Bank stability Habitat Pacameter Column Totals . -.

,

•

|.

İ

ļ

ŧ

i

•

Decument	#27
7-1-92	Elacidarf AFB
n. Mischuk	/ S. Hope /255 Hrs
NC 3/026.	H2.25
-MI-BI	
	INPAIRMENT ASSESSMENT SHEET
1.	Detection of impairment: Impairment detected (Complete items 2-6) No impairment (Stop here)
2.	Biological impairment indicator:
	Benthic macroinvertebrates Other aquatic communities
	absence of EPT taxaPeriphyton
	dominance of tolerant groups filamentous
	low benchic abundance other
	low taxa richness Macrophytes
	other Slimes
	Fish
1	Brief deceriorion of problem
5.	Year and date of provious surveys:
	Survey data available in:
4.	Cause: (indicate major cause) organic enrichment toxicants flow
5.	Estimated areal extent of problem (m [*] ) and length of stream reach
	affected (m), where applicable:
6	. Suspected source(s) of problem:
	point source discharge (name, type of facility, location)
	combined sever outfall
	silviculture runoff
	animal feedlot agricultural runoff
	urban runoff
	ground vater
	unknovn
R	riefly explain:
2	

, and / Inter	ril. Lyp Cal Are	
-MI-PC		
. Mischulm	THRATERNET ASSES	SCHENT SHEFT
1.	Detection of impairment: Impairmen (Complete	at detected i tems 2-6) (Stop here)
2.	Biological impairment indicator:	
	Benthic macroinvertebrates	Other aquatic communities
	absence of EPT taxa	Periphyton
	dominance of tolerant groups	filamentous
	low benthic abundance	other
	lov taxa richness	Macrophytes
	other	Slimes
		Fish
_		
3.	Brief description of problem:	
	Tear and date of previous surveys:	
	Survey dat: available in:	· · · · · · · · · · · · · · · · · · ·
	Causes (indicate major cause) or	ganic enrichment toxicants flow
4.	ceuse: (Indicate major cause) or	
4.	habitat limitations other	
4. 5.	habitat limitations other	(m ² ) and length of stream reach
4. 5.	habitat limitations other	(m ² ) and length of stream reach
4. S.	habitat limitations other	(m ² ) and length of stream reach
4. 5. 6.	habitat limitations other	(m ² ) and length of stream reach
4. 5. 6.	habitat limitations other	(m ² ) and length of stream reach , type of facility, location)
4. 5. 6.	<ul> <li>habitat limitations other</li></ul>	(m ² ) and length of stream reach , type of facility, location)
4. 5. 6.	<ul> <li>habitat limitations other</li></ul>	(m ² ) and length of stream reach , type of facility, location)
4. 5. 6.	habitat limitations other	(m ² ) and length of stream reach , type of facility, location)
4. S. 6.	<pre>habitat limitations other</pre>	(m ² ) and length of stream reach , type of facility, location)
4. 5. 6.	<pre>habitat limitations other</pre>	(m ² ) and length of stream reach
4. 5. 6.	<pre>habitat limitations other</pre>	(m ² ) and length of stream reach , type of facility, location)
4. S. 6.	habitat limitations other	(m ² ) and length of stream reach , type of facility, location)
4. 5. 6. <b>B</b>	<pre>habitat limitations other</pre>	(m ² ) and length of stream reach , type of facility, location)
4. 5. 6. B:	habitat limitations other	(m ² ) and length of stream reach , type of facility, location)
4. 5. 6. B:	habitat limitations other	(m ² ) and length of stream reach , type of facility, location)
4. S. 6. B	habitat limitations other	(m ² ) and length of stream reach , type of facility, location)

8-30-92/135/H3 5-MI-03 ANE 31026.42.20 Ship Creek S. Hope	•
ANE 3/026.H2.2% M.Mischuk/ Ship Creek S. Hope	
Ship Creek S. Hope	•
IMPAIRMENT ASSESSMENT SHEET	
1. Detection of impairment: Impairment detected (Complete items 2-6) No impairment (Stop here)	
2. Biological impairment indicator:	
Benthic macroinvertebrates       Other aquatic communities        absence of EPT taxa      Periphyton        dominance of tolerant groups      filamentous        low benthic abundance      other        low taxa richness      Macrophytes        other      Slimes        Fish      Fish	
3. Brief description of problem: Year and date of previous surveys: Survey data available in:	
4. Cause: (indicate major cause) organic enrichment toxicants flow	
habitat limitations other	
5. Estimated areal extent of problem (m ² ) and length of stream reach	
affected (m), where applicable:	-
6. Suspected source(s) of problem:	
<pre>point source discharge (name, type of facility, location) construction site runoff combined sever outfall silviculture runoff animal feedlot agricultural runoff urban runoff ground vater other unknown</pre>	
Briefly explain:	

