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Introduction

Although neural networks are capable in principle of representing complex nonlinear functions.
the time required to train a complex network does not alwayvs scale well with problem size
and the solution obtained does not always reveal the structure in the problem. Moreover. it is
often difficult to express prior knowledge in the language of fullv-connected neural networks.
Achieving better scaling behavior. better interpretability of solutions and better wayvs of incor-
porating prior knowledge may require a more modular approach in which the learning problem
is decomposed into sub-problems. Such an approach has been used with success in the statistics
literature and the machine learning literature. where decision-tree algorithms such as CART
and ID3 and multivariate spline algorithms such as MARS have running times that can be
orders of magnitude faster than neural network algorithms and often vield simple. interpretable
solutions {Breiman. Friedman. Olshen & Stone. [9%1: Friedman. 1991: Quinlan. 1986).

A\ general strategy for designing modular learning syvstems is to treat the problem as one
of combining multiple models. each of which is defined over a local region of the input space.
Jacobs. Jordan. Nowlan and Hinton (1991) introduced such a strategv with their “mixture of
experts” (ME) architecture for supervised learning. The architecture involves a set of function
approximators ( “expert networks™) that are combined by a classifier (“gating network™). These
networks are trained simultaneously so as to split the input space into regions where particular
experts can specialize. Jordan and Jacobs (1992) extended this approach to a recursively-defined
architecture in which a tree of gating networks combine the expert networks into successively
larger groupings that are defined over nested regions of the input space. This “hierarchical
mixture of experts™ (HME) architecture is closely related to the decision tree and multivariate
spline algorithims.

The problem of training a mixture of experts architecture can be treated as a maximum
likelihood estimation problem. Both Jacobs et al. (1991) and Jordan and Jacobs (1992) derived
learning algorithms by computing the gradient of the log likelihood for their respective archi-
tectures. Empirical tests revealed that although the gradient approach succeeded in finding
reasonable parameter values in particular problems. the convergence rate was not significantly
better than that obtained by using gradient methods in multi-lavered neural network archi-
tectures. The gradient approach did not appear to take advantage of the modularity of the
architecture. An alternative to the gradient approach was proposed by Jordan and Jacobs (in
press). who introduced an Expectation-Maximization (EM) algorithm for mixture of experts
architectures. EM is a general technique for maximum likelihood estimation that can often
vield simple and elegant algorithms (Bauni. Petrie. Soules & Weiss. 1970: Dempster. Laird &
Rubin. 1977). For mixture of experts architectures, the EM algorithm decouples the estimation
process in a manner that fits well with the modular structure of the architecture. Moreover.
Jordan and Jacobs (in press) observed a significant speedup over gradient techniques.

In this paper. we provide further insight into the EM approach to mixtures of experts
architectures via a set of convergence theorems. We study a particular variant of the EM
algorithm proposed by Jordan and Jacobs (in press) and demonstrate a relationship between
this algorithm and gradient ascent. We also provide theorems on the convergence rate of the
algorithm and provide explicit formulas for the constants.

The remainder of the paper is organized as follows. Section 2 introduces the ME model.
The EM algorithm for this architecture is derived and two convergence theorems are presented.
Section 3 presents an analogous derivation and a set of convergence results for the HME model.
Section 4 introduces two acceleration techniques for improving convergence and presents the
results of numerical experiments. Section 5 presents our conclusions.
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Figure 1: The mixture of experts architecture. The total output p is the weighted sum of the
expert network outputs: g = g1 p, + g2p,. where the weights are the gating network outputs
g1 and g.

Theoretical analysis of an EM algorithm for the mixture of
experts architecture

Network learning based on maximum likelihood estimation

We begin by studyving the non-hierarchical case. As shown in Figure 1. the mixture of experts
(ME) architecture is comprised of I expert networks. each of which solves a function approx-
imation problem over a local region of the input space. To each expert network we associate
a probabilistic model that relates input vectors x € R" to output vectors y € R™. We denote
these probabilistic models as follows

Ply|x.6;).j=1.2.--- K.

where the 8, are parameter vectors. Each of these probability densities is assumed to belong
to the exponential family of densities (Jordan & Jacobs. in press). The j expert network
produces as output a parameter vector H;

p, =1i(x.0;,). j=1.2.--- K.

which is the location parameter for the j probability density. In the current paper. as in
Jordan and Jacobs (in press). we treat the case in which the functious f; are linear in the
parameters. We extend our results to the case of experts that are nonlinear in the parameters
in the Appendix.

We also assume. for simplicity. that the probability densities P(y]x.8;) are gaussian. im-
plying that the location parameter is simply the mean. We associate a covariance matrix x;




with each expert network. vielding the following probabilistic model for expert §

Ply|x.0,) = (2zdet X, )" Z exp —%[y -f,(x.6, )]1 ‘_“/"'[y - f,(x.60,)]}. (1

The ME architecture also utilizes a auxiliary network known as a gating network. whose job
it is to partition the input space into regions corresponding to the various expert networks. This
is done by assigning a probability vector [gy. g2.- - gx ]! to each point in the input space. In
particular. the gating net implements a parameterized function s : B — RM and a normalizing
function g : RN — RN such that

%

.’/_/:.(14/(3(-01/):—}::—?\;17.]': | IR [ (2)
which satisfies
IN
Zg_,(x.Og) = 1. for any x.0,. (3)
=1

In the current paper we focus on the case in which he function s is linear (cf. Jordan & Jacobs.
in press). In this case the boundaries ¢; = ¢, are planar and the function g can be viewed as a
smoothed piecewise-planar partitioning of the input space.

Training data are assumed to be generated according to the following probability model.
We assume that for a given x. a label j is selected with probability P(j|x) = ¢,(x.6,). An
output y is then chosen with probability P(y|x.6,;). Thus the total probability of observing y
from x is given by the following finite mixture density

1N K
P(ylx) =Y P{jIx)Plylx.8)) = ) g;(x.6,)P(y|x.8,). (4)
J=1 =1
A training set ) = {(x!.y").t = 1..--. N} is assumed to be generated as an independent set

of draws from this mixture density. Thus the total probability of the training set. for a specified
set of input vectors {x{0};¥,. is given by the following likelihood function

N
L = p({y(f)}i\'Hx(f)}-l\) — P(y“)}x“)) (5)
t=1
N K
= [I1>9x'".0,)Py"x!).0,). (6)
t=1,=1

The learning algorithms that we discuss are all maximum likelihood estimators. That is.
we treat learning as the problem of finding parameters 8,. 8. and ¥; to maximize L. or. more
conveniently. to maximize the log likelihood / = In L

N N
(@.)) = Z In Z _q.,-(xm.9_,,)P(y“)|x“).0_/).
t=1 J=1
where @ =[6,.6,.0,.---.0,.%,.%,.-- -.Sl\-]T.

Given the probability model in Eq. . the expected value of the output is given as follows

IN
p=Elylx]=3 g/(x.0,)u,

J=1




This motivates using the weighted output of the expert networks as the total output of the ME
architecture (cf. Figure ).

The model in Eqgs. (4) and (1) is a finite gaussian mixture model. It is interesting to
compare this model to a related gaussian mixture model that is widely studied in statistics:

i.e.. the model
N

I
Pix) = Z“J [’J(k)(xw',). a; > 0. Z“/ = 1. (7)

1=l =1

The difference between these models is clear: the a,’s in Eq. (1) are independent of the input
vectors. while the ¢,’s in Eq. (4) are conditional on x (they represent the probabilities P(j|x)).
Thus model (7) represents a unconditional probability. appropriate for unsupervised learning.
while model (1) represents a conditional probability. appropriate for supervised learning.

