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1.0 INTRODUCTION 

In this report, three widely used methods for imposing discrete solid-wall boundary 
conditions for the numerical computation of inviscid flows are presented, and two of these 

methods are shown to offer only provisionally correct results. Specifically, it is shown that 

a method involving contravariant velocity components can generate distortions in computed 

flows. This method has been used for years in the AIR3D code (Ref. 1) and its derivatives 

to compute steady-state flows in stationary grid systems. Also, with the inclusion of time 

metrics, this method has been used to compute flows in moving grid systems (Ref. 2). 

Steady-state computations performed with these codes have shown that distortions can 

be generated in computed flows when grid lines emanating from a solid boundary are not 

orthogonal to the wall. The consequences of grid skewness are discussed in Ref. 3. In addition, 

it is shown here that the method of contravariant velocity components is correct only if grid 
lines emanating from solid walls are normally oriented. Because complex CFD calculations 

can be difficult to interpret, the claims made here are demonstrated with explicit solutions 
to simple model problems. 

Instead of the above procedure for determining velocity at solid boundaries, there is a 
more direct approach of simply extrapolating velocity to the wall and subtracting the normal 

component. Such a method gives correct results on a stationary grid without conditions on 

the grid, such as the orthogonality constraint mentioned above. While this more direct 

approach has an unambiguous implementation for stationary grid systems, there are various 
ways to employ the idea for moving grid systems. Furthermore, some of these implementations 

for dynamic grid systems can cause spurious features in computed flows. A correct 
implementation is proposed and compared with another apparently natural one. Again, since 

complex CFD calculations can be difficult to interpret, comparisons are made on the basis 

of explicit solutions to simple model problems. Finally, the correct method is shown to be 

consistent with solid-wall boundary conditions imposed in Ref. 4. Also, an explanation 
is given for the use in Ref. 5 of a solid-wall boundary condition for pressure in moving 
grid systems. 

The contents of the report can he summarized as follows. In Section 2.0, the necessary 
notations and assumptions are presented. In Section 3.0, definitions are given for three methods 
of imposing discrete solid-wall boundary conditions in moving grid systems for the numerical 

computation of inviscid flows. As appropriate, the boundary conditions given are simplified 
for the treatment of stationary grid systems. Then in Section 4.0, simple examples are presented 

to demonstrate which boundary conditions from Section 3.0 give correct numerical results. 

In Section 5.0, the numerical boundary conditions used in Refs. 4 and 5 are discussed. Finally, 
in Section 6.0, the conclusions of this study are summarized. 

5 



AEDC-TR-93-23 

2.0 NOTATIONS AND ASSUMPTIONS 

Before any discussion of discrete boundary conditions can begin, the continuum boundary 
condition must be given together with a description of the kind of applications for which 
it is intended. Also, since CFD codes do not all operate in the same way, the present numerical 
orientation must be explained and certain notations must be developed. 

Assume that a solid body is in rigid motion with respect to what will be called a stationary 
frame. Let stationary frame Cartesian coordinates be given by 

% = [x,y,z]T = [Xb X2,X3f. 

Also, let curvilinear coordinates 

be established around the moving body for the purpose of defining a computational grid. 
Specifically, at every time level, tn, grid points (%')./' ~) satisfy 

(1) 

That is, the curvilinear coordinates assume integer values at grid points. Also, it is assumed 
that for every fixed time, t, the transformation from % to ~ is well-behaved in the sense that 

(2) 

satisfies 

o < /1 ::; det {J} ::; /2 < 00 (3) 

for constants 1'1 and 1'2' Therefore, the inverse transformation from ~ to % is well-behaved. 
Also, it follows from the chain rule expressions, 

(4) 
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that the inverse of .J is given by 

(5) 

Let the body surface be defined by 

(( x, t) = constant, 

and suppose the points away from the body are associated with increasing r. Therefore, for 
fixed time, t, an outwardly directed unit normal vector at the body surface is given by 

A( ) V( 
n x,t = IIV(II' 

(6) 

Next, let zm(t) represent the Cartesian components, relative to the stationary frame, of 
the trajectory of a material particle, It is assumed that the curvilinear coordinates associated 
with xm(t) remain constant. Thus, the grid coordinate system does not move in relation to 
the body as would be the case, for example, if the grid were adapting to the flow. In addition, 
let x (t) represent the Cartesian components, relative to the stationary frame, of the trajectory g . 

of a grid point, with necessarily fixed curvilinear coordinates. Suppose that the curvilinear 

coordinates associated with x,it) and zit) are the same, 

~(Xm(t), t) = ~(Xg(t), t) = constant. (7) 

Since, by Eq. (3), the transformation from = to ~ is invertible for every time, t, it follo\vs 

that xm(t) = xit). Thus, 'OnP) = 'Oit), where 'Om = dXm/dt and 'Og = dx/dt represent, 
respectively, the Cartesian components, relative to the stationary frame, of the velocities of 
a material particle and of a grid point. 

To ensure that the grid is in rigid motion, and thus in the same rigid motion as the body 
according to the above discussion, the following assumption is made. Let two points be chosen 
arbitrarily with fixed curvilinear coordinates and let x aCt) and xb(t) denote the Cartesian 
components of their trajectories relative to the stationary frame. Then it is required that the 
distance between these two points remain constant, i.e., 
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As shown in Appendix A, this condition has the important consequence that there is an 
orthogonal rotation matrix, L(t), i.e., 

(8) 

such that 

(9) 

In particular, let one point correspond to any grid point and let the other correspond to a 
reference point such as the body's center of gravity. Thus, grid movement can be accomplished 
knowing only the rotation matrix and the trajectory of a reference point. 

