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1 Introduction

Modern space surveillance requires fast and accurate orbit predictions for myriads of objects
in a broad range of Earth orbits. Conventional Special Perturbations orbit propagators,
based on numerical integration of the osculating equations of motion, are accurate but ex-
tremely slow (typically requiring 100 or more steps per satellite revolution to give good
predictions). Conventional General Perturbations orbit propagators, based on fully analyt-
ical orbit theories like those of Brouwer, are faster but contain large errors due to inherent
approximations in the theories. New orbit generators based on Semianalytic Satellite Theory
(SST) have been able to approach the accuracy of Special Perturbations propagators and
the speed of General Perturbations propagators.

SST has been originated by P. J. Cefola and his colleagues, whose names are in the refer-
ences at the end of this document. The theory is scattered throughout the listed conference
preprints, published papers, technical reports, and private communications. Our purpose in
this document is to simplify, assemble, unify, and extend the theory.

SST represents the orbital state of a satellite with an equinoctial element set (a,,. •a 6 ).
The first five elements a 1,,-- as are slowly varying in time. The sixth element a6 is the mean
longitude A and so is rapidly varying.

SST decomposes the osculating elements ai into mean elements a, plus a small remainder
which is 27r periodic in the fast variable:

ai = ai + 7,(a,,'"a 6 , t) (1)

(Here we use hats to distinguish the elements of the osculating ellipse from the elements of
the averaging procedure. The values of a free index are assumed to be obvious from the
context; e. g. , here i can have the values 1, 2, 3, 4, 5, or 6, so (1) represents 6 equations.)
The mean elements ai are governed by ordinary differential equations of the form

d- " -= n bi6 + Ai (al,,'"- as, t) (2)

Here t is the time, n is the (mean) mean motion, and 6i6 is the Kronecker delta (i. e.
616 = 626 = 636 = 64., = 656 = 0, 66 = 1). The short-periodic variations 77i are expressable in
Fourier series of the form

7, = _[C'i(al,'"as, t) cosjA + Si(al,...as, t) sinjA] (3)
j=l

Having formulas for the mean element rates Ai, we can integrate the mean equations (2)
numerically using large step sizes (typically 1 day in length). The formulas for the Fourier
coefficients Ci and S] in (3) also only need to be evaluated at the integrator step times.
Values of the osculating elements &i at request times not coinciding with the integrator step
times can be computed from (1) using interpolation formulas.

In subsequent chapters we will outline the methods of derivation and give explicit formulas
for the terms Ai, Ci, S] corresponding to various perturbing forces.
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2 Mathematical Preliminaries

2.1 Equinoctial Elements

The generalized method of averaging can be applied to a wide variety of orbit element
sets. The equinoctial elements were chosen for SST because the variational equations for
the equinoctial elements are nonsingular for all orbits for which the generalized method of
averaging is appropriate-namely, all elliptical orbits.

In this chapter we give an overview of the equinoctial elements, which are osculating
(even though they do not have hats). They are discussed in more detail in [Broucke and
Cefola, 1972], [Cefola, Long, and Holloway, 1974], [Long, McClain, and Cefola, 1975], [Cefola
and Broucke, 1975], [McClain, 1977 and 1978], and [Shaver, 1980].

2.1.1 Definition of the Equinoctial Elements

There are six elements in the equinoctial element set:

a, = a sernimajor axis
a2 = h
a3 = k components of the eccentricity vector

a4 =P
as = q components of the ascending node vector

a6 = A mean longitude

The semimajor axis a is the same as the Keplerian semimajor axis. The eccentricity vector
has a magnitude equal to the eccentricity and it points from the central body to perigee.
Elements h and k are the g and f components, respectively, of the eccentricity vector in
the equinoctial reference frame defined below. The ascending node vector has a magnitude
which depends on the inclination and points from the central body to the ascending node.
Elements p and q are the g and f componenms, respectively, of the ascending node vector in
the equinoctial reference frame.

There are actually two equinoctial element sets: the direct set and the retrograde set. As
the names imply, the direct set is more appropriate for direct satellites and the retrograde set
is more appropriate for retrograde satellites. It is possible, however, to use direct elements
for retrograde satellites and vice versa, and for non-equatorial satellites this presents no
problem. For equatorial satellites there are singularities which must be avoided by choosing
the appropriate equinoctial element set. For direct elements

lim V-j + (1) 0

while for retrograde elements

lim N/ý7+ q2 = 00 (2)

For each equinoctial element set there are three associated vectors (f, g, w) which define
the equinoctial reference frame. These vectors form a right-handed orthonormal triad with
the following properties:

4



z

X UNIT •MERE

Figure 1: Direct Equinoctial Reference Frame

f\
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1. f and g lie in the satellite orbit planc.

2. w is parallel to the angular m- .entum vector of the satellite.

3. The angle between f and the ascending node is equal to the longitude of the ascending
node.

This leaves two chuices for f and g, one associated with the direct element set and one
associated with the retrograde element set. The two sets of (f, g, w) are illustrated in
Figures 1 and 2. In the Figures, and throughout this document, (x,y, z) denote a set of
Cartesian coordinates whose origin moves with the center of mass of the central body and
whose axes are nonrotating with respect to inertial space.

2.1.2 Conversion from Keplerian Elements to Equinoctial Elements

If a, e, i, fl, w, M denote the conventional Keplerian element set then the equinoctial ele-
ments are given by:

a - a

h = esin(,,) + 10)

k = ecos(w+ +l)

p = [tan ()]tsinfl (1)
q =[tan( lCosf

A M+w +JIf

The quantity 1 is called the retrograde factor and has two possible values:

f +1 for the direct equinoctial elements
-1 for the retrograde equinoctial elements (2)

There are two auxiliary longitudes associated with the equinoctial element set: the ec-
centric longitude F and the true longitude L. They are related to the Keplerian eccentric
anomaly E and true anomaly f by the equations:

F = E+w+Ifl (3)

L = f+w+1f0 (4)

These auxiliary longitudes are used in converting from equinoctial elements to position and
velocity. In addition, certain perturbations are modeled with Fourier series expansions in F
or L.
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2.1.3 Conversion from Equinoctial Elements to Keplerian Elements

In order to convert from equinoctial to Keplerian elements, it is first necessary to compute
an auxiliary angle C, which is defined by:

h
sin = •/s+ k'

* (1)
k

Cos=C0$f I - +k

The Keplerian elements are then given by:

a - a

7= r(Lj2)+ 21arctan Fp 2 + q2

sinQ = (2)

Cos = q

S = ¢ 1

M =A-(

where I is defined by (2.1.2-2).
The Keplerian eccentric and true anomalies are given by:

E= F-( (3)
f =L-

2.1.4 Conversion from Equinoctial Elements to Position and Velocity

The first step in converting from equinoctial elements to position and velocity is to determine
the equinoctial reference frame basis vectors (f, g, w). Their components in the (x, y, z)
system are

1 [ -2p + q 2]

f= S+q 2pq
+p+q2 -21p

[ 2Ipq(

+ 2q 2

1 2p
w 2= q -2q

l+p 2 +q2 (1-p 2 -q 2 )J



The second step is to find the eccentric and true longitudes F and L, respectively. To
find the eccentric longitude F, one must solve the equinoctial form of Kepler's Equation (see
Section 6.1)):

A = F + hcos F- ksin F (2)

Then define two auxiliary quantities, the Kepler mean motion n and a quantity called b:

(3)
a

b = 1 (4)1 + v/i - h2 - k2

Here, and throughout this document, i is the gravitational constant GM of the central body.
The true longitude L is then given by:

sinL = (1- k2 b) sin F + hkbcos F-h
1 - h sin F - kcos F

cosL = (1 - h2 b)cosF+ hkbsinF-k (5)
1 - hsinF- kcosF

The third step is to compute the position and velocity components (X, Y) and ()X, Y)
of the satellite in the equinoctial reference frame. The radial distance of the satellite is given
by:

r = a(1 - h sin F- k cos F) a(1 - h2 - k2 )
1 + hsinL + kcosL (6)

The position components are then given by:

X = a[(1-h 2b)cosF+hkbsinF-k]=rcosL

Y = a[(1 - k2b)sinF+ hkbcosF- h] = rsinL

The velocity components are then given by:

= na2 [hkbcosF-(1-hb)sinF]= na(h + sinL)
r [s1 - h 2- k 2_(8)

= na 2 na~k~osL)(8)
=na[(1 - k2 b)cosF- hkbsinF] = na(k + cosL)

r vf1 -- h2 - Vs

Here dots denote differentiation with respect to the time t.
The final step is now to compute the position and velocity vectors:

r = Xf+Yg
= Xf+Yg (9)
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2.1.5 Conversion from Position and Velocity to Equinoctial Elements

The first step in converting from position r and velocity " is to compute the semimajor axis
a, which is obtained by inverting the well-known energy integral for the two-body problem:

a= 1•(1)
a=2 1IiI2

Inl p

The second step is to compute the basis vectors (f, g, W) of x.e equinoctial reference
frame. The w vector is obtained by normalizing the angular momentum vector:

w = r xi (2)
Ir x i

Equinoctial elements p and q are then given by:

W,
1 + Iw,

(3)
q W=1+w 2I + Iw,

Vectors f and g are then computed using elements p and q in equations (2.1.4-1a, 1b).
The third step is to compute the eccentricity-related quantities. The eccentricity vector

e is given by:

+r x (r x (4)

Equinoctial elements h and k are then given by:

h = e.g
k = e.f (5)

The final step is to compute the mean longitude A. First compute the position coordinates
of the satellite in the equinoctial reference frame:

X = r.f (6)

Then compute the eccentric longitude F:

sinF = h+(1-h2b)Y-hkbX
a\/l - h2 - k 2

cosF = k+(1-k 2 b)X-hkbY (7)

ac/s --h 2 -- k 2

where b is defined by (2.1.4-4). The mean longitude A is then given by the equinoctial form
(2.1.4-2) of Kepler's equation.

9



2.1.6 Partial Derivatives of Position and Velocity with Respect to the Equinoc-
tial Elements

Let

A = na2 = %/i
1

B = /1-h 2 -k 2 -- 1 (1)
b

C = 1+p 2 +q 2

The partial derivatives of the position vector r with respect to the equinoctial elements are
then given by:

Or -r

8a a
O& O9X fOYO-h = "h" + •g

Or OX OY

kk gk (2
Or 2[Iq(Yf - Xg) - Xw] (2)

5p- C
Or 21[p(Xg - Yf) + Yw]

aq C&% i
TA _n

where
OX kx aYY"

Oh n(1 + B) AB
OY k" aXY
Oh n(1 + B) AB

OX hX aY)(-+ -
Ok n(1 + B) AB
OY h" aXX

"Ok n(1 + B) AB

The partial derivatives of the velocity vector i with respect to the equinoctial elements

10



are given by: Or

Oa 2a

la x foCrOh Th +5 h
Or OX OY9Fk T- a (4)
o& 2[lq(Yf - Xg) - Xw]

TP C
Or 21[p(Xg - Yf) + Yw]
Oq C

r na3 r
0)• r3

where
OX) a kY2+ A ( akX y 2 )Oh• AB+; I3k+B B

oY _ a)X A (AkY XY)

Oh AB + Ikl+B+ B
OXk = aY A. ah X 2)+B(

Ok AB r0 kT 1B B )

2.1.7 Partial Derivatives of Equinoctial Elements with Respect to Position and
Velocity

Let -a and 2r represent the vectors whose components in the (z, y, z) system are the partial
derivatives of the element ai with respect to (x, y, z) and (i, i, i), respectively;

Oa : [Oa_, Oa, o_,1
Or LO Oy Oz (1)
aaj_ [Oaj Oa, a, i

11



The partial derivatives of the equinoctial elements with respect to position are then given
by

Oa 2a 2r
Tr- r3
Oh abhBr k(pX - IqY)w B ori

- 3 + -AB A Nk

Ok abkBr h(pX - lqY)w B or

Or r3 AB A Oh (2)
Op _ Cw
Or 2AB
aq CXw
Or 2AB
oa i. (pX - IqY)w bB h & + kO

"Orj - A+ AB A O- h Ok

The partial derivatives of the equinoctial elements with respect to velocity are given by:

Oa 2i

Or A
Oh (2XY - XY)f - XXg k(IqY - pX)w

*s + AB
Ok (2XY - XY)g - Ykf h(IqY - pX)w

Or P AB (3)
Op CYw
or 2AB
Oq ICXw

&• 2AB

_A 2r k- h-+ (IqY - pX)w

0i I +A ++ A

2.1.8 Poisson Brackets

The Poisson brackets of the element set (a1,..-, a6 ) are defined by the equations

Oai Oaj aaj 9aj(a,, a)= -'• -• -• • (1)
Or Or Or O

It is immediately evident that

(a1 , a1 ) = 0 (2)
(ai, aj) = -(aj, a,)

12



The fifteen independent Poisson brackets for the equinoctial element set (a, h, k, p, q, A)
are given by

(a,h) =0 (h, A) hB
A(l + B)
hpC

(a, k) =0 (k, p)= 2AB

2qB

(a, p) =0 (k, q) = 2AB

2AB
(a,q) =0 (k, A)== A(1+B)

2 C 2  (3)
(a, •)=---(p, q) = - I

na 4AB
(h, k) B pC

"(p, A) 2 AB

(h ) kpC qC

2AB 2AB
(h, q) kqC

2AB

2.1.9 Direction Cosines (a,/3,-)

The conservative perturbations are more conveniently described by the direction cosines
(a,/3, -y) of the symmetry axis rather than the equinoctial elements p and q. For central-
body gravitational spherical harmonics, let ZB be the unit vector from the center of mass
to the geographic north pole of the central-body. For third-body point mass effects and
shadowless solar radiation pressure, let ZB be the unit vector from the center of mass to
the third-body. The direction cosines of ZB with respect to the equinoctial reference frame
(f, g, w) are then given by

a = zB"f

/3 = zB'g (1)
-y = ZB"W

The quantities (a, /3, ) are not independent but related by the equation

a 2 +/3 2 +,2 =1 (2)

Note that (a,, 3,) are functions of p and q, since the unit vectors (f, g, w) are functions
of p and q through equations (2.1.4-1). Note also that (a,/3,7ly) are functions of t, since
ZB is a slowly varying function of time. If the vector ZB along the geographic axis of the
central-body is parallel at epoch to the z-axis of Figures 1 and 2, then the direction cosines

13



of ZB are at epoch
2Ip

1 + p2 + q2

2q(3

S = +1+ +q2 (3)
=(1- p2 - q2 )1

1+ p2 + q2

The partial derivatives of (a, 03, y) with respect to p and q are:

16a 2(IqO + -7)
&P __ 2(q 3+

Oa 2Ipo

Tq _C
0/ 21qa

op C(4)
0o 2 I(pa - 7)

Tq C
0-Y 2a
op
07 21,8
Oq C

2.2 Variation-of-Parameters (VOP) Equations of Motion

The Cartesian equations of motion for an artificial satellite in an inertial coordinate system
are [Battin, 1987]:

_JrJ•- il q Vi (1)

Here r is the position vector from the center of mass of the central body to the satellite,
d2- is the acceleration vector, p = GM is the gravitational constant of t e central

body, q is the acceleration due to nonconservative perturbing forces (atmospheric drag,
solar radiation pressure), and 7R is a potential-like function called the disturbing function
from which one can derive the acceleration due to conservative perturbing forces (central-
body spherical harmonics, third-body point-mass). If m and II are the mass and potential
energy, respectively, of the satellite, then the disturbing function 1Z is given by:

II
S= - -- (2)

In order to apply the generalized method of averaging, it is necessary to convert the
equations of motion into a form giving the rates of change of the satellite orbit elements
as a function of the orbit elements themselves. The equations of motion resulting from
this conversion are called the Variation-of-Parameters (VOP) equations of motion. The
derivation of these equations is discussed in some detail in [Cefola, Long, and Holloway,
1974] and [McClain, 1977].

14



In this section we let (a,,.. - a6) = (a, h, k, p, q, A) denote the osculating equinoctial
elements (even though they do not have hats). Then the VOP equations of motion turn out
to be

a, = n6i 6 + -aq -q (a, aj)- (3)
r E-

Here - is the velocity vector, n = is the Kepler mean motion, and 6,e is the
Kronecker delta. The partial derivatives Oaj/8i are given by equations (2.1.7-3), and the
Poisson brackets (a,, a1 ) are given by equations (2.1.8-2,3).

The VOP equations of motion (3) include three contributions to the orbit element rates
of change. The two-body part is:

a, = nbi6  (4)

The Gaussian or nonconservative part is:

Oai
i = -(5)

The Lagrangian or conservative part is:
6

ai= -(a,, a3) (6)
j=1 0a1

In the remainder of this document it will be convenient to discuss these contributions sepa-
rately, but they must be added together to obtain the total orbit element rates of change.

The Lagrangian part of the VOP equations of motion contains the partial derivatives of
the disturbing function R with respect to p and q. The perturbations which contribute to 1?
are not conveniently described in terms of p and q, however. For these functions, it is better
to write RZ as a function of (a, h, k, A) and the direction cosines (ca, 0, -Y) of the symmetry
axis of the perturbation. The partial derivatives of the disturbing function 1Z with respect
to p and q can then be obtained by applying the Chain Rule:

OR R 196a oR 3Ra

OR 191 ap on a# ar a1F9 - 57--I +
,aq T 9 +7q a7 aq

The partial derivatives of (a, /f, -y) with respect to p and q are given by (2.1.9-4). To simplify
the notation, let us again use the auxiliary quantities A, B, C defined by (2.1.6-1). Also, let
us define the cross-derivative operator

R" = L - a (8)

Note that Z,•# = -?,#,. Then the partial derivatives of 1? with respect to p and q turn out
to be

p = 2 (R ,. I + Iq1?, j()
@1? 2 (9)

S= - 21 (1 +Plla01
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With this notation, equations (6) for the Lagrangian part of the VOP equations of motion
become:

2a aR

A = OZ_ _ _

h 
kB n z

k+ iAB ' A(1  + B) aAk [B"R h (p•oq••kB OR.
q 5h B (I II"') + A( + B) '-1 10

S=2AB ,k-"-,

q 2AB [P (RL hkRQ3)) -1~3Y (10)0

2a 07? B hl 1 1 f \
A Oa +A(1 + B) h Fh+ k.- A ,B

2.3 Equations of Averaging

The Generalized Method of Averaging may be used to divide the VOP equations of motion
(2.2-3) into a shurt-periodic part which can be integrated analytically and a slowly-varying
part which can be integrated numerically using time steps several orders of magnitude longer
than the time steps appropriate for integrating the untransformed equations of motion. The
Generalized Method of Averaging and other perturbation techniques are discussed in [Nayfeh,
1973]. Only a summary of the application of this procedure to (2.2-3) will be given here.
More details can be found in [Cefola, Long, and Holloway, 1974], [McClain, 1977], [McClain,
Long, and Early, 1978] and [Green, 1979].

To apply the Generalized Method of Averaging we first assume that the osculating orbit
elements ai are related to a set of mean elements ai by a near-identity transformation:

00

ai = ai + E d r'id(a,h,k,p,q, A,t) (1)
j=1

Here again, the indexed variables (a,-", a6 ) refer to the equinoctial orbit elements
(a, h, k, p, q, A) and hats distinguish the osculating elements from the mean elements. The
quantity eti• represents a small short-periodic variation of order j in element i. The quantity
c is called the "small parameter" and plays the role of a variational parameter in deriving the
Equations of Averaging. (Note that the superscript j is used in the symbol d to designate
a power and in the symbol qj to designate an index.)
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The short-periodic variations are a-uumed to contain all of the high-frequency components
in the osculating elements aj, so that the mean elements a, vary slowly with time. This
requirement can be expressed by the following two sets of inequalities:

1 Jdal
n di

n - < 1 for i=2,3,4,5 (2)

1-d - n <<
n di

where n is the Kepler mean motion, and

dk+la a
dtk+• 1

(3)
Ak+1 dk+1 a,

dtk+I < 1 for i=2,3,4,5,6

where k is the order and A is the step size of the numerical integrator. Inequalities (2) ensure
that second-order effects will be small, while inequalities (3) ensure that the integrator errors
will be small.

