
LOAN DOCUMENT
PHOTOGRAPH THIS SHEET

___EVEI INVENTORY

DOCUMENT IDENTIFICATION

A
N
D

DISTRIBUTION STATEMENT L

UNANNOUNCED 13
JUSTIFICATION

SIi

DISTRIBUTION/ T
AVAILABIUTY CODES
DISTIBUTION~ AvAiLADiLry AND/oR SPEIAL H

DATE ACCESSIONED

_ _ _ _ _ c

A
DISTRIBUTION STAMP

R
E

DATE RETURNED

i -94-07743

DATE RECEIVED IN DTIC REGISTERED OR CERTIFIED NUMBER

PHOTOGRAPH THIS SHEET AND RETURN TO DTIC-FDAC

OTIC 70A DOC•-•I•NT PROCESSING SHEET
LOANr X DO CXUMEN
LOAN DOCUMENT

WL-TR--94-103 3

A FRAMEWORK FOR DEVELOPING AND
MANAGING REUSABLE AVIONICS SOFTWARE

DR. RAGHAVA G. GOWDA

SEPTEMBER 1993

FINAL REPORT FOR 05/01/93-09/01/93

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION IS UNLIMITED.

AVIONICS DIRECTORATE
WRIGHT LABORATORY
AIR FORCE MATERIEL COMMAND
WRIGHT PATTERSON AFB OH 45433-7409

1 MAR 3

NOTICE

When Government drawings, specifications, or other data are used for
any purpose other than in connection with a definitely Government-related
procurement, the United States Government incurs no responsibility or any
obligation whatsoever. The fact that the government may have formulated or
in any way supplied the said drawings, specifications, or other data, is not
to be regarded by implication, or otherwise in any manner construed, as
licensing the holder, or any other person or corporation; or as conveying
any rights or permission to manufacture, use, or sell any patented invention
that may in any way be related thereto.

This report is releasable to the National Technical Information Service
(NTIS). At NTIS, it will be available to the general public, including

foreign nations.

This technical report has been reviewed avd is approved for publica-
tion.

Project Engineer Chief, WL/AAAF-3
WL/AAAF-3

Chief, WL/AAAF

If your address has changed, if you w-ish to be removed from our mailing
list, or if the addressee is no longer employed by your organization please
notify WL/AAAF, WPAFB, OH 45433-6543 to help us maintain a current

mailing list.

Copies of this repuLt should not be returned unless return is required by
security considerations, contractual obligations, or notice on a specific

document.

SEP 1993 FINAL 05/01/93--09/01/93
A FRAMEWOJ.iK FOR DEVELOPING AND

MANAGING REUSABLE AVIONICS SOFTWARE C
PE
PR 9994
TA 00

DR. RAGHAVA G. GOWDA WU 00

AVIONICS DIRECTORATE
WRIGHT LABORATORY
AIR FORCE MATERIEL COMMAND
WRIGHT PATTERSON AFB OH 45433-7409

AVIONICS DIRECTORATE
WRIGHT LABORATORY WL-TR-94-1033
AIR FORCE MATERIEL COMMAND
WRIGHT PATTERSON AFB OH 45433-7409

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION IS
UNLIMITED.

DEVELOPING REUSABLE SOFTWARE FOR AVIONICS SYSTEMS IS A
CHALLENGE TO SOFTWARE ENGINEERS. THE TASK INVOLVES FORE-
SEEING FUTURE APPLICATIONS, MODELING REAL-WORLD EVENTS,
USING APPROPRIATE CASE TOOLS THROUGHOUT THE DEVELOPMENT LIFE
CYCLE, AND PROVIDING FOR STORAGE AND RETRIEVAL OF REUSABLE
SOFTWARE COMPONENTS, BRIEFLY DESCRIBES THE SOFTWARE PROCESS
MATURITY MODEL AND THE INTEGRATION OF CASE TOOLS WITH THE
PROCESS MATURITY MODEL. IT ALSO IDENTIFIES TOOLS/TECHNIQUES
AND METHODOLOGIES FOR REAL-TIME SYSTEMS DEVELOPMENT,
EXAMINES CRITICAL ISSUES IN MANAGING SOFTWARE PROJECTS, AND
OFFERS THE MANAGEMENT A SET OF GUIDELINES TO INTRODUCE SOFT-
WARE ENGINEERING METHODOLOGIES.

23

UNCLASSIFIED UNCLASSIFIED UNCLASSIFIED UL

A Framework for Developing and Managing Reusable Avionics Software

Raghava G. Gowda, Ph.D.

Assist"an Professor

Department of Computer Science

University of Dayton

300 College Park

Day(on, OH 45469

F'nal Report for:.

