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Abstract

Many search problems are commonly solved with simple comlninatoric algorithms that unnecessarily du-
plicate and serialize work at considerable computational expense. There are a number of techniques
available that. can eliminate redundant computations and perform remaining operations in parallel, effec-
tively reducing the branching factors of these algorithms. This thesis investigates the application of these
techniques to the problem of parsing natural language into grammatical representations. Thece•ult is a
useful and efficient programming language and compiler that. can reduce some of the combinatorick expense
commonly associated with principle-based parsing and other generate-and-test search problenms. The pro-
gramming language is used to implement and test some natural language parsers, and the improvements
are compared to those that result from implementing more deterministic theories of language processing.
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Chapter 1

Introduction

Many search problems are commonly solved with simple combinatoric algorithms that unnecessarily
duplicate and serialize work at. considerable computational expense. There are a number of techniques
available that can eliminate redundant computations and perform remaining operations in parallel, ef-
fectively reducing the branching factors of these algorithms. This thesis investigates the application
of these techniques to the problem of parsing natural language into grammatical representations. The
result is a useful and efficient programming language and compiler that can reduce some of the combi-
natoric expense commonly associated with principle-based parsing and other generate-and-test search
problems. The programnming language is used to implement and test some natural language parsers. and
the improvements are compared to those that result from implementing more deterministic theories of
language processing.

1.1 Parsing as a Search Problem

Modern linguistic theory has shifted from rule-based accounts of language to generative principlf-and-
parameters theories that rely on a small set of language-universal principles to explain and predict human
linguistic capacity. In these theories cross-linguistic variation is accounted for by differing lexicons
and simple parameters in the principles, while the basic innate principles (the univfrsal grammar)
remain constant. This approach has greater descriptive adequacy, results in a more succinct grammatical
representation, and has more plausible learnability requirements for children than grammars built out
of thousands of construct-specific rules.

Chapter 2 provides a deeper introduction to principle-based theories, but here we present a simple
illustration. Imagine a parser (a computer program that builds grammatical representations from input
strings) analyzing the sentence (1).F• (I) What book did John see him give Bill?

2



CHAPTER 1. INTROI)! ('TION 3

Among the facts that the parser must be capable of deriving about the sentence art. that

(2) a. John did soine seeing.
b. The sentence is a question about the book.
c. Him does not refer to the saie person as John or Bill. but is otherwise free to vary.

In one particular principle-based theory. Gortrn t( ut-and-Binding Tbuorg. a principle named Tiuta
t-ith ion is used to account for (2a): a principle named .Iloru-o accounts for (2b) and why book appears

at the beginning of the sentence even though it appears :it the end in John sar hitm gir; Bill thl book:
and a principle named Binding Theory explains (2c). These and other principles are largely independent
of one another but can interact in subtle ways to explain some very complex linguistic phenomena.

In the past most parsing was accomplished using context-free grammars (CF(;s), where the problem of
finding a representation for an entire sentence could be divided into the problem of finding representa-
tions for subparts of the sentence. This divide-and-conquer approach led to efficient polynomial-time
algorithms for parsing. But principle-based theories lead to grammars that seem significantly more
complex than simple CF(I's: current principle-based generative theories of language take the form of
parameterized filters over essentially arbitrary structures. In effect the modern problem of parsing a sell-
tence reduces to finding any representation that. can meet about, 20 different linguistic criteria. See [4].
[5] for discussions of issues in parsing with these theories and sevtral examples of implemented parsers.

The only known viable approach to parsing with current linguistic theories is through generate-and-test
methods. Structures are enumerated and passed through filters that, represent, principles: any structure
that passes all of the filters is considered a valid interpretation of the sentence. In order to keep this sort
of scheme feasible great. effort is usually expended to ensure that. the number of structures enumerated
is finite, indeed small. This is usually accomplished by carefully precompiling theorems derived from the
filters into the generation process, theorems that would eventually eliminate most of the structures later
in the process. Since the production of these theorems has not been automated (and probably never
will be, since linguists are not bound to any particular representation for their axioms), most systems
require significant modification to efficiently handle small changes in the linguistic theory.

Although current, theories can seem far removed from earlier models, they nevertheless permit a myriad
of optimization techniques. Many of the generators used in parsing (such as the assignment of case and
thematic roles to noun phrases) are local and compositional. Thus much of the generation process can
be decomposed and structure shared. Shared structure representations when combined with memoized
filters allow the filtering of many search paths at once. And most of the filters and generators linguists
have proposed are dependent on only a small subset of all the modules in the system. This property
means that. much of the generation and filtering process can be highly parallelized, eliminating some of
the combinatorial explosion inherent in serializing generators.

This is not to say that parsing is not still inherently combinatorial. No small variant of the current
linguistic theory is known to be parsable with any method other than exponential-t~ime search. But,
there are techniques that can be applied to greatly reduce the potential costs of small variations in the
theory, and that would allow systems to be built with less effort put into optimization work.
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1.2 Generate-and-Test Optimization Techniques

There are a wide variety of problem-.specihic optimizations that could be used to speed up many parsers.
but this thesis will concentrate oil building a compiler that call optitnze through two fairly general
techniques that should apply to any. search problem that can be expressed as a dependent network of
generators and filters: eliminating redundant computations, and performing operations in parallel.

1.2.1 Eliminating Redundant Computations

Many search problems like parsing can be optimized because much of thhe work done by conventional
techniques during the search is repetitious. (Generators and filters are being applied to identical argu-
ments several tines, or to arguments that differ only in respects irrelevant to the process at. hand. This
is the result of one generator (or choice point) being local and therefore not influencing the performance
of some other group of filters and generators. The most basic approach to eliminating such redundant
computation involves a combination of memoization and a restructuring of the searcher dependencies.
Instead of performing a depth-first search through each of the generators as most implementations do. a
generator is only executed once for each element of the cross product of the sets of elenients generated by
its parents in the module dependency graph. This eliminates a great deal of computation but can only
be done if the results of a generator's execution are memoizable (which is not always easy to guarantee,
since any side effects involved in its computation must be reproducible).

1.2.2 Performing Operations in Parallel

Many parsing systems are difficult to adapt to parallel computers because they use side-effects in their
generators, which would lead to inconsistencies if two of their output values were utilized concurrently.
But some of the same methods that, can be used to solve the problem of memoizing generators in an
effort to eliminate redundant computations can also be used to replace side-effecting operations with
functional ones.

1.2.3 Examples of Optimization Opportunities in a Parser

The current state of the art. in linguistically motivated parsers is Sandiway Fong's Principhd and Parani-
eiers Parser [141. He organizes his parser into modules of generators and filters. Each generator takes

in structures and amends them nondeterministically, usually outputting several structures for every one
taken in. Filters do not, alter structure but may rule out some of their inputs. There is a partial or-
dering among the filters and generators that reflects module dependencies: filters can not be applied
until generators have created the requisite structures, and some generators modify structures that other
generators create. Figure 1.1 shows the partial ordering among the modules of Fong's parser.

When Fong's Prolog implementation is actually run on a sentence it chooses a total ordering of modules
that obeys the partial ordering and uses it to serialize the modules into a depth-first search. The result is
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Figure 1.1: The partial ordering of Fong's parser's modules. Dark rectangles represent generators and
light ones represent filters.

that each generator unnecessarily multiplies the resource expenditure of the entire process. For example,
while Generator I and Generator 2 of Fong's parser both depend on Generator 0 neither depends on the
other. If Generator 1 is run before Generator 2 and produces m structures for every one it takes in, then
Generator 2 will operate in times in an identical fashion. Since there are filters that depend on the cross-
product of the modifications of Generators 1 and 2 some multiplicative factor is conceivably necessary.
But if a lot of computation is involved in d~ciding whal to modify rather than actually performing the
modifications, then each generator would do better to menjoize the effects of its call rather than to
continually recompute them.

A greater optimization comes from completely separating the computation of truly independent modules.
Although Generators 3 and 6 help determine which of the structures produced by Generators 0 and 2
eventually lead to valid parses, the particular branching factors associated with them do not need to
cause other generators to do any extra work, because no module depends on 3 or 6 and any other
module except Generators 0 and 2. To be more concrete, suppose the serialization of Generators 0 and 2
produces n structures. Generator 6 can be run on each of the n structures and if it branches significantly
may produce a • n new structures. Some serialization of generators 4, 5 and 7 may also have to be run
for each of the n1 structures (producing b- n new structures), but not each of the a -n ones. The a - b. 7
different valid parses can be represented and computed at an expense only proportional to a - n + b n.
If a and b are large. this is a significant savings over Fong's actual implementation.
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1.3 Research Motivations

An important question is whhy we are concerned with improving the search efficiency of principle-las d
parsers. Tile current generation of such parsers is not prohil)itively ,low for many applications. and NNIth
expected improvements in computing power any seeming laggardliness will disappear. It is import ant
to realize that all existing parsers implement only a siiall subset of linguistic theory As mnore and
more language processes are introduced into the parsing procedure there is going to ht- a decided los, of
efficiency. This is especially true if these processes are non-deterministic. It is important to ensure that
the cost of parsing does not increase exponentially as more principles are added to the process.

1.4 Deterministic Generators

Many of the generators involved in the parsing process are non-deterministic. For instance, in the
sentence John said that Bill saw him, the generator that builds structure representing the referent of
him must allow for both the possibility that John and him are coreferent, and tile possibility that hil
refers to some extra-sentential entity. The ambiguities with which the generators must cope create most
of the complexity in the parsing process. By introducing theories with more determinism much of tile
inefficiency associated with generate-and-test search can be reduced. For instance, by deterministically
choosing the antecedent, of hini using some context-based heuristic the ambiguity is eliminated.

Several deterministic theories for different aspects of language are substituted for their more traditional
non-deterministic counterparts in some of the experiments described in this thesis, and the results are
compared with the efficiency gains that result from improvements in search strategies and techniques.
Chapter 5 contains a discussion of the merits of these deterministic variations.

1.5 Thesis Outline

Chapter 2 is an introduction to a form of principle-and-parameters linguistic theory. It contains a
discussion of how such theories can be translated into imlplementations and just what the complexity of
those implementations will be. Chapter 3 presents the new search programming language, starting with
a simple example search program. It, discusses the rationale for various features and how the language
is implemented. Chapter 4 then presents a subset of a linguistic theory and a detailed discussion of
how some parsers using this theory are implemented in the search language. A variety of features in the
search language are profiled on these test parsers and the results are tabulated. The chapter concludes
with a qualitative summary of the efficacy of each language feature. Finally, chapter 5 concludes with
generalizations from these test results and their implications for generate-and-test implementations of
linguistic theories.



Chapter 2

The Computational Nature of
Principle-Based Parsing

Most modern generative linguistics has shifted from rule-based transformaiional theories [6) to more
principled and modular accounts of language competence'. as exemplified by (hoinsky's revolutionary
Lecturts on Governmeni and Binding [7). Following other sciences. it is believed that the observable
complexities of syntax are the result of interactions between a small number of innate modules. IiI
this view. simple parameters in the modules or lexicon account, for the variations in syntax across
languages. This principlh-and-paraimnters approach results in more compact, language universal theories
with considerably more realistic learnability requirements.

Despite the success of principle-and-parameter theories. the natural-language processing community has
been slow to adopt them as language models. Almost all parsers still use construct-specific rules that
can not account for a variety of seemingly complex phenomena. But recently a strong effort has begun
to demonstrate the computational viability of the current linguistic approach (see [1I, [4]. [5). [14] among
others).

2.1 Chapter Outline

This chapter examines the computational nature of current principle-and-parameter theories. In partic-
ular, section 2.2 gives examples of principles and section 2.3 looks at the basis for the generate-and-test
searches that currently seem the most reasonable approach to parsing with principle-based theories.

'Competence theories seek to describe what a person knows, in contrast to performance theories that deal with the
more computational issue of how a person utifizes that knowledge. Section 2.3 discusses this in more detail.

7=
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2.2 Examples of Principles

IThe )rlinc 11)1. -. ittid param. t etrs vif w of latiguag.' actutallv enco'itpasses, broatd rang. o' I litorteý. ['o
inst alce. (4enerali?.ed hr's tm ur(raitta(( ( e I] sao iltatitaltitoti~at.d t lit.r%
of language t hat tiescril, svnt ax through cotitext -ree ruiles, bill one', thIat art- autoiat icall% gpeinerate~l
via principled -- iiefarul,. Th 'ltnttorliiou.s size of' I lit, resuilting rule' set britigsI Itl clajinis of ( I'S( ~;s
comlpuita~tionial ý jibilitY ~Into q1uest iont (set' [2] for nitore dl#tails) bitt Ii. he~ nolt iot hat t flit, Interact lollbt wrel W'tI

a sitiall number of int'laruiles and featuIrt'-passitig itiecliatistits results iii thle live~rsity of phi.'ioinveiia
foutid lit syntax is c'learly reminiiscenti of ( 'ltotniskvy' approach. I-However. ithis thiesis will ('oicentlrat.' ott

priniciples that art' less well ('outpuitatlna specified thiant thotse' in (,I'S(. thett so'-called( G overtnmenIt-
attd- Binding ( (,B) priniciples that huave' evoked fronti [7] and later work have titore explainat ory power
thant (PS( (does but1 their(ompitjttatjotial imlpllent'i'ltati~on Is tiot so intutitiv 'e'. 11 is Ilt'es.'sorts o' priniciple's
that we' will look at, tnuder thle asutnipt olt t hat it i.s itiort- Iruit ml to britng I th' dottaitn of litignist cý to
couiputier science tha ftait otItoher way around. Se'. [2S] for alt jintrod ut'tioii to G B I hteory.

Most G B pritnciples art' declarative litt natutre ( A'oun i phrasti.%. ivt( tt vtit.% not Ch( hk th at faeh a(ul

jph,'a~ has% rv Cfird cas(). They' are specified as tilt ers over essent WINl arbit rar\ striul itres. Anly structure
which passes through each of the filters untscat hed is c'onsidere'd a viable int erpre'tat ion of a sentteince.
Sentetnces which have structtires that violate a small sutbset oft lie, printciples uinay be untderstaindable .1.'bl
Utngrammiat ical.

To get a feel for thle natutre' of pritnciples. we present sitmplified versionis of 3i different tmodlules folittd in a
v'ariat ion of G B t heory. It is import ant to realize that there is tto -st aldardf' set of principles and (Ia(
miost dlescript ions of pritnciples founid in the literatutre coiitaini itinor or evetn major iticotisistencles, and
inadequacies, as woutld naturally be expectedl in alt act iv.e field of research. It is a great challenge to
compile a set of internally consistetnt or comiplete prinicipeles for lise- itt a parser.

2.2.1 Binding Theory

Intutivlybiningthery rie toexplaini wheni phrases mnay or initst he coreferent . Possible atit ecedetits

of pronouns (him. th in) attd anaphiors (hu'.w f. Ih ,nisfIi's) canl be dedtuced front binding theory. as cait
various properties of uiripty cal gorits. uinspokeni (phiotietically niull) elemntits w~hich iteverth Iess have
full svtitact ic properties. The examiples of ( I) shottid make' much~ of t his clear.

(1) a.. John t hotight Bill sawv hint.
b). .John thbought Bill sawv hinis f.

lin (1la) the pronoun hini may co.-refer with John or somue extra~sentent tal person. but ttot with Bill!.

Howev'er the atnaphor hiimsdf lin ( Ib) has just thle opplosite property: It mutst refer to Bill. Most versions
of binding theory make the distinct ion through locality cotiditions. For instance, the theory presenltedl
in [71 coiitains three conditions:

. Conditiotn A: Ani anaphor miust be bound in its governing category.
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* ( iodition 13: A ipromtintii limst bc fret )in its gioerninig vattgorv.ý

l'r the tiiii Iteinig. %%v can take biwusd 14, linval cotrtft-it-iit antio ]ie to 1iiit-n iita-corti't-rt'ii and Ilit
youtt risinot (atltt/tDv of a plirast to I't. I lit sinlallf-st tialist conitaininlg I li,- phras, R-t spit switsi art simiilar

to ptropetr nanilts or 01 litr e.xpre'ssionis with Iilitertiit rtlt~rt'ict.

[h1 i-governlIilg catItgorv tftr him Itn (Ila) Is Bil1l %a, ir h it. ( taid It ioni If dacta Iv.t IhImt him Iiiist bt- tree ( nut
Itomiiitl) iiisidt' th lit )%crtimig vatt'gory .so hint cani ntut refer to Bill1. Ill ( 11t) ( t0itititlol A tw3ktpsl justt h
opotttsilt, rtstrictitti, t hat he.i I]iofinust refePr Ito Bill.

(2) ;t. Bill wvas sernt.

1). was styli Bill.

Ili thle account ili [7]. sentence, (2a) conttams~.a ( ilimrotlomtieol eainpty categor%. udtnoted hy c [IiilN

categories ftunc ion as muarkers for arguatietit posit ions t hat have had t heir wordls "mloved-Ilii t he observ-

able suriface rejpreseiitat ion. For Inistanicte. it is believed that Iin (2~a) t lie ututeryiving repre~sent at ion is thlat
found1( ~ii (21)). Elipltty categories itayv have mianty of t lie, sanint proptert ies that auiailiors anid proiouiulis do.
Ilii tact. ( 'hmk' inig thleory pre'dicts5 that th lieetipt v cat egory lit ( 2a) is ail aniaplior. ( 'ond it itn A
lienl explainls whY it muiist refer to Bill (i.( _ whty thet object of sit is Bill1).

Ilii its lull glory hinidinig theory is capable of explaititiig a wide variety of ext reitely coitplex pdit'iomieiia.
Figuire 2.1 conttains miost of' tlie, key clatises inl thle bindintg thleory ptresenitedl in [7]. It Is not initend~edl to
w tenouighi iniortmationu to imiplt'ietit or test t lie t lieorv. onily to give a feelitig for thle dleclarativye natutre

of thle tefitltit us uiscd by linguists.

2.2.2 The Case Filter

Cast, theory was developed to explainthle differenlces bet ween setutetices slich as t host' Iii (3) ( discuissioni
follows [19]. sect ion L1.):

(3) a. It Is likely .Joliui will leave.

1). * It is likely .Johin to leave.
r.Johtn is likely to leave.

'(lie asterisk, or st ar, is a commnuii liiiguistic not ation for expressing ati un lgrammitat ical sent encte.) ( 3b)
is uitgratuinatical. which we canl take to itteat t hat it violates somie linguistic conduit ion. ( 3a) and (31))
oliffor onily in tithe tense, of the suibordiinate clauise. 'flit gramiimat ical relations assignied arte idt'nical in)
hot h sentences. anid inl thle setlinatitcally Identical (3c) thte to) /((11. caustes no difficult ies. So why caii't
John, appear Ili thlit subject posit ion of a t~enselt'ss clause"
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A.•ssgn n um~rcal indicrs fru(ly to all noun phrass, subj(ct to Condition.s .4. B and C. A4ny nouo phras.s
with th .sani indus" ar( cor~ferunt.

"* Condition A: Al] anaphor must be bound in its governing category.

"* Condition B: A pronoun must be free in its governing category.

"* Condition C: An R-expression must be free.

"* Binding: a binds 3 ifi o c-conmnands 3 and n and 3 are coindexed. If ( is not bound, it is free.

* C-Command: For a, 3 nodes in a tree, a c-commands 3 iff every branching node duminating a
dominates :3 and neither a nor 3 dominates the other.

• Coindexing: a and 3 are coindexed iff they bear the same numerical index.

* Governing Category: 3 is a governing category for a iff 3 is the minimal category containing
a. a governor for o, and a SUBJECT accessible to a).

* Government: a governs 3 iff a c-commands J, o is either N, V, A or P and no maximal projection
dominates 3 that does not dominate a. (see section 2.2.3).

* SUBJECT: Subjects and agreement are SUBJECTs.

* Accessibility: A SUBJECT a is accessible to 3 if a c-commands 3 and assignment to 3 of the
index of o would not result in a violation of the i-within-i filter.

"* i-within-i: Any node with index i that dominates another node with index i is ungrammatical.

"• Agreement: Agreement, and subject are coindexed.

Figure 2.1: A version of Binding Theory.
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Tile hypothesized solution is a condition, tile ('ast F'lh r. requiring that overt (pronounced) noun phrases
receive an abstract property called ('as(. Tensed verbs assign case (in English, nominative case) to their
subjects. Prepositions and transitive verbs assign oblique and accusative case to their objects. In
possessive constructs, tile possessor receives geiitive case. No noun phrase may be pronounced in any
position that (toes not receive case through one of these mechanisms. it tile case of example (:;a) Joh1n
receives case from the tensed verb rill hart. and the pleonastic it receives case fromn the copula is. But
in (3b) the infiniti.,, to hart (toes not assign case to John. and the caseless John violates ,he Case Filter.
This problem is rectified in (3c). where Johni. which still bears tile semantic role of subject of to iart.
is moved to a position where it can receive case from is.

Like binding theory, the Case Filter is t: o uniformly account for a great number of seemingly
disparate phenomena. For instance. in

(4) a. Who did John say ( is clever.
b. * Who (lid John say ( to be clever.

In example (4) the grammaticality contrast seemis to be the same as in (3). The structural location
where who receives its grammatical role. in the subject position of is clfrer, is not assigned case in (4b)
but is in (4a). So it seems that some empty categories function in the same way as noun phrases with
respect to the Case Filter, and indeed this generalization explains many grammaticality judgements.

The motivation for the Case Filter is contested. Some say it is a strictly phonological condition, others an
ingredient in a more involved process leading to semantic interpretation. Regardless of interpretation, it
functions as a simple filter on the allowed output of the generation process, just as the binding conditions
act as filters on the interpretation of anaphoric relations.

2.2.3 X-Bar Theory

X-Bar Theory forms the frame on which many other parts of linguistic theory are built. It describes
grammaticai sentences at the tree structure level, through a small set, of context-free grammar (CFG)
like rules. Slighly simplified, these recursive rules are

"* X => SPECIFIER X

"* X = X COMPLEMENT

"* X = . ADJUNCT

Here. X indicates a phrasal (maximal) level category (SPECIFIER1s, COMPLEMENTs and ADJUNCTs
are all phrasal level categories) and X indicates a bar- level category. X ranges over all basic cate-
gory types, such as nouns (N, N. N), verbs, adjectives, determiners, inflection and complemientizers
(N,V,A,D,I.C).
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SPE('IFIEIt X

N ('OMPLEMENT

A. .

the

A .V

interesting
N "

idea that language is innate

Figure 2.2: The basic X-Bar frame and a sample instantiation.

The right, hand sides of these rules are ordered, but their order is parameterized and can vary across
languages. For instance, English is a right-branching language in which the order is essentially that
given. In other languages, the rule ordering may vary by category. In Japanese the objects in verb
phrases occur after the subject but. before the verb (SOV), unlike the SVO order of English. This is
accounted for by the T =, COMPLEMENT V rule of Japanese. Figure 2.2 presents the basic X-Bar
frame and an example of how a sample phrase might. be structured.

2.2.4 Move-a

Move-a is a very succinctly phrased portion of the Governement-Binding theory that has extraordinary
consequences. It. states: mov( anything anrywhcrf! To understand just what this implies, it is necessary
to understand the different linguistic levels at which linguistic structure is used. Currently 4 levels are
hypothesized: logical form (LF), phonetic form (PF). deep structure (DS), and surface structure (SS).
Logical form is the level at which interpretation takes place, and certain relations such as scope among
quantifiers is specified. Phonetic form is the level at. which an utterance is pronounced. Deep structure
is the level at. which argument relations between objects are set out. These levels are related to each
other in the following way

DS

LSS

PF LF
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The relation between structure at. the different levels is not arbitrary. For the present purposes let us
just look at DS and SS. The deep structure for a question like who did John s.(? ! might be that found
in (Sa) whereas the surface structure that in (Sb).

(5) a. John did see who.
h. Whoi did'. John e, sec t

Looking at the differences between (Sa) and (5b) it is plain that both who and did are in different
positions, and that (Sb) now contains two empty categories. Move-o. which allows arbitrary movement,
permits the relocation of who and did in SS to positions other their DS positions. However. Did who
John stf is still ungrammatical at SS. This is because the extraordinary power seemingly granted by
mnove-o is constrained by a number of principles. Did who John st( is ruled out because there is no
position to the left of who for did to move to. Other constraints are that movemnenlt must leave an empty
category behind (a trac( of the movement); it must only move Xs and Xs and leave traces of the same
category: and movement can not be to an occupied position.

All together the constraints specified by linguists temper the unlimited movement possibilities down into
a small number of relatively simple patterns. Among these are head moventnl (movement of did in (5)),
which is short distance movement of basic lexical categories like verbs and explains such phenomena as
the verb-second/verb-final alteration in German; A-moicment, the short distance movement of Xs to
argument, positions, which explains how objects get. to subject positions in passive sentences: and .4-
rnotoemcnl. the much longer distance movement of Xs to non-argument positions exemplified in questions
like (Sb).

2.2.5 Uniformity of Principles

As should be clear from the principles superficially described above, linguists do not necessarily express
their theories in any well-specified formal language, and may casually use terms with far-reaching com-
putational implications. Indeed, this freedom has allowed linguistic theory to undergo radical changes
in a very short, time period, and it appears to be continuing its evolution (see [9] for significant recent
shift) with fundamental new characteristics introduced every few years. It is not an easy thing for a
computational linguist, to pin down the field long enough to evaluate the state of affairs. This makes it
difficult to develop any computational models of language with long-term relevance. Chapter 5 expands
upon this difficulty.

2.3 Parsing with Principles

The innate principles governing language use, as described by linguists, do not explicitly state what
computational mechanism implements them. This is the distinction between competence theories and
performance theories. For many of the principles, such as move-a, it. is not. at. all clear how the principles
affect either parsing or generation of language from a computational perspective. There are some recent
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principle-based linguistic theories which seem on the surface to be more computationally well specified
(see, for instance, [21]. who tries to enumerate exactly all the elements of her theory) but these theories
are often not as rich or as descriptively adequate as others. How can one translate a generative linguist's
description of language competence into a form suitable for use in a computer parser'

2.3.1 Language Complexity

First of all, it is important to look at human languages to see how complex they really are. For instance.
it is conceivable that the principles are in extension identical to a simple context-free grammar. Were
this the case, then it would presumably be more expeditious to use such an equivalent grammar to
describe language for computational purposes than the principles as they are written. This is much of
the motivation behind GPSG. It does not in fact seem that hunman language is context-free, or at least
not for any reasonably small grammar ([3]). Let, us look, as [3] did, at the intricacies of human language
from another perspective, that of computational complexity. We can ask whether it is likely that there
are any simple polynomial time algorithms for parsing sentences. Many principles are stated in terms of
non-deterministic search (e.g., the assign numerical indices freely to all noun phrases of binding theory).
Is inefficient non-deterministic search really necessary for deciphering utterances, or is it merely the
derivative of a notational convenience?

Very few results about, the computational complexity of language exist. Most results are dependent on
a particular theory of language. But recently Ristad ([25]) has presented a proof that binding theory
is NP-complete 2 that does not depend on any formalism. He uses only basic facts about the possible
antecedents of pronouns and anaphors in English to show that one can translate the NP-complete 3-
SAT problem into a question of whether or not a sentence permits a valid assignment of antecedents
for all the pronouns and anaphors in it. Since such antecedent, computation is an incontestable part of
our language faculty, this seems to indicate that language is at least NP-complete, and therefore that,
efficient deterministic algorithms for parsing can not. exist. In other words, search is necessary. But
Ristad's proof is not. convincing. Without going into Ristad's impressive argument, it is possible to
point out the general flaw in his argument.