Using the variational parameter E, we can write the osculating Cartesian equations of
motion (2.2-1) as

d2i p•r = -- p + f(q + VIZ) (4)

As c increases from 0 to 1 the resulting motion varies smoothly from two-body motion to
the actual motion. The osculating VOP equations of motion (2.2-3) then become

da = n(a) s + f L,. q- 6 ii(5)

which can be written in the form

da- = n(&)6, 6 + Fj(a, h, k,p,A, ý,t) (6)
dt

The terms cFi give the osculating element rates of change due to the perturbing forces as
functions of the osculating elements.

We assume the following form for the mean VOP equations of motion:
00

da_.i z (a)b6s + : fjAj(a, h, k,p, q5t) (7)
dt j=1

The terms dAj give the mean element rates of change due to the perturbing forces as
functions of the mean elements. For most perturbations, the Al are independent of the fast
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variable A as indicated in (7). For central-body resonant tesseral harmonics, the Aj are also
slowly-varying functions of jA - mO (see section 3.3).

The osculating rate functions F, and the mean rate functions Aý may be explicit functions
of the time t because the perturbing forces may change with time when the satellite position
and velocity are held constant, e. g., due to motion of the Moon.

We now expand the osculating rate functions in a variational power series about the mean
elements:

00

F,(a,h,,kq,,A,t) - F,(a,h,k,p,q,A,t) + e •f.'(a,h,k,p,q,A,t) (8)
j=i

Here

E=, (9)

6 166 02 F,fi2 OF aj/ 2 +~ 1 1 10
' ' 7, _ 77'77k(10)

$7=1 "k=1ak

Similarly, we expand the osculating Kepler mean motion about the mean semimajor axis:

n(s) = n(a) + d EJNJ(a) (11)
j=1

Here

N' = -- 3 1 n(a) (12)
2a

N 2 = 3iq? + 15(i17)2 n(a) (13)

3 3, q1 5 7 35(171)31= l1771 35 n(a) (14)
[- "a-+ T a2 160

Having all the necessary expansions, we can now derive the Equations of Averaging.
First, differentiate (1) with respect to t and use (7) to obtain one expression for the osculating
element rates. Next, expand the functions on the right side of (6) using (8) through (14)
to obtain another expression for the osculating rates. Then equate the two expansions and
require that they be equal for all values of e between 0 and 1. Since the powers of c are
linearly independent, the coefficients of d' must be equal. Taking j = 1,2,3,-.- yields the
Equations of Averaging of order 1, 2, 3,... respectively:

-A n(a)+a1 - = Fi(a,h,k,p,q,A,t)+N'6,6  (15)
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2aJ a-A (16)

++NA (17)
OA at _ a

In the Equations of Averaging shown above, the osculating rate functions F,, the mean
rate functions Aj, and the short-periodic variations qi4 contain effects due to many pertur-
bations. In order to obtain practical expressions for Aq and ,J, it is convenient to partition
the Equations of Averaging to separate the effects of different perturbations.

The first step in partitioning the Equations of Averaging is to express the osculating rate
functions F, in terms of the contributions Fi, of the separate perturbations:

F = • i'F~o (18)

The sum is taken over all perturbations of interest. The parameters v, are variational
parameters, one for each perturbation. Each v, can vary from 0, at which the perturbation
is turned off, to 1, at which the perturbation has its actual strength. The partitioned
Equations of Averaging are required to be valid for all values of the v,,.

Substituting equation (18) into the first-order Equations of Averaging (15) leads to the
following expressions for A! and i/l:

f = A v. Ajo (19)

S = (20)

Substituting equations (18)-(20) into the second-order Equations of Averaging (16) leads to
the following expressions for A? and 77:

2= A Z vvoAj. (21)
oO9

= , (22)

Substituting equations (18)-(22) into the third-order Equations of Averaging (17) leads to
the following expressions for A? and 77?:

f = 3Zvv , Aj.#AO,h (23)
aply

3r = _, ovOv-qi,3- (24)
a0-

Similar expressions exist at higher orders. (Remember that the first index in Fj,, Ajo, 77er,
etc. refers to the orbit element.)

19



If we substitute (18)-(20) into (15) and then equate the coefficients of each v,,, we obtain

the partitioned form of the first-order Equations of Averaging. Similar procedures with (16),

(17), ... lead to higher-order equations. The partitioned Equations of Averaging of arbitrary

order can be written in the concise form

3- 7 (25)Ai + 0- -C.) + L17 = G,- n(a)b,•(2

Explicit expressions for the Gi functions up to order 3 are:

G,. = Fi,(a, h, k,p,q, Ajt) (26)

6 a 15 '7ic-?ho 6 &71, (27)
Gio ,- v7j + - -2n(a)A6 -Z:-'A,,(7

j=1 9aj 8 aj=I ia

=~~~~ 6 1 6 C92 F~a(Sii- S1~1I?

= j .=- + '&ajak a 2  16 a3

([0 -O'Aj,+ - j- (28)

Comparing the partitioned Equations of Averaging (25)-(28) with the full Equations of

Averaging (15)-(17), we see that the first-order equations are identical. The second-order and

higher-order partitioned equations include auto-coupling equations (e.g., a = # = ... = 1)

which are identical to the full equations, but in addition include cross-coupling equations

(e.g., a = 1, 1 = 2).
The partitioned Equations of Averaging (25)-(28) give the fundamental relations which

can be used to derive expressions for the mean element rates Aja Ajao, Aj,,0 ., and the short-

periodic variations r7io, 71joo, 7ht-.. Then the total mean element rates A!, A 2, Aý and short-

periodic variations q!, q?, t• can be obtained from the decomposition relations (19)-(24).

2.4 Averaged Equations of Motion

The Equations of Averaging (2.3-25) can be solved for the mean element rates

Aij Aap, Ailoo..."" by applying an averaging operator < ... >, to be defined in this sec-

tion, to both sides of each equation. The resulting expressions for the Ai.,, Ao, Ajc,...

can then be added together as shown in equations (2.3-19, 21, 23) and substituted into

equations (2.3-7) with c = v. = 1 to form the mean, or averaged, equations of motion:

dl = n(a)i+ EAa+ ,Aio + .Aj, (1)d t 0 , 0 " 0• , , '

These equations can then be integrated with a numerical integrator to obtain values for the

mean elements a, at a given time.
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The averaging operator is required to be linear; that is, if p and a are any two real
numbers and f and g are any two real piecewise continuous functions of the mean elements,
then:

< pf + ag >= p < f > +a < g > (2)

The averaging operator is also required to be idempotent; that is, if f is any real piecewise
continuous function of the mean elements, then:

<< f >>-< f > (3)

To make the averaging transformation useful, we also require the averaging operator to have
the property that solving the Equations of Averaging with it yields slowly-varying mean
element rates and small short-periodic variations.

In order to be able to divide the Equations of Averaging into separate equations for the
mean element rates and the short-periodic variations, we impose the following conditions:

< i1i >= 0 (4)

It is not immediately obvious from the Equations of Averaging (2.3-25) that the short-
periodic variations can be required to average to zero (equations (4)). Let us first observe
from (2.3-26, 27, 28) that, at any order, Gi are predetermined functions of the osculating
rate functions Fm and the solutions of the lower-order Equations of Averaging. Therefore Gi
are fixed, while we can vary Ai and 7/i in any manner which satisfies (2.3-25). Let us assume
that the short-periodic variations 77i do not average to zero, and write

< 77i >= ki (5)

Let us then define
, Ok, .9k, 3 n

Ai = Ai +n nL.- + --• + 3naki,6 (6)OA 2 a
S= i - ki (7)

Solving (6)-(7) for Ai and rqi and substituting the resulting expressions into (2.3-25) yields
, Or: Orl 3 il 6, 8

A' + n-L' + -L = G i (8)
aA &t 2 a

We see that Aý and r/ are solutions to the Equations of Averaging, and we can thus choose
Aý and 9! to be the preferred solutions. Averaging (7) and applying (2, 3, 5) yields

< r>= 0 (9)

We can therefore require the short-periodic variations to average to zero (equations (4)).
If the osculating rate functions Fi, for a given perturbation are simall, 2ir-periodic in the

satellite mean longitude A, and slowly-varying in time when the satellite orbit elements are
held fixed, then the single-averaging operator has the required properties:

< f >= Ir f(a,h,k,p,q,A,t)dA (10)

Most of the perturbations commonly acting on a satellite can be single-averaged:
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1. Central-body gravitational zonal harmonics.

2. Third-body gravitational point mass effects.

3. Atmospheric drag.

4. Solar radiation pressure.

Some perturbations are quickly-varying when expressed as a function of time but slowly-
varying when expressed as a function of both time and a perturbing-body phase angle 0
which varies linearly with time. If the osculating rate functions F, for such a perturbation
are small, 21r-periodic in both A and 0, and slowly-varying in time when 0 and the satellite
orbit elements are held fixed, then the double-averaging operator has the required properties:

< f > J4 L (a, h, k,p,q, A,0,t)dAdO (11)

+12 Z cos(JA - mO) ff(a,h,k,p,q,A',0',t)cos(jA' - mO')dA'dO'
2r(j,m)ES Ic " I"

+ sin(jA - mO) L, J f(a, , k,p,q, A', 0', t) sin(jA'- mO')dA'dO']

(Equation (11) may be written in alternate forms, one of which is used in (3.3-2).) Here B
is the set of all ordered pairs (j, m) with the following properties:

m > l (12)
2wr

jiA- m 1 < -- (13)

where r is the minimum period desired for perturbations included in the averaged equations
of motion. The same minimum period should be used for all double-averaged perturbations.
Inequality (13) is called the resonance condition and denotes the satellite frequencies j and
perturbing-body frequencies m which are in resonance with each other. It often happens
that the satellite has no resonances with the perturbing body, in which case set B is empty.

The minimum period r should obey the following inequalities:

r >_ 3r,\ (14)

Tr >_ 3r0 (15)

where i, and To are the periods of the satellite and the perturbing-body phase angle 0
respectively. In addition, 7" should be at least 8 times as long as the step size used in the
numerical integrator, and much longer if accurate integration of perturbations with this
period is desired. It is dangerous to make r too long, however. Components of the double-
averaged perturbation which have periods equal to r or shorter will be excluded from the
averaged equations of motion and treated as short-periodic variations. If r is too long and
deep resonance exists, some of these short-periodic variations may be large enough to cause
large second-order coupling effects, making the averaging expansions (2.3-1) and (2.3-7)
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diverge. For this reason, -r should be less than 100 times the integrator step size. Making -r
.small enough to ensure convergence of the averaging expansions takes priority over inequality
(15), which must be dropped if the perturbing-body phase angle 0 varies too slowly. If 0 is
the rotation angle of the Earth, this will not be necessary, since the Earth rotates quickly.
If 0 is the rotation angle of Mercury or Venus, it may be necessary to drop condition (15),
depending on how large the m-daily (j = 0) short-periodic variations due to the gravitational
tesseral harmonics are. The Moon is a borderline case.

The following perturbations can be double-averaged:

1. Central-body gravitational sectoral and tesseral harmonics. For this perturbation, 0 is
the rotation angle of the central body. (For a more precise definition of 8, see Section
2.6.) The double-averaged central-body gravitational spherical harmonic model in SST
is fully-developed and will be discussed in Section 3.3.

2. Third-body point-mass effects, if the third body orbits the central body. For this
perturbation, 0 is the equinoctial mean longitude of the third body. The current double-
averaged third-body model assumes that the third body orbits the central body in a
slowly-varying Keplerian ellipse. Methods for predicting the effects of short-periodic
variations in the third-body orbit on the satellite orbit have yet to be developed. For
Earth satellites, the short-periodic variations in the orbit of the Moon are substantial.
If they are included in the Lunar ephemeris used with the double-averaged third-body
model, the integrator step size will be driven down to values appropriate for the single-
averaged third-body model, thus destroying the usefulness of the double-averaging
expansion. The step size reduction is avoided by using a smoothed ephemeris for the
Moon, but this creates an error in the computed satellite mean element rates due to
the Lunar perturbation, and the size of this error is not known. Because of these
limitations, double-averaged third-body perturbation models will not be discussed in
detail in this document. For a complete description of the current model, see [Collins,
1981].

There are some perturbations for which no averaging operator with the required proper-
ties can be found. These perturbations are called non-averageable and include:

1. Atmospheric drag, with an asymmetric spacecraft and fast, non-periodic attitude vari-
ation.

2. Solar radiation pressure, with an asymmetric spacecraft and fast, non-periodic attitude
variation.

3. Continuous thrust, with fast, non-periodic changes in direction.

4. Impulsive thrust.

These perturbations are typical of directed flight, which in general is not required to be either
slowly-varying or 2Ir-periodic in A or any other phase angle. Semianalytic Satellite Theory
cannot predict the effects of these perturbations, with the exception of impulsive thrust (see
below), and should not be used unless they are small enough to ignore.
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Some types of directed flight are averageable, and these include many scenarios of prac-
tical interest:

1. A drag-perturbed satellite whose solar panels always point directly at the Sun. The
attitude of the satellite relative to the atmosphere will be 27r-periodic in A and will
vary slowly in time as the Earth revolves about the Sun.

2. A spacecraft with a solar sail which is feathered when approaching the Sun and per-
pendicular to the Sun line when receding. The attitude of the sail will be 2w-periodic
in A and will vary slowly in time as the Earth revolves about the Sun.

3. A spacecraft with a constant-thrust ion engine whose thrust is always parallel to the
orbit. The direction of the resulting acceleration will be 27r-periodic in A and the
magnitude will vary slowly in time as reaction mass is depleted and the spacecraft gets
lighter.

Of course, the perturbations remain averageable only as long as the orbit remains elliptical.
Parabolic and hyperbolic orbits are beyond the scope of this document.

Impulsive thrust is not averageable, but its effects can be predicted using the following
procedure:

1. Integrate the averaged equations of motion (1) up to the time of the impulsive maneu-
ver.

2. Compute the short-periodic variations as functions of the mean elements using equa-
tions (2.3-20, 22, 24) and the equations in Section 2.5.

3. Add the short-periodic variations to the mean elements to get the osculating elements
(equations (2.3-1)).

4. Convert the osculating equinoctial orbit elements to position and velocity using the
equations in Section 2.1.4.

5. Add the velocity change Av caused by the impulsive maneuver to the satellite velocity.

6. Convert the satellite position and velocity to osculating equinoctial orbit elements using
the equations in Section 2.1.5.

7. Invert equations (2.3-1) to convert the osculating elements to mean elements (see Sec-
tion 6).

This procedure is always valid, but if impulsive thrusts occur more often than once per orbit,
it may be too expensive to make the use of averaging worthwhile. For additional methods
for modeling impulsive maneuvers, as well as continuous thrust, see McClain [1982].

Some perturbations are usually averageable, but cannot be averaged in certain circum-
stances because of large second-order effects. These include:
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1. Third-body point-mass effects, for a satellite whose orbit comes too close to the orbit
of the third body. This perturbation will be non-averageable even if resonance locking
ensures that the satellite will always remain far from the third body.

2. Third-body point-mass effects, for a satellite whose orbit comes too close to the bound-
ary of the central body's gravitational Sphere of Influence.

3. Atmospheric drag effects, during the terminal stage of reentry.

Semianalytical Satellite Theory should not be used under these circumstances.
It is worth considering at this point whether the averaging operators (10) and (11) ac-

tually have the required properties (2)-(3). It is immediately clear from equations (10) and
(11) that both operators are linear (equation (2)). It is also clear from equation (10) that the
single-averaging operator is idempotent (equation (3)). To show that the double-averaging
operator is idempotent, we double-average both sides of equation (11) to obtain

1 f 1> <f >dAdO

+ •27r [cos(jA - Mo) < f > cos(jA'- mO')dA'dO'
(U,m)EB

+ sin(jA - mO) 7 < f > sin(jA' - mO')dA'dO']

I 2 fd,\dO1 fl fI

[cosOSA inO) I
(,,r4 E~ cos 2(jA'O) - mO')dA'dO' L Lrfi f cos(j A - mO")dA"dO"

+ sin(jA - mO) L L sin 2 (jA' - mO')dA'dO' L L f sin(jA" - mO")dA"dO"]

(16)
Note that, if f is independent of 0, the double-averaging operator (11) reduces to the

single-averaging operator (10). Thus we can without inconsistencies apply the single-averaging
operator (10) to perturbations that do not depend upon 0, and the double-averaging operator
(11) to perturbations that do depend upon 0.

If the perturbations can be averaged with the operators (10) or (11), then the Equations
of Averaging (2.3-25) can be solved for the mean element rates by averaging both sides of
each equation. Note that the averages are always taken with (a, h, k, p, q, t) held constant.
Using (4), we thereby obtain for the mean element rates Ai at any order

A =< G> (17)

Substituting (2.3-26, 27, 28) into (17), we can obtain explicit expressions for the mean
element rates at each order.

The explicit equations for the first-order mean element rates have the same form for both
single-averaged and double-averaged perturbations:

Aj, =< F,0(a,h,k,p,q,A,t) > (18)
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The averaging operator used is single in the first case and double in the second.
The explicit equations for the second-order mean element rates involve coupling terms

between two perturbations, which may be two different perturbations (cross-coupling) or
copies of the same perturbation (auto-coupling). If either perturbation is single-averaged,
the equations take the form

6 /+, 15 nAia0 = ( a /+ - (77.710a) ,6 (19)

j=1 a TT

If both perturbations are single-averaged, a single-averaging operator is ised. If either
perturbation is double-averaged, a double-averaging operator is used. If both perturbations
are double-averaged, the equations take the form

6n (7.10 6 Ao (20)
j=1 E Oaa

If both perturbations use the same perturbing-body phase angle 0, then a double-averaging
operator is used. However, if the perturbations use different perturbing-body phase angles
0 and 0', then a triple-averaging operator is used.

Derivation of the explicit equations for the third-order mean element rates will be left as
an exercise for the reader.

2.5 Short-Periodic Variations

Once the mean element rates Ai,, Aio0 , A, 00.f,... are known, the Equations of Averaging
(2.3-25) can be solved for the short-periodic variations ij, r7ioo, 7ika,"" by using Fourier
series expansions for the functions Gia, Gi 0 , Gic,'... The resulting expressions for the
rni0j Iiwo, 77jao,'". can then be added together as shown in equations (2.3-20, 22, 24) with
S= vc = 1 and substituted into equations (2.3-1) with E = 1 to give the osculating elements:

i = ai + 77i- + F_, isO + F, 77i. +""(1)
0 o/9 s

Of course, using Fourier series expansions for the functions Gi assumes that the osculating
rate functions Fi, are 27r-periodic in the phase angles of the expansions. Most perturbations
can be expressed with more than one kind of _:'urier series expansion. In this section we shall
give formulas for the short-periodic variatiov.' c.orresponding to several possible expansions.

Some of the general expressions presented in this section are new, so enough steps in
the derivations will be presented to enable the reader to rederive them. Our derivations
are based on the work of [Cefola and McClain, 1978], [Green, 1979], [McClain and Slutsky,
1980], [Slutsky, 1980], [Slutsky and McClain, 1981], and [McClain, 1982].

2.5.1 General 77i Expansions in A

Recall that the Equations of Averaging of arbitrary order can be written as
O'i 8'i,3nA ,7 ,+n- = •- •-4 ,6?1 (1)Ai + n-l• L77- = 0-'3n i6

6t 2a
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where Gi are predetermined functions (equations (2.3-26, 27, 28)) and

Ai =< G, > (2)

At order m, the Equations of Averaging contain m perturbations, which may all be different
or may include multiple copies of the same perturbation.