Summer Faculty Research Program

Software Concepts Group (WL/AAF-3)

Avionics Directorate

Wright-Patterson Air Force Base

USAF Focal Point: Charles P. Satterthwaite

Sponsored by:

Air Force Office of Scientific Research

Bolling Air Force Base, Washington, D.C.

September 1993

5-1

ASC. 4 0430

A Framework for Developing and Managing Reusable Avionics Software

Raghava G. Gowda, Ph-D.

Assistant Professor

Department of Computer Science

University of Dayton

Developing reusable software for avionics systems is a challenge to software engineers. The task involves

foreseeing the future applications, modeling real-world events, using appropriate CASE tools throughout the

development life cycle, and providing for storage and retrieval of reusable software components. This report

presents a model for developing and managing reusable software components, briefly describes the software

process maturity model and the integration of CASE tools with the process maturity model It also identifies tools/

techniques and methodologies for real-time systems development, examines the critical issues in managing

software projects, and offers the management a set of guidelines to introduce software engineering methodologies

and CASE tools within the organization through a model project which may enforce standards for new projects.

5-2

A Framework for Developing and Managing Reusable Avionics Software

Raghava G. Gowda, Ph.D.

It has been a great opportunity for me to work at the Wright Laboratorys Avionics Logistics Branch.

During my stay, I had opportunities to do detailed literature survey on software reusability, go through some

documentation on some of the projects, talk to consultants assessing software process maturity of the branch,

interact with the software CASE tool vendors, talk to various project managers, and act as a consultant for one of

the projects under development using object-oriented approach

The initial objective of the summer research program was to study reusability issues in avionics software.

The approach taken was to do :

A. A detailed library search in reusability and identify design criteria for reusable software

B. Gather design details about reuse efforts such as Reusable Ada Avionics Software Packages (RAASP)

and Common Ada Missile Package (CAMP)

C. Summarize findings.

As it was not possmble to get complete information on these projects, the research effort was directed to

develop a framework for developing and controlling reusable software in the avionics domain. Based on my

research, and participation in weekly review meetings of a simulation project, and my observations during my stay

here, I would like to present a model for developing and managing any real-time software systems such as avionics

systems. The model would be applicable for laboratories which initiate, fund, and control projects as well as to

contractors who develop the systems.

Because the subject is broad, only a few aspects of it have been emphasized in this report. It is not

possible to offer detailed discussions due to page constraints. After defining the reusability of software, a life cycle

model is proposed which crcognizes maintenance and further development as a part of the development process.

This may be treated as a life cycle model of reusable software (or close to it). Then, the role of software maturity

model and CASE tools in software development is discussed and suggestions are offered for integration of CASE

tools acquisition and maturity model. A number of critical issues in managin software development tasks are

outlined. Finally, suggestions are offered to develop a model project within an organization using appropriate

methodologies and CASE tools. This will help an organization to attain higher levels in software process maturity

model and offer insights for managing and integrating various projects. This experience may form a foundation

for future reusable avionics software development tasks. The report consists of the following major topics:

5-3

1. Software Reusability

2. A Life Cycle Model for Reusable Software

3. Software Process Maturity Model for in-house management and external control.

4. CASE Tools

5. Software Process Maturity Model and Role of CASE Tools

6. Critical Issue in Managing Software Projects:
6.1 Contents of Proposals and Deliverables
6.2 Domain Analysis for Avionics and Assessment of Available Technology
6.3 An Integrated View of all Projects

7. A Model For Developing and Managing Reusable Avionics Software
7.1 A Model Project
7.2 Software Development Processes, Methodologies, and Metrics
7.3 Using CASE Tools in Projects
7.4 Action Plan

1. SOFTWARE REUSABILIry

The reusability of software is the ultimate goal of any software development effort The emphasis has
shifted from project-specific systems analysis to domain analysis in order to incorporate flexibility in analysis and

design so that the project-specific efforts can be reused in a broader domain. Developing reusable software for
avionics systems is a challenge for software engineers. The task involves foreseeing future applications, modeling

real-world events using appropriate tools, techniques, and methodologies for analysis and design of the system, and
translating the specifications to software, verifying correcness of the software by testing, and providing for storage

and retrieval of reusable software components. The software engineering discipline offers a number of

methodologies, tools and techniques, and metrics to assist various phases of software development activities. The
CASE (Computer Aided Software Engineering) technology integrates most of the tools and techniques.

Reusability has been defined differently by various authors. Kermghan [KER&4J defines it as "...any way
in which previously written software can be used for a new purpose or to avoid writing more software.- Bott et al
[BOT36] give a more pragmatic definition of reusability- "a measure of the ease with which a component may be

used in a variety of application contexts." In general, reusability of software can be interprmted from multiple view
points. First, it can be seen as the use of existing software within a changing environment [SCH87]. Second, it
can be viewed as the construction of new programs by composing such a program from software components

[LY0861. Third, it can be interpreted as the construction of programs by program transformation [CHE84J.