	5-11-4
NC 31026	H2.29 M. Mischuk (S. Hy
mendor	APS OUS
hip Cond	
•	
	INPAIRMENT ASSESSMENT SHEET
	1. Detection of impairment: Tapairment detected . No impairment
	(Complete items 2-6) detected (Stop here)
	2. Biological impairment indicator:
	Benthic macroinvertebrates Other aquatic communities
	absence of EPT taxaPeriphyton
	X dominance of tolerant groups
	low benthic abundance other
	low taxa richness Hacrophytes
	other Slimes
	Fish
	4. Cause: (indicate major cause) organic enrichment toxicants flov
	<ol> <li>Cause: (indicate major cause) organic enrichment toxicants flow habitat limitations other <u>Chald be sevel of the above</u></li> <li>Estimated areal extent of problem (m²) and length of stream reach</li> </ol>
	<ol> <li>Cause: (indicate major cause) organic enrichment toxicants flow habitat limitations other <u>Chald be sevel of the above</u>.</li> <li>Estimated areal extent of problem (m²) and length of stream reach affected (m), where applicable: 4-0 m².</li> </ol>
	<ol> <li>Cause: (indicate major cause) organic enrichment toxicants flow habitat limitations other <u>Chald be sevel</u> of the above.</li> <li>Estimated areal extent of problem (m²) and length of stream reach affected (m), where applicable: 4-0 m².</li> <li>Suspected source(s) of problem:</li> </ol>
	<ul> <li>4. Cause: (indicate major cause) organic enrichment toxicants flow habitat limitations other <u>Chald be serval of the above</u>.</li> <li>5. Estimated areal extent of problem (m²) and length of stream reach affected (m), where applicable: 4-0 m².</li> <li>6. Suspected source(s) of problem: <ul> <li>point source discharge (name, type of facility, location) construction site runoff combined sever outfall silviculture runoff animal feedlot agricultural runoff ground water other unknown</li> </ul></li></ul>
	<ul> <li>4. Cause: (indicate major cause) organic enrichment toxicants flow habitat limitations other <u>Chald be sevel of the above</u>.</li> <li>5. Estimated areal extent of problem (m²) and length of stream reach affected (m), where applicable: 40 m².</li> <li>6. Suspected source(s) of problem: <ul> <li>point source discharge (name, type of facility, location) construction site runoff</li> <li>combined sever outfall</li> <li>silviculture runoff</li> <li>agricultural runoff</li> <li>ground water</li> <li>other</li> <li>wate flows Steve dasia originates from bluff Area (STM, ST, main and sever or state or st</li></ul></li></ul>
	<ul> <li>4. Cause: (indicate major cause) organic enrichment toxicants flow habitat limitations other <u>Chald be serval of the above</u>.</li> <li>5. Estimated areal extent of problem (m²) and length of stream reach affected (m), where applicable: 40 m².</li> <li>6. Suspected source(s) of problem: <ul> <li>point source discharge (name, type of facility, location) construction site runoff combined sever outfall silviculture runoff animal feedlot agricultural runoff ground water other</li> <li>Water flux Stem dasis originates from bluff Ama(STS, ST, methods) &amp; Water flux Stem dasis originates from Valuat SL, into dasig</li> </ul> </li> </ul>

ł

Impairment Assessment Sheet for use with macroinvertebrate Rapid Bioassessment Protocols.

•

92 / 11 5 3 1ø26. 1 5 Cræk	5-MI-12 H2.25 M. onischul/ S. Hype
	INPAIRMENT ASSESSMENT SHEET
1.	Detection of impairment: Impairment detected (Complete items 2-6) (Stop here)
2.	Biological impairment indicator:
	Benthic macroinvertebrates       Other aquatic communities        absence of EPT taxa      Periphyton        dominance of tolerant groups      filamentous        low benthic abundance      other        low taxa richness      Macrophytes        other      Slimes        Fish      Fish
3.	Brief description of problem: Year and date of previous surveys: Survey data available in:
4.	Cause: (indicate major cause) organic enrichment toxicants flov habitat limitations other
5.	Estimated areal extent of problem (m ² ) and length of stream reach affected (m), where applicable:
6.	Suspected source(s) of problem: point source discharge (name. type of facility, location) construction site runoff combined sever outfall silviculture runoff animal feedlot agricultural runoff ground vater other unknown
Br	iefly explain: