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VORTEX GENERATION AND
WAVE-VORTEX INTERACTION

OVER A CONCAVE PLATE WITH
ROUGHNESS AND SUCTION

Fabio P. Bertolotti I

DLR, Institut ffir Theoretische Strumungsmechanik
Bunsenstr. 10, D-37073 Gbttingen, Germany

ABSTRACT

The generation and amplification of vortices by surface inhomogeneities,
both in the form of surface waviness and of wall-normal velocity, is investigated
using the nonlinear PSE equations. Transients and issues of algebraic growth
are avoided through the use of a similarity solution as initial condition for the
vortex.

In the absence of curvature, the vortex decays as 1• when flowing over
streamwise aligned riblets of constant height, and grows as fx/ when flowing
over a corresponding streamwise aligned variation of blowing/suction transpi-
ration velocity. However, in the presence of wall inhomogeneities having both
streamwise and spanwise periodicity, the growth of the vortex can be much
larger. In the presence of curvature, the vortex develops into a G6rtler vortex.

The "direct" and "indirect" interaction mechanisms possible in wave-vortex
interaction are presented. The "direct" interaction does not lead to strong
resonance with the flow conditions investigated. The "indirect" interaction leads
to K-type transition.

'This research was supported by the National Aeronautics and Space Administration under
NASA Contract No. NASI-19480 while the author was in residence at the Institute for
Computer Applications in Science and Engineering (ICASE), NASA Langley Research Center,
Hampton, VA 23681.
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1 Introduction

We present results from an investigation into the laminar-turbulent transition
process over a plate with wall undulations, wall blowing & suction, and con-
cave curvature. The investigation is based on numerical simulations using the
nonlinear PSE equations. The curvature is sufficiently small to allow the Bla-
sius profile to be used as the mean-flow in all the conditions investigated. The
particular topics covered in this report are:

1. The seeding of G6rtler vortices by streamwise aligned wall corrugations
and blowing/suction inhomogeneities.

2. The receptivity of vortices to three dimensional wall corrugations and
blowing/suction inhomogeneities.

3. The effect of curvature on three-dimensional TS waves.

4. Some cases of nonlinear wave-vortex interactions.

Two geometries are considered. Figure Ia displays the geometry used in
the study of topic 1. The wall corrugations vary sinusoidally in the spanwise
direction, z, with a wavenumber P, and have the crests aligned in the streamwise,
or x, direction. The label Xk denotes the location at which the curvature departs
from zero and increases downstream up to a constant final value. The initial
location for the PSE marching solution, x0, is upstream of Xk.

Figure lb displays the geometry used in the study of the receptivity of
vortices (G6rtler and other types) to wall corrugations whuich vary sinusoidally
in both x and z (topic 2). This receptivity problem is steady in time. Moreover,
when the acoustic source is added (represented in the figure by the speaker), the
distributed receptivity mechanism described by Crouch [1] is activated, creating
Tollmien-Schlichting waves. These waves then interact with the vortex (topic
4).

In figure 1, the wall undulation can be interpreted as either a physical un-
dulation present on the plate surface, or, in the case of blowing/suction, as
an iso-level of wall-normal velocity on a smooth plate. The height of the wall
undulation is of the order of 0.1% of the boundary layer thickness, hence the
undulation can represent imperfections on wing surfaces due to, for example,
temperature or direct stresses in flight. The peak surface transpiration veloc-
ity in the blowing and suction study is of order of 1 X 10-4 U,, in agreement
with levels used in Laminar Flow Control experiments (P. Spalart, personal
communication).



Figure 1: Geometry used in the simulation. Top, the corrugated plate with an
initial flat section, followed by a section of concave curvature. Bottom, the same
geometry as above with wall undulations in the streamwise direction added, as
well as acoustic forcing.
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The main results corresponding to the topics listed above are:

1. Wall-aligned corrugations provide an efficient means for the generation of
G6rtler vortices.

2. Vortices exhibit growth when flowing over three dimensional wall corru-
gations or blowing/suction inhomogeneities, even in the absence of cur-
vature. This receptivity persists when the wavenumbers of the wall inho-
mogeneities differ greatly from those of the vortex, i.e. short wavelength
undulations in x and z can force a large wavelength vortex.

3. The neutral stability curves for three-dimensional TS waves enlarge in size
as curvature is increased, and eventually extend to zero frequency; thus
connecting with the G~rtler vortices.

4. The direct and indirect wave-vortex interaction is presented. The indirect
interaction leads to a K-type resonant triad, while the direct interaction
shows no wave-vortex resonance at the conditions investigated.

A brief description of the PSE equations and the numerical algorithm em-
ployed to solve them is given in the appendix A. We also describe, in appendix B,
the construction of a self-similar solution that, when used as initial condition for
the vortex in the PSE marching procedure, yields results free of transients and
of algebraic growth (see Schimd and Henningson [21). The self-similar solution,
thus, allows for the investigation of vortex receptivity to distributed forcing.
Otherwise, if an initial condition is used that leads to strong algebraic growth,
the effects of the distributed forcing will be masked. A similarity solution for
the G6rtler vortex was first presented by Denier, Hall & Seddougui [3] in their
investigation of vortex forcing from a plate with a localized hump.