Reuse can generally be classified as the reuse of ideas, vertical reuse, horizontal reuse, and total reuse

[HAL87]. Publishing methods and techniques including algorithms leads to reuse of ideas by software
professionals. Vertical reuse refers to reuse in a particular language, and honzontal reuse refers to the wiaety used

5-4

components in a partcular environment, such as. son utilities. Total reuse, however, is the use of compicte

packages after some customization.

The term reuse applies to the products developed throughout the development life cycle of software which

includes requiremens specifications, logical and physical design, code. and any information needed to create

software. A Reuse Taxonomy by Prieto-Diaz [PR1931 shows six views of software reuse:

1. .Y-Substanc defines the essence of the items to be reunse It consists of ideas,

concepts, artifacts, components procedures, and skills.

2. .bflcon defines the form and extent of reuse. Such reuse can be classified as vertical and

horizontal reuse.

3. BL-moe defines how reuse is conducted. It may be planned, systematic or ad-hoc,

opportunistic.

4. hnia= defines the approach used to implement reuse. It could be either

compositional or generative.

5. Ily.initnctn defines how elements will be reused, as black-box (as is) or white-box

(modified).

6. B defines what work products are reused. It includes source code, design,

specifications, objects, text and archit re.

The broader concept of rem (Basali, 1983) includes the 'use of everything associated with a software

project including knowledge." Tb, emphasis in industry has been on artifacts reuse such as Booch Ada Parts

collection and the Generic Reusable Ada components for Engineers. Two of the often cited reusable projects in

Avionics are Common Ada Missile Package project (CAMP) and Reusable Ada Avionics Software Packages

(RAASP). The increased focus on software reusability is attributed to an overall realization of the potential

benefits of not only reusing code, but also using all aspects of the development process. The documentation

produced at various levels should serve as sources for maintenance and reusability. Reusability of software can not

be a uniform process; it always has to be tailored for a particular domain.

1.1 ROLE OF USERS AND DEVELOPERS IN DEVELOPING REUSABLE SOFTWARE

Users of software can be classified as immediate users of the software for whom software was developed in

the first place, and future users of the software. Immediate users are more concerned about the ability of the

software in meeting, requirements for the application, budget, and time factors. Their objectives, however, may

not be the same as those of future users who tend to generalize software attributes, which in turn could lead to

additional costs and delays in development efforts and enhancements. Immediate users may not favor domain

analysis unless they realize the need for future developments and also its cost implications. Future users could play

5-5

a role similar to thn' of assonbly line workers who asseuble sofware components to produce a new Product. Ile
reuse of thtc same software, howver, will vary depending on the ability of the user and the features of the software
components.

The abilities of the users of software components ame a =otbinatbon of skllU levels of the users, famiiarity
of the Problem domain, and the time: taken to retrieve required componcuts fromin repository. The tasks of the
users will also be faclitated. by the characteristic of the coinpome tbeschves. These component characteristics
are uncrporated in the software by the softwar enginr and the developmen team.

It should be emphasized that the major players in softwarc reusability are users and developers. A
Reusable Components Repository is the common base through which they interact. Users are concerned with the
ease of using the repository and developers are concerned with populating the repository and keeping track of
engineering details.

Fiur . esalll Rcue Rause

Rqmitary5-6~ ?W

The reusability scenario has two distinct features: a Repository Retrieval System and the Components
Engineering System which consists of domain analysis, requirements analysis, design, metrics, and other

configurauon management details. Both the Repository Retrieval System and Components Engineering System

have to be designed in collaboraton with each other. A Repository Retrieval System is similar to a library f-enral

system, but it has to consider graphical interfaces and capabilities to interfc with other software repositories

planned by DoD and commercial software vendors. Even though reusable efforts are evolving, standards for
interface with repositories are not easily available. Therefore, retrieval sywms need flexible designs.

Extracting reusable components from existing software is a complex activity and may not be cost
effective in all cases. The basic information needed for reusable components from the users' perspective are:

a. Domain knowledge

b. Overview of reusable components

c. Details of each component which include:

Source code adhering to a particular style

Domain analysis

Requirements analysis of the system for which the component was designed
Logical Design

System (hardware/software) constraints

Testing / Quality Assurance reports

Unique features etc.

