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Abstract

Feedforward networks are a class of approximation techniques that can be used to learn to perform some
tasks from a finite set of examples. The question of the capability of a network to generalize from a finite
training set to unseen data is clearly of crucial importance. In this paper, we bound the generalization
error of a class of Radial Basis Functions, for certain well defined function learning tasks, in terms of the
number of parameters and number of examples. We show that the total generalization error is partly due
to the insufficient representational capacity of the network (because of the finite size of the network being
used) and partly due to insufficient information about the target function because of the finite number of
samples. Prior research has looked at representational capacity or sample complexity in isolation. In the
spirit of A. Barron, H. White and S. Geman we develop a framework to look at both. While the bound A l
that we derive is specific for Radial Basis Functions, a number of observations deriving from it apply .....
to any approximation technique. Our result also sheds light on ways to choose an appropriate network
architecture for a particular problem and the kinds of problems which can be effectively soived with finite
resources, i.e., with finite number of parameters and finite amounts of data. L-,t ibiiton .
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1 Introduction H(.;.) is a given, fixed function (the -activation func-
tion"). Depending on the choice of the activation func-

Many problems in learning theory can be effectively tion one gets different network models, such as the most
modelled as learning an input output mapping on the common form of "neural networks", the Multilayer Per-
basis of limited evidence of what this mapping might be. ceptron [74, 18, 51, 43, 44, 30, 57, 56, 46], or the Radial
The mapping usually takes the form of some unknown Basis Functions network (14, 26, 39, 40, 58, 70, 59, 67,
function between two spaces and the evidence is often a 66, 32, 35].
set of labelled, noisy, examples i.e., (x, y) pairs which are If as more and more data becomes available, theconsistent with this function. On the basis of this data Ia oeadmr aabcmsaalbe h
cstet, nthe learn tries fuctioinfr t true buntison. tlearner's hypothesis becomes closer and closer to the tar-Such a scenario of course exists in a wide range of get and converges to it in the limit, the target is said tobe learnable. The error between the learner's hypothesis
scientific disciplines. For example, in speech recogni- and the target function is defined to be the generalization
tion, there might exist some functional relationship be- error and for the target to be learnable the generaliza-
tween sounds and their phonetic identities. We are given tion error should go to zero as the data goes to infinity.
(sound, phonetic identity) pairs from which we try to in- While learnability is certainly a very desirable quality, it
fer the underlying function. This example from speech
recogniton belongs to a large class of pattern classifica- requires the fulfillment of two important criteria.
tion problems where the patterns could be visual, acous- First, there is the issue of the representational ca-
tic, or tactile. In economics, it is sometimes of interest pacity (or hypothesis complexity) of the hypothesis class.
to predict the future foreign currency rates on the ba- This must have sufficient power to represent or closely
sis of the past time series. There might be a function -.-proximate the concept class. Otherwise for some tar-
which captures the dynamical relation between past and get function f, the best hypothesis h in H might be far
future currency rates and one typically tries to uncover away from it. The error that this best hypothesis makes
this relation from data which has been appropriately pro- is formalized later as the approximation error. In this
cessed. Similarly in medicine, one might be interested in case, all the learner can hope to do is to converge to h
predicting whether or not breast cancer will recur in a in the limit of infinite data and so it will never recover
patient within five years after her treatment. The input the target. Second, ik- do not have infinite data but
space might involve dimensions like the age of the pa- only some finite random sample set from which we con-
tient, whether she has been through menopause, the ra- struct a hypothesis. This hypothesis constructed from
diation treatment previously used etc. The output space the finite data might be far from the best possible hy-
would be single dimensional boolean taking on values de- pothesis, h, resulting in a further error. This additional
pending upon whether breast cancer recurs or not. One error (caused by finiteness of data) is formalized later as
might collect data from case histories of patients and try the estimation error. The amount of data needed to en-
to uncover the underlying function. sure a small estimation error is referred to as the sample

The unknown target function is assumed to belong to complexity of the problem. The hypothesis complexity,
some class Y which using the terminology of computa- the sample complexity and the generalization error are
tional learning theory we call the concept class. Typi- related. If the class H is very large or in other words
cal examples of concept classes are classes of indicator has high complexity, then for the same estimation error,
functions, boolean functions, Sobolev spaces etc. The the sample complexity increases. If the hypothesis com-
learner is provided with a finite data set. One can make plexity is small, the sample complexity is also small but
many assumptions about how this data set is collected now for the same estimation error the approximation er-
but a common assumption which would suffice for our ror is high. This point has been developed in terms of
purposes is that the data is drawn by sampling inde- the Bias-Variance trade-off by Geman et al [31] in the
pendently the input output space (X x Y) according context of neural networks, and others [72, 38, 80, 75] in
to some unknown probability distribution. On the ba- statistics in general.
sis of this data, the learner then develops a hypothesis The purpose of this paper is two-fold. First, we for-
(another function) about the identity of the target func- malize the problem of learning from examples so as to
tion i.e., it comes up with a function chosen from some highlight the relationship between hypothesis complex-
class, say H (the hypothesis class) which best fits the ity, sample complexity and total error. Second, we ex-
data and postulates this to be the target. Hypothesis plore this relationship in the specific context of a partic-
classes could also be of different kinds. For example, ular hypothesis class. This is the class of Radial Basis
they could be classes of boolean functions, polynomials, function networks which can be considered to belong to
linear functions, spline functions and so on. One such the broader class of feed-forward networks. Specifically,
class which is being increasingly used for learning prob- we are interested in asking the following questions about
lems is the class of feedforward networks [53],[43],[35]. A radial basis functions.
typical feedforward network is a parametrized function Imagine you were interested in solving a particular
of the form problem (regression or pattern classification) using Ra-

dial Basis Function networks. Then, how large must the
n c Hxnetwork be and how many examples do you need to draw

(X) Z so that you are guaranteed with high confidence to do
very well? Conversely, if you had a finite network and

where {ci}U'=I and {wi}!t 1 are free parameters and a finite amount of data, what are the kinds of problems2 = 2 =1



you could solve effectively? 2.1 Random Variables and Probability

Clearly, if one were using a network with a finite Distributions

number of parameters, then its representational capac- Let X and Y be two arbitrary sets. We will call x
ity would be limited and therefore even in the best case and y the independent variable and response respectively,
we would make an approximation error. Drawing upon where x and y range over the generic elements of X and
results in approximation theory [551 several researchers 1'. In most cases X will be a subset of a k-dimensional
[18, 41, 6, 44, 15, 3, 57, 56, 46, 76] have investigated Euclidean space and Y a subset of the real line, so that
the approximating power of feedforward networks show- the independent variable will be a k-dimensional vec-
ing how as the number of parameters goes to infinity, tor and the response a real number. We assume that a
the network can approximate any continuous function. probability distribution P(x, y) is defined on X x Y. P
These results assume infinite data and questions of learn- is unknown, although certain assumptions on it will be
ability from finite data are ignored. For a finite net- made later in this section.
work, due to finiteness of the data, we make an error The probability distribution P(x, y) can also be writ-
in estimating the parameters and consequently have an ten as1 :
estimation error in addition to the approximation er-
ror mentioned earlier. Using results from Vapnik and P(x, y) = P(x)P(ylx) , (1)
Chervonenkis [80, 81, 82, 83] and Pollard [69], work has where P(ylx) is the conditional probability of the re-
also been done [42, 9] on the sample complexity of finite
networks showing how as the data goes to infinity, the is the marginal probability of the independent variable
estimation error goes to zero i.e., the empirically opti- given by:
mized parameter settings conwiLrge to the optimal ones
for that class. However, since the number of parameters
are fixed and finite, even the optimal parameter setting P(x) = y dy P(x, y)
might yield a function which is far from the target. This
issue is left unexplored by Haussler [42] in an excellent Expected values with respect to P(x, y) or P(x) will be
investigation of the sample complexity question. always indicated by E[.]. Therefore, we will write:

In this paper, we explore the errors due to both finite
parameters and finite data in a common setting. In order E[g(x, y)] E ix dxdy P(x, y)g(x, y)
for the total generalization error to go to zero, both the ×Y
number of parameters and the number of data have to and
go to infinity, and we provide rates at which they grow
for learnability to result. Further, as a corollary, we are E[h(x)] = I dx P(x)h(x)
able to provide a principled way of choosing the optimal Jx
number of parameters so as to minimize expected errors. for any arbitrary function g or h.
It should be mentioned here that White [85] and Barron
[7] have provided excellent treatments of this problem 2.2 Learning from Examples and Estimators
for different hypothesis classes. We will mention their The framework described above can be used to model
work at appropriate points in this paper. the fact that in the real world we often have to deal with

The plan of the paper is as follows: in section 2 we sets of variables that are related by a probabilistic rela-
will formalize the problem and comment on issues of a tionship. For example, y could be the measured torque
general nature. We then provide in section 3 a precise at a particular joint of a robot arm, and x the set of an-
statement of a specific problem. In section 4 we present gular position, velocity and acceleration of the joints of
our main result, whose proof is postponed to appendix D the arm in a particular configuration. The relationship
for continuity of reading. The main result is qualified by between x and y is probabilistic because there is noise
several remarks in section 5. In section 6 we will discuss affecting the measurement process, so that two different
what could be the implications of our result in practice torques could be measured given the same configuration.
and finally we conclude in section 7 with a reiteration of In many cases we are provided with ezamples of this
our essential points, probabilistic relationship, that is with a data set D1 , ob-

tained by sampling I times the set X x Y according to
P(x, y):

2 Definitions and Statement of the D1  {(xi,yi) E X x Y
Problem From eq. (1) we see that we can think of an element

(xi, y) of the data set DI as obtained by sampling X

In order to make a precise statement of the problem we according to P(x), and then sampling Y according to

first need to introduce some terminology and to define P(ylx). In the robot arm example described above, it

a number of mathematical objects. A summary of the would mean that one could move the robot arm into

most common notations and definitions used in this pa- 'Note that we are assuming that the conditional distribu-
per can be found in appendix A. 2 tion exists, but this is not a very restrictive assumption.



a random configuration xi, measure the corresponding Assuming that the problem of minimizing 1[f] in Y is
torque Yi, and iterate this process I times. well posed, it is easy to obtain its solution. In fact, the