There is another model studied in statistics. the switching regression model (Quandt &
Ramsev. 1972, 1978, De Veaux. 19%6). that is intermediate hetween model (7) and model {4).
The switching regression model is given as follows

Pyx) = AP(y]x.01) + (1 — A)P(y|x.8;). (%)

where the P(y|x.0,) are univariate gaussians and the mean of each gaussian is assumed to be
linear in x. This model assumes that the data pair {y.x} is generated from a pair of linear
regression models through a random switch which turns to one side with probability A and to
the other side with probability 1 — A. This model can be generalized to allow for a multinomial
switch

N
Plylx) = Za.,-P(ylx.OJ-). (9)
J=1

where a; > 0. f‘:l a; = 1 and P(y|x.6;) is given by Eq. (1). The difference between

switching regression and the ME model is that the switching regression model assumes that
the setting of the switch is independent of the input vector. This assumption does not allow
for piecewise variation in the form of the regression surface: all of the regression components
contribute throughout the input space. Switching regression can be viewed as one end of a
continuum in which the overlap in the regression components is total: decision tree models
(e.g.. Breiman et al.. 1984) are the other end of the continuum in which the overlap is zero.
The ME model interpolates smoothly between these extremes.

An EM algorithm for training the mixture of experts

In many estimation problems the likelihood is a complicated nonlinear function of the param-
eters. Parameter estimation in such cases usually involves some sort of numerical optimization
technique. typically gradient ascent. An alternative to gradient techniques. applicable in many
situations. is the “Expectation-Maximization™ or “EM™ algorithm (Baum. Petrie. Soules &
Weiss, 1970: Dempster. Laird & Rubin. 1977). EM is based on the idea of solving a succession
of simplified problems that are obtained by augmenting the original observed variables with a
set of additional “hidden™ variables. Unconditional mixture models are particularly amenable
to the EM approach (Redner & Walker. 1981) and, as observed by Jordan and Jacobs (in press).
the conditional mixture of experts model is also amenable to an EM approach.

Given an observed data set J'. we augment ) with a set of additional variables ), ;. called
“missing”™ or “hidden™ variables. and consider a maximum likelihood problem for a “complete-
data”™ set 2 = {Y.Y,.s} (cf. Little & Rubin. 1987). We choose the missing variables in such




a wayv that the resulting “complete-data log likelihood.” given by [ (@.2) = In P1)Y.),...10).
is easy to maximize with respect 10 @. The probability model P().),, . 1@) must be chosen
so that its marginal distribution across ). referred to in this context as the “incomplete-data”™
likelihood. is the original likelihood

P(y|©) = / PO Yois| @)Y (10)

In deriving au update to the parameters based on the complete-data log likelihood. we first note
that we cannot work directly with the complete-data log likelihood. because this likelihood is
a random function of the missing random variables Y, ;. The idea is to average out ), ;. that
is. to maximize the erpected complete-data log likelihood Ey, | {lu P(Y.Y,..s|@)]. This idea
motivates the EM algorithm.

The EM algorithm is an iterative algorithm consisting ol two steps:

e The Expectation (E) step. which computes the following conditional expectation of the
log likelihood

Qe

E‘}\nu- {l” 1)( 3|@ )|.)‘~ @(A)}
/PQ%”y@“mnHﬂ@MLm (11)

where @) is the value of the parameter vector at iteration k.
e The Maximization (M) step. which computes

ek+l - argugx Qe (12)

The M step chooses a parameter value that increases the Q function: the expected value of
the complete-data log likelihood. Dempster. Laird and Rubin (1977) proved that an iteration
of EM also increases the original log likelihood /. That is.

1651 3y > 16t y).

Thus the likelihood [ increases monotonically along the sequence of parameter estimates gen-
erated by an EM algorithm.

Although in many cases the solution to the M step can be obtained analvtically. in other
cases an iterative inner loop is required to optimize (. Another possibility is to simply increase
the value of @ during the M step

Qet+hieh) > gete) (13)

by some means. for example by gradient ascent or by Newton’s method. An algorithm with
an M-step given by Eq. (13) is referred to as a generalized EM (G EM) algorithm (Dempster.
Laird & Rubin. 1977).

For the ME architecture we choose the missing data to be a set of indicator random variables
mis = U1 = 1 K =10 N} with

(14)

IO 1. if y( is generated from the j-th model given by Eq. (1).
4 7] 0. otherwise




and
IN
Z 1}” = 1. for each t.
)=1

We assume that the distribution of the complete data is given as follows
NOR o
. t )t
P21@) = [T [1lo.(x'". 6, P(y"1x".6,)]"
t=1 =1

It is easy to verifv that this distribution satisfies Eq. (10).
From Eq. (11). we also obtain

Qeety = Ly, {lnP(7]0)).0")
N K
= ZZ/15“({)ln[g_,(x“).0,,)1’(y“)!x(”.0_,)]

t= ll—l
N
= ZZII( )(t Ing,; (x'") +>:h( ) t)In P( “)|x“) 6,)
t=1 ;=
= \
+ +Z/1 1) In P( “)lx“) 8, ). {15)

where
hgk)(t) = E[fj(t)ly-@“"]zP(jlx“tym)
g;(x').61) Py [x!1). 6%

= - “ . 16
K gix. 80 Py Dx), g (16)

where P(j|x{!).y(t)) denotes the probahlht\ tllat the pair {x!9.y(} comes from the j*" prob-

ability model. Note that we alwavs have hJ- ( ) > 0.
With the Q function in hand. we now investigate the implementation of the M step. From
Eq. (13). Eq. (1) and Eq. (2), we have

iQ_ _ (k) ‘)J/ -6,) (1)
00, " ZZ’ o8, 19X 0)

t= 1_/-. )
N
_ B () g 9%
- Sh gi(x'".0,)—"]
;Jl Z a d0,
g (0 g,y 2%
= B9 1) — g,(x11.8,)) ==L (17)
;; J ! 708,

/Py 6,)

}

9Q Zl(k) dP(yx1".9,)
()OJ ()0,‘
fT (t) 0
= Z} %.J(—l[ (1) - fi(x 1)9)] j=1.--- K. (1R8)
J

and

) Ny OPyWxD
_(_(_J_ _ Zhy)(l)()l |x'.8;) /1’ (')lx“ )

J%; 0%,
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.

l ¢ : NERT .

= =Y Py, - Y - ix 0.0,y - faxt ) ju
l-l:l

J =1l.-- k. (19)
By letting —,'\QLL k4 = 0. we obtain the update for the covariance matrices
DIRLJES

RS m Z/""w)[y x.6,]y" — £ix. 0,1 (20
1_] l'—l

Assuming that the training set ) is generated by a mixture model. we note that when the the
sample number .V is sufficiently large (relative to the dimension of y). the space spanned by

the N vectors [y!) — £;(x(".0,)].t = L.---. N will be of full dimension with probability one.
Recalling that h(/k)(t) > 0 we observe that when the sample number N is sufficientiy large the
matrices )](/H”l) are therefore positive definite with probability one.

Next. by letting T'g—la g+ = 0. we obtain
YV, U, =Y,

N OET(x1.0,)
3 i T B w1y g 4006, < 0. (21)

t=1

which we can solve explicitly given our assumption that the expert networks are linear

6, = (R1) el (22)
where
< = th(”\( =)y, (23)
t=1
k AN k
R(’ ! = Zh.l )(t)'\.f(st ))—]‘\-tr. (21)
t=1
and
(X“))T 0 0 I 1 0 L 0
_‘[ = . . . | . (2‘—))
0 e 0 (YT e s 0

Note that R( is invertible with probability one when the sample size .V is sufficient!ly large.