The physical condition to be imposed on velocity for a solid-wall boundary condition 
in inviscid flow is that no fluid pass into the body. Mathematically, this means that the 
components of fluid velocity relative to the moving frame can have no normal component 
at the body surface. It is shown in Appendix B that this condition can be stated in the stationary 
frame as follows, 

n . ( 17 - 17m ) = 0 (10) 

where 17 = [u, V, W]T represents the Cartesian components of fluid velocity relative to the 
stationary frame. For a more computationally convenient version of the above equation, 
the material particle velocity, 17m, can be replaced with the grid velocity, "g' as explained 
above. Thus, the continuum condition for fluid velocity can be expressed as 

n . (17 - 17g ) = O. (11) 

Also, "g can be calculated explicitly by differentiating Eq. (7) with respect to t to obtain 

Vf.d%g of. = o. 
dt + at 

Recalling that J = Vf., the last equation can be written asJ~ + f.t = 0, or by Eq. (3), 

(12) 
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Now, combining Eqs. (6), (12), and (11) gives the condition 

or 

= o. 

Finally, using Eq. (4), the continuum condition can be written as 

(13) 

3.0 DEFINITION OF METHODS 

Equation (11) above shows that, for a grid point on the body surface, the normal 
component of fluid velocity must be set equal to that of grid velocity. However, this condition 
gives no indication of how the tangential components should be calculated. This is the crucial 
point; after all, there are many ways to satisfy Eq. (11), including setting 11 = 11 g' To 
guarantee continuity of the tangential component at the wall, some form of extrapolation 
from the field must be used. First, a method involving contravariant velocity components 
is described. Then, two other more direct methods are defined. 

3.1 METHOD 1 

For a description of Method 1, a careful definition is given first for the contravariant 
components of vectors in four-dimensional space-time. Let "it) = [xit) , yit) , zit)]T 
represent the Cartesian components, relative to the stationary frame, of the trajectory of 
a fluid particle, so that its world line is represented by [xit), yit), zit), tf. In other words, 
with {ex' cy ' ez, ell} denoting a Cartesian basis for space-time, the world line is given by 

Its temporal derivative is given by 
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where again 11 = [U, V, w]T represents the Cartesian components of fluid velocity relative to 

the stationary frame. Now suppose curvilinear coordinates (~,..",t,r) = (~1'~2'~3'~4) are 
established for space-time. Also, suppose that X(~,'l7,t,r) is defined so that curvilinear 
coordinate curves are obtained by fixing three of the arguments in X while varying the fourth. 
Thus, a principal basis for space-time is given by {Xf X'I/' X I' X

r
}, and the corresponding 

reciprocal basis is given by {V~, V..", Vt, Vr} where, for example, V~ is defined by 

(14) 

These bases have the property that X~i • V~j = oij' Also, X~i is tangent to the ~i coordinate 
line with constant ~Ni' while V~j is ortho~onal to the hypersurface of constant ~j' For a 
4-vector, say U, the covariant components, (Ul'U2,U3,U4), are defined by 

4 4 

U = ~UjVej, where U . X~i = 'LUj6ij = Ui. 
j=l j=l 

Also, the contravariant components, (U1 ,U2, U3, U4), are defined by" 

4 

U = Lujx~j' 
j=l 

where 
4 

U· Vei = L Uj6ij = Ui
. 

j=l 

Therefore, the contravariant components, {a, v, W,S}, of V satisfy 

where 

u V·V~ 

v V·VrJ UrJx + vrJy + WrJz + rJt 

W V·V( 

S V·VT UTx + VTy + WTz + Tt. (15) 

* This terminology originates from the fact that if the coordinate system were changed, the 
transformation from the old to the new covariant components has the same form as the transformation 
from the old to the new principal basis vectors. On the other hand, the transformation of the 
contravariant components is different from that of the principal basis vectors, but has the same form 
as that for reciprocal basis vectors. 
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Finally, in view of Eq. (13), the continuum boundary condition can be expressed as 

w=o (16) 

where W is the contravariant component of the space-time vector V given above. 

It has become customary to refer to V, V, and W as the contravariant components of 
velocity even when~, YJ, and t are time-varying. However, this use of terminology from tensor 
analysis is not strictly correct. In fact, by Eq. (3), {zp ZII' z!V and {V~,VYJ,Vn form principal 
and reciprocal bases for three-dimensional space at any given time t. Calculations similar 
to those prior to Eq. (15) show that the contravariant components of velocity are 11 • V~, 

11 • VYJ, and 11 • Vt, i.e., 

Of course, these components coincide with V, V; and W when ~, YJ, and t are time-independent. 

The solid-wall boundary condition as shown in Eq. (16) has been implemented numerically 
according to a procedure that is distilled below to a single equation, Eq. (21). This equation 
is not used widely, but it is important for comparison with other methods. Also, it provides 
a means for representing the present method in compact form. There are many variants of 
this method, but the condition derived serves as a representative of procedures involving 
contravariant components. 