If all of the perturbations in the Equations of Averaging (1) are single-averaged, then the
equations can be solved for the short-periodic variations q/ by integrating over the satellite
mean longitude A. It is convenient to first define the short-periodic kernels C,:

ti=1 f(G, - Aj)dA (3)

The constant of integration is specified by requiring

< ýj >= 0 (4)

In the absence of explicit time-dependence, the full short-periodic variations qi are then given
by:

3 f17i, Fbi 36 f•j dA 5

The conditions (2.4-4) and (4) require

( fj dA) =0 (6)

In the presence of explicit time-dependence, the full short-periodic variations ri, are given
by:

= K (_ 1)k k ,, k

k=1 K _k (7)
[FaD + -~t k• dak+

k=1 +1 1

Here K is the order of the highest order partial derivatives desired in the expansions. The
conditions (2.4-4) and (4) require

( dj•dAk) =0 forall k > 1 (8)

Here the following somewhat unusual notation is used for the operator which is the k"h
indefinite integral (the inverse of the kth derivative operator):

jf(A)dAk=J.f (A) dA...d (9)
k

Alternately, knowing the short-periodic variations 179 in the absence of explicit time-
dependence, we can compute recursively the short-periodic variations tiý including the kth
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order time derivatives:

lio = 3-3-6 ,I dA
Ta- + k (10)

t)k = k-1+ ( 1)k I~ 2ýak +L +2-fk( 1)k 6,6 kk+i

nk 0-tk 2an ktk+I&

Explicitly, we suppose that the functions Gi can be written as a Fourier series in the
mean longitude A:

Gi(ah,k,p,q,A,t) - C°(a,h,k,p,q,t) (11)

o_, [C~i (a, h, k, P,q, 0cos i + S~i (a, h, k,p, q, t)sinjA

j=1

where 1e9 = f.Gi dA

C0  = - I ia

i 1  Gi cosjAdA (12)

S1ir

= - Gi sin jAdA

Using (2.4-10) and (2), we can obtain the mean element rates A,:

Ai = C° (13)

We can then obtain the short-periodic variations qj by performing the integrals (7, 8). The
final result of these calculations is:

00

71i= E[Ci cos jA + S• sin jA] (14)
j=1

where

l -•- 2 a cj +j 7n +W_2-a 27j ot

1 [-- -3-6 1 [&3C+ 346,6O 3Sj]
(in) I & 2 2a j 8t2  (jn) 01t 3  2a j a&3 

J (15)

1[r2 = 316__ 1] + 1 "0Si 326,6O ] 1

J 2a j 1 (jn)2 ot 2a j ot

1 0[2C,'+33 02sfl 1 aI3S' 3 4 & 03 CIl
(jn)3 +a2 2a j ON2 (jn)4  0t_3  2a j O"• ] ""

2.5.2 General vij Expansions in F

In this section we suppose that the functions Gi are expanded as a finite Fourier series in
the eccentric longitude F:

Gi(a,h,k,p,q,F,t) = C°(a,h,k,p,q,t) (1)
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+ [Ci (a, h, k, p,q, t)cos jF + Sj4(a, h, k,p, q, t)sin jF]
j=1

where

Cio= iGi dF

Cj = Gi cosjF dF (2)

Sij = - GisinjFdF

Again we may use (2.4-10) and (2.5.1-2, 3, 4, 7, 8) to obtain the short periodic variations
rh. To do this, it will be necessary to convert the integrals over A into Fourier series expansions
over F. We begin by supposing f(A) has a finite Fourier series expansion in F with known
coefficients and it averages to zero:

J

f(A) = CO + _(Cj cos jF + Sj sin jF) (3)
j=1

< f(A) >= 0 (4)

Using

J f(A)dA - Jf( )-dF (5)

the following consequence of the equinoctial form (2.1.4-2) of Kepler's Equation

r
- =1 - hsinF - kcosF (6)

OF a

and the following well-known trigonometric identities

cosjFcoskF = cos(j - k)F + cos(j + k)F
2

cosjFsinkF = sin(j + k)F - sin(j - k)F
2

sinjFcoskF = sin(j + k)F + sin(j - k)F (7)
2

sinjFsinkF = cos(j - k)F-cos(j + k)F
2

we can convert the right side of (5) into a Fourier series expansion in F. Note in particular
that the condition (4) implies that the constant term Co in (3) must be related to the Fourier
coefficients C1 and S1 by kl h

CO = iC + 2S (8)

Higher-order integrals can be computed using recursion formulas obtained from the equa-
tion f(A)dA\+l ='] I f(A)dA-dA 

(9)
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We summarize the conversion for the general multiple integral with the following notation:
J+,n

f(A)dA = UZ(CC,SS)+ E_[Uu (CC,,SC))cosjF + V, (CC,SC)sin jF] (10)
j=1

< f(,\)d,\ >= 0 (11)

Here the arguments (CC, SC) denote that the functions U. and V47 depend upon the coeffi-
cients Cj and Sj appearing in (3) through the relations:

for 1_ j_< J:
U03 = C.,

~0=
V4j=S'

for m> 0:

U0 = k u"" ++ v h )1S_2
Uh+ = U'- 1- V2 - U, + -kVI

Vm+1 = 1-2U 2 •u-vIU• I-V2

V,1. \2 2 n" 2 m

(12)

for2< < J +m+ 1:

j k _vm h-jk + k hU+ = - 2 + 2V - + 2 +

v•,= - u - •u•- + 2"- •u,- -vj+i2

forj J-+ m+ 1:

U1 =0
vj =0

With this notation, we can write the mean element rates Ai and the short-periodic
variations 77i corresponding to (1):

Ai = C 2- kC' - 'Si (13)

J+K+2

17i = C~i + F, [C• cosjF + S' sinrF] (14)
j=1
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where

1 K(~)k 1t9"h a'S
c° = k-c., + h S

Ciju ne , , o ( si) + nk+ I -Ik + & k--..i+k=1

3 1K kj O

2a n (1 k=1 nk+1 &jk atk (15

(-1,n) ""jk aik __ --kS

k=k

2.5.3 General 7i Expansions in L

In this section we suppose that the functions Gi are expanded as a finite modified Fourier
series in the true longitude L:

M
Gi(a,h,k,p,q,L,t) = C°(a,h,k,p,q,t) + E V"•(a,h,k,p,q,t)(L - A)M

M=(1)
+ _,[Ci (a, h, k, p,q, t)cos 1L + SiJ(a, h, k, p,q, t)sinj L]

j=l

Here the quantities (L - )- are written separately, rather than by replacing them with their
Fourier series expansions recorded below.

The equation of the center may be calculated from the Fourier series expansion

L- A = Z-.(ajcosjL - pj sinjL) (2)
j=1 j

Here
pi = (cosjL) = osLdA

(3)
aj = (sin jL) = 7r sin jL dA

The auxiliary quantities pi and aj can be evaluated using the equations *

"Let Z = eiL and use the Residue Theorem to integrate
P3+if (I - h2 - k 2)3/2/t eijL d

= 2 +,2 k" (1 + hsinL + kcosL)2dL
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pi = (1 +jB)(-b)jC,(k,h)

aj = (1 +jB)(-b)jSj(k,h)

where b and B are given by (2.1.4-4) and (2.1.6-1b), and

Cj(k, h) + iS,(k, h) = (k + ih)3  (5)

are obtained from the recursion formulas

Cj +1(k,h) = kCj(k,h)-hS,(k,h), Co = 1 (6)

S,+ 1 (k,h) = hC,(kh) + kS 3 (k,h) , So = 0

The quantities (L - A)' may be calculated from the expansion

00

(L - A)tm = n + -(icj cosjL + V.. sinjL) (7)

Here the first-order coefficients nl and 0' are obtained immediately from (2):

= 0
K1 = 0a--

ji - (8)

_ 2p,

Higher-order coefficients KI and Vm are obtained using the following recursion formulas,
obtained by multiplying the series on the right sides of (2) and (7):

0 01 k k)
nm+i = Z (t~n -k•¢m

k=1

2a 1 k k
m+-1 KM + - (O++kK - Pj+k 4 m)

E- 3 +k mk=1J
00 o~k m pkP)+(I 1 j+-'P+•l'-J+ (1/f;) E Yk kj

S0 00 1 k-- (9)
= P'*yC~ (O'j+kV'k + P+kK

k=1- 1

+LFjkPVm+ PkK +( M ~ ) k(0 3,_kom P-k
k---- k=l

Note that if m is odd, then (L - A)"m is antisymmetric about perigee. Therefore we have

0 1 _ A2k
K2k+1 = T- (L - A) 2k+ldL - 0 (10)

i. e. , only even powers of (L - A) have nonzero constant terms.
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Again we may use (2.4-10) and (2.5.1-2,3,4,7,8) to obtain the short-periodic variations
il. To do this, it will be necessary to convert the integrals over A into modified Fourier series
expansions in L. We begin by supposing f(A) has a modified Fourier series expansion in L
with known coefficients and it averages to zero:

M J
f(A) =CO+ Dm(L- A)'+"(CicosjL+S'sinjL) (11)

m=1 j=-I

< f(A) >= 0 (12)

Using

J f(A)dA= f(,)\-)-dL, (13)

the following consequences of (2.1.4-2,5,6) and (2)

OA I (r2 (1- h 2 - k2 ) 3 /2 00

-8=V/1 "h k2\a)1 = + hsinL+ kcosL)2 =l+2-(pjcosjL+ojsinjL), (14)
O =--- --h k 2-)

the integral

f(L - A)-dA = m+1 +J(L -A)'dL, (15)

the identities (2.5.2-7) and expansions (7), we can convert the right side of (13) into a Fourier
series expansion in L. Note in particular that equations (3) and (12) imply that the constant
term C0 in (11) must be related to the Fourier coefficients C',S' and VY by

M J
CO = D IC m - (C-'pj +Sjaj) (16)

m=1 j=1

Note also that we need the following formulas for the product of two Fourier series:

J 00 100

Z(CJ cosjL + Sj sinjL) 1-(pk cos kL + ak sin kL)= E Ij(j)(Cjpj + Sjaj)
j=1 k=1 2 Ljl

Si- 1 J -

+ (1 - j) E (Cj-'Pt - SJ-0) + IJ-'1 (j) E(CJ+'1 p + Sj+t10u)[=max(j-J1) e=i

+ Z(Ctpj+e + SIop+t) cosjL (17)

i-J-

+ [(1 -- 63) 0 ( + scJ- -+Pt)' + •j(J) Z(-CJ+t'O' + SJ+ePt)
t=max(.j- J,1) t-

+- (Ctebje - S'P,+I) sinjL}
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Here 1"I(j) is the inclusion operator defined by

1 ifr_<j_<s (18)
0 otherwise

Higher-order integrals can be computed using recursion formulas obtained from equation
(2.5.2-9). We summarize the conversion for the general multiple integral with the following
notation:

"M+k
f (A)dA k = Uk(CC,SCIV) + E Wm(CC, S, V)(L - A)M

"k= (19)

+ E [Uk(CC,,SC,'C)cosjL + V,(CC,SC,P) sinij L(
j=1

(f f(A)dAk) = 0 (20)

Here the arguments (CC, SC, VC) denote that the functions Uk,, VkE, and W' depend upon the
coefficients Cj, Sj, and D'r appearing in (11) through the relations

forj >Ž 1:

1  [17 M j-1
j F -k (CkkSkpk)

U13 -J-(j)Sj + E ,• + (I(- Ck) (Cj-k + Sj

3m=l k---max(j-J,1 )

i-j J]

+ (-C'+,k + Sj+kpk) + Z (CIEP +k + Skp,+k)
k=1 k=1

S 1M j-1VI =•[, j)C + •_D-Kj +(I_-bjl) E (Cj-kp -Sj-ka

m=f ko1max(j-J,)
J-j J

+=_Tj - .,(Cj+kpk + Sj+kak) + 1,(Ckp,+k + Sk-aW+k)
k=1 k=l

W• = -C°

ý1=1

WI" = -M(21)

for k_> 1:

M +k 
00

NO + +k FUkey, + VkJOpe

m=1 j=l

S1[ M+k-I ji-4

_-- 1s=1

Z(--U~k'i 'aOt.+Uj+t. +} Vk4"tpI -- Vkp~
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M~k-i
= ,u M1W', + ( -6 31)ZE(Uk'IPt -V'

M==

+k' + UUp+,+

With this notation, we can write the mean element rates Ai and the short-periodic
variations i~, corresponding to (1):

M J

A, = ' + . M+E(CjP . (22)
m=1 j=1

M+K+2 0-

=l C? 1:DnLAml(CcsLSsnL (23)

where

M+K+2 00

m=1 =

U1(OKCC akSiC akVC)", ~ ~ 4 t ') +9j k' Uk9+tkk

C. i &kI tk atk ' t

n ~+ k= 1 n 'F)(4

K (....1)k (akC( akS(~v\
bi[Z~mcSCkI + 1) Nk+2' I

2a _n k=1 nk+l at~9k ' k atk

* =~~ ~ IDý1()!W(+,5 V5+Z Itk+I~m &~) ~~ j 9k at
I k=n k= n+1 O

K (-i)k (aiC( OkSC akvC
Fa n+k 2 (m(I ''k=1 Wk+l (ji &9k Ol k &

shrtpeioi variation become:i

+ C + M+k2 D( L - "'t  + I(c j +DZsi L)(5
k= n )( )n1 k2(akIakI&
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where
M+2 00i M • (Cipj + sfaj)
m1= j=1

C. =. 1 u1(Cs, s5', P') - 3 ,06U•(C', Sf, D')
s•=!•v1 c,J,, s5,, P,) - 2-6, 6 vi'(c,, s;, P,;) (26)

I 3 oU(C, S•,V:

o•=- '--Cr + 2 ,a c

2n ' 4an
1 3

= 2pn-1 - 4an67)i

S= mn , 2am(m - 1)n 1i6T)1m

2.5.4 General i~, Expansions in A, 0

If one or more perturbations are double-averaged, then the functions Gi can be written as a
double Fourier series in the mean longitude A and the perturbing-body phase angle 0:

Gi(a, h, k,p, q, A, 0, t) = 1[Crm(a, h, k,p, q, t) cos(jA - mO) +Si M (a, h, k,p, q, t) sin(jA - mO)]
j'm

(1)
where

co = 1212GdAdO

C. = I 1r , G cos(jA - mO)dAdO (2)

s' = i!-- f rGisin(jA - mO)dAdO

Using (2.4-11) and (2.5.1-2), we can obtain the mean element rates A,:

A, = , [Cricos(jA - mO) + Si" sin(jA - mO)] (3)
(j,m)ES

We can then obtain the short-periodic variations 77i by integrating the Equations of Averaging
(2.5.1-1) in a manner similar to the single-averaged case in Section 2.5.1. Assuming that the
coefficients C"', M€ and the rotation rate 0 do not explicitly depend upon time, we obtain

77i= Z [Ci cos(jA - mO) + Sjm sin(jA - mO)] (4)
(j,ma)•B

where

C"- jn - mO 1i 2an jn(5

IM I ! 3 n Ii

Sitm  = 7 +Si .,5]
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2.5.5 First-Order rij for Conservative Perturbations

For conservative perturbations, it may be advantageous to use an alternate solution for the
first-order short-periodic variations rio which avoids having to obtain the osculating rate
functions Fj,,. If a perturbation a is conservative, then the osculating rate functions Fi,, can
be expressed as (2.2-6):

6

F,. = -,(aj,,a) (1)
j=1 a

where (a, ... a6) are the equinoctial elements (a, h, k,p, q, A), the quantities (ai, aj) are the
Poisson brackets given by (2.1.8-2,3), and R is the osculating disturbing function.

If the perturbation a is single-averaged, we can define the mean disturbing function U:

U =< R >= _ (ah,k,p,q,A,t)dA (2)

Averaging both sides of (1), we obtain the first-order mean element rates due to this pertur-
bation:

A,=-E(,,aj) = (3)
j=1 aj

Note that the sum in (3) only goes up to j = 5 because - = 0.
The first-order short-periodic variations caused by this perturbation can be obtained from

a potential-like function S called the short-periodic generating function:

= j(1Z- U)dA (4)
<S>

<s> = 0(5)

Using (2.3-26), (2.4-10), and (1)-(4), we can obtain the first-order short-periodic kernels •
by performing the integrals (2.5.1-2, 3) (with the subscript i replaced by ia):

0s
6 -- (ai,,a) 9S(6)

From (5) it is clear that:
(C.) =0 (7)

Combining (2.1.8-2,3) and (6)-(7), we obtain:

2 aS(8)
n'a TA

G1d= 2 a (9)
n 2a
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Substituting (6) and (9) into (2.5.1-5), we obtain the following expression for the first-order
short-periodic variations rio in the absence of explicit time-dependence:

V7io --"ý -- I (ai, aj) as + 3,]i (10)
n [I= aa# n 2 s

In the presence of explicit time-dependence, the first-order short-periodic variations iho are
given by:

lba -6- (ai, aj) a
Ky (-1)k ,l a)- a k S k-1

k= 1

k=1 nda a3 Jk - + aA) •_ IkdA]

+nb6o [S + =(k + l•)k j--dA] }

2.5.6 Second-Order vij, for Two Perturbations Expanded in A

In this section we suppose that the osculating rate functions Fi, and the first-order short-
periodic variations 7ij,, can be written as Fourier series in the mean longitude A:

Fi,(a,h,k,p,q,A) = C,(a,h,k,p,q,t)

00
oo•_[C~i'(a,h,k,p,q,t)cosjA + si(a,h,k,p,q,t)sinjA] (1)

j=l

00

77ia= -(C/•cosjA+SisinjA) (2)
j=1

From (2.3-27), the second-order functions Gi,, are

6 OF,0  15n 6a77
Gj#=rE ýa~ 7,3+ý i6q11o?71# _ E " A rO (3)

Substituting (1)-(2) into (3), and using (2.5.3-17) with J = 0o, we can write Gila as a
Fourier series in A:

00

Gia = Ca, + E'(Ci,0cosjA + S', sin jA) (4)
j=1
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where 
0

~ [• (,') + + OSC.) jCQ.S60 +

-CIO~ +a 1 6J _ýa - + CI.gjkS3 + ) + 1

+q rj C,0 c". + S iZSo I (5)k
SO~ .ar Or0 + a Oar

j~ Crk .kp~ OSa oSjk
0 ~ r+ 'ý s-'t _S -+ý2'= I a a Oar kO Oar ko

2 ar* OaCkk lflr(;k~ 0 Q-r~

bjI i-(i + k(SikS.+kC~k) + Cak(S~Sko + 15n ? k) k -~

+jgoi" ( j cSk + k)k~ - k 3+
2l l El1 10 1J

00 (S ,+ kC~ko '+00[(jcr + k), 0 0 oj + S0i sin J3~ 7
k=11

15n k.Sj39



where the C0 0,o and Sl0 are given by (2.5.1-15) (with the subscript i replaced by iafi) in
terms of CLO and Si.0. The formulas in this section were published in [Danielson, March
19931.

2.5.7 Second-Order iac for Two Perturbations Expanded in L

In this section we suppose that the osculating rate functions Fia and the first-order short-
periodic variations %, can be written as finite modified Fourier series in the true
longitude L:

Fj,(a,h,k,p,q,L,t) = C%(a,hk,p,q,t)

+F .[C(a,h,k,p,q,t)cosjL + Si'(a~h,k,p,q,t)sinjL] (1

j=1

Ma

77i,(a, h, k, p, q, L, t) = C°, (a, h, k, p, q, t) + 1_ DT"(a, h, k, p, q, t)(L - A)m

M=1 (2)
+ [C,(a,h,k,p,q,t)coskL + Sio(a,h,k,p,q,t)sinkL]

k=1

The second-order functions Gi,,o are again given by (2.5.6-3). Differentiating (1)-(2), we
can obtain the needed partials

0Fj. jar
- C?'? + 1_,(C],cosjL +S,, sin jL) (3)

49a, j=1

07-Afar KOr"

-ri__ oj, + mL-A- o +Sk'snUoa, = _ (C ok (4)
m=l k=1

The product of two Fourier series can be converted into a single Fourier series with the
formula

J K

j_(Cj cosjL + Sj sinjL) Z" (Ck cos kL + Sk sin kL)
j=l k=l

1J+K
= J+{zn(J'K)(j)(Cjc j + SiSj)

min(j-1,K) min(J-j.K)

+[IJ+K(j) E (Cj-Ck _ SJ.-kSk) + 1TJ-(j) E (CJ+kck + SJ+kSk)
k=max(j-J,1) k=1

min(K-j,J)

+TK-I(j) E (C'Cj+k + SkSJ+k)] cosjL
k=1

min(j-1,K) min(J-j,K)

+[12J+K(j) E (Cj- Sk + Sj-kCk) + ZJ-'(j) 1 (_Cj+kSk + S+kCk)
k=max(j-J,1) k=1

min(K-j,J)

+Z- I (j) E (CkSJ+I -_ SkCJ+k)1 sinjL} (5)
k=-I
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With the use of (2.5.3-7), we then obtain

Gia0 ~ = E ~L-A t  (Ci',,ocosj*L + S',~,o sin JL) (6)
11=1 j=1

where

6 r~~Ja 1JMO "'9)

+~ (Ci~CJ,! + Sij~S!0 ) -AOCjO]

15n co0 co + 0 1 PM+ JO
+s6 ~ ~ ~ I OCjC, + 3(C'+Sb)D- + E F3 (Co,, + S)D

2 I _ _ I , ( Cl m

8a i6 aIa F (C(Cic + 0m IOnD

minn(-1 ,K0

21

+IK0 (j l )A70C + Sit s~ilo T ~)C~

2 j-1

E ITIK(j Cikr im,+ _j ,,r Cir1)

+~a J"+"j min(c:,KOm + Sk,r Ik~~± (~c +k~ak

.2 k?=Ir~

E Cior r,41 r



+a15 ,, fl6 {s (j)C7%.Cli + IJ"0 (j)CIOClj.

