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Introduction

Although neural networks are capable il i)riliciplh of represening coiil)lex nioli•ear f'11c'li (AIs.

lhe ltiiie re'((ired to train a complex nietwork does not always, scale well with probleiii size
and lhe solution obt ained does not alwa vs reveal t le st rlict irre inI lhe probeiii . Moreover. it is

often difficult to express prior knowledge ii the la nguage of fully-coniected nieural networks.

Achieving betlier scaling behavior. beliter interprela])ilit 'v of* solulions anid better ways o" Iincor-
porating prior knowledge may req iire a more nodlular approach ii wvhihi ie learning prol(em

is decomposed into sub-p)roblemts. Such ait approach has been used wit h success ii I lie stat isl ics

literatire aild the machine learniing literattire. where decisioii- trreo algoritlhmis suclh as ('ART

and ID3 and inultivariate spline algorithms such as MARS have running lines that call be

orders of magnitude faster than neural network algorit hms and often yield simple. interpretable

solutions (Breiunan. Friedman. Olshet &- Stone. 198.1: Friedinan. 1991: Quinlan. 19S(6).

A general strategy for designilg iiodular learning svsteuis is to treat the problem as one
of combining multiple models. each of which is defined over a local region of lite input space.

.Jacobs. Jordan. Nowlan and Hinito (1991) introduced such a strategy with their "mixture of

experts" (ME) architecture for supervised learning. The architecture involves a set of function

approxittators ( 'expert networks") that are combined 1) a classifier (*"gating network" ). These
networks are trained simultaneously so as to splitt lie input space into regions where particular

experts can spedai/,. .Jordan and .Jacobs (1992) extended this approach to a recursively-defined
architecture in which a tree of gating networks combine the expert networks into successively

larger groupings that are defined over nested regions of the input space. This 'hierarchical
mixture of experts* (HNIE) architecture is closely related to the decision tree and multivariate

spline algorithms.
The problem of training a mixture of experts architecture can be treated as a maximun

likelihood estimation problem. Both Jacobs et al. (1991) and Jordan and Jacobs (1992) derived

learning algorithms by computing the gradient of the log likelihood for their respective archi-

tectures. Empirical tests revea.led that although the gradient approach succeeded in finding

reasonable parameter values in particular problems. the convergence rate was not significantly
better than that obtained by using gradient methods in multi-layered neural network archi-

tectures. The gradient approach did not appear to take advantage of the modularity of the

architecture. An alternative to the gradient approach was proposed by Jordan and Jacobs (in
press). who introduced an Expectation- Maximization (EM) algorithm for mixture of experts

architectures. EM is a general technique for maxirtuin likelihood estitnation that can often
yield simple and elegant algorithms (Baum. Petrie. Soules &- Weiss. 1970: )etnpster. Laird &

Rubin. 1977). For mixture of experts architectures, t he EM algorithmn decouples the estimation

process in a manner that fits well with the modular structure of the architecture. Moreover.

Jordan and Jacobs (in press) observed a significant speedup over gradient techniques.

In this paper. we provide further insight into the EM approach to mixtures of experts
architectures via a set of convergence theorems. We study a particular variant of the EM

algorithm proposed by 'Jordan and Jacobs (in press) and demonstrate a relationship between
this algorithm and gradient ascent. W\e also provide theorems on the convergeice rate of the

algorithm and provide explicit formulas for the constants.

The remainder of the paper is organized as follows. Section 2 introduces the ME model.

The EMI algorithm for this architecture is derived and two convergence theorems are presented.

Section 3 presents an analogous derivation and a set of convergence results for the tIME model.
Section 4 introduces two acceleration techniques for improving convergence and presents the

results of numerical experiments. Section 5 presents our conclusionts.

I
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Figure 1: The mixture of experts architecture. The total output it is the weighted sum of the
expert network outputs: it g= 1 P + !I21L2. where the weights are the gating network outputs
gi and 92.

Theoretical analysis of an EM algorithm for the mixture of
experts architecture

Network learning based on maximum likelihood estimation

We begin by studying the non-hierarchical case. As shown in Figure 1. the mixture of experts
(ME) architecture is comprised of K expert networks. each of which solves a function approx-
imation problem over a local region of the input space. To each expert network we associate
a probabilistic model that relates input vectors x C R" to output vectors y E B'". We denote
these probabilistic models as follows

P(ylx.Oj),j = 1.2.. .. K.

where the Oj are parameter vectors. Each of these probability densities is assunled to belong
to the exponential family of densities (Jordan &, Jacobs. in press). Tile jth expert network
produces as output a parameter vector ttj

p1J = fi(x.0 ), j = 1,2...hK.

which is the location parameter for tihe j"' probability density. In the current paper. as in
Jordan and Jacobs (in press). we treat the case in which the functions fý are linear in the

parameters. We extend our results to the case of experts that are nonlinear in the parameters
in the Appendix.

We also assume, for simplicity. that the probabilily*v densities P(yjx. 0,) are gaussian. in-
plying that the location parameter is simply the mean. We associate a covariance matrix E•.

2



with each extperit network. vielding I lhe following prohalhilistic itiodel for expert j

J'(ylx.O, ) = (2-, del. , 1" )-2 exp{-<y - f,(x.O, )]'-7''[y - f,(x.O, )]}. (1)

The MllE architect i1e also utilizes a auxiliary nIeltwork known as a gJll((iIu ir 'twk. wVhose job
it is to partit iol t lie iii put space into regionIs Corresplonindiig to Ilie various expert iielworks,. Thii Is
is (tone I)v assigning a proliatiilit t vector [Y 1 -!12--.. I I' to each poi I inI i lie I P space. IlI
particilar. the gathing net iinplemiientis a paralimeterized fulinctionl s : Bi" - lý anid a iiormiializingig

liinctioni g II" -- I? suich that

Y., = g,(x. ) - '.. (2)

which sat isfies
K

Sg./(x. 0) 1. for ally x. 0,. (3)

In tihe current paper we focus on the case in which 'he function s is linear (cf. Jordan ik- .Jacobs.

in press). In this case the boundaries gi = (;' are planar and tle fuiiction lg canl be viewed as a
smioot hed piecewise-planar partitioning of t lie inpult space.

Training data are assumled to he gelierated according_ to the following probability i'v odel.
We assume that for a given x. a label j is selected with lirobability P(jlx) = g.,(x. O,). All
output y is then chosen with prot)abilitY P(ylx. 0, ). Thus the total probability of observing y
from x is given by the following finite mlixtuire density

K K
P(yýx)= " Ptjlx)P(ylx.gj) = Eg./(x.O.Y)1>(ylx.O.,). (4)

A training set Y = (x(x). y()). t .1...-I} is assulned to he generated as an inldependent set
of draws from this mixture density. Thus the total probability oft lie training set. for a specified
set of input vectors {x(t)}i\-I. is given by the following likelihood function

L = P(jy(')}•'ljx(t)}• = I- P(YMI(O)x()()

t=1

N K= ~ J H -. ~(x (1). 0PY Mx~)O~) (6)

t=l j=l

The learning algorithms that we discuss are all niaxinium likelihood estimators. That is.
we treat learning as the problem of finding paraiieters 0 .. 0. and Ei. to maximize L. or. miore
convelliently, to maximize the log likelihood I liI L

N K
l(O.3y) = 3 In 3 .qi(xt').0O, )P~(yrtt )lxt ).O 0).

t=l .J=l

where 9 = [0g.0I.01.l..... 0K. I.S2...,- T-

Given the probability model in Eq. -4. the expected value of the output is given as follows

K

p =- E[ylx] -. (x. 0,)IL.j.

.3=



This motivates using the weighted out put of Ihe expert net\works a.-, IIe total out IpII of t iIe vMI.,
architecture ((f. Figture 1).