1.1 Reference quantities, and geometry description

The reference length chosen is 6* = Cv*oxoo/Uo where ý is the location
at which the Reynolds number R, = Uoox*ooo/v* equals 1 x 106. The symbol
* denotes a dimensional quantity. This reference length is used throughout
this report, with the exception of appendix B, which deals with the self-similar
solution.

The non-dimensional curvature is C = t5 ' /a*k,,, where a•:U, is the radius of
curvature. Typical values of KI are 1,2,4 and 8 x 10-1. In the case of a subsonic
wind-tunnel test with U,, = 15 m/s, the reference length is 6 = 1.2 mm, and
the radius of curvature is 12,6,3 and 1.5 meters respectively.
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The coordinate along the streamwise direction is z, the plate normal direc-
tion is y, and the spanwise direction is z The corresponding velocity components
are u, v, and w. The representation of the flow-field is described in appendix
A.

All modes are identified with the three integers in the triplet p = (1, n, k),
corresponding to the indices in the Fourier expansion e-. The values
of a, 8 and w are prescribed as input parameters to the PSE calculation. The
wavy-wall surface is represented by the function,

N K

H(x,z) = E F, W(o,n,k)inx+ik + c.c (1)
n=-N k=-K

where "c.c" denotes complex conjugate. The coefficients W are complex con-
stants. The boundary conditions over the wavy wall are transferred to y = 0 via
a Taylor series expansion (see appendix A). The blowing/suction wall normal
velocity is described by,

N K

v. z)( = , Z S(o,n,k)et"°•+iz + c.c (2)
n=-N k=-K

The boundary conditions at the wall satisfied by the disturbances are then,

Up=0 Vp = S(o,n,k) Wp--0 (3)

The homogeneous boundary condition for up and wp implies weak suction
rates (Spalart [4]). Lastly, in the presentation of the results we use the local
Reynolds number R = vr/•*x*/U,; = v/R-", and the nondimensional frequency
F = 21rf*U:/v*, where f* is the dimensional frequency in Hz.
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2 Validation of the self-similar vortex
The construction of the self-similar vortex solution is described in appendix B.
Here, we present the results which prove that the asumptions and approxima-
tions used to obtain the self-similar formulation are sound.

A test for the accuracy of the self-similar form of the vortex field can be
made by running the PSE using as initial conditions the solution to (19) and
(20). If the PSE solution remains close to self-similar over a downstream range
sufficiently long to otherwise display algebraic growth and decay, then the self-
similar approximation provides an acceptable initial condition for vortices in
both direct numerical simulations of the Navier-Stokes equations, and in PSE
integrations. The test was run using the linearized PSE equations with the
initial condition given at R = 300. The riblets on the wall were held constant
at an amplitude of 0.004 b(R=30o), while in the suction case, the level was held
constant at 1 x 10'. Figure 2 displays the maximum amplitude of the u velocity
component as function of Reynolds number, for various values of the spanwise
wavenumber #b .(=300)" Note the abscence of transients in the plot. In
the case of the wall riblet, the amplitude decreases with streamwise distance
due to the following reason: the maximum of the u velocity occurs at y = 0
where the boundary condition (21) imposes a constant amplitude for usIf, and
the physical u is related to the self-similar Uself by the factor xo/x. On the
other hand, constant suction leads to a self-simialr vortex with Umax increasing
proportional to vf. The departure of the PSE solution from the self-similar one
as # is increased shows the error introduced by freezing the coefficent #32(x/xo)
in the self-similar formulation.

Figure 3 displays the velocities u,,tf(nl) and v.ejf(n7) at the initial location
R = 300, and downstream, at R = 1136 and 1670. The dots trace the shape of
the self-similar functions Uself,(q) and vslf (71), while the solid and dashed lines
show the corresponding profiles obtained by extracting the us,,I and vsef profiles
from those given by the PSE equations at R = 300 to R = 980 and R = 1600.
Both the u and the v velocity components computed with the PSE collapse close
to the self-similar profiles. This agreement, along with the abscence of algebraic
growth or other transients, validates the assumptions and approximations used
in generating the self-similar solution.
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3 Vortex Seeding

The generation of G6rtler vortices by a localized hump was investigated by
Denier, Hall & Seddougui [31, and found that the mechanism was inefficient
in generating vortices. Later, Bassom and Hall [5] corrected some errors and
extended the work, and found that distributed forcing functions are much more
efficient in the generation of G~rtler vortices.

We study the birth and growth of the Gortler vortices that develop on top
of the corrugated (i.e. ribbed) plate with a concave curvature. Initially, the
curvature of the corrugated plate is zero, and is increased smoothly from zero
at R = 300 to the maximum constant value at R > 500 with a half-period
cosine function.

At the onset of curvature, the flow is composed of the Blasius flow plus the
self similar solution discussed above. Downstream, G6rtler vortices develop with
the same spanwise wavenumber as the wall corrugation. The self-similar solution
has a non-zero projection onto the G6rtler eigenmode, and, thus, provides the
initial amplitude for the vortex.

The five cases studied are categorized by the variation in x of the wall
corrugations. The case 'infinite' has constant amplitude for all R > 300; the
case '400-500' has a constant amplitude up to R = 400, then decreases smoothly
to zero between 400 < R < 500 and remains zero afterwards; the cases '400-600'
and '400-800' and '300-400' are of equal nomenclature. For each case, 5 runs are
made with the curvature taking on values of IC = 0, 1 x 10-4,2 x 10-4,4 x 10-4

and 8 x 10'. The spanwise wavenumber in all cases is P = 0.15. The calculation
is maintained purely linear by artificially neglecting the nonlinear terms that
arise from a finite amplitude vortex.