The interesting problem is, given an instance of x that expected risk can be decomposed in the following way
does not appear in the data set D1 , to give an estimate (see appendix B):
of what we expect y to be. For example, given a certain
configuration of the robot arm, we would like to estimate
the corresponding torque. I[/] E[(fo(x) - f(x)) j + E[(y - fo(X))2] (2)

Formally, we define an estimator to be any function where fo(x) is the so called regression function, that is
f : X - Y. Clearly, since the independent variable x the conditional mean of the response given the indepen-
need not determine uniquely the response y, any esti- dent variable:
mator will make a certain amount of error. However, it
is interesting to study the problem of finding the best
possible estimator, given the knowledge of the data set fo(x) f dy yP(ylx). (3)
DI, and this problem will be defined as the problem of
learning from examples, where the examples are repre- From eq. (2) it is clear that the regression function is
sented by the data set D1. Thus we have a probabilistic the function that minimizes the expected risk in F, and
relation between x and y. One can think of this as an is therefore the best possible estimator. Hence,
underlying deterministic relation corrupted with noise.
Hopefully a good estimator will be able to recover this fo(x) = arg min Iff]
relation. fE -

However, it is also clear that even the regression func-
2.3 The Expected Risk and the Regression tion will make an error equal to E[(y - fo(x)) 2], that

Function is the variance of the response given a certain value for

In the previous section we explained the problem of the independent variable, averaged over the values the
learning from examples and stated that this is the same independent variable can take. While the first term in
as the problem of finding the best estimator. To make eq. (2) depends on the choice of the estimator f, the sec-
sense of this statement, we now need to define a mea- ond term is an intrinsic limitation that comes from the
sure of how good an estimator is. Suppose we sample fact that the independent variable x does not determine
X x Y according to P(x, y), obtaining the pair (x, y). A uniquely the response y.
measure2 of the error of the estimator f at the point x The problem of learning from examples can now be
is: reformulated as the problem of reconstructing the re-

gression function fo, given the example set D1. Thus we
(y - f(x))! . have some large class of functions Y to which the target

In the example of the robot arm, f(x) is our estimate of function fo belongs. We obtain noisy data of the form

the torque corresponding to the configuration x, and y is (x, y) where x has the distribution P(x) and for each x,
the measured torque of that configuration. The average ~y is a random variable with mean fo(x) and distribution
error of the estimator f is now given by the functional P(ylx). We note that y can be viewed as a determin-

istic function of x corrupted by noise. If one assumes
the noise is additive, we can write y = fo(x) + il- where

f] -E[(y- f(x))2 ] - . dxdy P(x, y)(y - f(x)) 2  77.3 is zero-mean with distribution P(ylx). We choose an= x Yestimator on the basis of the data set and we hope that

that is usually called the ezpected risk of f for the specific it is close to the regr-ssion (target) function. It should
choice of the error measure. also be pointed out that this framework includes pat-

Given this particular measure as our yardstick to eval- tern classification and in this case the regression (target)

uate different estimators, we are now interested in find- function corresponds to the Bayes discriminant function
ing the estimator that minimizes the expected risk. In [36, 45, 71].

order to proceed we need to specify its domain of def- 2.4 The Empirical Risk
inition Y. Then using the expected risk as a criterion,
we could obtain the best element of F. Depending on If the expected risk functional I[f] were known, one
the properties of the unknown probability distribution could compute the regression function by simply finding
P(x, y) one could make different choices for F. We will its minimum in F, that would make the whole learning
assume in the following that F is some space of differ- problem considerably easier. What makes the problem
entiable functions. For example, F could be a space of difficult and interesting is that in practice I[f] is un-
functions with a certain number of bounded derivatives known because P(x, y) is unknown. Our only source of
(the spaces A'(Rd) defined in appendix A), or a Sobolev information is the data set D, which consists of I inde-
space of functions with a certain number of derivatives pendent random samples of X x Y drawn according to
in Lp (the spaces Hmn'P(Rd) defined in appendix A). P(x, y). Using this data set, the expected risk can be

approximated by the empirical risk 'em p:
2Note that this is the familiar squared-error and when

averaged over its domain yields the mean squared error for a 3 Note that the standard r-gression problem often assumes
particular estimator, a very common choice. However, it is j?, is independent of z. Our case is distribution free because
useful to remember that there could be other choices as well. we make no assumptions about the nature of i7ý.
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49111p f (x.))' - For example, H,, could be the set of polynomials in one
variable of degree n - 1. Radial Basis Functions with a

For each given estimator f, the empirical risk is a random centers, multilayer perceptrons with n sigmoidal hidden
variable, and under fairly general assumptions', by the units, multilayer perceptrons with n threshold units and
law of large numbers (23] it converges in probability to so on. Therefore, we choose as approximation to the
the expected risk as the number of data points goes to regression function the function fk.i defined as:'
infinity:

arg mmin,(5)
min 1,,,P

liii P{II[f] - Ierp.f(I N -} 0 Vc - O (4) Thus, for example, if H, is the class of functions which

can be represented as f c,, cH (x;w,) then eq.
Therefore a common strategy consists in estimating the (5) can be written as
regression function as the function that minimimes the
empirical risk, since it is -close" to the expected risk if f,,, arg min mplf•
the number of data is high enough. For the error mntric r.,W.
we have used, this yields the least-squares error estima- A number of observations need to be made here. First,
tor. However, eq. (4) states only that the expected risk if the class Y is small (typically in the sense of bounded
is "close" to the empirical risk for each given f, and not VC-dimension or bounded metric entropy [693), then the
for all f simultaneously. Consequently the fact that the problem is not necessarily ill-posed and we do not have to
empirical risk converges in probability to the expected go through the process of using the sets H. . However, as
risk when the number, 1, of data points goes to infinity has been mentioned already for most interebting choices
does not guarantee that the minimum of the empirical of Y (e.g. classes of functions in Sobolev spaces, con-
risk will converge to the minimum of the expected risk tinuous functions etc.) the problem might be ill posed.
(the regression function). As pointed out and analysed However, this might not be the only reason for using the
in the fundamental work of Vapnik and Chervonenkis classes H,,. It might be the case that that is all we have
[81, 82, 831 the notion of uniform convergence in prob- or for some reason it is something we would like to use.
ability has to be introduced, and it will be discussed in For example, one might want to use a particular class of
other parts of this paper. fevd-forward networks because of ease of implementation

2.5 The Problem in VLSI. Also, if we were to solve the function learning
problem on a computer as is typically done in practice,

The argument of the previous section suggests that an then the functions in F have to be represented some-
approximate solution of the learning problem consists in how. We might consequently use H. as a representation
finding the minimum of the empirical risk, that is solving scheme. It should be pointed out that the sets H. and

.F have to be matched with each other. For example.
mmin ,,,p [f] . we would hardly use polynomials as an approximation

scheme when the class Y consists of indicator functions
However this problem is clearly ill-posed, because, for or for that matter use threshold units when the class Fr
most choices of F, it will have an infinite number of contains continuous functions. In particular, if we are to
solutions. In fact, all the functions in F that interpolate recover the regression fur.ction, H must be dense in Y.
the data points (xi, yj), that is with the property One could look at this matching from both directions.

For a class F, one might be interested in an appropriate
f(zj) = •I ..... choice of H.. Conversely, for a particular choice of H.,

one might ask what classes F can be effectively solved
will give a zero value for 4.mp. This problem is very with this scheme. Thus, if we were to use multilayer
common in approximation theory and statistics and can perceptrons, this line of questioning would lead us to
be approached in several ways. A common technique identify the class of problems which can be effectively
consists in restricting the search for the minimum to a solved by them.
smaller set than F. We consider the case in which this Thus, we see that in principle we would like to min-
smaller set is a family of parametric functions, that is a imize I[f] over the large class Y obtaining thereby the
family of functions defined by a certain number of real
parameters. The choice of a parametric representation 'Notice that we are implicitly assuming that the problem
also provides a convenient way to store and manipulate of miniuing I..p[f] over H. has a solution, which might not
the hypothesis function on a computer. be the case. However the quantity

We will denote a generic subset of F whose elements
are parametrized by a number of parameters propor- E, i- inf 1..p[h
tional to n, by H.. Moreover, we will assume that the

sets H,. form a nested family, that is is always well defined, and we can always find a function f,,z

for which /,ptjw..] is arbitrarily close to E.,,. It will turn

"For example, assuming the data is independently drawn out that this is sufficient for our purposes, and therefore we

and [IfI is finite. will continue, assuming that f,.j is well defined by eq. (5)



regression function fo. What we do in practice is to nin- expressed in terms of the expected risk using the
imize the empirical risk Iemp [f] over the smaller class H. decomposition (2) as
obtaining the function fk. Assuming we have solved all
the computational problems related to the actual com- E[(fo - f.)2] = I[f,] - I[fol (6)
putation of the estimator f,,,, the main problem is now: Notice that the approximation error does not de-

pend on the data set DL, but depends only on the
how good is fni? approximating power of the class H,,. The natural

Independently of the measure of performance that we framework to study it is approximation theory, that

choose when answering this question, we expect j],, to abound with bounds on the approximation error for

become a better and better estimator as n and I go to a variety of choices of H,, and F. In the following

infinity. In fact, when I increases, our estimate of the ex- we will always assume that it is possible to bound

pected risk improves and our estimator improves. The the approximation error as follows:

case of n is trickier. As n increases, we have more param-
eters to model the regression function, and our estimator E[(fo - f.)] :S F(n)
should improve. However, at the same time, because we where E(n) is a function that goes to zero as n goes
have more parameters to estimate with the same amount to infinity if H is dense in F. In other words,
of data, our estimate of the expected risk deteriorates. as shown in figure (1), as the number n of pa-
Thus we now need more data and n and I have to grow rameters gets larger the representation capacity of
as a function of each other for convergence to occur. Hn increases, and allows a better and better ap-
At what rate and under what conditions the estimator proximation of the regression function fo. This is-
in,,, improves depends on the properties of the regression sue has been studied by a number of researchers
function, that is on Y, and on the approximation scheme [18, 44, 6, 8, 30, 57, 56] in the neural networks corn-
we are using, that is on H,,. munity.