Other aspects

2, A LIFE CYCLE MODEL FOR REUSABLE SOFTWARE

Software Development Life Cycles offer a framework for software development. Though there is some

concern about the life cycle concept itself amid its use, one has to admit their utility in identifying various tasks

involved in the software development Software professionals are well-versed with the following life cycle models:

1. Classical Software Development Life Cycle

2. Structured Software Development Life Cycle

3. Software Engineering Life Cycle

4. Information Engineering Life Cycle

S. Spiral Model of software development and enhancement

The life cycle models present different points of view for systems development. For example, the classical

model assumes that the various activities are sequential. This model has been widely critiqued for its inability to

5-7

incorporate changing system needs. The Structured Life Cycle considers back-tracking and incorporating changes

introduced at various phases, The Software Engineering Life Cycle closely follows the Classical and Strucured

life cycles and emphasizes walklhroughs, inspections, reuse, metrics, and deliverables. Informanon Engineenng

Life Cycle emphasizes defining data requirements of an enterprise first, and then the processes. It may be morm

appropriate for developing Management Information Systems projects. The Spiral Life Cycle deals with the

prototype development environment, where neither the developer, nor the user have complete knowledge of the

product to be developed. It considers risk analyses for different prototype developments. None of the abovy models

treat software reuse or maintenance as a part of the models. Incorporating maintenance and reuse paradigm in the

model forces the developer to consider a futuristic view of the system during developmenL

Henderson-Sellers and Edwards CHEND901 propose the Fountain Model (Figure 2) for the

object-oriented life cycle which consists of the traditional life cycle phases and three additional phases of Program

Use, Maintenance, and Further Development at the top of the Fountain. The model extends the Waterfall or

Structured Life Cycle models to include reuse, maintenance, and further enhancements of software. The Founain

Model represents object-oriented software life cycle. It may also be treated as reusable software development life

cycle, where Maintenance, and Further Development are some aspects of reuse efforts. We would like to add

Domain Analysis prior to Requirements Analysis phase in the Figure 2 to emphasize the fact that reusability

issues should be domain specific, because designing software for universal reusability may not be cost-effectin and
practical.

Domain analysis plays a significant role in the development of reusable software. Domain analysis refers

to a detailed survey of the past efforts of an application arm, current development tasks, and future needs of the

problem domain. Domain analysis will allow the managers and developers to integrate past and current efforts,

schedule for the optimum utilization of resources, and substantial savings in time and efforts in development.

maintenance, and enhancements of systems.

54

Mai Fotmzain ModeA

FigureUni TesoutainMda

5.9n

3. SOFTWARE PROCESS MATURITY MODEL FOR IN-HOUSE MANAGEMENT AND EXTERNAL

COMQirOL
The basic elements of a management process are: planning. organizing, operating and control. For an

organization such as Software Concepts Group at the Avionics Directorate of the Wright-Patterson Air Force Base,

which forecasts technology for fiture avionics systems, translate the concepts to feasible projects, funds and

monitors the projects, and diffuses the technology to its customers, and to the community at large, management

issues become very complex. We can view management functions from two perspectives:

1. Internal control

2. Controlling projects developed by contactom

The task of foreseeing the future technology is the most crucial one. As the projects are of diverse nature,

it may not be possible to use the same set of tools/techniques or CASE tools in all the projects. However, a few

guidelines could be offered to maintain uniformity among projects. It is necessary to:

a. Provide a common format for all projects,

b. Maintain control over all documenaion and surce code

c. Record contrbutions of individual projects with respect to contribution to knowledge, technology,

products, etc. ;

d. Encourage use of software engineering principles and CASE tools wherever

appropriate

e. Integmte contributions of all the projects and practice them in the subsequent projects.

The Software Process Maturity Model [HUM89J would be equally applicable to Laboratories controlling

projects as well as to contractors involved in software developmen. If the Laboratories have a high level of process

maturity then they will be in a position to demand and control appropriate deliverables from their contractors more

effectively. The software process is the entire set of tools, methods, and practices used to produce a software

product.

uBasic Management Control

FIgure 3. Software Process Maturity Levels

5-10

Control and improvement of tools, methods, and practices can lead the organization to higher maurity

levels. Metrics or measurement of outputs can play a major role in translating the art of software development to
the science of software development. CASE tools will also play a major role in the software process maturity

model.