I K*+KP minj-1.-~ ka 143j-k l
+ 2 (i) kmx-c~kC) Slkk

I van a-KO

k=1
zniin(KP-j,Kc)

2'-~j E (Ck Cj~k + SlkaSj~k)

DmEI-K (jC'.CKo + -(1 - bjl IC~-g-~k
Ml~d 13 1J1 2 k=max(j-Ka,l)

K 0 -1-~j E j+k~k +l+kok) + _ 0 E k ij+k+Skokj

I E C-k k Si-kV+ 1: D-[I,'"(j)C"CKO, + (~-61) 10 ( Km - 1i,6 ~)
in=l k=maz(j-KO,1)

1 Oi k+ Sj~k4 1k + 1KO
2 k=l1 0 k=l10rm

(7)

= L 1 (j)CioSrjo + T2 i (j)Sia Cro
t= 1

2 12 U)Ck~S + Si.,T

llj a r mn(Ja?.j,KO)
-(j) L (_CiJ~krSrk + S3j+k~TCkg)

2 k= 1

2 k=1

-IKOr(j)ArS3?. + 1:D
wi=l

E ( i.- , 0 +S j.- kr k

k=max(j-~,lJ m K)

jar ija
+21 ,o-(j) E ik~p SJk~T + (iro~ 1 Jar)

2k=l +~ Si K) 2 k=l . Sm4 )I
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15n {,K0C,0 + I•j"(j)CoSi0

1 rain(.p- ,K•)

+ 1,KO+KP(.) ( S,+-k k C- 0,
khfmax0-K°,1)

lzo(j) (Cj k io+si-kck

1 min(K°-j,KO)+•1K0-, -(j) (C k. pJ+k• •j6+ k)k=1

+ED-[1(j) CC x0 + Ck +J+k)

M1 j-1

+ D- [1 (i)S, +S (1- rj,) E ,(Cj-.eb + S,-kKk

rM=1 krmax(j-KO.l)lzK K--j KO
~Ec +Sv kk 1 S +k)l

+L °--lj 0-- d I- E C J kl 'ko+ 10 k + Oli"+kg,) k + •1 ..• "•lte'( "k , +k lok j kl J2 k=2 k=1 +

"m r

tna13 - s-a Ol

Di to

Kta-3  CK ZC •j+Sa3 8

m1-

+ ~ ~ -- , 15,661,.mC0D + o,M ",,,)D + •z.., '9,0,m, E s,- 11}

ahnd the second-order short-peeridi vriatios are
M Mok+Kl 00

, lop = (% + E A tm + mr(C2 osj + S a1 3 sin (9)
=l=1

where the Cx',,,, Si 13 , Ds~op are given by (2.5.3-24) (with the subscript i replaced by ickf

and M replaced by Mor + Mfl) in terms of Ci013 and SZ',,#. The formulas in this section were
published in [Danielson, August 1993).

2.6 Partial Derivatives for State Estimation

Observational data may be used to improve the estimate of a satellite's state. Some differ-
ential correction algorithms which have been used in conjunction with SST are described in
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[Green, 1979], [Taylor, 1982] and [Long, Capellari, Velez, and Fuchs, 19891. It is our purpose
here only to explain how to obtain the partial derivatives needed in such filters.

We let Ok denote the value of the kth observed quantity computed with the SST orbital
generator. Ti e SST state variables are the initial mean elements a,(to) and various constant
parameters ci (the geopotential coefficients C,, and S,,,, in (2.7-1), the drag coefficient CD
in (3.4-3), tle solar radiation pressure coefficient CR in (3.5-6), etc. ). Required for a batch
filter are the partial derivatives of the Ok with respect to the state variables ai(to) and ci.

The actual observations are commonly of position and velocity components in a local
coordinate frame fixed on the surface of the Earth. However, through transformations these
components may be expressed in terms of the orbital elements, so we can regard the Oh as an
implicit function of the osculating elements a,. Application of the chain rule then produces

6~k OOk &9(1

O0 k 6 = 0 k O aO, (2)

Assuming we can obtain the partials -80 analytically, our remaining task is to calculate the

partials 8aa, and , Differentiating the decomposition (1-1) yields0a, (t0) act

Oa,(toJ 6 + aj Oa,(to) (3)

aai~t (k =1 a Oaa O(to

Oc k + Oak) Oc , Oc'-" (4)
a k=1 a)al ~

The partials 8 ak and 8ak are often arranged to form a matrix 4', referred to as the
state transition matrix:

Oal Oal Oal Oa1

Oa I(to) Oa6 (to) Oc1  Oct

&a6  4a 6  Oa6  Oa6

(t, = t aa1 o(to) Oae(o) 0c1  Oct (5)
0 ... 0 1 0 -.. 0

0 1

1 0
0 ... 0 0 ... 0 1

Here I is the number of parameters ci. Differentiating (5) with respect to t and interchanging
the ordinary and partial derivatives, we can obtain the following initial value problem for
I,(t, to):

f(t, to) = F$(t, to), f(to, to) = I (6)
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Here I is the identity matrix and

oil, i9a5  0 c 8ac8a
00aN5 ac8a

F= - a1  Oas ac, act (7)0 .............. 0

0 ................. 0
The 4 matrix is a function only of the five slowly varying mean elements, and therefore
the numerical integration of (6) can be done with the same large step size as used in the
integration of equations (1)-(2) for the mean element rates. Values of t at observation times
not coinciding with the integrator step times can be obtained by interpolation.

Our task has thus been reduced to the calculation of the partial derivatives -- ' -2, -a,',

and a2.. These same partials are also needed in a sequential Kalman filter. For the two-body
part ot the mean element rates

a, = nbi6 (8)

the only nonzero partial in (7) is
_a 3n

84= -3n 
(9)

(aa 2a
and thus

1 0 .... ... ... .... ... 0

0 1

0

0

0
S3n(t - to) (10)

2a
0

1 0
L.0 ... ... .... ... ... 0 1

Although the differential correction algorithm for updating the initial mean elements may
converge with only the two-body partials (10), the speed of convergence can be improved
by including the dominant perturbation partials. Analytical formulas have been obtained
for the partial derivatives with respect to the mean elements ai of the .J2 contribution to
the mean element rates aj (equations (3.1-12)), the partial derivatives with respect to the
geopotential coefficients Cm,,, and S,,,,, of the resonant tesseral contribution to the mean
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element rates aj (equations (3.2-9)), and the partial derivatives with respect to the mean
elements ai of the .J2 contribution to the short periodic variations r7 (from the expressions
in Section 4.1).

2.7 Central-Body Gravitational Potential

The well-known expression for the disturbing function due to the gravitational field of the
central body is [Battin, 19871:

"PN min(nM) R n P..,(sin 0)(C n, cosm i+ Snn sinm i) (1)

n=.-2 m=O

Here

r = radial distance from center of mass of central body
0 = geocentric latitude
0 = geographic longitude
u = central-body gravitational constant
R = central-body mean equatorial radius

Pnm = associated Legendre function of order m and degree n
Cnm, Sm = geopotential constant coefficients

M = maximum order of geopotential field (M < N)
N = maximum degree of geopotential field

In this section all elements are osculating (even though they do not have hats).
In the first subsection we shall outline the development of the central-body gravitational

potential into the form used in SST. Complete details are to be found in [Cefola, 1976],
[McClain, 1978], [Proulx, McClain, Early, and Cefola, 1981], and [Proulx, 1982]. Then in
the remaining subsections we describe methods for calculating the various functions used in
the expansion.

2.7.1 Expansion of the Geopotential in Equinoctial Variables

We start by writing (2.7-1) in the complex form

R =Re r/_,: 1:= (R)"P"",(sin 0)(Cn"- iS"n)e''mO1

Here i = vCT and Re {z} is the real part of z. With the goal of expressing (1) in terms of
the equinoctial elements, we set

S= aB - 0 (2)

where 0 is the central body rotation angle and aB is the right ascension. If we let (XB, YB, ZB)
denote a right-handed orthonormal triad fixed in the central body, with XB pointing to the
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prime meridian and ZB to the geographic north pole, then 0 may be calculated from [Early,
1982]:

sin0 = -f 'YB+Ig'XB (3)
1 + I-y

Cos = (4)

(Remember that -y is defined by (2.1.9-1c).)
Next the spherical harmonics Pn,,(sin 4,)e maB are expanded as a Fourier series in the

true longitude L, using a rotational transformation theorem for the spherical harmonics:

n

P,,m(sin O)eQ = , Vn, Sn ei5
&= -•oa

The V,,m coefficients are defined by:

2- (n + s)!(.- s)! if n - s is even
(2n!- (n - m)!(n)!( )! (6)

0 if n-s is odd

The rotation functions Sns( (a,#, ý,) may be expressed in terms of the dot products (a,fl, -Y)
of the ZB vector with the equinoctial reference triad (f, g, w):

(-1)-'28(a + if) 1 "'(1 + 1Y)-m•P-.-(Y) if S < -m

(n + m )!(n -i m)! ifIs +s • m~p, -,,~ (S~s n,= ir (-1)'-'2-(n~m )n-m)(a + i)-l) -m l() if Is:M
n= (n + s)!(n - s)!

2-3(a - i)-m(1 + I)JmP_ '+r(y) if S>M

(7)
(Remember that I is defined by (2.1.2-2).) Here PtW(-y) are Jacobi polynomials. (Note that
commas are used to separate indices in a symbol such as P,;+, in order to prevent
ambiguities.)

Next the product (1)netsL is expanded in a Fourier series in the mean longitude A (the
sixth equinoctial element a6 ):

00
aL)neiL = y 1\8)
a j=-00

Now the Hansen coefficients Xn' are defined by [Hansen, 1855]

00r )ne °s= E X7se ijA (9)
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and the kernel Kj' of the Hansen coefficient Xj"' is defined by

K7ý(e) = e-I'jX-nX(e) (10)

where f is the true anomaly, M is the mean anomaly, and in (10) e is the orbital eccentricity.
Hence, remembering equations (2.1.2-1, 4), we can express the functions Y.' as

Y1"7(h, k) = [k + ih sgn (s - j)] 1s-j1Kn' (11)

Here

sgn(x) -1 i (12)-1ix<0

The last step is simply a rearrangement of the order of summation, so as to isolate the
total disturbing potential due to the phase angle JA - mO, and to facilitate the use of stable
recursion formulas. We also introduce some new notation, to enable the results to be written
concisely. First, define the functions

(-1)`-23(1 + 17)-IJ if s < -m
(,() (1)m-2n (n(+1+l) if Is- m)m (13)

(n + s)!(n - s)! "

2-"(1 + Im)IM if s > m
Next, put { [k + ih sgn(s - j)]V-l(a + i1f3)m--I if IsI _< mr

G~, + iH•, = [k+ ih sgn(s - j)]I-jl[a - ifi sgn(s - m)]II-ImI if IsI _ m

Then define the Jacobi polynomial Pt' indices by

= n-m if IsI5m
n -IsI if Isl > (15

v = Ir-s[m(15)

w = Im+sI

The disturbing function can now finally be written as

Z=Re o M N N Rn
j=-oo m=o s=-N n=max(2,m,IsI) a (16)

(GR. + iHL.)(Cn. - iSrm)ei(J-m9)}

Note that the functions G-o and H•, defined by (14) are of degree Is - Ji in the eccen-
tricity; the power Is - jI is called a D'Alembert characteristic. In SST the number of terms
retained in the expansion (16) is truncated by prescribing the maximum possible value of
the D'Alembert characteristics, together with the maximum degree N (and, if desired, the
maximum order M < N) of the geopotential field.
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2.7.2 Calculation of Vn Coefficients

The Vn coefficients are defined by (2.7.1-6). Since

V n m {~~ _ 1)

we can restrict our discussion to the case s > 0 without loss of generality. Furthermore,
since VZ = 0 when n - s is odd, we need only consider the case when n - s is even. Also,
note that the lowest value of the degree n in the summations (2.7.1-16) is greater than or
equal to 2,m, and Jsj.

Suitable recurrence relations are

V2,,s (n+ s+ 1)(n - s+l I)
V 2  = (n - m + 20 M + 1) , (2)

Vm+1= (n- m)V•,•

Appropriate initialization is provided by

V,°o = 1
0,0

-0o + 1) vo 
(3)

I.e., to calculate the V"' coefficients, first use (3) to get values for m = 0 and n = s for
s = 0, 1,.... Then use (2b) for m > 0 and still n = s. Finally, use (2a) for increasing n
with any nonnegative m and s.

2.7.3 Calculation of Kernels Ki' of Hansen Coefficients

(Throughout this section e represents the eccentricity.) From the definitions (2.7.1-9, 10),
the kernels of the Hansen coefficients are given by

Ke-(e)= e2 (r)n cos(sf - jM)dM (1)

The kernels of the Hansen coefficients are thus functions of the orbital eccentricity e. Note
from (1) that

K g = n K-1 (2)

so we can restrict our discussion to the case s > 0 without loss of generality.
For the special case j = 0, the kernels may be evaluated in a form algebraically closed

in the eccentricity. This is because the Hansen coefficients with j = 0 are related to the
associated Legendre functions by [McClain, 19781

_ (n - 1)!x" p, forn> 1
Xn,s (-1)3(n -- + i 1)!X-n- 3

o _ (n + 1)! P+fI(x) for n > 0
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where

X V 7e 2 l-h 2 -k- 2  B
and many recursion formulas are available for the associated Legendre polynomials, which
for arguments in the range 1 < X < 00 are defined by

= 1(X2 _ 1)( (5)
2(n! dxn+&,

For the special kernels with the first superscript negative (needed in Sections 3.1 and 4.1),
appropriate recursion formulas are

0 for n=s>O
1I+2.

K =, n 1+2s for n=s+l> l
23+s - 1)X -s --- [(2n - 3)Ko" '- (n - 2)K(n+'°] for n > s + 2 > 2

(6)
For the special kernels with the first superscript nonnegative (needed in Section 3.2), appro-
priate recursion formulas are

S(2s- 1)KO-2"-1 for n = s-1 > 1
s

K-1-o (2s 1) (h1for n = s > 1 (7)0 ~s+ 1
2n+ -1____ (n + s)(n - s)Kfl.-2" for n>s+ 1Ž2
n+1 o n(n + )X2 ,

with initializations
K' = 1 (8)

Koo" = -1

The general kernels Kf-' may be computed from the following recurrence relation
[Proulx, McClain, Early, and Cefola, 19811:

- (3 -n)(1 - + -n-s) {(3 - n)(1 - n)(3 - 2n)Ky-' 8

j I + .2(l -n+3, (9)-(2 - n)[(3 - n)(1 - n) + zSK +"X 3 - n'( - I)f+3

To initialize this recurrence relation, we need the values of the three kernels K,' ,K +
and Ky-+ 3 'a at n = max(2, m, s). These latter kernels are calculated by infinite series
representations. In a study of the various possibilities [Proulx and McClain, 19881, it was
found that the expansion of choice is

Co

K7' = (1 - e)n+ • Yacf+be (10)
0=0

50



Here

a = max(j-s,0) (11)

b = max(s-j, 0)

The YX° terms are called modified Newcomb operators and may be computed by the recur-
rence relation

4(p+ a)Yn"ý = 2(2s - n)Yt_,o' + (s - n)Y-"+'-, - 2(2s + n)Y,,'o- 1I'a 2,a(12)

-(s + n)yn,,o2 + 2(2p + 2a - 4 - n)Y,'°(1

Recursion formula (12) is initialized by

Y0,6 8=1 (13)

and by treating quantities with negative subscripts as identically zero. Note that the Y;ý
terms are rational constants, and therefore they can be computed once and stored for all
later applications.

2.7.4 Calculation of Jacobi Polynomials Pv

The Jacobi polynomials appear in the expression (2.7.1-7) for the rotation functions. Pj")(w)
is a polynomial of degree I in -1, which from (2.1.9-1c) is the cosine of the angle between
a vector from the geographic south to north pole of the central body and the angular mo-
mentum vector of the satellite. The Jacobi polynomials P,,v(.y) with m = 0 in the indices
(2.7.1-15), i.e. I = n - s > 0 and v = w = s > 0, are related to the associated Legendre
functions P,8,(-y) by

Pn3,(-y) = 2S'n -"P (1)
(n + s)!(1- -Y')- p.(.Y)

The Jacobi polynomials can be computed from the standard recurrence relation [Szeg6,
1959]:

2f(f + v + w)(2t + v + w - 2)P-(-y) =

(2f + v + w - 1)[(21 + v + w)(2 + v + w - 2)y +v 2 -w 2 P () (2)

-2(f + v - 1)(I + w - 1)(21 + v + w)Pf(-y)

This recursion formula is initialized by

P_0 (3)
P~l1

2.7.5 Calculation of G• 8 and Hj, Polynomials

From the definitions (2.7.1-14), the functions Gj 8 and Him are polynomials in the equinoctial
elements h, k and the direction cosines a,/f.
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These polynomials may all be calculated from one set of generic recurrence formulas,
based on the Cj and S'j polynomials obtained from (2.5.3-6):

G• ={Cl.-il(k' h)C'-l°{a' 0) - lsgn(s - j)Sjo_.jt(k, h)S._j,(a,)3) for Is1 _ m

CISil(k, h)Ciaj3mi(a,' ) + sgn(s - j)sgn(s - m)Sj,_jl(k, h)Sls,.. I(a, fl) for Isl nr m

(1)

H = f IC1 °-..(k, h)Sm".-(a, fl) + sgn(s'- j)Sjo_.3(k, h)Cm._j(a, 0) for Ist < m

-sgn(s - m)C1 s...(k,h)Sl.-isml(a,/) + sgn(s - j)S1 ._jl(k,h)Cj._..ml(a,/) for 1sj _ m
(2)

2.8 Third-Body Gravitational Potential

The disturbing function due to the gravitational field of a third-body point mass is [Battin,
1987]:

(r,(, t) R3 r cos (1

Rt = R 3- rl R3(
Here

r = vector from the center of mass of the central body to the satellite
R3 (t) = vector from the center of mass of the central body to the third body
4. = angle between the vectors r and R3
p3 = third-body gravitational constant

In this section all elements are osculating (even though they do not have hats).
The quantity R can be expanded in the following series:

R3 _1 F( rPn(Cos (2)
JR3 - rl 2r co + r2 nOR

-- R3 R,7 0" L

where Pn is the Legendre polynomial of degree n. Hence the third-body disturbing function
(1) can be written as

IZ= 3 • r Pn (O3

where N is the maximum power of the parallax factor 2 to be retained in the expansion.
The further development of the third-body potential into the form used in SST is similar

to that of the central-body potential in Section 2.7. Complete details are to be found
in [Cefola and Broucke, 19751, [McClain, 1978], [Cefola and McClain, 1978], and [Slutsky,
1983].

2.8.1 Expansion of Third-Body Potential in Equinoctial Variables

With the goal of expressing (2.8-3) in terms of the equinoctial elements, we set

cos = a cos L +/ Psin L (1)

52



where L is the true longitude, and now (a,#, -y) are the dot products of the unit vector
3 with the equinoctial reference triad (f, g,w). Due to the motion of the third body,

(a, /3, -y) are slowly varying functions of the time t and are the source of weak time-dependence
effects.

Next the expression P,(a cos L + P sin L) is expanded into a Fourier series, using an
addition formula for the Legendre polynomials:

Il

P.(a cos L + /sin L) = E(2 - 6o.)V.o.Q,.(7)[Co(a,/3)cossL + S.(a,,/3)sinsLj (2)
=-0

Here b0, is the Kronecker delta, and the polynomials Co(a, fl) and So(a, /3) are the same as
those in (2.7.5-1, 2). The new coefficients introduced in (2) are defined by:

1 (l)-2-,(n- S)!
{. (2n-s)!(-l if n-s is even (3)

0 if n-s is odd

d a P .( -1) ( 4 )

After substituting (2) into (2.8-3), we can write the result in the complex form

Z= -Re {13 Nn a n rneij
Z: F(2 - 4o.) (3)_a V ..Q[C.(a,/3) - iS.(a,/)] eisL (5)nt=2 s=0

The last steps are simply the replacement of the product (,)n eiL by the expansion
(2.7.1-8), and a rearrangement of the order of summation. The disturbing function can then
be written as

1Z =_Re{ o (2 -4 R3 -s[C0a /3) (6)

2.8.2 Calculation of V,,, Coefficients

The Vn° coefficients are defined by (2.8.1-3). Since Vn,0 = 0 when n - s is odd, we need only
consider the case when n - s is even. (Note from (2.7.1-6) that V.-= (n--- !V .)