2.6 Bounding the Generalization Error 2. Another source of error comes from the fact that,

At this stage it might be worthwhile to review and re- due to finite data, we minimize the empirical risk

mark on some general features of the problem of learning Iemp[f], and obtain Jk,,, rather than minimizing
from examples. Let us remember that our goal is to min- the expected risk I[f], and obtaining f,,. As the
imize the expected risk I[f] over the set Y. If we were to number of data goes to infinity we hope that fki
use a finite number of parameters, then we have already will converge to f,,, and convergence will take place
seen that the best we could possibly do is to minimize if the empirical risk converges to the expected risk
our functional over the set H,,, yielding the estimator uniformly in probability [80]. The quantity

Ilemp[f] -- ~]
f- arg rain I[f].1.V -II

a Em is called estimation error, and conditions for the

However, not only is the parametrization limited, but estimation error to converge to zero uniformly in
the data is also finite, and we can only minimize the probability have been investigated by Vapnik and
empirical risk 'emp, obtaining as our final estimate the Chervonenkis [81, 82, 80, 83] Pollard [69], Dudley
function f,,. Our goal is to bound the distance from [24], and Haussler [42]. Under a variety of different
fn,, that is our solution, from Jo, that is the "optimal" hypothesis it is possible to prove that, with proba-

solution. If we choose to measure the distance in the bility 1 - 6, a bound of this form is valid:
L2 (P) metric (see appendix A), the quantity that we
need to bound, that we will call generalization error, is: IIermp[f] - I[f]I < w(l,n, 6) Vf C H, (7)

The specific form of w depends on the setting of the

E[(fo - in,) 2 ] = fx dx P(x)(fo(x) - f,,1(x)) 2 = problem, but, in general, we expect w (1, n, 6) to be
a decreasing function of 1. However, we also expect

(Jfo _ i.,1I12 it to be an increasing function of n. The reason
VL(P) is that, if the number of parameters is large then

There are 2 main factors that contribute to the gener- the expected risk is a very complex object, and then
alization error, and we are going to analyze them sepa- more data will be needed to estimate it. Therefore,
rately for the moment. keeping fixed the number of data and increasing the

1. A first cause of error comes from the fact that number of parameters will result, on the average,

we are trying to approximate an infinite dimen- in a larger distance between the expected risk and

sional object, the regression function fo E F, with the empirical risk.

a finite number of parameters. We call this er- The approximation and estimation error are clearly
ror the approximation error, and we measure it by two components of the generalization error, and it is in-
the quantity E[(Jo - fn)'], that is the L2 (P) dis- teresting to notice, as shown in the next statement, the
tance between the best function in H, and the re- generalization error can be bounded by the sum of the
gression function. The approximation error can be two:



Statement 2.1 The following inequality holds:

Jifo - Iff tlL2(p) < e(n) + 2w(l, n, b) F(8) A '

Proof. using the decomposition of the expected risk (2), In

the generalization error can be written as:

A

i n',- f,,IIL2(P) E[(fo -2n,1) 2 ] = I[fnI] _ I[fo] . (9) n

A natural way of bounding the generalization error is as
follows:

E[(fo -,1)2] < II[f.1 - I[fo]I + II[f,] - I[in1 I . (10)

In the first term of the right hand side of the previous
inequality we recognize the approximation error (6). If
a bound of the form (7) is known for the generalization
error, it is simple to show (see appendix (C) that the
second term can be bounded as

and statement (2.1) follows I . Figure 1: This figure shows a picture of the problem.Thustawemseentht the) gel i n er hThe outermost circle represents the set F. Embedded inT hus w e see that the generalization error has tw o com - t i r h e t d s b e s h ,' .f s a r i r r
ponents: one, bounded by c(n), is related to the approxi- this are the nested subsets, the clos's. fo is an arbitrary
mation power of the class of functions {H,}, and is stud- target function in F, f,, is the closest element of H, and
ied in the framework of approximation theory. The sec- fn,,. is the element of H,. which the learner hypothesizes
ond, bounded by w(l, n, 6), is related to the difficulty of on the basis of data.
estimating the parameters given finite data, and is stud-
ied in the framework of statistics. Consequently, results
from both these fields are needed in order to provide an power [47] resulting in low approximation errors. How-
understanding of the problem of learning from examples. ever this class has an infinite VC-dimension [82] and its
Figure (1) also shows a picture of the problem. estimation error can not therefore be bounded.

So far we have provided a very general characteriza-
2.7 A Note on Models and Model Complexity tion of this problem, without stating what the sets Y
From the form of eq. (8) the reader will quickly realize and H,, are. As we have already mentioned before, the
that there is a trade-off between n and I for a certain set F could be a set of bounded differentiable or inte-
generalization error. For a fixed 1, as n increases, the grable functions, and Hn could be polynomials of degree
approximation error e(n) decreases but the estimation n, spline functions with n knots, multilayer perceptrons
error w(l, n, 6) increases. Consequently, there is a certain with n hidden units or any other parametric approxima-
n which might optimally balance this trade-off. Note tion scheme with n parameters. In the next section we
that the classes H,. can be looked upon as models of will consider a specific choice for these sets, and we will
increasing com- '.cxity and the search for an optimal n provide a bound on the generalization error of the form
amounts to a search for the right model complexity. One of eq. (8).
typically wishes to match the model complexity with the
sample complexity (measured by how much data we have 3 Stating the Problem for Radial Basis
on hand) and this problem is well studied [29, 75, 52, 73, Functions
4, 28, 17] in statistics.

Broadly speaking, simple models would have high As mentioned before the problem of learning from exam-
approximation errors but small estimation errors while pies reduces to estimating some target function from a
complex models would have low approximation errors set X to a set Y. In most practical cases, such as char-
but high estimation errors. This might be true even acter recognition, motor control, time series prediction,
when considering qualitatively different models and as the set X is the k-dimensional Euclidean space Rk, and
an illustrative example let us consider two kinds of mod- the set Y is some subset of the real line, that for our pur-
els we might use to learn regression functions in the poses we will assume to be the interval [-M, M], where
space of bounded continuous functions. The class of M is some positive number. In fact, there is a probability
linear models, i.e., the class of functions which can be distribution P(x, y) defined on the space Rh x [-M, M]
expressed as f = w -x+0, do not have much approximat- according to which the labelled examples are drawn in-
ing power and consequently their approximation error is dependently at random, and from which we try to esti-
rather high. However, their estimation error is quite low. mate the regression (target) function. It is clear that the
The class of models which can be expressed in the form regression function is a real function of k variables.
H = ci sin(w, • x + 0j) have higher approximating 6 In this paper we focus our attention on the Radial Ba-



sis Functions approximation scheme (also called Hyper- that P must be such that E[ylx] belongs to T. Notice
Basis Functions [67]). This is the class of approximating also that since we assumed that Y is a closed interval,
functions that can be written as: we are implicitly assuming that P(yix) has compact sup-

port.
f (x) A C(x - ti) Assuming now that we have been able to solve the

minimization problem of eq. (13), the main question we

are interested in is "how far is f,,, from fo?". We givewhere G is some given basis function and the /3i and an answer in the next section.
the ti are free parameters. We would like to understand
what classes of problems can be solved "well" by this
technique, where -well" means that both approximation
and estimation bounds need to be favorable. W_ will see The main theorem is:
later that a favorable approximation bound can be ob-
tained if we assume that the class of functions . to which Theorem 4.1 For any 0 < 6 . 1, for n nodes, I data
the regression function belongs is defined as follows: points, input dimenszonality of k, and Hý,, f, Jo, ],•,, also

as defined in the statement of the problem above, with

E If E L2(Rk)lf =A * G, IA <_ M}probability greater than 1 - 6,

Here A is a signed Radon measure on the Borel sets of
Rk, G is a gaussian function with range in [0, V], the 2 ([nklnnl - In61/
symbol * stands for the convolution operation, IAIRI- is It-fhI 2( <i 0 L1-t
the total variation8 of the measure A and M is a positive 1<T1(- )
real number. We point out that the class F is non-trivial
to learn in the sense that it has infinite pseudo-dimension[69]. Proof. The proof requires us to go through a series of

In order to obtain an estimation bound we need the propositions and lemmas which have been relegated to
approximating class to have bounded variation, and the appendix (D) for continuity of ideas.E3

following constraint will be imposed:
5 Remarks

- 13i I Ml . There are a number of comments we would like to make
iI~l on the formulation of our problem and the result we

We will see in the proof that this constraint does not have obtained. There is a vast body of literature on
affect the approximation bound, and the two pieces fit approximation theory and the theory of empirical risk
together nicely. Thus the set H, is defined now as the minimization. In recent times, some of the results in
set of functions belonging to L2 such that these areas have been applied by the computer science

and neural network community to study formal learning
models. Here we would like to make certain observations

f(X)Rk (12) about our result, suggest extensions and future work,
-K and to make connertion; with other work done in related

areas.
Having defined the sets H,, and T we remind the reader
that our goal is to recover the regression function, that is 5.1 Observations on the Main Result
the minimum of the expected risk over Y. What we end e The theorem has a PAC[79] like setting. It tells
up doing is to draw a set of I examples and to minimize us that if we draw enough data points (labelled
the empirical risk Iemp over the set H,, that is to solv e examples) and have enough nodes in our Radial
the following non-convex minimization problem: Basis Functions network, we can drive our error

arbitrarily close to zero with arbitrarily high prob-
n ability. Note however that our result is not en-

k, = arg min E(yi - -O/3aG(xi - ta))
2  (13) tirely distribution-free. Although no assumptions

are made on the form of the underlying distribu-
tion, we do have certain constraints on the kinds

Notice that assumption that the regression function of distributions for which this result holds. In par-
ticular, the distribution is such that its conditional

fo(x) - E[ylx] mean E[ylx] (this is also the regression function

belongs to the class F correspondingly implies an as- fo(x)) must belong to a the class of functions F de-
sumption on the probability distribution P(ylx), viz., fined by eq. (11). Further the distribution P(ylx)

must have compact support 7.6 A signed measure A can be decomposed by the Hahn-
Jordan decomposition into A = A+ - A-. Then JAI - A+ + A- 7This condition, that is related to the problem of large de-
is called the total variation of A. See Dudley [23] for more viations [80], could be relaxed, and will be subject of further
information. investigations.