The model in Eqs. (-A) and (1) is a tinite gatissian iiixtutre lmodel. It is hnterestiing to
compare this model to a related gaiussiaii mixture model that is widely sttidied ill stla istics:
i.e.. the Iio(lel

p(X) x 1 1 =XI-. >. 0. 7. (
.1=1 .1=-1

The dlifference bet weein these imodels is clear: t lie a's ill Eq. ( I) are indepeiident of the input
vectors, while tihe .q,'s in Eq. (4) are condit tonal on x (ti hey represent lie probabilities P(j Ix)).
Thus model ( 7) represents a unconditional probability. appropriate for unsu pervised learning.
while model (4) represents a conditional probabilitv., applropriate for supervised learni::g.

There is another model studied in statistics, the .su'itching Ivgr(s.•to ioiodel (Quandt k"

Ranisev. 1972. 1978. D)e Veatix. 1986). that is intermediate between model (7) anid model (-4).
The switching regression model is given as follows

P(ylx) = A\P(yx. 01) + (1 - A)P(ylx. 02 ). (8)

where the P(ylx. 01) are univariate gaussians and the mean of each gaussian is assumed to be
linear in x. This model assumes that trie da-ta pair {y. x} is generated froom a pair of linear

regression models through a random switch which turns to one side with probability A and to
the other side with probability I - A. This model can be generalized to allow for a multinoinial
switch K

P(yIx) E Zo P(yIX. Oj), (9)
J=

1

where oi > 0, . j = I and P(ylx. Oj) is given by Eq. (1). The difference between
switching regression and thIe ME model is that the switching regression model assumes that
the setting of the switch is independent of the input vector. This assumption does not allow
for piecewise variation in the form of the regression surface: all of the regression components
contribute throughout the input space. Switching regression can be viewed as one end of a
continuum in which the overlap in the regression components is total: decision tree models
(e.g.. Breinman et al.. 1984) are the other end of the continuum in which the overlap is zero.
The ME model interpolates smoothly between these extremes.

An EM algorithm for training the mixture of experts

In many estimation problems the likelihood is a complicated nonlinear function of the param-
eters. Parameter estimation in such cases usually involves some sort of numerical optimization
technique. typically gradient ascent. An alternative to gradient techniques. applicable in many
situations. is the "Expectationi-Maximizationi" or "EMA" algorithm (Baum, Petrie. Soules k"
Weiss, 1970: Dempster. Laird ,&, Rubin, 1977). EM is based on the idea of solving a succession
of simplified problems that are obtained by augmenting the original observed variables with a
set of additional "hidden" variables. Unconditional mixture models are particularly amenable
to the EM approach (Redner &k Walker. 1984) and, as observed by .Jordan and Jacobs (in press).
the conditional mixture of experts model is also amenable to an EM approach.

Given an observed data set. Y. we augment Y with a set of additional variables Y ....j, called
".missing" or "hidden" variables, and consider a maximum likelihood problem for a "complete-
data" set = {". },,2} (cf. Little k Rubin. 1987). We choose the missing variables in such

4



a way that the resulting 1 icomplete-data log likelihood." gi'e by 1.() . -v l(f9...Y, . )
is easy ts(vo maximiize with respect to )9. The prola ilit.) i model J'( )'. J',, . ) uiu•Ii be clioseii
so that its inarginal (list ribulion across . referred to i this (otlllext as IIIhe "'incoiillete-dala'"
likelihood. is lie original likelihood

M~ylo ) -- m'y.y,...I )[ ... (10)

hi (leri'vi•g all update to tihe paralmet ers based on the (0omnl)lete-dala log likelihood, we first note

that we can not work direct l*v witih lhe ('0on1)lete-dat a log likelih0ood. b)ecause 1 hi- likelihood is

a random funiction of the missing randoin variatbles ,,. The idea is to average out Y', .I. lial
is. to mnaxiize the x.rpchd ((o01plete-data log likelihood Ey.. [hi )( Y. Y,,,+ )]. Thins idea
iilotiVties I liv EM algoritllli.

The EM algorithui is all iterative algorithii consisthing u, two stleps:

e The Expectation (E) step. which comnputes hlie following condiitional expectat ion of thie

log likelihood

(2(01o(")) Ey ... hInP(,FIO)IY.O(k)}

P( t '( ,,l. I)- (A ) In P( 3 lO )d-Y,,, , (11)

where 4(k) is the value of the paranmeter vector at iteration k.

e 'FTie ,Maxinmization (M) step. which computes

e(k+ I argmax Q(eje(0 )). (12)

The M step chooses a paranmeter value that increases the Q function: the expected value of

the complete-data log likelihood. Denmpster. Laird and Rubin (1977) proved that an iteration
of EM also increases the original log likelihood 1. That is.

I(O(+1): y) > 1(O(k): y).

Thus the likelihood I increases nionotonically along the sequence of paramneter estimates gen-
erated by an EM algorillin.

Although in many cases the solution to tlhe NI step can hie obtained analytically. in other
cases an iterative inner loop is requiredl to optimize (2. Another possibility is to silpl)ly increase
the value of Q during tihe M step

Q(e(1+I)lO(k)) > O(O9(k)1o(k)) (3

1)y somie means, for example by gradient ascent or by Newton's imiethod. Aln algorithnn with

all M-step given by Eq. (13) is referred to as a g nIralizcd E.1 (GEM) algorithmn (Dl)emnpster.
Laird k Rubin. 1977).

For the ME architectiur we choose tlhe missing data to be a set of indicaior randomn variables
,,. I .j 1,- .. A'. I = 1..- N} with

1. if ytM is generated from Ithe j-th model given ty Eq. (1).

0 O. otherwise



We assumie that H ie (list riilut iou of thle c omlelt e dat a k~ given a-, hdOlows

N IN

I~~~( rIe -JJfi [,(xet).o,jI)P(y(ttlx~tt.O, )]".,

It is easy- to verify that t his (is rib io saisfios Eq. ( 10).
From Eq. (II we also obtain

Q((,(A (t I}A itn [y, ZI)I. etj Y IXi}0.

'Ii 1=1

+ + ± ZhKU l ~t~x~) )(5
t=1

where

-j(t E[IPt)IY &(k')] -- J)jIx~ '.Ye

gj(xtt). k )P(y(t)Ix~ttt (kA)(1)

where P(ijx0). y(t)) (denotes the probability that the pair {x't).Y Itt conmes fromi the J-th prob)-
ability model. Note that we always have h (.k) () > 0.

W'ith the Q2 function in hand, we now investigate the implementation of the M step. From
Eq. (135). Eq. (1) and Eq. (2), we have

OQ /I(k U,(x(tt. 0ý,,)g x 1
-0 Z00 I
U = ,=1=10,

E 1:~ - E ixt.0,

E W01 -o (.0 . (17)

t= .= i1=1

N Z h ( ) 1 ) if ,T (X (t) . )( .0

and,

i)Q N (k) d (Y (t I x~f. Od I x'



-_ -ft I,f( ml: '. 1  Ay[y•t - f-(x t O }'
t=l

BY let tiing 2- I.. _,t.k+ = 0. we obtain t lie update fImr the covariance mat rices

,,Jk+l) _ A (IAk) _ fx (0.O, )[ _ fIx •rf.(O ,). (2I)
- E /1- (!,t(k tJ = ....

Assuming that the training set Y is generated bY a inixt ure model. we not1e t hat wlen I lie t lie
sample linmlber A' is sufficiently large (relative to the dimellnsion of y). the space slpanied by
Ohe A vectors [y(t)_ fý (xt).0.j )].t = 1......\ will l)e of full dimension with probalbilit y one.