The numerical implementation of Eq. (16) proceeds as follows. First, the Cartesian 
components of fluid velocity are extrapolated to the solid surface, where t = 1= 1, from the 
first point off the wall, where S = 1= 2. Then the components, U, V, and Ware determined. 
By Eqs. (15) and (2) this process can be written as 

[
V 1 n [ ~t 1 n [ U 1 n V TJt + :T]kl V 

W jkl (t jkl W jk2 (18) 

t If ris independent of x, y, and z, then the vector sets, {Sf slI,sr} and {X~,X1j,Xr}, are identical. 
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Following Eq. (16), the next step is to set W to zero by multiplying the last equation by 

[I - M], where 

(19) 

Next, the result of this multiplication is translated to Cartesian components. Again, using 

Eqs. (15) and (2), this process can be written as, 

[ 
u 1 n -1 [ et 1 n -1 [ U 1 n 
v = - (J"]11) TIt + (J"Ik1) [I - M] V 
W jk1 (t jk1 W jk1 (20) 

Now, fJ.1/ki 1 is explicitly equated with fJ'fr1 and Eq. (18) is substituted into Eq. (20) to obtain, 

[ ~ 1 n+1 = - (.1;11 r1 
[ ~: 1 n + (J"}kl) -1 [I - M] { [ ~: 1 n + J"Ikl [ ~ 1 n }. 

W jkl (t jkl (t jkl W jk2 

As seen below, the expression in braces can be expressed in terms of fluid velocity and grid 

velocity by factoring out J")k1' For this, the product, J"lkl (.J lk1 ) -1 is inserted after [1 - M.1. 
After some algebra, the following is obtained, 

The bracketed expression can be simplified with the following explicit calculation, 

[

. . x( 1 n [0 0 
1- . . y( 0 0 

. . z( jkl 0 0 
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Combining the last two equations and Eq. (12) gives 

or 

(21) 

This will be referred to as Method 1 for setting inviscid flow velocity at a solid-wall boundary. 
The crucial element on which to focus is the presence of the term, %\' This vector is tangent 
to the coordinate line emanating from the the body surface, and it is not normally oriented 
unless % \ and V'r are parallel. In Subsection 4.3, it is shown that this aspect of Method 1 
causes spurious disturbances to be generated in computed flows. 

Finally, to complete the definition of Method 1, the grid velocity is specified with a discrete 
formula instead of Eq. (12). Since flg=dz/dt, the local grid velocity at time level, tn, can 
be approximated using grid point coordinates at time levels, ~ and tn - 1, 

(22) 

Now, instead of storing the old grid, zfl<ll can be computed from zftcl as suggested following 
Eq. (9). Specifically, suppose the grid movement is characterized by the trajectory of a reference 
point zo(t) and a rotation matrix, L(t). Then by Eq. (9), 

[ ~n _ (tn \] _ T (-In) [_0 (-10\] 
"'-jkl - "'-0 ) -.LJ. ""jkl - :1:0 • ) 

and 

Using Eq. (8) to eliminate [zJkl - %o(to)] between these equations gives 

(23) 
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Thus, by combining Eqs. (22) and (23), the grid velocity is computed equivalently according 
to Eq. (22) or 

(24) 

3.2 METHOD 2 

Method 2 for setting the inviscid flow velocity is a more direct numerical formulation 
ofEq. (11), which has also been used in AIR3D. The basis of the method is as follows. Working 
in the moving frame, the velocity at time level, tn, is extrapolated to the solid surface from 
the first point off the wall. Then the normal component is subtracted, and the result is expressed 
in the stationary frame. Finally, the velocity obtained is used at the wall for time level, tn + 1 • 

Using the techniques of Appendix B, and Eqs. (B-6) and (B-7) in particular, this procedure 
can be expressed purely in the stationary frame as 

n+l _ ( )n + [I A AT] n ( )n 
fljkl - 'fig jkl - nn jkl 'fI - 'fig jk2' 

Using Eq. (6), Method 2 can be written as 

'\7 (n 
n+l ()n ( )n jkl [v(n • ('fI _ 'fI)n ] 

fljkl = fig jkl + 'fI - 'fig jk2 - IIV' (jk111 2 jkl g jk2 . 
(25) 

with the grid velocity computed according to Eq. (24). 

Method 2 appears natural because it is consistent with a standard condition posed in the 
moving frame with respect to which the grid velocity is zero. However, as shown in Subsection 
4.4, Method 2 causes spurious disturbances to emerge in computed flows because 'fig is 
evaluated at more than one point in the above equation. Specifically, this creates a problem 
in cases where the moving frame is noninertial and the grid velocity varies throughout the grid. 

3.3 METHOD 3 

Finally, Method 3 for setting the inviscid flow velocity is derived from Method 2 by making 
modifications to avoid the spurious effects shown in Subsection 4.4 in connection with Method 
2. Specifically, the present method is posed so that the grid velocity is always evaluated at 
a single point. Method 3 can be written compactly as 

n+l_()n [I AAT]n In. ()n] I1jkl - 'fig jkl + - nn jkl I1jk2 - fig jkl . 

14 
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Using Eq. (6), this can be written as 

(26) 

with the grid velocity computed according to Eq. (24). It is shown in Subsection 4.5 that 
Method 3 passes the tests developed in the next section. 

4.0 ANALYSIS OF METHODS 

Methods 1, 2, and 3 are analyzed in terms of their performance for two simple model 
problems. In the first model problem, the inviscid flow is over a flat plate. Also, the grid 
is stationary and grid lines emanating from the plate have a nonnormal orientation. In the 
second example, the inviscid fluid is at rest around a rotating cylinder. Here the grid is in 
rigid motion with the solid body. 