Figure 4 displays the maximum amplitude of the u component of velocity as
function of Reynolds number. The plots on the left column of figure I display
the um,. amplitude of the vortex mode versus Reynolds number for the cases
'infinite', '400-600', and '300-400'. The G6rtler vortex amplitude is ploted on
the right column. This amplitude is computed by subtracting from the flow-field
the flow field due to the wall corrugation in the absence of curvature.

The 'infinite' case produces the fastest growth of the Gortler mode. This
fact suggests that the vortex is receptive to the forcing from the wall corrugation
over an extended streamwiqe extent. Indeed, the extend seems larger than the
region of strong nonlocal receptivity (Crouch[l], Crouch & Bertolotti [6]) for
traveling waves. The growth rates in all cases asymptote to a single curvature-
dependent value at R = 1400: the difference in amplitude at this position from
case to case is due to the different corrugation geometry.
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The 'kink' in the amplitude curves of the '400-600' and '300-400' cases occurs
at the streamwise location where the decaying wall-mode's u,., amplitude,
which is maximum at the wall, equals the growing Gfrtler amplitude, which
has a maximum at about y = 2.5.

An interesting phenomena can be seen in the amplitude plots of the G6rtler
vortex in the '300-400' case. The kink in the amplitude curve in the neighbor-
hood of R = 800 divides the upstream region dominated by the wall mode from
the downstream region dominated by the Gortler vortex. The streamwise po-
sition of this kink shifts downstream when curvature is increased. This suggest
that the wall-mode retards the growth of the Grtler vortex.

4 Vortex Receptivity

We study the effect of surface roughness on the growth of vortices. I have
used the word "seeding" in the previous section and the word "receptivity" in
this section to differentiate between the types of forcing given to the vortex.
Seeding occurs when the forcing comes directly from the boundary condition,
and hence, is a linear process (the word "seeding" was suggested by M. Morkovin
in a private communication). Receptivity occurs when the forcing comes from
the nonlinear interaction between other modes. In the absence of nonlinearity
(or in the limit of small amplitude), these modes do not affect the vortex at
all. In our case these modes are due to wall undulations or wall suction having
wavenumbers different from that of the vortex.

In order to isolate the receptivity effect from centrifugal instabilities, we
consider the case of a flat plate at zero angle of attack. The plate's surface
contains a spanwise periodic rib with streawise aligned peaks and valleys. This
rib generates the vortex - and at the initial marching location the vortex form
is given by the self-similar solution. The height of the rib is constant in x, and
corresponds to the coefficient VV(0,0, 2 ) = 1 X 10-3 (see equation 1). In addition
to this rib, we add the source for other steady disturbances, either in the way of
additional surface undulations, or using blowing and suction periodic in x and
z. The height or strength of this additional source is increased from 0 to its final
value using a ramp function starting at R = 425 and ending at R = 700. The
gradual introduction of these modes reduces the amount of algebraic growth
that is introduced into the evolution of the vortex.

The first set of results are for the case in which the wall contains one addi-
tional Fourier mode mode (besides the rib), having a streamwise wavenumber a
that is varied parametrically, and a spanwise wavenumber / that is half that of
the vortex. The indices for the wall mode are of the form (0,n, 1), while that of
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the vortex is (0, 0,'2). Thus, the interaction of mode (0, n, 1) with its companion
mode (0, -n, 1) (i.e. from symmetry in z) creates a forcing at (0, 0,2).

Figure 5 displays the results for the case of a wavy wall with Fourier coef-

ficient W}o(0^,,) = 2 x 10', and the case of blowing/suction with a coefficient
S(0,,) = 5 x 10', for different values of a. In the wavy-wall case, increasing
a increases the forcing efficiency. For a = 1.0 the vortex increases one order in
magnitude. In the suction case, the opposite trend exists; reducing a increases
,be forcing. The explanation for this opposite trends can be seen in the velocity
profiles of the steady modes, shown in figure 6. Shortening the wavelength of
the wavy-wall mode increases the slope o9u/Oy at the wall, which is multiplied
by the wall undulation height to produce the forcing (see equation (11)). On
the other hand decreasing a, while holding the suction level constant, increases
the u component of the velocity, hence the forcing in the interior of the domain.

The second set of results we present contain a pair of steady modes having
a difference in spanwise wavenumber equal to the vortex's wavenumber,

W(O,n,m) = 2 x 10-3 W(O,n,m+2) = i 2 x 10-3

S(O,n,,) = 5 x I0-5  S(O,n,m+2) = i 5 x I0- 5

The quadratic nonlinearity then produces a forcing at (0, 0, 2) for any value
of n and rm. In this way, short wavelength disturbances can directly influence
long wave-length disturbances. This type of coupling was used by Crouch [7]
in a study of TS wave receptivity to short-scale waviness. The phase-shift of
90 degrees between the two steady modes leads to a more effective forcing than
the case were both Fourier coefficients W4 are purely real.