Finally, lot us consider the update for 8,. Jordan and Jacobs (in press) observed that the
gating network is a specific form of a gonerdlued linear model. in particular a multinomial logit
model (cf. McCullagh & Nelder. 1984). Multinomial logit models can be fit efficiently with
a variant of Newton'’s method knowu as iteratively rewcighted least squares (IRLS). For the
purposes of the current paper. we simply write the generic form of a Newton update and refer
the reader to Jordan and Jacobs (in press) for further details on IRLS. Note also that Jordan
and Jacobs (in press) assume that the inner loop of IRLS fitting runs to completion. In the
current paper we address only the case in which a single IRLS step is taken in the inner loop.
The form of this IRLS step is generalized to allow a learning rate parameter.!

"Thus the algorithm that we analvze in this paper is. strictly speaking. a GEM algorithm.




The update for the gating network parameters is obtained as follows. Denote the gradient
vector at iteration k as

AN \
. . )s
) = E E [hﬁ“ ~- 4, (x'", 9(“)} ! (26)

k
t=1t =t )0‘ a

and the Hessian matrix at iteration b as

N K
s
(k) _ () glkhyry _ (1 gt ! 97
R = 2 2 0 x -0 =g x. 6, ],0’(,0, (27)

Then the generalized IRLS update is given as follows
eflk-%l) - 0}/\‘) + 7.’1( Rg/‘")_le}/‘". (2%

where =, is a learning rate.
In summary. the parameter update for the model Eq. (4) is given as follows

Algorithm 1
1. (The E step): Compute the hgk)(f)"s by Eq. (16).
2. (The M step): Compute S&Hl) by Eq. (20). compute 0#*” by Eq. (28). and also

compute 0( +1) J=1.---. K by Eq. (22).

Before closing this section. let us return to the switching regression model (Eq. 9). Following
the same procedure as above. we obtain the following EM algorithm for switching regression.

Algorithm 2

L. (The E step): Compute the h;“(!)'s by

nOx) Py, o)

AT : 29
= oM xt)pryixtn, g% =

2. (The M step): Compute E_(/H'” by Lq. (20). and let
a0ty = p Wy, (30)

Obtain 0(/£'+l)_j = l.---. K in the same manner as for model Eq. (4).

We see that the EM algorithm for switching regression is simpler. because the n( )(x“))'s
are not constrained through a common parameter 8, as in the ME model.




Theoretical convergence results

In this section we provide a nmber of convergence resilts for the algorithan presented in the
previous section. We stady both the convergence and the convergence rate of the algorithm.
In the Appendix we extend these results 1o g number of related algorithms.

We begin with a convergence theore that establishies a relationship hetween the EA algo-
rithm and gradient ascent.

Theorem 1 For the wmodcd gicen by Eq. () and the learving algorilon giccn by Algorvithoe 1,
we have:

'“\) ()l

(h+1) Ky _
9, -0, = h 8, lg o
| | ol
6{/A+I) _0(,“ . ,,/M )‘0 !0 gt j= 1. .
: : I
| | ol :
O T A o rou 1 IOV S BTN (3
dees =y

where 1= 1n L ois given by Eq. (6). Eq. () and Eq. (1), and “eec[A]” denotes the cector
oblained by stacking the colummn vectors of the matiir A,

Morcover, assuming that the training sct Y is gencrated by the mirtare model of Fys. (}])
and (1) and assuming that the wumber N is sufficiently large. we have that [’,t“ is a positive
definite matrir. and 1’( ) 1’(“ J= 1o 0K oare positive definite matriccs with probability or: .
Specifically. they take Ih( jull()umq values:

(i) 1’35“ = ;:,(l{_f,A))_' with R_,, given by Fq. (28).

fii) For y=1.---. . lf’“") = (li’ikj)‘I with R.(/“ given by Fqg. (22).

fici) For j=1.--- K.

2
» k) _ - \ (L) \‘(k) -2
Iy, = S (32)
2ot=1
where = 7 denotes the Kronecker product. For a m x n matrie A and ¢ X m mairiec B, the

Kronceker product A B is defined as

ll]llf (llgl; (Il,!lf
anbB  an,B - ay, B

”mIB ”m’I} ”mnB

Proof. From Eqs. (G}, (4} and (1), tor { = In . we obtaiu the following derivatives:

ol o, ~ ii{ g, (x1.0 Py O)x gty Dg,(x!").6,)/06,], .
08, =" prerl SN AN VAT m|xm 6'") g,(x(1.04)
NN
- (+) (1 gtk .
= ;;[hj (1) —g,x". 6, )] )0(, ”1»" (33)
=1 =
ol | - !/./(x“).9}1“)1’(y(')|x(”.0(,“) i)l’(y“’lx“’.e.,)/()0»,|01:Hn,“
Y L - - y g :
()04/ =0 P le\zl !/,'(X“)-Qf,“)1'()’“)1"“)-0”) [)(y(r)]x(l)_ei(‘“\!

9




.‘ ) . . l) v .
= Yoh i, T e ).

[ I | (31)

L k)| one
il g (x.00) Py i x 610 oPy X efox |
oy, L=ut Z{ N

Il

g (x1.8%) Py xn ') Prytxto.6')

!

J =1l K. (35)

We now prove points (i), (i) and (iii).

(1) Comparing Eq. (33) with Eq. (28) it follows that I’“) =0 I{_,(,k’)”‘. To show that I’_,ik)
is positive definite. we show that I?‘f, Vis positive definite.? For an arbitrary vector u. from Eq.
(2%) we have

NOR
T k), () gth) (1) gtk) gy T 95 0%
u' R"'a = x'". 6! | — g (x'".0 — L q
p ;I:l.fm s =0, 0.0 g et
K _
= Z gA,'(x“).OfJ"")[l - _(/',-(x(".fo'))]v7v > 0.
t=1 =1

since gj_j(x(’).Of,A")[l - g‘,'(x(”.el,(]“)} > 0. Equality holds iu the above equation onlv when
v = {(’)s‘,/img‘]u = 0 for any u. which is impossible. Thus we have established that R_f,k) (and
thus also (Rf,k))‘l) is positive definite.

(i1) Let ('j(k). Rl(lk) be given by Eq. (22). From Eq. {21) and Eq. (34). we obtain

(k) g ol
[(J —(11)_/ ] To—j(’J_G.L. _]—l [
Furthermore. it follows from Eq. (22) that
(A+1) (k) (Kyy—1 k) (k)
0 = 07 +(R) 1( -0,
= ' 4 (Rt "“ (R‘“)o‘“] (36)

That is. we have
, Ol

(k+1) _ plk) (A}, -
0./ - 04/ + R/ ) ()0 b, -—(;

. J= 10K
and Pf“ = (R(lm)'l
We now prove that 1{(,“ is positive definite. For an arbitrary vector u. from Eq. (22 ) we

have

u R‘“u—Zh‘“ X2 N Ty Z/;‘” WISy > 0.

t=1

YA matrix A is positive definite if and only if 47! is positive definite,

10

/I“)(f)(\ (A))—l{\ (h) [ym . f/(x(f).a«/k)my(z) _ f/(x(r)_ol(/;;))]1'}(!(1«)}_




From the note immediately following Eq. (16)). we know that :‘,H given by Eq. (20) is positive
detinite and invertible for eacli & with probability one. Thus. vith probability one. the equality
of the above equation holds only when v = X, u = 0 for any u. which is impossible. Thus we
have established that R(/k) {and thus also (A {(“)") is positive definite with probability one.