4.1 PROBLEM 1 

For model Problem 1, let a flat plate be located at z = 0 and the field at z > O. Also, 
assume that the fluid velocity distribution, '11 = [u, v, wf, is two-dimensional with v = O. The 
components, u and w, can be chosen arbitrarily to satisfy the Euler equations, provided 
w = 0 only at z = O. Thus, a proper boundary condition will not introduce a nonzero v 
component to the velocity. 

The curvilinear coordinate system for Problem 1 is time-independent and is defined as 
follows, 

~ = x, TJ = Y -,z, ( = z. (27) 

To show the skewness of this coordinate system, the orientation of the coordinate axes is 
now computed. For example, the ~-axis is defined as the line along which 1] and t are constant. 
So, the position vector, % = [X,y,Z]T, is a function only of ~ along this line. Therefore, %~ 
is tangent to the ~-axis. Similarly, %." and %1 give the orientations of the 1]- and t-axes, 
respectively. These can be calculated from 
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Specifically, the orientations of the curvilinear coordinate system axes are given by the principal 
basis vectors (see Fig. 1), 

x 

Figure 1. Principal basis vectors for Problem 1. 

Note that the ~- and 'l1-axes are aligned with the x- and y-axes, respectively. However, the 
r-axis lies in the y,z plane. Not only is it not aligned with the z-axis, it approaches the y~axis 

as 'Y -- 00, Finally, note that the reciprocal basis vectors are given by (see Fig. 2), 

V'~ = ex, V''f} = ey -,ez , V'( = ez • 

/'e 
x/ 

Figure 2. Reciprocal basis vectors for Problem 1. 

These vectors are orthogonal to surfaces of constant ~, ,/}, and r, respectively. Also, with 
Eq. (4), recall that a given reciprocal basis vector, V'~i' is orthogonal to the two principal 

basis vectors, z~Ni' and has unit scalar product with its counterpart, z~;' 

4.2 PROBLEM 2 

For model Problem 2, let a rotating cylinder be located at x2 + y2 = 1, and the field 
at x2 + y2 > 1. Also, assume that the fluid velocity distribution satisfies v = [u, v, w] T 

= O. Thus, a proper boundary condition will not introduce nonzero components to the velocity. 

16 
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The curvilinear coordinate system for Problem 2 is time-varying and is defined as follows, 

e (N - 1)z + 1 

ry = 1 + (N - 1) [t - tan-1 (y/x)] 

( = (N - 1 hi x2 + y2 - (N - 2) 

T = t. (28) 

Here, Nis a grid refinement parameter, i.e., the approximate grid cell volume is 1/(N-l)3. 

Recall that the cylinder is rotating in rigid motion with this coordinate system, i.e., any material 
particle holds fixed curvilinear coordinates. The Cartesian coordinates can be written in terms 
of the curvilinear coordinates as follows, 

x = (+(N-2) [ (ry-1)] 
(N - 1) cos T - (N - 1) 

y = (+(N-2) . [ (ry-1)] 
(N - 1) SIll T - (N - 1) 

z = 
(e - 1) 
(N -1) 

t = T. (29) 

Thus, the space-time principal basis vectors are (see Fig. 3) 

~ 1 A 

~e = (N_1)eZ 

(+(N-2). [ (ry-1)] A (+(N-2) [ (ry-1)]A 
Xry = (N _ 1)2 SIll T - (N _ 1) ex - (N _ 1)2 cos T - (N _ 1) ey 

Y A X A 

(N - 1) ex - (N _ 1) ey 

'V 1 [(ry-1)]A 1. [ (ry-1)]A A, (N _ 1) cos r - (N _ 1) ex + (N _ 1) SIll T - (N _ 1) ey 

X A Y A = e + e 
(N - 1)Jx2 + y2 x (N - 1)Jx2 + y2 y 

17 
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(+(N-2) . [ (17-1)], (+(N-2) [ (17- 1)], , 
- (N - 1) sm 7 - (N _ 1) ex + (N _ 1) cos 7 - (N _ 1) ey + et 

.. 

x y 
X, 

Figure 3. Principal basis vectors for Problem 2 (z and ~ coordinates suppressed). 

and the reciprocal basis vectors are (see Fig. 4) 

(N - 1)ez 

(N - 1)y, (N - 1)x , 1 ' 

2 + 2 ex - 2 + 2 ey + (N - ~ )et x y x y 

1)( 

1)7 

1)7 

x 

1)( 

Figure 4. Reciprocal basis vectors for Problem 2 (z and ~ coordinates suppressed). 
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4.3 ANALYSIS OF METHOD 1 

Now, consider the application of Method 1 in Eq. (21) to Problem 1. Since the curvilinear 
coordinate system is time-independent, the grid velocity is zero. Also, since Zs- = 'Ye

y 
+ e

z 
and Vr = ez' Eq. (21) becomes 

[:L [:L-[I] [0 0 1] [ ]
0 [ ]0 [ ]0 u u u 

v v - 'Yw -,w 

W jk2 0 jk2 0 jk2 

for the first time step. Note that the last equality follows since it is assumed that the flow 
is two-dimensional with the v component zero. However, this method creates a v component, 
v)kl = - 'YwJk2' at the wall which is propagated into the field. In fact, the problem is made 
worse with more skewness in the grid, i.e., as'Y - 00. Since Method 1 generates this disturbance 
in the flow, it is judged to be unacceptable. 