4- ASEITOLS

This section outlines the specifics of the avionics software development process. The demands of avionics

software development process are quite distinct from those of Management Information Systems or az odher

commercial applications. Most of the avionics applications are embedded real-time systems. The new applications

are to be developed using Ada. Some of the tools/techniques and methodologies required to specify the

requirements and design of the avionics systems are as follows:

A. Structured Analysis and Design Methodology

Toolstfechniques Used

1. Data Flow Diagrams and its Real-Tume extensions

2. Data Dictionary

3. Data Modeling and Entity Relationship diagrams

4. Decision Tables, Decision Trees, Action-Diagrams, Nassi-Shncider•an charts

5. State Transition Tables, State-Transition Diagrams

6. Finite-State Architecture

7. Petrinets

8. Structure Charts (in Structured Design Methodology)

B. Data Structure-Odented Methodologies

1. WarnierOrr Methodology

2. Jackson System Development (JSD)

C. Real-Time Design Methodologies

1. Design Method for Real-Time Systems (DARTS)

2. Structured Analysis and Design Technique (SADT)

D. Object-Oriented Analysis and Design Methodologies:

1. Bailin: Object-Oriented Requirements Specification
2. Coad and Yourdon: Object-Oriented Analysis and Object-Oriented Design

3. Shlaer and Mellor Object-Oriented Analysis

4. Wasserman et aL Object-Oriented Structured Design (OOSD)

5. Booch: Object-Oriented Design

6. Wirfs-Brock et al. Responsibility Driven Design (RDD)

5-11

7. Rambaugh et al. Object-Modeling Technique (OMT)

8. Embley et al. Object-Oriented Systems Analysis (OSA)

These methodologies can be implemented in most of the leading CASE tools. In general, the CASE tools
can be classified from multiple view points such as upper CASE, lower CASE, and I-CASE (Integrated CASE
Tools). Some of the unique components of the CASE Tool set are (BUR 891 summarized below:

a. Diagramming Tools

b. Syntax Verifiers

c. Prototyping Tools

d. Code Generators

e. Project Management and Methodology Support

f. Re-Engineering Tools

g. Central Repository

At present about 24% of the software development organizations use CASE tools. Most of the tools
implement Structured Systems Analysis and Design methodologies, but they are not well integrated with code

generation and testing tools. One of the major problems is the compatibility among CASE tools. Lack of industry
standards makes it difficult to port sysems from one set of tools to another. It also make users dependent on a
particular tool vendor. Organizations generally are hesitant to adopt this new technology because of high cost
investments in these tools as well as the costs involved in training employees in the methodologies and tools.
Moreover the management of an organization has high expectations about pay-off from these tools but employees

are reluctant to experiment with the new technology. The opponents of CASE tools may be concerned about the

following issues:

1. Training with methodologies

2. Ease ofuse of CASE Tools

3. Redundancies in documentation

4. Poor integration of various phases of life cycle

5. High costs of acquisition and maintenan

6. Probability and compatibility of the tools

These are some of the concerns. It should be kept in mind that CASE technology is still evolving and it
might take a while to have an I-CASE in its real sense. If an organization ready to cope with the technology, it is
the time to start nowt We have to keep in mind that acquiring knowledge always comes incrementally. Training
employees with software engineering methodologies is clearly the most crucial aspect. A careful evaluation of the

tools that will be needed should be done prior to their acquisition. Consultations with users of some of the tools in
similar projects seems to be the most desired method for evaluation of the tools. It would be an ideal approach,

5-12

however, to train project managers on a Model Project which would be of common interest. Various software

engineering tooLs/techniques can be experimented in the Model Project For example, an expert in the

methodology may act as a moderator in the development process. In learning the development process education

in software engineering disciplines would be more beneficial as compared to training with a specific CASE tool

because it is not the tool which decides the success of any project but the modeling or problem solving approach

which dictates how well the tool is used to develop the system.

Most CASE tools are capable of producing documents adhering to 2167A standards. However, it is the

responsibility of the management to enforce uniformity in the contents of deliverables by giving specific directions

regarding formats, tools/techniques, methods, and cross-referencing in the documentation. The ultima objective

is always to get an integrated product which is easy to operate, maintain, and reuse. This could be accomplished

by enforcing standards with respect to the tools, techniques, and other process details.

5. SOFTWARE PROCESS MATURITY MODEL AND ROLE OF CASE TOOLS

Pfleeger [PFL9 I1 suggests that "only when development process possesses sufficient structure and

procedures does it make sense to incorporate certain kind of CASE tools in a development environment" He

advocated the following CASE tools for the various process matuuity levels.