Ristad presents a variety of sentences containing pronouns and anaphors, and points out the restrictions
on co-reference between them (the facts that binding theory seeks to capture). For instance, he presents

(6) Before Mark, Phil and Hal were friends, he, wanted him, to introduce him 3 to him 4.

Ristad makes the point that (6) is not easy to understand (NP-complete problems are not easy to solve),
and that certain restrictions hold between the various pronouns. For instance, him, 0 him., him, #
him3 , him2 $ him4 and hini3 0 him4 . These facts can be verified by attempting to read the sentence with
the various pronouns bound to different combinations of the three names. By combining simple sentences
with clear linguistic judgements to produce more complex sentences, Ristad is able to encode any 3-SAT

problem as the problem of determining whether or not. a sentence has a valid set, of interpretations for

2 NP-complete problems are a class of problems for which no known polynomial time algorithms exist, and correspond

to problems in which a solution can be guessed and efficiently verified to be correct. These problems are all equivalent to
each other within a constant factor of processing complexity, and showing that an NP-complete problem can be translated
into another form is a proof that that form is also at least as hard as NP-complete problems.
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all of its pronouns. But is this in fact a computation a human is capable of performing'.' Let us look at
one of Ristad's examples.

(7) Romeo wanted Julu t to love him before t wanting hims.eIf to.

In English, Romeo can not refer to Juhet: .Jullt can not refer to the same thing as hun: him can not
refer to the same thing as hin.elf Romeo refers to the same thing as the empty category (: and t refers
to the same thing as hims(lf. Ristad makes the point that these facts imply by transitivity that Romeo
can not refer to the same thing as hen. This is interesting, because in the prefix sentence Romeo wanted
Juliet to lore him the interpretation of him and Romeo as coreferent is natural.

The flaw in Ristad's argument stems from the fact that he assumes English speakers are capable of
calculating the complete antecedent relationships for sentences such as (7). But. most listeners in fact
initially interpret him and Romeo as coreferent and then become confused or find the sentence ungram-
matical. In this sense the sentence is very much like a garden-path sentence such as The horse raced
past the barn fell. It is true that if one reads the sentence knowing the correct assignments then one can
verify its correctness and the sentence is processable. But most speakers on initial attempt will read up
to him, assign the antecedent Romeo to it, and get. confused later in the sentence when that possibility
is precluded. There is no indication that English speakers are capable of searching the entire space to
find a valid interpretation after this initial failure.

Just what is the implication of this? It is likely that when English speakers come upon a pronoun they
use some sort, of heuristic for picking its antecedent ([18], [161) and then verify that all binding theory
conditions are satisfied. A computer model without the proper heuristic algorithm (and the exact
heuristic would likely require semantic or phonological information unavailable to current computer
implementations) will have to perform search to find a proper antecedent assignment for pronouns, and
as Ristad proved this is going to be an NP-complete task. It is not the case that a reasonable theory
of language needs to be NP-complete, because people can not understand sentences like (7). Human
language processing undoubtedly involves heuristics that need to be part of a linguistic theory if the
theory is to adequately model human performance. So we can expect that given the current state of
knowledge, search will be necessary for an ignorant computer to process binding relationships (and
other parts of language), but that it is completely reasonable to expect that with more understanding
an efficient computer model of human language could be built, one that did not involve search.

2.3.2 Generate and Test

The previous section makes the point that current computer implementations of language capabilities are
likely to require search. Linguists seem to make this assumption when they write descriptions of language.
For instance, binding theory is expressed in terms of filters on antecedent relationships. Implicitly or
explicitly, some statement must be made of how these relationships are hypothesized. Usually this is in
terms of some statement such as assign numerical indices freely to all noun phrases. Move-a states moive
anything anywhere. These formulations follow the traditional computer science paradigm of generate-
and-test: generate potential solutions, and later test them to make sure they are correct. If potential
solutions can be efficiently written down and efficiently tested, then this formulation is equivalent to
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that of NP-complete problems, no more or less powerful than any other techniques sufficiently powerful
for search. So generate-and-test implemntations are a natural form for computer implemientations of
linguistic theories to take. This research (see (14]. [-1] for discussions) takes this approach to parsing. non-
deterministically generating possible parses and then efficiently applying the tests (filters) of linguistic
theory to verify correctness,

2.3.3 The Computational Nature of Generators

The intuitive notion of a generator is a procedure for producing structure that represents a solution to
a problem. In the case of parsing, generators produce linguistic structures that represent the important
relationships between words in an utterance. A generator need not produce a complete structure. By
following the natural modularity proposed by linguists, a binding theory generator might produce only
indices for noun phrases, given a list of these phrases, and leave the generation of quantifier scoping to
some other generator.

In the generate-and-test paradigm it is usually assumed that generators are non-deterministic (they
produce many possible structures for a given input), but the notion of generator can be useful for
even deterministic parts of a theory. For instance, the Case Filter applies to noun phrases after case
assignment. Case assignment is usually assumed to be unambiguous and deterministic. For a given
phrase in a given structural relationship with a case-assigner, either a specific case is assigned or it isn't,
and this can be computed exactly without guessing. But it is still a convenient abstraction to have a
case generator that assigns case and a case filter that applies to the result, even if the two could be
merged together or even combined with the original phrase-structure generation.

The branching factor of generators is the single most important indication of the computational cost, of
parsing with a linguistic theory. Deterministic generators such as case assignment can be implemented
quite efficiently, and if necessary could be merged with other modules. But. non-deterministic generators
such as the one that assigns binding indices tend to multiply work done by other modules and are also
more dependent, on input length. For instance, doubling the number of noun phrases in a sentences
is only going to cause a case assignment generator to do twice as much work, but the numb, - of
possible assignments of numerical indices to noun phrases grows exponentially with the number of ioun
phrases in a sentence. For this reason when one examines the efficiency of a theory of language from
a computational viewpoint, one should concentrate on those modules that require non-deterministic
guessing and not worry about the total number of filters or generators.

2.3.4 The Computational Nature of Filters

Filters are conditions on structures built by generators. They are applied to the output of one or more
generators and if they fail, the structures built by those generators are rejected. The number of filters
found in a linguistic theory, like the number of generators, is somewhat arbitrary, since most. conditions
on structures can be divided up into a number of special case filters or combined into a single broad
filter with substructure. Computationally the particular modularization of filters is much less important
than the structure of generators in a parser. One important exception to this generalization is that if a
filter can be made dependent, on as few generators as possible, then it, can be used early in the process
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of generation to eliminate unnecessary work by other modules.

A filter that is dependent on only one generator cait always be merged with the generator. This can
lead to important efficiency gains, because it is possible that a filter can rule out a generator's output
part-way through the generation process. For instauce if the Case Filter is only dependent on the
deter ministic case assigner, which in turn is dependent only on phrase structure, then the Case Filter
can be interlcatt with the process of generating phrase structure to rule out John to shlp in a bcdbefore
the process of generating phrase st~ructures for the sentence is complete. As each phrase is created, case
criteria can be checked on its components, and if the Case Filter is violated then the phrase is rejected.

Filters with multiple dependencies on non-determniist~ic generators require a multiplicative amount of
work and are therefore far more fundamental to the computational complexity of a theory than ones with
single dependencies. If there were no module (filter or generator) that depended on each of two non-
deterministic generators, then the two generators could be executed completely independently and no
combinatorial amount of work would result. But with a single multiply-dependent filter the multiplicative
cross-product of results must be computed.

2.3.5 Derived Principles

It. is not, at, all obvious that linguistic theory would be so cleanly divided into modules were that not
a principle goal of researchers. It is difficult to produce psycholinguistic or neurological evidence that
shows the brain is divided on these lines. Although the divisions permit a reasonably parsimonious
and clear description of part, of language competence, it is always possible that the processes the brain
uses to compute language cross these divisions. It might be that by "compiling" the effects of different
principles together a single, efficient procedure for computing language results. Correa ([10]) has taken
this approach and produced efficient, deterministic algorithms for computing an approximation of the
effects of move-a and several other modules. Obviously if it could be proven that these procedures
were identical in extension to the sum of the original linguistic modules, then they would be a great
vindication of the computational tractability of linguistic theory and would show that little or no search
is involved in language.

Fong ([14]) argues that the obvious attractions of these derived principles of Correa's are overshadowed
by their shortcomings. Specifically, lie claims that Correa's algorithms are descriptively inadequate
(they are not equivalent to the original theory formulations, let alone human competence) and that in
general the effort and complexity involved in compiling these derived principles prevents them from being
understood, proved accurate, or kept current, wtth improvements in linguistic theory. It is certainly true
that, for instance, Correa's move-c algorithm is descriptively inadequate. It cannot handle sentences
with multiple gaps, such as Which book did you fill ( without reading c?, which the original linguistic
theory does explain. But no linguistic theory is perfect, or the field would have ceased to exist. And
it would be strange indeed if the subset, of language actually used by people did not. have an efficient
implementation (though it may be that some search is involved).

As an example of a derived principle, let us look at Correa's structural determination algorithm for
empty category typology. Section 2.2.1 briefly mentions that, empty categories have some of the same
properties as anaphors and pronouns. The following sentences contain 4 different empty categories, or
positions where noun phrases seem to receive their semantic roles but are not pronounced.
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(8) a. I asked about t seeing John.
1). John was seen .

c. t saw John.
d. Who did John see C?

The emipty positions marked in (8) by ( need not be interpreted as full syntactic eitities (though
(;overnment-Binding theory treats themi as such). For our purposes what is inportani is that regardless
of the theory there is some relationship between these argument positions and unspoken noun phrases.
Sentence (8a) has the interpretation that the subject role of set is arbitrarily interpreted. This is reflected
by there being ati independent empty category in the subject position of seing. In (8b) John receives
the semantic role it. would normally get in an active sentence froin being in the position that t is in.
Sentence (8c) is ungrammatical in English, but in a language like Spanish or Italian it can mean I sa.w,
John. where the reference of the empty subject can be determined by the morphology of the verb. And
in (Sd) ( is in the position that who gets its semantic interpretation from. These 4 empty categories
represent 4 different ways that a noun phrase can receive semantic interpretation in a location different
from where it is lexicallv realized. What is particularly interesting is that many of the restrictions
on the relationships between the empty positions and the noun phrases can be explained by assuming
that there are 4 different types of empty categories, two which are pronominal and two which are
anaphoric: {+anaphor. +pronominal} (8a): {+anaphor, -pronominal) (8b): {-anaphor, +pronominal}
(8c); {-anaphor, -pronominal} (8d). For instance, in passive sentences like (8b) the fact that the moved
phrase must. be close to the position it receives its thematic role from is explained by the fact that as
an anaphor, binding theory requires its empty category to have a local binder. The longer distance
relationship in (8d) is permitted because the empty category, being neither anaphoric nor pronominal,
is not restricted by binding theory. The untensed nature of the embedded sentence in (Sa) is the result
of a complex interaction of principles that apply to a category that is both anaphoric and pronominal.

An important issue is how an empty category has its anaphoric and pronominal properties determined.
A natural answer is that it is by function- any empty category used in a question relationship (as
in (8d)) must be -anaphoric, -pronominal by stipulation. This idea, proposed by Chomsky in [8],
is called functional determination. Another possibility is that the typology is frc(ly determitned: any
possibility is possible, but all but the correct, will be ruled out, by some principle or other. For instance.
in (8b) the empty category can not be pronominal, because then it, would be locally bound by John, in
violation of binding theory. These two possibilities have great, implications for parsing. In the functional
determination case the exact relationships the category enters into must be calculated before the empty
category typology can be computed. This can be computationally expensive. since many filters can not
be applied before the typology is known. In free determination the typology can be non-deterministically
guessed, which allows the filters to be applied earlier but results in overgeneration early on. The two
possibilities have different empirical predictions.

Correa has created an algorithm derived from a number of different principles that uses clues about the
structural position an empty category is in to determine its typology. This algorithm states that, an
empty category is an anaphor if it is in a position that can reccive a thematic role and is either not
assigned case or not in a particular structural relation (government) with a verb or preposition. An
empty category is a pronoun if it is not in the same government relation with a verb or preposition.
These conditions can be computed easily without knowledge of the thematic or binding relations that
the empty category enters into, and the algorithm greatly cuts down search later in the parsing process.
According to Fong, the algorithm is not. always as correct as the original formulation, and it does not
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explain, for instance, how it might be relaxed to handle a slightly ungramunatical sentence.3

We explore ('orrea's deterministic algorithms in our tests (see Chapter 4) because of the great potential
they and other derived principles have.

2.4 Variability within the Generate-and-Test framework

The generate-and-test framework permits many possible implementations of a given linguistic theory,
even following the linguists' language closely. For instance, nothing has been said about whether prin-
ciples have to be applied to entire sentences at once. Front an implenientors vantage it may be simpler
to apply generators and filters a sentence at a time, but psychologically this is implausible. People are
capable of interpreting sentences and detecting problems in sentences early on as they read them word
by word. This is an indication that principles should be applied step by step. Crocker [11] makes this
explicit in a framework motivated by psycholinguistic results that forces every module to apply incre-
mentally. Fong also discus.,es how some principles can L- int.cileaved with the initial phrase-structure
generation process, and the potential gains in efficiency that result. In the experiments in this thesis no
effort is made to implement linguistic theory in what seems to be a psychologically plausible manner,
since these experiments are concerned with making principle-based parsing efficient and not in making
psychological predictions.

3 One possibility is that the algorithm acts as a search ordering heuristic rather than an absolutism. The setting that
the deterministic algorithm chooses is searched before the alternate. If the search is halted after a single solution has been
found, this produces an algorithm that can handle any sentence that free determination or functional determination can.
and is much more efficient in the general case.



Chapter 3

A Programming Language for
Search Problems

Implementing principle-based parsers is difficult without a proper substrate, one that permits non-
deterministic generate-and-test search in a rich programming environment. In this chapter we present a
search language specifically designed for making modularized search problems easy to write and efficient
to execute. It includes a variety of efficiency-motivated programming constructs that are particularly
useful for processing linguistic structure.

3.1 Chapter Outline

The chapter starts off with a crossword puzzle example that motivates many of the programming language
features and provides code from a sample search program that solves the puzzle. This section provides
brief overviews of major language features. Then section 3.3 discusses internal representations used
during search. Explicit. definitions of how generators, filters and search strategies are defined in the
language are found in sections 3.4 and 3.5. Finally, other language features are discussed, such as failure
propagation (3.6), memoization (3.7) and concurrency (3.8.)

3.2 A Crossword Puzzle Example

Imagine trying to solve a simple crossword puzzle, such as that shown in figure 3.1. Essentially a search
needs to be done. iterating through a word list to find a set. of four different words that fit in the spaces
provided, under the constraint that certain letters of each word be identical. There are a variety of
traditional techniques for solving the problem. These include

20



CHAPTER 3. A PROGRAM MIN; LANG;UAGE FOR SEARCH PROBILE.•IS 21

Left Right

Top

Bottom

Figure 3.1: A simple crossword puzzle.

" Depth First Search: Pick a possible word for one of the spaces. say the top row. Then go through
the word list again looking for a suitable candidate for the left column, then the right colunm and
bottom row. At every step (or at the end) verify that all the constraints have been satisfied, and
if no word can be found to fit in a space. backtrack and change a previous word.

" Dynantic Depth First Search (Constraint Satisfaction S(arch): Perform a similar search, but dy-
namically order the selection of spaces according to various heuristics such as how many words
are available for the space. Instead of backtracking to the most recent space. pick the most recent
space which is directly responsible for current failures.

Both of these techniques will most likely perform unnecessary work when trying to find all solutions to
this crossword puzzle. Imagine a depth first search that first selects the word aardrark for the top row.
It moves on to select the left, column and searches the lengthy word list for all words 6 letters long, the
second of which must be r. For each of these words it, performs a similar search on the right column.
and then proceeds with the final bottom row. If there are 342 possible 6 letter words with r as a second
letter, then it will search the right column 342 times and find the same set of words every time. since
aardvark hasn't changed.'

What most search methods lack that, is relevant to this problem is the ability to encode the notion
that the left, and right columns of the crossword puzzle may be searched independently, and the results
need not be combined until the bottom row is searched. The programming language discussed here is
expressly designed to make such (in)dependencies explicit, in a generate and test approach to search.

3.2.1 An Implementation

Let us look at how this crossword puzzle problem might be expressed in our programming language.
First of all, generators must be defined for all of the spaces (see figure 3.2). Then filters must be defined

1in the constraint satisfaction literature the method known as arc-consistency is in part designed to alleviate this

problem, by permanently pruning items from a node's search space. but it would not work in this case because all
computation on the right and left columns is dependent on aardrark.
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(defgenerator TOP-WORD ()
(return-result (a-member-of *word-list*)))

(defgenerator LEFT-WORD (top-word)
(let ((possible-left-word (a-member-of *word-list*)))

(when (eq (second possible-left-word) (third top-word))
(return-result possible-left-word))))

(defgenerator RIGHT-WORD (top-word)
(let ((possible-right-word (a-member-of *word-list*)))

(when (eq (second possible-right-vord) (seventh top-word))
(return-result possible-right-word))))

(defgenerator BOTTOM-WORD (left-word right-word)
(let ((possible-bottom-word (a-member-of *word-list*)))

(when (and (eq (first possible-bottom-word) (fifth left-word))
(eq (fifth possible-bottom-word) (fifth right-word)))

(return-result possible-bottom-word))))

Figure 3.2: Generators for the four crossword puzzle spaces.

(figure 3.3) and an explicit search strategy mapped out (figure 3.4). In this particular problem the exact
division between generators and filters is somewhat arbitrary. A given generator could return all words.
all words that match up with previously hypothesized words for other spaces in the puzzle, or all words
that. match up and are of the requisite length. We choose (somewhat arbitrarily) to have the generators
pay attention to previously hypothesized words, but to use explicit filters to ensure that words are of
the proper length for the space they must fit in.

Generators

The role of generators is to produce any number of structures that will be used by other generators
and filters. In this simple example the generators are essentially themselves just filters on the words
contained in *word-list*, though in a more complex situation they could utilize side effects and return
locally constructed data structures.

In more detail, for every environment (collection of input arguntents) in which the generator is executed
a data structure called a s0 is created, and all the values resulting from the generator's execution are
stored in this set, each with a list of closures that represents all side-effects executed to produce the
value. This set, can later be used to enumerate the structures for filtering or the execution of other
generators. Sections 3.3.1 and 3.3.2 contain a further elaboration of this process.

The programming language uses as a base SCREAMER( [261]), an extension of ('OM.MON Lisp. SCREAMER's
compiler automatically CPS2 converts programs. thereby allowing non-deterministic funct ions. Trhus tihe

2 ('PS (Continuation Passing Style) conversion involves rewriting programs s., that after each result is coomputed. a
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(deffilter TOP-WORD-LENGTH (top-word)
(unless (- (length top-word) 8)

(reject)))

(deffilter LEFT-WORD-LENGTH (left-word)
(unless (- (length left-word) 6)

(reject)))

(deffilter RIGHT-WORD-LENGTH (right-word)
(unless (- (length right-word) 8)

(reject)))

(deffilter BOTTOM-WORD-LENGTH (bottom-word)
(unless (= (length bottom-word) 7)

(reject))
(succeed))

Figure 3.3: Filters for the crossword puzzle problem.

effect. of the non-deterministic function a-member-of in the TOP-WORD generator is essentially that of

(defgenerator TOP-WORD 0)

(dolist (temp *word-list*)
(return-result temp)))

Filters

Filters are used to selectively delete values from sets produced by generators. In the example, each
value is a list of letters. To permanently delete a value, the function reject is called inside the filter. If
reject is not called the value remains in the set.

Dependency Declarations and Search Strategies

Because it is not always possible for the language to infer all module dependencies from the input
arguments to each generator and filter, dependencies between modules must he explicitly declared with
the function define-tree-positions. One way to look at these dependencies is that each generator
must have an input stream and an output stream. The output stream is niamed with the generator's
name. The input stream can be the output stream from a single generator if there is only one dependency,

function (the continuatio1L) that represents "how the result is used" is called with it. Calling a continuation more than
once results in exhaustive non-deterministic programs.
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(define-tree-posit ions
'((top TOP-WORD)

(generate top-word LEFT-WORD)
(generate top-word RIGHT-WORD)
(cross left-word right-word LEFT-AND-RIGHT)
(generate left-and-right BOTTOM-WORD)))

(defsearcher CROSSWORD-PUZZLE
((generate TOP-WORD

(filter TOP-WORD-LENGTH top-word)
(generate LEFT-WORD

(filter LEFT-WORD-LENGTH left-word))
(generate RIGHT-WORD

(filter RIGHT-WORD-LENGTH right-word))
(generate LEFT-AND-RIGHT)
(generate BOTTOM-WORD

(filter BOTTOM-WORD-LENGTH bottom-word)))))

Figure 3A: A search strategy for the crossword puzzle problem.

or a new stream can be created by crossiing (in the sense of cross-producl) two others if a generator has
multiple dependencies. In the example (figure 3.4), the TOP-WORD generator is declared to be the top
generator, with no input dependencies (no input arguments). The LEFT-WORD and RIGHT-WORD generators
take their input from the TOP-WORD generator's output stream. The output streams from LEFT-WORD
and RIGHT-WORD are crossed to produce a new stream, LEFT-AND-RIGHT. which is used as input to the
BOTTOM-WORD generator. It is not necessary to declare the input dependencies of filters.

Even with the generator dependencies declared, the precise ordering of the search is underspecified. A
specific search program is created with the defsearcher macro. In the example found in figure 3.4 the
CROSSWORD-PUZZLE program performs the search as follows: first the TOP-WORD generator is executed,
and for each of the vaiu'es generated, the TOP-WORD-LENGTH filter is applied. So long as the filter does not.
reject the value generated by TOP-WORD the LEFT-WORD generator is executed on the value the TOP-WORD
generator produced. Its results are also filtered, and the set of values that, results is stored away. The
same process occurs with the RIGHT-WORD generator and RIGHT-WORD-LENGTH filter. At this point there
exists a set of left-words and a set of right-words each associated with a given top-word. The command
(generate LEFT-AND-RIGHT) forms the cross product, of these two sets. For each member of this cross
product set, the BOTTOM-WORD generator and BOTTOM-WORD-LENGTH filter is applied. Any value that is
not. rejected by this filter, when combined with the associated top, left and right words, constitutes a
solution to the crossword puzzle.

Notice that while the left and right, word sets were computed and filtered independently, they were stored
permanently so that the cross product could be rapidly enumerated for the bottom word generator. A
slight change in the program, to

(defsearcher CROSSWORD-PUZZLE
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((generate TOP-WORD

(filter TOP-WORD-LENGTH top-sord)
(generate LEFT-WORD

(filter LEFT-WORD-LENGTH left-word)
(generate RIGHT-WORD

(filter RIGHT-WORD-LENGTH right-word)
(generate LEFT-AND-RIGHT

(generate BOTTOM-WORD
(filter BOTTOM-WORD-LENGTH bottom-word))))))))

would have resulted in a standard depth first search.

3.3 Internal Representations

One reason simple search strategies are so effective is that they have little computational overhead
associated with them: a depth first, search needs only to maintain a simple stack. More sophisticated
search strategies require the building of complex internal representations. This language, for example,
must permanently record all results produced by generators, and must maintain a dependency structure
between those values in order for them to be efficiently re-enumerable, and for certain types of search
failures to be detected. This section describes the internal representations built by search programs
written in the language, and how those representations are manipulated.

3.3.1 Value Pairs and Side Effects

Each generator executes some actions, which may include performing destructive side-effects, and returns
a series of values. Because other generators and filters will make reference to these values, and because
it is important for the values to be efficiently regenerable, the generator must essentially be memoized:
the resultant values and their associated side effects must be stored. We'll call the aggregate structure
of a value and a sequence of side-effects a value pair. Value pairs are created every time return-result
is called inside a generator, as done in the crossword example 3.2.

Fortunately, SCREAMER's implementation provides convenient access to side effects. SCREAMER uses
backtracking to simulate non-determinism. Each side effect, (usually a setq form) is replaced by a
combination of the usual destructive operator and a push of a closure onto a global stack called *trail*.
The closure, when executed, effectively undoes the side-effect. When SCREAMER backtracks it, executes
these closures as it unravels the stack and thus computations do indeed seem completely non-destructive.
We extend this mechanism by providing two alternative destructive operators into COMMON Lisp, set!
and set !-local. set !-local pushes two closures onto a second stack, *effects*. The first, closure is
the same undo closure that SCREAMER uses; the second closure, when executed, performs the original
side-effect. In short., the *effects* stack contains not only a record of how to undo all side-effects
executed during the current thread of non-determinism, but, also an efficient encoding of how to perform
the side-effects themselves. When a generator outputs a value, tl',e current value of *effects* (a list.)
is joined with the value to produce a value pair. set! is the same as set! I-local except that the undo
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(defgenerator TEST ()
(let ((simple-list (list 'empty 'empty)))

(set! (first simple-list) (either 1 2))
(set!-local (second simple-list) (either 'A 'B))
(return-result simple-list)))

In the following table. .Y represents a particular list structure originally created by (list 'empty 'empty) that
is modified during the execution of the TEST generator, and Y represents tihe second cons cell in that list.

\Value Pair # Value Effect Closures
1 Y To Do: ((lambda 0 (rplaca Y 'A)) (lambda 0 (rplaca Y 1)))

To Undo: ((lambda () (rplacaY 'empty)) NIL)
2 .1' To Do: ((lambda 0 (rplaca Y 'B)) (lambda 0 (rplaca .Y 1)))

To Undo: ((lambda 0 (rplaca Y 'empty)) NIL)

3 " To Do: ((lambda 0 (rplaca Y 'A)) (lambda 0 (rplaca .1Y 2)))
To Undo: ((lambda 0 (rplacaY 'empty)) NIL)

4 Y To Do: ((lambda 0 (rplaca Y 'B)) (lambda 0 (rplaca ,V 2)M)
_ To Undo: ((lambda 0 (rplacaY 'empty)) NIL)

Figure 3.5: A simple generator and the value pairs it produces.

closure is not created. This is more efficient in cases where it. is not. necessary to undo effects upon
backtracking. SCREAMER offers a similar distinction.

To illustrate how the effect-recording syst~em works, figure 3.5 contains an example of a simple generator
and the value pairs it. produces. either is a SCREAMER function that non-deterministically returns one
of its arguments. Notice that because one of the destructive operations uses set! and not set ! -local,
there are fewer undo closures than do closures. The language also defines many other common destructive
operators, such as push!, push! -local, pop!, pop! -local, inc!, inc!-local, etc.

The overhead of creating closures and adding them to the *effects* stack for every simple side-effect
can be significant for a program, and because of this for many search problems an extremely simple
control mechanism such as that found in depth first searches may well he a more efficient mechanism.
But if a generator needs to be executed many times, it is very likely that the low cost of regenerating
these memoized values will outweigh the initial overhead. This is particularly true for generators that
perform complex calculations but a relatively small number of side-effects.