A suitable recurrence relation is [Cefola and Broucke, 1975]

(n s+ 1)V
Vf+ 2, -(-�2•n ) V, (1)

Appropriate initialization is provided by

V0,0 = 1

V.+,,.+ = (2s + 2) V.'. (2)
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2.8.3 Calculation of Q,,o Polynomials

The Q,, polynomials defined by (2.8.1-4) are derivatives of the Legendre polynomials eval-

uated at -y, which from (2.2-7c) is the cosine of the angle between R 3 and the angular

momentum vector of the satellite. The polynomial Q,,. can also be expressed in terms of the

associated Legendre function P,,:

Q..(Y) = (1 - - )-a/2P,,(,f) (1)

(Note from (2.7.4- 1) that Pns¶ 8(-y) = 21 ( , (10 -
Recursion formulas for the Qn, polynomials follow directly from standard recursion for-

mulas for the Pn, functions [Cefola and Broucke, 1975]:

J(2s - 1)Q-.i,.-i(7y) for n = s

Qn,.(.y) (2s + 1)-yQ.,.(-y) for n =s + 1 (2)

(2n -1) -yQn_1,o(-y) - (n + s - I)Q._ 2,.('y) for n > s + 1

(n - s)

These recursion formulas are simply initialized by

Q0,0 = 1 (3)

3 First-Order Mean Element Rates

As we have seen, the first-order mean element rates Aj, are given by equations (2.4-18). The
osculating rate functions Fi, for a conservative perturt. .6ion are given by (2.2-10) and for a
nonconservative perturbation by (2.2-5). In this section we record the specific form of these
equations for each of several perturbations.

3.1 Central-Body Gravitational Zonal Harmonics

For the central-body gravitational zonal harmonics, the appropriate averaging operator
< ... > is (2.4-10) and the appropriate disturbing function 1Z is (2.7.1-16) with m = 0.
Further details of the reduction of the averaged equations to the form recorded here may be
found in [Cefola and Broucke, 1975] and [McClain, 1978].

The first-order contribution of the central-body gravitational zonal harmonics to the
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averaged equations of motion (2.4-1) is

da
-=0dt
dh _B 9U kdA - AW- + -(pU, 0 y -IqU,-, )

dt A 4k AB
dk B OU hd--t A Ah ABPU -lUz)

dp C ()
d . 2AB U'O

dq IC

dt - . 2 ABU'0"
dA 2aRU B (aU + U 1
dt A A(1 B + B)(pU,, -IqU,T )

Here (a, h, k, p, q, A) are now the mean elements and U is the mean disturbing function
(2.5.5-2). In deriving (1) from (2.2-10), we have made use of the following property of the
cross-derivatives for the mean disturbing function:

U,hk -U,.O = 0 (2)

The mean disturbing function reduces to

N-2 N 
() nU -- E (2 - 60G) , (3)

a s=0 n=s+2

Here

J= -C,Go = geopotential coefficients
V.= coefficients calculated from (2.8.2-1,2)
Kon-1'3 = kernels of Hansen coefficients calculated from (2.7.3-6)
Q,,(-Y) = functions calculated from (2.8.3-2,3)
G. = Go, = polynomials calculated in Section 2.7.5

Since
G, + iW, = Goo + iW&o = (k + ih)*(c - i,8)' (4)

an alternate set of = ursion formulas for the G, polynomials is

G, = (ka + h13)Go_. - (ha - kfl)H._1 , Go = 1

H. = (ha - kfl)G,_ + (ka + h/3)Ho_, , Ho = 0

Note that the G, polynomials are of degree s in the eccentricity; for small eccentricity orbits,
the series (3) may be truncated by prescribing the maximum possible value of the D'Alembert
characteristic s.
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In equations (1), we need the partial derivatives of U with respect to (a, h, k,a ,13,0).

These are easily obtained by differentiating equation (3):

8(1 R~nn
-a= a'y(2 - 6o.)(n + 1)( )"J1 V1 °Knl"-sQnsGsT a - ý 2- O ,na

IOU _• b.)()"j,,V.. !--OG. 3 v.'.
S= , -J)()J.V .Q., (Ko n'3 + hx Gs

Oh a a, ) (6

OU = _JZ(2 -oo)(R)11J1 V.K"".o°F -a sn a 5(

( - b.)(-) 1 V. K1- "- OG.
a, a s,8 0 al8(1 _ -b 8 )(R)1jnV tG,
a - aa,11

a9U _ b 6o)(Th11jnVnj n~dQ1

Here we have obtained the partial derivatives with respect to h and k of KoJ-'S(x) from

the chain rule and the definition (2.7.3-4).

Recursion formulas for are obtained by differentiating the recursion formulas
(2.7.3-5):

0 for n =s

(1+2s)X2 ° for n=s+l
(n-1)X 2  dK (n 2 _ (7)

dX (n-+ s-1)(n-s+ 1) (2n 3) d -X (n - -2+,X

+ 2-K'"-'ls forn > s + 1
x

Recursion formulas for n are obtained by differentiating (2.8.1-4):

dQ1  ) Q n,s+l(iY) (8)

Recursion formulas for the partial derivatives of G, may be obtained by differentiating (4):

0G8
--- = sPG._j - saH_

OG8

- saG._1 + sfHo- 1

Ocr
OGk (9)
0-• =skG°-1 - shH.-I

OG S- shG ,-, + skH,°_

085

56



If we retain only the J2 term in the expansion (3), the central-body gravitational dis-
turbing function simplifies to

U - a 3 (1 - h 2 - k 2 ) 3/ 2

where J=3ptR2J2

4

The contribution of (10) to the averaged equation of motion (1) is

da- =0
dt
dh Jk[37y2 - 1 + 2-y(pa - 1qO3)]
dt AB 4a3

dk Jh[3y2 _- I + 2y(pa - Iq13 )]
dt AB4a 3  (11)

dp CJ#5y

dt AB 4a3

dq ICJacy

dt AB4a 3

dA J[(1 + B)(3-y2 - 1) + 2"y(pa - IqO)]

dt AB 4a 3

In order to update the orbital elements in a differential corrections procedure, it is nec-
essary to compute the partial derivatives with respect to the mean orbital elements of the
mean element rates (the --, in the matrix F defined by (2.6-7)). The partial derivatives of8am
the J2 contribution (11) to the mean element rates are easily obtained, using (2.1.6-1) and
(2.1.9-4). The nonzero derivatives are

57



Oh 7Jk[3-y2 - 1 + 2-1(pa - 1q13)]
Oa - 2a4ABJ4

Oh_4Jhk[3-f9 - 1 + 2-y(pa - Iq13)]

Oh -a
3 AB 6

OA J(1 - h 2 + 3k 2 )3-y 2 _ 1 + 2ýy(pa - 1q13)J

Ok - a3AB 6

Oh_2Jk[6a-I + 2p(a 2 _-92) - 2q 2Q7 - 21q#I(a + p-y) + Ca-y]

Op a,3 AB"C

OA 21Jk[6#3-y + 2pa-f + 21q -2 - 21pqa-y - 2 p13y + C13'y]
(9q a3 AB 4C

Ak 7Jh[39y _ 1 + 2-y(pa - Iq13)I

Fa -2a4 AB 4

Ak (1 - k 2 + 3h 2 )J[3 72 - 1 + 2-7(pa - Iq13)]

Oh - a3AB 8

A/ 4Jhk[3-y' - I + 2~-t(pa -1q13)]

Ok -a
3AB6

OA 2Jh[6a-f + 2p(Ct -y72) - 2q 2ay -- 21qo3(a + p-y) + Ca-y]

Op a3 AB 4C

Ok 21Jh[6#-y + 2pa-y + 21q -y - 21pqa-y - 2 p13y- + Cfl-f]

Oq a3 AB 4C
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Op _7CJ/3'y

cla 2a4 AB4

ap _ 4CJh/3'y
Ah a3AB6

OP 4CJk13-y
Ok a3 AB 6

ap 2J[pi9-y + a(#3 + 1q-y)]
Op a3AB 4

__ 21J[-ICqfl-y + fl' - -I' + pca-y]

aq a3 AB 4 C

a4 7CIJa-y

8a 2a4 AB 4

a4 4CIJhayt

Oh a3AB 6

a4i 4CIJkcr-y
Ok a3AB 6  (2
a4 21J[pa-y+ a'- y'-9-19 3y]

Op a3AB 4

a4 2J~qCIck'y + #3(a - I,-))]

aq a3 AB 4C

Oa 7J[X1 + B)(39, _ 1) + 2 -y(pa - 1q13)]
iOa 2a4 AB 4

_A Jh[(39y - 1)(4 + 5B) + 8-1(pa - Iq13)]
Oh a3 AB 6

OA Jk[(39t _ 1)(4 + 3B) + 8-y(pck - Iq13 )]

~9k a3AB 6

OA_2J[6(1 + B)a'y + 2p(a2 _- '2) - 2q2 a-y - 21pq#3'y + Cact

Op a3AB 4C

aA _ 21J[6(l + B)/3-) + 2p/3(a - p-y) + 21q-y(-l - pa) + C13'y]
aq a3AB 4 C
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3.2 Third-Body Gravitational Potential

For a third-body point mass, the appropriate averaging operator is (2.4-10) and the appro-
priate disturbing function 1? is (2.8.1-6). Further details of the reduction of the averaged
equations to the form recorded here may be found in [Cefola and Broucke, 1975] and [Mc-
Clain, 19781.

The first-order contribution of the third-body gravitational disturbing function to the
averaged equations of motion is identical in form to equations (3.1-1) for the central-body
zonal harmonics. Of course, the direction cosines (a, /7, Y) have different interpretations for
the two perturbations.

The mean disturbing function is now

U = - (2- -to) - VnK•SQnGs (1)
R3 =0 r=max(2,.9) (

Here

Vns 3 = coefficients calculated from (2.8.2-1, 2)
Kon 8 = kernels of the Hansen coefficients calculated from (2.7.3-7, 8)
Qna(Y) = polynomials calculated from (2.8.3-2, 3)
Go = polynomials which can be calculated from (3.1-5)

The partial derivatives of U needed in equations (3.1-1) are easily obtained by differentiating
equation (1):

aU /13.a .V
-a 1:3 (2 - b0,)n na KQ " Q.G.

ah 3 s3 an

- - E •(2 - 0.) ± V, KQ nKo' G dKoOh-R3  008 WR3  dX"~\0h+""

j7• P3 J:2, . .) V..K Q n K- +kG.dK
Ok -3o~ OO~R3 l~flk ak +kG 8 dX (2)

OU L 3-- •(2 - bos)6 ( ay
o-a R3 n  'R 3  VR3 I --Qn

0/3 LI E3 (2 -bos) -) V-&KoQnSa#~

OU LI J:( d o, ) , o
-ý7 R3 E(- 6 a~n- V3 K -

Recursion formulas for dKA" are obtained by differentiating the recursion formulas
(2.7.3-6, 7):

dK °0 for n=s-1 or n=s
d• n=s 2n + I dK n-1' - (n + s)(n - s) dK -n-2  2(n + s)(n - s) n_2,s

.n+1 dx n(n + 1)X2  dX n(n-+ 1)X3  K for n > s

(3)
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Recursion formulas for the derivatives of Q,. and G. are given by (3.1-8, 9).
If we wish to retain only the dominant terms in the expansion (1), we should include at

least the first two terms, since the n = 2 term vanishes in the Lh and A, equations for zero
eccentricity orbits, leaving the n = 3 term dominant [Collins and Cefola, 19781.

3.3 Central-Body Gravitational Resonant Tesserals

For the central-body gravitational tesseral harmonics, the appropriate averaging operator is
(2.4-11) and the appropriate disturbing function is (2.7.1-16) with m 3 0. Further details of
the reduction of the averaged equations to the form here may be found in [Proulx, McClain,
Early, and Cefola, 19811 and [Proulx, 1982].

The first-order contribution of the central-body gravitational tesseral harmonics to the
averaged equations of motion (2.4-1) is identical to (2.2-10), except that 1? is replaced by U:

2a OUa - AA
A 8A

B OU k ) hB OUh T - U_ p -lqU A(1 + B) OA

k [Bo 5 ( h kB o.1= -L-A-h + (pU,~ +-qU,B,)+ A( 1+B)]

_ C a(~ u) - U 1 (1
P• - 2B[ U~h,_U,.,•,_O _ - _ U6A(1

2AB 1P h~c/
C

q 2AB q (Uhk -Uc - -

2a 9U B hOU U 1.-
+ - ~ h--i-+k-OU +-I (P'nFJ -JafJoIA aa A(1 + B) h A -lUJ A BV.

Here (a, h, k, p, q, A) are now the mean elements and U is the mean disturbing function defined
by

U <R>=-1 2 R (a,h,k,p,q,AO0t)dA dO

+Re [e'( 1 -°) X I(a, h, k, p, q, A', 0', t)e-i(JA'-m°')dA' dO']

+Re (j,m)EB Tr f }
(2)

Remember that B here is the set of all ordered pairs (j, m) with the properties (2.4-12, 13).
The mean disturbing function is identical to (2.7.1-16), except that now only the resonant

tesserals are included in the summations:

Re~ti M N (R n ImVmpm -n-I,spvwa a) m r n°s j .a?

j m=1 s=-N n=max(2,mIuI) (3)

U,m),B (G-, + iHJ.)(Cnm - iSnm)ei(JA-e)}
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In equations (1), we need the partial derivatives of U with respect to (a, h, k, A, a, 3, 7)-
These are easily obtained by differentiating equation (3):

OU i~R~ m~mpm -n- aPvw(G,,, ± miH)(Cnm ~ ,-e= Re{--ýj 1: (n + 1) "1 a na f h•m-- n•n-
j,mv,,n

OU Re;"-'(,)f( •"(. ,) -

Ou ~ ~ ~ ~ V = e{-Z v"r.Pt-W(c.. - isnm)
Oh a aa

rw-K-' MOa + ma + 2h(Gj , + H\dK -n-la
Oh Oh)HT)de ]e

au= ,{ "( )+---I)CVr- P-'w(Cn}

j,m'S t'n

- -. - lsa. im ., + H- - '- + - -)( c, + H -im ) le . 2 j A- M e)
Kyla(o . + Ok 2kGM dK e1,

au Re R~ n (~~ mVFK -nls'w + i Hia(m -~m~iime)} 4

- Re{L- V ns + )(Cnm -

TA a ~ a I na m K, P,(4

0/3 = j,M,o,nm

OU _ Re{ Z (R),` IV'K-,`-`(G-, + iH!,)(C,` - Snm)

07j,. ,.,n a `

na nam~am)

(pet Edr +-, + ..m.)m)}

d-y ns d-y)e I

Here we have obtained the partial derivatives with respect to h and k of Kon-l-"(e2) from
the chain rule and the relation h2 + kV = e 2, where e is the orbital eccentricity.

Recursion formulas for dý.; are obtained by differentiating the expansion (2.7.3-10):

dKj-_ (n + 2) + (1 2)n+l a' e 2 (a-1)

de2 - (1 K - + 0)- eK7+ +a,c,+b (5)

Recursion formulas for are obtained by differentiating the recursion formulas
(2.7.4-2, 3):
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dP"'
21(f+ v +w)(2 + v + w-2) d 1y (-) =

(2e + v + w - 1)[(2t + v + w)(2e + v + w - 2)-y + W2 ]- w I)

-2(1+ v - 1)(t+ w - 1)(2e+ v + w) (-y) d-y (6)
+(2+v-rW- 1)(2t +v+w)(2f +v+w- -2)Pj(y)

d 

0

dPV- o
d 

7y

Recursion formulas for the partial derivatives of GI 5 and HJ8 are obtained by differentiating
(2.5.3-5) and (2.7.5-1, 2):

is - jACI.ji-I(k,h)Cm._t(a, ,) - I(s - j)S1 1_j1 _,(k,h)Sm_.,(a,,3) for Is _< rn
-{s - jIlC-i.-l- 1(k,h)CIS-,imi(,,/) - (s - j)sgn(m - s)SI.,_jl.l(k,h)SiS._m 1 (Q, 1)

Ok
for Isl _ m

(7)
etc. Formulas for d are obtained by differentiating (2.7.1-13).d-Y

In order to update the geopotential coefficients C,,m and Sn,,, in a differential corrections
procedure, it is necessary to compute the partial derivatives with respect to the coefficients
of the mean element rates (the . in the matrix F defined by (2.6-7)). These are easily
obtained by partial differentiating (1) and (4) with respect to C,,m and Snm. Introducing
the parameter I1 if max(2, rm, Isl) <5 n(8

0 otherwise (8)

we can write the results in the compact form

OC •a = 2 N -(a ) ,m-- l' -( -j , + il J .)e . \- me)

OCnm =~n A _ na PGN
(j,m )EB

(9)
etc.

If we assume that the orbital eccentricity is zero, the averaged equations of motion for
the resonant tesserals significantly simplify. See [Collins and Cefola, 1978].

3.4 Atmospheric Drag

For atmospheric drag, the appropriate averaging operator is (2.4-10), and the first-order
mean element rates are obtained by substituting (2.2-5) into (2.4-18). To avoid having to
solve Kepler's equation, and to smooth the perturbation around perigee, we can convert the
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integrals over the mean longitude A into integrals over the eccentric longitude F or true
longitude L by use of (2.5.2-6) or (2.5.3-14). The first-order contribution of drag to the
averaged equations of motion can then be written in either of the forms

dai 1 -F2(r)9 .qdF (la)

dai 1 dL (1 b)

The quantities ! and -a are given in terms of the equinoctial elements by equations

(2.1.4-1, 6, 7, 8, 9), (2.1.6-1), and (2.1.7-3).
The limits (F 1 , F2) in (la) or (L1 , L2) in (1b) indicate the values of F or L at atmosphere

entry and exit. If the satellite enters and leaves the atmosphere at a critical distance F from
the center of the central body, then

F, = -E + (2a)
F2 =E w+ +II

where

E=arccos I1 a]

or
L,-= I (2b)

L2 = f+w+ Il

where

f= arccos r

[e

Of course, if the satellite remains totally within the atmosphere, the limits of integration in
(1) can be taken to be (-7r,lr).

The perturbing acceleration due to atmospheric drag is commonly modeled by the formula
[Escobal, 1965]:

q - -m pji - Vj(i - v) (3)

Here
CD = drag coefficient of satellite (CD = 2 for a sphere,

CD = 4 for a flat plate perpendicular to v)
A = cross sectional area of satellite
m = mass of satellite
p = density of atmosphere

dr velocity of satellite

v = velocity of atmosphere
If we assume that the atmosphere rotates with an angular rate equal to the angular velocity
w of the central body, then v = w x r. The vector q is resolved along the (x, y, z) axes of
Figures 1 and 2 for use in the quadratures (1).
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The developers of SST have used various density models for the upper atmosphere of the
Earth. One of these is the modified Harris-Priester atmosphere (described in
[Long, Capellari, Velez, and Fuchs, 1989]):

P = Pr- + (P., - Pro-) COSN ) (4)

where

pm.j(H) pwi6

pma-(H) - Pmax Ie max

Hmi. H= -H

In( kPminj
Hm. H, - H2

In

Here p. ,(H) and pm,,(H) denote the minimum and maximum densities at a height H above
a reference ellipsoid (HI _< H < H2), H1, H2 , Pmini, Pmxi , Prnin2, Pmax2, N are constants
whose values are available from Tables, and Ob denotes the angle between the diurnal bulge
and the satellite. If b denotes a unit vector pointing from the Earth's center to the diurnal
bulge, then

cos b = -- (5)
r

The diurnal bulge follows the path of the Sun but, because of the Earth's rotation, lags the
sub-solar point by an angle 0 b (approximately 30' at 2 P.M. local time). We can obtain the
vector b by rotating the vector zB (pointing from the Earth's center to the sun) through an
angle 0b about the Earth's axis of rotation. Letting R denote the 3x3 matrix whose elements
are direction cosines between the (x, y, z) axes and an Earth-fixed set of Cartesian axes, we
can write the transformation law between the (x, y, z) components of b and zB as[(xCOS Ob - sin Ob 0 Z tT -Bx

b = R sinOb COSOb 0 RT ZBY (6)
b. [ 0 0 1 ZBz

Here R T denotes the transpose of the matrix R (see [Danielson, 1991]).