Figure 7 displays the result for the combinations n = 1,,m = 2, and n =
1,m = 6, with a = 1.0 and 0 = 0.15. The vortex has a spanwise wavenumber
of 8 = 0.30, as in the previous case. For reference, the case # + 0 form figure 5
is included in the plot. The large vortex amplitude created by the "difference
interactions" shows that the coupling between short and long wavelengths can

be strong.
Figure 8a show the effect of the surface's undulation height on the evolution

of the vortex. A height as small as 2.5 x 10-3 can produce a noticeable increase

in vortex amplitude. For reference, it is useful to consider dimensional quan-
tities. In a slow-speed wind-tunnel with a free-stream velocity of 10 m/s, the

reference length is 6, = 1.5 mm (i.e. at R = 1000), thus the surface undula-
tions are roughly 15 micrometers. This small value suggest that the distributed
forcing form small plate undulations can introduce vortices in cases where the

curvature is nominally zero. In particular, distributed forcing can be a cause
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Figure 5: u,,.a, amplitude versus Reynolds number of a vortex with spanwise
wavenumber 2/8 flowing over a surface with wavenumber (0, a, /). Top, surface
mode corresponds to surface undulation; bottom, surface mode corresponds to
blowing/suction. The line labeled "rib only" shows the amplitude of the vortex
flowing over the streamwise ribs only.
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of the Klebanoff mode [81, in addition to the possibility of algebraic growth as
investigated by Herbert and Lin [9].

Figure 8b shows the velocity profiles of the vortex for the case n = 1rm = 1
of figure 8a. The u profiles agrees in shape with the experimental measurements
of Kendall (101 of the Klebanoff mode.
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5 The effect of curvature on three-dimensional
TS waves

We turn our attention now to three-dimensional TS waves and the effect that
curvature has on them. The motivation for this study is two-fold. First, we look
at the effect of curvature on disturbances that have a wave-vector orientation
in between that of vortices (i.e. purely along z) and that of two-dimensional TS
waves (i.e. purely along x). Second, the waves studied will be candidates for
the nonlinear wave-vortex study, discussed in the next section.

In this study, the wall corrugations are omitted, leaving a smooth plate.
The boundary conditions are homogeneous, leading to the classical eigenvalue
problem for the TS waves. We solve for an augmented eigenvector composed
of {u, v, 8u/9x, Ov/8r} and an augmented eigenvalue (a, da/dx) using the "lo-
cal procedure" described in Bertolotti, Herbert & Spalart [11]. This procedure
yields an improved solution over the standard Orr-Sommerfeld solution: in par-
ticular, it captures the increased effect of non-parallelism on three-dimensional
waves (Bertolotti [12]). However, the procedure becomes invalid in the limit of
low-frequency and long-wavelengths, where the governing equation cannot be
reduced to ordinary differential form. In particular, the validity of the local pro-
cedure breaks down when the streamwise wavelength of the eigenmode becomes
of order O(R), hence the procedure cannot reach the limit of pure vortices.

We use the local procedure because it allows the neutral curves to be traced
efficiently in the R-F plane. Using the PSE solution, on the other hand, requires
many runs at different frequencies in order to "raster-scan" the neutral curve,
like, if you will, the electron beam on a TV screen.

The neutral stability curves, based on f0°° udy, for TS waves having a fixed
spanwise wavenumber, #3 = 0.30 and #3 = 1.0 are shown in figure 9. In the
absence of curvature the low-frequency TS waves are stable, but with some
curvature present a second region of instability appears near F = 0. Focusing
on the # = 0.3 case, we see that as the curvature increases, two neutral curves
form: the upper is the continuation of the curve for the flat plate; the second,
at low frequencies, displays the fact that centrifugal instability is amplifying the
G~rtler vortices (F = 0) as well as modes with low frequency. At a curvature
value of 8 x 10' the two curves merge. At this point there is a smooth connection
between TS waves and the Gfrtier vortices.

The numbers along the outer neutral curve represent the wave-angle of the
TS wave when KI = 8 x 10-. The table below gives the phase-speed of the TS
wave at the location where the symbol of the wave angle appears in figure 9.
Note the increase in phase-speed as the frequency is lowered, and the wave-angle
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is increased.

Neutral curve, 1 0.3, r = 8 x 10'
Wave Angle (deg.) Phase Speed

34.40 0.4016

43.20 0.3984
44.80 0.3930
53.80 0.4019
59.10 0.4014

65.40 0.4174
69.40 0.4226
72.80 0.4401
83.50 0.5114
85.40 0.5735

Neutral curve, = 1.0, K = 8 x 10-4

Wave Angle (deg.) Phase Speed
85.1 0.6180
86.2 0.6510
86.5 0.6424
86.7 0.6829

TS waves with a 1 = 1.0 have a 1/3 shorter spanwise wavelength than those
with 1 = 0.3, and, hence, are more densely packed. In the Blasius boundary
layer, these waves are stable. Furthermore, the well-known types of nonlinear
wave interactions, i.e. K-type and H-type, involve waves with 1 roughly equal
to a, hence in the range P < 0.5. Thus, we must look at the growth rates to
make some comments on importance of these densely packed waves.