On the other hand, if the nontangential grid lines are orthogonal to the body surface, 
Method 1 produces correct boundary values. This can be seen by setting 'Y = 0 in Problem 
1 so that Zs- = ez and v)kl = O. In general, under the condition that nontangential grid lines 
are orthogonal to the body surface, Method 1 can be rewritten as follows. Equation (21) 
must be modified to reflect the constraint that z s- must be orthogonal to the wall. Since V r 
is always orthogonal to the wall, it must be that Zs- = cVr for some scalar c. On the other 
hand, since z s- and V r are principal and reciprocal basis vectors, respectively, from Eq. (4) 

it follows that Zs- • V r = 1. Therefore, 

Under the new constraint, Method 1 takes the form, 

'\7(n 
n+l n jkl {'\7(n [n ()n] } 'Djkl = l1jk2 - 11'\7(jklIl2 jkl' l1jk2 - l1g jkl 

with 11 g computed according to Eq. (24). In other words, under the orthogonality condition, 
Eqs. (21) and (26) are identical. 

The flaw in Method 1 can be understood most easily as follows. For simplicity, assume 
that the grid system is time-invariant. Then the fluid velocity can be written as shown in 
Eq. (17), 
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Consider this in relation to Fig. 1. Since %~ and %11 always lie in the tangent plane of the body 
surface; setting '0 • V r = W = 0 does indeed make '0 purely tangential. However, with skewness 
in the grid, :1:\ has a tangential part. Thus, setting W = 0 modifies the tangential part of '0. 

4.4 ANALYSIS OF METHOD 2 

Now consider the application of Method 2 in Eq. (25) to Problem 2. Since the fluid velocity 
is assumed to be zero everywhere initially, the method becomes 

(30) 

for the first time step. By the steps shown in Appendix C, the following is obtained, 

_ (N + 1) 1 - cos(~t) [ X~kl 1 
(N - 1) ~t Yjk1' 

o 

The first term on the right side of this equation is a consequence of the difference, ('0 g)Jkl 

- ('Og)Jk2' appearing in Eq. (30). Note that even in the limit as fl.! -- 0, this term does not 
vanish, and the boundary velocity is given by 

Thus, this method creates nonzero velocity components at the wall which are propagated 
into the field. Based on the correspondence between terms in the equations above, the 
disturbance is related directly to the fact that the grid velocity is evaluated at more than one 
point in Eq. (25). On the other hand, the magnitude of the initial disturbance is diminished 
with grid refinement, i.e., as N -> 00. Nevertheless, since Method 2 generates this disturbance 
in the quiescent flow, it is judged to be unacceptable. 

4.5 ANALYSIS OF METHOD 3 

Now consider the application of Method 3 to Problem 1 and then Problem 2. For Problem 
1, the curvilinear coordinate system is time-independent, so the grid velocity is zero. Also, 
since Vr = cz' Eq. (26) becomes 
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[0 0 1] 

for the first time step. Note that the last equality follows since it is assumed that the flow 
is two-dimensional with the v component zero. Since Method 3 does not spuriously generate 
a v component in the field, it is judged acceptable in terms of Problem 1. 

Now consider the application of Method 3 to Problem 2. Since the fluid velocity is assumed 
to be zero everywhere initially, the method becomes 

(31) 

for the first time step. By the same steps as shown for Method 2, the following is obtained, 

1 1 - cos(~t) [ X~kl 1 
'Djkl = f:1t Yjkl' 

o 

As t:..t -- 0, the velocity introduced at the wall vanishes. In fact, in the limit, the grid velocity 
is computed exactly and vJkl = O. On the basis of these examples, Method 3 is judged 
superior to Methods 1 and 2. 

5.0 OTHER SOLID-WALL CONDITIONS 

After Method 3 was derived, it was later found to be consistent with a scheme used in 
Ref. 4. A node-centered version of the method for setting the boundary velocity is given by, 

(32) 

That the condition on velocity is equivalent to that shown in Eq. (26) for Method 3 can be 
seen as follows. By Eqs. (12), (2), and (5), 

[ 

~x 
- \1(- Vg = \1(T [J-l~t] = [0 0 1] Tlx 

(x 
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Thus, the right side of Eq. (26) is 

V (n 
n jkl {V(n n v(n ( )n } 

"jk2 - IIV(jklIl2 jkl . "jk2 - jkl' "g jkl 

v(n 
n jkl {V(n n (()n} = "jk2 - IIV(jhIl2 jkl • "jk2 + t jkl 

which is on the right side of Eq. (32). 

Next, the following solid-wall boundary condition for pressure is imposed in Ref. 5, 

ap , an = -pa.g • n. (33) 

Here, n is an outwardly directed unit normal vector at the body surface, and alan denotes 
a directional derivative in the direction of n. Also, lig represents the grid acceleration. The 
basis of this boundary condition can be understood as follows. First, the conservation of 
momentum can be written as 

d" 
pa. = p dt = - V p. 

Here, dvl dt denotes the total derivative of fluid velocity which is, of course, equal to the 
fluid acceleration, Ii. Now, in addition to imposing Eq. (11) so that the normal component 
of fluid velocity and grid velocity are identical, one may naturally require the same condition 
for the fluid and grid accelerations, 

Finally, when this equation is combined with the normal component of the preceding one, 
the condition in Eq. (33) is obtained. 