To use a value found in a value pair, the side effecting closures must first be executed in reverse order
(from the bottom of the *effects* stack to the top, to recreate the proper temporal sequence). At this
point the structure found in value portion of the value pair is in an identical state to when it was returned
from the generator originally. Before another value from a different value pair may be examined, the
undo closures from the original value pair must. be executed.
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The issues that arise with the interaction between side-effects and concurrent execution are discussed in

section 3.8.

3.3.2 Sets, Elements, Dependencies and Enumeration

All the value pairs produced by a generator must be stored in some sort of aggregate if they are to be
re-enumerated. This aggregate is called a set. Whenever a generator function is applied to some input
arguments, a new set is created. That set, will contain all the value pairs produced by the generator's
application. In addition the set includes dependency information pointing back to the generator's input
arguments, and information concerning the state of the generation process.

To encapsulate the arguments that a generator takes, a data structure called an elem•nt is used. Gen-
erators get their input from the output of zero or more other generators. For example, the TOP-WORD
generator in figure 3.2 has no input, dependencies; LEFT-WORD gets its arguments from one other gener-
ator; and BOTTOM-WORD from two other generators. In the case of no input arguments a special element
type exists, a topmost-element. For the simple case where one generator feeds directly into another, the
generated-(llement type is used, and when the outputs of several different generators must be combined
to produce a single element, the crossed-element is used.

When a generator is executed its value pairs are encapsulated in gcnerated-clements, and then these are
placed in a set. Other single-argument generators can get their input arguments from these generated-
elements. But in the case of a generator like BOTTOM-WORD that, takes several input arguments, generated-
elements must he combined into crossed-lemmenuts. Crossed-elements are built up in a binary tree fashion:
a crossed element can be created from any combination of two generated-elements or crossed-elements.
The purpose of this crossing procedure is to create a single aggregate element that represents the results
of several different, generators. When a generator is executed and creates a new set of value pairs, that.
set contains information pointing back to the single element that represents all of the generator's input.
arguments. In this way dependency information between all value pairs is maintained.

Figure 3.6 depicts the internal representation of the search in the crossword example.

A generator like BOTTOM-WORD needs input elements that have multiple dependencies. This is done by
creating a sort of virtual generator, LEFT-AND-RIGHT in the example. This virtual generator produces a
set of elements, just like a real generator, only the elements are members of two sets, not just one, and
hence the element has dependencies from two generators. One of the element's parent, sets is associated
with the LEFT-WORD generator and the other with the RIGHT-WORD generator. This can be seen by looking
at the LEFT-AND-RIGHT sets in figure 3.6.

We can now provide explicit definitions of sets and elements. This is done in figure 3.7. Let us examine
these definitions in more detail.

e Sets: Sets hold the list of values (elements) produced by a generator. The elements slot, points to a
list of all the elements contained in the set. The tree-position slot contains information about what
generator produced the set, primarily for debugging purposes. The parent-element is the element
that contained the input arguments for the generator that produced this set, in most cases. For
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Topmost-Element- I
topmost-element

TOP-WORD
generated-set

aardvark act analysi
generated-element generated-element generat ed-element

LEFT-WORD LEFT- WORD RIGHT-WORD RIGIHT-WORD
generated-set generated-set generated-set generated-set

calico rank satire airplane nptpy
generated-element generated-element generated-element generated-element generated-element

LEFT-and-RIGHT LEFT-and-RIGHT LEFT-and-RIGHT
indexing-set-from-A indexing-set-from-A indexing-set-from-B

calico-and-airplane satire-and-airpkane
crossed-element crossed-element

BOTTOM-WORD BOTTOM-WORD
generated-set generated-set

cavalries cavalry complex chilled coral
generated-element generated-element generated-element generated-element generated-element

Figure 3.6: Some objects constructed during the crossword search. Each ciemcnn is drawn with a
descriptive name and its type, each sct in a box with the name of its position in the dependency tree
and its type. Crossed out. elements have been deleted by filters.
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indexing sets (explained below) the slot is used in a slightly different manner. fully-guniratld?
is true if the generation process is complete. d(eltd:? is true if the set has beeni deleted (see
section 3.6).

"* Gunerathd Sets: Generated sets are just a subclass of sets that are directly created by a generator.
as opposed to indexing sets.

"* Indexing Sets: Indexing sets are built when the results of several generators need to be combined.
When a crossed position is generated, an itndexing-set-from-A is built for each element of one parent
generator, and an inderang-set-from-B for each element of the other.

" Simph Elements: Elements are used to represent the input arguments for generators and to hold
value produce by generators.. Simple elements are the parents of all other elements. The dlefte(d?
slot is true if the element has been deleted. The daughter-sets slot contains all the sets that have
been generated from the element.

" Topmost Elements: Topmost elements are elements with no dependencies and no associated value
pairs, used to represent the dependencies of a top level generator.

" Generated Elements: Generated elements are created when a generator is applied to its input
arguments. The value-pair slot contains the resulting value pair, and the associated-set is the set
that the element is put into.

" Crossed Elements: Crossed elements represent a dependency on several different generators, and
hence have two associated sets, index-set-A and index-set-B.

Enumeration

The representation built up during the search (figure 3.6) can be used to efficiently enumerate partial
and complete solutions. Let us look at a search program for the crossword puzzle again:

(defsearcher CROSSWORD-PUZZLE
((generate TOP-WORD

(filter TOP-WORD-LENGTH top-word)
(generate LEFT-WORD

(filter LEFT-WORD-LENGTH left-word))
(generate RIGHT-WORD

(filter RIGHT-WORD-LENGTH right-word))
(generate LEFT-AND-RIGHT)
(generate BOTTOM-WORD

(filter BOTTOM-WORD-LENGTH bottom-word)))))

Generating the TOP-WORD position is easy, because it has no input arguments. But look at. the generation
of BOTTOM-WORD. The generator function must be called on every possible pair of left, and right words,
which are in turn dependent on the top word. So before BOTTOM-WORD can be generated, TOP-WORD must
be re-enumerated. For every one of the elements produced by this enumeration, a set for the LEFT-WORD
position and a set for the RIGHT-WORD position exists. Either of these can be used to further enumerate
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SETs

(defclass set 0
((elements :accessor set-elements :initform nil :type list)

(tree-position :accessor set-tree-position :initarg :tree-position :type symbol)
(parent-element :reader parent-element :initarg :parent-element :type simple-element)
(fully-generated? :accessor fully-generated? :initform nil :type symbol)
(deleted? :accessor deleted? :initform nil :type symbol)))

(defclass generated-set (set) 0)
(defclass indexing-set (set) 0)
(defclass indexing-set-from-A (indexing-set) M)

(defclass indexing-set-from-B (indexing-set) 0)

,;; ELEMENTs

(defclass simple-element 0
((deleted? :accessor deleted? :initform nil :type symbol)
(daughter-sets :accessor daughter-sets :initform nil :type (or cons nil))))

(defclass topmost-element (simple-element) 0)

(defclass generated-element (simple-element)
((value-pair :reader element-value-pair :initarg :value :type value-pair)
(associated-set :accessor associated-set :initarg :associated-set :type set)))

(defclass crossed-element (simple-element)
((index-set-A :reader index-set-A :initarg :index-set-A :type indexing-set)

(index-set-B :reader index-set-B :initarg :index-set-B :type indexing-set)))

Figure 3.7: The definitions of sets and elements.
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the tree. Say the LEFT-WORD position is chosen. Then it is enumerated. producing a number of elements.
For each of these elements there exists an vldfring-sct-from-A set that represents the LEFT-AID-RIGHT
tree position. This is then enumerated, and the elements produced contain backpointers that allows the
RIGHT-WORD position to be ,;et. Once all of these tree positions are set. the BOTTOM-WORD generator can
be applied.

In general enumeration can be complex. The precise ordering of tree positiions in the enumeration process
can affect the efficiency of a search.

3.4 Specification of Generators and Filters

The crossword example generator and filter definitions in figures 3.2 and 3.3 are fairly self-explanatory,
but we provide a slightly more precise description of the search language syntax here.

Generators are defined with the defgenerator macro, which takes the form (delfgenerator name
(frest positions) &rest body). positions is a list of the generator's input arguments, which must
be the names of tree positions, or a list of a variable name to bind locally and a tree position name. For
instance,

(defgenerator CHAIN-FORMATION (PHRASE-STRUCTURE)
The result of CHAIN-FORMATION is a set (list) of chains, each a list

,; of noun phrases linked by movement.

;; Compute all chains.
(let ((chain-state (do-chain-formation phrase-structure)))

;; Unless there are either incomplete chains...
(unless (or (chain-state-partial-chains chain-state)

;; Or noun phrases that have not been incorporated into chains...
(chain-state-free-phrases chain-state))

;; then return the list of completed chains.
(return-result (chain-state-completed-chains chain-state)))))

(defgenerator FREE-INDEXING ((list-of-chains CHAIN-FORMATION))
;; Return a list of chain sets, that looks like

.; ((REFERENTIAL-INDEX-i CHAIN-i-i CHAIN-i-2 ... )
; (REFERENTIAL-INDEX-2 CHAIN-2-1 ... )
,; )

w; where each referential index is an integer and each chain is a list
;; of phrases. The chains paired with a referential index all co-refer.

(when list-of-chains
(return-result
(loop for integer-set in (freely-index (length list-of-chains))

for referential-index from 1
collect (cons referential-index
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(mapcar #'(lambda (i) (nth i list-of-chains))

integer-set))))))

At any time during the execution of a generator the function return-result call be called to output
a value. Depending on the particular search strategy. the execution of the generator function may or
may not be temporarily halted while other aspects of the search process are performed. The body of a
generator may be non-deterministic.

Filters are defined with the deoffilter macro, which looks very much like defgenerator: (def ilter
name (krest positions) &rest body). A filter rejects the current search path if and only if some-
where in its dynamic scope it executes the reject function. For instance,

(deffilter CONDITION-A ((tree PHRASE-STRUCTURE) (indices FREE-INDEXING)
ANAPHOR?)

;; For each phrase in the phrase-structure tree TREE...
(map-up-phrase-structure tree (phrase)

;; If that phrase is an anphoric noun phrase...
(when (and (np? phrase) (is-anaphor? phrase))

;; Find the governing category for the phrase...
(let ((gc (governing-category phrase)))

;; If there is a gov. cat. and no binder for the phrase within it...
(unless (or (null gc) (find-binders phrase gc indices))

;; Reject this parse.
(reject))))))

(deffilter subjacency ((chains CHAIN-FORMATION))
(dolist (chain chains) ;; For every chain...

(mapl V'(lambda (chain-part)
(let ((phrasel (first chain-part))

(phrase2 (second chain-part)))
Phrasel and Phrase2 are consecutive (movement slots) in the chain.

(when (and phrasel phrase2)
;; If they are not subjacent, reject the chains.
(unless (subjacent phrasel phrase2)

(reject)))))
chain)))

Because it may he useful to signal a halt, to the search process after a single solution is found, the special
function succeed, when executed inside the dynamic scope of a generator or filter, halts the search
process.
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3.5 Specification of Dependencies and Search Strategies

3.5.1 Dependency Declarations

The definitions of generators and filters are not sufficient to determine (he search dependencies. For
instance, a filter may not explicitly need the value that a certain generator produces while it still relies
on that generator's side-effects having taken place. Binding theory ('ondition A. presented in section 3.4
relies on previous side-effects to have set the anaphoric property of noun phrases. though no reference
needs to be made in the argument list to the ANAPHOR? generator. Therefore the dependencies between
various generators and filters must be explicitly declared. This is done by explicitly declaring the entire
dependency graph. In the example, for instance,

(define-tree-positions
'((top TOP-WORD)

(generate top-word LEFT-WORD)
(generate top-word RIGHT-WORD)
(cross left-word right-word LEFT-AND-RIGHT)
(generate left-and-right BOTTOM-WORD)))

Every module (generator or filter) must take its input arguments from a single named position in the
dependency graph. Positions are named either by generators or, in the case of multiple dependencies, by
explicitly creating a crossed position. All of this is done through the define-tree-positions function.
which takes a list of clauses, each clause which defines a single position in the dependency graph. The
possible position definition clauses are:

" (top generalor-namn): Define the new position generalor-namr that represents the output of
generator geucrator-namn, which has no dependencies.

" (generate parenI-position gcneralor-namc): Define the new position gcnerafor-namf. The gener-
ator generalor-name is dependent on the position parmnl-position and its ancestors.

"* (cross parcni-position-1 parcent-position-2 nu,-position-nanu): Define the new position neu,-
position-nawe, which combines all the information from pare t-position-I and paruit-position-2.
No ordering is guaranteed, so there should be no interactions between the side-effects of the gen-
erators in the ancestors of the two parent positions.

It is often necessary to explicitly create one position which combines the results of all generators. so that
there is a single element created that represents the solution to the global search. This is because there
is no explicit mechanism in the language for outputting results. The most basic way to get at the results
of a search is to execute on the cross-product of all generators a single filter that prints (or otherwise
outputs) the value of each generator position, after the seach process is complete.

Notice that filters do not need to be declared anywhere. This is because modules are not expected to be
dependent on whether or not particular filters have been applied. If they are. then either the filter can
be guised as a generator that. either outputs its input or doesn't, or the filter dependency can simply be
incorporated into the search strategy.
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(defsearcher CROSSWORD-PUZZLE

((generate TOP-WORD

(filter TOP-WORD-LENGTH top-word)

(generate LEFT-WORD

(filter LEFT-WORD-LENGTH left-word))
(generate RIGHT-WORD

(filter RIGHT-WORD-LENGTH right-lord))
(generate LEFT-AND-RIGHT)

(generate BOTTOM-WORD

(filter BOTTOM-WORD-LENGTH bottom-word)))))

(defsearcher CROSSWORD-PUZZLE

((generate TOP-WORD

(filter TOP-WORD-LENGTH top-word)
(generate LEFT-WORD

(filter LEFT-WORD-LENGTH left-word)

(generate RIGHT-WORD
(filter RIGHT-WORD-LENGTH right-word)
(generate LEFT-AND-RIGHT

(generate BOTTOM-WORD

(filter BOTTOM-WORD-LENGTH bottom-word))))))))

Figure 3.8: Two search programs for the crossword puzzle example.

3.5.2 Search Programs

Search programs are built with the defsearcher macro. The specification of the program orders the
application of generators and filters, specifies concurrency, and declares whether one process has scope
over another, or whether they are executed completely separately. As examples, the two search programs
provided for the crossword puzzle are reprinted in figure 3.8.

The search programs must include a generation step for each tree position. But once generated. a
position need not, be regenerated. So. for instance, in the first program in figure 3.8 the lines

(generate RIGHT-WORD
(filter RIGHT-WORD-LENGTH right-word))

(generate LEFT-AND-RIGHT)

first cause the RIGHT-WORD generator to run. For each of the resulting values, the RIGHT-WORD-LENGTH

filter is applied. Then after this initial generation is complete, the LEFT-AND-RIGHT crossed position is

generated. This process is dependent on the RIGHT-WORD position, but since that, position has already
been generated and stored away, it can be re-enulmerated quickly to create the input arguments for the
second generation process. In the second program this overhead is dispensed with:
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(generate RIGHT-WORD
(filter RIGHT-WORD-LENGTH right-word)
(generate LEFT-AND-RIGHT

Here, after each element is generated by RIGHT-WORD the filter is executed, and then the LEFT-AND-RIGHT
generator is applied. It. only generates those ciussed elements which include the one RIGHT-WORD currently
being generated. This saves on some small overhead associated with re-enumnerating RIGHT-WORD but
introduces other potential inefficiencies, as is discussed in section 3.6.

There are a number of different clauses that can be used to construct search programs. The def searcher
macro functions as a compiler. It creates a function of no arguments that executes the search. All input
and output must be made by individual generators and filters through special mechanisms, such as global
variables. defsearcher takes the following form: (def searcher program-name body), where body is
a list of clauses. Each clause is executed in sequence. The possible clause constructors are:

" (generate position body): Enumerate any unbound parent positions. and execute the generator
associated with position. As each result is returned. bind the position to that value and execute
body.

" (pgenerate position body): Similar to generate, except that as each value is generated, a separate
process is created for it, and body is executed concurrently in each process. When all are complete,
execution of the pgenerate halts. See section 3.8 for more information.

" (filter filter-name parent-position): Enumerate any unbound parent positions, and apply the
filter function. If it rejects the input, delete the element containing the input arguments and
advance its enumerator. See section 3.6 for more information.

" (cobegin body): Start separate processes for each of the clauses in body, and execute them con-
currently. When all are complete, the cobegin halts.

" (with position body ): Like generate, except, that it assumes position has already been generated
and only needs to be enumerated.

" (pwith position body ): See pgenerate and with.

3.6 Failure Propagation

Propagation of failure is a classic problem in the search literature. In certain searches detecting the
proper branch point, to retreat, to after a failure can greatly improve search efficiency, but in others the
overhead associated with this computation turns out to be far more costly than the search itself. There
are a few special considerations that need to be thought about, for the search mechanisms used by this

language.

First of all, recall that, all value pairs produced by generators are encapsulated in elements and stored in
sets. When a filter is executed, its function is applied to a particular element that represents its input
arguments. If it rejects its input, then that element, is deleted from its set, and a future enumeration of
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the set will not produce that element. Because a complete representation has been built of all tihe vaiies
produced during the search, deletion can be propagated beyond the local filter.

Imagine the following case related to the crossword puzzle example: suppose that the TOP-WORD generator
produces the word -itquota.s. The next generator that will bIe executed is the LEFT-WORD generator. which
will have to produce a word with q as its second letter. If the word list does not contain any ti letter
words with q in second position. then at the end of the LEFT-WORD generation process there will be no
elements remaining in the new set (either none will have been produced. or those few produced will have
been deleted by the LEFT-WORD-FILTER). This is an indication that the word s.quotas is at fault for the
failures, and can be deleted. If it is not, then the RIGHT-WORD generator will be applied needlessly to
s(quoias, producing values that will never be used.

In general, whenever a set that has been fully generated has its last element deleted, then the parent
element to that set can also be deleted. It is not always trivial to ensure that a set has indeed been fully
generated though. If we look at the following searcher

(generate A
(generate B)
(generate A-CROSS-B)
(filter foo-filter A-CROSS-B)))

one might expect that the crossed position A-CROSS-B has been fully generated, and therefore that if
the filter deletes the last, element from one of the indexing sets, the parent to that indexing set can be

deleted too. But that. is not the case here. An indexing set that, points back to an element of A will

indeed have been fully enumerated. But. an indexing set that points back to B (and contains one element
for each a E A) will not be complete. because A is still being generated. For this reason it is not always
advantageous to nest generation as much as possible.

3.6.1 Non-Local Exits

When a failure has been encountered, either because a filte; has rejected its input, arguments. or because
a generator has produced no values, some exit to an antecedent tree position must he performed, in
oreder to get a new value for that position. In most. cases the exit. will be to the tree position that is
being fed into the filter or generator. But if the failure has propagated beyond its starting point then
the exit may be to a position further up in the dependency graph that must have its value changed.

A common strategy in searches is to backtrack to the closest (dynamic) superior branch point when a
failure occurs. This is often because it. is difficult or computationally expensive to determine the nearest
branch point that, is actually at, fault, in a failure. But since the search configuration is statically defined
in this language it is very easy to compute the proper branch point to backtrack to. Thus in a depth

first search defined with

(defsearcher CROSSWORD-PUZZLE
((generate TOP-WORD
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(filter TOP-WORD-LENGTH top-word)
(generate LEFT-WORD

(filter LEFT-WORD-LENGTH left-word)
(generate RIGHT-WORD

(filter RIGHT-WORD-LENGTH right-word)

if the RIGHT-WORD generator fails to generate any values. then the search does not backtrack to the closest

dynamic branch point (the LEFT-WORD generator) hut instead the closest branch point that RIGHT-WORD
is actually dependent on. TOP-WORD.

3.6.2 User-Declared Data Dependencies

It is common in natural language applications that there is shared substructure in the values produced
by a generator. For instance, a phrase-structure generator may produce many parse trees that share

a common phrase. In the ambiguous sentence I saw a man with a telescop( the attachment of the
prepositional phrase with a thhescop( varies but the word I is still unambiguously parsed as a pronoun.
Imagine a filter being applied to the two possible phrase structure trees for this sentence. If it is concerned
with the prepositional phrase then indeed it will do different work on the two values output by the
generator, but if it, for instance, ruled out sentences with accusative pronouns in subject position. then
it would redundantly apply to I twice. This overhead call essentially be eliminated with mm(not:ahon.
see section 3.7. But look at the sentence Mt saw a man uith a h(hscopc: in this case the filter would
rule out the sentence twice. Depending on the particular ordering of generators and filters it is quite
conceivable that a significant amount of unnecessary processing will be done on the second value in
between the time that the first value is ruled out by the filter and the time that the filter rules out the
second value for the same reason.

For this reason a mechanism has been built that allows the user to define data dependencies among
values, so that when a substructure in one value is rejected all other values with the same substructure
are also deleted at the same time. It is used by defining a class for the substructure using a special macro
that adds slots for dependency information and links to value pairs. Any object which is an instantiation
of a class defined with this macro can be made dependent on any other such object, and any value pair
dependent on any number of such objects. When any one of these objects is explicitly rejected (using
an alternative form of reject then all elements with value pairs dependent on the object are deleted.

Although the definitions of dependent object classes is done with the defmstructure macro which will
not be fully defined until section 3.7, the :allow-dependencies t section of the following definition
declare that the phrase class allows dependency declarations.

(defmstructure (phrase :allow-dependencies t)
((category :initarg :category :accessor phrase-category :type symbol)
(daughters :initarg :daughters :accessor phrase-daughters :type list)
(parent ... )))

Inside any generator or filter one phrase can now be declared to be dependent on another with (is-part-of
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substructure dpi nid nt-structur ):

(let ((phrase (make-instance 'phrase
: category category
:daughters daughters)))

(dolist (daughter-phrase daughters)

(is-part-of daughter-phrase phrase)))

Any value returned with return-result that is a dependency structure will be deleted if one of its
substructures is rejected. And. whenever one dependency substructure is rejected (with a command like
(reject phrase)), then all objects dependent on that structure are also rejected.

Unfortunately. this mechanism is not always as useful as it might seem, because often it is not a particular
object that is at fault, but an object in conjunction with a variety of other side effecting operations or
other objects. For instance, in Me saw a man with a te(scop( it is not in( per se that is at fault, but
me in subject position. In the sentence Eicryoiie but nu sau, a maan with a tclescop(, m• could not be
deleted. Unless this combination of an object and its sentential position are somehow encapsulated in a
greater dependency object. this mechanism would not be useful. Section 4.2.1 presents some macros for
performing this encapsulation that, are used in an actual parser implementation.

3.7 Memoization

Natural language problems seem characterized by large numbers of local ambiguities, which are often
expressed by building data structures that combine a small set, of objects in a variety of different ways.
Many of the same operations are performed on the same objects in each structure variation, and thus
it is usually a significant optimization to me noize ([23], [13]), or store the results of an operation for
future revse. This is a variation of the technique used to allow generators to efficiently reproduce their
results. The language provides a variety of macros that define memoized functions that maintain a table
of the results of their application.

Although memoization of simple functions is easily added to COMMON Lisp(see [24]). some extra care
was taken to allow memoizable non-deterministic functions and efficient, argument indexing. One of the
common sources of inefficiency in memoized functions is the lookup of function arguments. At the start
of a function call, the table pairing input, arguments and results must be checked to see if the current
arguments have been used before. For some classes of functions, such as those that take a single small
integer argument, it is possible to efficiently store the table in the form of an array or a hash table. But
for many functions that occur in natural language applications the input arguments are more likely to
be complex data structures that. are not easily indexed.

One solution is reserve a slot in a data structure for a given memoized function. When passed an ar-
gument structure, quickly checking a slot on that structure is sufficient to find a previously computed
function value, if it exists. This efficient memoization technique is provided in the language through
memoizing structures, or restructures. The defmstructure macro allows one to declare classes of ob-
jects that. can memoize. For example, in figure 3.9 the phrase class is defined to memoize 3 functions,
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(defmstructure (phrase :allow-dependencies t)
((category :initarg :category :accessor phrase-category :type symbol)
(daughters :initarg :daughters :accessor phrase-daughters :type list)

(ENUMERATE-PHRASE ANNOTATE-PHRASE-WITH-CASE DO-CHAIN-FORMATION))

(defndm do-chain-formation ((phrase) phrase)
(case (length (phrase-daughters phrase))

(0 ... )

(defm! annotate-phrase-with-case ((phrase) phrase)

Figure 3.9: An example illustrating the use of memoizing structures.

'3numerate-phrase, annotate-phrase-with-case and do-chain-formation.

The four macros available for defining memoized functions that use mstructures for efficiency are deft,
defndm, defm! and defndm!. defndm and defndm! are for non-deterministic functions, and deft! and
defndm! record and reproduce side effects. Instead of the standard argument list found in a function
definition, both an argument list and the name of the single argument that holds the mstructure must
be provided. The similar macros defmemo, defndmemo, defmemo! and defndmemo! define memoizing
functions that do not use mstructures, but store their results in ordinary hash tables.

Like the user-definable failure propagation mechanism, efficient memoization is not as useful as it might
seem, because often a function's operations can not be easily specified just on the basis of its input
arguments. The same structure may be passed to a function in two different contexts, with some side-
effected slot containing a different value each time. The equality test on the arguments will not recognize
the difference, and an (incorrect) memoized result will be returned at some point. Thus memoization
must, be used with some care.

An example of how care must be taken in memoization comes from binding theory. If we look at the
definition of Condition A, from figure 2.1, it says that an anaphor must be bound in its governing
category. Section 3.4 contains the CONDITION-A filter that implements this requirement. We might
be tempted to memoize the computation of a phrase's governing category. But this won't work very
well, because a single phrase can be shared between a large number of different tree structures, and its
governing category may be different in each one. The memoization of the c-commarler function (see
Appendix B) gets around this problem by including in the function argument list the top level phrase
of the tree structure. The c-commanders of a phrase are unique inside a given tree structure root.
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3.8 Concurrency

In this search language, independent modules are made computationally independent. It is an obvious
efficiency-iiotivated extension to make them computationally concurrent. If different modules can be
executed at the same time, and even different search branches of a single module at the same time,
then potentially the time cost of a complex search can he greatly reduced. Although the language has
not actually been implemented on a concurrent computer system. the compiler can produce code with
the necessary structure for concurrent execution, to the point that the code can bI run in a simulated
parallel environment such as LUCID COMMON Lisp's processes.

Rather than go through the details of all the many additions and changes that must be made to the
compiler to handle non-local exits, race-free modifications to the search state structure, process creation.
and countless other minutiae, we will merely talk about some of the high level problems that must be
dealt, with when extending this language to handle concurrency in some form or other. Certainly the
most important aspect, that we will not touch upon is information passing between processes. The
fine points of this are too dependent. on the particulars of individual computer architectures and search
programs.

3.8.1 Making COMMON LIsP Functional

Concurrent computing is usually the domain of functional (non side-effecting) languages, and for a very
good reason. If two different processes both effect a different change on the same memory location, then
neither can be certain of its value. Given the existence of operations in this language like this one from
example 3.5,

(set! (first simple-list) (either 1 2))

it should be obvious that it, will be non-trivial to execute the two branches to this statement concurrently,
or even to have two different modules operate on the two different, results at the same time.