Recalling that h!k)(I) > 0 we observe Ithat when the sample numl)er A' is siificientlY large the

matrices (,.+1) are therefore positive delinite with probability one.,]

Next. by letting J•- =_ ý 0. we obtain
.- •~ ~~~O j=8•+ O. 0. eoti

�' () xi )( (J (k )-) -I 08t _ f,(x tt .0)1-0. (21)
t---- dJ

which we can solve explicitly given our assumption that the expert networks are linear

0 (.+l)¢ - (R k) I (k)
1~~l (.1F (22)

where

C. - h )X( _ )ly(t)' (23)
t=i

R(A / = ,)(/).)X't(•(k))- X.\ T (2-4)

and0 ... ... 0 . 1 0 ... 0)-0 (x(t))T 0 ... 0 0 1 0 ... 0

I1).. (25)

0 ... ... 0 (x(t))T 0 ... ... 0 1

Note that R(." is invertible with probability one when the sample size A_ is sufficient 'v large.
Finally. let us consider the update for 0. Jordan and Jacobs (in press) observed that tie

gating network is a specific form of a generalized linear model. in particular a multinomial logil
model (cf. Mc(ullagh k Nelder. 19,4-). M tIl inomial logit nmodels can be fit efficientlv- wit ih
a variant of Newton's netlhod known as ii ratii,( ly rW(tightd last .squar.,. (IR LS). I.For the
purposes of tihe current paper. we simply vwrite the generic form of a Newton update and( refer
the reader to Jordan and .lacobs (in press) for further details on IlRL;S. Note also that .Jordan
an( .Jacol)s (in press) assume that the inner loop of IRLS fitting runs to completion. In the
current paper we address only the case in which a single IRLS step is taken in lhe inner loop.
The form of this IRLS step is generalized to allow a learning rate paralivier.1

"Thus the algorithm that we analyze in this paper is. siricdly speaking. a (GEM algorinhm.



The update for lie gatitig network paraillele',, is obtained ai Il'olh, . I),eio e II I,' gradienti
vector at iteration A- as

.\ I\'ii
e t, " E E(I-() ,(x . ) . (26)

and tHie Hlessian inatrix at iteraiiou A- as

(x~ (0 10[ A (h (h (2
.do l\lZI, Z q ,(,xtt .o,") 41 - ,q,(x tt". ot," •]o • -i

t=-I ,1 1• ,: )0 '

Tlien the generalized IR lLS update is giveni as follows

=Ik-+' -- 0(1" + >,( R" -leI,). (2N)

Wher(e "b is a learning rate.
In summary, the parameter update for Ihe liodel Eq. (4) is given as follows

Algorithm 1

1. (The E step): ('oumpute tie (k)(t)'s by E q. (16).

2. ( The MI step): Compute Z.l by Eq. (20). conpltue k by Eq. (2S). and alo

c'ompute 0I(+).j = l... h" by Eq. (22).

Before closing this section. let us return to the switching regression 1model (Eq. 9). Following
the same procedure as above. we ol)tain the following EM algorithm for switch ing regression.

Algorithm 2

1. (The E step): C(ompute tfhe /•,(t)(s by

(I(k) (xt )) p(y ) I x(t) , O(k))
J

h!'"(t l;= "I"'(~ t')'(y ')l(')O~l})"(29)

2. (The NI step): ('ompute •.k+1 by Eq1. (20). andl let

(I(.+]) (x(O) = h k)(M. (30)

0 (A+i).

Obtain . 1. --- .. K in the same manner as for inodel Eq. (4).

We see tHat the E.N algorithm for switclhing regression is simlpler. because the ( x k)(x))s
are not constrained through a con10on 1paramieter 0!, as in the INIE niodel.



Theoretical convergence results

I it I Ili., sect Hion we prlovide( it 111lliber 1) (.4 )1\ erge~l(P lP'Il ItI I'MtoI It( le 4 )1-11111 liiii J IC ~II 44l il I I ltV'
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TI'heoremi 1 [or Ihy( mothlt /qic i/ by /-q. (0) andi /,I#~ ov uiu i otiill/(/, in yiryii , by lqordit I i I.
n'r' hacfv

6 (0 i 0(10 1) (A )__

0 v 0(( ) I .l.

fob/ li/d by stacliql/( I//i(P1111 coim ifrclrs of fl/i ittid ix . 1.
.lonii vii. assti/lin/( that ftvt traimigitiqs .. yii rwt( d)1 fbyIh mixutiri m~l/M/ I of 1.qs.

k.)1

*'ci , ~icaIlqy. fh(y~ Iiki Iliii ]u//owtcii/ va/it s:
(I) p, A (A.)~ n/I /(k) qii1 qIj 2)

.("i ) =- t ý , * * K. - tl? ) R . -' q .fh I ( 2 S) .~ 1 i q 2 )
1 1? ,t .1 '~ iby Lq .- )

f)(A)2 \,A ,(k) (k)2

11,11t l (If i/t(ft M( fbi I'i 10// producli~t. For a m1 x 1/iit mttij .1 atiiit qj x m imiilt-1.i- B. 1l/1

f 1/fl/1 (1121? .. )
I.al o.) 112 .. (/l B~~f

Proof. F-'-oun ["qs. (6(i). 1I) alld (1). fin / = li Li we obtain the following &erivalives:

0( 1

i)01,

X= * 1,(X~l !J i(Yi)X~ .(ý

dl tj,~~Y(x~t).0 0 A) )p/Y(yt'jx' (1). d(Y tt ~'~ i)d,

do. t~jx 1).0 4,)9



M i~f a' y x d

• gx)OA)f'(yIfx(,.O ) -0 [y'• f( . ]

d yh .(t 1 )-O , 0 , ,_ (4O ) )-(xIt) _ t ).- _
t= ( 

, 
)-

.j =.... .A. (37)

(1) C omnparinig Eq. (33) N h, Eq. (2,) It ixllows that IP '( y ( IA) . O /l Io, tha_ , (A)

is Itive definite. wo •-• ow tat R7 is positive definite. For an ar rarY vector u. Eq.
(2,1) we have

N Ax

E Y= .. ' (x 3 5)O O

\ 1 x(I. owr)[ - Io(X Ms. O i v (i av > 0.

SII(i) ( qIX 1  *[ .) - ( ).t h q. J ) > 0. Equnality h •d =,.(-s in the a1ove equation ony w!hen

v - [O~~*1 /LkO"u - 0 for anyv u. which is imp~ossible. Thus we have estab~lish~ed t hat Rij ( and~

titus also ( R, k) p ) is positive daefinitoe.

(ii) Let C('). Rk ) be given bY Eq. (22). Fronm Eq. (21) and Eq. (34). we obtain

(k .,k 0( ) 0 6 , =0A = 1. - - . K.

F(urtherore. it follows fron Eq. (22) that

-(+I 6 (A) + (R(Ak)r1(,(k-) - (k)
j J .1 .1

- 0 u k) + (? ))t[( - (A.) W .k)h (36)

• =.1 .1 -1 O,1 j 0J i~

'[h~at is. wve have
0 ) A-++( I) = 0 k. +.k._ 01

an [,A, = ~~x•.•/, .,(B"o,"i (k))

t1 '1

s Wire x Ovp e 1ha[ - isxposte dfini te. E orani aho t rain tecaor u. fron Eq. (22 we
hiave

2sA mat rix A is positive definite if and onI. if - 1 is positive defnite

10



Firoim the note iimedialvlv following l"(I. ( 16)). wre know that !.t) given by I'). (20) Is positive

(lellilte anidl invertilhe for ea('ch k wit i r pil)abilitv one. hills. %,-Ih *, Irl-oal)ihiyv olie. the e(lualily

of the above eqiaticiii holds oiilv wheni v N . 1 u 0 for all% U. w\hi(ch is imlpossible. Thus Nwe

have estaablishe(d that l?(,) (and thus also ) is ositive defiie ()ith one.