" The error bound consists of two parts, one it would be worthwhile to obtain lower bounds on
(0(1/n)) coming from approximation theory, and the same. Such lower bounds do not seem to exist
the other O(((nkln(nl) + 1n(l/6))/1)1 /2 ) from in the neural network literature to the best of our
statistics. It is noteworthy that for a given approx- knowledge.
imation scheme (corresponding to {H 0 }), a certain We have considered here a situation where the es-
class of functions (corresponding to Y) suggests it- timated network i.e., f,,g is obtained by imnimiz-
self. So we have gone from the class of networks ing the empirical risk over the class of functions
to the class of problems they can perform as op- H,,. Very often, the estimated network is obtained
posed to the other way around, i.e., from a class of by minimizing a somewhat different objective func-
problems to an optimal class of networks. tion which consists of two parts. One is the fit to

" This sort of a result implies that if we have the the data and the other is some complexity term
prior knowledge that fo belongs to class T, then which favours less complex (according to the de-
by choosing the number of data points, 1, and the fined notion of complexity) functions over more
number of basis functions, n, appropriately, we can complex ones. For example the regularization ap-
drive the misclassification error arbitrarily close to proach [77, 68, 84] minimizeq a cost function of the
Bayes rate. In fact, for a fixed amount of data, form
even before we have started looking at the data,
we can pick a starting architecture, i.e., the num- N

ber of nodes, n, for optimal performance. After H[f] E(yi - f(xi) + A\[f]
looking at the data, we might be able to do some i=l
structural risk minimization [80] to further improve over the class H = U,,>iH,,. Here A is the so
architecture selection. For a fixed architecture, this called "regularization parameter" and 4ff] is a
result sheds light on how much data is required for functional which measures smoothness of the func-

a certain error performance. Moreover, it allows us tional it wou resthng o t ain

to choose the number of data points and number of tions involved. It would be interesting to obtain
nodesoosimutaeonumbr for guarapontseaed errerfor- convergence conditions and rates for such schemes.
nodes simultaneously for guaranteed error perfor- Choice of an optimal A is an interesting question
mances. Section 6 explores this question in greater in regularization techniques and typically cross-
detail, validation or other heuristic schemes are used. A

5.2 Extensions result on convergence rate potentially offers a prin-

"* There are certain natural extensions to this work. cipled way to choose A.

We have essentially proved the consistency of the Structural risk minimization is another method
estimated network function f,,,o. In particular we to achieve a trade-off between network complex-

have shown that fi converges to fo with proba- ity (corresponding to n in our case) and fit to

bility 1 as I and n grow to infinity. It is also pos- data. However it does not guarantee that the ar-
sibileto dsive cndigotios ifority.ost isuresonver- chitecture selected will be the one with minimal
sible to derive conditions for almost sure conver- parametrization8 . In fact, it would be of some
gence. Further, we have looked at a specific class interest to develop a sequential growing scheme.
of networks ({Hs,}) which consist of weighted sums Such a technique would at any stage perform a se-
of Gaussian basis functions with moving centers quential hypothesis test [37]. It would then decide
but fixed variance. This kind of an approximation whether to ask for more data, add one more node

scheme suggests a class of functions F which can or simply stop and output the function it has as
be approximated with guaranteed rates of conver- or simply s uch function i gh t

gence as mentioned earlier. We could prove similar its e-good hypothesis. In such a process, one might

theorems for other kinds of basis functions which even incorporate active learning [2, 62] so that if the
would have stronger approximation properties than algorithm asks for more data, then it might evenwoucldave strongrcaptions propideredh ertie s the ran specify a region in the input domain from where it
thprclass of functions considered here. The general would hke to see this data. It is conceivable that
principle on which the proof is based can hopefully such a scheme would grow to minimal parametriza-
be extended to a variety of approximation schemes. tion (or closer to it at any rate) and require less

" We have used notions of metric entropy and cover- data than classical structural risk minimization.
ing number [69, 24] in obtaining our uniform con- It should be noted here that we have assumed that
vergence results. Haussler [42] uses the results of the empirical risk r - f(x,)) 2 can be mi-Pollard and Dudley to obtain uniform convergence m o
results and our techniques closely follow his ap- effectivel te WHile thi migh be f e
proach. It should be noted here that Vapnik [80] effectively computed. While this might be fine in
deals with exactly the same question and uses the principle, in practice only a locally optimal solu-
VC-dimension instead. It would be interesting to tion to the minimization problem is found (typi-
compute the VC-dimension of the class of networks cally using some gradient descent schemes). The
and use it to obtain our results. ""Neither does regularization for that matter. The ques-

" While we have obtained an upper bound on the er- tion of minimal parametrization is related to that of order
ror in terms of the number of nodes and examples, determination of systems, a very difficult problem!



computational complexity of obtaining even an ap- like our scheme, Gaussian-kernel regressors require
proximate solution to the minimization problem is the variance of the Gaussian to go to zero as a func-
an interesting one and resalts from computer sci- tion of the data. Further the number of kernels is
ence [49, 12] suggest that it might in gene-l be always equal to the number of data points and the
NP-hard. issue of trade-off between the two is not explored

to the same degree.5.3 Connections with Other Resnl' 5 In our statement of the problem, we discussed how
" In the neural network and computational learning pattern classification could be treated as a spe-

theory communities resulte have been obtained per- cial case of regression. In this case the function
taining to the issues ow generalization and learn- Jo corresponds to the Bayes a-posteriors decision
ability. Sonie thtwretical work has been done function. Researchers [71, 45, 36] in the neural
[10, 42, 611 in ýt',&racterizing the sample complex- network community have observed that a network
ity of finite sized networks. Of these, it is worth- trained on a least square error criterion and used
while to mention again the work of Haussler [42] for pattern classification was in effect computing
from which this paper derives much inspiration, the Bayes decision function. This paper provides a
He obtains bounds for a fixed hypothesis space i.e. rigorous proof of the conditions under which this is
a fixed finite network architecture. Here we deal the case.
with families of hypothesis spaces using richer and
richer hypothesis spaces as more and more data 6 Implications of the Theorem in
becomes available. Later we will characterize the Practice: Putting In the Numbers
trade-off between hypothesis complexity and error
rate. Others [27, 63] attempt to characterize the We have stated our main result in a particular form. We
generalization abilities of feed-forward networks us- have provided a provable upper bound on the error (in
ing theoretical formalizations from statistical me- the 11 . I4i(P) metric) in terms of the number of exam-
chanics. Yet others [13, 60, 16, 11 attempt to obtain pies and the number of basis functions used. Further we
empirical bounds on generalization abilities, have provided the order of the convergence and have not
" This is an attempt to obtain rate-of-convergence stated the constants involved. The same result could be

bounds in the spirit of Barron's work [5], but using stated in other forms and has certain implications. It

a different approach. We have chosen to combine provides us rates at which the number of basis functions

theorems from approximation theory (which gives (n) should increase as a function of the number of exam-

us the 0(1/n) term in the rate, and uniform con- ples (1) in order to guarantee convergence(Section 6.1).
verehe O )theory (which gives us the other part). It also provides us with the trade-offs between the twovergence aseoexploredgivinusSectionerp6.2.

Note that at this moment, our rate of convergence as explored in Section 6.2.

is worse than Barron's. In particular, he obtains a 6.1 Rate of Growth of n for Guaranteed
rate of convergence of 0(1/n + (nkln(l))/l). Fur- Convergence
ther, he has a different set of assumptions on the Converenc e
class of functions (corresponding to our T). Fi- From our theorem (4.1) we see that the generalization er-
nally, the approximation scheme is a class of net- rot converges to zero only if n goes to infinity more slowly
works with sigmoidal units as opposed to radial- than 1. In fact, if n grows too quickly the estimation er-
basis units and a different proof technique is used. ror f(a, n, 6) will diverge, because it is proportional to n.
It should be mentioned here that his proof relies In fact, setting n , we obtain
on a discretization of the networks into a countable
family, while no such assumption is made here. limj.+.± w(1, n, 6)

" It would be worthwhile to make a reference to Ge- / 12

man's paper [31] which talks of the Bias-Variance =limi•.+oO Of[iln0l'+0)+in(l/h)] l")
dilemma. This is another way of formulating the
trade-off between the approximation error and the
estimation error. As the number of parameters = limi-+,• V1` In I
(proportional to n) increases, the bias (which can Therefore the condition r < 1 should hold in order to
be thought of as analogous to the approximation guarantee convergence to zero.
error) of the estimator decreases and its variance
(which can be thought of as analogous to the esti- 6.2 Optimal Choice of n
mation error) increases for a fixed size of the data In the previous section we made the point that the num-
set. Finding the right bias-variance trade-off is very ber of parameters n should grow more slowly than the
similar in spirit to finding the trade-off between number of data points 1, in order to guarantee the con-
network complexity and data complexity. sistency of the estimator f,,j. It is quite clear that there

" Given the class of radial basis functions we are us- is an optimal rate of growth of the number of parame-
ing, a natural comparison arises with kernel regres- ters, that, for any fixed amount of data points 1, gives
sion [50, 22] and results on the convergence of ker- the best possible performance with the least number of
nel estimators. It should be pointed out that, un- parameters. In other words, for any fixed 1 there is an



optimal number of parameters n*(1) that minimizes the
generalization error. That such a number should exist E[(f° - ,.,1)2] = 0
is quite intuitive: for a fixed number of data, a small Vn
number of parameters will give a low estimation error for n as a function of 1. Substituting the bound given in
u(1,n,6), but very high approximation error c(n), and theorem (4.1) in the previous equation, and setting all
therefore the generalization error will be high. If the the constants to I for simplicity, we obtain:
number of parameters is very high the approximation
error £(vi) will be very small, but the estimation error 0 [1 + ( nk ln(nl) - In(h)~1.