3.5 Solar Radiation Pressure

The general equations expressing the first-order contribution of solar radiation pressure to the
averaged equations of motion are formally identical to the equations (3.4-1) for atmospheric
drag.

The limits (F,,F2 ) in (1a) or (LI, L2 ) in (Ib) now indicate the values of F or L at shadow
exit and entry. If we assume the shadow is a circular cylinder in shape, the shadow exit and
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entry longitudes are determined by the shadow equation (as explained in [Escobal, 1965] and
[Cefola, Long, and Holloway, 1974]):

s =0 (1)

Here
S = 1 - M(l + kcosL + h sin L) 2 - (a cos L + sin L) 2

a 2 (1 - h2 - k 2 )
R3

R3 .R3

where Re is the central-body radius, and R3 is the vector from the center of mass of the
central body to the sun. To obtain the solutions to equation (1), the following quartic
equation must be solved:

A cos 4 L + A, cos 3 L + A 2 cos2 L + A 3 cos L + A4 = (2)

where

Ao = 4B 2 + C2

A, = 8B Mh + 4C Mk
42 = -4B 2 + 4M 2h 2 - 2D C + 4M 2k2

43 = -8B Mh - 4.AMk

A4 = -4M2A2h2 + E)2

B = a# + Mhk

C = a 2 -_3 2 + M(k 2 -h 2 )
-D = 1-3 2 -_M(l+h 2)

The real roots of (2) must be sorted to eliminate extraneous roots and to determine the exit
and entry values of true longitude L. The correct values of L must satisfy (1) as well as the
condition

R3 r-. = _ cos¢ a cos L + P sin L < 0 (3)
R3 r

At exit from shadow
as> 0 (4)

while at entry into shadow
as0- <(5)

TL
Of course, if the satellite remains totally within sunlight, the limits of integration in (3.4-1)
can be taken to be (-ir, 7r).
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The perturbing acceleration due to solar radiation pressure is [Cefola, 1982]:

CRAC R2 (r - R 3)
2m c 

(Ir)R
3 13

Here
CR = radiation pressure coefficient of satellite

(CR = 2 for a spherical mirror or black body,
CR - 4 for a flat mirror perpendicular to (r - R 3 ))

A = cross sectional area of satellite
m = mass of satellite
£ = mean solar flux at surface of sun
c = speed of light
R® = radius of sun
r - R3 = position vector from sun to satellite

If we suppose that the satellite is always in sunlight, and that the parameter
= CRA C RE (7)

2m c

is constant, we can derive (6) from the disturbing function

1= - (8)JR3 - rl

Use of the expansion (2.8-2) then leads to

R1 Z (j-_)IlP" Cosq(9R3 n=1 R

The radiation disturbing function (9) is identical to the third-body disturbing function
(2.8-3), except that the factor y,3 is replaced by -T and the summation starts from n = 1.
Hence we can immediately write down the mean radiation disturbing function by analogy
with (3.2-1):

T N (10))U = R-•• • (2- 6o.) W3 Vn Ko'Qn.G, G.(10)
.9=0 n=max(1,s)

If we retain only the first nonzero term in the expansion (10), the mean radiation dis-
turbing function simplifies to

U = V(kr+ h/3) (11)

where
3Ta
2R2
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The contribution of (11) to the averaged equations of motion (3.1-1) is

da•-=0
dt
dh BVa -Vk-y -.
dt A AB
dk B_# + h7 -Ihq)
dt -A AB (12)
dp CVhy (12)
dt 2AB
dq ICVkyk

dt 2AB
dA (2 + B)V(ka + hO) V- ' (kp - Ihq)
dt A(1 + B) AB

4 First-Order Short-Periodic Variations

Knowing Fourier series expansions for the osculating rate functions Fif, or the osculating
disturbing function TR, we can construct the first-order short-periodic variations irh from the
results in Section 2.5. In this chapter we record the specific forms of the expansions for each
of several perturbations.

4.1 Central-Body Gravitational Zonal Harmonics

For the central-body gravitational zonal harmonics, the appropriate disturbing function RZ
is (2.7.1-16) with m = 0. From the results in Sections 2.5.1 or 2.5.5, we can construct a
Fourier series expansion in the mean longitude A for the first-order short-periodic variations
r, as was done by Green [1979].

However, for the central-body zonal harmonics, it is possible to construct a finite modified
Fourier series in the true longitude L for the 7i,. For single-averaged perturbing forces which
increase rapidly as the satellite approaches the central body, notably central-body zonal
harmonics and atmospheric drag, a Fourier series expansion in L will converge faster than
equivalent expansions in F or A when the eccentricity of the satellite orbit is large. This
happens because the magnitude of such a perturbation is strongly peaked around perigee
when considered as a function of A. Transforming the independent variable to L broadens
the peak considerably, making it easier to approximate with a finite Fourier series. In this
Section we outline the construction of this most desirable expansion in L. Further details may
be found in [Cefola and McClain, 1978], [Kaniecki, 1979], [McClain and Slutsky, 1980], and
[Slutsky, 1980].
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The disturbing function less it's mean can be written as

EE-U=(Re - b(.6() J.V..Q..[C.(a,3)+SiS.(ak ] E T
a = 2 s=O a j =---

j*0
(1)

Here

Jn = -Cno = geopotential coefficients
Vn 3= coefficients calculated from (2.8.2-1,2)
Q., (Y) = polynomials calculated from (2.8.3-2, 3)
C.(a,fi), S.(a,/3) = polynomials calculated from (2.5.3-6)
y-fl ,j = coefficients of the expansion (2.7.1-8):

"(a) +i -L = Yfl- -8, iiA (2)

r j=-00

The short-periodic generating function (2.5.5-4, 5) is easily obtained by integrating (1):

S = Re E E(2 -o.) YV2, O,[Cf(a,s3) + iS.(aI3)] A yE f-"-5ip
a =2 ----- a j=-oo --,

j#o

(3)
The infinite series in the mean longitude A in (3) can be replaced by a finite modified

series in the true longitude L. To see this, first integrate both sides of (2) with respect to A
to obtain

E ( e-isLdA - AY°"-- (4)
j3-O0

A#0

Next perform the integral in (4) by using the expansion

" /1 h 2 
- k2  ijL (5)

3=-fl

and the change of variable (from 2.5.3-14)

dA = rk 2  dL (6)

The infinite series then becomes

00 yf-n-,-- y-n-lei(j-s)L

j=0 ij .=-(n-i) i(j - s) + Y(7-')(L - )(7

j0o jo. 6
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Replacing the infinite series in (3) with (7), and introducing the kernels Ko'-l' of the
Hansen coefficients through (2.7.1-11), we obtain

S= U(L - A) - Re ! E E(2 - bo.) J~) ,,Qns
Ia n=2 s=O a

y t [C8(a, 0) + iS.(a, #)j)I[Cj(k, h) - isgn(j)Sljl(k, h)]Kn-Ijei(j-°)L (8)
E i(j - s)

j#8

Since all of the symbols in (8) except for i = vr-_T are real, we can easily cast S into the real
form

( - -N n n"L K 7'j [Hi, cos(j - s)L + Gj, sin(j - s)L
a n=2 s=0 L jS ]

j*s

+ n-I K_ n-ljo" cos(j + s)L + J,- sin(j + s)L]_
E ~ j + s

(9)

where

Lnsy-) = VnQ .(-Y)
Gj. = Cj(k,h)C.(a,,6) + S, (k,h)So(a,f)

Hjo = Ci(k,h)S.(a,P3) - S,(k,h)C,(a,,3) (10)

Ia = Cj(k,/h)S.(a, 3) + Sj(k,h)Co(a, fl)

Jji = C,(k,h)C8 (ar,/f) - S,(k,h),S. (a,fl)

The last step is a redefinition of indices, so as to isolate the coefficients of cosjL and
sin jL, and a rearrangement of the order of summation. The short-periodic generating func-
tion can then finally be written as the finite modified Fourier series

2N-1

S =C° + U(L - A) + E (CjcosjL +SjsinjL) (11)
j=1

Here the coefficient CO is
2N-I

CO=- (C'pj + Siaj) (12)
j=1

where pj and aj are given by (2.5.3-3, 4). The coefficients C' are

Cj = IlN(j)Cjl + Cj 2  (13)

where

CI = -- - 1 {z j1) N- N
_ j E, _E( (2 - b ,j . n.- --7c~~l aj L ~s=j n--s+l - Osj~lssjx r
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(14)

Eiv (E1 (2 -boj .)J.HI&.K-n +~ Lj$22N-(j-)zi }K--'O
rL-I

Cj2 N~~ [mn(2bj-.,)JIj.j-8L8

±: E (2 - 60, 8)JnI 8,.K fo inve

2z~a 1,)-1 m nin( - 1,N)

= Z (2 _ 60, 8 )jnI8 , _. n-'L '

1 2N~3() aj.-nin(i-1,N)mij-N)(- foN>

(i2ary th coefficientsj S'- areeve

(2 n4() +$2(7
wherel

0 frN =.1,

for N odd
+If3(j) [ -2 r+i(2 - 1,N ±In-1,3I

r5 2 -boj.)JI~-.K Lj' fr 71



f-i min(j-i,N)

2(2 E-n
o=j-min(j-1,N) n=j-s (20a)
min(j-1,N)-1 min(j-1,N)

+ E (2 _ ")Jj1 1 Kn- "-'°LJ- for j even
s----•n=&+l

min(j-i,N)-i min(j-1,N)
EJ2 " (2 - o',j_s),]nJ,j_sKon-1 SLn-s

8=1.2 n=s+l

2 n~

for N = 2,3

for j odd
"+ 52N -3( 2 nin(j- IN )

(2 - 6o,j_.)J.J..j-.Ko Li-for N > 4
s=j-min(j-l,N) n=j-s

(20b)
Note that the first index of the G, H, I, J polynomials defined in (10) indicates their degree

in the eccentricity; for small eccentricity orbits, the series (14)-(16) and (18)-(20) may be
truncated by prescribing the maximum possible value of the D'Alembert characteristic s.

The first-order short-periodic variations i]ja generated by the function S given by (11)
can be derived using equations (2.2-10), (2.5.2-7), (2.5.5-10), and the following:

1 B{ kb + kb 1+ h2 + 2(B + k2b) cos L

+2hkbsinL + k[B + (k 2 - h2)b]cos2L + h (B + 2k2b)sin2L}

1 31 hB+hb 1+ 2 k + 2hkbcosL (21)

+2(B + h b) sin L + 2s[-B + (k h )b] cos 2L + 2(B + 2h b) sin 2L)

O = -- B 3 2 2 +2kcosL+2hsinL+ 2 cos2L+hksin2L}

Here, as usual, h and k are equinoctial orbital elements and b and B are defined by
(2.1.4-4) and (2.1.6-1b).

In the absence of explicit time-dependence, the first-order short-periodic variations can
be written as the finite modified Fourier series

2N+1

77,, = C° + D,(L - A) + E (Cj cosjL + S sinjL) (22)
j=l

(Remember that the equation of the center (L - A) may be calculated from (2.5.3-2,3,4).)
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Expressions for the coefficients in (22) are given below in terms of the following quantities:

1. The equinoctial elements (a, h, k,p, q) and the retrograde factor I (equation (2.1.2-2)).

2. The direction cosines (a, fl, -y) of the perturbation symmetry axis in the equinoctial
reference frame (equations (2.1.9-1)).

3. The Kepler mean motion n (equation (2.1.4-3)).

4. The auxiliary parameter X (equation (2.7.3-4)).

5. The mean disturbing function U of the perturbation (equation (3.1-3)).

6. The coefficients C3 and Sj of the modified Fourier series expansion in L for the short-
periodic generating function S (equations (13)-(20)).

7. The cross-derivative operator (equation (2.2-8)).

8. The inclusion operator (equation (2.5.3-18)).

The constant terms in the expansions (22) are given by:

2N+I

Co E (Cp, + S"0J) (23)
j=1
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The short-periodic coefficients for the semnimajor axis a are given by:

Cj' X3~(~ (4kU~hc+k - hkC +Sl)

+12~ ~ ~~ 2 s+2(2)j 22

+11N-+j +2 kSh'S? )}

+ _12N- 2(j - 1)(-hCjl + kSjl)]

+12N j) LX (j - 2)(hkCjl + j-)
n~2

=l r~j) (4hU + .+ hkSl) (4

j2N1(j)(XC]

_11N-3j) (i+1)( k 2 - h2Sj+l)]k~+

WI2 a~ 2 ChS)

D1  2-=O L!j+ )kjl ~~
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The short-periodic coefficients for elements h are given by:

=~~ý I()[ 2 (kC1 +hS1)]

-T2) 2n~a2hU
+ 2)(kC +2 +hS'j 2)]

[;22j+ 1)jl

1_T2N- l(j.kX L , IT C 8C 1A X?
+xn 2 a2  2n~a~'i

+_T2Ni(i)[ 4 I 2(j - 2)(C'j - S))

+2~j) 2na2 IU

2+I~N(j)[ 4 4( +2(h-2 -kJ2)]

+ 'N13 [ X (js -Iq, )) 1k OS' 2 j
4n2a2xna k-2a

S21 (8 - 2)hC3 + kS1 2

x~ ~~n2a2  J 2 -q~.,

_J12 -2() [x u 1)j75



The short-periodic coefficients for element k are given by:

=~ -T,'(j)[ 4  (8U -hC' +kS')]

+I) 2n~a2kU

+_T2N3(j X( + 2)(-hC+ 2 + kSI+2)J

+1ý2-2() X -± 1)si+I]

_ 12NV I (j)[Ix-(gC~ Ji 1 X'j 3kx
l n2a2\'a'y -IC) + ý_0 'A 2n2a2isJ

+_T2N(j)[ u- 1)S31]l

+13N+1(j)[ X(j - 2) (hCi-2 + kS3-2)]

=~ IT,(j)[ " (kC1±hS1)J 26

± 2T (j) [ n' a h U

12N-3(j) X4~2( + 2) (kCj+2 + hSi+2)

-372N-(j)[ X(j+ 1)Cj+1]

_x72N-1(j)[ hX (PSj Iqs~j ) + 11 9Sj 3
na2  cr q !na h 2n 2a23

± 1 32N+ (j)1[ X (j 2)(-kCi-2 + hS3-2)]

D3 ~ 1 OU -(hxpU,.y-IqU,Oý)
- Xn 2 a 2 A n 2 a2

The short-periodic coefficients for element p are given by:

= 12N-1(j) +1±p2 2+ 2)X[. +0(7~ 006 ,
C4  2n a 2 ~ +~ - iS')]

S = 1 72 N-(I)(+ p2+ q) _J~ + Srh _Sjf6jj (7
S ~~~~2n2a2  +pb ,+C)j()

D4 (1+ p2 + q2)XU,#_y
= - 2n2a2

The short-periodic coefficients for element q are given by:

N- (j) (+ p2 +q2)X _ 4 _~
N- ~2n a2  [ 1C,j ±q (Chk-, S)

D5 = (1 + p2 + q2)XIU,~y)
D5  = - 2n 2a2
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The short-periodic coefficients for the mean longitude A are given by:

C63 1,1(') [ 2n X(4hU + 2 C' +hkS')

_T2J n~a(l+ x) hkU]

-T2N-3I.)rX2(j + 2) k 2 -h 2 j2+h j2
~~l*1U2n2a2(1 + x)( 2 C~ k~+)

-1 2N-2j W 2 j+ 1J-) (kC'+' + h5j+'t )I

2 X-1 1 +9c 49C. -x--( 3 c'
ik~tna~ na 2 (I +X) (h-5h +c-ý7k) + fl2a2 (C,, -IqC,l)-na

+1 2IN(j) X 2(j_1~) (ke'-' - hS'-')]

+1 2N+1~j -[ X2(J - 2) _(k 2 - h2C.2_hk
+3~3) 2n2a2(1 + X) '~ 2 -Ik'

S6 h2
(j= na( (4kU -hkCe'+ 2 S1) (29)

+1 2 2[ 2 ) k2 - h 2 U] +)

J Sa2( + x)S S 1  IS~

1na2( X) na(l+X(hh+/c 2-

+112N-(j) X ( +1 (hej' -' kSj 1)]

+.7,2N-1(/ 2 O1-MI s Xj 3

J)+(~f( 2 +zC + -+ 2 S32)J-qS ;ý 2+3J ý22 2 ( +ý x)2l+ )_k na

+22U N X2J O __ )(j-+kj1j

- ~ -- + n2 a2(0 + x) (A~. + Ok) n2a2 (p, Iu~
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Note that the Di coefficients are simply related to the first-order mean element rates A,,
(given by the right sides of (3.1-1)):

Di = Aj.(30)
n

From the central-body gravitational potential, there are three possible sources of explicit
time-dependence:

1. Motion of the central-body symmetry axis. For the Earth, this is a combination of
precession of the equinoxes, nutation, and polar motion.

2. Variations in the central-body rotation rate.

3. Tidal potential.

The principle effects of 1 and 2 are accounted for in SST by using at each time step the epoch
triad (XB, YB, ZB) to evaluate the direction cosines (d, 3,-y) from (2.1.9-1) and the rotation
angle 0 from (2.7.1-3,4). However, for the Earth the above sources are thought to be too
small or two slowly varying to cause significant explicit time-dependence effects.

In order to update the orbital elements in a differential corrections procedure, it is nec-
essary to compute the partial derivatives with respect to the mean elements of the short-
periodic variations (the ' in (2.6-3, 4)). The partial derivatives of the J2 contribution toaak

(22) are currently available in the SST code, for the special case of zero eccentricity and
replacement of (a, 3 , -y) with the explicit formulas (2.1.9-3) in p and q (thus motion of the
central-body symmetry axis is neglected).

4.2 Third-Body Gravitational Potential

For a third-body point mass, the appropriate disturbing function 1Z is (2.8.1-6). From the
results in Sections (2.5.1) or (2.5.5), we can construct a Fourier series expansion in the mean
longitude A for the first- :rder short-periodic variations ?ik, as was done by Green [1979].

However, for the third-body disturbing function, it is possible to construct a finite Fourier
series in the eccentric longitude F for the 7i7. Since the D'Alembert characteristics are
bounded, this solution is of closed form in the eccentricity. In this Section we outline
the construction of this most desirable expansion in F. Further details can be found in
[McClain, 1978], [Cefola and McClain, 1978], [Slutsky and McClain, 1981], and [Slutsky,
1983].

The disturbing function less its mean can be written as

R E uE= (2 - -) -

Here
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V.. = coefficients calculated from (2.8.2-1, 2)
Q-((Y) = polynomials calculated from (2.8.3-2, 3)
C.(a,13), S.(a, 3) = polynomials calculated from (2.5.3-6)
y.311S = coefficients of the expansion (2.7.1-8)

The short-periodic generating function (2.5.5-4, 5) is easily obtained by integrating (1):

y"n'eiJ' '.