(iii) Wte coiisidei 1A). (20) fmr updating ,( This eq(luation (call be expandeid a.s ollows

A(k+l) (_ \ k() (Ik)11) . . 0

" - -" + i .j -

=_,+ •;= (k)/t ,,v• '.v• (37

wthere

2 1 \1.

t=l

It follows from Eq. (35) that
1I

That is. we have

V(k+l) 21(k)

J

Utlilizing thle identity vc[AB/C(] =(C, i A) u'-[B]. we obtainu

p =kJ 2(j• E( (k •,( %(k)

Thus p,) 2 k) -( ). Moreover. for an ari)itrary matrix 1'. we have

tr( LEkL,~~jT

. ,J'

wlhere the equality holds onlyo whell _,(Ik) " = 0. which is impossible with probability one since
U is arlbitirarv. aiid E ((k) is. as indicated above. positive definite with prol)ability one. Thus we

have established that P\/") is p)ositive definite with i)roI)al)ility one. 0
Theorem I call be used to establish a relationshii) betweeni the step) taken 1)v the EM

algorithni and the (tirectioul of steep)est ascent. Recall that for a p)ositive inatrix B. we have
uT B > 0. This iml)lies the following corollary.

Corollary 1 As.,;uni that I&h training .st {ytt).x~ , /- I.-....} (.on.,C(S fronm IN mix'tn'
mod(l of Eqs. (4) and (1) and that N is suffiein utly lar9j.. TIith iprobabilityq on. I&l S.arch
dir(chion of thI EM alg(orithm ha.s a po.siliv projection on thj giimdin m it o.s(.• J .a('hing dirctionl
of IIn L.

I1



TIhat i,. the EM algorithii can he viewedi a.t i inodilied gradient ascent algorithin For
niaximnizing I = 1. L. iroin Theorein 1. B changes witll, the iteration step A.. thu.s. the IEM
algorithmi can also he regarded as a t variable 11e(ric gradient ascenlt algorithini. I'lhis algorith11111
searches in an uphill directioll. so ith tle learning rate is appropriate. the searching process will
converge 1o a local uiaxuntini or a saddle poinl of the likelihood / = in L.

SiMilar results ha ' e been obltained for iiiinsupervised inixiture miodels by Xii and .lordaii
1993) and for Hidden Markov Models by Baiuii and Sell ( 196s). See Xu and .Jordan ( 1993) for

furt her discussion of t he relat ioishis l)bet ween t hese t lieoreiis.
We now utilize a result froni Xii and Jordan (1993) to establish the convergence of the

paranmeters 49(". \Ve also provide convergence rates for both I(e0 (')) and 0l k).

Theorem 2 A.-ssuIn that th( training .% t Y is g( i( ratd by th/ mixturt it0h(/ of lq.N. (,t)(1)
and that N is sulflicih ntly larg(. -Issunu furdil r that El,. !]x art diagonial and hi v\- In a
c(ctor consisting of Ih/ diagonal (lh in( nts of E..

LO us. di not(
e [04. OT..... OT .v .. , I

J) = diag[P•]). I) .tw.. P ,. "., P ,,]. and H(e ) = i)21( T.

Furth/r (ore. as.suin( that on a gir'( domaiii De
"(i) (0 ;e2fO•) J 1f ), I, i = l. . in (xi.It and a(t continuou.:;40 q,, " _-"•",O 0 /10 1 " "

(ii) thI Hessian inatrix H(e) is nigatiu drfinite:
(iii) 0* is a local maximum of 1(4). and e' E De.
Th( n with probability on(.
(1) Ldtting -. -m ( h r A > ni > 0) b( thu minimum and maxiium 1ig(tnralucs

of th( nugatior dcfinite matrix (P½ )T H(e)( P ) (or equi'alnitly thu minimum and maximum

f igtnvalufs of PH(9). sinef w( havc PHe Ae fron (P, )THP~ e = Ae). a( v

I(0") - I(e(k)) <_ .k[[(o*) - I(0o)], (3S)

li-9ek e)II < 11.1k/2 - [i(0 ) - i(090)]. (:39)
1 1

wh er r 1 -"(1 --1 < 1. |1¥ al.so haw 0 < rIt < 1 u'hMcn M < 2.

(2) For any initial point 0o E De. lim._, e(k) = e* when Al < 2.

Proof. As indicated earlier, when the training set {y(t).x(,t = 1 - ...... } is generated

from the mixture model of Eqs. (4)(1) and N is sufficiently large. E(k) remains positive definite
during the learning process. Thus. under the condition (M), it follows from Eqs. (6). (4) and

(1) that H(e) exists and remains continuous on De. Expanding the log likelihood in a Taylor
expansion, we have

i(e)- -(e-)= (e -- )To-(O- =) + -(0-- 0 )TH(e* + f(0 - e-))( --*)

with 0 < ý < 1. Since ,&g)e=e* = 0. we have

-2

12



Front Theoremi I we know that P is, positive def l Fite,, iurtherimore. fromi condition (ii).

11(e) is negative definite oil D. This imnplies that P' exist., and (I' )Tl(O9)( L2) is negativye

delinite on D)e. Vtilizhig tle Rayhleigh quotienit we ohtain that for any u.

- -Allull2 K u1( -Y ) J(o)(J'J )u _< -,,,lull< (41)

Snbstitutingg Eq. (41) into Eq. (-10). we obtain

i(9) - i(0") -(9- e') (I,-½)- ( p7)rl(2 2+ ((-@))lW½1'-(-@) (42)

/(e) - /0(9) > (41))

Moreover. we have

,,11 p-I !(e e- )11 2 > 1( 9 - .) [m ( o) m (e )
> _l dl(e ) ded
>- -1--LdeIlMP- -(o- e")II

Thus
11p e - e *I III 2-- 1-1.

Together with Eq. (.13). we obtaini

0/2 (e )11 2m 2

-L ½-- =I < - [/t(O ) - I(O '] (4-4)

On the other hand. we also have

I(0 l((k) (0 O.(k) TOl(O) _I~)_ =~~) ( _ e~) )T--)109- Io=o9,k + I (e _ O(k))7 H(O(k) + ý/( O e(k) ))(e- 49(k)

with 0 < ý' < 1. By Theorem 1. we know that for the EM algorithm. e(k+1) -_ (k)

P 1=) 1 (k). Utilizing this result in the above equation. we obtain

1(O(k+1)) _ 1(e(k)) = 1 2I(- Oo
I e 011(0) (k)di(e) )T(pi• TH(k() +__(

+ -(P 2 d 9 k+)'( -- 2)))P (P -2 J =e)
2> (1 -0-l1 (5

_ 2 )II e Ille~

Combining Eq. (45) and Eq. (-14). we obtain

.1 ) 2,,, [po k)) _ (o. )]I(0(k+t)) -/(Oe(k)) __ -( - - _-

'' 2 M-

and furt hermore
M 2m+

/(e(k++ ))- I(9 ) _ [1 -( 1- - )-)-2 m [/( ()) w-( )
2 Ml]/ 9 A)-19)
2l 2A 2

13



Let r = [1 - (1 - 7)V-] Multiplying hoth sides of tire above e(quation Iky negative one.

we obtain Eq. (38). Iii addition. it is easy Io verift* that 0 < Iry < I when 1 < 2(recall that

Al > III). Furthermore. it follows friom Eq. (4t) and Eq. (42) that we have

/(() I(&e) < ~~IP-(e(k) - e, )II

which. by Eq. (46). beconkes

2" eI' -• e -e ) - _,.[I(e u) - /(e -)
2

S- o'-,1 _<") /(e0)l

which is just Eq. (39). In addition. when .11 < 2. Ir' < I. we have lilu._> 49(4') e& Since P
is positive definite. 0

We see from this theorem that the EM algorithm converges linearly. Moreover. the speed of
convergence depends on the difference between .11 and In: tile smaller the difference, the faster

the convergence.