at , 6) will be high, leading to a large generalization er- On n 1 1
ror again. Therefore, somewhere in between there should Performing the derivative the expression above can be
be a number of parameters high enough to make the ap- written as
proximation error small, but not too high, so that these
parameters can be estimated reliably, with a small esti-
mation error. This phenomenon is evident from figure 1 1 [knln(nl) - In]b k [ln(nl) +
(2), where we plotted the generalization error as a func- n-2  2 1 1I-
tion of the number of parameters n for various choices We now make the assumption that I is big enough to
of sample size 1. Notice that for a fixed sample size, the let us perform the approximation ln(nl) + I bg e n(oh).
error passes through a minimum. Notice that the loca- leoverformathe that
tion of the minimum shifts to the right when the sample Moreover, we assume that
size is increased. i

in such a way that the term including 6 in the equa-
tion above is negligible. After some algebra we therefore
conclude that the optimal number of parameters n*(I)
satisfies, for large 1, the equation:

n1l k kln(n* (1l)1

From this equation is clear that n° is roughly propor-
tional to a power of 1, and therefore we can neglect the

Lt=o0o factor n* in the denominator of the previous eqdation,

0 since it will only affect the result by a multiplicative con-
stant. Therefore we conclude that the optimal number
of parameters n'(1) for a given number of examples be-
haves as

1=5000

00o n() c. (14)

In order to show that this is indeed the optimal rate of
growth we reported in figure (3) the generalization error
as function of the number of examples 1 for different
rate of growth of n, that is setting n P 1? for different
values of r. Notice that the exponent r =, that is very
similar to the optimal rate of eq. (14), performs better

Figure 2: Bound on the generalization error as a function than larger (r = 1-) and smaller (r = -L) exponents.
of the number of basis functions n keeping the sample While a fixed sample size suggests the scheme above for
size I fixed. This has been plotted for a few different choosing an optimal network size, it is important to note
choices of sample size. Notice how the generalization er- that for a certain confidence rate (6) and for a fixed error
ror goes through a minimum for a certain value of n. rate (c), there are various choices of n and I which are
This would be an appropriate choice for the given (con- satisfactory. Fig. 4 shows n as a function of 1, in other
stant) data complexity. Note also that the minimum is words (1, n) pairs which yield the same error rate with
broader for larger 1, that is, an accurate choice of n is the same confidence.
less critical when plenty of data is available. If data are expensive for us, we could operate in region

A of the curve. If network size is expensive we could
operate in region B of the curve. In particular the eco-

In order to find out exactly what is the optimal rate of nomics of trading off n twork and data complexity would
growth of the network size we simply find the minimum yield a suitable point on this curve and thus would allow
of the generalization error as a function of n keeping us to choose the right combination of n and I to solve
the sample size I fixed. Therefore we have to solve the our regression problem with the required accuracy and
equation: 10 confidence.



Of course we could also plot the error as a function of
data size I for a fixed network size (n) and this has been
done for various choices of n in Fig. 5.

n=l

L
0

_________n=l

QL

n=l L)
n=l

n=200

Figure 3: The bound on the generalization error as a n=1SO

function of the number of examples for different choices
of the rate at which network size n increases with sam-
ple size 1. Notice that if n = 1, then the estimator is not
guaranteed to converge, i.e., the bound on the general-
ization error diverges. While this is a distribution free-
upper bound, we need distribution-free lower bounds as Figure 5: The generalization error as a function of num-
well to make the stronger claim that n o will never ber of examples keeping the number of basis functions
converge. (n) fixed. This has been done for several choices of n. As

the number of examples increases to infinity the general-

ization error asymptotes to a minimum which is not the
Bayes error rate because of finite hypothesis complexity
(finite n).

We see as expected that the error monotonically de-
creases as a function of 1. However it asymptotically

A decreases not to the Bayes error rate but to some value
above it (the approximation error) which depends upon

I tthe the network complexity.
2 Finally figure (6) shows the result of theorem (4.1)

in a 3-dimensional plot. The generalization error, the
Si \network size, and the sample size are all plotted as a

function of each other.
7 Conclusion

B: For the task of learning some unknown function from
labelled examples where we have multiple hypothesis

1oN12 10b13 of14 E oaml 10s(6 classes of varying complexity, choosing the class of right
Number of Examples (I)

complexity and the appropriate hypothesis within that
class poses an interesting problem. We have provided anFigure 4: This figures shows various choices of (1,n7) analysis of the situation and the issues involved and in

which give the same generalization error. The x-axis an a r he siedato snd the hypothed com-
has been plotted on a log scale. The interesting obser- particular have tried to show how the hypothesis com-vation is that there are an infinite number of choices for plexity, the sample complexity and the generalization
number of basis functions and number of data points all error are related. We proved a theorem for a specialset of hypothesis classes, the radial basis function net-
of which would guarantee the same generalization error works and we bound the generalization error for certain
(in terms of its worst case bound). function learning tasks in terms of the number of param-

eters and the number of examples. This is equivalent to11



A Notations

e A: a set of functions defined on S such that, for
any a E A,

0< a(t) <U 2 Vt ES.

SAc: the restriction of A to the data set, see eq.
(22).

o B: it will usually indicate the set of all possible
1-dimensional Boolean vectors.

L o B: a generic f-separated set in S.
0

o C(e ,A, dL ): the metric capacity of a set A endowed
* I with the metric dLI(p).

o d(., .): a metric on a generic metric space S.

o dLl(-,-), dLl(p)(-,'): L' metrics in vector spaces.
The definition depends on the space on which the
metric is defined (k-th dimensional vectors, real
valued functions, vector valued functions).

1. In a vector space Rh we have

I

dLl(XY) E -"

Figure 6: The generalization error, the number of ex- A=1
amples (1) and the number of basis functions (n) as a where x, y E Rk, zx' and y;' denote their IA-th
function of each other. components.

2. In an infinite dimensional space Y of real val-
ued functions in k variables we have

obtaining a bound on the rate at which the number of

parameters must grow with respect to the number of ex-
amples for convergence to take place. Thus we use richer dLx(p)(f,g) f[ If(x) - g(x)IdP(x)
and richer hypothesis spaces as more and more data be- JR.
come available. We also see that there is a tradeoff be-
tween hypothesis complexity and generalization error for measure on Rg .
"a certain fixed amount of data and our result allows us
"a principled way of choosing an appropriate hypothesis 3. In an ininnite dimensional space F of func-
complexity (network architecture). The choice of an ap-
propriate model for empirical data is a problem of long-
standing interest in statistics and we provide connections n

between our work and other work in the field. dLl(P)(f, g) E n JR' If,(x) -g,(x)IdP(x)

where
f(x) ( fA(X)...fi(x),.. fn(X) g(x) X

Acknowledgments We are grateful to T. Poggio and (g(x), . . . gi (x), ... gn(x)) are elements of Y
B. Caprile for useful discussions and suggestions. and dP(x) is a probability measure on Rh.

e DI: it will always indicate a data set of I points:

D- {(xi,yj) E XX Y}i=j •

The points are drawn according to the probability
distribution P(x, y).

o E[.]: it denotes the expected value with respect to
the probability distribution P(x, y). For example

1[f] = E[(y-f(x))2],

and

IIfo - fI•(P) E[(1o(X) - f(x))2]

12



e f: a generic estimator, that is any function from * G 2 : it is a set of real valued functions in k variables
X to Y: defined as

1

f :X . {ce2: f C G1, oa }

* fo(x): the regression function, it is the conditional V2 7a

mean of the response given the predictor: where a is the standard deviation of the Gaussian
G.

fO(x) j- /, dy yP(ylx). * HI: it is a class of vector valued functions

It can also be defined as the function that mini- g(x) : Rk -- R
mizes the expected risk I[f] in U, that is of the form

/o ~J) Uin g~f] = (G(lix - tj 11), G(jjx - t211) ... G(jjx - t., 11))

Whenever the response is obtained sampling a where G is the gaussian function and the t, are
function h in presence of zero mean noise the re- arbitrary k-dimensional vectors.
gression functiop coincides with the sampled func- * HF: it is a class of real valued functions in n vari-
tion h. ables:

* f,: it is the function that minimizes the expected
risk I[f] in H,: f : [0, V]' -- R

of the form
f,=_ arg inf I[f]

Since f(x) =i3" X
where /3 - (i31,...,, is an arbitrary n-

Ii[f] = 1fo - f12t,(P) + lo] dimensional vector that satisfies the constraint

f,, it is also the best L2 (P) approximation to the n

regression function in Hfn (see figure 1).L fi3ij M.

* f,,i: is the function that minimizes the empirical e H,: a subset of T, whose elements are
risk Iemp[f] in H,,: parametrized by a number of parameters propor-

tional to n. We will assume that the sets H,, form
= arg inf Im [f a nested family, that is

fcH,. m

In the neural network language it is the output of H, c H 2 c ... C H,, C
the network after training has occurred. "...

For example Hn could be the set of polynomials
* F: the space of functions to which the regression in one variable of degree n - 1, Radial Basis Func-

function belongs, that is the space of functions we tions with n centers or multilayer perceptrons with
want to approximate. n hidden units. Notice that for Radial Basis Func-

tions with moving centers and Multilayer percep-
F : X ==> Y trons the number of parameters of an element of

where X C Rd and Y E R. Y could be for example H,, is not n, but it is proportional to n (respec-
a set of differentiable functions, or some Sobolev tively n(k + 1) and n(k + 2), where k is the number
space Hm'P(R k) of variables).

* g: it is a class of functions of k variables o H: it is defined as H = U,• H,, and it is identi-
fied with the approximation scheme. If Hn is the

g : Rk -- [0, V] set of polynomials in one variable of degree n - 1,
H is the set of polynomials of any degree.defined as

9 H",P(Rk): the Sobolev space of functions in k

g {g: g(x) = G(lIx - tf), t E Rk}. variables whose derivatives up to order m are in

where G is the gaussian function. 1ff]: the expected risk, defined as

* Gj: it is a k + 2-dimensional vector space of func-

tions from Rk to R defined as FIV- f dr p(,, yy _ f(,)2

G,= sa'1,x1 X2 Xk 131 2 1"XxY
G1 --spanlt1, z,,., ,IIxI} where f is any function for which this expression

where x C Rk and x" is the p-th component of the is well defined. It is a measure of how well the
vector x. 13 function f predicts the response y.



* Iemp[f ]: the empirical risk. It is a functional on U 9 S: it will usually denote a metric space, endowed

defined as with a metric d.

I* S: a generic subset of a metric space S.