The solution to this problem is to turn COMMON Lisp's side-effecting operations into non-destructive
operators. Instead of a given writable location containing a readable value, it will contain a unique index.
That index can be used to look back in the list of side-effects maintained for backtracking purposes (see
section 3.3.1) to find the value the last side-effecting operation assigned to the location. For efficiency
reasons not all side-effects use this mechanism, but, only those explicitly declared to be potential conflicts
under concurrent, execution: it is possible that a sufficiently rich type and effect system (see [20], [27])
could deduce such conflicts automatically.

Looking at figure 3.10, to declare a memory location to be a potential conflict, point for concur-
rency it must be a slot in an mslruclure. In addition to the normal slot definition arguments. the
:nondestructive keyword can be given. This declares that all read and write operations to this slot.
should be nondestructive. The argument given to the keyword is a list, of all the generators that can
potentially modify the slot, and this information is used to prune the search of the side-effects list. Once
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(defmstructure (phrase :allow-dependencies t)

((category :initarg :category :accessor phrase-category :type symbol)
(daughters :initarg :daughters :accessor phrase-daughters :type list)
(parent :initform nil :accessor phrase-parent :NONDESTRUCTIVE (PHRASE-STRUCTURE))

(defgenerator phrase-structure (...)

(set! (phrase-parent phrase) (either parent-A parent-B))

(deffilter filter-parent (...)

(if (predicate? (phrase-parent phrase))

Figure 3.10: An example illustrating how non-destructive side-effectors are declared and used.

this declaration has been made, the slot of a particular phrase will actually contain an index symbol

such as :parent-119 and a write operation such as the set! iln the phrase-structure generator in

figure 3.10 is translated to

(push (cons (phrase-parent phrase) ;; The index.
(either parent-A parent-B)) ;; The value.

*effects*)

and a read like the (phrase-parent phrase) in the filter in figure 3.10 translated to something along

the lines of

(cdr (assoc (phrase-parent phrase) ;; The index
*effects*))

Here the overhead of a given read or write can be significant, if many of them are performed and the list

of effects grows large, but this mechanism does allow incompatible values to exist in different processes
concurrently.
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3.8.2 Specifying Concurrency

Section 3.5.2 enumerates th,- possible constructors for search programs. which include pgenerate, pwith
and cobegin.

The pgenerate constructor executes a generator, then takes and runs its body on each generated element
in parallel. The actual gain of this is hard to judge- it certainly would not reduce the time complexity
of a search, since the generation process is still linear and whatever mechanism is used by the body to
retrieve information from the ancestors of the generator is likely to be time dependent on the number
of processes requesting information. But most likely some significant savings could result, especially in
problems with little communication needs. pwith is very similar to pgenerate.

cobegin executes each statement of its body in parallel, and serves as a mechanism for running several
modules concurrently. So, for instance, after a generator has been executed several different filters could
be run over its results instead of just one at a time.

3.8.3 Overheads and Testing

It is important to realize that the high level concurrency constructs in this language are not, practical for
many applications, and have not been tested in any kind of representative environment. Although they
can be used to the point, of verifying correctness, the particular environment they have been tested in
(interleaved processes in LUCID COMMON- Lisp) provides communication mechanisms transparently and
otherwise allows many important aspects of concurrent computing to be glossed over. Furthermore, the
high overhead associated with creating new processes swamps out the cost of the computation actually
involved with the problem, and therefore renders empirical timing results meaningless.



Chapter 4

Tests and Results

The goal of this research was not to produce a particularly efficient, complete or psychologically plausible
implementation of any particular human language competence or performance theory, but to create a
convenient programming environment for experimenting with natural language problems and to test the
viability of various efficiency-motivated search techniques. To this end, several relatively complex (though
linguistically incomplete) principle-and-parameters based parsers were implemented in the language and
tested under various search options.

4.1 Chapter Outline

This chapter introduces the parsers and their relevant computational properties, by describing each
module one by one in section 4.2. To illustrate exactly how the modules work. a sample parse of a
simple sentence is presented in section 4.2.2. Section 4.3 then describes the tests performed on the
parsers and presents numerical results for a large number of different parser/parameter combinations.
Finally, section 4.4 summarizes significant qualitative features of these results.

4.2 The Test Parsers

The parsers are all search programs that seek to derive annotated parse trees (deep structures) for
surface sentences, given as input a list of words. As with most GB-parsers (see [14], [12], [17]) they do
this by starting with a covering context-free grammar for surface-structure, one that encompasses all
legal transformations of a deep structure by the move-n principle. After deriving the surface structure
of an entire sentence using standard CFG techniques, they reconstruct the movement sequence and also
derive other ancillary information, such as antecedence relations between pronouns. This is not by any
means all that, a practical parser must do, and the parsers do not exhibit particularly broad linguistic
coverage. For instance, the parsers do not, derive important scoping information for quantifiers and are

43
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not able to derive the structure of questions about adjuncts. These and many other failings could be
remedied relatively easily were the primary goal of this research to implement a more comprehensive
language module.

There are only minor variations between the parsers, stenuning from variations in the linguistic theory
implemented. The changes were designed to test the effects of deterministic theories on the search.
Because the majority of the modules in the parsers are identical, the parsers will be described together,
module by module. Actual code for the parsers is provided in Appendix B. and section 4.2.2 provides a
detailed sample execution of a parser.

See (28] for a more comprehensive introduction to the linguistic theories represented by these modules.

4.2.1 The Modules

The generators and filters that make up the test parsers are described in this section. For each one, a
short description of the part of linguistic theory it implements is described, along with the intermodule
dependencies and a description of any special language features used to implement the theory. First.
though, some macros used by several modules and specific to linguistic structure are described.

Tree Structure Macros

Many of the modules map over phrase structure trees built by the first module of the parser. A variety
of macros are defined to facilitate these mappings. Among these are map-up-phrase-structure and
map-up-phrase-structure-nd which are used to apply a body of code to each phrase in a tree. For
instance,

(deffilter CONDITION-A ((tree PHRASE-STRUCTURE) (indices FREE-INDEXING)
ANAPHOR?)

;; For each phrase in the phrase-structure tree TREE...
(map-up-phrase-structure tree (phrase)

; If that phrase is an anphoric noun phrase..
(when (and (np? phrase) (is-anaphor? phrase))

;; Find the governing category for the phrase...
(let ((gc (governing-category phrase)))

;; If there is a gov. cat. and no binder for the phrase within it...
(unless (or (null gc) (find-binders phrase gc indices))

Reject this parse.
(reject))))))

Another useful set, of macros deal with the problem of memoization over combinations of phrases and
side-effects. Imagine trying to memoize the Case Filter on phrases. Since case theory depends on
whether phrases are anaphoric or not, any case-checking function will need the anaphoric property of
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a phrase to be all argument. But the anaphoric nature of empty categories is set destructively by a
non-deterministic module, and therefore cau not easily be referenced as all argument. The solution is
to build new structures that encapsulate the anaphoric side-effect with the phrase object, and menoizte
oil that new object. Obviously there is all overhead associated with this. but the new object call also
be used for user-declared failures (see section 3.6.2), and the process can be built into macros that hide
the details of the operations. These same macros can he used for other theories. The now structures
built, are called v'irtual trees. The following code illustrates the use of virtual trees to provide a single
rejectable object that represents phrases and their anaphoric setting.

(defgenerator ANAPHOR? ((tree OPERATOR-ASSIGNMENT))
(return-result (annotate-empty-categories-with-anaphor-feature tree)))

(defndm! annotate-empty-categories-with-anaphor-feature ((phrase) phrase)
(virtual-map-up-phrase-structure

(phrase annotate-empty-categories-with-anaphor-feature)
(when (np? phrase)

(if (empty? phrase)
(unless (phrase-anaphor? phrase)

(set!-local (phrase-anaphor? phrase) (either '+ '-)))
(if (word? phrase)

(set!-local (phrase-anaphor? phrase) (feature-value phrase 'anaphor)))))))

(deffilter EMPTY-CASE-FILTER ((virtual-tree ANAPHOR?) CASE-ASSIGNMENT)
;; Filter that says +A ecs must not get case, -As must (if in A positions).
(virtual-phrase-map virtual-tree (phrase :category category)

(when (and (eq category 'n2) (empty? phrase) (a-position? phrase))
(let ((ana (phrase-anaphor? phrase))

(case (phrase-assigned-case phrase)))
(when (or (and (eq '+ ara) case)

(and (eq '- ana) (not case)))
It is not the empty category itself that is responsible
for the failure, but whatever domain that should contain

;, a case assigner. This is usually the parent phrase of
the empty category, though if ECM were handled we would
have to be more careful. Reject up one level of the tree
from PHRASE.

(virtual-reject 1))))))

Now we present the modules that make up the parsers.

PHRASE-STRUCTURE gene rat or

The phrase-structure generator gets a sequence of words from a global variable (it. has no formal
dependencies) and uses a tabular CFG parser and a small lexicon and grammar to non-determilnistically
produce phrase structure trees of that sentence. The grammar the parsers use is a subset of a covering
grammar for the surface-structure of English. and includes empty categories. The parser inserts empty
categories without any particular movement clues (this contrasts with parsers that. only insert empty
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categories, for example. to the right of question words like who that indicate probable movenent). This
leads to overproduction, so that a sentence such as John hkes to bicych generates 24 differej parse
trees, including

(C2
(Cl (CO)

(12 (N2 JOHN)

(I1 (10)
(V2

(VI (VI (V0 LIKES) (N2))

(P2
(P1 (P0 TO)

(C2
(Cl (CO)

(12 (N2)
(I1 (10)

(V2 (V1 (VO BICYCLE)
(N2)))))))))))))))

(C2
(Cl (CO)

(12 (N2 JOHN)
(It (10)

(V2
(VI (VO LIKES)

(C2
(Cl (CO)

(12 (N2)

(I1 (10 TO)

(V2 (V1 (VO BICYCLE)))))))))))))

The second tree is correct for the sentence, but the first, illustrates some of the problems that result from
not, using enough information in the initial parsing process, such as incorrect argument structure for
verbs and prepositions and a surfeit of empty categories. A more psychologically plausible parser would
utilize this information early in the construction of sentential structure (see [11], [14]), in some sort, of
interleaved approach.

The phrase-structure generator outputs any number of tree structures, each inl the form of a root
phrase. Each phrase may have any number of daughter phrases, and some phrases may be shared
between trees. Each phrase is a structure that also contains slots for information produced by other
modules.

Language Facilities

The phrase-structure module uses the user declared data dependency feature to make each phrase
a fundamental part. of the phrases that contain it.. This way, if any filter can rule out a particular
sub-phrase many different, parse trees can be eliminated at once. Most. of the memoization involved in
context-free parsing is handled explicitly by the chart parser, but one interesting function is
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(defs! set-phrase-parents ((phrase) phrase)
(mapc V(lambda (daughter)

(set-phrase-parents daughter)
(set!-local (phrase-parent daughter) phrase))

Since phrases are shared, it is not, possible for them to have a single slot always pointing to their parents.
The set-phrase-parents function is applied to the root node of parse trees as they are enumerated. It
destructively sets the parent slots of all phrase- within the current parse tree. TIe, side-effects are stored
along with the root, node. The function can be memoized over each phrase. which speeds up the initial
process of producing the value pair. The niemoization is pertormn-d using restructures (see section 3.7).

THETA-ROLE-ASSIGNMENT ge .nrater

For the purposes here, theta (short for thematic) roles can be thought of as the deep structure argument
relations assigned by verbs to their subjects and objects. Different verbs assign different thematic
roles, and therefore can take different combinations of arguments. For instance, one form of bicycle
assigns an agent role to its subject (John bicyclcd) and another assigns a role to an object also (John
bicycled the Schwinn), but no form assigns the clausal role that a verb lik( Mink does. This generator
deterministically assigns thematic roles from verbs, prepositions and other words to phrases in particular
structural relations with them. such as subjects. It fails when the assigning word is in the wrong sort, of
structural relation to assign the role (such as the verb bicycle with a clausal argument). The assignment
is done by storing a theta-role symbol directly on the phrase that is the recipient. of the role.

Structural positions in which thematic roles can be assigned (not must) are called argument positions,
or A-positons. These include the classical subject position, and the complement position of verbs and
prepositions. Non-argument positions are called Abar-positions.

Since theta-role assignment is on the basis of an inherent lexical property of a word and a structural rela-
tion, the generator need only be dependent, on the phrase-structure generator. The theta-criterion
filter works to filter out structures based on theta-role assignment and movement relations.

Language Facilities

Theta assignment is on the phrasal level under particular structural relationships, and can therefore be
memoized on a phrase. This means that, assignment applies only once to a phrase, regardless of how
many times that phrase might, appear in different parses. The oily restriction one must be wary of is
that it must be memoized on a phrase at. least, as high as both the assigner and assignee. The mstructures
described in section 3.7 are used so that argument lookup during memoization is particularly efficient.

CASE-ASSIGNMENT gene rator

Case assignment, like theta-role assignment, is on the basis of structural relations between a word with
certain properties and a phrase. Just as in theta-role assignment, a symbol indicating the type of case
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assigned is deterministically stored on the phrase that receives the case.

Language Facihties

Case assignment is very similar to theta-role assignment, and many of the same optimizations are used.
But although case-assignment in these parsers is deterministic, the code allows for a non-deterministic
theory. This necessitates a few changes, such as tile use of virtual trees so that case is encapsulated with
phrases.

(defgenerator CASE-ASSIGNMENT ((tree PHRASE-STRUCTURE))
(if (eq (phrase-category tree) 'n2) ;; Top-level NP

(assign-case tree 'NON))
(return-result (annotate-phrase-with-case tree)))

(defa! annotate-phrase-with-case ((phrase) phrase)
(virtual-nap-up-phrase-structure (phrase annotate-phrase-with-case)

(when (eq phrase (core-phrase phrase))
(cond ((pl? phrase)

(when (and (complement phrase) (np? (complement phrase)))
(assign-case (complement phrase) 'acc)))

LEXICAL-CASE-FILTER filter

The Case Filter, described in section 2.2.2. filters out some noun phrases that. have not been assigned
case. These noun phrases can be divided into two categories, lexically realized and empty categories.
Empty categories do not necessarily have to receive case; this depends on their particular type. Lexically
realized noun phrases must always receive case. The Case Filter has been divided into two parts, so
that it can be applied early in the search process to lexically realized noun phrases and later to empty
categories whose typology is not determined at. the beginning of the search.

The lexical-case-filter is naturally dependent on the case-assignment generator.

Language Facilities

The Case Filter could be memoized over the virtual tree structure produced by case-assignment,
though it is not. It rejects the specific data structure representing a combination of case and phrase
structure so that all parse trees combining the combination are eliminated.

OPERATOR-ASSIGNMENT generat or

Certain empty categories do not, easily fit into tile standard typology of being either anaphors, pronom-
inals, neither or both (see section 2.3.5). These include operators, which only appear in certain unam-
biguous structural positions. The operator-assignment generator deterministically sets the type of
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empty categories that can be unambiguously determined by their structural location: it is dependent
only on the structural forms generated by phrase-structure.

ANAPHOR? gtu rator

As discussed ini section 2.3.5, empty categories are usually assumed to have features associated with thenm.
In particular, most empty categories fall into the typology of being either ±anaphoric and ±prononninal.
These features can not be determined from the surface realization the empty phrase (there is no surface
realization), but various theories differ as to how the features are set.

One possibility is to non-deterministically guess the value of each of these features. ('all this the fru(
determinatwn of empty categories. Another (as per [8]) is to determine the particular functional rela-
tionships the empty category enters into and work backwards. specifying that, for instance, it can not
be a pronominal if it is locally bound. This is called the functtonal dehnnination of empty categories.
A third possibility ([10] is to use structural information about the location of the empty category in
the phrase-structure tree, combined with lexical information such as case, to determine the type of the
empty category. This is called structural determination of empty categories.

It is not entirely clear exactly what empirical differences arise from the three different, approaches. Fong,
in [14], cites an example sentence that structural determination might predict as grammatical when in
fact it isn't, a mistake that the functional determination theory of [81 doesn't make. but it is not clear
that there aren't other mechanisms that could explain the ungrammaticality. Free determination, which
would examine all possibilities, would certainly make the same (possibly incorrect) prediction about
Fong's sentence. It seems that, free determination overgenerates in several cases, though that may reflect
the lack of a different constraint.

A11 three of these different mechanisms have been implemented, and all have different dependencies.
The free determination hypothesis merely guesses whether an empty category is an anaphor and thus
needs not rely on any other information, so under this hypothesis anaphor? is dependent only on
operator-assignment (and operator-assignment's parent, phrase-structure).

Functional determination requires knowledge of movement and binding relationships. These can be
computed before the type of an empty category is known, but only at a significant computational cost
that arises from doing non-deterministic search on many structures that would be ruled out by filters
that rely on empty category typology. The solution to this problem taken here is to implement functional
determination as a filter that applies only after movement and binding relations have been computed on
empty categories determined by free determination.

Structural determination relies only on structural and lexical information to determine empty category
types. In Correa's system, anaphor? is dependent on both operator-assignment and case-assignment
while pronominal? is dependent only on operator-assignment.

Language Facilities

For free determination and functional determination, the anaphor? generator sets the anaphoric and
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pronominal properties of enipty categories without checking any structural relatiotiships. This process
can he memoized on the enlipty category itself. For structural determnination this is not possible, since
some structural context needs to be captured. Virtual trees are used in either case to capture a coin-
bination of anaphoric nature and phrase, which is used in the empty-case-filter for efficient error
propagation.

(defgenerator ANAPHOR? ((tree OPERATOR-ASSIGNMENT))
(return-result (annotate-empty-categories-with-anaphor-feature tree)))

(defnida! armotate-empty-categories-with-anaphor-feature ((phrase) phrase)
(virtual-map-up-phrase-structure (phrase annotate-empty-categories-with-anaphor-feature)

(when (np? phrase)
(if (empty? phrase)

(unless (phrase-anaphor? phrase)
(set'-local (phrase-anaphor? phrase) (either '÷ ')))

PRONOMINAL? gy i ( ra to"

See anaphor? above.

EMPTY-CASE-FILTER fillr

As discussed in the section on the lexical-case-filter, the case filter is divided into two parts. The
empty-case-f ilter ensures that empty categories which are anaphoric do not received case, and that,
non-anaphoric empty categories in certain positions do receive case. It is therefore dependent on both
the case-assignment generator that assigns case and the anaphor? generator that determines the
anaphoric nature of empty categories.

Language Facilities

The empty-case-filter is presented in section 4.2.1. It maps over the virtual trees created by anaphor?,
which allows it to delete several parses at once if functional determination is in effect. Structural
determination does not use memoization to share anaphoric structure, so for structural determination
this filter does not gain in efficiency by using virtual trees.

CHAIN-FORMATION generator

Chain formation is the process by which movement histories (chains) between D-structure and S-structure
are derived. Empty categories inserted by the phrase-structure generator into its parse trees are linked
with phrases that have moved to positions different, from their D-structure locations. The output is a
list of chains of phrases. where each chain is a list, of phrases that represents a set of phrases intimately
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linked by movement. These phrases are assumed to corefer. and bear th same referential index with
respect to binding theory.

Two different 0heories of chain-formation have been ilm)lemented. the first based loosely on the non-

deterministic chain-formation mechanism in [14] and the second on the deterministic algorithm in [10].
Both build chains phrase by phrase, working up from the bottom of the phrase structure trees and
combining chains at each node. Fong's algorithm essentially builds all possible chains of noun phrases in
which one phrase c-cotniiands the next in a chain, where the definition of c-conimand is (as in figure 2.1):
Fore. 3 nod~s in a tre. o c-comnmands 3 iff ( rry branching nod( dominating a dorninahs .3 and in ith(r

o nor 3 dominates thf other. Correa's algorithm (leternnaistically builds chains by compiling in filters
that use information about the exact position each phrase is in. The result is a very efficient algorithm.
with more dependencies (though only on deterministic generators) but poorer empirical judgements:
('orrea's chain-formation algorithm can not explain parasitic gap sentences. Parasitic gap sentences
involve movement that creates more than one empty position. such as which book did you filf t without
reading t?. Without any mechanism for merging chains or binding an empty category that is not part of
a chain, at some point his algorithm will fail on this sentence. Despite the current deficiency. it is quite
possible that a modified version of his chain formation algorithm could be made to work with parasitic
gap sentences.

The non-deterministic chain-formation algorithm is dependent only on the phrase-structure gener-
ator. Correa's deterministic algorithm is dependent on phrase-structure, theta-role-assignment,
anaphor? and pronominal?.

Language Facilities

Both chain formation algorithms work bottom-up, creating subchains for every daughter phrase before
using that information to create the chains for the parent. The non-deterministic implementation of
chain formation does not use information beyond the level of the parent. phrase, and thus the algorithm
can be meinoized by phrase, saving work when multiple parses share phrase structure. But Correa's
deterministic algorithm makes reference to theta-roles and other information from beyond the immediate
locality, so memoization is not used.

SUBJACENCY filter

Subjacency is a condition on movement chains that ensures successive stages of movement are not
separated by more than a small distance, defined in terms of the number of intervening nodes in the
phrase-structure tree. This notion of locality is captured in many different ways in different linguistic
theories, but here is implemented in a fairly traditional manner. The subjacency filter is dependent
only on the chain-formation generator and of course, the phrase structure trees themselves.

THETA-CRITERION filter

One of the most fundamental (and long-lived) principles in the Government-Binding theories is the theta
(thematic) criterion, which states that. every noun phrase must receive one and only one thematic role.
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Thematic roles are semantic roles such as agent and patient assigned by verbs and prepositions. Tihe
notion has been extended to state that everN movement chain must receive one and only one role.

The theta-criterion filter is dependent on both the theta-assignment and chain-formation gener-
ators, and checks that each movement chain produced by chain-f ormation contains exactly one noun
phrase that has received a theta-role from theta-assignment.

FREE-INDEXING g( l (rator

In figure 2.1 a version of binding theory is presented that states: assign numerical Mndices frtily to all
noun phrases, subject to Conditions A, B and C. The free-indexing generator implements the assign
numerical indices portion of binding theory. by non-deternministically partitioning the chains produced
by the chain-formation algorithm into different sets (each set corresponds to a different numerical
index).

Language Facilities

The free indexing procedure really only needs to know the number of different chains, not the exact nature
of each of them, to compute the possible partitions. And there is a simple compositional algorithm for
computing the possible partitions for n chains given the possible partitions for n - 1 chains. This
algorithm can be memoized on n for efficiency.

(defndmemo freely-index ((n) 0 eql)
;; Nondeterministically return a partition on the integers 0 through
;; N-1. Each partition is a list of lists of integers. For example, the
;; five values returned by (freely-index 3) are

;; ((2) (1) (0))

;; ((2 1) (0 ))
M; 0( ) (M))

;; ((2) 01 0))
;; ((2 1 0))

(unless (zerop n)
(let ((indexing (freely-index (1- n))))

(either
Put integer into its own partition.

' ((,(- n)) ,Cindexing)
;; Put integer into some existing partition.
(let ((index-set-to-merge-with (a-member-of index-ing)))

'((,(1- n) ,@index-set-to-merge-with)
,Q(remove index-set-to-merge-with indexing)))))))
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CONDITION-C-REXP filtfr

Binding theory condition C (section 2.2.1) states that R-expressions (names, for our purposes) must
not be bound. This translates into a requirement that no phrase c-commands an R-expression with
the same numerical index (see free-indexing). The theory treats certain types of empty categories
as R-expressions, and therefore, as with the Case Filter, condition C is divided into two parts. The
condition-c-rexp filter applies only to overt noun phrases and not empty categories, and can thus be
applied before the typology of empty categories is determined.

condition-c-rexp is dependent on the indices assigned by free-indexing and, of course, the structural
relations inherent in phrase-structure.

CONDITION-C-VAR filthr

The condition-c-var filter acts as condition-c-rexp except that it applies only to empty categories
that are non-anaphoric and non-pronominal. As such, it applies only after anaphor?, pronominal?, and
free-indexing have been generated.

COINDEX-OPERATOR filter

Operators (see the operator-assignment generator) are a particular type of empty category used to
represent, scoping information. In this parser, relative clause constructions such as the man that John
saw are assumed to have the following structure

[[NP the man][CP [OP c] [that John saw eJ]]

The empty object of saw bears the same reference as the man, and has somehow moved from its base
position. This is captured by the object moving (being part of the same chain) to the position of the
operator [OP el. The operator is then coindexed with the noun phrase the man. The coindex-operator
filter checks that whatever index is assigned by the free-indexing generator to the noun phrase the
man has also been assigned to the operator, and hence (since all members of a chain bear the same
reference) to the object. of saw.

I-WITHIN-I filter

The i-within-i filter captures a fairly basic condition that one phrase not, bear the same referential
index as another phrase it contains. This rules out phrases like

[hisi friendli

where his and friend are coindexed. The filter is dependent on free-indexing, which labels chains with
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indices.

CONDITION-A filter

Condition A of binding theory (section 2.2.1) states that anaphors (words like hiself and tbins/rhs)
must have an antecedent within a local domain. It applies to all noun phrases that have anaphoric
properties, including some empty categories. For each noun phrase condition-a computes the local
domain, then checks that, there is another noun phrase within the domain that has the same referential
index.

The condition-a filter call only be applied after both the anaphoric property and referential index of
a noun phrase has been computed, and therefore it is dependent, on free-indexing and anaphor?.

CONDITION-B filter

The condition-b filter parallels condition-a, except that it. verifies pronominal noun phrases do not
have local binders, and is dependent, on the pronominal? generator rather than anaphor?.

LICENSE-CHAINS filler

There are a number of conditions on movement histories (chains) that are not. directly enforced by the
chain-formation generator, in part because they derive from different aspects of the linguistic theory
and in part because they depend on information not available at the time chains are produced. The
license-chains filter checks that, chains produced by chain-formation indeed satisfy other criteria.
Among the conditions enforced:

"* Each non-trivial chain includes at least one trace (-pronominal empty category).

"* Operators must bind variables (-pronominal, -anaphor empty categories).

* Operators must head (complete) a chain they are included in.

"* English does not permit, +pronominal, -anaphor empty categories.

"* The empty category resulting from the movement, of a question word must be licensed by an
operator in the same movement chain.

"• Only lexical items, operators, variables, and +pronominal empty categories may head chains.

Obviously, the eclectic nature of this filter necessitates dependencies on a variety of generators: anaphor?,
pronominal? and chain-formation.
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Phrase Structure

Theta Assignment Chain Formation Operator Assignment Case Assignment

Free Indexing Pronominal? Anaphor?

Phrase Structure

Chain Formation Pronominal? Anaphor?

Free Indexing

Figure 4.1: The dependencies between generators in the parser used for the example. The box contains
the dependency graph among non-deterministic generators.

FUNCTIONAL-DETERMINATION filter

Functional determination is described above in the section on the anaphor? generator. It. is a theory
of how the typology of empty categories is determined. In particular, it states that the anaphoric and
pronominal nature of an empty category is determined by the functional relationships the empty category
enters in to. This is implemented by non-deterministically guessing the nature of the empty category
and later (in the functional-deteermination filter) checking that the values were guessed correctly.

The filter uses information on structural positions. binders, and chains. It is dependent on the generators
chain-formation, anaphor?, pronominal? and free-indexing in addition to basic phrase-structure.