Theoretical analysis of an EM algorithm for the hierarchical
mixture of experts architecture

An EM algorithm for training the hierarchical architecture

The ME architecture can be viewed as an architecture for splitting the input space into regions
in which different local functions are fit. The hierarchical mixture of experts (HME) architecture
generalizes this idea to a nested model in which regions in the input space are split recursively
into subregions (Jordan k- Jacobs, 1992). The resulting tree-structured architecture can be
viewed as a multi-resolution function approximator in which smoothed piecewise functions are
fit at a variety of levels of resolution.

As shown in Figure 2. the HME architecture is a tree. In this tree. each terminal node is an
expert network. and each nonterminal node is a root of a subtree which itself corresponds to
an HME architecture. At every nonterminal node in the tree there is a gating network which is
responsible for the topmost split of the HME architecture rooted at that node. All of the expert

networks and the gating networks in the architecture have the same input vector x E R". In
the remainder of this section. as in Jordan and Jacobs (in press). we consider the case in which
the expert networks and the gating networks are generalized linear models. Furthermore. for
simplicity, we consider only the case in which the probability model for the experts is gaussian.

Let us denote a node at depth r by vioh.,.i,. This node is the r,-tli daughter of the node
'ioiI...i,._ The root node of the tree is Vio. The number of branches emitted from vi0oi...i, is

denoted by Kioi ... i,. For simplicity, we can omit i0 and write ri,.., and Ki,...i,. In addition.

the output of the subtree rooted at i'j•..., is denoted

Y i,...i, = gi'"i G ' X ' ', 'i ..... ~ i+

ir+l=l

where 9-i ... i,,iri+l is the gating coefficient generated by the gating network attached at "ti ...i,.

This coefficient satisfies
K,1 ".,

14



a Gating
Network
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Network Network Network Network

Figure 2: A two-level hierarchical mixture of experts. To form a deeper tree, each expert is
expanded recursively into a gating network and a set of sub-experts.

for any x. where OI ...il is the parameter vector of the gating network.
Given a training set Y = {(x(t).y(t)), I = 1.-.., NJ. we want to maximize the likelihood

function (cf. Eq. 6). that is.

N

L = P({y(t)}jN{x( t )}j) -'i P(YMt~Ix(t ))

Expanding the probability model, we have

Ko

P(Y(O lx(t,)) gi, (x(t).'09o) P(yltl(O ) JX .'ij

where

I gi1 ý2 i,(~) j )P(y(0) xe). 1112ij
•i2=l ;i(~) ~ PYt~~) ~:)

P(Y(t)jX(t). J'it ) =if ri* is a nonterminal node,
(27" (le.E1 V -½ { -½y lt• f x ') l T •l yt)f '(xI'1'01  )ll (47)

if rt'• is a terminal node

15



and recursively
E ll' .. (x.O6/, .,, )lP(y(1)1xlt• v, -

,..,,fis a non[ rmiyal ",x iode. Fl'(~ t lx~ lv; ... , = (27,- (let !ý,,I...,1, F) -,( {- [Y'"l-f", " (x A'O l " ] z ' "[ ' ' f • "(x'"' ' 1

if c., ~is a terminal node

where f, ,...i, (.. ) is parameterized fuinction implemented by tthe expert net work at t erminal node

i..., I anl 0; ..... . 1_ i,... , are t lie parainet(ers of t hlis expert network: P(ytM Ixt) . ',-...,, ) is the

probability that y() is generated from the proi)albility model rooted at ,j. when xt) is the

input.
To derive an EM algorithin for the lIME architecture. we attach a set of indicator random

variables to each nonterminal node t',...i,

M 1, if yM') is generated blY the subtree rooted at c, ...
il.-..I;, 0. otherwise.

The missing data , consists of all of the indicator variables attached to the nonterminal
nodes throughout the tree. In addition, we denote by the set consisting of the indicator

variables attached to the nontermninal nodes in the subtree rooted at

We define the distribution of the complete data Z = {Y. i as follows

N\ K,0

P(ZO) = l "[i(x(t)OW )P(Zi, x *t) )]! , (49)
t=l ij=l

where

i2-- [gili2(x( n0g"1 )P(. i ' i x(t) I '2)

jx() V if vii is a nonterminal node, (50)
-x ,[)(27rdy tf (ix )_ -' -- T 2,

if Ili, is a terminal node

and recursively

Fi,, +1 - 9~ , + i I O. )p(Zi , i,+ I XM IlI.. i ,+ 1 , +

I (t). •. if is a nonterminal node.P( i..~ x V). ii... i• 1 .. . _ _L{- [Y(1-f'l ,{X(1).O,, ",)ITE ,- [jy mt-f', ',-(x m.LO" ... M
(2•rdfl~l il ... i, )-2( 2

if ril...i, is a terminal node
(51)

It is not difficult to verify that this distribution satisfies Eq. (10) as required.

We now compute the Q function as required by the E step of the EM algorithm. From Eq.
( 11). we obtain

O(- e(k))=Z (x(), W )] + In Fl}
t=1 i1=1

where
1 I (k ) gy. ((k)] - i g (x(t). 0 ))P(k)( Y(t)Ix(t). (52)

- =I gi, ( X !t . 0 V )p(k) ( y(t)Ix( Ii,,
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IiF - '" ", "~t){Ih,[g 1,; (x(').o )] + - )n I ,_. if r,, is a no,, terniinal node.
- ' , In MP(yLxt). r,). if r, ist a terminal node

• '1) (k) •ly. e 'k) 1;' •] - (:,53)',,,,, 11 •K , , 9 ; , ( x (,). O ~ )t ,( k)(y •,•lx •,• .I," -• ~ " -

and recursively ( • ), ;h• ,, ,,(,[ ,...,+ (x.• .,0h +; .... +

Ini . if t +'..., is a nonterininal node.
1In P(y (0)1x(t) - , i)

I if is, is a terminal node

!..Ir(k +, E[ 1.)..j lr.{. e") 1( .JM = 1. 1 '"

g .. i ,+ (X (t).W2(A) )P(k-)(y tIx(t). r•...i+
I 1 ..... (5-4)

i+ =l1 9( ...i ,+lI(X(t). •g,..,)p (A.) ( y )x(t). I' .;, i,+, )

where .. is the estimate of jo ....i, at iteration k. t(y(t)Ix(t), i ... , ) is given by Eqs. (-17) and

(48) and p(k)(y(t)Ix(t). ri>... , ) means that the probabilit'v is determined with all the parameters

in the subtree rooted at i ... ,l being fixed at the estimates obtained in iteration A-.
Proceeding now to the M step of the EM algorithm, we obtain parameter updates !) '

optimizing the Q function. If the node ci.. is a terminal node. by setting the partial derivative

of Q with respect to .. . equal to zero, we obtain an update for the covariance matrices

,(k+ 1) E_ _ hi, (1)hj,• (I)..) hi ( I .. I ( )[y(t) _ fil ... , (x(t . 0 1...,, )][y (t) f1 ..-, (X (t). O)IT,

hi,11 k (t)h li(k)()" . .h( )M

(55)
To obtain an update for the parameters of the expert networks we differentiate Q with respect
to Oil...6. and find that we must solve the following equation