Level Characteristics Metric to use CASE Tools

1. Initial Adhoc Baseline Tools that help to structure and control,

estimate product size and effort

2. Repeatable Process dependent Project Tools for requirements specification,

on individuals project management, and configuratiom

management

3. Defined Process defined, Product Tools to measure quality, complexity, to

institutionalized support design and coding, and to guide

testing and intgation

4. Managed Measured process Process + Feedback Project database, management system,

(quantitative) simulation tools, reliability models, and

_ _ _ _ _ - analysis

5. Optimizing Imrovement fedback Process + Feedback Process programming and process

to process for changing process simulation tools

Figure 4. Proces maturity levels related to CASE tools

5-13

6, CRITICAL ISSUES IN MANAGING SOFTWARE PROJECTS

Issues involved in software project management are numerous and cr-ite complex. Some of the key issnes

which have tremendous impact on deliverables, usability, and control of the projects are the following:

6-1 CONTENTS OF PROPOSALS AND D-FrIVFRARLF.S

Afta going through a number of proposals, work plans, deliverables, etc. I realized the diMculties in

managing the projects. Even with my adequate acgound in the software engineering area, I felt that I would be

at the mercy of the contractor if I were a manager. The reason is that I may not have enough control over the

projects. The DoD has all the controls in place for managing the projects through standard such as 2167A, but

the documentation I read rais, the following questions which could serve as guidelines for an organization.

1. What are the contributions of this project in terms of knowledge and technology?

2. Have similar projects been undertaken by the same contractor, by other agencies, or by other

organizations in U.S. or abroad?

3. How well the contractor completed the 'Related Work section in the proposal?

4. Can we have full control over the deliverable&?

5. Does the contractor make us depend on the particular contractor for related efforts in

future by the nature of deliverables, or mode of information sharing?

6. How weU the requirements specification is separated from design isues?

7. Has the continuity among various phases of systems development been demonstrated by

the contractor?

8. How well the project is integrated with other projects in the Avionics Directorate?

9. How easy is it to follow documentation and other deliverables?

10. Do we have metrics to assess deliverables?

6.1.1 SOURCES OF CONFUSION

I strongly believe that one of the major sorum of confusion can be in the proposal itselt in which the

contractor fails to distinguish between the requirements of asystem and the design of the sysem. Systems

analysis or requirements analysis should emphasize only on "wha" is expected of the system, and not "howv it is to

be done. Unfortunately most of the proposals I read did not distinguish btwem analysis and desiga. This lack of

distinction blurs the basic objectives of the project. Additionally, it is difficult to evaluate the approach as no

alternatives are given. The proposal may be too detailed about a specific mode of implemenaion so that the

reader is lost in the details or led to believe that it is the only way to do things. In such a scenario the manager has

no option but to accept the tasks as outlined in the proposal The manaer will not have much control over the

project as the proposal did not specify microscopc details. Only an expert in the particular area may raise

5-14

mianingful questions. The other alternative which I may be forced to adopt becaue of the nature of proposal. is to

keep quiet and be satisfied with whatever deliverables are received from the contractor. To overcome these

difficulties, I would ask the contractor to strictly follow the following guidelines:

I. SPezfy the sysm requirements without referring to any hardware or product details.

2. Discuss implementation details in the Design aspects.

3. Do not mix "What" and "How" aspct

4. Describe contents of deliverables. Especially, identify what type of methodologies, CASE tools etc.

would be used for analysis and design. Describe how documeation of one phase will lead to the

successive phases.

6.-12 TECHNOLOGY VS- APPLICATIONS

Investment in research projects related to technology development is potentially a high return area if it is

conceived and managed very carefully. Otherwise investments may not produce substantial outputs. Every effc t

should be made to diffuse the technology to the community at large and break the monopoly of a few vendors. In

avionics domain, the main thrust is both in software development and technological advancement. In both the

cases, outputs of the projects need to be carefully evaluated and controlled.

61-3 MONPOLY O SOFTWAREEEE

In the 1960's Original Equipment Manufacturm (OEM) controlled the hardware industry because of their

unique coding schemes. This approach made the user dependent on a particular vendor of hardware. Introduction

of ASC IH solved this problem to some exnte Now a similar scenario exists today in the software industry.

Though there are standards such as 2167A for documentation of softwareM the contents of documentation vary

becaise of difrent tools and techniques used in software development, and the lack of detailed standards and

process control.

In the absence of matured processes for software development, a reasonable control on the project can be

achieved by defining the contents of deliverables. To some extet the contents would define the process and

enforce uniformity in managing projects. One of the aspects which need to be emphasized, however, is to separate

logical requirements from implementation details. This is the key to extend the life of the system.