\()

(iii) We consider Lq. (20) for updating ¥ This equation can be expanded as follows

§:~(/A+1) - :§A)+ - (L) th u) f(x“’ 0 )][y(” f,,(X“’-O,)]’ _ S.(/“
s ” ) =1
9% (A)
— .\_:(l‘) - " \*(I‘, (3‘-)

J

z,_ll“’

where

‘ ZI(’\)(”(\‘U\))—I{\‘(“ [ {t) f(x(t) 0(“)][ (1)__fl_(x(!).oh(lk))]’l'}(\_:k(/k))—l

I—l

It follows from Eq. (35) that

ol
"\_: - Ao
J (} IV — (J
That is. we have
Heik) ,
ok _ 25 (” (k)

g, =tk =y

—J k L=
ST

Utilizing the identity rec{ABC] = (C'T - A)ree[B]. we obtain

N('[S('k+l)] - 2_(?*“‘) - S(“) o l¢ (k)
J Z h(A) 7%, g, =gt
t=1 a
. plk) _ vk (k) carvar far arhit ra e T w .
Thus Fx. (_J ¥, Moreover. for an arbitrary matrix {'. we have
& Z IU\) J J A
t=1

eecCTEW s el [0] = (=W sV T)

J
= tr((S.(/AV)(')T(S.(I“[')) = 1'(('[S£~k)l']Tlv( c[ﬁgk')('] >0

where the equality holds only when S(- 't = 0. which is impossible with probability one since

[’ is arbitrary, and "(l 7

is. as indicated above. positive definite with probability one. Thus we
have established that P‘ is positive definite with probability one. m]

Theorem 1 can be used to establish a relationship between the step taken by the EM
algorithm and the direction of steepest ascent. Recall that for a positive matrix B. we have

%TB% > 0. This implies the following corollary.

Corollary 1 Assume that the training set {y.x" 1 = 1.--- N} comes from the mirture
model of Egs. (4) and (1) and that N is sufficiently large. With probability one. the scarch
direction of the EM algorithm has a posilive projection on the gradient ascent searching divection

ofl =InlL.
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That is. the EM algorithim can be viewed as a modilied gradient ascent algorithm for
maximizing / = lu L. From Theorem 1. B changes with the iteration step Ao thus. the EM
algorithm can also be regarded as a variable metric gradient ascent algorithm. This algorithm
searches in an uphill direction. so if the learning rate is appropriate. the searching process will
converge to a local maximum or a saddle poiut of the likelihood [ = tn L.

Similar results have been obtained for unsupervised mixture models by Xu and Jordan
(1993) and for Hidden Markov Models by Bawm and Sell (196%). See Xu and Jordan (1993) for
further discussion of the relationships between these theorems.

We now utilize a result from Nu and Jordan (1993) to establish the convergence of the
parameters O We also provide convergence rates for both (@) and @),

Theorem 2 Assume that the training set Y is gencrated by the micture modcl of Egs. (§)(1)
and that N is sufficiently large. Assume further that Xy.--- Sy are diagonal and let ve, be a
vector consisting of the diagonal elements of ¥ ;.

Let us denote

=106l .0 .ve. - ve]

-k

:32
TN (k 5 ) . _ () l(@)
P—(lld.g[Pg )-PI~"'~}l\~PL1-"'-PSK]- and H(@)— W

Furthermore. assume thal on a given domain Dg

(i) —“’i—(;g'r —)é-’—(—ofr J=1lo-- K. 1= L---.m exist and are continuous:
6, .

(i) the H(ssmn mahi.r H(©) is negative definite:

(1ii) @ is a local marimum of (@). and @ € Dg.

Then with probability one.

(1) Letting —M.—m ( here M > m > 0) be the minimuwm and marimum eigenvalues
of the negative definite matrix (Pﬁ)TH(@)(PIT) (or equivalently the minimum and marimum
eigenvalues of PH(@). since we have PHe = Je from (P;‘ YT H Pre= Ae). we have

1(@%) - (@) < rF[1I(@*) - 1(@y))]. (38)
. gy 12
jPben - o)) < 12y Zier) - 1ou). (39)
where r =1 — (1 - )m, < 1. We also have 0 < |r| < 1 when M < 2.

(2) For any znz!ml point @ € Dg. limp_ O = @ when M < 2.

Proof. As indicated earlier. when the training set {y0.x{) ¢ = 1..... N'} is generated
from the mixture model of Egs. (4){(1) and V is sufficiently large. S(jk) remains positive definite
during the learning process. Thus. under the condition (i). it follows from Egs. (6). (1) and
(1) that H(@) exists and remains continuous on Dg. Expanding the log likelihood in a Tavlor
expansion, we have

@) -1(e) = (O - @*)T‘”(@)

lo—e" + (@ O\ TH(@® +£{O-607))6 -6

with 0 < £ < 1. Since ﬂggll(_):@- = 0. we have

1
(@)~ (@) = 5(O - @ ) HO +£O-0")6-67). (40)
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From Theorem 1 we know that P is positive definite. Furthermore, from condition (ii).
. . . ey e . Lo Lo Lo .
H (@) is negative definite on l)@. Fhis implies that P2 exists and (P= WV H(@®)PT)is negative
definite on Dg. Utilizing the Ravleigh quotient we obtain that for any u.

~ M2 < u"(PHTH@O)(PFyu < ~miljull. (41)
Substituting Eq. (41) into Eq. (10). we obtain
| . . ..
(©)-1(©) =50 -0 (P=) (P HO + 4O -0 )P P 1 O-07) (42
_ ‘I _ 1 = 9
@) - 1@ ) > - P~ (@ - 07)|* (43)

Moreover. we have

(@) ()I(@)

—ml|PTH@ - e 2 |@-0) == - —="lg.e"]
> P E e - "o
Thus
IPte-en) < Lpt 22
Together with Eq. (-13). we obtain
O 2y ) - o), (44)

On the other hand. we also have

Toz (@)

1@)-1et) = @-eh) e lo- @m+-(@ oI eW +¢@ -0 ) e -t

with 0 < € < 1. By Theorem 1. we know that for the EM algorithm. @%+" _ @*) =

i vestes . . . .
Pl?%'@:@‘“‘ Utilizing this result in the above equation. we obtain

et~ et = ||P”)[(@ lo_e
E(Pf%])_(é@_'@ o (PHTHOW Le10 - 0Pt o o)

> (- PR (45)
Combining Eq. (45) and Eq. {44). we obtain

(@) — (@) > (1—1)2’” 1O™) - 1{&7)]
and furthermore

16wy~ ey > 1-1- )2 o) - o)
> [1-(1- ” 2'" =14 i©0) - 1107, (16)
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Let r = [1 — (1 - %)2—’\'} . Multiplving both sides of the above equation by negative one.
we obtain Eq. (38). In addition. it is easy to verify that 0 < [r| < | when M < 2 (recall that
M > m). Furthermore. it follows from Eq. (41) and Eq. (42) that we have

/(@(L-)) . ](@-) < _%'“p—f:(@(kb _ @-)”_’
which. by kq. (46). becomes

m i

—51P7H @ - e%)|F 2 i1 @y) - 1(67)]

. . g2 [ 2 =
IP=3@% - @ < Irl“‘\/E[”@ )~ 1€

which is just Eq. (39). In addition, when M < 2. {r| < I. we have limj_ 0% = @ since P
is positive definite. a

We see from this theorem that the EM algorithm converges linearly. Moreover. the speed of
convergence depends on the difference between 3 and m: the smaller the difference. the faster
the convergence.