N .(k)(M) ft (x(t) Or) 1 T *' i , ... 0,. )
hi, (t)h ,2t) .hl V71 • .. M[ -) fi..i, (x(O. O,...6 )1 = . (56)

In the case of linear expert networks, this equation is a - 'ighted least squares equation. which
can be solved as follows

0 (k+1) (k) (k)
i -... .= )ic... ( ir) ... "

where
N

t=I

and

(k (k) (k) 1 " l 1", (k ) ( k) )-1 (

Finally. for any nonterminal node ri, ...i, . setting the partial derivative of Q with respect to
equal to zero. we have that 0l..; is the solution of the following nonlinear system

N: , ( . ¢ ( k ) h •11( ) • i ( t) ( r )(i,+) ( t ) 9 I ( ( ) O l , ( ) • i ' i~
h t )hi[hgl,(t) ' ,h'",i [hX (0l"! g "0. (5S)

it--- i i + ...... 001
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s iii thlie case of the otie-level NiME arciitecture (cf. Eq. (26) anid Eq. (2S )). we obtain thie
following Newton Step for updating the gating network paralnetervs

Y(+0 ,A-I :M1y,
Oq(•++ Ri(• 1 9, ell ..."..59

where

[1t)i .-.y. '.1, ( ...(k) ((1))

alld

A (Ae,!• .. , = _ , .. hl• ,,, (1 )×
t=i

¼ i- =1 , 
(t).

x+I( (61)

ANs in the case of the one-level architecture (cf. Eq. (28)) the algorithmi in Eq. (59) is-
essentially the same as the IRLS algorithin suggested by Jordan and Jacobs (in press). although
we have introduced a learning rate paralmeter and we restrict the update to a single step.

hi sumniary. the EM algorithm for the HlME architecture is given as follows.

Algorithm 3

1. (The E step): Cotpute the h(k)( t). h k) •(), (h ) by Eqs. (52). (53) and (54).

2. (The NI step): Compute the "k+1... i by Eq. (55). compute the by Eq. (59). and
compute the Ok...) by Eq. (57).

We can think of the E step as assigning credit (posterior probability) to various branches of the
tree for each data point and the NI step as solving weighted least squares problems in which
the weights are given by the posterior probabilities assigned in the E step. The updates for the
gating networks simply cache away the posteriors.

Theoretical convergence results

Much of the analysis developed in Section 2.2 can be extended to cover the EM algorithm for
the HME architecture. In this subsection we extend Theorem I and Theorem 2 to cover the
hierarchical case. The results are given as Theorems 3 and 4. respectively.

We first compute the derivatives of the Q function

N
aQ /i(,)(/l)' (I)x

0 0i,



x* "'1 * '+,(X 1-*' +) 1-

iiQ Ak h I

iiQ *(,fA (t)X7 x

andl thle derivatives of thle log likelihood

0", N=()~ = l il,..i t

ZI~khh~kw;(k (65)

*'~i, W2

[3.(t 1 0 ,, ' , *,, 3 t -f, ).~ _ fi..i )]7}(. O (k).

doiO 1,. I =O , -

(k) O(A)..j fi di.~ .,i. -(7
- i(t [) -fl...] =, (X (x ___. A, . (

Th( ren I to Lj. estabish bye fllowin (6). ei (47,) a t he (4S).htet

Th or m orth H I a-clf~ivofE~s (,7)an (8. it t(1xi-i~h ada~ 19'1



.1loi/ ,1 I. a .. uii/I.q thaI tlt trai*ninqg .,t t y i m va It ( rthd bq th, 11.11 IF ,M, I of lFq.. (431

and (.S). andl that tln na mb, i N is .•]Jicit itly larEg. Ih( n V,. i." (a po.iili. dh .vIilit it clvix.

ani( • Il pu tioI' t (l(]ji tt mi tric.,i with probt•bility o ,. ,/'p ifitillj. t/ .q tak'

tht following ralu(s:

.. .... ( Rj - with R- girtn bqI l-q. (59).
11 with R(J"". j gicn Eby Eq. (57).

(II) .. = ( .. )- it It,
(iii) 2o , (tk Jal'r

fEk V (k (k)) k( (o9)
1=1. ,I (/ /) 11 (t ...... I

where " d- notes thf Kronick Ir product as- def'ind in 1i or( in .
From Theorem 5. we can again reach Corollary 1..Again. we see that the •M algorith1m

for training the tIME architecture is a type of variable metric gradient ascent algorithm for

maximizing I = In L.
Finally. we can also generalize Theorem 2 as follows.

Theorem 4 Asst.ume that 1Ic training s(t Y is g9•n(rattd by thi HJlE inot l of Eqs. (47) and

(48) and that the numnbe N is sufficie ntly htif. 4Ass..ni( that Ei1 ...4 is diagonal and vi I,,

is a vrector consisting of th( diagonal (Ifhinnts of Eil ... ,.
Let e be a vector produced by cascading ev very vctor v, Vi,...i = [(O. )T. oT v.V7" ]T of

ef ry node vi, ... i, in the HlIE archit(cturt. Let P be a diagonal block matrix with each diagonal

item being a positive diagonal block matrix M diag[Pi ...i, Pi..., Ps,. *, ]. The it• •ns of

9 and P arf arranged in such a way that D6 ...i, in P correjspnds to vi,...i, in e.
Furtherniore. as.uume that on a givcn domain De

(i) Th( paracnterized functions of all the (xjp)(rt n(twvorks and the gating networks hare

second order continuous dcrivativefs.
(ii) Thl Hessian matrix H(e 9) I s ngative (finith:

(iii) e* is a local maximum of l(e). and e* E De.

Then u', hav( the same conclusion as given in Theoremi 2. That is

(1) Letting -Al. -7n ( here il > in > 0) bc the mnininumcni and maximumnt igenvaluhs of

the negatirely definite iatrix ( P )T H(49)(P- ) (or equivalently the minimum iand maximum

cigenvalue. of PH(e), since we have PHe = Ae froom (P½ )THP'e = Ae). wre hare

/(e*) - I(e(k)) : S.[/(e") - l(&O0].

11P(e) - o )11: _1<"k -[/(9s) - 1(9o)].

whr = -r 2- ,)1 < 1. ITe also hae 0< Ir < I when Al < 2.

(2) For arty initial point 49o E De. liAk_.• e(k) = e, when Al < 2.

We should point out that the similarity in the conclusions of Theorem 2 and Theoreln 4 does

not mneani that the EM algorithm for the hierarchical architecture has the same convergence

rate as that for the one-level architecture. In the two cases the matrix P is different, and thus

Al. I. r are also different. This results in different convergence rates. Indeed. in practice, the

hierarchical architecture is usually faster. The similarity in the conclusions of the two theorems
does mean. however, that the convergence rates for both the algorithms are of the same (linear)

order.
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Variants of the EM Algorithm and Simulations

Variants of the EM algorithm

For convenience. we denlote an EN lil)date of tlie parameter vector a& fdlollw

0(A+I) = I(_(jo(k)), 70)

Froi Theorems I and 2 ad Thieoremiis ; and 1. we see that t his uipdate i.s actually a lin vvarcli
met hod along an ascent direction of'/ = Ii 1,

0 (k+l) = (k) + P( 1) 0

with t' k) being a positive definite iiatrix evaluated at 0 ("). Moreover thi.s u pdate has a linear
convergence rate. This link between the EM algoritlim and conventional gradient-based opti-

mization teclhniques suggests tihe possibility of using acceleration techniques for improving t lie
convergence. In the sequel we suggest two such acceleration tecltniqlues.

Modified line search

Eq. (71) can be replaced by a modified line search

0(k+1t = 0(k) + AA.d.

dk = P (kl.011 0(k.) = U1p ) - 0(k). (72)

where Ak is a stepsize which is optinmized by maximizing 1(0(k) + Akdk.) wit i respect to A4. via
a one-dimensional search (e.g.. Fibonacci search).