6.0 CONCLUDING REMARKS 

This work emphasizes that subtle and erroneous effects can result from the use of 
apparently natural numerical methods. It also underscores the importance of developing simple 
tests for these computational methods to elucidate the possible consequences of their use. 
In this report, simple model problems were used to test three methods for imposing discrete 
solid-wall boundary conditions for the numerical computation of inviscid flows. The methods 
considered were applied in stationary and moving grid systems. It was shown that two of 
these methods are only provisionally correct. In particular, a well-known method involving 
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contravariant velocity components was shown to provide correct solid-wall boundary values 
only if grid lines emanating from the solid boundary are normally oriented at the wall. 
Specifically, this report shows that without the orthogonality constraint, the method corrupts 
the tangential component of the velocity extrapolated from the field. Also, another more 
direct method was shown to provide correct solid-wall boundary values only if the grid velocity 
is uniform, as is the case when the frame of the moving body is inertial. Otherwise, the 
differences between grid velocities, evaluated at different points for the method, disturb the 
boundary values. Finally, a correct procedure was posed to avoid the problems of the other 
two methods, and this procedure was shown to pass tests developed herein. 
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APPENDIX A 
DERIVATION OF ORTHOGONAL TRANSFORMATION 

In this appendix it is shown that if a system is in rigid motion, i.e., 

(A-I) 

where ~a(t) and %b(t) represent Cartesian components, relative to the stationary frame, of 
any two points that are fixed in the moving frame, then there is an orthogonal matrix, L(t), i.e., 

(A-2) 

such that 

(A-3) 

For this, define a vector-value function, t, by 

l(z(O) - %0(0), t) = ~(t) - ~o(t). (A-4) 

where ~(t) and %o(t) represent Cartesian components, relative to the stationary frame, of two 
points that are fixed in the moving frame. In other words, l performs a rigid motion on the 
vector, %(0) -%0(0), and produces ~(t) - zo(t) after time t. To achieve the result of Eq. (A-3), 
twill be shown to be linear in its first argument and representable in terms of an orthogonal 
matrix. 

First, it is shown that l preserves scalar products, i.e., for any vectors, z and fI, 

l(z, t) .t(fI, t) = z . fl. (A-5) 

For this, %(t) and y(t) represent points fixed in the moving frame such that 

~(O) - ~0(0) = z and y(O) - zo(O) = fl. (A-6) 

Then, using the identity 

25 



AEDC-TR-93-23 

and the definition of I gives 

l(z(O) - zo(O), t) ·1(y(O) - zo(O), t) = [z(t) - zo(t)] . [y(t) - zo(t)] 

By Eq. (A-I), 

1 1 
l(z(O) - zo(O), t) ·1(y(O) - zo(O), t) = -llz(O) - zo(0)112 + -11;,(0) - zo(0)112 

2 . 2 

Equation (A-5) now follows from the above equations. 

This fact is now used to show that 

Ill(ax + f3j,t) - al(x,t) - f31(j,t)1I 2 = 0 

and hence that I is linear in its first argument. Using Eq. (A-5) , 

III (ax + f3j, t) - al(x,t) - f31 (j,t)1I 2 

= l(ax + (Jj,t) ·l(ax + (Jj,t) + a2l(x,t) ·l(x,t) + (J2l(j,t) .l(j,t) 

-2al(ax + f3j, t) .l(x,t) - 2f31(ax + f3j, t) ·l(j,t) - 2af3l(x,t) ·l(j, t) 

-2a (ax + f3j). x - 2f3 (ax + f3j). fJ - 2af3x . fJ 

= III ax + f3fJ) - ax - f3j1l2 = O. 

Thus, I is linear in its first argument and can be written in terms of a matrix, L(t), as 

l(x,t) = L(t)z. (A-7) 
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To see that L(t) must be orthogonal, note that by Eqs. (A-5) and (A-7) 

Since z and fI are arbitrary, they can be chosen as x = ei and j = ej to obtain 

e[ LT(t)L(t)e[ = bij. 

In other words, Eq. (A-2) holds. Finally, 

L(t) [Zb(O) - za(O)] = L(t) {[Zb(O) - zo(O)] - [za(O) - zo(O)]} 

= 1 (Zb(O) - zo(O), t) -l (za(O) - zo(O), t) 

= [Zb(t) - zo(t)] - [za(t) - zo(t)] 

= [Zb(t) - za(t)]. 

Thus, Eq. (A-3) is obtained. 
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APPENDIX .B 
DERIVATION OF CONTINUUM CONDITION 

In this appendix, the continuum condition of Eq. (10), 

(B-1) 

is derived from the more primitive condition, 

(B-2) 

which applies in the moving frame. Specifically, n represents the Cartesian components, relative 
to the moving frame, of an outwardly directed unit normal vector at the body surface. Also, 
v represents the Cartesian components of fluid velocity in the moving frame. 

To establish the relationship between the components ofEq. (B-1) in the stationary frame 
and the components of Eq. (B-2) in the moving frame, the two coordinate systems are related 
as follows. Specifically, let x and x represent the Cartesian components, relative to the 
stationary and moving frames, respectively, of any point at time t. Also, suppose zo(t) 

represents the Cartesian components, relative to the stationary frame, of a reference point 
used as the origin in the moving frame. Assume that the two coordinate systems coincide 
at t = 0 and thus xo(O) = O. Then by Eq. (9), LT(t)~ -xo(t)] represents an initial vector 
which from time, t = 0, evolves to the vector L(t)LT(t)[x -x'o(t)] = x -xo(t) after time t. 
Furthermore, the vector remains in rigid motion with respect to the moving frame and hence 
has unchanging Cartesian components, X, relative to the moving frame. Therefore, since the 
two coordinate systems coincide initially, 

(B-3) 

Also, by Eq. (8), 

x - xo(t) = L(t)x. (B-4) 

Equations (B-3) and (B-4) define the relation between the stationary and moving frame 
Cartesian systems. 