Theoretical analysis of an EM algorithm for the hierarchical
mixture of experts architecture

An EM algorithm for training the hierarchical architecture

The ME architecture can be viewed as an architecture for splitting the input space into regions
in which different local functions are fit. The hierarchical mixture of experts (HME) architecture
generalizes this idea to a nested model in which regions in the input space are split recursively
into subregions (Jordan & Jacobs, 1992). The resulting tree-structured architecture can be
viewed as a multi-resolution function approximator in which smoothed piecewise functions are
fit at a variety of levels of resolution.

As shown in Figure 2. the HME architecture is a tree. In this tree. each terminal node is an
expert network. and each nonterminal node is a root of a subtree which itself corresponds to
an HME architecture. At every nonterminal node in the tree there is a gating network which is
responsible for the topmost split of the HME architecture rooted at that node. All of the expert
networks and the gating networks in the architecture have the same input vector x € R". In
the remainder of this section. as in Jordan and Jacobs (in press}. we consider the case in which
the expert networks and the gating networks are generalized linear models. Furthermore. for
simplicity. we consider only the case in which the probability model for the experts is gaussian.

Let us denote a node at depth r by vjy;,..;,. This node is the /.-th daughter of the node
Cigiy-iy_;- 1he root node of the tree is r;j;. The number of branches emitted from v, ...;, is
denoted by N, ..;,. For simplicity. we can omit ¢y and write v; .., and K; . . In addition.
the output of the subtree rooted at r;,..;, is denoted

I\',l .
Yivoin = 3 Gireiniyr (X0 Wiy oigiy
tr41=1
where g; .;.i ., is the gating coefficient generated by the gating network attached at ;...
This coeflicient satisfies

I\’.l...,,
{,
Z gi1'~'l.rl'r+1 (x‘ 0‘{;]...;1 ) = 1'
try1=1
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Figure 2: A two-level hierarchical mixture of experts. To form a deeper tree. each expert is
expanded recursively into a gating network and a set of sub-experts.

for any x. where @ _, is the parameter vector of the gating network.

iy
Given a training set }' = {(x(9.y), ¢ = 1..... N}, we want to maximize the likelihood
function (cf. Eq. 6). that is.

N
L= Py R =) = [T Py ).
t=1

Expanding the probabilitv model. we have

Ky
Py ) = 3 gi (x.62) Py x". vy )
=1

where

kK, ¢
Ziz.—il giliz(x(i)‘efl )P(y“’lx(”‘ Uiy ).
if v;, is a nonterminal node,

()5 () .y =
Py x"oe) = _;_[yol)_f,l(x(:).g'l”TS'—]J[ym_ﬂl(xm_g'l)”.

\ (47)
(2r det &, ) 2¢

if v;, is a terminal node
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and recursively

K, . ,
S mt Yo, (%0 Py
if v,,...,, Is a nonterminal nnde.
. _1 _1 lly_f’ , lll. \ , FL‘-’I vt
(2rdet X, i) poim2ly o (X8 W

‘
if v

- Lty e

Py 1x e ) =

‘l

Lx6

i1i, 15 a terminal node
(I8)
where f;.; (...) is parameterized function implemented by the expert network at terminal node
iyt~ and 0; . o X L are the parameters of this expert network: P(y'"xt v, ) is the
probability that y!*) is generated from the probability model rooted at v;,..;, when x!") is the
input.
To derive an EM algorithm for the HME architecture. we attach a set of indicator random

variables to each nonterminal node v, ..,

IO 1. if y( is generated by the subtree rooted at ¢, ...,
T 1 0. otherwise.

The missing data },,;s consists of all of the indicator variables attached to the nonterminal
nodes throughout the tree. In addition. we denote by y,-';’_‘fl-r the set consisting of the indicator
variables attached to the nonterminal nodes in the subtree rooted at v;,...;,

We define the distribution of the complete data Z = {}. )5} as follows

N Ky
(t)_ g ny
=TT T loi, (0. 6% ) P24, 1%, )] (49)
t=1:=1
where
) lit)
,,—_—][an(x og )P( Ty 12lx l'iuz) 12
if v;, is a nonternuna,l node
P(Z 1xt vy = Iy . 50
( t1| 11) (27r([({‘_‘- )_L —%[y“'—f,,(x"'.e.,)]TS,]‘[y'”—f,l(X‘”.O.,)]}. ( )
if v;, is a terminal node
and recursively
I\',1 . t) 1:“4 [
H ,+1_ [J'] 1r’r+l(x 0.191 )P(u‘l 'rlr+l|x ‘71 ‘rlr+] )] ! Tl
) if v;,..; Isa nonternlmal node.
P(Zi . 1xWov) = iy
( ! 'Tl I ") (277(1(th . )—'l)'({_%[y“)_f'l 'T(x“)'o'l "r)] [y“) ] 'f(x(”'o'l e MY
—lyety < -
if v;,...;, is a terminal node
(51)

It is not difficult to verifv that this distribution satisfies Eq. (10) as required.
We now compute the Q function as required by the E step of the EM algorithm. From Eq.
(11). we obtain
N Ky
Q(@10") =33 s (1) {lnfg;, (162 )] + In F;, }

=1 I]—l

where -
g, (x(0, @2 PRI (00 )

K, k ; :
S0 g, (x(0. @2 Py 0]x(0 v )

I]=]

16




K, k . e . .
[ Y ’ Hinly:,., (x'1. 0’ N4+ 1In £} if v, is a nonterminal node.
1= l Un 1 pic 1

nk;, = =1 1 _
! 1 In P(y“)lx“). v if #,, is a terminal node
n9 (1) = K — 1] = gurrs(x(. O0) Py O (53)
) = = = . %
L2 l]l> ]\, gk .
o go (x0. @ PE yx v, )
and recursively
K, ty (l\) 4 B
> '+‘1_, h ,,l’“(l){lu[g,',...,,,,H(x.OfI_”,-r N+ InFy 0 )
In E: _ lf )., 15 a nonterminal node.
{
: In Py Oxt9 e, ).
if ¢;,...;, is a terminal node
(k) _ {t) . Ky gty _ (t) (t)  _
Wl () = EML) o VO L = LT = L =]
f, A'
B !/1,-~~iri,+,(X“)-off...),-, )P “’\x“’- Ciyeriyis g1 ) (51)
= K, 7% . -
Zi,+ll_] gll l1-l,~+l(x(”'0;']l...,', )P(A)(y“)lx“)' pl‘l"'l‘yl‘,.}l)

where Of'l(f_)” is the estimate of 0:41,_,,-, at iteration k. P(y(”|xm. i i, ) is given by Eqgs. (47)and
(48) and P¥) (y)|x!D), v,.i, ) means that the probability is determined with all the parameters
in the subtree rooted at v;,..;, being fixed at the estimates obtained in iteration A.
Proceeding now to the M step of the EM algorithm. we obtain parameter updates by
optimizing the @ function. If the node v;,...;, is a terminal node. by setting the partial derivative

of Q with respect to ¥, ..;, equal to zero, we obtain an update for the covariance matrices

k) _ S AP ORY @y b Oy = By (.05, Ny = £y, (x0.8;,,)]T

o N RS ORE) @y-nE) ()

11 iy

(55)
To obtain an update for the parameters of the expert networks we differentiate @ with respect
to 6;,...;, and find that we must solve the following equation

iy

N AT (xl) @
' of. < . .0; ..,
E:h(k)(f)hff),( ) h(f) (1) iy (X ! ) !