The implementation of a one-dimensional optimization metlhod at every vparameter ul)dale
is typically expensive. One often uses an inaccurate line search by decreasing (e.g.. AA. - rA,.)

or increasing (e.g.. Ak - !Ak) the stepsize heuristically according to a stopping rule. One
frequently used stopping rule is the so-called Goldstein test (Luenberger. 1984). The Goldstein
test is implemented as follows

I(Ak) _< /(0) + l'(0)Ak.,

I(Ak.) > 1(0) + ( I-)/()Ak.
OI1 0(k). (7/'(0) = dTk--13=

where 0 < E < I is a specified error bound.

Interestingly. if we rewrite the update as

0(+l) = 0()k) + Ak[.[p(O(t )) _ 0 (k)] - (1 - Ak) 0t(') + Ak( -1'(O(k))

we find that Eq. ( 72) is identical to the speedup technique for the EM algorithlim studied
by Peters &k Walker (1978a.b). Meilijson(1989) and Redner & Walker (198-1). These authors

reported a significant speedup for an aptprol)ria-tely selected Ak even without the Goldstein test.
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A speeding up formula based on locally linearization

Usitig a Iii-st-o)I(lei' Idiol' ('xt)aii-iicii of I p( 0 "k aroundt( 0 (4-1). Wo have. aj)J)ro)XiliideIv.%

I',(.((k) ) = - ( 0 (A-1I ) + 11( 0 (k) _ 0 (k-Il )

6 (k+l) =-~k + BJ( 6 () _ 6 (k-I))

01'

AOk - A-OA-t. (7A)

whr =41 0( aiiA~ dII(I = 0 (k+l) 0 (k).

For t he fiat rix B. we have the I'Ollowiiig chlaract erist ic eq ilat ionl

(let(AI - B) = A\" +piA"-' + ".+Ii,- 1 A +pnj = A + Zv)i.,A"- 0

(-1)Ai Aj,1, *Aj, 1. = 2.- *.i

wvhere A,. I= 1. - . it are t lie eigeiivaliieh of ;). It follows froni the ( avle~v- ilainijtoii t heorein

that

B" + Zij B"--j = 0
J.=1

Multiplying1 by AOk.,, (A- > ii). we have

B"AOk-,, + 0. (75)
J= 1

Froin Eq. (4-4). we obtain

\Ok;j=BAOA..*,l BT- j B -\Ok-,,j 0-1 -1....n

Substituiting into Eq. (7-5), we have

AOk + Z I1AOk~-j 0. (716)

Assumiing tha~t hin comparison with the first I eigenvalties. the remiaining eigenva~lues cani be

neglected. we have approximiately

I I
A" + 1:li A"-- - 0. B" + ZpjB"-- 0

j=
1

anid correspond~inglyv

0+ jAjj= 0. 1i=kA...+ 1. (-7 7)

The approximiationi beconmes exact wheni tihe last n - I eigeiivaluies are zero.

By minimiizing 110k + El=i1 p AOki 2.11 we ob~taiii thle following liniear equa~t~ioii for solving

5 pt = So3. '5 = [,,j]1X1. So = [-.Sol. _,02.. _.. OT
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Nloieover. we have

A ".O_, : ~/'-O- + Z AO, + > 1~
=k',j= .1=0 =k+l ./=1 1=I+1

where pji) 1. From Eq. (-77) and

/ I.,AO;_.0 = -AOk,.+ + 0O

(v here 0= limiA. .... AO, ). we hayve

-- Ok+I + 0 ' XI + ( --- Ok+l-. + O+ ) 0 .
./=1

U sing this equation together with

I \ k I \i-i II0XI /j-~~-, -O--v /-1 Z[
./=0 .=) 0 =0 .=-+I

we finally obtain

0 1= OA-+1 - -:1z 1= +

This formula can be iused for speeding uI) ithe EM algorithmn in two wvays.

* Given an initial 0 0. we compute via the EM update Oo. 01. 0'+1. and then from 0,.j=

1.... we solve p'. ".p' utilizing Eq. (78). This yields a new 07+1 via Eq. (79). We

then let 00 = 07+, and repeat the cycle.

* Instead of starting a new cycle after obtaining 7Z.+,. we simplY let 01+1 = 07+,. and use
the EM update (Eq. 70) to obtain a new 01+2. then we IIs, 01.01."* 01+2 to get a 07+2.

Similarly. after getting O7..k > 1. we let Ok = 07, an(d use the ENI update to gei a new
0 k+1 . and then use O.-l.....Ok+1 to get a 07+,.

Specifically. when I = 1. we have

AOk (AOk )T( AOk._)
07+1 = Ok + --+ --- 1 - (8A0. 1)(AO (MO)

In this case, the extra c'omputation required by the acceleration technique is (quite smiall. and
we recommend the use of this approach in practice.

Simulations

We conducted two sets of coml)uter simulations to comipare the performance of the EM! al-
gorithim with the two variants described in the previous section. The training data for

each simulation consisted of 1000 data points generated from the piecewvise linear function

at r + a-2 + nt..r E [aL..Lr'] an( = a'.r + a' + nw..r e [.rL..r[-]. where nt is a gaussian
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randiiillli variabi1Ile ~ wi Zlt h I .oI(vlll ;ill varia 1ce (T = -3 ( I'[raininlg data wereV samledli( from1 lie
first 11111(1 loll wIt II piubabilitvN 0. 1 alild from I Ilie Secon lhl( i ll(tl toll xvit Ii Irobabl~nilit 0. 6.

W\e "ldtilied a iliod illar architect ire wilh Ki = 2 exiwit? tiet workSý. ITle ex pert , were hlnear:
Ilhat is. [, ( x'.0,) were Ijitear futictoilsl. [.1'. 1] '0. F-or file gat itig jiet . we hiave

where y., Is byen1 I'lq. (2). Fo)r siiiiplicitv. xve tijdal ed 0,,,, byv g2radlient ascentt

0 ( O)- (k) + I~((

F lie lea ruitig rate pa ra let er \\as set to i-,~ 0.05 for hv fi rst dIatIa set anid r., = 0.002 fort- lie

second~ dIatIa set . W~e iiSP Eq. (20) and 1Eq(. (22) it) nipda le Olie par-amet ers 0 A' I).. = 1.2 and

(a k+I). Ij 1.2. respect ive1v.
Thie initial valties of 0(, . , ). a O. 1. 2 were picked ralidolnly. To 'omupare the lperl'Or-

ma ic ofth a goit i nswelet each a Igorit Ii i start fromi thle sa tue set of iniitijal values.

'i le first dIa ta set (see Figure 3(a)) was genieratedl using lie following p~aramieter values

aI=0.8. a2 = 0. I. rj, -1.0. xv 1.0. a' -1.0. a' 3.6. x.4 2.0. x~l -1.0.

Thie performance of filie original algorithJm. the modified line search variant withI AA- 1. LL the

miodified tihle search variant withI Ak=0.5. anid the algorit hill based oil local linearizat iont are

shown ini Figures -1. 5. 6I. and~ 71. reslpectivel *v. As seen in Figures 4(a) and 5(a). thle log likelihood

couvergedl after 19 stew; using hot h the original algorithmn and~ thle modified line search variant

with Ak =1IA. W~hen a smaller value was tisedl (Ak-= 0.5). the algorithm) converged after 21 steps
F'igiire (6(a)). Try' ing other values of 'A-. we verified that AL- < I Slows (OIowa the con)vergenlce.

while AL- > I tiia .V speed up thle convergeuce (cf. Redner k W~alker. 19N-1 ). We fouind. however.

that thle out comte was quite sensitive to tite selection of' the value of Ak. For example, setting

Ak = 1.2 led the algorit Jim to diverge. Allowing A,. to be determined 1)*y the Goldstein test

(Eq. 713) yielded results similar to the original algorithm, hut requiiredl more comptnlter time.