Figure 10 compares the growth rates of a vortex with 1 = 0.3 and those of
a TS wave with 1 = 0.3 and F = 20. The vortex grows over a fully corrugated
wall, while the waves grow over a smooth wall. The growth rate of the vortex
is greater than that of the TS wave, being roughly twice as large for the case
of curvature = K = 8 x 10-4. For comparison, the maximum growth rate of a
2-D TS wave with F = 60 is -y = 0.0141. Thus, the low-frequency 3-D TS wave
undergo slower growth, but do so over a more extended streamwise distance.

We conclude this section with figure 11, which shows the variation of the
receptivity coefficient in Crouch's receptivity model [1] with curvature for a 2-D
TS wave at F = 60 and a 3-D TS wave with F = 60 and 1 = 0.15. The

19



0.015

*Vo K,8x10 4

0.0 10
VO K ~4x 10-4o.o o .i i ... ..- --... .0.005

0.000

- 0.005 ...--. .. -4

<E-TS K-2x10
M - TS --0 :

--0.010 - L I i-

400 800 1200 1600 2000
(Rx) 1/ 2

Figure 10: Comparison of growth rates, based on Umax, of a G6rtler vortex with
# = 0.3, and a TS wave of frequency F = 20 and 3 = 0.3, for various values of
curvature.
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Figure 11: Effect Of Curvature on the receptivity coefficient for a two-dimensional
TS wave,/ 0, and a three-dimensional TS wave, 8 = 0.15 with frequency
F = 60.

data shows a weak influence of curvature on the receptivity mechanism (at this
frequency).
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6 Some case-studies of wave-vortex interac-
tion.

The interaction between vortices and traveling waves in boundary-layers can
play a major role in determining the transition location on swept wings. Partly
for this reason, this interaction has been the focus of numerous studies.

Direct Indirect
Interaction Interaction

The two possible ways a vortex and a wave can interact are shown in the
figure above. The left diagram shows the triad interaction between a vortex
and two oblique TS waves of equal frequency and streamwise wavenumber,
but opposite spanwise wavenumber. We shall refer to this interaction as the
"direct interaction", since in a perturbation approach employing an expansion
in amplitude, the waves interact at first order. The right diagram shows a triad
interaction between a vortex, a two-dimensional traveling wave and a three-
dimensional traveling wave. The traveling waves have equal frequency and a
nearly equal streamwise wavenumber. The oblique vector is of a lighter shade of
gray to indicate that its presence is not necessary at the onset of the interaction
- this wave will be generated by the interaction between the vortex and the 2D
wave, and will rise in amplitude to close the triad interaction. We shall refer to
this interaction as the "indirect interaction", since in a perturbation approach
employing an expansion in amplitude, the waves interact, initially, at second
order.

The direct interaction has been investigated more thoroughly than the indi-
rect interaction. Studies of the direct interaction include those of Hall and Smith
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[13] who employed a triple-deck asymptotic expansion in an analysis entitled
"on strongly nonlinear vortex/wave interactions in boundary-layer transition";
Davis and Smith [14], who extended the investigation to three-dimensional
boundary layers; Thumm, Wolz and Fasel [15], who looked at the interaction in
a compressible boundary-layer using a direct numerical simulation, starting with
only the oblique waves; Chang and Malik [161, who looked at the same case using
the PSE equations; and Spalart [4], who employed a direct numerical simulation
to look at the generation of cross-flow vortices by suction non-uniformities, and
the subsequent breakdown induced by interaction with a TS wave.

With the exception of Spalart [41, the vortex in these investigations was
generated by the nonlinear interaction of two oblique TS waves. Through this
process, the vortex's motion is "in tune" with the forcing provided by the trav-
eling waves, and the triad interaction is optimal from a phase point of view. In
our investigation the vortex and the traveling waves exist independently at the
initial marching location, and may not be as much "in tune". This difference
may explain the lack of resonance found in the results presented below.

The indirect interaction was studied by Bertolotti [12]. The PSE equations
where employed in a parametric study of the effect of initial amplitude levels
and vortex spanwise wave-number on the location of "transition", (defined as
the onset of rapid spectrum filling). It was shown that vortex and TS wave
behaved linearly up to the streamwise location where the the oblique wave
matched amplitudes with the vortex. Downstream of this location a strong
resonance ensued, wherein the growth rates of the vortex and of the oblique
wave where equal to one another, and were one order of magnitude larger than
those given by linear calculations. These growth rates matched those given by
Floquet theory for K-type transition. Figure 12, taken from Bertolotti [12],
displays these results. The initial conditions consists of the (2,0) TS mode, and
the (0,1) vortex. (In this work the disturbances were phased-locked, thus the
index (2,0) stands for (2,2,0) in the current terminology). The dots represent
the amplitude of the K-type secondary-instability wave with equal parameters
/P, F, and ATS as in the vortex case. The agreement in slope between the
dots and growth-rates of the vortex and the (2,1) mode inuicates that these
two modes undergo resonance as in the Floquet model. This figure was not
published because the investigators felt that the way in which the vortex was
initialized, namely by taking the limit of F -+ 0 holding / constant in the local
procedure was too arbitrary a choice.