4.2.2 An Example Parse

The general function of the above modules should be clearer after seeing an example of their execution.
This section presents a sample parse of the sentence Who did John say that he saw?, by a parser
using functional determination and the non-deterministic chain-formation algorithm. The dependency
structure of the generators in the parser is shown in figure 4.1. The search strategy separates the
execution of conceptually independent modules.
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The first, module to be executed is the phrase-structure generator, which non-deterninistically parses
the input sentence into phrase structure trees. It looks each word up in its small dictionary to determine
its part, of speech and special features (for instance, that hf is a pronoun), then uses a simple context-free
chart parse; with a small grammar to produce the following four phrase structure trees:

(C2 (N2 WHO)
(Cl (Q0 DID)

(12 (N2 JOHN)
(11 (10)

(V2
(Vi (VO SAY)

(C2 (M2)
(Cl (CO THAT)

(12 (N2 HE)
(Ii (10)

(v2 (VI (VO SAW)))))))))))))

(C2 (N2 WHO)
(Cl (10 DID)

(12 (N2 JOHN)
(II (10)

(V2
(Vi (VO SAY)

(C2 (N2)
(Cl (CO THAT)

(12 (N2 HE)
(Ii (10)

(V2 (Vi (VO SAW) (N2)))))))))))))

(C2 (N2 WHO)

(Ci (1O DID)
(12 (N2 JOHN)

(11 (10)
(V2
(VM (VO SAY)

(C2
(Cl (CO THAT)

(12 (N2 HE)
(Ii (10)

(V2 (VI (VO SAW))))))))))))
(C2 (N2 WHO)

(Cl (10 DID)
(12 (N2 JOHN)

(It (10)
(V2

(Vi (Vo SAY)
(C2

(Cl (CO THAT)
(12 (N2 HE)

(Ii (10)
MV2 (V1 (VO SAW) (N2)))))))))))

The variation between the 4 trees is slight. The only differences are whether or not there is an empty
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object to the verb saw and whether or not there is an empty category in the specifier position of the
embedded clause that he saw.

Then theta-role-assignment applies. Since the dictionary includes the information that saw awssigns a
role to an object. noun phrase or clause, the two phrase structures with no phrase in complement position
of saw fail and are discarded. For the remaining two structures, John re-eives a theta-role from say. he
and the empty category in object position from saw.

Operator-assignment applies to the two phrase structures. Since neither have an empty category in
an operator position, the generator outputs two unchanged structures.

Case-assignment assigns case from the two finite verbs in the sentence, nominative case to John and
he and accusative case to the empty category in object position. At the end of this process, the two
structures look something like:

(C2 (N2 WHO)
(C1 (10 DID)

(12 (N2 SUBJECT NON JOHN)
(I1 (10)

(V2
(Vi (VO SAY)

(C2 (CI (CO THAT)
(12 (N2 SUBJECT NON HE)

(Ii (10)
(v2 (VI (VO SAW)

(N2 OBJECT ACC)))))))))))))
(C2 (N2 WHO)

(Ci (10 DID)
(12 (N2 SUBJECT NON JOHN)

(I1 (10)
(V2

(Vi (VO SAY)
(C2 (N2)

(Cl (CO THAT)
(12 (N2 SUBJECT NON HE)

(I1 (10)
(V2 (Vi (VO SAW)

(N2 OBJECT ACC)))))))))))))

Here the actual theta-roles see a. , say would have assigned have for convenience been replaced with
SUBJECT and OBJECT. The lexical-case-filter then checks that the lexically realized noun phrases
in argument, positions (who is not in an argument position) have been assigned case. In both structures
John and he have received case, so both structures pass.

The anaphor? generator is now executed, which non-deterministically assigns the values + and - to
the anaphoric property of empty categories not. in the position of specifier of embedded clauses. In
other words, the values are assigned to the empty category in object position of saw, but. not, to the
empty category immediately preceding that. Since this process applies to both structures, the two
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input phrase structures produce four different phrase structures annotated with anaphoric features.
Once the anaphoric properties have been determined, the empty-case-filter call be applied to emllpty
noun phrases in argument positions (the empty category that is the complement of saw). It requires
that. +anaphor empty categories be ca~seless. Since two of the annotated phrase structures label the
complement of saw as being anaphoric, and since saw has assigned it case, these two paths are filtered
out, and the empty category complement of saw is unambiguously non-aiaphoric. In fact, the failure
propagation mechanism actually rules out both after the first one has been analyzed, so the filter is
actually only applied once.

Now the non-deterministic chain-formation generator is applied to the two phrase structures. The
algorithm has a high branching factor, and 14 different chain possibilities result. 11 of these movement
chains are for the structure with two empty categories, :1 for the structure with one empty category.
Looking just at the 3,

((<Phrase N2: WHO>) (<Phrase N2: JOHN> <Phrase N2:>) (<Phrase N2: HE>))
((<Phrase N2: WHO>) (<Phrase N2: JOHN>) (<Phrase N2: HE> <Phrase N2:>))
((<Phrase N2: WHO>) (<Phrase N2: JOHN>) (<Phrase N2: HE>) (<Phrase N2:>))

Of the 3 movement chain sets produced, the first indicates that John moved from the position of the
empty category, the second has hc moving from that position, and in the third all four noun phrases
are parts of separate chains (no movement took place). None of these or the other II chains are ruled
out by the subjacency filter that. is applied to them. But a much stronger requirement. is then applied,
the theta-criterion. This requires that every chain receive exactly one theta-role. In the three chains
listed, the chain including who never receives a theta-role and thus all are filtered out. In fact, only one
chain set of 14 survives this filter:

((<Phrase N2: WHO> <Phrase N2:> <Phrase N2:>)
(<Phrase N2: JOHN>)
(<Phrase N2: HE>))

Here John and hc are in their own chains, and the chain containing who and two empty categories
receives its theta-role by virtue of the empty category in complement position of saw. Since all of the 3
chain sets for the one phrase structure are filtered, the phrase structure is also deleted.

Now the free-indexing generator applies, to the one remaining chain set produced by chain-f ormation.
It partitions the chains into different sets with the same referential index. There are 3 chains in the one
chain set that survived the theta criterion, and the five partitions free-indexing produces look like:

[(<Phrase N2: WHO> <Phrase N2:> <Phrase N2:>)] [(<Phrase N2: JOHN>)] [(<Phrase 12: HE>)]
[(<Phrase N2: WHO> <Phrase N2:> <Phrase N2:>) (<Phrase N2: JOHN>)] [(<Phrase N2: HE>)]
[(<Phrase N2: WHO> <Phrase N2:> <Phrase N2:>)) [(<Phrase N2: JOHN>) (<Phrase N2: HE>)]
[(<Phrase N2: WHO> <Phrase N2:> <Phrase N2:>) (<Phrase N2: HE>)] [(<Phrase N2: JOHN>)]
[(<Phrase N2: WHO> <Phrase N2:> <Phrase N2:>) (<Phrase N2: JOHN>) (<Phrase N2: HE>)]

In the first partition the reference of hc, John and who is disjoint, and in the last partition all noun phrases
are coreferential. Now four different filters apply to these five partitions without whittling down their
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numbers. condition-c-rexp verifies that John is not bound by a noun phrase in an argument position
but the only potential binder is who and that is not in an argument position. coindex-operator has no
effect because there are no operators. i-within-i does not apply to any case here, and condition-a
applies only to anaphoric elements, which are nonexistent in this structure.

The pronominal? generator is now applied to the phrase structures. Note that it is not applied to
the five values produced by free-indexing but only to the one remaining valid phrase structure. It
non-deterministically assigns the values + and - to the pronominal property of the empty category that
is the complement of saw, producing two output values. Now the condition-b filter is applied. It is
dependent, on both free-indexing and pronominal?. Since the one phrase structure has 5 indexings
and 2 different pronominal values, the result is a cross product of ten different inputs to the filter. Of
these, binding theory condition B rules out the two in which the empty category is a pronoun and there
is local binder for that pronoun (hl, in fact.). These correspond to the following two tree-indexing
values:

[(<Phrase N2: WHO> <Phrase N2:> <Phrase N2:>) (<Phrase N2: HE>)] [(<Phrase 12: JOHN>)]
[(<Phrase 12: WHO> <Phrase 12:> <Phrase 12:>) (<Phrase 12: JOHN>) (<Phrase 12: HE>)]

The pronoun he escapes condition B because there are no potential binders within its locality domain.
the clause that he saw.

The license-chains filter is applied and is dependent, on chains and the anaphori, and pronominal
properties of empty categories. The one remaining phrase structure has only one chain, only one possible
assignment of anaphoric features, and two possible assignments of pronominality to the empty category
in complement position of saw. license-chains rules out the +pronominal possibility on the grounds
that English does not permit, empty categories that are pronominal but not anaphoric. At this stage
the single phrase structure has unambiguous empty category typology, one possible chain, and still 5
possible indexings. The condition-c-var rules out

[(<Phrase 12: WHO> <Phrase N2:> <Phrase 12:>) (<Phrase 12: JOHN>)] [(<Phrase 12: HE>)]
[(<Phrase 12: WHO> <Phrase 12:> <Phrase 12:>) (<Phrase 12: HE>)] [(<Phrase 12: JOHN>)]
[(<Phrase 12: WHO> <Phrase 12:> <Phrase 12:>) (<Phrase 12: JOHN>) (<Phrase 12: HE>)]

because the non-anaphoric, non-pronominal empty category would be illegally bound by either John or
he.

Finally, the functional-de termination filter is applied for the one phrase structure to the last two possible
indexings, the only possible chain, and the unambiguous empty category typology. It finds that the empty
categories have the proper anaphoric and pronominal values for their usage, and filters neither structure.
The parser's output is shown in figure 4.2

The only difference between these two structures is whether John and h( corefer or are disjoint in
reference. The first number in each noun phrase (N2) is a referential index, and the second number in
parenthesis reflects the chain a noun phrase is part of. Figure 4.3 summarizes the work each module
performs during the parse.
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(C2 (N2 1 (0) WHO)
(Cl (10 DID)

(12 (N2 2 (1) SUBJECT NOM JOHN)
(I1 (10)

(V2
(Vi (VO SAY)

(C2 (N2 1 (0) -A -P)
(Cl (CO THAT)

(12 (N2 3 (2) SUBJECT NON -A +P HE)
(11 (10)

(V2

(VI (VO SAW)
(N2 1

(0)
OBJECT
ACC
-A
-P)) )))) )))

(C2 (N2 1 (0) WHO)
(Cl (10 DID)

(12 (N2 2 (1) SUBJECT NON JOHN)
(II (10)

(V2

(V1 (VO SAY)
(C2 (N2 1 (0) -A -P)

(Cl (CO THAT)
(12 (N2 2 (2) SUBJECT NON -A +P HE)

(It (10)
(V2

(VI (VO SAW)
(N2 1

(0)
OBJECT
ACC
-A
-P)))))))))))))

Figure 4.2: The two parse trees finally output, by the parser for the sentence Who did John say that h(
saw'
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Alodul #of inputs # of outputs mar outputs/liput
FUNCTIONAL-DETERMINATION 2 2 1
CONDITION-C-VAR 5 2 1
LICENSE-CHAINS 2 1 1
CONDITION-B 10 8 1
PRONOMINAL? 1 2 2
CONDITION-A 5 5 1
I-WITHIN-I 5 5 1
COINDEX-OPERATOR 5 5 1
CONDITION-C-REXP 5 5 1
FREE-INDEXING 1 5 5
THETA-CRITERION 14 1 1
SUBJACENCY 14 14 1
CHAIN-FORMATION 2 14 11
EMPTY-CASE-FILTER 3 2 1
ANAPHOR? 2 4 2
LEXICAL-CASE-FILTER 2 2 1
CASE-ASSIGNMENT 2 2 1
OPERATOR-ASSIGNMENT 2 2 1
THETA-ROLE-ASSIGNMENT 4 2 1
PHRASE-STRUCTURE 1 4 4

Figure 4.3: For each module, the number of times it. was applied to an input argument is printed in the
first column; the second column holds the total number of values the module output (or in the case of
filters, accepted); the third column holds the maximum number of outputs for any single input. Were
all branches of a module executed concurrently with no overhead, the third column would reflect the
amount of time spent in execution.
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4.3 Test Results

Again, the goal of this research was not to create a particularly efficient implementation of any given
linguistic theory. So the metric by which the programming language and parser implementation will
be judged is neither how much time and nitelnory was expended during the search, nor how many
grammatical constructs were correctly parsed. What we ar( interested in is an abstract notion of ho"
much less (or more) computation a linguistic theory of parsing entails if implemented using the sorts
of search techniques presented in chapter 3 instead of more standard depth first search techniques. and
whether tte added overhead of the techniques outweighs any small improvement.

To gather empirical data on performance variations, the different parsers described in section 4.2 were
run on a number of different, sentences. The sentences are not in any way representative of English
text and are merely designed to exercise different modules to the extent that any anomalies could be
detected. The resulting data is in the form of number of input and output values to each module. For
instance, over x number of sentences module case-f'ilter was executed on y inputs and filtered out -
of them. This sort of data was collected under a variety of different search strategies, sometimes with
several different parts of the search language disabled. Thus improvements resulting directly from one
technique or another can be observed.

One of the important aspects of the search language is its potential for concurrent execution. Although
the implementations were tested in a simulated parallel environment, there are an enormous number
of details relating to implementing such parsers in a truly concurrent environment that could not. be
adequately addressed here. So the only data provided on concurrent execution assumes infinite resources
and zero overhead for both process creation and coimmunication. Obviously this would not be the case
in any realistic scenario.

Actual execution timcs and memory usages are not provided. Neither the search language nor the parsers'
implementations were optimized for efficiency and such results would be misleading. We assume that
the amount of computational resources expended by a module is directly proportional to the maximum
of the number of inputs to it and the number of outputs from it. This is not necessarily true, and certain
modules have smaller coefficients associated with them than others, but our goal is only to provide
generalizations about the value of various search techniques, not. to provide quantitative exactitudes.

4.3.1 Test Implementations

Three linguistic theories are tested, each under two different search strategies. The base of all three
theories is described in section 4.2.1, and the variations are: FD, functional determination of empty
categories implemented as a filter over freely determined empty categories, with a non-deterministic
chain formation algorithm: SD, Correa's structural determination algorithm for empty category typology
(the functional determination filter is also applied at. the end of the search) with a non-deterministic
chain formation algorithm, and CF, structural determination with Correa's deterministic chain formation
algorithm. Each of the three linguistic theories is implemented both in a form that modularizes search
as much as possibie and as a standard depth-first-search implementation ordered in as efficient a manner
as possible.
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Phrase Structure

Theta Assignment Chain Formation Operator Assignment Case Assignment

Free Indexing Pronominal? Anaphor?

Phrase Structure

Chain Formation

Free Indexing

Figure 4.4: The dependencies between the generators in SD, the structural-determination parser.

The generator dependencies of the three linguistic theories are shown in figures 4.1, 4.4 and 4.5. In
each case the dashed box diagrams the dependencies between non-deterministic generators (see sec-
tion 2.3.3 for a discussion of why this is important). The exact search strategies for the modular and
DFS implementations of each theory can be found in Appendix B.

The three parsers all produce slightly different, output for the testbed of sentences, because structural
determination produces slightly different empirical results than functional determination, and because
Correa's deterministic chain formation algorithm does not work with the parasitic gap sentences in the
testbed, unlike the non-deterministic algorithm found in FD and SD.

4.3.2 Result Summary

Figure 4.6 presents quantitative estimates of the work done by each of the six implementations under a
variety of different search parameters. As discussed above, the numbers are the sum over each sentence
of the sum of the work done by each module, where each module's work is defined to be the maximum
of the number of input values and the number of values it produced (for a given sentence). To provide
some sense of how much improvement could be gained by a concurrent implementation. the sum is also
computed assuming that after each generator is executed, different processes apply to each result. This
means that each module only contributes the maximum of the input and output. over the single most
complex call, not all its executions. Of course a further concurrency optimization would be to execute
different modules in parallel if their dependencies permit it, such as doing all case theory work separately
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Phrase Structure

Theta Assignment Operator Assignment Case Assignment

Pronominal? Anaphor?
Phrase Structure

Chain Formation Free Indexing

Free Indexing

Figure 4.5: The dependencies between the generators in CF. the structural-determination parser with
deterministic chain formation.

from theta theory work, which would result in even lower numbers.

For each of the 3 linguistic theories and search strategies, five other parameters are varied. The first
(Dcp.) is + if user-declared data-dependency failures (restructure failures) are used; the second (Non-
Local) is + if non-local backtracking is used; the third (Memo.) is + if memoized functions are used:
the fourth (All Values) is + if all paths are explored and the search procedure is not stopped after one
solution is found: and the fifth (SD) is + if pure structural determination is used rather than using the
algorithm as a heuristic to order the empty category typology search.

4.4 Qualitative Summary

This section interprets the results from figure 4.6, discussing the efficiency gains different search tech-
niques produce. Frequent. references are made to the test numbers in figure 4.6.

4.4.1 Modularity of Search

Most of the facilities the search language provides are there to allow independent modules to he executed
independently, without the combinatorial explosion that would normally result from a depth first search.
How much does this facility actually improve the search efficiency of the test parsers?
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Test Paryser Mod/DFS Dcp. Non-Local Merno. .411 Values SD App. Standard II
1 FD Mod + + + + A :3775(1) 594(1)
2 FD Mod + + + B 3798 (1)
3 FD Mod + + + (1) (1)
4 FD Mod + + + (1) (1)
5 FD Mod + + + C 3807 (1) (1)
6 FD DFS + + + + D 5323 (2) 588 (2)
7 FD DFS + + + E 3526 (3) 404 (3)
8 FD DFS + + + (2) (2)
9 FD DFS + + (3) (3)
10 FD DFS + + + 5386 593
11 FD DFS + + 3549 (3)
12 SD Mod + + + + + F 2732 (4) 556 (4)
13 SD Mod + + + + G 3781 594
14 SD Mod + + + - -v (4) (4)
15 SD Mod + + + + 2733 (4)
16 SD DFS + + + + + 3095 555
17 SD DFS + + + + 5367 589
18 SD DFS + + + - + 2379 439
19 SD DFS + + + - 3491 404
20 CF Mod + + + + + H 823 (5) 410 (5)
21 CF Mod + + + + 1018 450
22 CF Mod + + + - + (5) (5)
23 CF Mod + + + + 824 (5)
24 CF DFS + + + + + 1 (5) 409
25 CF DFS + + + - + J 677 323
26 CF DFS + + - -+ 819 352

Figure 4.6: Quantitative test results. Numbers in parenthesis are references to previous values.
Appendix A contains a breakdown of computation by module for each of the tests in figure 4.6 that have
a letter by them.
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In the base case, comparing the modular and DFS versions of the FD parser (tests I and (j) the inodu-
larization results in a fairly significant reduction in work (2,WX ), fronu 5323 to 31775. Examining the data
in Appendix A more carefully it is clear where such inqprovement has come front. The pronominal?
generator is called only 23 times (for 56 output,) in the iiodularized parser. but ii the I)FS parser the
redundant effort of calling thie module after evety other generator results in 216 calls with 1022 outputs.
No niatter how the search is rearranged, in DFS somne generators will needlessly be executed after each
branch of a non-deterministic generator.

Changes in the parser, however, quickly improve DFS's relative efficiency. For instance, in parsers wit h
fewer non-deterministic generators it is possible to create a better ordering, and the difference between
the modular and DFS versions of SD (tests 12 and 16) is only 3095 vs. 2732. Figure 4.5 indicates that
because there is only one non-deterministic generator other than phrase-structure it can he ordered
last and DFS can lhe just as efficient as a modular approach. Tests 20 and 24 bear this conclusion out.

Depth first search actually becolnes substantially more efficient than a modular approach if only one
solution is required' instead of a full search. The modular parsers have essentially computled every vlue
before any can be outputed. whereas DFS can stop before ninny avenues of the search have been explored.
For the FD parser, returning one value (tests 4 and 7) does not improve the performance of the modular
version at all but DFS reduces to 3526. slightly more efficient than niodular. Similar improvements can
be found for SD (tests 14 and 18) and FD (tests 22 and 25).

4.4.2 Failure Propagation

The user-declared data-dependencies (section 3.6.2) that the search language provides (in conjunction
with mernoization) the opportunity to gain extra effici,,ncy by sharing data structures., since the failure
of any single component. can squash several search paths at once. Tests 1 and 5: 12 and 15: 20 and
23 compare the base modular parsers with ones where this failure propagation mechanism has been
disabled. The results are similar for the DFS versions in tests 6 and 10: 7 and 11.

In the FD parser there is a noticable, though small, improvement with the user-declared failure propaga-
tion mechanism (3775 vs. 3807). Comparing the data in Appendix A, we can see that the lexical-case-filter
was applied 43 times in one case and 42 in the other. Apparently one search path was eliminated through
the propagation of failure. The empty-case-filter utilized the mechanism t~o a greater extent, being
applied 54 times instead of 85. But in the SD and FD parsers the anaphor? generator is deterministic
and therefore the empty-case-f.ilter is never applied more than 40 times, and the only savings is the
single unit from the lexical-case-filter.

4.4.3 Concurrency

In figure 4.6 the numbers under the II colunm reflect the number of calls made in the longest search
thread, assuming that after every generator applies each of its results are processed concurrently. It does
not assume that. modules with no interdependencies are processed concurrently. The numbers are very

'This is perfectly reasonable in many parsing contexts.

I | II li I I IllIIIi / l
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low when compared with the standard sequential niodel. and would be much lower still were independent
modules processed concurrently.

As previously discussed, these numbers are misleading, since they do not reflect the profound effects
different computer architectures and consequent processing overheads would have on a concurrent im-
plementation. For now, these numbers illustrate two important points: the first is that with unlimited
parallelism the non-determinuism found in the FD parser is little less efficient than the more deterministic
SD and CF parsers: and the second is that concurrency holds great potential for improved efficiency.

4.4.4 Non-Local Exits

The non-local exiting described in section 3.6.1 is not exercised in these tests and therefore does not
improve performance at all (tests 6 and 8: 7 and 9).

4.4.5 Pure vs. Ordered Structural Determination

Structural determination of empty category typology can be implemented to deterministically set the
anaphoric and pronominal character of each empty category, or as an ordering on the search, so that the
value for each that is chosen first is the one that structural determination would select. This sidesteps
Fong's criticism that structural determination is not be descriptively adequate, so long as the functional
determination filter is eventually applied.

The data in Appendix A (A, F) shows that structural determination does produce different results than
functional determination. The functional determination filter is applied in the SD parser even though
structural determination is used to initially set empty category typology. Only 23 solutions are found
by this combination, though the FD parser finds 27. So using structural determination as an efficiency-
motivated ordering heuristic is indeed necessary if descriptive equivalence is to be maintained.

Of course, as tests 1 and 13 show, there is no efficiency gain if all search paths are examined. And to
efficiently extract, only one solution, DFS must be used. Looking at tests 18 and 19 we can see that
achieving the accuracy the ordering brings costs some (3491 vs. 2379) but. is still cheaper than examining
all solutions without SD (test. 1, 3775).

4.4.6 Memoization

Memoization (section 3.7) can improve performance in two ways. The first is by causing a function
that is applied to the same argument multiple times to do less work. The second (section 3.6.2) is that
since a memoized function returns identical results when applied to the same argument, data structures
returned will be shared and therefore will further improve memoization potential and allow user-declared
data dependency failure to apply in more cases. Unfortunately, since memoization is inherent in the
tabular CFG parser used in the phrase-structure generator, it is difficult to turn it off for testing
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Fu1c10o1 (' alt, ith .1'ib m . Hits Mtiss ('s.Clls i'thout Jh io.
C-COMMANDER 4827 4406 421 17425
FREELY-INDEX 58 22 36 110
DO-CHAIN-FORMATION 586 199 387 10212
SET-PHRASE-PARENTS 906 276 630 1772
ANNOTATE-PHRASE-WITH-CASE 501 96 405) 927
ANNOTATE-PHRASE-WITH-THETA 1109 350 759 1604
ANNOTATE-EMPTY-CATEGORIES- 395 61 334 626

WITH-ANAPHOR-FEATURE
ANNOTATE-EMPTY-CATEGORIES- 488 101 387 1025

WITH-PRONOMINAL-FEATURE

Figure 4.7: Memoization results. Presented for each memoized function are the number of calls to it
with menoization, the number of times a hit occurred (the function had already been computed on the
arguments), the number of misses, and the number of calls without niemoization enabled.

purposes. So although the following results indicate that memoization does not generate spectacular
improvements, they do not. tell the whole story.

Tests I and 2 compare the effect mniemoization has on the number of times modules are called in the base
FD parser. There is actually a difference, 3798 vs. 3775, reflecting (as described above) how the common
data structures output by memoized functions allow greater use of user-declared data dependencies. So
not surprisingly, the improvements come in lexical-case-filter and empty-case-filter, the same
modules that user-declared dal a dependencies affect.

Of course the primary means by which memoization improves efficiency is in terms of function calls,
which are not listed in the data from figure 4.6. Figure 4.7 compares tests I and 2 in terms of function
calls to memoized functions.

From figure 4.7 it is clear that memoization has an enormous impact on these functions. Without
memoization c-commander is called 17,425 times but, with memoization it is only called 4827 times.
and 421 of these times a memoized set of values is returned. For do-chain-formation only 387 new
values need to be computed instead of 10.212. If these figures seem high, remember that. every hit
on a memoized function also eliminates all the recursive calls that would have been made during the
application.



Chapter 5

Conclusions

This chapter summarizes the test results presented in chapter 4. discussing their implications for the
search language and principle-based parsers, and to what extent these results can be generalized. It then
examines the implications of deterministic linguistic theories and talks about, future directions for this
research.

5.1 An Evaluation of the Search Language

There is a lot of moderately interesting information that can be gleaned from tests like those in chapter 4:
how a special search mechanism makes certain parsing computations more or less efficient; what, effect a
small variation in linguistic theory has on descriptive adequacy or computational cost; whether certain
tools in the programming environment make it easier to implement various linguistic conditions. Rather
than exploring such details, we draw two broad generalizations from the experience of coding and running
the test parsers in the search language:

" The programming language makes it, very easy to implement generate-and-test search problems,
especially this particular brand of principle-based parsers. Easier, in fact. than other languages
designed specifically for this purpose like Fong's PROLOG-based system because of the richness of
the SCREAMER/COMMON LUsP base and natural module connection mechanism.

" Modularity in search, error propagation in data structures, menioization and other special tech-
niques improve the efficiency of a parser implementation to some extent or other, but the small
changes they create pale in respect to the effect, of a change in the search problem itself, such as
the substitution of deterministic linguistic modules for modules with high branching factors.

These statements reflect the particular experiences from the tests described in chapter 4 and others not
described here. It is an important question whether they generalize to other parsers and theories, such as
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ones that might be more psychologically plausible in their use of word-by-word information. While it"s
true that it is easy to formulate a problem that is greatly affected by t he feat ures of the search language
(for instance. undoubtably inodularization would have compared very well to a DFS implenetation
that used a worst-case ordering), there is no reason to believe that other linguistic theories will be an\
more decomposable than the simple subset of (Governinent-Binding iipplenwited hcri .. r that t hlorie,
will lead to so much shared structure that fancy error p)ropagation techniques are far more efficient than
the brute speed of a simple implemeintation. A reasonable expectation is that the statements are broadly
relevant.