A s 0 o = U. 56
t=1 r 00,‘1...ir ’r[y (x 1 ,)] 0 (76)

In the case of linear expert networks. this equation is a = ~ighted least squares equation. which
can be solved as follows

k1 k) o —1.(k
0t = (R el

where N
el =3 B ORE) (1) hE) X, )iy,
and =
Ry = Zh“’ B )b xus® KT (57)

Finally. for any nontermma] node 1, ..;, . setting the partial derivative of ¢ with respect to

0";’1,_,“ equal to zero. we have that Oy(H'” is the solution of the following nonlinear system
K., s
k k k k . Sipeir .
Zh‘ (1) H0, (1) Y D (0 = gy (0.8, )]—‘,g—ﬁ =0.  (58)
=1 d '
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As in the case of the one-level MLE architecture (¢f. Eq. (26) aud Eq. (28)). we obtain the
following Newtou step for updating the gating network parameters

glh+1 qlk gk —1 _ulk ~
o) =@ 4 k) e (59)
where
N N,
{ 1\ A A l\' !, A
R Z O (R ) YT g (x . ) )x
t=1 4y =1
,(A) Isipoiy gy 08000, ,
X L= gy, (x10.6777) )] . Ll (60)
g Y o) yoet)
and

gk k k K
e;'l(...),-, = Zh( )(f)h(“), (t)--- Ifl),_“(I)x
t=1
K. .., R
(k) s, ., .
X Z [h ly 41 )“g,'l,..,‘,_“(x oxgl )]# (61)
ir+1—1 ‘)(0"1...,,)

As in the case of the one-level architecture (cf. Eq. (28)) the algorithm in Eq. (59) is
essentially the same as the IRLS algorithm suggested by Jordan and Jacobs (in press). although
we have introduced a learning rate parameter and we restrict the update to a single step.

In summary, the EM algorithm for the HME architecture is given as follows.

Algorithm 3

1. (The E step): Compute the hflk)(t) Rt*) (#).- ~hf'f~)--i,(” by Eqgs. (52). (53) and (54).

112

2. (The M step): Compute the E(1+ ) by Eq. (55). compute the O{I“H) by Eq. (59). and

t

compute the 051:7) by Eq. (57).

We can think of the E step as assigning credit (posterior probability) to various branches of the
tree for each data point and the M step as solving weighted least squares problems in which
the weights are given by the posterior probabilities assigned in the E step. The updates for the
gating networks simply cache away the posteriors.

Theoretical convergence results

Much of the analysis developed in Section 2.2 can be extended to cover the EM algorithm for
the HME architecture. In this subsection we extend Theorem 1 and Theorem 2 to cover the
hierarchical case. The results are given as Theorems 3 and 1. respectively.

We first compute the derivatives of the Q function

0 N .
WQ—=Z WOy By X

11ty t=1
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Ny,

v , IS |
X Z [htf')‘"wl(” - y,[__,,,“(x(”_&fl”_“ )]_(;57—31 (62)
He1=1 e
\
()( I L &
"’9.2 =3 nyay iy nl) x
S l' t=1
of T (xne, .. l
1ty i & —_ (f) : “) .
X l 00, ..., > 1,...,,[)’ ~f, .., x".8, ..). (63)
00 1 N , \
S 32 e @yt vt
AJFI 2
X {S [y(’) { LAx {t) oll -l )][ ) _ 1| ,,(X“) o’l i )] }\ —l . (61)
and the derivatives of the log likelthood
ol N b " (A)
087 f 0;’l ,,:u-)ggl . :Z (r)/”“(r) ()X
Lyoeely t=l
l\'rl 1y (}\) “)(/\) ()
fovdy 41 -
X l%:_l[ll 1+1 -4 z+1(x 0 : )] )oJ : ng ”___u;g,vl L (65)
aQ | _ z\ill(l\)( )h(L)( e ’(;\) (1)
00,‘,. i 0:1 1y :0":"“” - o e )
ofT, (x0.8;..) |
(1ot (lp ) }_:j-l ) (ty _ £ .. X(’).OU\) L 66
00, ..., |0,1, '7:‘0(1:‘) y ,,...,r[y i eein ( i, ] (66)
Q N T " "
; Eil"'ir» | o= \—‘l‘-)‘ . 'Z‘Z Illlz t)- "hil"'ir“)(gil-..,’, )—lx

Wk k k “ S
x {Lfl.’..i,—[y“’—f;,...,-,( 0.6 My = £ (x0T Hs®) )16

Based on these two sets of derivatives. we follow the same line of thought as in the proof of
Theorem 1 to establish the following theorem for the HME architecture.

Theorem 3 For the HME architecture of Eqs. (47) and (48). with the parameter updates given
by Algorithm 3. we have that for every node v;, ...;,

(k1) _ gotk)  _ path) al
O O = Pl er o —on, -
‘11 T T
(k+1) _ pfk) k) ()I
0., —-6,.. = ", 00, . 6, . =6
. v(A+1) , v(}‘) ‘ _ () ()I "
l(([ ] ”([ ’ "] - PS'] 2 (')I‘(('[S,'lu.,',]lsn :,=$‘.f' o (6%)

where =1 L is defined by Eqs. (6). (47) and (48).
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Moreover. assuming that the training set' Y is generated by the HME moded of Fys. (47)
and (48). and that the number N is sufficiently large. then I’f’l(f'_f’ (s a positive definite matrir.

and P,»‘f:}, . P\(‘k) are positive definite matriccs with probability one. Specifically. the y take
L} —‘l‘

Ty

the following values:
i I""(H = -4 (H"’(“ )~L with Jr given by Lq. (59).
] i y Ly

AV B { SRR e
(i) 1’(“ = (Rt’f.).-,,. )~ with Hff",)_,l-' given by Eq. (57).
(iit) For P‘(«“ . we have

—Jll 1

'

NG 2 (k) (k) .
LSO MR T S Sl (69)
S e ort ay -t

where " denotes the Kronccker pm(lm‘l as defined in Theorem 3.

From Theorem 5. we can again reach Corollary 1. Again. we see that the EM algorithm
for training the HME architecture is a type of variable metric gradient ascent algorithm for
maximizing { = In L.

Finally. we can also generalize Theorem 2 as follows.

Theorem 4 Assume that the training set Y is generated by the HAME model of Eqs. (47) and
(48) and that the number N is sufficiently large. Assume that ¥, .
is a vector consisting of the diagonal elements of ¥; .. .

Let © be a veetor produced by cascading every w(tm Vijiy = [(0?1.“11r )T.OZ__,- vl

tr _4,‘

T ty

is diagonal and ve,
]T
i, in the HME architecture. Let P be a diagonal block matrix with each dmgon.al

item being a positive diagonal block matrir D" = diag[P} ;. P, P, . ]. The items of

R T

every node vy, ...;
1oty
® and P are arranged in such a way that D,-bl,..,-,

Furthermore. assume that on a given domain Dg

(i) The parameterized functions of all the expert networks and thc gating networks have
second order continuous derivatives. ,

(ii) The Hessian matrir H(@) = ﬁ% is negative definite:

(iit) @ is a local maximum of l(((-D).L(znlI @ € Dg.

Then we have the same conclusion as given in Theorem 2. That is

(1) Letting —M.—m ( here M > m > 0) be the minimum and marimum cigenvalues of

in P corresponds to v,,...;, in ©.

r

the negatively definite matriz (P%)TH(@)(Pé) (or equivalently the minimum and marimum
eigenvalues of PH(®), since we have PHe = Ae from (P%)THP%e = Ae). we have

1(07) ~ 1(@W)) < +k[1(@7) — 1(@y)].