Now, the relation between n of Eq. (6) and n will be determined. For this, let xit) 

represent the Cartesian components, relative to the stationary frame, of a point on the 
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boundary. Then define Z b(t) = % a(t) + n(t) to represent a point off the wall at the end of 
the unit normal vector, n. Since at t = 0, %b(O) -zO<0) = n(O) = n, Eq. (9) gives 

n(t) = [Zb(t) - %a(t)] = L(t) [%b(O) - %a(O)] = L(t)n(O) = L(t)n. (B-5) 

Also, by Eq. (8), 

(B-6) 

Next, v will be related to 11 and 11m , Specifically, it will be shown that 

(B-7) 

For this, let zJt) and zJt) represent the Cartesian components, relative to the stationary and 
moving frames, respectively, of a fluid particle trajectory. Also, let zm(t) and zm represent 
the Cartesian components, relative to the stationary and moving frames, respectively, of the 
trajectory of a material particle at rest in the moving frame. Then define 

dZj 
11= -, 

dt 

_ dZj 
11=-, 

dt 

_ dZm 
11m = -- = 0, 

dt 
d%o 

110 =-. 
dt 

Equation (B-7) will now be established for an arbitrary point in space-time where the fluid 
particle and material particle traj ectories intersect. Specifically, it is assumed that there is 
a time, t*, when 

Now, by Eq. (B-3), 

Differentiating this gives 

dLT 
v(t) = -(t) [% j(t) - zo(t)] + LT(t) [11(t) - 110(t)]. 

dt 

By Eq. (B-4), 

Zj(t) - %o(t) = L(t)zj(t). 

29 

(B-8) 



AEDC-TR-93-23 

Combining the last two equations gives 

(B-9) 

To bridge the gap between Eq. (B-9) and Eq. (B-7), the material particle velocity will be 
expressed in terms of the items appearing on the right side of Eq. (B-9). By Eq. (B-4) , 

By Eq. (B-8), 

After differentiation this becomes 

MUltiplying this by LT(t) and evaluating the result at t = t* gives 

To relate the right side here with the term involving Xj in Eq. (B-9), the following relation 
is used, 

Since L(t) is orthogonal, this follows by differentiating LT(t)L(t) = I. From the last two 
equations it follows that 

(B-IO) 
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Evaluating Eq. (B-9) at t = t* and combining the result with Eq. (B-IO) gives 

i(t*) = _LT(t*) [l1m(t*) - vo(t*)] + LT(t*) [v(t*) - vo(t*)] 

LT(t*) [v(t*) - vm(t*)]. 

Since the intersection point of Eq. (B-8) is arbitrary, Eq. (B-7) follows. 

Now, combining Eqs. (B-2), (B-6), and (B-7) gives the continuum condition on the fluid 
velocity expressed in terms of Cartesian components in the stationary frame, 

which is the condition of Eq. (B-1). 
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APPENDIX C 
DETAILED CALCULATIONS FOR ANALYSIS OF METHOD 2 

The purpose of this appendix is to provide detailed calculations to demonstrate the result 
of applying Method 2 in Eq. (25) to Problem 2 defined in Subsection 4.2. Since the fluid 
velocity is assumed to be zero everywhere initially, the method becomes 

VI~ - (VI)O _ (VI )0 \7 (Jkl \7(0 ( )0 
Jkl - 9 jkl 9 jk2 - II \7 (Jk111 2 jkl' Vlg jk2 

(C-l) 

for the first time step. To compute the grid velocity for this by Eq. (24), the orthogonal 
transformation, L(t), must be computed. For this, take the reference point, %o(t) = 0, so 
that %jk/(t) = L(t)~k/(O). Then writing %jk/(t) in terms of %jkAO) defines L(t) as follows. By 
Eq. (29), 

1+(N-2) [ (k-l)] 
Xjkl(t) = (N _ 1) cos t - (N _ 1) 

= I ~~~~)2) { cos(t) cos [_ (~ ~ 1{)] _ sin(t) sin [_ (~ ~ 1{)]} 
= coS(t)Xjkl{O) - sin(t)Yjkl(O) 

1+ (N - 2) . [ (k - 1)] 
Yjkl(t) = (N _ 1) sm t - (N _ 1) 

= I ~ ~ ~)2) {sin( t) cos [_ (~l ~ 1{)] + cos( t) sin [_ (~ ~ 1{)] } 

= sin(t)Xjkl(O) + coS(t)Yjkl(O) 

(j - 1) 
= (N - 1) 

= Zjkl(O). 