The one exception to the second remark may be concurrency. This research shows that there is no
reason in theory that a principle-based parser can not be run in a concurrent environment with greatly
iml)roved execution time. but it has not demonstrated that the constants involved would necessarily
make such an implementation worthwhile.

These results are not particularly surprising. The problem of syntactically parsing word strings is
well-known t~o be highly combinatoric, given no determinisni-inducing heuristics or semantic constraints.
There are obvious limits to how much even the most sophisticated search engine caii improve the efficiency
of all inherently complex problem. Reducing the complexity of the problem through deterministic
linguistic theories is the only reasonable approach to improving search efficiency.

5.2 Deterministic Linguistic Theories

Why didn't modularization of search help more than it did? Given the number of generators in the
basic functional-determination parser one could reasonably have expected modularization to have a big
impact. The answer lies in the nature of the generator dependencies. Many are deterministic, but the 3
generators with the highest branching factors (phrase-structure, chain-formation and free-indexing) are
all in a dependency chain. They can not, run independently. Even using a deterministic chain-formation
theory (and this can only be done by moving some aspects of chain formation, such as the insertion
of empty categories, into other generators) phrase-structure still feeds directly into free-indexing. This
will be true in any reasonable linguistic theory, and it is impossible under the implied parsing-problem
specification to make either phrase-structure or free-indexing deterministic, since a given string of words
can be ambiguous with respect to both structure and anaphoric reference.

Much of the reason that the linguistic theory must be implemented non-deterministically is because of
the lack of information the theory assumes. In a more psychologically plausible linguistic setting a parser
would have knowledge about, what tree structures were preferred, and what the likely antecedent for a
given pronoun is. It. is quite conceivable that with this information an adequate deterministic theory of
free-indexing (see [18], [16]) or phrase-structure ([221) exists. Therefore it is not unreasonable to expect
that, there is a descriptively accurate, efficiently implement able, deterministic theory of language waiting
to be discovered. Correa's deterministic algorithms are not descriptively adequate. but. that is no reason
to abandon the search for better ones.

Deterministic theories eliminate the need for search, and also are an indication of how a seemingly small
change in linguistic theory can have enormous computational consequence. For this reason much of this
research and others in its vein are likely to be wasted effort. In such dynamic conditions. it is fruitless
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to think much about implementing current theories in more efficient ways when iii the future tile theory
itself will probably have changed into a completely different character, one that may well have all obvious
efficient implementation. And certainly if the goal is to produce a practical parser based on tile current
(flawed) theories, there is little lost by taking advantage of efficient algorithms like Correa's.

5.3 Future Work

If changes in linguistic theory are likely to affect the way we build parsers and the computational nature
of these implementations far more than the availability of better tools. then it is more fruitful to explore
variations in linguistic theory than to expand on this or other search languages. The one interesting and
potentially great source of efficiency that is left largely unexplored in this work is concurrent execution of
various search paths. The search language described here demonstrates that it is not necessary to rethink
or recode a search problem to take advantage of concurrency, but the work of actually implementing the
search language in a concurrent environment and testing the resulting parsers has been left for future
work.



Appendix A

Test Results

This appendix presents detailed information about the tests described in figure 4.6. For each of the 10
lettered tests the number of inputs to and outputs from each module are listed, summed over the 15 test
sentences.

For each test, there is a list that looks like

FUNCTIONAL-DETERMINATION 62 27

CHAIN-FORMATION 40 221

THETA-ROLE-ASSIGNMENT 80 43
PHRASE-STRUCTURE 15 80

In this case, reading from the bottom, the phrase-structure generator was called on 15 different values
(15 sentences) and output. a total of 80 different, phrase structure trees. The theta-role-assignment
generator was executed on 80 different inputs (the 80 trees) but output only 43 values, indicating that it
failed completely for some inputs. In contrast, the chain-formation generator was called on 40 different
structures but output a total of 221 different chains. Finally, the functional-determination filter was
called 62 times and rejected all but 27 values. Since the functional-determination filter is dependent
on all of the non-deterministic generators. for each of tests the output, column of this filter is the number
of different solutions found by the parser. In the above case, the 15 sentences had a total of 27 different
parses (though some had none).
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A. Test 1. [FD, modular.] FUNCTIONAL-DETERMINATION 62 27
CONDITION-C-VAR 146 69

LICENSE-CHAINS 99 19

FUICTIONAL-DETERMINATION 62 27 CONDITION-B 1022 727

CONDITION-C-VAR 146 69 PRONOMINAL? 23 56

LICENSE-CHAINS 99 19 CONDITION-A 234 216

CONDITION-B 1022 727 I-WITHIN-I 234 234

PRONOMINAL? 23 56 COINDEX-OPERATOR 242 234

CONDITION-A 234 216 CONDITION-C-REXP 297 242

I-WITHIN-I 234 234 FREE-INDEXING 35 297

COINDEX-OPERATOR 242 234 THETA-CRITERION 217 35
CONDITION-C-REXP 297 242 SUBJACENCY 221 217

FREE-INDEXING 35 297 CHAIN-FORMATION 40 221
THETA-CRITERION 217 35 EMPTY-CASE-FILTER 85 40
SUBJACENCY 221 217 ANAPHOR? 40 85
CHAIN-FORMATION 40 221 LEXICAL-CASE-FILTER 43 40

EMPTY-CASE-FILTER 54 40 CASE-ASSIGNMENT 43 43
ANAPHOR? 40 85 OPERATOR-ASSIGNMENT 43 43
LEXICAL-CASE-FILTER 42 40 THETA-ROLE-ASSIGNMENT 80 43
CASE-ASSIGNMENT 43 43 PHRASE-STRUCTURE 15 80

OPERATOR-ASSIGNMENT 43 43
THETA-ROLE-ASSIGNMENT 80 43
PHRASE-STRUCTURE 15 80 D. Test 6. [FD. DFS.]

B. Test 2. (FD, modular, no memoization.] FUNCTIONAL-DETERMINATION 62 27
CONDITION-C-VAR 131 62
LICENSE-CHAINS 727 131

FUNCTIONAL-DETERMINATION 62 27 CONDITION-B 1022 727

CONDITION-C-VAR 146 69 PRONOMINAL? 216 1022

LICENSE-CHAINS 99 19 CONDITION-A 234 216
CONDITION-B 1022 727 I-WITHIN-I 234 234

PRONOMINAL? 23 56 COINDEX-OPERATOR 242 234
CONDITION-A 234 216 CONDITION-C-REXP 297 242

I-WITHIN-I 234 234 FREE-INDEXING 35 297

COINDEX-OPERATOR 242 234 THETA-CRITERION 217 35

CONDITION-C-REXP 297 242 SUBAENCY 221 217

FREE-INDEXING 35 297 CHAIN-FORMATION 40 221

THETA-CRITERION 217 35 EMPTY-CASE-FILTER 54 40

SUBJACENCY 221 217 ANAPHOR? 40 54

CHAIN-FORMATION 40 221 LEXICAL-CASE-FILTER 42 40

EMPTY-CASE-FILTER 76 40 CASE-ASSIGNMENT 43 42

ANAPHOR? 40 85 OPERATOR-ASSIGNMENT 43 43

LEXICAL-CASE-FILTER 43 40 THETA-ROLE-ASSIGNMENT 80 43

CASE-ASSIGNMENT 43 43 PHRASE-STRUCTURE 15 80

OPERATOR-ASSIGNMENT 43 43
THETA-ROLE-ASSIGNMENT 80 43
PHRASE-STRUCTURE 15 80 E. Test 7. [FD, DFS, one solution.]

C. Test 5. [FD, modular, no data dependency fail- FUNCTIONAL-DETERMINATION 29 11
ures.] CONDITION-C-VAR 57 29

LICENSE-CHAINS 475 57
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CONDITION-B 657 475 I-WITHIN-I 234 234

PRONOMINAL? 140 657 COINDEX-OPERATOR 242 234

CONDITION-A 157 140 CONDITION-C-REXP 297 242

I-WITHIN-I 157 157 FREE-INDEXING 35 297

COINDEX-OPERATOR 165 157 THETA-CRITERION 217 35

CONDITION-C-REXP 209 165 SUBJACENCY 221 217

FREE-INDEXING 32 209 CHAIN-FORMATION 40 221

THETA-CRITERION 137 32 EMPTY-CASE-FILTER 53 40

SUBJACENCY 139 137 ANAPHOR? 40 85

CHAIN-FORMATION 35 139 LEXICAL-CASE-FILTER 42 40

EMPTY-CASE-FILTER 47 35 CASE-ASSIGNMENT 43 43

ANAPHOR? 35 47 OPERATOR-ASSIGNMENT 43 43

LEXICAL-CASE-FILTER 37 35 THETA-ROLE-ASSIGNMENT 80 43

CASE-ASSIGNMENT 38 37 PHRASE-STRUCTURE 15 80

OPERATOR-ASSIGNMENT 38 38
THETA-ROLE-ASSIGNMENT 66 38
PHRASE-STRUCTURE 15 66 H. Test, 20. [CF. modular.]

F. Test, 12. [SD. modular.] FUNCTIONAL-DETERMINATION 23 15

I-WITHIN-I 27 23

COINDEX-OPERATOR 29 27

FUNCTIONAL-DETERMINATION 42 23 CONDITION-C-VAR 40 29

CONDITION-C-VAR 86 42 CONDITION-C-REXP 50 40

LICENSE-CHAINS 34 16 CONDITION-B 55 50

CONDITION-B 216 204 CONDITION-A 59 55

PRONOMINAL? 23 23 FREE-INDEXING 11 59

CONDITION-A 234 216 LICENSE-CHAINS 11 11

I-WITHIN-I 234 234 THETA-CRITERION 11 11

COINDEX-OPERATOR 242 234 SUBJACENCY 11 11

CONDITION-C-REXP 297 242 CHAIN-FORMATION 40 11

FREE-INDEXING 35 297 PRONOMINAL? 40 40

THETA-CRITERION 217 35 EMPTY-CASE-FILTER 40 40

SUBJACENCY 221 217 ANAPHOR? 40 40

CHAIN-FORMATION 40 221 LEXICAL-CASE-FILTER 42 40

EMPTY-CASE-FILTER 40 40 CASE-ASSIGNMENT 43 42

ANAPHOR? 40 40 OPERATOR-ASSIGNMENT 43 43

LEXICAL-CASE-FILTER 42 40 THETA-ROLE-ASSIGNMENT 80 43

CASE-ASSIGNMENT 43 43 PHRASE-STRUCTURE 15 80

OPERATOR-ASSIGNMENT 43 43
THETA-ROLE-ASSIGNMENT 80 43
PHRASE-STRUCTURE 15 80 1. Test 24. [CF. DFS.]

G. Test. 13. [SD, modular, ordered SD.] FUNCTIONAL-DETERMINATION 23 15

I-WITHIN-I 27 23

COINDEX-OPERATOR 29 27

FUNCTIONAL-DETERMINATION 69 27 CONDITION-C-VAR 40 29

CONDITION-C-VAR 146 69 CONDITION-C-REXP 50 40

LICENSE-CHAINS 99 19 CONDITION-B 55 50

CONDITION-B 1022 727 CONDITION-A 59 55

PRONOMINAL? 23 56 FREE-INDEXING 11 59

CONDITION-A 234 216 LICENSE-CHAINS 11 11
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THETA-CRITERION 11 11
SUBJACENCY 11 11
CHAIN-FORMATION 40 11
PRONOMINAL? 40 40
EMPTY-CASE-FILTER 40 40
ANAPHOR? 40 40
LEXICAL-CASE-FILTER 42 40
CASE-ASSIGNMENT 43 42
OPERATOR-ASSIGNMENT 43 43
THETA-ROLE-ASSIGNMENT 80 43
PHRASE-STRUCTURE 15 80

J. Test 25. [CF, DFS, one solution.]

FUNCTIONAL-DETERMINATION 17 9
I-WITHIN-I 21 17
COINDEX-OPERATOR 23 21
CONDITION-C-VAR 29 23
CONDITION-C-REXP 32 29
CONDITION-B 32 32
CONDITION-A 34 32
FREE-INDEXING 11 34
LICENSE-CHAINS 11 11
THETA-CRITERION 11 11

SUBJACENCY 11 11
CHAIN-FORMATION 38 11
PRONOMINAL? 38 38
EMPTY-CASE-FILTER 38 38
ANAPHOR? 38 38
LEXICAL-CASE-FILTER 40 38
CASE-ASSIGNMENT 41 40
OPERATOR-ASSIGNMENT 41 41
THETA-ROLE-ASSIGNMENT 74 41
PHRASE-STRUCTURE 15 74



Appendix B

Parser Code

This appendix presents the actual code needed to inmplement the test parsers described in chapter 4.

B.1 FD Parser

(defastructure (phrase :allow-depcadencies t)
((category :initarg :category :accessor phrase-category :type symbol)
(daughters :initarg :daughters :accessor phrase-daughters :type list)
(parent :initform nil :accessor phrase-parent :nondestructive (phrase-structure))
(inherent-features :initform nil :initarg :inherent-features

:accessor phrase-inherent-features :type list)
(theta-role :initform nil :accessor phrase-theta-role :type symbol

:nondestructive (theta-role-assignment))
(anaphor? :initform nil :accessor phrase-anaphor? :type symbol

:nondestructive (anaphor? operator-assignment))
(pronominal? :initform nil :accessor phrase-pronominal? :type symbol

:nondestructive (pronominal? operator-assignment))
(assigned-case :initform nil :accessor phrase-assigned-case :type symbol

:nondestructive (case-assignment)))
(set-phrase-parents annotate-phrase-with-case

do-chain-formation
annotate-phrase-with-theta
annotate-empty-categories-with-anaphor-feature
annotate-empty-categories-with-pronominal-feature)

(define-tree-positions '((top PHRASE-STRUCTURE)
(generate phrase-structure THETA-ROLE-ASSIGNMENT)
(generate phrase-structure CHAIN-FORMATION)
(generate phrase-structure OPERATOR-ASSIGNMENT)
(generate phrase-structure CASE-ASSIGNMENT)
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(generate chain-formation FREE-INDEXING)

(generate operator-assignment ANAPHOR?)
(generate operator-assignment PRONOMINAL?)

(cross free-indexing anaphor? ANAPHOR-FI)
(cross free-indexing pronominal? PRON-FI)
(cross chain-formation theta-role-assignment CF-TR)

(cross case-assignment anaphor? CA-A)
(cross anaphor? pronominal? ANAPRO)

(cross anapro chain-formation VARIABLES)
(cross pron-fi anaphor-fi Al)

(cross al ca-a A2)
(cross a2 variables a3)

(cross a3 cf-tr ALL)

(defsearcher MOD-PARSE.R ((generate PHRASE-STRUCTURE)
(generate THETA-ROLE-ASSIGNMENT)
(generate OPERATOR-ASSIGNMENT)
(generate CASE-ASSIGNMENT)

(filter LEXICAL-CASE-FILTER case-assignment)
(generate ANAPHOR?)

(generate CA-A)
(filter EMPTY-CASE-FILTER ca-a)
(generate CHAIN-FORMATION)
(filter SUBJACENCY chain-formation)
(generate CF-TR)
(filter THETA-CRITERION cf-tr)

(generate FREE-INDEXING)
(filter CONDITION-C-REXP free-indexing)

(filter COINDEX-OPERATOR free-indexing)
(filter I-WITHIN-I free-indexing)
(generate ANAPHOR-FI)

(filter CONDITION-A anaphor-fi)
(generate PRONOMINAL?)
(generate PRON-FI)

(filter CONDITION-B pron-fi)
(generate ANAPRO)
(generate VARIABLES)
(filter LICENSE-CHAINS variables)
(generate Al)

(filter CONDITION-C-VAR al)

(generate A2)
(filter FUNCTIONAL-DETERMINATION a2)
(generate A3)
(generate ALL)

(filter PRINTER all)

(defsearcher DFS-PARSER ((generate PHRASE-STRUCTURE
(generate THETA-ROLE-ASSIGNMENT

(generate OPERATOR-ASSIGNMENT
(generate CASE-ASSIGNMENT
(filter LEXICAL-CASE-FILTER case-assignment)
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(generate ANAPHOR?
(generate CA-A

(filter EMPTY-CASE-FILTER ca-a)

(generate CHAIN-FORMATION
(filter SUBJACENCY chain-formation)
(generate CF-TR

(filter THETA-CRITERION cf-tr)
(generate FREE-INDEXING
(filter CONDITION-C-REXP free-indexing)
(filter COINDEX-OPERATOR free-indexing)
(filter I-WITHIN-I free-indexing)
(generate ANAPHOR-FI
(filter CONDITION-A anaphor-fi)
(generate PRONOMINAL?
(generate PRON-FI

(filter CONDITTON-B pron-fi)

(generate ANAPRO
(generate VARIABLES

(filter LICENSE-CHAINS variables)
(generate Al
(filter CONDITION-C-VAR al)
(generate A2

(filter FUNCTIONAL-DETERMINATION a2)
(generate A3
(generate ALL
(filter PRINTER all)

B.2 SD Parser

(defmstructure (phrase :allow-dependencies t)
((category :initarg :category :accessor phrase-category :type symbol)
(daughters :initarg :daughters :accessor phrase-daughters :type list)

(parent :initform nil :accessor phrase-parent :nondestructive (phrase-structure))
(inherent-features :initform nil :initarg :inherent-features

:accessor phrase-inherent-features :type list)
(theta-role :initform nil :accessor phrase-theta-role :type symbol

:nondestructive (theta-role-assignment))
(anaphor? :initform nil :accessor phrase-anaphor? :type symbol

:nondestructive (anaphor? operator-assignment))
(pronominal? :initform nil :accessor phrase-pronominal? :type symbol

:nondestructive (pronominal? operator-assignment))
(assigned-case :initform nil :accessor phrase-assigned-case :type symbol

:nondestructive (case-assignment)))
(set-phrase-parents annotate-phrase-with-case do-chain-formation

annotate-phrase-with-theta)

)

(define-tree-positions '((top PHRASE-STRUCTURE)
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(generate phrase-structure THETA-ROLE-ASSIGNMENT)

(generate phrase-structure CHAIN-FORMATION)
(generate phrase-structure OPERATOR-ASSIGNMENT)
(generate phrase-structure CASE-ASSIGNMENT)
(generate chain-formation FREE-INDEXING)
(cross operator-assignment case-assignment OP-CASE)
(generate op-case ANAPHOR?)
(generate operator-assignment PRONOMINAL?)
(cross free-indexing anaphor? ANAPHOR-FI)
(cross free-indexing pronominal? PRON-FI)
(cross chain-formation theta-role-assignment CF-TR)
(cross case-assignment anaphor? CA-A)
(cross anaphor? pronominal? ANAPRO)
(cross anapro chain-formation VARIABLES)
(cross pron-fi anaphor-fi Al)
(cross al variables a2)
(cross a2 cf-tr ALL)

(defsearcher MOD-PARSER ((generate PHRASE-STRUCTURE)
(generate THETA-ROLE-ASSIGNMENT)
(generate OPERATOR-ASSIGNMENT)
(generate CASE-ASSIGNMENT)
(filter LEXICAL-CASE-FILTER case-assignment)
(generate OP-CASE)
(generate ANAPHOR?)
(filter EMPTY-CASE-FILTER anaphor?)
(generate CHAIN-FORMATION)
(filter SUBJACENCY chain-formation)
(generate CF-TR)
(filter THETA-CRITERION cf-tr)
(generate FREE-INDEXING)
(filter CONDITION-C-REXP free-indexing)
(filter COINDEX-OPERATOR free-indexing)
(filter I-WITHIN-I free-indexing)
(generate ANAPHOR-FI)
(filter CONDITION-A anaphor-fi)
(generate PRONOMINAL?)
(generate PRON-FI)
(filter CONDITION-B pron-fi)
(generate ANAPRO)
(generate VARIABLES)
(filter LICENSE-CHAINS variables)
(generate Al)
(filter CONDITION-C-VAR al)
(filter FUNCTIONAL-DETERMINATION al)
(generate A2)
(generate ALL)
(filter PRINTER all)

(defsearcher DFS-PARSER ((generate PHRASE-STRUCTURE
(generate THETA-ROLE-ASSIGNMENT
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(generate OPEFATOR-ASSIGN4ENT
(generate CASE-ASSIGNMENT
(filter LEXICAL-CASE-FILTER case-assignment)
(generate OP-CASE
(generate ANAPHOR?
(filter EMPTY-CASE-FILTER anaphor?)
(generate CHAIN-FORKATION
(filter SUBJACENCY chain-formation)
(generate CF-TR
(filter THETA-CRITERION cf-tr)
(generate FREE-INDEXING
(filter CONDITION-C-REXP free-indexing)
(filter COINDEX-OPERATOR free-indexing)
(filter I-WITHIN-I free-indexing)
(generate ANAPHOR-FI
(filter CONDITION-A anaphor-fi)

(generate PRONOMINAL?
(generate PRON-FI
(filter CONDITION-B pron-fi)
(generate ANAPRO
(generate VARIABLES

(filter LICENSE-CHAINS variables)
(generate Al
(filter CONDITION-C-VAR al)
(filter FUNCTIONAL-DETERMINATION al)
(generate A2
(generate ALL
(filter PRINTER all)

B.3 CF Parser

(defmstructure (phrase :allow-dependencies t)
((category :initarg :category :accessor phrase-category :type symbol)
(daughters :initarg :daughters :accessor phrase-daughters :type list)
(parent :initform nil :accessor phrase-parent :nondestructive (phrase-structure))
(iniherent-features :initform nil :initarg :inherent-features

:accessor phrase-inherent-features :type list)
(theta-role :initform nil :accessor phrase-theta-role :type symbol

:nondestructive (theta-role-assignment))
(anaphor? :initform nil :accessor phrase-anaphor? :type symbol

:nondestructive (anaphor? operator-assignment))
(pronominal? :initiorm nil :accessor phrase-pronominal? :type symbol

:nondestructive (pronominal? operator-assignment))
(assigned-case :initform nil :accessor phrase-assigned-case type symbol

:nondestructive (case-assignment)))
(set-phrase-parents annotate-phrase-with-case get-chains

annotate-phrase-with-theta)
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(define-tree-positions '((top PHRASE-STRUCTURE)
(generate phrase-structure THETA-ROLE-ASSIGNMENT)

(generate phrase-structure OPERATOR-ASSIGNMEAT)
(generate phrase-structure CASE-ASSIGNMENT)
(cross case-assignment operator-assignment OP-CASE)
(generate op-case ANAPHOR?)
(generate operator-assignment PRONOMINAL?)

(cross anaphor? pronominal? ANAPRO)
(cross anapro theta-role-assignment anaprotheta)

(generate anaprotheta CHAIN-FORMATION)
(generate chain-formation FREE-INDEXING)

(defsearcher MOD-PARSER ((generate PHRASE-STRUCTURE)
(generate THETA-ROLE-ASSIGNMENT)

(generate OPERATOR-ASSIGNMENT)
(generate CASE-ASSIGNMENT)
(filter LEXICAL-CASE-FILTER case-assignment)

(generate OP-CASE)
(generate ANAPHOR?)
(filter EMPTY-CASE-FILTER anaphor?)
(generate PRONOMINAL?)
(generate ANAPRO)
(generate ANAPROTHETA)

(generate CHAIN-FORMATION)
(filter SUBJACENCY chain-formation)
(filter THETA-CRITERION chain-formation)
(filter LICENSE-CHAINS chain-formation)
(generate FREE-INDEXING)
(filter CONDITION-A free-indexing)
(filter CONDITION-B free-indexing)

(filter CONDITION-C-REXP free-indexing)
(filter CONDITION-C-VAR free-indexing)
(filter CflINDEX-OPERATOR free-indexing)

(filter I-WITHIN-I free-indexing)
(filter FUNCTIONAL-DETERMINATION free-indexing)
(filter PRINTER free-indexing)

(defsearcher DFS-PARSER ((generate PHRASE-STRUCTURE
(generate THETA-ROLE-ASSIGNMENT
(generate OPERATOR-ASSIGNMENT
(generate CASE-ASSIGNMENT
(filter LEXICAL-CASE-FILTER case-assignment)
(generate OP-CASE

(generate ANAPHOR?
(filter EMPTY-CASE-FILTER anaphor?)
(generate PRONOMINAL?

(generate ANAPRO
(generate ANAPROTHETA
(generate CHAIN-FORMATION

(filter SUBJACENCY chain-formation)
(filter THETA-CRITERION chain-formation)
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(filter LICENSE-CHAINS chain-formation)

(generate FREE-INDEXING
(filter CONDITION-A free-indexing)

(filter CONDITION-B free-indexing)

(filter CONDITION-C-REXP free-indexing)

(filter CONDITION-C-VAR free-indexing)

(filter COINDEX-OPERATOR free-indexing)
(filter I-WITHIN-I free-indexing)

(filter FUNCTIONAL-DETERMINATION free-indexing)

(filter PRINTER free-indexing)

B.4 Inputs

;; The Test Sentences

(defparameter *sentences*
'((John was killed)

(who did John say that he saw)

(the man that John saw)

(that John saw Mary kill herself)

(John likes to bicycle)

(John saw Mary)
(who did John give a picture of to)

(what did you file without reading)
(Mary saw herself)
(Bill said that he saw Mary shoot him)
(who did Mary say was killed)

(John to see Mary) ;; *

(what did you reading) ;; *

(John promised kill himself) ;; *

(who did John kill Mary) ;; *

;; The Grammar

(defparameter *grammar*
'((12 => (N2) ID)

Sentential Subject.
;; (12 => (C2) II)
(11 => (I0) V2)
;; Topicalization.
;; (12 => N2 12)

(10 =>)
(N2 => D2 NI)
";; "Who did John kill [np [t) [that he liked]]?"
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;; (N2 -> Mg) C2)

(N2 =-> M2 C2)
(M2 => N2 P2)

(N2 =>)

(Ni => NO)
(D2 => (DO))
(DO =>)
(V2 => Vl)

(VI => VI P2)

(Vi => VO)
(VI => VO (N2))
(Vi => VO C2)

(C2 => C1)

(C2 => (12) C1)
(Cl => (CO) 12)
(Ci => 10 12)
(CO =>)

(P2 => P0)
(PI => PO (N2))

(P1 => PO C2)

The Lexicon

(defparameter *lexicon*
'((john (n2 (r-expression +M

(bill (n2 (r-expression +M
(mary (n2 (r-expression +M

(i (n2 (pronoun . +) (anaphor -) (required-case non)))
(you (n2 (pronoun +) (anaphor -) (required-case nom)))
(he (n2 (pronoun +) (anaphor -) (required-case non)))
(she (n2 (pronoun +) (anaphor -) (required-case nom)))
(him (n2 (pronoun +) (anaphor -) (required-case acc)))
(her (n2 (pronoun +) (anaphor -) (required-case acc)))
(it (n2 (pronoun +) (anaphor -M
(myself (n2 (pronoun -) (anaphor +M
(himself (n2 (pronoun -) (anaphor +M
(herself (n2 (pronoun -) (anaphor +M

(likes (vO (theta np-cp)))
(liked (vO (theta np-cp)))
(like (vO (theta np-cp)))
(promise (vO (theta cp)) (nO))
(promised (vO (theta cp)))
(promising (vO (theta cp) (tense -M
(think (vO (theta cp)))
(thinks (vO (theta cp)))
(seems (vO (theta subjectless-cp)))
(seem (vO (theta subjectless-cp)))
(know (vO (theta np-cp)))
(knows (vO (theta np-cp)))
(bicycle (vO (theta . none)) (nO))
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(saw (vO (theta np-cp)) (nO))
(said (vW (theta cp)))
(say (vO (theta cp)))
(see (vW (theta np-cp)))
(walk (vW (theta np-none)) (nO))
(ualks (vW (theta np-none)) (nO))
(walked (vO (theta np-none)))
(walking (vW (theta np-none) (tense -M
(won (vO (theta np-none)))
(win (vO (theta np-none)) (nO))

(bothered (vO (theta .np)))
(to (iO (tense . -)) (pO (theta np)))
(of (p0 (theta . np)))
(without (p0 (theta . np-cp)))
(with (p0 (theta . np)))
(killed (v0 (theta . np)))
(kill (vW (theta np)))
(shoot (vW (theta .np)))
(give (vO (theta np)))
(read (vO (theta np)))
(giving (vO (theta np) (tense -M

(reading (vO (theta np) (tense -M

(file (vW (theta .np)))
(the (do))
(a (dO))
(ball (nO))
(man (nO))
(dog (nO))
(picture (nO))
(book (nO))
(men (nO))
(did (iO))
(was (iO (passive +M

(is (iO))
(were (iO))
(what (n2 (wh +M
(who (n2 (wh +M
(whom (n2 (wh +M
(why (adv (wh +M
(when (adv (wh . +M
(where (adv (wh • +M
(hog (adv (wh . +M
(that (cO))))

B.5 Phrase Structure Generator

(defgenerator PHRASE-STRUCTURE 0
Build up phrase-structure representations for the words in the variable

;; *SENTENCE*.
(parse (mapcar #'(lambda (word)
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(mapcar V'(lambda (e) (list* (car e) '(word . ,word) (cdr e)))

(cdr (assoc word *lexicon*))))
*sentence*)

*grammar*))

(defoption '*print-phrase-structures* nil "Print Phrase Structures" :parser)

(defun parse (input grammar)
;; Use a chart parser to generate phrase-structure trees.