In our study of wave-vortex interaction, we will include the receptivity mech-
anism. In this way, the initial conditions are specified by a small set of data,
namely the description of the wall geometry and of the acoustic field present
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Legend:
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Figure 12: Wave-vortex indirect interaction: Amplitudes of selected modes ver-
sus Reynolds number. Initial conditions specified for the vortex and the (2,0)
TS wave at frequency F = 30. The dots show the results from K-type secondary
instability given by Floquet theory. (Plot taken from Bertolotti's PhD Thesis,
page 165)
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in the free-stream. We employ Crouch's model [1] for the generation of the TS
waves form the interaction of the acoustic field and the wall geometry. (See
Bertolotti and Crouch [17) for details on the PSE implementation.)

Two TS frequencies were investigated, one at F = 60, representing the higher
frequency modes, the other at F = 20, representing the lower frequencies. As
shown in figure 9, low-frequency TS waves are amplified when concave curvature
is present, and, thus, might play an important role in the transition process
over concave surfaces. The curvature is held fixed at r. = 2 x 10'. This small
value of curvature is chosen because it leads to G~rtler vortices with growth
rates similar to those of the TS waves. If the curvature is increased to higher
values, say 8 x 10', then the growth of the vortex is too rapid to allow for
significant interaction with the traveling waves, and at large amplitudes the
vortex generates the transitional state suggested and investigated by Hall and
Horseman [181, wherein the inflectional mean-flow profile induced by the vortex
gives rise to inviscid (i.e. Rayleigh) instabilities.

At each frequency, two selections of surface roughness are used, a lower one
with peak-to-peak variations in the range of 1 x 10-'6,, and a higher one with
variations in the range of I x 10-26•.

The parameters describing each case are listed in the table below:

Direct Interaction

F=20 F=60
a = 0.0260,/3 = 0.15 a = 0.0840,/3 = 0.15

LOW High Low High
W(o,2,I) 1.0 x 10-3 0.5 x 10-2 0.5 X 10 0.5 X 10-2

W(O,O, 2) 1.0 X 10-3 1.0 X 10-3 1.0 X 10-3 1.0 X 10-3

Indirect Interaction

F=20 F=60
a = 0.03525, / = 0.15 a = 0.09086, / = 0.15

Low High Low High
W(o, 2,o) 2.0 X 10-3 1.0 X 10-2 1.0 X 10-3 1.0 X 10-2

W(0,0,1) 1.0 X 10-3 1.0 X 10-3 1.0 x 10-3 1.0 X 10-3

Since the mean-flow is independent of z, symmetric disturbances in z are
assumed. To obtain peak-to-peak values, one must multiply W(O,,,o) and W(o,o,%)
by 2, and W(O,,,,,) by 4 to take into account the complex conjugate modes.
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The amplitude evolution of the vortex, the traveling waves, and the mean-
flow distortion are displayed in figure 13 for the frequency F = 20 and in figure
14 for the frequency F = 60. (These frequencies values refer to the traveling
waves). Both the low and high wall roughness cases lead to a vortex-wave
resonance in the case of the indirect interaction. The location of this resonance
is only slightly affected by the level of the wall undulations.

On the other hand, the cases involving the direct interaction do not lead to
a wave-vortex interaction. The traveling wave (i.e. mode (2,2,1)) is dampened
past R = 1200, most likely due to the presence of the large mean-flow distortion
induced by the vortex. The higher growth rate of the vortex in the "High" case
is due to the receptivity of the vortex to the (2,2,1) wall mode, as discused
in section 5. The absence of a wave-vortex interaction is surprising, since the
papers cited at the beginning of this section predict a strong resonance. A
possible reason was thought to be due to an unfavorable phase relation between
the vortex and the 3-D TS wave. However, changing the phase by 90 and 180
degrees did not change qualitatively the results. Thus, the reason for the lack
of resonance remains at the moment unresolved.

The surface heights considered here are of the same order of magnitude as
adhesive tape. The indirect interaction calculations, then, can help understand
in a quantitative way Klebanov's experiment [19], in which strips of adhesive
tape where placed under the vibrating ribbon to help steady the transitional
flow structure.

7 Conclusions

The response of vortices to surface inhomogeneities, both in the form of surface
waviness and of wall-normal velocity, has been successfully investigated using
the nonlinear PSE equations. Transients, and issues of algebraic growth, have
been avoided through the use of a similarity solution as initial condition for the
vortex.

In the absence of curvature, the vortex decays as 1 /X when flowing over
streamwise aligned riblets of constant height, and grows as VýT when flowing
over a corresponding streamwise aligned variation of blowing/suction at the
wall. However, in the presence of wall inhomogeneities having both streamwise
and spanwise periodicity, the growth of the vortex can be much larger. In the
presence of curvature, the vortex develops into a G6rtler vortex.

The "direct" and "indirect" interaction mechanisms possible in wave-vortex
interaction are presented. The "direct" interaction does not lead to strong
resonance in the flow conditions investigated. The "indirect" interaction leads
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to K-type transition.
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9 Appendix A: The governing equations

We eliminate pressure by taking the curl of the Navier-Stokes equation. Since
the flow field is harmonic in z, we can eliminate w using continuity, and then
take the combinations of O/9x(k component) - O/Oz(i component) , and d/Oz(j
component) of the vorticity equation to obtain two equations governing u and
V.

The resulting formulation offers two advantages over the original equations
for the full set of primitive variables: reduced computational work, and PSE
equations that are free from numerical instabilities at short marching steps.