Finall.y Figure 74(a) shows that the algorit hin based onl !ocai linearizat ion yielded stist alit ia~llY
imuprovedl convergenice- --the log likelihood converged after only 8 step~s.

Figures -1(b) and 4(c) show the evolution of the parameters for the first expert net al(l

tile second~ expert net. respectively' . (Comnparison of these figures to Figures 5(b) and( 5(c)

shows that thle original algorit hut and the mnodified line search variant withI Ak.= 1.1 behaved

alnmost ideuticall v: 01 converged to the correct solution after ab~outIts step~s in either case.

Figures G(b() and 61(c) show the slow~down obtained by using Ak.= 0.3. Figures I()ad7c

show the improved p~erformanalce obtainled using the local linearization algorit hm. Ini t his case.

the weight vectors converged to the correct values withiti 7 steps.

Panel (d ) ill each of the figures show the evoluitioni of tile estimlatedl variances (.TI . h
results were siniilar to those for thleexpert net parameters. Again. thle algorithiui based onl local

linearizat ion Yielded sigtiificantlY faster couvergence thani thle othler algorit buns.

A second~ simulation was run using thle followiug p~aramneter values (see Figure 35(b))

a 0 .S. (a2 =0.-I. XL 1-10. xi 2.0. a' = 1.2. a'i= 2.A. xj, =1.0. 1-' 1.0.

'[he results obtained in this siniuilat ion were simiflar to those obt ainled in the first simnulat ion.

The EM algoritlini converged in 11 steps and~ the local linearization algorit hin converged in 6

step".
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The results from a numbier of ot her simulation experiments coniiriied tlie result,, reported
here. lit general the algorithmi based on local linearizalio provided sighificantlt v faster con-
vergence than the original EM NI algorithm. The modified line search variant did iio0 appear to
converge faster (if the parameteer AA. was fixed). We also tested gradielnt ascent in these exper-
ilnents and found that conivergenice was geiierally one to t wo orders of inagniitude slower than
coiivergence of the EM algorithm and its variants. Moreover. convergence of gradient ascent
was rather sensitive to the learning rate and lithe initial values of thlie parameters.

Concluding remarks

l,'inite mixture models have become increasingly popular as models for unsul)ervised learning.
pallly because they oCCupy an int,.resting niche bet weei p)aramietric anid nonlparalinetri ap-
proaclhes to statistical estimation. Mixture-based approaches are parametric in that particular
parametric forms must be chosen for the component densities. hut they can also be regarded as
nonparalnetric by allowing the number of components of the mixture to grow. The advantage of
this niche in statistical theory is that these models have much of the flexibility of nonparalnetric
approaches. but retain some of the analytical advantages of parametric approaches (McLachlan
&" Basford. 1988). Similar remarks can be made in the case of supervised learning: The ME
architecture and the HME architecture provide flexible models for general nonlinear regres-
sion while retaining a strong flavor of parametric statistics. The latter model. in particular.
compares favorably to decision tree models in this regard (Jordan ,k Jacobs. in press).

In the current paper we have contributed to the theory of mixture-based supervised learning.
We have analyzed an EM algorithm for ME and HME architectures and provided theorems on
the convergence of this algorithm. In particular. we have shown that learning algorithm can be
regarded as a variable metric algorithm with its metric matrix P b)eing positive definite, so that
the searching direction of the algorithm always has a positive projection on the gradient of the
log likelihood. We have shown that the algorithm converges linearly, with a rate determiined
by the difference between the minimal and maximal eigenvalues of a negative definite matrix.

Similar results to those obtained here can also be obtained for the case of the unsupervised
learning of finite mixtures (Xu k Jordan. 1993).
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Appendix

The theoretical results presented in the main text show that the EM algorithm for the ME
and HME architectures converges linearly with a rate determined by the condition number of a
particular matrix. These results were obtained for a special case in which the expert networks
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are linear with a gaussian probabilitY niodel and the gating network., are iniltoiial logi )
niodels. In this section we discuss exlelisions of liese results Io other architectures.

We first note that T'Iheorenis 2 and I iiake ho sl)ecific reference toi lie particular probability
Models utilized ii specif•fing the architect ure. The resullts on convergence rate in these lieoreM.i

require onily that the mnatrix P he positive definilte. TIliese theoreins apply directly to other
architectures if t he corresponding I' matrices call be shown to be positive definite. W\e therelfre
need oiilv consider generalizations of Theorein 1. the theoreiii which esltablhshed the positive

definiteness of P for hlie generalized linear \If architectures. An analogous generalization of

Theorem 3 for the HIME architectures can also he obtained.

Let us consider tihe case in which tihe function ilipleniented 1) each expert network
(f, (x. O, )) is nonlinear in tihe paraiieters. WVe consider two possible updates for the paramn-
eters: (I) a gradient algorit hin

0 (k+l) = 0(14 -' + e ( (82)

w here

(k) X f I(x t t 0 Qtk.)Zkl k)(h ") *'J ) -iyt.e E.0( ) -, .,i ) (E .(A.) ) - I [Y(t.) - f, (x(++ Oj(A+ )].(

and (2) a Newton algorithm:

((k+l) - O(k) + (k)(R -, . (4)

R( M
where

1,:k = h-il~ t 0(). ., o(..-• )- (k).
t=--- do

whre _>__iaernngraJ

where jj > 0 is a learning rate.
These updates are covered by the following extension of Theorem 1.

Theorem 1A 1 For thc mod(l givfn by Eq. (4) and thE updati.s giv(n by Eq. (83) or Eq.

(85). wu havr:
o(k+]) _ o(k.) = .A) o 0=

O(k-j- 1 = 1,....hK.
- J di. J- j

u,hcrE p(k) is positiVE dcfinitE.

Proof. For the gradient descent algorithmn. we have P(A) =,jIj-. which is obviously positivej
definite because -yj > 0. For the Newton algorithm, we have that p ~k) - ( 1 e now
show that this matrix is positive definite. For an arbitrary vector u. we have

T (k) U ,(k)(T)uE(1(x<k. °A) J-0f(x(t) u
U Ri Eli -) - 0 0 (k) .1k U

N ( hk)< 1vT< VI',)=l

t=l

> 0.
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EqualitY holds oilY when v = u " O. sit e ŽJA, is positive definite wvilhi probahilitY

one. This is impossible for ait, u. So with probalilit one. R. hI (and thfi.s (IR?))- also) i)

posit ive definite. 11
Note that lhe Newton update (Eq. x35) is particularly alppropriate for tle case in w hicli the

experts are generalized linear models (Mc( ullagh ,k- Neller. 19,3): that is. the case in which
f,(xlt. ) = [f(x(t. 0 ...... f0,(x('O.O )] (d,, is the dimension of y) with

fAi(x t).o ) = Gj,(.I. .0,,ITxt ) ± 0 ..,+1 ).

where F ,(.) is a continuous univariate nonlinear function known as the link function. In this
case the Newton algorithm reduces to the IRLS algorithin. The extension to generalized linear
models also allows probability models fronm tlie generalized exponential family (cf. Jordan k
Jacobs. in press) and Theorem IA is applicable to this case as well.

We can also consider the case iin which the gating network is nonlinear in the parameters.
Both the Newton ul)date (IRLS update) and the gradient update are applicable in this case.
Theorem I already established that the Newton update for the gating network involves a positive
definite P matrix. As in Theorem IA. the result for the gradient update is immediate.
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