(let ((rules (order-rules grammar))
(categories (all-categories grammar))

(n (length input)))
(declare (fixnum n))
(let ((M (length categories))

(chart (make-array (list (0+ n) (1+ n) (length categories))

:initial-element nil)))
(declare (fixnum D))

(dotimes (i n)
(declare (fixnum i))

(dolist (word (nth i input))
(add-to-chart chart i (+ i 1) (position (car word) categories) (car word) nil

(cdr word))))

(dotimes (k (1+ n))
(declare (fixnum k))
(dotimes (i (1+ (- n k)))

(declare (fixnum i))
(dolist (r rules)

(case (- (length (the list r)) 2)
(0 (when (zerop k)

(add-to-chart chart i i (position (car r) categories) (car r) nil :empty)))

(1 (unless (and (symbolp (third r)) (= k 0))
(for-effects

(let ((d (transform-empty

(a-member-of

(aref chart i (+ i k) (position (core-cat (third r))
categories))))))

(u.wless (comp-checker-special-I d (car r)) (fail))
(add-to-chart chart i (+ i k) (position (car r) categories) (car r)

(list d))))))

(2 (dotimes (j (1+ k))
(declare (fixnum j))

(unless (or (and (= j 0) (symbolp (third r)))

(and ( j k) (symbolp (fourth r))))
(for-effects

(let ((dl (transform-empty

(a-member-of
(aref chart i (+ i j) (position (core-cat (third r))

categories)))))
(d2 (transform-empty

(a-member-of

(aref chart (+ i j) (+ i k) (position (core-cat (fourth r))
categories))))))

(unless (comp-checker-special-2 dI d2 (car r)) (fail))
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(add-to-chart chart i (+ i k) (position (car r) categories) (car r)
(list dl d2)))))))

(otherwise (error "Rule is illegal -S!" r))))))
(let ((phrase (a-member-of (aref chart 0 n (an-integer-between 0 (1- 1))))))

;; Only output CPs and NPs.
(when (or (cp? phrase) (np? phrase))

(set-phrase-parents phrase)
(when *print-phrase-structures* (print (phrase-tree phrase)))
(return-result phrase))))))

(defun core-cat (cat) (if (symbolp cat) cat (first cat)))

(defm! set-phrase-parents ((phrase) phrase)
;; Phrases are shared between different parses, but the PHRASE-PARENT slot

of a phrase must vary between each parse. This function sets it using
set!-local so that as each parse is enumerated the PHRASE-PARENT slots
are properly updated.

(mapc #'(lambda (daughter)
(set-phrase-parents daughter)
(set!-local (phrase-parent daughter) phrase))

(phrase-daughters phrase)))

(defun add-to-chart (chart i j k category daughters &optional features)
(let ((phrase (if (eq features :empty)

category
(make-instance 'phrase

:category category
:inherent-features features
:daughters daughters))))

;; Declare PHRASE to be dependent its daughters.
(dolist (daughter daughters)

(is-part-of daughter phrase))
(push phrase (aref chart i j k))))

(defun transform-empty (phrase)

(if (typep phrase 'phrase)
phrase
(make-instance 'phrase

:category phrase
:daughters nil)))

(defun all-categories (rules)
(let ((categories nil))

(dolist (r rules)
(pushnew (first r) categories)
(setf categories (union categories (mapcar #'core-cat (cddr r)))))

categories))

(defun order-rules (rules)
(let ((empty-categories (empty-categories rules))

(rules (copy-list rules)))
(do ((change t change))

((null change))
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(setq change nil)
(mapi #'(laabda (1)

(let ((r2 (first 1)))
(mapl #'(lambda (11)

(let ((rl (car 11)))
(if (or (and (eq (first rl) (core-cat (third r2)))

(or (null (core-cat (fourth r2)))
(find (core-cat (fourth r2)) empty-categories)))

(and (eq (first rl) (core-cat (fourth r2)))
(or (null (core-cat (third r2)))

(find (core-cat (third r2)) empty-categories))))
(setf change t

(first 1) rl
(first 11) r2
r2 ri))))

(rest 1))))
rules))

rules))

(defun empty-categories (rules)
(let ((empty-categories (mapcar V'car (remove-if #'cddr rules))))

(do ((old-ecs nil empty-categories))
((eq old-ecs empty-categories))

(dolist (r rules)
(if (every #'(lambda (c) (find c empty-categories)) (cddr r))

(pushnew (car r) empty-categories))))
empty-categories))

(defmethod print-object ((p phrase) stream)
(format stream "<Phrase -S:-{ -S-}>" (phrase-category p)

(if (null (phrase-daughters p))
(let ((w (feature-value p 'word)))

(and w (list w)))
(mapcar #'phrase-category (phrase-daughters p)))))

(defun phrase-tree (phrase)
(append (list (phrase-category phrase))

(if (null (phrase-daughters phrase))
(let ((word (feature-value phrase 'word)))

(and word (list word))))
(mapcar #'phrase-tree (phrase-daughters phrase))))

B.6 Binding Theory

(deffilter CONDITION-A ((tree PHRASE-STRUCTURE) (indices FREE-INDEXING) ANAPHOR?)
(map-up-phrase-structure tree (phrase)

(when (and (np? phrase) (is-anaphor? phrase))
(let ((gc (governing-category phrase)))

(unless (or (null gc) (find-binders phrase gc indices))
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(reject))))))

(deffilter CONDITION-B ((tree PHRASE-STRUCTURE) (indices FREE-INDEXING) PRONOMINAL?)
(map-up-phrase-structure tree (phrase)

(when (and (np? phrase) (is-pronominal? phrase))
(let ((gc (governing-category phrase)))

(unless (or (null gc) (not (find-binders phrase gc indices)))
(reject))))))

(deffilter CONDITION-C-REXP ((tree PHRASE-STRUCTURE) (indices FREE-INDEXING))
(map-up-phrase-structure tree (phrase)

(when (r-expression? phrase)
(if (find-if #'a-position? (find-binders phrase tree indices))

(reject)))))

(deffilter CONDITION-C-VAR ((tree PHRASE-STRUCTURE) (Gidices FREE-INDEXING)
ANAPHOR? PRONOMINAL?)

(map-up-phrase-structure tree (phrase)
(when (variable? phrase)

(let ((binders (find-binders phrase tree indices)))
(if (and (find-if V'a-position? binders)

;; Addition to theory- condition C does not apply to wh-t's
;; with anaphor antecedents. Allows Topical~zation of form
";; "Himself, John likes"
(not (find-if V'is-anaphor? binders)))

(reject))))))

(defun find-binders (phrase top-phrase bindings)
(let ((phrases-with-index (get-phrases-with-index (get-index phrase bindings) bindings)))

(remove-if-not V'(lambda (p) (member p phrases-with-index))
(all-values (c-commander phrase top-phrase)))))

(defun local-binder (phrase bindings inside-of)
(let ((phrases-with-index (get-phrases-with-index (get-index phrase bindings) bindings)))

(find-if #'(lambda (p) (member p phrases-with-index))
(all-values (c-commander phrase inside-of)))))

(defun governing-category (phrase)
(first
(all-values
(let ((governor (governor phrase)))

(unless governor (fail))
(minimal-phrase-containing (list phrase governor)

:restricted-to '(N2 12))))))

(defndmemo c-commander ((phrase inside-of &key (restricted-to t))

(phrase inside-of restricted-to))
(if (eq phrase inside-of) (fail))
(let ((parent (phrase-parent phrase)))

(unless parent (fail))
(if (= 1 (length (phrase-daughters parent)))

(c-commander parent inside-of :restricted-to restricted-to)
(let ((sister (a-member-of (phrase-daughters parent))))
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(if (eq sister phrase) (fail))
(if (and (listp restricted-to)

(not (member (phrase-category sister) restricted-to)))
(fail))

(either sister

(c-commander parent inside-of
:restricted-to restricted-to))))))

(defun governor (phrase)
(let ((potential-governor

(c-commander phrase (smallest-maximal-projection-containing phrase)
:restricted-to '(vO pO il))))

(if (il? potential-governor)
(let ((MO (head potential-governor))

(vO (head (bar-node (complement potential-governor)))))
(if (or (eq '- (feature-value iO 'tense))

(eq '- (feature-value vO 'tense)))
(fail))))

potential-governor))

(defun smallest-maximal-projection-containing (phrase)
(let ((parent (phrase-parent phrase)))

(unless parent (fail))
(if (level-2? parent) parent (smallest-maximal-projection-containing parent))))

(defun is-pronominal? (phrase)
(eq '+ (phrase-pronominal? phrase)))

(defun is-anaphor? (phrase)
(eq '+ (phrase-anaphor? phrase)))

B.7 Free Determination of Empty Categories

(defgenerator ANAPHOR? ((tree OPERATOR-ASSIGNMENT))
(return-result (annotate-empty-categories-with-anaphor-feature tree)))

(defndm! annotate-empty-categories-with-anaphor-feature ((phrase) phrase)
;; Do not assign binding category features to ecs in Comp.
(virtual-map-up-phrase-structure
(phrase annotate-empty-categories-with-anaphor-feature)
(when (np? phrase)

(if (empty? phrase)
(unless (phrase-anaphor? phrase)

(set!-local (phrase-anaphor? phrase) (either '+ '-)))

(if (word? phrase)
(set!-local (phrase-anaphor? phrase) (feature-value phrase 'anaphor)))))))

(defgenerator PRONOMINAL? ((tree OPERATOR-ASSIGNMENT))
(return-result (annotate-empty-categories-with-pronominal-feature tree)))
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(defnda! annotate-empty-categories-with-pronominal-feature ((phrase) phrase)

;; Do not assign binding category features to ecs in Comp.
(virtual-map-up-phrase-structure

(phrase annotate-empty-categories-with-pronominal-feature)

(when (np? phrase)
(if (empty? phrase)

(unless (phrase-pronominal? phrase)
(set!-local (phrase-pronominal? phrase) (either '+ '-)))

(if (word? phrase)
(set!-local (phrase-prononinal? phrase) (feature-value phrase 'pronoun)))))))

B.8 Structural Determination of Empty Categories

(defgenerator ANAPHOR? ((tree OPERATOR-ASSIGNMENT) CASE-ASSIGNMENT)
;; Although a strictly deterministic theory like Structural
;; Determination should not need to use virtual trees, they are used
;; because when *pure-sd* is false structural determination is used
,; only to order the non-deterministic choices.

(return-result (annotate-empty-categories-vith-anaphor-feature tree)))

(defun annotate-empty-categories-with-anaphor-feature (phrase)
,; Do not assign binding category features to ecs in Coup. Cannot memoize

here because properties depend on phrase's parents.
(virtual-map-up-phrase-structure
(phrase annotate-empty-categories-with-anaphor-feature)

(when (np? phrase)

(if (empty? phrase)
(unless (c-spec? phrase)

(let ((plus? (and (a-position? phrase)
(or (not (is-lexically-governed? phrase))

(not (phrase-assigned-case phrase))))))

(set!-local (phrase-anaphor' phrase)

(if *pure-sd*
(if plus? '+ '-)

(if plus?
(either '+ '-)

(either '-

(if (word? phrase)
(set!-local (phrase-anaphor? phrase) (feature-value phrase 'anaphor)))))))

(defgenerator PRONOMINAL? ((tree OPERATOR-ASSIGNMENT))
;; Although a strictly deterministic theory like Structural
;; Determination should not need to use virtual trees, they are used

,; because when *pure-sd* is false structural determination is used
,; only to order the non-deterministic choices.
(return-result (annotate-empty-categories-with-pronominal-feature tree)))
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(defun annotate-empty-categories-with-pronominal-feature (phrase)
;; Do not assign binding category features to ecs in Comp.
(virtual-map-up-phrase-structure
(phrase annotate-empty-categories-with-pronominal-feature)

(when (np? phrase)
(if (empty? phrase)

(unless (c-spec? phrase)
(let ((plus? (not (is-lexically-governed? phrase))))

(set!-local (phrase-pronominal? phrase)
(if *pure-sd*

(if plus? '+ '-)

(if plus?
(either '+ '-)

(either '-

(if (word? phrase)
(set!-local (phrase-pronominal? phrase) (feature-value phrase 'pronoun)),))))

B.9 Case Theory

(defgenerator CASE-ASSIGNMENT ((tree PHRASE-STRUCTURE))
(if (eq (phrase-category tree) 'n2) ;; Top-level NP

(assign-case tree 'NOM))
(return-result (annotate-phrase-with-case tree)))

(defm! annotate-phrase-with-case ((phrase) phrase)
;; Since case assignment is deterministic, we do not really need to use virtual
,; trees, but this is done for compatibility with a non-deterministic theory of

;; case assignment.
(virtual-map-up-phrase-structure
(phrase annotate-phrase-with-case)

(when (eq phrase (core-phrase phrase))
(cond ((p1? phrase)

(when (and (complement phrase) (np? (complement phrase)))
(assign-case (complement phrase) 'acc)))

((ii? phrase)
(unless (eq '+ (feature-value (head phrase) 'passive))

(let ((vi (bar-node (complement phrase))))
(when (and (vi? vi) (np? (complement v0)))

(assign-case (complement v1) 'acc)))))
((np? phrase)
(let ((inherent-case (feature-value phrase 'inherent-case)))

(when inherent-case (assign-case phrase inherent-case))))

((ip? phrase)
(when (np? (spec-of phrase))

(let ((iO (head (bar-node phrase)))
(vO (head (bar-node (complement (bar-node phrase))))))

(unless (or (eq '- (feature-value iO 'tense))
(eq '- (feature-value vO 'tense)))
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(assign-case (spec-of phrase) 'nom))) )))

(deffilter EMPTY-CASE-FILTER ((virtual-tree ANAPHOR?) CASE-ASSIGNMENT)
;; Filter that says +A ecs must not get case, -As must (if in A positions).
(virtual-phrase-map
virtual-tree (phrase :category category)
(when (and (eq category 'n2) (empty? phrase) (a-position? phrase))

(let ((ana (phrase-anaphor? phrase))
(case (phrase-assignel-case phrase)))

(when (or (and (eq '+ ana) case)
(and (eq '- aria) (not case)))

It is not the empty category itself that is responsible
for the failure, but whatever domain that should contain

;; a case assigner. This is usually the parent phrase of
the empty category, though if ECK were handled we would
have to be more careful. Reject up one level of the tree
from PHRASE.

(virtual-reject 1))))))

(deffilter LEXICAL-CASE-FILTER ((virtual-tree CASE-ASSIGNMENT))
;; Filter that Lexical NPs must get case if in a-position.
(virtual-phrase-map
virtual-tree (phrase :category category)
(when (and (eq category 'n2) (not (empty? phrase)) (a-position? phrase))

(unless (phrase-assigned-case (core-phrase phrase))
(unless (and (eq '+ (feature-value phrase 'wh))

(cp? (phrase-parent phrase)))
It is not the noun phrase itself that is responsible

;; for the failure, but whatever domain that should contain
a case assigner. This is usually the parent phrase of

;; the noun phrase, though if ECH were handled we would
;; have to be more careful. Reject up one level of the tree
;; from PHRASE.
(virtual-reject 1))))))

(defparameter *case-compatibilities*
'((nom nom-acc)

(acc nom-acc)))

(defun assign-case (phrase case)
(let ((core-phrase (core-phrase phrase)))

(unless (check-case-compatibility (phrase-assigned-case core-phrase)
(feature-value core-phrase 'required-case)
case)

(fail))
(set!-local (phrase-assigned-case core-phrase) case)))

(defun check-case-compatibility (previously-assigned-case
required-case
assigned-case)

(labels ((compatible? (ci c2)
(find-if #'(lambda (case-list) (and (member ci case-list) (member c2 case-list)))

*case-compatibilities*)))
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(and (or (not previously-assigned-case)

(compatible? previously-assigned-case assigned-case))
(or (not required-case)

(compatible? required-case assigned-case)))))

B.1O Theta Theory

(defgenerator THETA-ROLE-ASSIGNMENT ((tree PHRASE-STRUCTURE))
;; Assign thematic roles from tensed verbs to subject, verbs
;; to objects, and prepositions to their objects. Rather than
;; storing exact theta roles in the lexicon, the shorthand
,; REFERENCE, SUBJECT and OBJECT symbols are used.
(when (np? tree) ;; Top-level NP

(set!-local (phrase-theta-role (core-phrase tree)) 'REFERENCE))

(return-result (annotate-phrase-with-theta tree)))

(defm: Annotate-phrase-with-theta ((phrase) phrase)
(let ((daughters (phrase-daughters phrase))

(category (phrase-category phrase)))
(mapc-nd #'annotate-phrase-with-theta daughters)
(when (eq (core-phrase phrase) phrase)

(case category
((vl pl)
;; Assign roles from verbs and prepositions to their complements.
(let ((x (complement phrase)))

(cond ((null x)
(if (or (not (feature-value (head phrase) 'theta))

(member (feature-value (head phrase) 'theta) '(none)))
t
(fail)))

((np? x)
(if (or (not (feature-value (head phrase) 'theta))

(member (feature-value (head phrase) 'theta)

'(np np-cp np-none)))
(set!-local (phrase-theta-role (core-phrase x)) 'OBJECT)
(fail)))

((cp? x)
(if (or (not (feature-value (head phrase) 'theta))

(member (feature-value (head phrase) 'theta)
'(cp np-cp subjectless-cp)))

t
(fail))))))

(i2
;; Assign roles from tensed verbs to their subjects.
(let ((iO (head (bar-node phrase)))

(vO (head (bar-node (complement (bar-node phrase))))))
(unless (or (and (iO? iO) (eq '+ (feature-value iO 'passive)))

(eq 'subjectless-cp (feature-value vO 'theta)))
(set!-local (phrase-theta-role (core-phrase (spec-of phrase))) 'SUBJECT))))))
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phrase))

(deffilter THETA-CRITERION ((chains CHAIN-FORMATION) THETA-ROLE-ASSIGNMENT)

;; Enforce criterion that every chain receive exactly one thematic role.
(unless (every #'(lambda (chain)

(I (count-if 8V(lambda (phrase)
(phrase-theta-role (core-phrase phrase)))

chain)))

chains)
(reject)))

B.11 Basic Chain Formation

;;; Chain Formation. The process of chain formation automatically handles
;;; subjacency, though this could be removed. The particular algorithm borrows

;;; loosely from that found in Sandivay Fong's PhD thesis.

(defstruct chain-state

(partial-chains nil :type list)
(free-phrases nil :type list)
(completed-chains nil :type list)

(marked-things nil :type list))

(defgenerator CHAIN-FORMATION ((tree PHRASE-STRUCTURE))

;; The result of CHAIN-FORMATION is a set (list) of chains, each a list
;; of noun phrases linked by movement.
(let ((result (do-chain-formation tree)))

(unless (or (chain-state-partial-chains result)
(chain-state-free-phrases result))

(return-result (chain-state-completed-chains result)))))

(defun get-chain-index (phrase chains)
(position (core-phrase phrase) chains :test V'member))

(defndm do-chain-formation ((phrase) phrase)
(case (length (phrase-daughters phrase))

(0 (if (np? phrase)

(if (empty? phrase)
(either (make-chain-state :partial-chains (list (list phrase)))

(make-chain-state :free-phrases (list phrase))
(make-chain-state :completed-chains (list (list phrase))))

(either (make-chain-state :free-phrases (list phrase))
(make-chain-state :completed-chains (list (list phrase)))))

(make-chain-state)))
(1 (subjacency-mark

(if (and (np? phrase)
(eq (core-phrase phrase) phrase))

(merge-higher-np phrase (do-chain-formation (first (phrase-daughters phrase))))

(do-chain-formation (first (phrase-daughters phrase))))
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phrase))
(otherwise
(subjacency-mark

(if (and (np? phrase)
(eq phrase (core-phrase phrase)))

(merge-higher-np phrase (do-multiple-chain-formation (phrase-daughters phrase)))
(do-multiple-chain-formation (phrase-daughters phrase)))

phrase))))

(defun subjacency-mark (result potential-bounding-phrase)
(if (member (phrase-category potential-bounding-phrase) *bounding-nodes*)

(if (or (intersection (mapcar #'car (chain-state-partial-chains result))
(chain-state-marked-things result))

(intersection (chain-state-free-phrases result)
(chain-state-marked-things result)))

(fail);; Already marked, now passing through second bounding node.
(make-chain-state :partial-chains (chain-state-partial-chains result)

:free-phrases (chain-state-free-phrases result)
:completed-chains (chain-state-completed-chains result)
:marked-things
(set-difference

(append (chain-state-free-phrases result)

(mapcar #'car (chain-state-partial-chains result)))
(all-parts potential-bounding-phrase))))

result))

(defun do-multiple-chain-formation (list-of-daughters)

(if (null (cdr list-of-daughters))

(do-chain-formation (first list-of-daughters))
(let ((resultl (do-chain-formation (first list-of-daughters)))

(result2 (do-multiple-chain-formation (rest list-of-daughters))))
;; Do we want to rule out cases with Free Phrases (because of
;; the c-command requirement)? Let's go for it!

(let ((chain (merge-chain-formations resultl result2)))
(if (chain-state-free-phrases chain)

(fail)

chain)))))

(defun merge-chain-formations (resultl result2)
(let ((completed-chains (append (chain-state-completed-chains resultl)

(chain-state-completed-chains result2))))
(let ((cl (submerge (chain-state-partial-chains resultl)

(chain-state-free-phrases result2)
completed-chains
(chain-state-marked-things result2)

(chain-state-marked-things resulti))))
(let ((c2 (submerge (chain-state-partial-chains result2)

(chain-state-free-phrases resultl)
(third cl)
(chain-state-marked-things resultl)
(chain-state-marked-things result2))))

(make-chain-state :partial-chains (append (first cl) (first c2))
:free-phrases (append (second cl) (second c2))
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:completed-chains (third c2)
:marked-things (append (chain-state-marked-things resultl)

(chain-state-marked-things result2)))))))

(defun merge-higher-np (phrase result)
(either (make-chain-state :partial-chains (chain-state-partial-chains result)

:free-phrases (cons phrase (chain-state-free-phrases result))
:completed-chains (chain-state-completed-chains result)
:marked-things (chain-state-marked-things result))

(make-chain-state :partial-chains (chain-state-partial-chains result)
:free-phrases (chain-state-free-phrases result)
:completed-chains (cons (list phrase)

(chain-state-completed-chains result))

:marked-things (chain-state-marked-things result))))

(defun submerge (partial-chains free-phrases completed-chains marked-free-phrases

marked-partial-chains)
(either (list partial-chains free-phrases completed-chains)

(let ((free-phrase (a-member-of free-phrases))
(partial-chain (a-member-of partial-chains)))

(if (and (member free-phrase marked-free-phrases)
(member (car partial-chain) marked-partial-chains))

(fail) ;; Subjacency

(let ((new-chain (cons free-phrase partial-chain))
(old-free-phrases (remove free-phrase free-phrases))
(old-partial-chains (remove partial-chain partial-chains)))

(either (submerge old-partial-chains

old-free-phrases
(cons new-chain completed-chains)

marked-free-phrases

marked-partial-chains)

(if (empty? free-phrase)
(submerge (cons new-chain old-partial-chains)

old-free-phrases

completed-chains
marked-f;.ee-phrases

marked-partial-chains)
(fail) M))))

B.12 Correa Chain Formation

;;; Correa's deterministic Chain Formation. See "Empty Categories, Chains, and Parsing"

;;; in R.C.Berwick et al, Principle Based Parsing (1991).

(defgenerator CHAIN-FORMATION ((tree PHRASE-STRUCTURE) THETA-ROLE-ASSIGNMENT ANAPHOR? PRONOMINAL?)
(let ((result (get-chains tree)))

(unless (or (first result) (second result))
(return-result (third result)))))
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(defun get-chain-index (phrase chains)
(position (core-phrase phrase) chains :test #'meaber))

(defun get-chains (phrase)
;; Return: (PARTIAL-A-CHAIN PARTIAL-ABAR-CHAIN COMPLETED-CHAINS)

(let ((result
(cond ((and (ip? phrase) (core-phrase? phrase) (find-if S'np? (phrase-daughters phrase)))

(let* ((iM (bar-node phrase))
(il-chains (get-chains ii))

(np (spec ii))

(np-chains (get-chains np)))
(if (and (not (and (variable? np) (second il-chains)))

(not (and (first il-chains) (phrase-theta-role (core-phrase np))))
(or (first il-chains) (phrase-theta-role (core-phrase np))))

(list (if (np-trace? np) (cons (core-phrase np) (first il-chains)) nil)

(if (variable? np)
(cons (core-phrase np) (first il-chains))

(second il-chains))
(if (or (np-trace? np) (variable? np))

(third il-chains)
(cons (cons (core-phrase np) (first il-chains))

(append (third il-chains) (third np-chains)))))
(fail))))

((cp? phrase)
(if (np? (spec (bar-node phrase)))

(let* ((np (spec (bar-node phrase)))
(np-chains (get-chains np))

(cl (bar-node phrase))
(cl-chains (get-chains cl)))

(if (and (second cl-chains)

(or (variable? np) (operator? np)))
(list (first cl-chains)

(if (variable? np) (cons (core-phrase np) (second cl-chains)) nil)
(if (variable? np)

(third cl-chains)

(cons (cons (core-phrase np) (second cl-chains))
(append (third np-chains) (third cl-chains)))))

(fail)))
(let* ((ci (bar-node phrase))

(cl-chains (get-chains ci)))
(if (not (second cl-chains))

cl-chains
(fail)))))

((find-if #'np? (phrase-daughters phrase))
(let* ((o (find-if-not #Vnp? (phrase-daughters phrase)))

(o-chains (get-chains o))

(np (find o (phrase-daughters phrase) :test-not #'eq))
(np-chains (get-chains rip)))

(if (and (not (and (variable? np) (second o-chains)))

(not (and (np-trace? np) (first o-chains))))
(list (if (np-trace? np) (list (core-phrase np)) (first o-chains))

(if (variable? np) (list (core-phrase np)) (second o-chains))
(if (or (np-trace? np) (variable? np))



A P P E N D IX B . P A R S E R C O D E ( d h

(third a-chains)

(cons (list (core-phrase np))
(append (third o-chains) (third np-chains)))))

(fail))))
((= 2 (length (phrase-daughters phrase)))
(let ((ol (get-chains (first (phrase-daughters phrase))))

(o2 (get-chains (second (phrase-daughters phrase)))))
(if (and (not (and (first ol) (first o2)))

(not (and (second ol) (second o2))))
(list (or (first ol) (first o2))

(or (second ol) (second o2))
(append (third ol) (third o2)))

(fail))))
((= 1 (length (phrase-daughters phrase)))
(get-chains (first (phrase-daughters phrase))))

(t (list nil nil nil))))
result))

B.13 Free Indexing

(defgenerator FREE-INDEXING ((list-of-chains CHAIN-FORMATION))
;; Return a list of chain sets, that looks like

;; ((REFERENTIAL-INDEX-i CHAIN-i-i CHAIN-1-2 ... )

;; (REFERENTIAL-INDEX-2 CHAIN-2-1 ... )
;; )

;; where each referential index is an integer and each chain is a list
;; of phrases. The chains paired with a referential index all co-refer.