Irhie e 12/ 2 @) - 1@u).

where 1 =1 — (1 — ) < 1. We also have 0 < |r| < I when M < 2.
(2) For any inmal pomt O € Dg. limp_. O%) = @ when M < 2.

We should point out that the similarity in the conclusions of Theorem 2 and Theorem 4 does
not mean that the EM algorithm for the hierarchical architecture has the same convergence
rate as that for the one-level architecture. In the two cases the matrix P is different. and thus
M. m.r are also different. This results in different convergence rates. Indeed. in practice. the
hierarchical architecture is usually faster. The similarity in the conclusions of the two theorems
does mean. however. that the convergence rates for both the algorithms are of the same (linear)
order.
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Variants of the EM Algorithm and Simulations

Variants of the EM algorithm

For convenience. we denote an EM update of the parameter vector as follows
o'+ = (%)), (70)

From Theorems | and 2 and Theorems 3 and 1. we see that this update is actually a line search
method along an ascent direction of [ = In L

(k+1) _ glk) (“‘)I -
6 =6 +P |0 0" (71)

with Pék) being a positive definite matrix evaluated at 0'"). Moreover this update has a linear
convergence rate. This link between the EMN algorithm and conventional gradient-based opti-
mization techniques suggests the possibility of using acceleration techniques for improving the
convergence. In the sequel we suggest two such acceleration techniques.

Modified line search

Eq. (71) can be replaced by a modified line search

e+l — g(k‘)+,\kdk

d, = P“)m

k) — (%) (k)
b oglo = 0% = U,(0%) — o). (

-1
N

where A; 1s a stepsize which is optimized by maximizing 1(OX) + Ad,) with respect to Ay via
a one-dimensional search (e.g.. Fibonacci search).

The implementation of a one-dimensional optimization method at every parameter update
is typically expensive. One often uses an inaccurate line search by decreasing (e.g.. A; — rAy)
or increasing (e.g.. Ay — —/\A) the stepsize heuristically according to a stopping rule. One
frequently used stopping rule is the so-called Goldstein test {Luenberger. 1984). The Goldstein
test is implemented as follows

(M) < KO)+ <l'(0)Ag.

I(Ar) > I(O)dl( —-—")1’( )As

’ _ T -
I'o) = /\00|0 ot (13)

where 0 < ¢ < | 15 a specified error bound.
Interestingly. if we rewrite the update as

O+ = gtk) L A [0,(8%)) — 0] = (1 — A)0™) + M\ 07, (0)).
we find that Eq. (72) is identical to the speedup technique for the EM algorithm studied

by Peters & Walker (1978a.b). Meilijson(1989) and Redner & Walker (1984). These authors
reported a significant speedup for an appropriately selected A even without the Goldstein test.
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A speeding up formula based on locally linearization
Using a first-order Tavior expausion of 1'[,(0“") aroutd 8%~V we Lave. approximately,
U0 = 0,08 + Bt — 1)
gk+H — 01‘\‘) + [g(g(k) _ 0(/\'—”)

or

A8, = BAG,_,. (v 1)
where B = ;fé‘IO = 6" and AG; = 6+ — @M,

For the matrix B. we have the following characteristic equation

det( M = B) = N + N ™ b A b, = N Y AT =0
=1

= (=00 Y AL AL = L)

lSl|<1_)<"-iJSIi

where A;,.7 = 1.---.n are the eigenvalues of 5. It follows from the (‘aylev-Hamilton theorem
that l
B" + ZIIJB.”“J. =0
j=1
Multiplving by A@y_, (A > n). we have
B"NO_, + Y 4B A6, =0. (75)
=1
From Eq. (74). we obtain
A0, =BAO,_; 1= -=B"'A_,. j=0.1.---.n.
Substituting into E¢. {75). we have
AG, + Z /IJ'AOL._j = 0. (76)
J=1

Assuming that in comparison with the first [ eigenvalues. the remaining eigenvalues can be
neglected. we have approximatelv

] l
Ny Z,“j/\”_'l =0. B"+ lejBn—.i =90

J=1 J=1
and correspondingly
I
0+ > ;A0 =0. i=kk+1.--- (77)
J=1

The approximation becomes exact when the last n — / eigenvalues are zero.
By minimizing ||6x + 25-:] 1, A0 ;||*. we obtain the following linear equation for solving

po=[g.o)”

S M = Sg. S = [S,‘j][xl. Sg = [—5’01. — 802 . —80[]7‘.
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ST N = (Aeg_‘)l(AO;\_ ). (TN

Moreover, we have

~ [ [ AN [ AN
NN A0 = N0+ Y A0+ Y e
=k y=0 =0 (=h+1 g=li=k4]
where gy = 1. From Eq. (77) and
Z A8, = -\ + 67
(=h+1

(where @ = lim;_ . A6, ). we have

i
—AO 1+ 0+ D (=N, +607) = 0.

g=1
Using this equation together with
{ l -1 l
S A0, = M Y, - S Y A0
J=0 J=U =0 y=i1+1

we finally obtain

Z{';:J[Z?,ziﬂ I‘J]Aok—z

L (79)
+1 k41 7
ZJ:U /l_/
This formula can be used for speeding up the EM algorithm in two ways.
e Given an initial 8y. we compute via the EM update 843.6,.---.0;4,. and then from 8,. j =
1.---.l. we solve py.- -y utilizing Eq. (78). This yields a new 87, via Eq. (79). We

then let @y = 07, and repeat the cycle.

o Instead of starting a new cycle after obtaining 87 ,. we simply let 8,4, = 67, ,. and use
the EM update (Eq. 70) to obtain a new 6;4,. then we use 8,.6,.---.0,4, to get a 67 ,.
Similarlyv. after getting @7. &k > . we let 8, = 07 and use the EM update to gei a new
0;.41. and then use ;. _;.---.6;4) to get a 0,,.

Specificallv. when [ = 1. we have

A _ (26T Ny)
L+ (A0 1)T(20,_y)

0;:-4.1 :0k+ (R0)

In this case, the extra computation required by the acceleration technique is quite small. and
we recommend the use of this approach in practice.

Simulations

We conducted two sets of computer simulations to compare the performance of the EM al-
gorithm with the two variants described in the previous section. The training data for
each simulation consisted of 1000 data points generated from the piecewise linear function
y=ayr +ay+n. xr € [eporpland y = aje +ay + 0y x € [0 2], where ny is a gaussian
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random variable with zero mean and variance @ = 0.3, Training data were sampled from the
first function with probability 0.1 and from the second function with probability 0.6.

We studied a modular architecture with A = 2 expert networks. The experts were linear:
that is. f,(x19.8,) were linear functions [+.1]18,. For the gating net. we have

T
s, = [ 170,
where ¢, is given by Fq. 12). For simplicity. we updated 6, by gradient ascent

Q)

g N
! “’8.‘/4/ ( l )

(k+1) _ plk) .
0.’1.' - 0:1./ i
The learning rate parameter was set to r, = 0.05 for the first data set and r, = 0.002 for the
. - . k+1) .
second data set. We used Eq. (20) and Eq. (22) to update the parameters 0(/ + )._/ = 1.2 and
(r(H”.j = 1.2, respectively.
) . )
The initial values of Ofll;).Oit)).nfu).j = 1.2 were picked randomly. To compare the perfor-
mance of the algorithms. we let cach algorithm start from the same set of initial values.
The first data set (see Figure 3(a)) was generated using the following parameter values

al =08, a2=0.0 ) = ~1.0. o = 1.0, «f = —1.0. ¢, = 3.6, ¢) =2.0. 4 = 1.0.