6-2 DOMAIN ANALYSIS FOR AVIONICS AND ASSESSMENT OF AVAiLABLE TECHNOLOGY

Domain Analysis is the formulation of the common elements and structure of a domain of applications 0.
it is a way of understanding and describing the past and present in order to increase productivity in the future. It

5-15

should be an ongoing proces. Domain Analysis in avionics refers to uveyng the avionics applications and

assesses the role of the current and past projects in the avionics domain applications One of the objectrves of

domain analysis is to develop a framework for integrating all tasks in avionics domain. Some of the questions

which may be useful in this context are:

a. What is the knowledge base for major air frames for example, (current and future fighters, bombers,

helicopters, and trainers) regarding their current functions, missions, environments and future plans?

b. What are the goals and objectives of this group with respect to softw and hardware und its control?

c. Do we know the details of all current projects, and deliverables within a suitable format?

d. Do the current projects meet goals and objectives? To what extent?

e. What applications are better for reusability, in terms of:

i) analysis

ii) design

iii) code
iv) algorithms

f. Are projects aimed to develop prototypes and concepts documenting the outputs in such a

manner that they could be used/implemented by any independent team?
g. Which projects undertaken by DoD, ARPA, NSF, other agencies, and private organizations are simila

to the current one? Describe them.

h. Is a format for domain analysis documents developed?

6.3 AN INTEGRATED VIEW OF ALL PROJECTS

Each project should have documentation on various phases. DoD Standard 2167A deals with the details

and these should be followed. For the purposes of managing projects, the Avionics Directorate may develop a

document giving an ingramted view of the projects unde its control A yearly report may be compiled which will

consist of the foblowing essential aspects of all the projects and how they are integrated.

1. Domain Analysis

2. Contributions of the Project

3. How these contnibutions are integrated with other Avionics projects or any other efforts?

The major emphasis of this yearly report should be on concepts on technology advances and on aspects

which could be used elsewhere. Implementation details are available at the project level and as such should not be

part of this report.

5-16

7. A MODEL FOR DEVELOPING, AND MANAGINo REUSABLE AVIONIS SOrTWAgp

Based 011 the pas discussions, a Model for Developing and Managing Reusable Avionics Software is
offered in Figure 5.

AVIONICS DOMAIN ANALYSIS • .,,,,w, o

Past Current Future

Proiects Projects Projects Avioics

Rer-c ng Real-runt

Rcvaut eng~wia Software Development Met/odologic
CASETools CASE Tools

SOFTWARE PROCESS STANDARDS

_ _ _ _ MODEL PROJECT'

Object-Oriented Structured Systems Ada
Software Development Development Ada 9X
Methodologies Methodologies

with
Real-Timne
Extensions

INTEGRATED CASE TOOLS

DoD STANDARD 2167A

Figure 5. A Model For Developing and Managing Reusable Avionic Softwre

5-17

7.1 A MODEL PROJECT

To standardize the project formats and to appreciate technical details, it will be useful to work on a Model

Project with close collaborations with a developer or consultant. It may be useful to re-engineer an existing project

which will have high reusability becaus the existing project will have all technical details. I1 however, a new

project is selected the emphasis will shift to new technical deta is and exploration aspects. Therefore, a new

project may be restrictive in exploring all too/techniques, methodologies, and other issues. The difficulty in

re-engineering an existing project would depend on the availability of documents, style of coding, and the language

used

The Model Project should be developed using appropriate methodologies, CASE tools, and documentation

should adhere to standard 2167A. It should serve as a model for use of methodologies and documention. This

experience may be valuable for in-house development and in managing software development projects by

contractors.

7.2 SOFTWARE DEVELOPMENT PROCESS. MET-IODOLOGTES- AND METRICS

Avionics software systems have a number of characteristics which make Lhem unique compared to the

traditional data processing application. In general, they are real-Ume systems which need to activate as a response

to external events. Response time is critical for such system. Some of them may be embedded where software is

integrated with hardware components. Correctness of software, and reliability am of umt concern to users of

the software. Thrfore, testing of software is a very elaborate task in its development. The system needs to be

maintainable at the earliest possible time. On-board testing and maintenance efforts would minimi the

machine-down-time. Most of the tools and techniques identified earlier would also be applicable to avionics

software development.

Object-orient methodologies are very well-suited for developing reusable software. Tle concepts of

abstraction, information-hiding and polymorphism are p timed in these methodologies. Though them are a

number of OOA, OOD, OOA and OOD methodologies, they ar not in a matured stage such as Structured

Methodologies. The Object Modeling Technique by Rumbaugh et aL [RUM9l] seems to be one of the most

appropriate methodologies for avionics system development as it offers Object Model, Dynamic Model, and

Functional Model facilities for requirements specification of a system. It is a nice blend of structured and

object-oriented concepts. The methodology may need further refinements to provide continuity among the three

models and to represent collaboration between various subsystems and objects. A CASE Tool called OMToolIT

implements the methodology. However, it is to be kept in mind that at present OMTool'm does not implement the

Dynamic Model and Function Models of Rumbaugh's methodology Representation of collaborations between

5-18

objects and integrpaon of different models are the major issues regarding this methodology. The Model Project

may use Object-Oriented and Structured methodologies in analysis and design phases and Ada in implementation

phase. Ada 9X incorporates object-oriented programming features.