(when list-of-chains
(return-result

(loop for integer-set in (freely-index (length list-of-chains))
for referential-index from 1
collect (cons referential-index

(mapcar #'(lambda (i) (nth i list-of-chains))
integer-set))))))

(defndmemo freely-index ((n) 0 eql)
;; Nondeterministically return a partition on the integers 0 through
;; N-I. Each partition is a list of lists of integers. For example, the
;; five values returned by (freely-index 3) are

((2) (1) (0))
;; ((2 i) (0))
;; ((2 0) (1))
;; ((2) (0 0))
;; ((2 0 0))
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(unless (zerop n)
(let ((indexing (freely-index (1- n))))

(either
;; Put integer into its own partition.
'((,(1- n)) ,@indexing)

Put integer into some existing partition.
(let ((index-set-to-merge-with (a-member-of indexing)))

'((,(1- n) ,Qindex-set-to-merge-with)
,G(remove index-set-to-merge-with indexing)))))))

(defun get-index (phrase index-list)
(car (find (core-phrase phrase) index-list

:key #'cdr
:test #'(lambda (p chain-list)

(some #'(lambda (chain) (member p chain)) chain-list)))))

(defun get-phrases-with-index (index index-list)
(apply #'append (mapcar #'all-parts (apply #'append (cdr (assoc index index-list))))))

B.14 Functional Determination Filter

(deffilter FUNCTIONAL-DETERMINATION ((chains CHAIN-FORMATION)
(tree PHRASE-STRUCTURE)
(indices FREE-INDEXING)
ANAPHOR?
PRONOMINAL?)

;; Enforce the effects of Functional Determination.
;; For a description of the theory of functional determination,
;; see Chomsky "Some Concepts and Consequences of the Theory
;; of Govenment and Binding", pg. 34.
(map-up-phrase-structure
tree (phrase)
(when (and (np? phrase) (empty? phrase) (not (operator? phrate)))

(when (a-position? phrase)
(let ((lb (local-binder phrase indices tree)))

(if (and lb (a-bar-position? Ib))
(unless (variable? phrase)

(reject))
(when (variable? phrase)

(reject)))
(unless (variable? phrase)

(unless (is-anaphor? phrase)
(reject))

(when (or (null lb)
(and (a-position? lb)

(not (eql (get-chain-index lb chains)
(get-chain-index phrase chains)))))

(unless (is-pronominal? phrase)
(reject)))))))))
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B.15 Subjacency, I-within-I

(deffilter I-WITHIN-I ((indices FREE-INDEXING))

(dolist (index-set indices)
(let ((all-daughter-phrases nil)

(all-indexed-phrases nil))
(dolist (chain (cdr index-set))

(dolist (phrase chain)
(if (member phrase all-daughter-phrases)

(reject)
(labels ((add-phrase (p)

(when (member p all-indexed-phrases)
(reject))

(unless (member p all-daughter-phrases)

(push p all-daughter-phrases)
(mapc #'add-phrase (phrase-daughters p)))))

(add-phrase phrase)

(push phrase all-indexed-phrases))))))))

(defparameter *bounding-nodes* '(i2 n2))

(deffilter subjacency ((chains CHAIN-FORMATION))
;; Enforce the subjacency requirement on chains.

(dolist (chain chains)
(mapl #'(lambda (chain-part)

(let ((phrasel (first chain-part))
(phrase2 (second chain-part)))

(when (and phrasel phrase2)

(unless (subjacent? phrasel phrase2)
(reject)))))

chain)))

(defun subjacent? (phrasel phrase2)
(let ((ppl (all-phrase-parents phrasel))

(pp 2 (all-phrase-parents phrase2)))
(let ((sl (set-difference ppl pp2))

(s2 (set-difference pp2 ppl)))
(> 2 (max (count-if #'(lambda (phrase)

(member (phrase-category phrase) *bounding-nodes*)) sl)
(count-if #'(lambda (phrase)

(member (phrase-category phrase) *bounding-nodes*)) s2)

B.16 License Chains

(defoption '*little-pro* nil "Little pro" :generator)

(deffilter LICENSE-CHAINS ((chains CHAIN-FORMATION) ANAPHOR? PRONOMINAL?)
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;; Enforce various conditions on chains and empty categories.
(dolist (chain chains)

;; At least one trace per chain.
(when (> (length chain) 1)

(unless (some #'(lambda (v) (and (empty? v) (eq '- (phrase-pronominal? v))))
chain)

(reject)))
;; Operators must bind variables.
(if (and (some #'operator? chain)

(not (some #'variable? chain)))
(reject))

;; If there is an operator, it must be at head of chain.
(if (or (> (count-if #'operator? chain) 1)

(some #'operator? (rest chain)))
(reject))

; h-trace in Comp must be licensed by an operator.
(if (some #'(lambda (c) (and (variable? c) (c-spec? c))) chain)

(unless (some #'operator? chain)
(reject)))

English does not have -anaphor, +pronominal empty categories.
(unless *little-pro*

(if (some #'(lambda (v)
(and (empty? v)

(eq '- (phrase-anaphor? v))
(eq '+ (phrase-pronominal? v))))

chain)
(reject)))

(let ((head (first chain)))
;; Only lexical items, operators, variables, PRO and pro may head a chain.
(unless (or (not (empty? head)) (eq (phrase-pronominal? head) '+) (variable? head)

(operator? head))
(reject)))))

B.17 Operator Assignment

(defgenerator OPERATOR-ASSIGNMENT ((phrase PHRASE-STRUCTURE))
;; Make empty categories in operator position be operators by setting their
;; anaphoric and pronominal values to be "o" instead of either + or -.
(return-result (operator-assigner phrase)))

(defun operator-assigner (phrase)
(dolist (daughter (phrase-daughters phrase))

(operator-assigner daughter))
(when (and (c-spec? phrase) (empty? phrase))

(let ((value (if (np? (spec (phrase-parent phrase))) 'o '-)))
(set!-local (phrase-anaphor? phrase) value)
(set!-local (phrase-pronominal? phrase) value)))

phrase)
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B.18 Other Modules

(deffilter coindex-operator ((tree PHRASE-STRUCTURE) (indices FREE-INDEXING))
(map-up-phrase-structure

tree (phrase :daughters daughters)
(when (and (np? phrase) (= 2 (length daughters))

(find-if #'np? daughters) (find-if #'cp? daughters))
;; PHRASE is a NP with an CP daughter that contains an operator.
(let ((operator (spec-of (find-if #'cp? daughters))))

(unless (and (np? operator)

( (get-index (find-if #'np? daughters) indices)
(get-index operator indices)))

(reject))))))

(defoption '*lexical-np-in-comp* nil "Lexical NP in Comp")

(defun comp-checker-special (phrasel phrase2 category)

;; Return T if comp is OK.
(let ((phrases (list phrasel phrase2)))

(not (cond ((eq category 'c2)

(let ((np (find-if #'np? phrases))
(cl (find-if #'cl? phrases)))

(and np cl

(or
;; Preveit lexical NP and lexical C in comp.

(and (not (empty? np)) (cO? (head cl)))

;; Lexical NP must be +wh.

(not (or (empty? np) *lexical-np-in-comp* (eq '+ (feature-value np 'wh))))

;; Prevent I unless accompanied by lexical NP in comp.

(and (iO? (head cl)) (empty? np))))))
((eq category 'n2)

;; Prevent name or pronoun in relative clause.
(let ((np (core-phrase (find-if S'np? phrases)))

(c2 (find-if #'cp? phrases)))

(and np c2
(or (feature-value np 'r-expression)

(feature-value np 'pronoun)
(feature-value np 'anaphor)))))))))

(defun comp-checker-special-2 (phrasel phrase2 category)
;; Return T if OK.

(let ((phrases (list phrasel phrase2)))
(not (cond ((eq category 'c2)

(let ((np (find-if #'np? phrases))

(cl (find-if V'ci? phrases)))
(and np cl

(or

;; Prevent lexical NP and lexical C in comp.

(and (not (empty? np)) (cO? (head ci)))
;; Lexical NP must be +wh.
(not (or (empty? np) *lexical-np-in-comp* (eq '+ (feature-value np 'wh))))
;; Prevent I unless accompanied by lexical NP in comp.
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(and (iO? (head ci)) (empty? np))))))

((eq category 'n2)
;; Prevent name or pronoun in relative clause.

(let ((np (core-phrase (find-if S'np? phrases)))
(c2 (find-if S'cp? phrases)))

(and np c2
(or (feature-value np 'r-expression)

(feature-value np 'pronoun)

(feature-value np 'anaphor)))))))))

(defun comp-checker-special-I (phrase category)

;; Return T if OK.
(not (cond ((eq category 'c2)

(let ((cl phrase))
(iO? (head ci))))

(t nil))))

B.19 General Utility Functions

(defparameter *heads* '(aO nO vO dO cO p0 iO p0))

(defparameter *Icats* '(al ni vi dI cl pl il))
(defparameter *2cats* '(a2 n2 v2 d2 c2 p2 i2))

(defun np? (phrase) (and phrase (eq (phrase-category phrase) 'n2)))

(defun cp? (phrase) (and phrase (eq (phrase-category phrase) 'c2)))

(defun cl? (phrase) (and phrase (eq (phrase-category phrase) 'ci)))
(defun cO? (phrase) (and phrase (eq (phrase-category phrase) 'cO)))
(defun ip? (phrase) (and phrase (eq (phrase-category phrase) 'i2)))

(defun il? (phrase) (and phrase (eq (phrase-category phrase) 'il)))

(defun iO? (phrase) (and phrase (eq (phrase-category phrase) 'iO)))
(defun vp? (phrase) (and phrase (eq (phrase-category phrase) 'v2)))

(defun v1? (phrase) (and phrase (eq (phrase-category phrase) 'vi)))

(defun pl? (phrase) (and phrase (eq (phrase-category phrase) 'p1)))

(defun level-O? (phrase) (member (phrase-category phrase) *heads*))

(defun level-i? (phrase) (member (phrase-category phrase) *Icats*))

(defun level-2? (phrase) (member (phrase-category phrase) 42cats*))

(defun complement? (phrase) (eq phrase (complement phrase)))

(defun head? (phrase) (eq phrase (head phrase)))

(defun spec? (phrase) (eq phrase (spec phrase)))

(defun empty? (phrase)
;; Is PHRASE lexically realized?
(and (null (phrase-daughters phrase))

(not (word? phrase))))

(defun word? (phrase)
;; Is PHRASE a lexically realized word?

(feature-value phrase 'word))
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(defun c-spec? (phrase)
:; Is PHRASE in Spec of C?
(and (cp? (phrase-parent phrase)) (spec? phrase)))

(defun operator? (phrase)
;; Is PHRASE an operator?

(and (c-spec? phrase)

(or (not (empty? phrase))

(and (eq 'o (phrase-anaphor? phrase))

(eq 'o (phrase-pronominal? phrase))))))

(defun variable? (phrase)

;; Is PHRASE a variable (-pro, -ana empty category).

(and (np? phrase)
(empty? phrase)

(eq '- (phrase-anaphor? phrase))

(eq '- (phrase-pronominal? phrase))))

(defun np-trace? (phrase)

;; Is PHRASE an NP-trace (-pro, +ana empty citegory)

(and (np? phrase)
(empty? phrase)

(eq '+ (phrase-anaphor? phrase))

(eq '- (phrase-pronominal? phrase))))

(defun r-expression? (phrase)

;; Is PHRASE an R-expression?

(and (not (empty? phrase))

(eq '+ (feature-value phrase 'r-expression))))

(defun is-lexically-governed? (phrase)

;; Nothing fancy- no barriers.

(let ((pp (phrase-parent phrase)))

(or (and (vi? pp) (complemer.t? phrase))

(and (p1? pp) (complement? phrase))

(and (ip? pp) (spec? phrase)

(not (eq '- (feature-value (head (bar-node phrase)) 'tense)))))))

(defun core-phrase (phrase)

;; Gets at core phrase for adjunction phenomena. For instance, when applied

;; to [INP [NP] [PP]) returns the inner NP.

(when phrase

(let ((potential-core (find (phrase-category phrase) (phrase-daughters phrase)

:key # 'phrase-category)))

(if potential-core

(core-phrase potential-core)

phrase))))

(defun core-phrase? (phrase)

;; Is PHRASE a core, or is it the result of some adjunction?

(not (adjunction? phrase)))

(defun adjunction? (phrase)
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;; Is PHRASE the result of ad unction?
(when phrase

(find (phrase-category phrase) (phrase-daughters phrase) :key #'phrase-category)))

(defun complement (phrase)

Given the standard x-bar structure
[Y ... [X2 SPEC [Xl HEAD COMP]]], for input

; ; Xl return COMP

X2 return (complement Y)

;; HEAD return COMP
COMP return COMP

; ; SPEC return (complement Y)

(when phrase

(cond ((level-i? phrase)

;; Check that it's not adjunction
(if (find-if #'level-O? (phrase-daughters (core-phrase phrase)))

(find-if #'level-2? (phrase-daughters (core-phrase phrase)))))

((level-O? phrase)
(complement (phrase-parent phrase)))

((level-2? phrase) (complement (phrase-parent phrase))))))

(defun spec (phrase)

; iven the standari x-bar structure

[X2 SPEC [XI HEAD COMP]], for input

;; X1 return SPEC

SPEC return SPE,`
;; otherwise return nil.

(when phrase

(let ((pp (phrase-parent phrase)))

(and pp (level-2? pp) (find-if-not #'level-l? (phrase-daughters pp))))))

(defun spec-of (phrase)

;; Giv n the standard x-bar structure

;; [X2 SPEC [Xl HEAD COMP]], for input

;; X2 return SPEC
; ; otherwise return nil.

(when phrase

(and (level-2? phrase) (find-if-not #'level-l? (phrase-daughters phrase)))))

(defun head (phrase)

;; Given the standard x-bar structure
;; [Y [X2 SPEC [X1 HEAD COMP]]], for input

; ; X1 return HEAD

;; HEAD return HEAD
;; COMP return HEAD

; ; otherwise return nil.
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(when phrase
(cond ((level-I? phrase)

(find-if U'level-O? (phrase-daughters (core-phrase phrase))))

((phrase-parent phrase)
(let ((pp (phrase-parent phrase)))

(when (level-i? pp)

(head pp)))))))

(defun bar-node (phrase)
;; Given the standard x-bar structure

;; [Y [X2 SPEC [X1 HEAD COMP]]], for input

;; X2 return XI
;; COMP return (bar-node COMP)
;; SPEC return Xl

;; otherwise return nil.

(when phrase
(or (and (level-2? phrase)

(find-if #'level-1? (phrase-daughters phrase)))
(let ((pp (phrase-parent phrase)))

(and pp (level-2? pp) (core-phrase (find-if #'level-1? (phrase-daughters pp))))))))

(defun all-parts (phrase)
Return a list of all phrases that have resulted from adjunction to
the core phrase of PHRASE.

(labels ((all-parts-i (phrase)

(cons phrase
(if (and (phrase-parent phrase)

(eq (phrase-category (phrase-parent phrase))

(phrase-category phrase)))
(all-parts-i (phrase-parent phrase))))))

(all-parts-1 (core-phrase phrase))))

(defun top-part (phrase)
;; Return the largest phrase that has resulted from adjunction to PHRASE.

(if (and (phrase-parent phrase)
(eq (phrase-category (phrase-parent phrase))

(phrase-category phrase)))
(top-part (phrase-parent phrase))

phrase))

(defun a-position? (pphrase)

;; Is PPHRASE in an argument position?
;; This is defined as: Subject, Object, or Object of Preposition (for now).
(let ((phrase (top-part pphrase)))

(let ((pp (phrase-parent phrase)))

(and pp (eq pp (core-phrase pp))

(or (and (ip? pp) (spec? phrase))

(and (vl? pp) (complement? phrase))
(and (pl? pp) (complement? phrase)))))))
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(defun a-bar-position? (phrase)
;; Is PHRASE in a non-argument position?

(not (a-position? phrase)))

(defun all-phrase-parents (phrase)
(labels ((all-phrase-parents-I (phrase)

(unless (null (phrase-parent phrase))
(cons (phrase-parent phrase) (all-phrase-parents-I (phrase-parent phrase))))))

(all-phrase-parents-i (top-part phrase))))

(defun feature-value (phrase feature)

(cdr (assoc feature (phrase-inherent-features phrase))))

B.20 Tree Structure Walkers

Failures can not always be attributed directly to nodes in a
;; phrase structure tree, but only to nodes in combination with

features assigned by generators. For instance, in the structure

,; Who did you [VP see [NP +anaphorJ]

,,; the empty category [NP +anaphor) illegally receives case. It
;;; would be nice to use mstructures to fail all trees containing the
;;; VP, but the blame really lies with the combination of the case

;,; assigning verb AND the assignment of the +anaphor feature to the

;; empty NP.

;;; The following facilities provide functions that can be used when
;; performing destructive operations like assignment of anaphoric

;; properties to build tree-like mstructures, so that when such a
failure occurs there is a specific node that can be rejected,

;; potentially saving a great deal of effort if other paths also
; contain the same node.

(defmstructure (virtual-phrase :allow-dependencies t)
((real-phrase :initarg :real-phrase :accessor virt-phr-real-phrase :type phrase)
(virtual-phrase-daughters :initarg :daughters :accessor virt-phr-daughters

:type (list virtual-phrase))
(value :initarg :value :accessor virt-phr-value))

0
)

(defmacro virtual-map-up-phrase-structure ((phrase function) &rest body)
;; Create "virtual" phrase structure, as described above, so that
;; "reject" can kill many threads at once. The code BODY is

;; executed to non-deterministically produce values, potentially
;; executing side-effects. The code is presumed to apply to the node PHRASE
;; and the function FUNCTION is then executed on the daughters of PHRASE to
;; produce more values. For example,
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;; (defndm! assign-case ((phrase) phrase)

;; (virtual-map-up-phrase-structures
(phrase assign-case)

(when _
(set!-local (phrase-case phrase) (either :accusative :oblique)))))

(let ((phrase-symbol (gensym "phrase-"))
(daughters-symbol (gensym "daughters-")))

'(let ((,phrase-symbol ,phrase))
(let ((,daughters-symbol

(case (length (phrase-daughters ,phrase-symbol))

(0 nil)
(1 (list (,function (first (phrase-daughters ,phrase-symbol)))))
(2 (list (,function (first (phrase-daughters ,phrase-symbol)))

(,function (second (phrase-daughters ,phrase-symbol))))))))
(let ((value (progn ,Qbody)))

(let ((virtual-phrase

(make-instance 'virtual-phrase

:daughters ,daughters-symbol
:real-phrase ,phrase-symbol :value value)))

(dolist (daughter ,daughters-symbol)
(is-part-of daughter virtual-phrase))

virtual-phrase))))))

(defmacro virtual-phrase-map
(virtual-phrase (phrase &key category daughters virtual) &rest body)

;; This macro uses the same syntax as MAP-UP-PHRASE-STRUCTURE (see
;; below). It applies to virtual trees produced with

VIRTUAL-MAP-UP-PHRASE-STRUCTURE, rooted with the virtual phrase
;; VIRTUAL-PHRASE. If VIRTUAL is provided, BODY is executed with

;; the symbol VIRTUAL bound to the current virtual phrase, which can
;; be rejected. Alternatively, VIRTUAL-REJECT can be used (see

;; below). For example,

;; (deffilter case-filter ((virtual-tree CASE-ASSIGNMENT))
;; (virtual-phrase-map virtual-tree (phrase)

(when (case-not-assigned? phrase)
;; Reject parent of PHRASE.

(virtual-reject 1))))

(let ((virt-phr-symbol (gensym "virt-phr-")))
'(virtual-map-over-phrase-structure-fn

*' (lambda (,virt-phr-symbol list-sf-previous-virtual-phrases)
list-of-previous-virtual-phrases

(let ((,phrase (virt-phr-real-phrase ,virt-phr-symbol))

,Q(if category
'((,category (phrase-category

(virt-phr-real-phrase ,virt-phr-symbol)))))

,O(if daughters

'((,daughters (phrase-daughters
(virt-phr-real-phrase ,virt-phr-symbol)))))

,Q(if virtual '((,virtual ,virt-phr-symbol))))
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,Obody) )
,virtual-phrase nil)))

(defmacro virtual-reject (&optional (number 0))
Reject current "virtual" phrase. See above. If NUM4BER is provided then

;;the nth parent is rejected.
'(reject (or (nth ,number list-of-previous-virtual-phrases)

(first list-of-previous-virtual-phrases))))

(defun virtual-nap-over-phrase-structure-fn (function virtual-phrase previous-list)
(let ((new-list (cons virtual-phrase previous-list)))

(dolist (daughter (virt-phr-daughters virtual-phrase'))
(virtual-map-over-phrase-structure-fn function daughter new-list))

(funcall function virtual-phrase new-list)))

,;Macro Facilities for mapping over phrase structure trees.

(defmacro nap-up-phrase-structure (top-phrase (phrase Jtkey category daughters)
&rest body)

Map over every node in the phrase structure tree with root
;;TOP-PHRASE, from the bottom of the tree up, executing for each
;;node the deterministic code BODY in an environment with the
;;symbol PHRASE bound to the current NODE, and the symbol CATEGORY
;;bound to that phrase's category, and the symbol DAUGHTERS bound
;;to the list of that phrase's daughter nodes.

'(map-up-phrase-structure-fn
1'(lambda (,Phrase)

(let (,@(if category '((,category (phrase-category ,phrase))))
,*(if daughters '((,daughters (phrase-daughters ,phrase)))))

,Qbody))
,top-phrase))

(defmacro nap-up-phrase-structure-nd (top-phrase (phrase fkey category daughters)
&rest body)

;;Map over every node in the phrase structure tree with root
;;TOP-PHRASE, from the bottom of the tree up, executing for each
;;node the non-deterministic code BODY in an environment with the
;;symbol PHRASE bound to the current NODE, and the symbol CATEGORY
;;bound to that phrase's category, and the symbol DAUGHTERS bound
;;to the list of that phrase's daughter nodes.

'(map-up-phrase-structure-fn-nd
#'(lambda (,phrase)

(let (,Q(if category '((,category (phrase-category ,phrase))))
,Q(if daughters '((,daughters (phrase-daughters ,phrase) ))))

,ftody))
,top-phrase))

(defmacro nap-down-phrase-structure (top-phrase (phrase fkey category daughters)
&rest body)

;;Map over every node in the phrase structure tree with root
;;TOP-PHRASE, from the top of the tree down, executing for each
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;; node the deterministic code BODY in an environment with the

;; symbol PHRASE bound to the current NODE, and the symbol CATEGORY
;; bound to that phrase's :ategory, and the symbol DAUGHTERS bound

to the list of that phrase's daughter nodes.

'(map-down-phrase-structure-f n
8' (lambda (,phrase)

(let (,A(if category '((,category (phrase-category ,phrase))))

,@(if daughters '((,daughters (phrase-daughters ,phrase)))))
,$body))

,top-phrase))

(defmacro map-down-phrase-structure-nd (top-phrase (phrase kkey category daughters)

&rest body)

;; Map over every node in the phrase structure tree with root
TOP-PHRASE, from the top of the tree down, executing for each

node the non-deterministic code BODY in an environment with the

symbol PHRASE bound to the current NODE, and the symbol CATEGORY

;; bound to that phrase's category, and the symbol DAUGHTERS bound
;; to the list of that phrase's daughter nodes.

'(map-down-phrase-structure-fn-nd
8' (lambda (,phrase)

(let (,C(if category '((,category (phrase-category ,phrase))))

,Q(if daughters '((,daughters (phrase-daughters ,phrase)))))
,Qbody))

,top-phrase))

(defun map-up-phrase-structure-fn (function phrase)

(dolist (daughter (phrase-daughters phrase))

(map-up-phrase-structure-fn function daughter))
(funcall function phrase))

(defun map-down-phrase-structure-fn (function phrase)
(funcall function phrase)

(dolist (daughter (phrase-daughters phrase))
(map-down-phrase-structure-fn function daughter)))

(defun map-up-phrase-structure-fn-nd (function phrase)
(dolist (daughter (phrase-daughters phrase))

(map-up-phrase-structure-fn-nd function daughter))

(funcall-nondeterministic function phrase))

(defun map-down-phrase-structure-fn-nd (function phrase)

(funcall-nondeterministic function phrase)

(dolist (daughter (phrase-daughters phrase))
(map-down-phrase-structure-fn-nd function daughter)))

,;; Provide a function for finding minimal phrases meeting certain conditions.

;;; This is useful for binding theory.

(defun minimal-phrase-containing (phrase-list &key (restricted-to t))

;; Return the small phrase strictly containing all the phrases in
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;; PHRASE-LIST, such that the phrase also is of type RESTRICTED-TO,

;; should that argument be provided.
(let ((smallest-containers

(mapcar #'(lambda (phrase)
(first-parent-restricted-to phrase restricted-to))

phrase-list)))
(let ((minimal-phrase (first smallest-containers)))

(dolist (starting-phrase (rest smallest-containers))

(do ((phrase starting-phrase (phrase-parent phrase)))
((or (null phrase) (eq phrase minimal-phrase))

(if (null phrase) (setq minimal-phrase phrase)))))

minimal-phrase)))

(defun first-parent-restricted-to (phrase category-restrictions)
;; Find the smallest phrase strictly containing PHRASE and of a
;; category found in the list CATEGORY-RESTRICTIONS.

(let ((parent (phrase-parent phrase)))
(unless parent (fail))
(if (or (eq category-restrictions t)

(member (phrase-category parent) category-restrictions))
parent

(first-parent-restricted-to parent category-restrictions))))
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