We separate the flow filed VT into the basic-flow, VB(X, y) and the remain-
der v(x, y, z, t), which we call the disturbance. Our basic-flow is the Blasius
boundary layer, and terms involving the second derivative with respect to x are
of negligible magnitude. Excluding these terms; the governing equations for the
disturbance components u and v are:

0 8 0 2Vv OZBO & v
a(+±UB-a+ VB-a- ~iV2)V2V + aB(2a eav

aZBOV 92 Z OUBB a V 02  v & 2 v a a2uay + ax x Yv + - -x - -o jz-2 -2

&I' VB U + aB (a 2U e92u+ •(-yu+-(-• - -)z o
iOX4y 2  (9 X 1z2 0~y2 Jr 02u 0O2u 02v ) OU8Ov+ 2)C [UB(-a2U + (9U+ a2Vy + 9Ba

OUB dv OU+ OVB Ou 82u 1
S a a +(2- a + y •x + xy]

azx azy 49Z W +z +x~ 0 T)(x - -y

au Ov i aw i oua8 V 0v 0W a
+( + YY-+ -- )ý - Wx TX+ W- TY+ - 7xYz- (4a)

(_ 89 a I 02)(2 9 2U 092V
-( +2 + ),- ( + + Z2+8 )
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&v 09VB (&U &u vP)
+Z8 --- (-

0ZB 2  O X2 . aZ2  i

-21C uB-82 + VB- =

a a +a)a,, (2a__ a+ a +a( ,

0 a a )L7 Ou 0 Ov 0 O+7
-( -(+ -T + + Oz Oz F + (4Tb) C

We have placed the nonlinear terms involving the product of disturbance quan-
tities as right-hand-side terms because these terms will be lagged in the iterative
process used to solve the system of equations.

The basic-flow terms on the third line of equation (4a) are negligible within
boundary-laye theory. When the disturbance has velocities components of equal
magnitude, such as a traveling wave, then these terms are negligible. However,
when the disturbance has u and v velocity components that scale like those of
the Blasius flow, such as vortices, then the terms on the third line of (4a) become
of equal order to terms in the first two. Thus, in cases where the disturbance
field includes both waves and vortices, as in the present study, these terms
should be kept. In passing we note that, for steady vortices, equations (4a) and
(4b) equal Hall's equations for G6rtler vortices [22].

The parabolized stability equations, commonly abbreviated to PSE, were
conceived by Herbert and developed by Herbert & Bertolotti [201 to incorporate
nonlinearity and the slow growth of the boundary layer into the boundary-layer
stability computations. The results were found to agree with those of full DNS
simulations up to "spike stage", where the complexity of the flow rapidly spreads
beyond the resolution of the PSE code [11,12,21].

We express the disturbance velocity field in a series in time (index 1), in x
(index n) and in z (index k),

V(X,y,z,t) = F , F , E Vp(X1•,,zt) (5)

1=-oo n=-oo k=-oo

where, p is the wave-vector (1, n, k). The velocity field of each mode is parti-
tioned into

Vp(X, y, Z, t) = CVp(X, Y) Xp(X, Z, t). (6)

The function
3ýp(X, y)
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describes (in a sense made specific below) the velocity profile of each mode and
the function X incorporates the growth and wavelike part of the mode's velocity
field

Xp(x,z,t) =exp ap(s)ds + ik/z - ilwt]. (7)
1 0

where the complex wavenumber ap is composed of a real growth rate, yp, and
an imaginary wavenumber ap,

ap = +- iap

The partial differential equation governing the velocity profiles -,p is ob-
tained by substituting the expansion (5) into equations (4a) and (4b). For the
streamwise derivatives we make use of the slow change with x of the profiles
and growth rates with the rule

a-xm a  'p + ma'-, a + M(m-l)am-2 dap4 Xp, (8)

where ap(x) = yp(x) + inor. For m > I the streamwise derivatives of the
mean-flow VB are zero, in accordance with the boundary-layer approximation.
Similarly, in ((3) we drop second- and higher-order derivatives with respect to
x of %'p and ap. Performing harmonic balance yields an infinite set of coupled
partial differential equations of parabolic type in x of the form

L-rp + MO'ýp + dap_ = (VrVp.r, (9)
OX dx Vp

where the operators L, M, N and Q contain derivatives with respect to y only.
The summation on the r.h.s. of (9) is is truncated to some number (L, N, K) in
the numerical computations. Due to the symmetry in z we only need to solve
for modes with non-negative wave numbers in t, x, and z. Upstream traveling
modes are not allowed.

An "auxiliary" condition is needed in all PSE formulations to remove the
ambiguity in (8) caused by the dependence of both vp and ap on x. This
condition as also been called a "normalization" condition in PSE literature. In
our particular case we employ the condition,

' dy = 0 (10)

where t denotes the complex conjugate. Equations (9) and (10) form a complete
set for the unknows Vp and ap.
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We transfer the zero-slip wall boundary condition to y = 0 via a Taylor
series expansion about y = 0, and stop the expansion at terms linear in IHI
since this quantity is assumed small, although including higher orders in IHI
can be done in a straight forward fashion. Performing harmonic balance yields
the bo:,ladary conditions satisfied by •p for each p,

. -1 rW 0VB(x,0) E'r(x,0) Ar(X)
iA;(x) ay + r -) ()

where
Ap = exp[j ap(s)ds].