S = Re ZE=(2-bos)() VnQ,[C.(Q, 13) -iSo(af)] E -j
S R 3 n= (= 3j_ý i (2)

30o

The infinite series in the mean longitude A in (2) can be replaced by a finite series in the
eccentric longitude F. To see this, first integrate both sides of (2.7.1-8) to obtain

00 ij (r)fn eiLdA - AY0: (3)

j#0

Next perform the integral in (3) by using the expansion

(r)f ,L Wseip (4)

where

w -s =yf-. (5)

and by using the change of variable (from 2.5.2-6))

dA = (r ) dF (6)

The infinite series then becomes
Sj - Wn+I'SiF

or, yns iuA n+I WU iejF

=-0 ? j=--(l) + '(F-A) (7)

j0o j:o

Replacing the infinite series in (2) with (7), recalling the relationships (2.5.3-5), (2.7.1-11),
(3.1-4), and introducing the mean disturbing function U through (3.2-1), we obtain

S =- U(F-A)

Re+ JC 5((2I - iS.(a,(3a]Wfl+1
6 13

R 3 n=2 0 R j=-n+l)
j0o

(8)
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The coefficients W!" may be expressed in the form

WTAn = ea= -Iwnb1Ci, _1(k, h) - isgn(j - s)Sij_, (k, h)] (9)

The functions w"° possess the Jacobi polynomial representation

.2 n (n + s)!(n - s)! (1 _ C2•_lloj _.pU-1j+8j( ) fr,•l
- (-c)-' (n +j)!(n-i - ,,-I, i x) for- sD!> __i (10)

-1- c) "--IJl () for Isi 1 IA

Here again X is defined by (2.7.3-4), e is the orbital eccentricity, and

e Vh2+ k2
1 + Vj _e 1 + V-1 - h2 - k2

After substituting (9) into (8), we can easily cast S into its real form. The indices may
be rearranged as usual, and Kepler's equation (2.1.4) may be used to replace (F - A) in (8)
by

F- A = ksin F- hcosF (12)

The short-periodic generating function can then finally be written as the finite Fourier series

N+1
S = CO + U(k sin F - h cos F) + E (Cj cosjF + S± sinjF) (13)

j=1

Here the coefficient C0 is (implied by < S >= 0 and (2.5.2-8))

CO = kC' + hs (14)

2 2

The coefficients Cj and Sj are

Ci G f-IJ.sl n+is(
E =: _n, ,-e--w,+l.'sgn(j - s)Co(a, 1)Sj..ul(kk, h) + S.(c, I3)C 1.,i(k, h)J
s=On=max(2,j-1,s) 3

+e-i+a)w"-+l"tI-Cs(a, 13)Sj+,(k,h) + S.(a, )Cj+.(k,h)l} (15)

N N G
= , ---. {e-lJ-slwi•Q+iC(a, #)Cji_.-(k, h) - sgn(j - s)S.(a, P)St1 -.l(k, h)j

S=On=max(2,j-1,s) 3

+e -.(3+8)WntlC [,(a, )Cj+.(k, h) + S.(ct, f)Sj+o(k, h)]} (16)

where

Gs= L3-(2 - .) Qn (17)
R3  W3
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The first-order short-periodic variations rqi,, generated by the function S given by (13) can
be derived using equations (2.1.8-3), (2.5.5-10), and the following (obtained by differentiating
(2.1.4-2)):

OF a cosF

49F aF sin F (18)
Ok r
OF a

OA r

where r is given by (2.1.4-6). The partial derivatives of S with respect to the elements
a, a, fl, -y follow by straightforward differentiation of (13):

Os = C + OU
O(a,a,,3, -y) O(a, a, ft.,) + O(a,a, 0, i0(ksinFh c~sF)

+ + I cos*F + a sin jF (9E O(a,a•--,/ ,y) j O(a,a, /,-y)

The coefficients Cj, Sj and the mean disturbing function U are functions of the semimajor
axis a through the powers of the parallax factor alone, functions of the direction cosines
a and # through the polynomials Co(a, /3), S,(a, /3), and functions of the direction cosine
^t through the polynomials Q,.(-y). A finite Fourier series representation for M- may be
obtained by partial differentiation of (2) with the infinite series replaced by (2.7.1-8), followed
by substitution of (4) and (9) and the usual reduction to the real form

as N

= C\ + j(Cf\ cosjF + Sj sinjF) (20)

Here the coefficients are

c ,O = c , + h s ,
N N

C3
= >3 ~ Gns {ihw7'[C.(a, /3)Cl1 ,...(k, h) - sgn(j -- s)S1 (ce, /3)SU-.(k, h)1
s=O n=max(2,j,s)

+e-U+8)w.;[C.(o,' )C3+.(k, h) + S.(a, /)Sj+.(k, h)]} (21)
N N

S1= Gn, e {e-lj-°)wn8[sgn(j - s)C.(a, /)Sij-.o(k, h) + So(a, #)Cl•-..(k, h)]
8=0 n=max(2,j,s)

+e-(+s)wns [C.(a, /)Sj+.(k, h) - S.(a, O)Ci+.(k, h)]} (22)
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The partial derivatives of S with respect to the elements h and k may be obtained by
differentiation of (13) and use of (18) and (20):

Os oc° o u F O(hU) 1
- j 7 + k-sin F - + C!J cos F (23)

"ac'[( 1_3 l_ dcsF (SJ ~

N+1 [(aCj _ -j , 1 -l j+,• (asi l- 6 -1 1- is.+, F]

+h 2 + cosjF + + , sinjF
Ch2 ) 2T22/2

a[sk ) 1C au
- 0') o in o (24)

A ak A +2

_k 2 , A 2 A c8kF 2,A 2 1A JJI

In the summations in (23)-(24) Cj and S,\ are defined to be zero for values of j outside the
range 1 < j < N. The dependence of C', Sj and U on the elements h and k is through
the polynomials Ce(k, h), SI(k, h), the eccentricity e, and the coefficients w ", h(•. In the
absence of explicit time-dependence, the first-order short-periodic variations can thereby be
written as the finite Fourier series

N+i

Ilia = C°' + 1 (C' cos jF + S'i sin JF) (25)
j=1

where the coefficients Co are given by (2.5.2-15a).
Green [1979] studied the effects of explicit time-dependence by including several terms

in the formulas (2.5.1-15) for the coefficients C,' and S• of the A-expansions (2.5.1-14) of
the short-periodic variations. He used finite difference formulas to compute the partial
derivatives with respect to time of the coefficients C• and Si' in the A-expansions (2.5.1-11)
of the osculating rate functions. For medium or high altitude Earth satellites, he found
that the Lunar point mass perturbation varies quickly enough for explicit time-dependence
effects to be significant. McClain and Slutsky [1988] also found that the inclusion of explicit
time-dependence effects due to the Moon and Sun improved the performance of SST for high
altitude Earth satellites.

We can include the effects of explicit time-dependence in the F-expansions of the present
Section by using (2.5.1-10) or (2.5.5-11) and expressions in Section 2.5.2. Specificallly, the
first-order short-periodic variations ir/ including the kth order time derivatives are

N+k+l

= =C°k + Y (CuikcosjF+ S~i'ksinjF) (26)
3=8
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where

c'`=C°.`- +--gk , Uk •- otk'd ,, + TV)kl6 6 U-" ~j 0k"(ik'"k akC 3 ~kC &-F'St,
_O ~ ____ C O k S(\3 & C Ok I

CJk = zV+"(j)c -+k + t)+( 0(-1)"+'6,eu Sk ' ) tk )
n'-T-k &tk't ak, atk'•

Nk j~-1 + 1)W~k akCC( 4ok SC k( ft9kCI akSC
C! Tý +k(j )SC, +A:i + L (_1)k+l b6,ed \ kt t 2k .9th Jk

(27)
The recursions (27) are initialized by

c•'°= Ci (28)

Sij1O I-

where the Ci',C', S] are the coefficients in the expansion (25). The quantities Uk, Vki in (27)
are given by the relations (2.5.2-12) with J = N + 1 and m = k, and 1,8(j) is the inclusion
operator (2.5.3-18).

4.3 Central-Body Gravitational Tesserals

For the central-body gravitational tesseral harmonics, the appropriate disturbing function
1Z is (2.7.1-16) with m $ 0. From the results in Section 2.5.4, we can construct the first-
order short-periodic variations i•. Further details beyond those given here may be found in
[Proulx, McClain, Early, and Cefola, 19811 and [Proulx, 1981].

In the absence of explicit time-dependence, the first-order short-periodic variations are
given by (2.5.4-4):

00 00

7ic,= E E l[C' m cos(jA - mO) + Sim sin(jA - mO)]
j=-com=1 (1)

(j,m)¢B

The Cm" and Sim are given by (2.5.4-5) in terms of Fourier coefficients Cjm and Si" of
the osculating rate functions (2.5.4-1). These latter coefficients are easily constructed by
substituting the disturbing function (2.7.1-16) with m I 0 into (2.2-10). The needed partial
derivatives of 1Z have the same form as (3.3-4). To illustrate, we give below the final formulas
for the coefficients Cj' and Sim:

C.M 21ij N N (R),
T a na Snm,, '- - HnCnm)

•=-N n=max(2,m,,ll)

S1 2iN N mV -n-lL Ptvw(Gj gCnm + HmnSnm) (2
S__N n=max(2,m,IsI)

(Remember that A is defined by (2.1.6-1a).)
This theory has been implemented up to a 50x50 gravity field model [Fonte, 1993].
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4.4 Atmospheric Drag

For atmospheric drag, the osculating rate functions F,• are given by (2.2-5) with perturbing
acceleration q given by (3.4-3). From the results in Section 2.5.1, we can construct an
expansion in the mean longitude A for the first-order short-periodic variations:

00

7i,= E(C'jcosjA + S• sinjA) (1)

where Cj and Sj are given by (2.5.1-15) in terms of Fourier coefficients Cj and S• of the
A-expansion (2.5.1-11) of the osculating rate functions:

C .= yJ -. q) cos j A dA
7r 1  ri (2)

-= -J " ( ) sinjAdA

Of course, the limits (A1, A2) indicate the values of A at atmosphere entry and exit, and we
convert the integrals over A into integrals over F or L using (2.5.2-6) or (2.5.3-14). Green
[19791 used the A-expansion (1) for atmospheric drag, but indicated the desirability of an
expansion in another geometric variable.

From the results in Section 2.5.2, we can construct an alternate expansion in the eccentric
longitude F:

00

74, = Co + EM(C cosjF + S4 sinjF) (3)
1=1

where Cf' and S' are given by (2.5.2-14) in terms of Fourier coefficients Cj and Si of the
F-expansion (2.5.2-1) of the osculating rate functions:

C = F2 i COSjF dFtoo, ) 1 (4)
= 1FE2 (i rq sinjFdF

But, as was indicated in Section 4.1, the most desirable expansion for atmospheric drag
is in terms of the true longitude L. From (2.5.3-23)

K+2 00

=o C°+ E D"n(L- A)tm + E_(Cj cosjL+ S sinjL) (5)
m=1

where CJ, SI, D• are given by (2.5.3-24) (with the index M = 0) in terms of the coefficients
Cjj, Si ,V•V defined by

1 L2 (Ž! q) cosiL dL

"q] = -71J ( q sinj*L dL

'Dim = 0

From atmospheric drag, there are five possible sources of explicit time-dependence:
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1. Variations in the solar extreme ultraviolet (EUV) flux.

2. Geomagnetic storms.

3. Seasonal latitudinal variations in the atmosphere density.

4. Motion of the diurnal bulge in the atmosphere.

5. Motion of atmospheric tides raised by the Sun and Moon.

Variations in the solar EUV flux can cause the atmospheric density at a given altitude to vary
by up to three orders of magnitude and are the dominant cause of error in lifetime predictions
for near-Earth satellites. The primary source of variation in the solar EUV flux is the 1 1-year
sunspot cycle, and it might be assumed that variations with a period of 11 years would be
too slow to cause appreciable explicit time-dependence effects. The sunspot cycle is far from
sinusoidal, however. At the beginning of each cycle, there is a steep rise in solar EUV flux
which could conceivably be fast enough to cause significant explicit time-dependence effects.
In addition, there is a secondary variation in solar EUV flux with a period of about 27 days
caused by the rotation of the Sun, which brings sunspots alternately into and out of view
around the limb of the Sun. A period of 27 days is comparable to the 27.3-day period of the
Lunar point-mass perturbation, which is known to have significant explicit time-dependence
effects. Geomagnetic storms can cause large variations in the atmosphere density over time
scales of a day or less. The potential for significant explicit time-dependence effects is obvious.
The remaining sources of explicit time-dependence effects for atmospheric drag are thought
to be too small or too slowly-varying to be significant. However, explicit time-dependence
effects from atmospheric drag have not yet been studied with SST.

4.5 Solar Radiation Pressure

The first-order short-periodic variations qij,, due to solar radiation pressure are formally iden-
tical to the equations in Section 4.4 for atmospheric drag, where the perturbing acceleration
q is given by (3.5-6). For solar radiation pressure, the simpler expansions (4.4-1) in the mean
longitude A or (4.4-3) in the eccentric longitude F should be adequate. Also, Green [19791
found that the explicit time-dependence effects from solar radiation pressure were minor.

As we have seen in Section 3.5, if the satellite is always in sunlight, the perturbing
acceleration q can be derived from a disturbing function 1? which is nearly identical to the
third-body disturbing function. Hence we can immediately obtain a finite Fourier series in
the eccentric longitude F for the 77j, by analogy with the results in Section 4.2.

5 Higher-Order Terms

Generally, the algebraic complexity greatly increases when we try to compute higher-order
mean element rates and short-periodic variations. Also, it is assumed that higher-order
terms due to most perturbations are usually negligible. In this chapter we report on those
few higher-order effects which have been studied to date with SST.
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5.1 Second-Order Ai,,• and ,%i, Due to Gravitational Zonals and
Atmospheric Drag

The second-order mean element rates Ai,, and short-period variations r)i due to two per-
turbations expanded in A may be constructed as shown in Section 2.5.6. We can calculate
analytically the Fourier coefficients C' and Si` of the expansions in A for the osculating
rate functions Fi1 due to the central-body gravitational zonal harmonics by substituting the
disturbing function (2.7.1-16) with m = 0 into equations (2.2-10). We can calculate nu-
merically the Fourier coefficients Ci2 and S'2 of the expansions in A for the osculating rate

functions Fi2 due to atmospheric drag from (4.4-2). The partial derivatives 80 and Ca
i8a,~ 8a,

needed in (2.5.6-5) can be calculated analytically for the central-body gravitational zonals
and by numerical quadrature for atmospheric drag.

At the present time, the only terms in these analytical formulas which are available in
the SST code are:

1. The J 2-squared auto-coupling mean element rates A, 11 , correct to first power of the
eccentricity and with (a,#f,-y) replaced by the explicit formulas (2.1.9-3) in p and q.
These terms were constructed with the MACSYMA algebraic utilities of [Zeis, 1978]
and [Bobick, 1981].

2. The J2- squared auto-coupling short-periodic variations 7rjiu, correct to zero power of
the eccentricity and with (a,#i, y) replaced by the explicit formulas (2.1.9-3) in p and
q. These terms were constructed in [Zeis, 1978] and corrected in [Green, 1979].

3. The J 2/drag cross-coupling mean elements rates Ai12, correct to zero power of the
eccentricity and with the retrograde factor I = 1 and (a, #/, y) replaced by the explicit
formulas (2.1.9-3) in p and q. These terms were constructed in [Green, 1979].

Green [1979] studied the second-order effects of J2 and drag using a combination of
analytical and numerical methods. He found that the drag/J 2 cross-coupling terms A,21 cause
significant effects for low altitude satellites. He found that Izsak's J 2 height correction (1)
applied to the density determination in the formulas (3.4-1, 3, 4) gave a good approximation
to the Ai 21 terms. The following expression added to the height H is the J2 short-periodic
correction (from Section 4.1) to the radial distance r:

Ar = 2 4(--2) sin' icos 2(f + w) +(3sin 2i -2) 1 + C1Co fv---2 l+ ecs] 1L~4(1 -e2)a 1 1 + V -1 -e 2 1+ ecos f

Green's explanation of why Izsak's J2 height correction works is that adding the J2 short
periodics to the elements in the drag osculating rate functions and then averaging is equiva-
lent to adding the drag/J 2 cross-coupling terms to the first-order mean element rates, if we
neglect products of short-periodic variations:

< Fi2(a ,,+ ill, , a .. ,6 + ,176,i) > ;::< r,2(al, " "6 ) > + 1:< 'F (a, " " a6 )77j, >
S8aj (2)

SAi2 + Ai2l
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5.2 Second-Order Tij Cross-Coupling Between Secular Gravita-
tional Zonals and Tesseral Harmonics

In high-order shallow resonance orbits, the tesseral harmonics which contribute the most
significant short-period motion are likely to be those with degree and order centered around
the resonant order. For such orbits, the second-order short-periodic variations due to cross-
coupling between these tesseral harmonics and the J2 secular terms may also be significant.
In this Section we outline how to construct these critical short periodics. For further details
and a discussion of numerical results see [Cefola, 1981] and [Cefola and Proulx, 1991).

For the present purpose, we retain in the expansions (2.5.1-10) of the osculating rate
functions Fi due to the central-body gravitational zonal harmonics only the mean element
rates Ail given by (3.1-1):

F,1 P Al (1)

Furthermore, we completely neglect the first-order short-periodic variations r/i due to the
zonal harmonics:

7il ; 0 (2)

The osculating rate functions Fi2 due to the tesseral harmonics may be expanded in the
Fourier series

Fi2 = 1[Ci"' cos(jA - MO) + ,.im sin(jA - mO)] (3)
j,-

The first-order short-periodic variations due to the tesseral harmonics are then given by
(2.5.4-4): :7 i2 = 1: [Cl"• cos(j*A - mO) + Sim sin(jA - mO)] (4)

(j,m)f13

where, in the absence of explicit time-dependence, the CQm and Si"m are related to the Fourier
coefficients C7m and S3jm by (2.5.4-5).

To obtaiu the second-order cross-coupling terms, we need to construct the functions
Gi12 + Gi21 from (2.3-27):

6 'cFil :Fi2 +• 15n_
(C+ =.,E + F,2 ., + bi677ll772

- 7'-' k ar2 + "•q-a2A'',.

Substituting (1)-(4) into (5) yields

Gi1 2 + G,2l • • [C' m cos(jA - mO) + 't m sin(jA - mO)] (6)
(j,,m)¢B

where
-m -- • (OAil CjOm -Aocm -AjA 61 Si m

=, Oar a" Oar,
5 (7)

- (OA~i Sim -A,, 1  +jA,,,Cj

=, k-a. Oar-8
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The cross-coupling short-periodics are then

11i12 + 71i21 = Z [C•" cos(j*A - mO) + 3"im sin(jA - mO)] (8)
(j,m)O

where the coefficients r'i and "M are given in terms of Cm'n and 3ým by the relations
(2.5.4-5). The partials O of the J2 mean element rates needed in (7) are given by equations8ar

(3.1-12). The partials - and a of the tesseral first-order short-periodic coefficients are8a,. 8o,

related as usual to the partials a- and a of the tesseral osculating ra4 e coefficients,
which may be obtained by differentiating formulas such as (4.3-2).

Code based on this approximate theory has been developed only for the J2 secular/m-
daily terms (j = 0 in (4)), with finite differences used to obtain the partials of the m-daily
coefficients. Construction and programming of a complete second-order theory for a double-
averaged perturbation expanded in A, 0 has yet to be accomplished.

6 Numerical Methods

The numerical methods which are currently used in SST are standard. In this chapter we
record the essential mathematical formulas. Further details may be found in any numerical
analysis textbook (e. g., [Ferziger, 1981]).

6.1 Numerical Solution of Kepler's Equation

The equinoctial form of Kepler's Equation is (2.1.4-2):

A = F + hcosF- ksinF (1)

This equation can be solved iteratively using Newton's method:

F0  = A
F F - F+ h cos F - ksin F,- ) r =0:•-- A n]: - • i,,. (2)

F2~l = (2

6.2 Numerical Differentiation

We need to differentiate functions in order to obtain the mean element rates, short-periodic
variations, and partial derivatives for state estimation. Analytical formulas are preferable if

possible to obtain, because of their greater precision. However, the derivatives of a function
can be approximated by finite difference schemes.

We suppose f(x) is a smooth function of x. Then the central difference approximation
for the derivative of f(x) is

dd (X) f-X + A) - fX- A)
88 2A
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The error in this approximation is

df [f(x + A) -fX- A) dA2 (2)

For example, Green [1979] used the central difference approximation (1) to calculate the
partial derivatives needed for state estimation (see Section 2.6). He obtained good results
with a step size of A = 10-xz, using double precision.

6.3 Numerical Quadrature
We need to integrate functions in order to obtain the mean element rates and short-periodic
coefficients. Analytical formulas are preferable if possible to obtain, because of their greater
precision. Also, they are more computationally efficient since analytical formulas need to
be evaluated only once per mean equations integration step, whereas numerical integration
requires evaluation at each abscissa of the quadrature [Long and McClain, 1976]. However,
numerical evaluation of integrals of the type

jbf(x)dx (1)

is mandatory for the computation of the mean element rates and short-periodic coefficients
involving atmospheric drag or solar radiation pressure with eclipsing. Since the substitution

2x - (a + b) (2)

b b-a

tranforms the integral (1) into

f b b- a 1

]f(x)dx 2 (ý)d< (3)

we can restrict our discussion to integrals with limits between -1 to +1 without loss of
generality.