Therefore, defining 

[ 

cos(t) 
L(t) = Si~(t) 
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satisfies the equation, %jkl(f) = L(f)':I!jkl(O). Thus, by Eq. (24) the grid velocity is given by 

which simplifies to 

(C-2) 

Now, since 

0 
Xjkl = [ (k-1)] 

cos - (N _ 1) 
0 

Xjk2 = N [(k - 1)] 
(N - 1) cos - (N - 1) = N 0 

(N - 1) Xjkl 

0 . [ (k - 1)] 0 N . [ (k - 1) 1 N 0 
Yjkl = sm - ( ) Yjk2 = (N - 1) sm - (N - 1L = (N - 1)Yjkl N -1 

0 (j - 1) 0 (j - 1) 
Zjkl = Zjk2 = (N -1) (N - 1) (C-3) 

the first two terms in Eq. (C-l) are given by 

(C-4) 

Next, by Eq. (28), vrJkl in Eq. (C-l) is given by 
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(C-5) 

since (ijkl)2 + (yJkl = 1 at the body surface. Now, combining Eqs. (C-2) and (C-5) gives 

\1 (Jkl • ("g )~k2 

[ 

XJk2(1 - cos(~t)) - yJk2 sin(~t) 1 
yJkl 0] XJk2 sin(~t) + ~k2(1 - cos(~t)) 

Zjk2 

N-1r,( )[0 ° 00] [0 ° 00]} --s:t tsm b..t Xjk2Yjkl - XjklYjk2 + (1- cos(~t)) Xjkl X jk2 + Yjk1Yjk2 • 

Using Eq. (C-3) to simplify this gives 

1'9 . ( )~ _ N 1 - cos(~t) 
\l"'Jkl fig Jk2 - ~t' 

Thus, according to this equation and Eq. (C-5), the last term in Eq. (C-l) is, 

(C-6) 

Finally, combining Eqs. (C-4) and (C-6) for Eq. (C-l) gives 

_ (N + 1) 1 - cos(~t) [ X~kl 1 
(N - 1) b..t YJkl' 

o 

This provides the required result for Subsection 4.4. 
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NOMENCLATURE 

CI •••••••••• Fluid acceleration 

Clg ••••••••• Grid acceleration 

v ......... . Space-time gradient operator defined in Eq. (14) 

Cartesian basis for space-time 

j, k, I Grid point indices related to curvilinear coordinates according to Eq. (1) 

:r ......... . 

t ..... ..... . 

L(t) 

Jacobian of the transformation from % to { defined in Eq. (2) 

Vector-valued function defined in Eq. (A~4) for the derivation of the 
orthogonal transformation. 

Orthogonal transformation defined in Eq. (9) 

M ......... Constant matrix defined in Eq. (19) 

n .......... Time level index related to curvilinear coordinates according to Eq. (1) 

N . . . . . . . . . . Grid refinement parameter defined following Eq. (28) 

fl, n ....... Cartesian components, relative to the stationary and moving frames, 
respectively, of a vector normal to the solid-body surface 

p .......... Pressure 

t .......... Time 

t* .......... Time at which the fluid particle and material particle trajectories intersect 
as shown in Eq. (B-8) 

u, v, w ..... Cartesian components of fluid velocity relative to the stationary frame 

u, V, W, S. Contravariant components of V 

u .......... Generic space-time vector used in Subsection 3.1 
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v ......... . 

v, 11 .....•.. 

V'o ••••.•••• 

v g ••••••••• 

Vm,Vm 

w ........ . 

x, y, z ..... 

:/C,x 

:/Co ••..••.•• 

:l:g ••••••••• 

x,,, 

Temporal derivative of W 

Cartesian components of fluid velocity, relative to the stationary and moving 
frames, respectively 

Cartesian components, relative to the stationary frame, of the velocity of 
a reference point whose trajectory is given by Xo in the stationary frame 

Cartesian components, relative to the stationary frame, of the velocity of 
a point with fixed curvilinear coordinates, {g, and trajectory, :l:g, in the 
stationary frame 

Cartesian components, relative to the stationary and moving frames, 
respectively, of the velocity of a material particle whose trajectory has 
Cartesian components, :/Cm and i m, in the stationary and moving frames, 
respectively 

World line of a fluid particle, used in Subsection 3.1 

Stationary frame Cartesian coordinates 

Same as x, y, z, respectively. 

Cartesian components of a point relative to the stationary and moving 
frames, respectively. Also, :I: represents [x, y, Z]T 

Cartesian components, relative to the stationary frame, of the trajectory 
of a reference point with fixed curvilinear coordinates 

Cartesian components, relative to the stationary and moving frames, 
respectively, of the trajectory of a fluid particle 

Cartesian components, relative to the stationary frame, of the trajectory 
of a point with fixed curvilinear coordinates, {g 

Cartesian components, relative to the stationary and moving frames, 
respectively, of the trajectory of a material particle 

Arbitrary vectors used in Eqs. (A-5) and (A-6) 
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Jr ......... . 

'Y .... , ..... 

au ........ . 

!1t ........ . 

~, '1/, r ..... 

1: 1: 1: 
'"I' '"2' 1,;3 

{ ........ .. 

~g ••••••..•• 

r ......... . 

(. )J,f(l 

F )T 
~. 
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Space-time position vector 

Parameter used in the definition of the curvilinear coordinate system of 
Problem 1 as shown in Eq. (27) 

Bounds on det{J} as shown in Eq. (3) 

Kronecker delta, where aU = 0 if i '* j, and aU = 1 if i = j 

Time step 

Curvilinear coordinates established around the moving body. 

Same as 1;, Tj, r. 

Represents [~, '1/, z]T 

Fixed curvilinear coordinates of a point with trajectory having Cartesian 
components, Zg' relative to the stationary frame 

Fixed curvilinear coordinates of a point with trajectory having Cartesian 
components, zm' relative to the stationary frame 

Curvilinear coordinate to complement ~, '1/, r in space-time. 

Subscripts, j, k, I, and superscript, n, indicate space-time grid location 

Superscript, T, indicates transposition of a matrix 

(.)x' . '" (.)r" Subscripts, x, ... ,r, indicate differentiation with respect to the respective 
variables 
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