7.3 USING CASE TOOLS IN PROJECTS

At present most of the CASE tools used are in analysis and design areas. The analysis and design

methodologies are not well integrted CASE tools related to project managemen code generation, and testing

should also be used wherever applicable, This would integrae all the phases of life cycle. A recent report from

Institute for Defense Analysis has identified that there am more than 600 testing tools available but not widely

used. The CASE technology is heading towards I-CASE or Integrated CASE. Management may introduce thes

tools progressively in projects. As discussed earlier, acquiring different tools may be linked to different levels of

process maturity.

7.4 ACTION PLAN

The action-plan may emphasize standardizing processes for a project. A participative mode of

implementing a change in an organization may face less resistance. The manage may do the following for

instance:

1. State the need for a Domain Analysis for Avionics to identify the future technological needs.

2. Show how the easting projects mei the needs. Emphasis should be on specifics. Global words

should be avoided.

3. Identify goals for the next five year

4. Draw an implementation plan which covers:

a. A suggested format for summary and detailed internal reports for projects

b. Details of deliverables from contractors

c. Software Enginering tools/echniues to be used

d. Identify the need for a Model Project

e. Invite suggestions from Project Engineers

g. Incorporate suggestions and implement the plan.

One of the difficult tasks would be to bring projects with multiple dimensions under a common thread of

control. This has to be done by studying individual projects and then comparing their similarities and differences.

The model project may promote uniformity in the processes i.e. in tools, methods and practices which would lead

the organization to a higher level of process maturity and force the contractors to adhere to higher standards.

5-19

REFERENCES

[BAK,0] Baker,T.P. Software Reuse in Real-Time Environments. Report submitted for

U.S. Army HQ CECOM, Center for Software Engineering, October 9, 1990.

[BAR93] Barnes, J. Introducing Ada 9x. Ada 9x Project Report, Office of the Under

Secretary of Defense for Acquisition, Washington DC, 20301, 1993.

[BUR89] Burkhard, Donald L. Implementing CASE Tools. ASM Journal of Systems Management,

May 20, 1989.

[BOT861 Bott, M. F., A. Elliott and IL. Gautier. Ada Reuse Guidelines.

- Report, ECLIPSE/REUSE/DST/ADAGUIDE/RP, Alvey ECLIPSE Project

Deliverable D36, February 1986 Software Sciences LtdL

[CAT911 Cattel, R.G.G. Object Data Management. Addison-Wesley, Reading, Mass., 1991.

[CHA92] Champeaux. Dennis de., and Penelope Faure. A Comparative Study of Object-
Oriented Analysis Methods. JOOP Journal of Object-Oriented Programming.

March/April 1992.

[CHE84] Cheatham, T. Reusability through Program Transformalion. IEEE Transactions
on Software Engineering, V 10 (5), pp. 589-594, September, 1984.

RHAL871 Hall, Patrick A. Software Components and reuse - getting more out of your

code. JILWill Tracz (Ed.) Tutorial: Software Reuse: Emerging Technology, Tie

Computer Society of the MEE, 1988.

[HEN90] Henderson-Sellers, B. and Edwards, I.M. The Object-Oriented System Life

Cycle. Communications of the ACM, September, 1990.

[HOL90] Holmgrmn, Brian W. Software Reusabilit. A study of why software reuse has

not developed into a viable practice in the Department of Defense. Thesis

submitted to Air Force Institute of Technology, December 20, 1990.
[KER84] Kernighan, B.W. The UNIX System and Software Reusability. I. IMEE Transactions on

Software Engineering, pp. 513-518, 1984.

[HUM89J Humphrey, Watts S. Managing the Software Proess. Addison-Wesley, 1989.
INRI)] Intermeics. Draft Ada 9X Mapping Document, Volumes I and 11. Mapping

Specification, Ada 9X Project Report, August 1991.
(LYO861 Lyons, T. G.L. and Nissen, J.C.D. (Eds.) Selecting an Ada Environmen Cambridge Unvesity

Press, 1986.
[PFL 911 Pfleeger, S.L. Process maturity as fiammewk for CASE tool selection. Information and

Software Technology, November 1991.
(PR1931 Prieto-Di'az, Rubem Status Report. Software Reusability, May 1993, pp. 61-66.

[RUM91I Rumbaugh, James., Blaha, Michael., Premerlani, William., Eddy, Frederick., and Lorensen,

William. Object-Oriented Modeling and Design. Prentce Hall, 1991.

[SCH871 Schneidewind, N.F. Introduction to the Special Section on Software
Maintenance. E Transactions on Software Engineering, V13(3), pp. 303-310, March 1987.

5-20