A quadrature formula approximates an integral by a weighted sum of the values of the
integrand at points on the interval of integration:

/I n

f d i=-

An evaluation of different quadrature formulas has shown the Gaussian quadrature formulas
to be generally efficient [Early, 1975]. The weight factors wi for Gaussian quadratures have
been tabulated, and the abscissas ý, are simply the zeroes of the Legendre polynomial of
degree n. The error in the Gaussian quadrature formula is

nZf" 22n+1(n!)4 &nf(•)
89(2n + 1)(2n!)3 d2 -
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A polynomial of degree 2n - 1 is integrated exactly.
The appropriate number n of abscissas in the Gaussian quadrature formulas needed for

SST can vary from 12 to 96, depending on the highest frequency components contained in
the function to be integrated. For example, Green [1979] found that if the first 10 pairs of
short-periodic coefficients are to be retained in (2.5.1-13), the number n for the integrals
(2.5.1-11) must be at least 48.

6.4 Numercal Integration of Mean Equations

The averaged equations of motion (1-2) may be solved witli a Runge-Kutta numerical inte-
gration method. We consider the following system of ordinary differential equations:

dxS= f(x,t) (1)

Here x denotes the column matrix of mean elements, and f denotes the column matrix of
mean element rates. We divide the t-axis into points (t1 , t2,.-') of equal width h, and let
xi = x(t,). Then the standard fourth-order Runge Kutta algorithm is

A
x,+i = x,. + h(k, + 2k 2 + 2k 3 + k4) for i =1,2,3,-.. (2)

6

where
ki = f(xi,,i)

A A
k2 = f(x(3+)-k 1 ,t,+-•-)

14 = f(xi + Ak 3 , ti + A)

The error in the formulas (2) is bounded by

CAll d~xi(4 dr-- (4)
dt5

where C is a constant.
Since the mean element rates depend only on slowly varying quantities, step sizes A

of a day or more can usually be used. The integrator time step A should be 1 or less of
the minimum period r of the oscillations included in the mean equations of motion. Some
limitations are the period of orbital precession due to J2 and the period of the moon.

Initial values of the mean elements ai(tl) can be obtained from initial values of the
osculating elements a,(t1 ) by either of two methods:

1. Numerically integrate the VOP equations of motion over a time interval at least as
long as the period of the largest significant short-periodic effect (usually one or two
satellite orbits - see (McClain and Slutsky, 19801), and then use a differential correction
procedure to find the initial mean elements which give the best least-squares fit between
the SST trajectory and the Cowell trajectory.
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2. Use successive substitution into the near-identity transformation (1-1) until a specified
agreement is reached:

a,(ti) =a(ti)

a9+ 1(t) = 6,t1)- t1[a•(ti),.a•(t 1),t] for k = 0,1,2,.--

This method is faster than method 1, but may require the inclusion of a comprehensive
set of short-periodic variations to avoid a large bias in the initial mean elements.

It should be pointed out that the time averages of the osculating elements over some time
interval are generally not a good approximation to the mean elements [Early, 1986].

6.5 Interpolation

Since the mean elements and short-periodic coefficients are slowly varying, their values at
desired times not coinciding with the mean equation step times can be computed by relatively
low order interpolation formulas.

First, suppose that at distinct times (t1 ,.. t4) we know the values [f(ti),... f(t,)] of a
smooth function f(t). In Lagrange interpolation we approximate f(t) by a polynomial of
degree n - 1 passing through the known values:

?1

f(t) ;z- Ef(tj)Lj(t) (1)
i= 1

Here
Li~) = (t -- ti) ... (t -- ti-1)(t -ti+1)"". (t -- t.)(2

L t)= (ti - ti) ... (ti - ti_,)(ti- ti+1) ... (ti - t,,) 2

Note that
Li(tj) = bii (3)

The error in the Lagrange interpolation formula is

f(t - t.) ... (t -t,) dnf 1(f~t- _,(ti)Lj (t) = (tt) . d-,), tl < ý < t,, (4)

Lagrange interpolation is currently used to interpolate the short-periodic coefficients, the
velocity vector, and the partial derivatives needed for differential correction. An adequate
order n -- 1 has been found to be 3 (4 interpolator points) [Taylor, 1978].

Next, suppose that at distinct times (tl,... t,) we know both the values [f(t1),... f(t,)]
and the derivatives [f(ti),... f(t.)j of a smooth function f(t). In Hermite interpolation we
approximate f(t) by a polynomial of degree 2n - 1 passing through the known values and
derivatives:

n

f(t) , E {[i - 2(t - ti)Li(t,)][L,(t)]2f(tI,) + (t - ti)[Li(t)]2j(t,)} (5)
i=1
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Here again Li(t) are the Lagrange basis functions (2). The error in the Hermite interpolation
formula is

[(t - tI) ... (t - t,,)12 d2nf
(2n)! d (), t < < tn (6)

Hermite interpolation is currently used to interpolate the mean elements and the position
vector. An adequate order 2n - 1 has been found to be 5 (3 interpolator points).

92



References

Battin, R. H., An Introduction to the Mathematics and Methods of Astrodynamics, American
Institute of Aeronautics and Astronautics Education Series, 1987.

Bobick, A., GTDS Subroutine QR, CSDL, 1981.

Broucke, R. A., and Cefola, P. J., "On the Equinoctial Orbit Elements," Celestial Mechanics
5, pp. 303-310, 1972.

Cefola, P. J., Long, A. C., and Holloway, G., "The Long-Term Prediction of Artificial Satellite
Orbits," AIAA Paper 74-170, AIAA Aerospace Sciences Meeting, Washington, DC, January
1974.

Cefola, P. J., and Broucke, R. A., "On the Formulation of the Gravitational Potential in
Terms of Equinoctial Variables," AIAA Paper 75-9, AIAA Aerospace Sciences Meeting,
Pasadena, CA, January 1975.

Cefola, P. J., "A Recursive Formulation for the Tesseral Disturbing Function in Equinoc-
tial Variables," AIAA Paper 76-839, AIAA/AAS Astrodynamics Specialist Conference. San
Diego, CA, August 1976.

Cefola, P. J., and McClain, W. D., "A Recursive Formulation of the Short-Periodic Perturba-
tions in Equinoctial Variables," AIAA Paper 78-1383, AIAA/AAS A~rodynamics Specialist
Conference, Palo Alto, CA, August 1978.

Cefola, P. J., "Second Order Coupling of M-Daily Terms with J2 Secular Rates," Draper
Laboratory internal memo IRD-011-15Z-PJC, July 1981.

Cefola, P. J., "Numerical Testing of the Second Order J 2/M-Daily Coupling Model," Draper
Laboratory Internal Memo, September 1981

Cefola, P. J., "Simplified Analytical Model for the Solar Radiation Pressure for Use in
the Averaged Orbit Generator," Draper Laboratory internal memo AOD/SD-020-15Z-PJC,
October 1982.

Cefola, P. J., and Proulx, R. J., "Application of the Semianalytical Satellite Theory to
Shallow Resonance Orbits," AAS Paper 91-139, AAS/AIAA Spaceflight Mechanics Meeting,
Houston, TX, February 1991.

Collins, S. K., and Cefola, P. J., "Computationally Efficient Modelling for Long Term Predic-
tion of Global Positioning System Orbits," Journal of the Astronautical Sciences, Vol. XXVI,
No. 4, pp. 293-314, Oct. - Dec. 1978.

Collins, S. K., "Long Term Prediction of High Altitude Orbits," Ph.D. Dissertation, De-
partment of Aeronautics and Astronautics, Massachusetts Institute of Technology, March
1981.

Danielson, D. A., Vectors and Tensors in Engineering and Physics, Addison-Wesley, 1991.

Danielson, D. A., "Semianalytic Satellite Theory: Mathematical Algorithms," Proceedings
of the 1993 Space Surveillance Workshop, Massachusetts Institute of Technology Lincoln
Laboratory, Lexington, MA, Vol. II, pp. 61-67, March 1993.

93



Danielson, D. A., "Semianalytic Satellite Theory: Second-Order Expansions in the True
Longitude," AAS Paper 93-720, Proceedings of the AAS/AIAA Astrodynamics Specialist
Conference, Victoria, B. C., August 1993.

Early, L. W., "Evaluation of Numerical Quadrature Formulas for Use in Numerically Aver-
aged Orbit Generators," Computer Sciences Corporation Report CSC/TM-75/6038, 1975.

Early, L. W., "Orbital Mechanics Notes," unpublished, 1982.

Early, L. W., "A Portable Orbit Generator Using Semianalytical Satellite Theory," AIAA
Paper 86-2164-CP, AIAA /AAS Astrodynamics Conference, Williamsburg, VA, August 1986.

Escobal, P. R., Methods of Orbit Determination, Krieger, 1965.

Ferziger, P., Numerical Methods for Engineering Application, Wiley, 1981.

Fonte, D. J., "Implementing a 50x50 Gravity Field in an Orbit Determination System,"
MS Dissertation, Department of Aeronautics and Astronautics, Massachusetts Institute of
Technology, June 1993.

Fonte, D. J., Proulx, R., and Cefola, P., "Implementing a 50x50 Gravity Field Model in
an Orbit Determination System," AAS Paper 93-963, AAS/AIAA Astrodynamics Specialist
Conference, Victoria, B. C., August, 1993.

Green, A. J., "Orbit Determination and Prediction Processes for Low Altitude Satellites,"
Ph.D. Dissertation, Department of Aeronautics and Astronautics, Massachusetts Institute
of Technology, December 1979.

Hansen, P. A., "Entwickelung Des Product Einer Potenz Des Radius Vectors Mit Dem
Sinus Oder Consinus Eines Vielfachen Der Wahren Anomalie in Reihen," Abhandlungen
Der Mathematisch-Physischen Classer Der Koniglich Sachsischen Gesellschaft Der Wis-
senschaften, Vol. 2, Leipzig, FRG, pp. 181-281, 1855. (English translation by J. C. Van
der Ha, Mission Analysis, European Space Operations Center, Robert Bosch Str. 5, 6100
Darmstadt, FRG.)

Kaniecki, J. P., "Short Periodic Variations in the First Order Semianalytic Satellite Theory,"
MS Dissertation, Massachusetts Institute of Technology, August 1979.

Long, A. C., McClain, W. D., and Cefola, P. J., "Mathematical Specifications for the Earth
Satellite Mission Analysis Program (ESMAP)," Computer Sciences Corporation Report
CSC/SD-75/6025, June 1975.

Long, A. C., and McClain, W. D., "Optimal Perturbation Models for Averaged Orbit Gen-
eration," AIAA/AAS Astrodynamics Specialist Conference, San Diego, CA, August 1976.

Long, A. C., and Early, L. W., "System Description and User's Guide for the GTDS R &
D Averaged Orbit Generator," Computer Sciences Corporation Report CSC/SD-78/6020,
1978.

Long, A. C., Capellari, J. 0., Velez, C. E., and Fuchs, A. J., "Goddard Trajectory De-
termination System (GTDS) Mathematical Theory (Revision 1)," National Aeronautics
and Space Administration/Goddard Space Flight Center, FDD/552-89/001 and CSC/TR-
89/6001, July 1989.

McClain, W. D., "A Recursively Formulated First-Order Semianalytic Artificial Satellite

94



Theory Based on the Generalized Method of Averaging," Volume 1, Computer Sciences
Corporation Report CSC/TR-77/6010, 1977.

McClain, W. D., "A Recursively Formulated First-Order Semianalytic Artificial Satellite
Theory Based on the Generalized Method of Averaging," Volume 2, Computer Sciences
Corporation Report CSC/TR-78/6001, 1978.

McClain, W. D., Long, A. C., and Early, L. W., "Development and Evaluation of a Hybird
Averaged Orbit Generator," AIAA Paper 78-1382, AIAA/AAS Astrodynamics Specialist
Conference, Palo Alto, CA, August 1978.

McClain, W. D., and Early, L. W., "Numerical Evaluation of the GTDS R & D Averaged
Orbit Generator," Computer Sciences Corporation Report CSC/TM-78/6138, 1978.

McClain, W. D., and Slutsky, M., "A Theory for the Short Period Motion of an Artificial
Satellite," AIAA Paper 80-1658, AIAA/AAS Astrodynamics Specialist Conference, Danvers,
MA, August 1980.

McClain, W. D., "Modeling Impulse and Continuous Thrust Maneuvers with the Semianalyt-
ical Satellite Theory," Draper Laboratory internal memo AOD/SD-008-152-WDM, August
1982.

McClain, W. D., "Weak Time Dependence Formulation for the Closed Form Third-Body
Short-Periodic Variations," Draper Laboratory internal memo PL-039-152-WDM, November
1982.

McClain, W. D., "Semianalytic Theory Autonomous Orbit Determination Study," Draper
Laboratory Report CDRL 012A2, January 1983.

McClain, W. D., and Slutsky, M. S., "The Short Periodic Motion of a Satellite Due to
Third-Body Perturbations," AIAA paper 88-4243, AIAA/AAS Astrodynamics Specialist
Conference, Minneapolis, MN, August 1988.

Nayfeh, A., Perturbation Methods, Wiley-Interscience Publication, 1973.

Proulx, R. J., McClain, W. D., Early, L. W., and Cefola, P. J., "A Theory for the Short-
Periodic Motion Due to the Tesseral Harmonic Gravity Field," AAS Paper 81-180, AAS/AIAA
Astrodynamics Specialist Conference, Lake Tahoe, NV, August 1981.

Proulx, R. J., "Detailed Mathematical Description of the Tesseral Short Periodic Model,"
Draper Laboratory internal memo M-110-15Z-RP, December 1981.

Proulx, R. J., "Mathematical Description of the Tesseral Resonance and Resonant Harmonic
Coefficient Solve-For Capabilities," Draper Laboratory internal memo NSWC-001-15Z-RJP,
April 1982.

Proulx, R. J., "Numerical Testing of the Generalized Tesseral Resonance Capability in the
GTDS R & D Program," Draper Laboratory Internal Memo NSWC 98115, April 1982.

Proulx, R. J., and McClain, W. D., "Series Representations and Rational Approximations for
Hansen Coefficients," Journal of Guidance, Control, and Dynamics, Vol. 11, No. 4, pp. 313-
319, July-August 1988.

Shaver, J. S., "Formulation and Evaluation of Parallel Algorithms for the Orbit Determi-
nation Problem," Ph.D. Dissertation, Department of Aeronautics and Astronautics, Mas-

95



sachusetts Institute of Technology, March 1980.

Slutsky, M., "Mathematical Description for the Zonal Harmonic Short-Periodic Generator,"
Draper Laboratory internal memo, 1980.

Slutsky, M., and McClain, W. D., "The First-Order Short-Periodic Motion of an Artificial
Satellite Due to Third-Body Perturbations," AAS Paper 81-106, AAS/AIAA Astrodynamics
Specialist Conference, Lake Tahoe, NV, August 1981.

Slutsky, M., "The First-Order Short-Periodic Motion of an Artificial Satellite Due to Third-
Body P( :turbations: Numerical Evaluation," AAS Paper 83-393, AAS/AIAA Astrodynam-
ics Specialist Conference, Lake Placid, NY, August 1983.

Szeg6, G., Orthogonal Polynomials, American Mathematical Society Colloquium Publica-
tions, Vol. XXIII, 1959.

Taylor, S. P., "Semianalytical Satellite Theory and Sequential Estimation," MS Dissertation,
Department of Mechanical Engineering, Massachusetts Institute of Technology, February
1982.

Zeis, E., "A Computerized Algebraic Utility for the Construction of Nonsingular Satellite
Theories, MS Dissertation, Department of Aeronautics and Astronautics, Massachusetts
Institute of Technology, September 1978.

Zeis, E., and Cefola, P. J., "Computerized Algebraic Utilities for the Construction of Non-
singular Satellite Theories," Journal of Guidance and Control, Vol 3, No. 1, pp. 48-54,
January-February 1980.

96



Distribution List

No. of copies

Director 2
Defense Techonology Information Center
Cameron Station
Alexandria, VA 22314

Director of Research Administration
Code 81
Naval Postgraduate School
Monterey, CA 93943

Library 2
Code 52
Naval Postgraduate School
Monterey, CA 93943

Department of Mathematics
Code MA
Naval Postgraduate School
Monterey, CA 93943

Professor D. A. Danielson 30
Code MA/Dd
Naval Postgraduate School
Monterey, CA 93943

Professor Beny Neta 10
Code MA/Nd
Naval Postgraduate School
Monterey, CA 93943

Professor Mike Ross
Code AA/Ro
Naval Postgraduate School
Monterey, CA 93943

Dr. Paul Cefola
The Charles Stark Draper Laboratory
555 Technology Square
Cambridge, Ma 02139

97



Dr. Paul Cefola
The Charles Stark Draper Laboratory
555 Technology Square
Cambridge, Ma 02139

Dr. Ron Proulx

The Charles Stark Draper Laboratory
555 Technology Square
Cambridge, Ma 02139

Mr. Rick Metzinger
The Charles Stark Draper Laboratory
555 Technology Square
Cambridge, Ma 02139

Mr. Wayne McClain
The Charles Stark Draper Laboratory
555 Technology Square
Cambridge, Ma 02139

Lt. Chris Sagovac, USN
819 South Charles St.
Baltimore, MD 21230

Dr. Byron Tapley
Center for Space Research
University of Texas at Austin
Austin, TX 78712

Major Dave Vallado
PL/VTA
3550 Aberdeen Ave SE
Kirtland AFB, NM 87117-6008

Mr. Leo Early
2579A West 2 3 5 Ih St.
Torrance, CA 90505

98



Hunt Small
19567 Northampton Dr.
Saratoga, CA 95070

Dr. Shannon Coffey
Code 8233
Naval Research Laboratory
Washington, DC 20375-5355

Dr. Ken Seidelmann
Orbital Mechanics Dept.
U.S. Naval Observatory
Washington, D.C. 20392-5420

Dr. Peter Kammeyer
U.S. Naval Observatory
3 4 th & Massachusetts Ave NW

Washington, D.C. 20392

Dr. Joseph J.F. Liu
HQ AFSPACECOM/CNY
Peterson AFB, CO 80914

Mr. Andrew E. Turner
3825 Fabian Way
Palo Alto, CA 94303

Dr. Thomas J. Eller
Kaman Sciences Corporation
P.O. Box 7463
Colorado Springs, CO 80933-7463

Dr. Chia-Chun (George) Chao
P.O. Box 92957-M4/946
Los Angeles, CA 90009-2957

99



Dr. Johnny H. Kwok
Jet Propulsion Laboratory
California Institute of Technology
4800 Oak Grove Drive
Pasadena, CA 91109-8090

Dr. Andre Deprit
Adm. Bldg A302
N.I.S.T.
Gaithersburg, MD 20899-0001

R. L. Roehrich
HQ USSPACECOM/ANS
250 S. Peterson Blvd 116
Peterson AFB, CO 80914-3180

Dr. Stephen H. Knowles
U.S. Naval Space Command
Code N4/GT
Dahlgren, VA 22448-5170

Dr. Paul Schumacher
U.S. Naval Space Command
Code 63T
Dahlgren, VA 22448-5170

Major Walter R. Dyar
HQ U.S. Marine Corps
2 Navy Annex
Washington, D.C. 20380-1775

James R. Wright
305 Exton Commons
Exton, PA 19341

100



George Rosborough
Campus Box 429
University of Colorado
Boulder, CO 80309

1Lt Carole A. Jablonski, USAF
3550 Aberdeen, SE
PL/SXO
Kirtland AFB, NM 87117-5776

Dr. T. S. Kelso
AFIT
Space Operations
2950 P Street
Wright-Patterson AFB, OH 45433-7765

Mr. Richard Hujsak
Applied Technology Associates
305 Exton Commons
Exton, PA 19341

Mr. Peter J. Melvin
Code 8103
Naval Research Laboratory
Washington, D.C. 20375-5000

Lt Daniel J. Fonte, Jr., USAF
PL/VTA
3550 Aberdeen Ave SE
Kirtland AFB, NM 87117-5776

Dr. Felix R. Hoots
General Research Corporation
985 Space Center Drive
Suite 310
Colorado Springs, CO 80915

Dr. Heiner Klinkrad
European Space Operations Center
Robert-Bosch-Str. 5
D-64293 Darmstadt
Germany

101