The performance of the original algorithm. the modified line search variant with Ay = 1.1. the
modified line search variant with Ay = 0.5. and the algorithmm based on local linearization are
shown in Figures 1. 5. 6. and 7. respectively. As seen in Figures 4(a) and 5(a). the log likelihood
converged after 19 steps using both the original algorithm and the modified line search variant
with A = 1.1. When a smaller value was used { A, = 0.5). the algorithm converged after 24 steps
(Figure 6(a)). Trving other values of ;. we verified that Ay < I slows down the convergence.
while A > | may speed up the convergence (cf. Redner & Walker. 1981). We found. however.
that the outcome was quite sensitive to the selection of the value of A;. For example. setting
Ar = 1.2 led the algorithm to diverge. Allowing A; to be determined by the Goldstein test
(Eq. 73) vielded results similar to the original algorithm. but required more computer time.
Finally. Figure 7(a) shows that the algorithm based on locai linearization vielded substantially
improved convergence —the log likelihood converged atter only 8 steps.

Figures -1(b) and 4(c) show the evolution of the parameters for the first expert net and
the second expert net. respectively. Comparison of these figures to Figures 5(b) and 5(c)
shows that the original algorithm and the modified line search variant with A = 1.1 behaved
almost identically: @, converged to the correct solution after about IR steps in either case.
Figures 6(b) and 6(c) show the slowdown obtained by using A; = 0.5. Figures 7(b) and 7(c)
show the improved performance obtained using the local linearization algorithm. In this case.
the weight vectors converged to the correct values within v steps,

Panel (d) in each of the figures show the evolution of the estimated variances (Tfrrj The
results were similar to those for the expert net parameters. Again. the algorithm based on local
linearization vielded significantly faster convergence than the other algorithms.

A second simulation was run using the following parameter values (see Figure 3(b))

al =08, a2=0.-1 rp = =10, ;- =2.0. ¢) = —1.2, o}, = 2.4, 2} = 1.0, xp- = 1.0.

The results obtained in this simulation were similar to those obtained in the first simulation.
The EM algorithm converged in 11 steps and the local linearization algorithm converged in 6
steps.
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The results from a number of other simulation experiments confirmed the results reported
here. lu general the algorithm based on local linearization provided siguificantly faster con-
vergence than the original ENM algorithm. The modified line search variant did not appear to
converge faster (if the parameter Ay was fixed). We also tested gradient ascent in these exper-
iments and found that convergence was generally one to two arders of magnitude slower than
convergence of the EM algorithm and its variants. Moreover. convergence of gradient ascent
was rather sensitive to the learning rate and the initial values of the parameters.

Concluding remarks

Finite mixture models have become increasingly popular as models for unsupervised learuing.
paitly because thiey occupy an interesting niche between parametric and nonparametric ap-
proacles to statistical estimation. Mixture-based approaches are parametric in that particular
parametric forms must be chosen for the component deunsities. but thev can also be regarded as
nouparametric by allowing the number of components of the mixture to grow. The advantage of
this niche in statistical theory is that these models have much of the flexibility of nonparametric
approaches. but retain some of the analvtical advantages of parametric approaches (McLachlan
& Basford. 1988). Similar remarks can be made in the case of supervised learning: The ME
architecture and the HME architecture provide flexible models for general nonlinear regres-
sion while retaining a strong flavor of parametric statistics. The latter inodel. in particular.
compares favorably to decision tree models in this regard (Jordan & Jacobs. in press).

In the current paper we have contributed to the theorv of mixture-based supervised learning.
We have analyzed an EM algorithm for ME and HME architectures and provided theorems on
the convergence of this algorithm. In particular. we have shown that learning algorithm can be
regarded as a variable metric algorithm with its metric matrix P being positive definite. so that
the searching direction of the algorithm always has a positive projection on the gradient of the
log likelihood. We have shown that the algorithm converges linearly. with a rate determined
by the difference between the minimal and maximal eigenvalues of a negative definite matrix.

Similar results to those obtained here can also be obtained for the case of the unsupervised
learning of finite mixtures (Xu & Jordan. 1993).
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Appendix
The theoretical results presented in the main text show that the EM algorithm for the ME

and HME architectures converges linearly with a rate determined by the condition number of a
particular matrix. These results were obtained for a special case in which the expert networks
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are linear with a gaussian probability model and the gating networks are multinomial logit
models. In this section we discuss extensions of these results to other architectures.

We first note that Theorems 2 and 1 make no specific reference to the particular probability
models utilized in specifving the architecture. The results on convergence rate in these theorems
require only that the matrix P be positive definite. These theorems apply directly to other
architectures if the corresponding P matrices can be shown to be positive definite. We therefore
need only consider generalizations of Theorem 1. the theoremn which established the positive
definiteness of P for the generalized linear ME architectures. An analogous generalization of
Theorem 3 for the HME architectures can also be obtained.

Let us consider the case in which the function implemented by each expert network
(f,(x.6;)) is nonlinear in the parameters. We cousider two possible updates for the param-
eters: (1) a gradient algorithm

ot = o™ 4 5 el (X2)
where
N pl 1) ptk)
. L off(x0.ey .
k k (k) — k .
) = S M= s - £x .6 (x3)
t=1 J
and (2) a Newton algorithm:
(k1) _ k) | plk) =1 (k) ,
8" =0\ 44, (R Te), (84)
where
N ae T (1) glk) (k)
R(A):Z/I(I\)(f}()fj (X( .01 )S“‘) _lde(x(t)~0_l ). (.\‘5)
J P J ()0(’}\) J 0(051‘))7

where 4, > 0 is a learning rate.
These updates are covered by the following extension of Theorem 1.

Theorem 1A 1 For the model given by Eq. (4) and the updates given by Eq. (83) or Ey.
(83). we have:

6!+ _ gt = pM K.

ol .
1 35l gy =1

where P}k) is positive definite.

Proof. For the gradient descent algorithin. we have P = 4 ;1. which is obviously positive
g : J J P

definite because 5; > 0. For the Newton algorithm. we have that ij = “,J-(R(J“)“. We now
show that this matrix is positive definite. For an arbitrary vector u. we have

N 26T (k) » k)
TRy = 3 ROt SO b P06
J & J 003“ J 0(0.(,_1«-))7

Al k k

S T () ty
t=1

0.

v
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7 f! ‘xm.g;*')
"04'1\.

one. This is impossible for any u. So with probability one. R(/ ' (and thus (R(/ N1 also) is

Equality holds only when v = u = 0. since L‘/ Vis positive defiuite with probability

positive definite, O

Note that the Newton update (Eq. X3) is particularly appropriate for the case in which the
experts are generalized linear models (McCullagh & Nelder. 1983): that is. the case in which
£(x'.0,) = [f,1(x1.0,).---. f,1,(x'.8,)] (d, is the dimension of y) with

fJi(x(t)-aJ) = 1‘;1([0‘/.l~ o 'AOK/.M]TX(') + 0./.m+l )

where F;;(.) is a continuous univariate nonlinear function known as the link function. In this
case the Newton algorithm reduces to the IRLS algorithm. The extension to generalized linear
models also allows probability models from the generalized exponential family (cf. Jordan &
Jacobs. in press) and Theorem L.\ is applicable to this case as well.

We can also consider the case in which the gating network is nonlinear in the parameters.
Both the Newton update (IRLS update) and the gradient update are applicable in this case.
Theorem | already established that the Newton update for the gating network involves a positive
definite P, matrix. As in Theorem [A. the result for the gradient update is immediate.

33