I.emp[f] = E(Y -_ f(X,)) 2 , T: a generic c-cover of a subset S C S.
i=1 9 U: it gives a bound on the elements of the class A.

where {(xi, y t) is a set of data randomly drawn In the specific case of the class A considere in the
from X x Y according to the probability distribu- proof we have U = 1 + MV.
tion P(x, y). It is an approximate measure of the 9 U: the set of all the functions from X to Y for
expected risk, since it converges to I[f] in proba- which the expected risk is well defined.
bility when the number of data points I tends to
infinity. * V: a bound on the Gaussian basis function G:

"* k: it will always indicate the number of indepen- 0 < G(x) < V , Vx E RA'
dent variables, and therefore the dimensionality of
the set X. 9 X: a subset of Rk, not necessarily proper. It is the

"* 1: it will always indicate the number of data points set of the independent variables, or predictors, or,

drawn from X according to the probability distri- in the language of neural networks, input variables.

bution P(x). * x: a generic element of X, and therefore a k-

"* L 2(P): the set of function whose square is inte- dimensional vector (in the neural network language

grable with respect to the measure defined by the is the input vector).
probability distribution P. The norm in L 2(P) is 9 Y: a subset of R, whose elements represent the
therefore defined by response variable, that in the neural networks lan-

guage is the output of the network. Unless other-

IIf 12 dX wise stated it will be assumed to be compact, im-IIJL 2 (p) P(x)f 2 (x) plying that F is a set of bounded functions. In pat-

"* A-m(R k)(M, M 1 , M 2 '. .. ,M): the space of func- tern recognition problem it is simply the set {0, 1}.

tions in k variables whose derivatives up to order 9 y: a generic element of Y, it denotes the response
m are bounded: variable.

IDff I K M I., I = 1,2, .... , m B A Useful Decomposition of the
where a is a multi-index. Expected Risk

"* M: a bound on the coefficients of the gaussian Ra- We now show that the function that minimizes the ex-
dial Basis Functions technique considered in this pected risk
paper, see eq. (12).

"* Aq(, S, d): the packing number of the set S, with I[f] = P(x, y)dxdy(y - f(x))'
metric d.J X×Y

"* Af(iE, S, d): the covering number of the set S, with is the regression function defined in eq. (3). It is suffi-
metric d. cient to add and subtract the regression function in the

"* n: a positive number proportional to the number definition of expected risk:

of parameters of the approximating function. Usu-
ally will be the number of basis functions for the I[f] =fx×Y dxdyP(x, y)(y -fo(x) + fo(x) - f(x))2

RBF technique or the number of hidden units for
a multilayer perceptron. fxYdxdyP(x, y)(y - fo(x))-+

"* P(x): a probability distribution defined on X. It
is the probability distribution according to which + fx.y dxdyP(x, y)(fo(x)- f(x))2 +
the data are drawn from X.

"* P(ylx): the conditional probability of the response + 2 fXxY dxdyP(x, y)(y - fo(x))(fo(x) - f(x))
y given the predictor x. It represents the proba- By definition of the regression function/0(x), the cross
bilistic dependence of y from x. If there is no noise Byodeitin the regresion function to te rossin te sste it as he orm ~yj) = 6 (y. h()), product in the last equation is easily seen to be zero, eandin the system it has the form P(yix) = b (y - h(x)), therefore
for some function h, indicating that the predictor
x uniquely determines the response y.

"* P(x, y): the joint distribution of the predictors and I[.f] = I dxP(x)(fo(x) - f(x))2 + I[fo]
the response. It is a probability distribution on JX
X x Y and has the form Since the last term of I[f] does not depend on f, the

minimum is achieved when the first term is minimum,
P(x, y) =_ P(x)P(ylx) 14 that is when f(x) = fo(x).



In the case in which the data come from randomly
sampling a function f in presence of additive noise, t,
with probability distribution P(c) and zero m.an, we
have P(ylx) = P(y - f(x)) and then

Ifo=] J X dxdyP(x,y)(y - fo(x)) ' = (15) 1[f~1

I dxP(x) y- f(X)) 2p(y _ (x)) (16)
iY 2e

fXdxP(x) fyJE2p(e)d = 0,2 (17)

where o,2 is the variance of the noise. When data are
noisy, therefore, even in the most favourable case we Figure 7: If the distance between I(f.] and I[f,,j] is
cannot expect the expected risk to be smaller than the larger than 2c, the condition Iemp[fn.i] < Iemp[fn] is vi-
variance of the noise. olated.

C A Useful Inequality definitions and notation will be introduced as and when

Let us assume that, with probability 1 - 6 a uniform the necessity arises.
bound has been established:

We have seen in section 2 (statement 2.1) that the
Ilemp[f] - I f] I_ w (1,n,6) Vf E H,,. generalization error can be bounded, with probability

We want to prove that the following inequality also 1 - 6, as follows:

holds: Il'0112
lb- f,,l L(P) < i(n) + 2w(1,n,6) . (19)

II[f,] - Ij.,t]l < 2w(l, n, 6). (18) In the next parts we will derive specific expressions for
This fact is easily established by noting that since the the approximation error e and for the estimation error
bound above is uniform, then it holds for both f. and w in order to prove theorem (4.1).

fn,j, and therefore the following inequalities hold: D.1 Bounding the approximation error

I[fn,d] : Iemp[jfn,j + w In this part we attempt to bound the approximation er-
ror. In section 3 we assumed that the class of functions

I[f] ] to which the regression function belongs, that is the class
~ I~f] + Wof functions that we want to approximate, is

Moreover, by definition, the two following inequalities
also hold: a h- {f E L 2(Rk)If = A * G, IAIR. < M},

I[f,] < I[fn,1] where A is a signed Radon measure on the Borel sets

of Rh, G is a gaussian function with range [0, V], the
Iemp[fn,i] • Iemp[fi] symbol * stands for the convolution operation, IAIR& is

Therefore tha following chain of inequalities hold, prov- the total variation of the measure A and M is a positive
ing inequality (18): real number. Our approximating family is the class:

n n

I[fn] • I[fnj,] < Iemp[fn,i]+-, • Iemp[fn]+w < I[fn]+2w. Hn = {f E L2 If = -iG(x-ti), E 1,34 1 M, ti E Rk}

An intutitive explanation of these inequalities is also ex- i=1 i=1
plained in figure (7). It has been shown in [33, 34] that the class H1 uniformly

approximate elements of Y, and that the following bound
D Proof of the Main Theorem is valid:

The theorem will be proved in a series of steps. For clar -- )
ity of presentation we have divided the proof into four E[(fo -_fj) 2]_O ! 0 (20)
parts. The first takes the original problem and breaks it (0
into its approximation and estimation components. The This result is based on a lemma by Jones [48] on the
second and third parts are devoted to obtaining bounds convergence rate of an iterative approximation scheme
for these two components respectively. The fourth and in Hilbert spaces. A formally similar lemma, brought to
final part comes back to the original problem, reassem- our attention by R. Dudley (25] is due to Maurey and
bles its components and proves our main result. New 15 was published by Pisier [65]. Here we report a version



of the lemma due to Barron [6, 7] that contains a slight guarantee that the rate of convergence does not become
refinement of Jones' result: slower and slower as the dimension increases. A longer
Lemman D.1 (Maurey-Jones-Barron) If f is n the discussion of the -curse of dimensionality" can be found
closure of the convez hull of a set in a Hilbert space H in [34].
with Iof the c b for each g i •, then for every n > 1 and We notice also that, since the rate (20) is independentfor c > 5 - i<for2 there is a f, tn the eonvez hull of n of the dimension, the class Y, together with the approx-
points>V- in g Iu thae iimating class Hn, defines a class of problems that are
points in g such that "tractable" even in a high number of dimensions.

Ilf - f ll' < C D.2 Bounding the estimation error
n

In this part we attempt to bound the estimation error

In order to exploit this result one needs to define suitable tI[f] - Iemp[fjI. In order to do that we first need to

classes of functions which are the closure of the convex introduce some basic concepts and notations.

hull of some subset g of a Hilbert space H. One way Let S be a subset of a metric space S with metric d.

to approach the problem consists in utilizing the integral We say that an c-cover with respect to the metric d is

representation of functions. Suppose that the functions a set T E S such that for every s E S, there exists some
inaHilbertsperepresentan of ft E T satisfying d(s, t) < c. The size of the smallest
in a Hlilbert space H can be represented by the integral c-cover is .g(c, S, d) and is called the covering number

of S. In other words
f(x) Gt(x)d a(t) (21)

JA4 A;~P(c, ,S, d) =min TI1

where da is some measure on the parameter set M, and TCS

Gt(x) is a function of H parametrized by the parameter where T runs over all the possible c-cover of S and IT I
t, whose norm llGt(x)II is bounded by the same number denotes the cardinality of T.
for any value of t. If do is a finite measure, the integral A set B belonging to the metric space S is said to
(21) can be seen as an infinite convex combination, and be e-separated if for all .e,y E B, d(z,y) > t. We
therefore, applying lemma (D.1) one can prove that there define the the packing number M(E, S, d) as the size of
exists n coefficients ci and n parameter vectors tj such the largest c-separated subset of S. Thus
that

M(c,,S, d) = max IBI,n BCS

If - ZciGt,(x)112 < 0(1) where B runs over all the c-separated subsets of S. It is
i=1 easy to show that the covering number is always less than

For the class F we consider, it is clear that functions the packing number, that is I(cS, d) < M (c,S,d).
in this class have an integral representation of the type Let now P(t) be a probability distribution defined on
(21) in which Gt(x) = G(x-t), and the work in [33, 34] S, and A be a set of real-valued functions defined on S
shows how to apply lemma (D.1) to this class, such that, for any a E A,

Notice that the bound (20), that is similar in spirit to
the result of A. Barron on multilayer perceptrons [6, 8], 0 < a(ý) < U 2 V E S.
is interesting because the rate of convergence does not Let also = (•, .., ) be a sequence ofl examples drawn
depend on the dimension d of the input space. This is independently from S according to P(f). For any func-

apparently unusual in approximation theory, because it tion a E A we define the empirical and true expectations

is known, from the theory of linear and nonlinear widths on a A ws:

[78, 64, 54, 55, 20, 19, 21, 56], that, if the function that of a as follows:

has to be approximated has d variables and a degree of I
smoothness s, we should not expect to find an approxi- t[a] a(ýj)
mation technique whose approximation error goes to zero
faster than O(n-l). Here "degree of smoothness" is a
measure of how constrained the class of functions we con- E[a] 4 d•P(ý)a(ý)
sider is, for example the number of derivatives that are is
uniformly bounded, or the number of derivatives that are The difference between the empirical and true expecta-
integrable or square integrable. Therefore, from classi- tion can be bounded by the following inequality, whose
cal approximation theory, we expect that, unless certain proof can be found in [69] and [42], that will be crucial
constraints are imposed on the class of functions to be in order to prove our main theorem.
approzimated, the rate of convergence will dramatically Claim DA (f69], [42]) Let A and ý be as defined
slow down as the number of dimensions increases, show-
ing the phenomenon known as "the curse of dimension- above. Then, for all c > 0,

In the case of class F we consider here, the constraint P (3a E A: IE[a] - E[a]I > E <
of considering functions that are convolutions of Radon
measures with Gaussian seems to impose on this class of < 4E [g( ,A&-dL-)] e T26U4E

2
'

functions an amount of smoothness that is sufficient to 16



In the above result, A( is the restriction of A to the data
set, that is: P(Vh E H,,, jIemp[h] - I[h]l < c) >

Al a E A} (22) > 1 - 4E[A(E/16,A(,dL, )]e,_ I26' (23)

The set A( is a collection of points belonging to the
subset [0, U]' of the 1-dimensional euclidean space. Each so that the inequality of claim D.A gives us a bound on

function a in A is represented by a point in A(, while the estimation error. However, this bound depends on

every point in At represents all the functions that have the specific choice of the probability distribution P(x, y),
the same values at the points ix,..,•t. The distance while we are interested in bounds that do not depend on

metric dLl in the inequality above is the standard L' P. Therefore it is useful to define some quantity that

metric in R1, that is does not depend on P, and give bounds in terms of that.
We then introduce the concept of metric capacity

( of A, that is defined as
I ,A C(e, A, dL) sup{.A(c, A, dLI(p))}

P
where x and y are points in the 1-dimensional euclidean where the supremum is taken over all the probability
space and zA and y?' are their p-th components respec- distributions P defined over S, and dL-(p) is standard
tively.
The above inequality is a result in the theory of uni- Li(P) distance9

form convergence of empirical measures to their under- induced by the probability distribution P:
lying probabilities, that has been studied in great detail
by Pollard and Vapnik, and similar inequalities can be (
found in the work of Vapnik [81, 82, 801, although they Is
usually involve the VC dimension of the set A, ratherthan its covering numbers. The relationship between the covering number and the

metric capacity is showed in the following

Suppose now we choose S = X x Y, where X is an Claim D.2
arbitrary subset of Rk and Y = [- M, M] as in the for-
mulation of our original problem. The generic element E['(E, A4, dL-)] < C(E, A, dLl)

of S will be written as ý = (x, y) E X x Y. We now Proof: For any sequence of points t in S, there is a triv-
consider the class of functions A defined as: ial isometry between (A4, dLV) and (A, dL'(p1 )) where

Pf is the empirical distribution on the space S given
A {a : XxY -RIla(x,y)= (y-h(x) 2 , hE H,,(R")} by f 1 6(E - ýi). Here 6 is the Dirac delta func-

where Hn(Rk) is the class of k-dimensional Radial Basis tion, 4 E S, and ýi is the i-th element of the data

Functions with n basis functions defined in eq. 12 in set. To see that this isometry exists, first note that

section 3. Clearly, for every element a E A, there exists a unique point
(a(ý,), _.., a(1 ,)) E Af-. Thus a simp)e bijective mapping

ly- h(x)J < Jyj + lh(x)J K M + MV, exists between the two spaces. Now consider any two
elements g and h of A. The distance between them is

and therefore given by

where we have defined0  a dL,(p,)(g, h) I Lg(4)-h()IP()d =)

U =_ M+MV. This is exactly what the distance between the two points

We notice that, by definition of E(a) and E(a) we have (g(4),..,g(4)) and (h(41),..,h(41)), which are elements
of A4, is according to the dLl distance. Thus there is

E(a) -- - h(xi)) - Iemp[h] 'Note that here A is a class of real-valued functions de-
2=1 fined on a general metric space S. If we consider an arbitrary

and A defined on S and taking values in R', the dL I(P), norm is
appropriately adjusted to be

E(a) = dxdy P(x, y)(y - h(x))2 = I[h] . dl(P)(f, g) =f(x)-gi(x)P(x)dx

Therefore, applying the inequality of claim D.1 to the where f(x) = (fi(x),... fi(x) .... fn(x)), g(x) =

set A, and noticing that the elements of A are essentially (gi(x), ... gi(x) .... g,(x)) are elements of A and P(x) is a
defined by the elements of Ha, we obtain the following probability distribution on S. Thus dLi and dLl(p) should
result: 17 be interpreted according to the context.



a one-to-one correspondence between elements of A and So the problem reduces to finding C(f, H, dL ), i.e. the
At and the distance between two elements in A is the metric capacity of the class of appropriately defined Ra-
same as the distance between their corresponding points dial Basis Functions networks with n centers. To do this
in A-. Given this isometry, for every E-cover in A, there we will decompose the class H, to be the composition of
exists an c-cover of the same size in A(, so that two classes defined as follows.

A(c, A(, dL1) =(,A, dLI(P)) --C(-E, A, dLl Definitions/ Notations

H, is a class of functions defined from the metric space
and consequently E[A(,,dL,)] _< C(E,, dL ). (Rk, dLI) to the metric space (R, dL ). In particular,

The result above, together with eq. (23) shows that the
following proposition holds: HI {g(x) = (G(Ilx-ti 11), G(IJx-t 2fl),..., G(Jtx-t, 11))}

Claim D.3 where G is a Gaussian and ti are k-dimensional vectors.

P(Vh E H,, Iempi[h] - I[h]l I e) > Note here that G is the same Gaussian that we have been

(24) using to build our Radial-Basis-Function Network. Thus
1 / A )eH, is parametrized by the n centers ti and the variance

>1U- of the Gaussian a,2, in other words nk + 1 parameters in
all.

Thus in order to obtain a uniform bound w on lIemp[h] - HF is a class defined from the metric space
I[h]I, our task is reduced to computing the metric capac- ([0, V]n,dL-) to the metric space (R,dL ). In particu-
ity of the functional class A which we have just defined. lar,
We will do this in several steps. In Claim D.4, we first
relate the metric capacity of A to that of the class of ra-
dial basis functions H,. Then Claims D.5 through D.9 Hp {h(x) x, x E [0, V]' and 1 <
go through a computation of the metric capacity of H,. h M}

Claim D.4 where 3 _ (1,...,/-) is an arbitrar- n-dimensional

C(f, A, dLE) < C(l/4U, H, dL) vector.

Thus we see that

Proof: Fix a distribution P on S = X x Y. Let Px
be the marginal distribution with respect to X. Sup- H,, = {hF o hl: hF E HF and hl e H1}

pose K is an e/4U-cover for H,, with respect to this where o stands for the composition operation, i.e., for
probability distribution Px, i.e. with respect to the dis- any two functions f and g, f o g = f(g(x)). It should
tance metric dLI(px) on H,. Further let the size of K be be pointed out that H, as defined above is defined from
K(c/4U, Hn, dL1(p,)). This means that for any h E H,,, Rk to R.
there exists a function h* belonging to K, such that: Claim D.5

J ih(x) - h*(x)lPx(x)dx < c/4U C(c, HI, dLV) < 2n 2( -ln 2eV))n(k+
2 )

Now we claim the set H(K) = {(y - h(x))2 : h E K}
is an c cover for A with respect to the distance metric Proof: Fix a probability distribution P on Rh. Consider
dL'(p). To see this, it is sufficient to show that the class

f 1(y - h(x))2 - (y - h*(x))2 1P(x, y)dxdy < : g(x) G(I~x - til), t E Rk}.
Let K be an H(e,g, dLl(p))-sized c cover for this class.

Sf 21(2y - h - h*)II(h - h*)IP(x, y)dxdy < We first claim that

<f2(2M + 2MV)Ih - h*IP(x,y)dxdy < c T = {(hl,..,hn) : hi E K}

which is clearly true. Now is an --cover for H, with respect to the dLl(p) metric.
Remember that the dLl(p) distance between two

Af(E, A, dL-(p)) H g(K) I vector-valued functions g(x) = (g 1(x),..,g,(x)) and
g*(x) (g•(x), .. ,g,()) is defined as

caiN(e/4U,Hl,dL,(px)) <
• _l()( Jgi(x)_g!(x),P(x)dx

<•C(/4U, Hn,dL,) dL,(p)(g,g*) J n

Taking the supremum over all probability distributions,
the result follows. 03 To see this, pick an arbitrary g = (g 1,...,g,,) E HI.