The xPSE transition analysis tool-kit has been employed for the computa-
tions. The partial differential equations (9) are transformed into algebraic
form by use of a multi-domain spectral collocation technique in Y, and a fi-
nite difference discretization in x. Five domains are used in y, with limits
at [0,1.61, [1.6,4], [4,141, [14,56], [56,96] (recall the reference length is 6* at
R = 1000), and u and v are approximated by 17 and 19 Chebychev polynomials,
respectively, in each domain. Asymptotic boundary conditions are imposed at
y = 96. For each mode p, we construct the vector of unknows

Xp = {un, v,,alp

composed of the Chebychev coefficients for u and v, and the complex wavenum-
ber a for the mode, at the new marching location. The nonlinear algebraic
system is solved iteratively by lagging the nonlinear terms one iterate, and us-
ing a Newton method to solve the linear problem

VxF" AXp = -F(xp) + NLp (12)

for each mode p. Here, the term NLp represents the nonlinear terms, and the
function F the terms in (4a) and (4b) that are linear in u and v.
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10 Appendix B. The self-similar vortex

We approximate the vortex flow from the leading edge to the downstream lo-
cation at which we begin the PSE simulations, say x,, with a self-similar form.
Such a form satisfies continuity and the boundary conditions exactly, but pro-
duces a small residual error in the momentum equations. All terms of the
Navier-Stokes equations reduce to terms dependent on the self-similar variable
q except some coefficients, commint from z derivatives, that depend on x but
with a variation sufficiently slow to allow the term to be approximated as con-
stant. The curvature is set to zero.

The case of constant (in x) riblet height and the case of height proportional
to V/•, as well as the case of blowing/suction of constant (in x) strength and
of decaying strength proportional to V1•/, yield quasi self-similar solutions.
Herein we will focus on the constant amplitude cases. The surface geometry in
the case of constant riblet height is described by the function,

H(x, z) = W(o,,) exp[ipz] + c.c.,

where W(0o,) is a real quantity that controls the height of the riblets. In the
case of blowing/suction the wall velocity is given by the function,

V(x,z) = S(0,,) exp[i/zz] + c.c..

where S(0,1) is a real quantity that controls the strength of the suction.
For the ribbed geometry we seek steady solutions of the form,

u(X,y,z) = U,,eg(,7)cflM + C. C. (13)
i 1

v(x,y,z) = vseif(q)e - + c.c. (14)
x

w(x,y,z) = w1-w(7)e - c.c. (15)
xV X

where Yj = y -x/xo is the Blasius similarity variable. For the suction case we
seek steady solutions of the form,

U(x,y,z) = Uosf(77)e iP" zV + c.c. (16)

v(x,y,z) = v,,Ise(?)ei6Z + c.c. (17)

w(X, y, z) = wefo(?,7)ei'6Z X0 + c.C. (18)
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Reference length is x,!.
Equation (la) and equation (lb) become ordinary differential equations with

independent variable rj. These equations are, respectively,
SI,

aouself + alu.seL + a2uself +
bovse.I - blvseIf + b2vself + b3vs.1i + b4vaeif = 0 (19)

COUself + ClUsLf "+ C2 Usegf + dovseIf = 0 (20)

where the primes denote differentiation with respect to r/. The formulation (?)
for the constant riblet height yields,

ao = [5f" + 77f"' + r12fit + C(f - 77f'/- _ 2f") ]/4 co = ?7f"/2 + f'/2 - C
a, = ir(3f" + 77f'")/2 c, = f/2
a2 -= [72f" - rf' -+- f ]/4 c2 = I
bo = -'ifi"/2 - 2f"' + C(C - f' + 77f"/2) do = -f"
b6 = -t7f"' - f"/2 - Cf/2
S= 2f' - rif"/2 - 2C
b3 = f/2
b4 =

while the formulation (?) for the constant suction yields,

ao = [f" + 37f"' + 1v2fiv + C(f - '1f, - '72f") 1/4 co = ,7f"/2 - f'/2
a, = v7(f" + r7f"./2) c, = f/2
a 2 = [172f" - 'if' + f]/4 C2 = I
bo = -[,7fit + fl + Cjif" + 2C2 1/2 do = -f"
b1 = -1f"' - f"/2 - Cf /2
b2 = f' - if"/2 - 2C

b3 = f/2
b4=1

where f(qi) is the Blasius stream-function variable, and the symbol

c = #2-x
3:0

represents the coefficient that is dependent on x. The no-slip boundary condi-
tions on the surface of the undulated wall are transferred to Y = 0 via a Taylor

37



series expansion. These conditions are,

uself(0) = - (o•,)f"(0•) (21)
Voiei(0) = 0 (22)

Vself (o) = 0 (23)

while the boundary conditions for the suction case can be directly obtained,

Uself(0) = 0 (24)

VCIi(0) = W(o',l) (25)

V'elff(0) = 0 (26)

The condition on v°elf follows from continuity. The coefficient C prevents the
system of equations from being truly self-similar. As an approximation, we
neglect the xlxo dependence in C to arrive at a system of ordinary differential
equations. This approximation is acceptable in view of the small values of # of
interest - typically less than 0.1 (nondimentionalized with 6 at the PSE starting
location Xo). Thus, over the region 0 < x < x, the magnitude of C is less than
/32 < 0.01, which is small when compared to the order 0(1) coefficients in (2a)
and (2b).
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