18 For each gi, there exists a g* E K which is E-close



in the appropriate sense for real-valued functions, i.e. Claim D.6
dVl(P)(gi,g%,) K_' f- The function g =(gt*,..g*,gf is an2eV el
element of T. Also, the distance between (gl, .. , g.) and C(c, 9, dL ) 2 ( n
(gi,..,g*) in the dL p) metric is \

d < Proof: Consider the k + 2-dimensional vector space of
L functions from Rh to R defined as

T h u s w e o b t a i n t h a t G , - s p a n jl , X X 2, - X *, 11 3 11 '

AI'(e, HI, dL-(p)) < [A(, 9, dL (p))]n where x E Rk and x" is the p-th component of the vector

and taking the supremum over all probability distribu- x. Now consider the class

tions as usual, we get G

C(c,HI,dL,) < (C(e,9,dLl))f

Now we need to find the capacity of 9. This is done in where ao is the standard deviation of the Gaussian, and
the Claim D.6. From this the result follows. 11 f E G 1 . We claim that the pseudo-dimension of 9 de-

noted by pdim(G) fulfills the following inequality,
Definitions /Notations

Before we proceed to the next step in our proof, some pdim (9) _< pdim (G 2 ) = pdim (GI) = (k + 2).
more notation needs to be defined. Let A be a fam-
ily of functions from a set S into R. For any sequence To see this consider the fact that 9 C G2. Conse-

=(, .=,d) of points in S, let Al be the restriction quently, for every sequence of points x = (xi .... ,xa),
of F to the data set, as per our previously introduced 9 .k C (G2)±. Thus if (xl,.... ,xd) is shattered by 9, it

notation. Thus A = {(a(•i).... ,a()) : a E A}. If will be shattered by G 2 . This establishes the first in-

there exists some translation of the set A(, such that equality.

it intersects all 2 d orthants of the space Rd, then ý is We now show that pdim(G 2 ) < pdim(G1 ). It is
enough to show that every set shattered by G2 is

said to be shattered by A. Expressing this a little more also shattered by G1 . Suppose there exists a sequence

formally, let B be the set of all possible l-dimensional

boolean vectors. If there exists a translation t C Rd (x1,x2,...,Xd) which is shattered by G2 . This means
that by our definition of shattering, there exists a

such that for every b E B, there exists some function translation t E Rd suCh that for every boolean vec-
ab E A satisfying ab(Oi) - ti >_ bN < b1 = 1 for all i =
to d, then the set (, .. , Wd) is shattered by A. Note that tor b E {0, 1 }d there is some function gb ae-b
the inequality could easily have been defined to be strict where fb E G1 satisfying g9(z0) > ti if and only

and would not have made a difference. The largest d if bi = 1, where ti and bi are the i-th components

such that there exists a sequence of d points which are of t and b respectively. First notice that every func-

shattered by A is said to be the pseudo-dimension of A tion in G2 is positive. Consequently, we see that ev-

denoted by pdimA. CQ ery t4 has to be greater than 0, for otherwise, gb(xi)
could never be less than t4 which it is required to be

In this context, there are two important theorems which if bi = 0. Having established that every t4 is greater

we will need to use. We give these theorems without than 0, we now show that the set (XI,X2, ... , Xd) is
proof, shattered by G 1. We let the translation in this case be

Theorem D.1 (Dudley) Let F be a k-dimensional t' = (log(tl/a),log(t2/a), .. ,log(td/a)). We can take
the log since the ti/ci's are greater than 0. Now for ev-

vector space of functions from a set S into R. Then ery boolean vector b, we take the function -fb E G, and
pdim(F) = k. we see that since

The following theorem is stated and proved in a some-
what more general form by Pollard. Haussler, using tech- gb = ae-f- >_ tj ± bi 1.
niques from Pollard has proved the specific form shown
here. if follows that

Theorem D.2 (Pollard, Haussler) Let F be a fam-
ily of functions from a set S into [Ml, M 2], where -fb Ž log(ti/a) t'i €' b: 1.
pdim(F) = d for some 1 < d < oo. Let P be a prob- Thus we see that the set (xi, X2, ... ,x) can be shattered
ability distribution on S. Then for all 0 < E < M 2 - M 1 , by G 1. By a similar argument, it is also possible to show

that pdim(Gr) _> pdim(G 2 ).
1 \d Since GC is a vector space of dimensionality k + 2, an

M(e,F,dL2(p)) < 2 2e(M2- M1 )log 2e(M 2 - application of Dudley's Theorem [24] yields the value
k + 2 for its pseudo-dimension. Further, functions in

Here M•(e, F, dL I(P)) is the packing number ofF accord- the class g are in the range [0, V]. Now we see (by an
ing to the distance metric dLl(p). 19 application of Pollard's theorem) that



Claim D.9A (f •, GdL I(P)) < M (E, ,dL -(P)) <

C(f,Hn,dL0) < C(M-. ,H,dL-)C(2 HF, dL)
- 2Mnn 2',

Proof: Fix a distribution P on Rk. Assume we have

* 2 ("V In (Zt_))(h+2) an e/(2Mn)-cover for HI with respect to the probability
distribution P and metric dLl(p). Let it be K where

Taking the supremum over all probability distributions,
the result follows.0 JKI = AI(/2Mn. HI,dL-(p)).

Now each function f E K maps the space Rk into R",
Claim D.7 thus inducing a probability distribution P! on the space

C(,,HF, dL 4) < 2 IMeV ( 4MeV ))n R'. Specifically, P1 can be defined as the distribution
-2 obtained from the measure p! defined so that any mea-

surable set A C R' will have measure

Proof: The proof of this runs in very similar fashion.
First note that uf(A) -' P(x)dx.

HF C {3 x :x, O3 E R'}. Further, there exists a cover K! which is an c/2-cover

The latter set is a vector space of dimensionality n and by for HF with respect to the probability distribution P1 .

Dudley's theorem[24], we see that its pseudo-dimension In other words

pdim is n. Also, clearly by the same argument as in the
previous proposition, we have that pdim(HF) < n. To Ku Af(c/2, HF, dL,(p)).

get bounds on the functions in HF, notice that We claim that

,n n n H(K) {f og : g C K and f E K,}
I • 3i i/ E 3jilizil _< V E i/5 < MV. is an f cover for Hn. Further we note that
i=1 i=1 i=1

Thus functions in Hp are bounded in the range IH(K) =ZEK IK I< ý"E-KC(c/2,HF,dLl) <
[-MV, MV). Now using Pollard's result [42J, [69), we
have that < A/(E/(2Mn), HI, dL1(p))C(c/2, HF, dL1)

(c, HF, dL,- (P)) • M.(I, HF,dLI(p)) < To see that H(K) is an c-cover, suppose we are given an
-Hd p -arbitrary function hf o hi E H,. There clearly exists a

<2 (4MV In ( 4M-V))n. function h' E K such that

Taking supremums over all probability distributions, the / dLV(hi(x), h*(x))P(x)dx < c/(2Mn)
result follows. 0 IJRh

Now there also exists a function h* C Kh; uhta

Claim D.8 A uniform first-order Lipschitz bound of N such that

HF is Mn.

Proof: Suppose we have x, y E R'n such that fR2 hy o h(x) - o h*(x)P(x)dx
dLl(x,y) < . = fR- lhi(y) - h;(y)IPh'(y)dy < f/2.

The quantity Mn is a uniform first-order Lipschitz To show that H(K) is an c-cover it is sufficient to show
bound for HF if, for any element of HF, parametrized that
by a vector/3, the following inequality holds:

ix .S - y .,0 Mnc JR A, Ih 1 o h,(x) - h; o h?(x)jP(x)dx < c.

Now clearly, Now

IX. • -- Y" I~ ---- [L1 (Zi -- •]i)t I- <fRs Ihf o hi(x) - h; o h?(x)IP(x)dx <

E 0 I = (-i _ <)i_ fR'{Ihy o h,(x) - hf o h?(x)l+

SM E 1 I(zi - yi)I < Mnu +h - hi*o(x) - h; o h? (x)jP(x)dx}

The result is proved. C3 by the triangle inequality. Further, since hf is Lipschitz

20 bounded,



for constants A, B. The latter inequality is satisfied as

fR, I h, o hi(x) - h 1 o h?(x)IP(x)dx < long as

< fR, MndLI(hi(x),hV(x))P(x)dx < Mn(e/2Mn) < e/2 . Anh m+3)e-p'l/e

Also, which implies

SIh o h?(x) - o h (x)IP(x)dx 2n(k + 3)(In(An) - In(,)) - c2 l/B l- 1n( 6 /4)
J h hx-and in turn implies

fR. lh! (y) - h° ~P d /2

Sh(y)dy < E/2 .E
21 > B ln(4/6) + 2Bn(k + 3)(In(An) - ln(c)).

Consequently both sums are less than e/2 and the total We now show that the above inequality is satisfied for
integral is less than c. Now we see that

B B[In(4/6) + 2n(k + 3) In(An) + n(k + 3) In(1)] /

I(e, Hn, dL'(p)) < A( (e/(2Mn), HI, dL'(P)) C(E/2, HF, dL, ). (B ) )
Taking supremums over all probability distributions, the Putting the above value of c in the inequality of interest,

result follows. 0 we get

Having obtained the crucial bound on the metric capac- C2 (1/B) l 1n(4/6) + 2n(k + 3) In(An) + n(k + 3) In(l) >

ity of the class H,, we can now prove the following ln(4/6) + 2n(k + 3) ln(An)+

Claim D.10 With probability 1 - 6, and Vh c Hn, the
following bound holds: +2n(k + 3)• In (B[ln(4/6)+2n(k+3)l(An)+n(k+3) 1n)])

JI~~~~m__ __ __ __ - ~ ~ kI~ l n 11) 12\ In other words,
S1/o)]

- l( n(k + 3) In(l) >

Proof: We know from the previous claim that > n(k + 3)-ln

C(E, Hn, dL ) < Since

< 2n+1 r4MeVn ln ( _4MeVn_)](k+2) [Me M In SMeV < B [ln(4/6) + 2n(k + 3) ln(An) + n(k + 3) ln(l)] > 1
- f f (- f - the inequality is obviously true for this value of E. Taking

I [SMeVn In 8MeVnl n(k+ 3) this value of E then proves our claim. 01

f f D.3 Bounding the generalization error
From claim (D.3), we see that Finally we are able to take our results in Parts 11 and III

P(Vh E H,, Ilemp[h] - I[h]l < c) > to prove our main result:

(25) Theorem D.3 With probability greater than 1 - 6 the

> 1 - 6 following inequality is valid:

as long as 22  <0 + 0 ([nk - 6 1/2

C( / 16, A, d ,--z-,• 6 V n1L(P-I I

-4
which in turn is satisfied as long as (by Claim D.4) Proof: We have seen in statement (2.1) that the gener-

alization error is bounded as follows:
1 21 6C(c164U, Hn, dt.e- T26-.u < 4 11fo _ i,12.P

4 - <fl,(p) c e(n) + 2w(l,n, 6)

which implies In section (D.1) we showed that

(1256MeVUn In (1256MeVUn) )n(1+1> E e(n)=0(1)

I C2 12 • and in claim (D.10) we showed that
e - S U ,- • -• 4<k I ~ - I /

Inhother words, 0) )n(k+(, e / nn -) = 0 t I 1 p e )n

AnI ne-21B<6 Therefore the theorem is proved putting these results
4EE / 21 together. 0
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