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Parallel Methods for Synthesizing Whole-Hand Grasps
from Generalized Prototypes

by

Nancy S. Pollard

Revised version of a thesis submitted to the Department of Electrical Engineering and Computer
Science in partial fulfillment of the requirements for the Degree of Doctor of Philosophy at the
Massachusetts Institutee of Technology on January 7, 1994.

Abstract. Robotic hands are very flexible mechanisms. Because of this flexibility, it has been
difficult to automate the process of acquiring objects using these robotic hands. Each new grasping
problem is too complex to analyze without the use of good heuristics. Constraints due to target
object geometry, environment geometry, hand kinematics and geometry, and a task description
must all be considered when forming a solution.

One tempting approach to this problem is to contain the flexibility of the robot hand by
developing standard routines for grasping common objects. Standard grasping routines greatly
reduce the complexity of the grasp synthesis problem, but these routines tend to go too far,
becoming inflexible to variation in the target object and environment geometries. If the range of
application of any given grasping routine is small, a reasonably sized library of routines will not
cover an acceptable space of problem situations.

This report describes one way in which standard grasping routines can be made more effec-
tive. A technique is developed for generalizing standard grasps and applying a generalized grasp
description to new problem situations. The grasp gencralization technique expands the range of
application of a standard grasp to a wide variety of target object and environment geometries,
while ensuring that the resulting grasps are appropriate for the intended task. The ability to
generalize a standard grasp in this way greatly reduces the number of standard grasping routines
that must be stored in any comprehensive grasp library.

A generalized grasp description is applied to a new problem situation using a parallel search
through hand configuration space. The generalized grasp description allows the placement of
each contact of a grasp to be independently optimized. This means that the process of assem-
bling good hand configurations can be transformed into a dynamic programming algorithm. The
many-dimensional space of hand configurations (fifteen dimensions in the examples of the report)
is searched for optimal solutions by performing a small number of steps in a six-dimensional
workspace.

The result of applying a generalized grasp description to a new problem situation is a space of
wrist configurations from which high quality, collision-free grasps can be achieved. It is useful to
have such a global solution, because this solution can be used to estimate the robustness of a grasp
to errors in wrist placement, to measure the effect of obstacles on the size and shape of the space
of good grasps, and to indicate whether any good grasps are possible at all. A global solution also
provides a flexible starting point for a post-processing step that adds the constraint of robot arm
kinematics to the problem and finds an approach path into one of the high quality, collision-free
grasps that have been identified.

The techniques presented in this report have been implemented. Many simulated examples are
shown throughout the report, and the results are verified using the Salisbury three-finger robotic
hand.
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Chapter 1

Introduction

Our hands are very important tools. We use them to acquire and manipulate objects of a
wide variety of shapes, sizes, and materials. We have robust strategies for manipulating
oddly-shaped objects such as toy cows and airplanes, performing tricky tasks such as
lifting coins from tables, and working with flexible objects such as clothes or shoelaces.

Robotic hands are very flexible mechanisms. It has been very difficult, however, to
successfully automate the processes of acquiring and manipulating objects using today's
robotic hands. One tempting solution is to develop standard routines for grasping common
objects. Standard grasping routines solve part of the problem, and they may require very
little computation, but they do not seem sufficiently robust to work in complex situations.
At the opposite extreme, a thorough analysis of each grasping or manipulation task would
allow more robust grasping strategies to be designed, but this type of analysis is too
difficult to achieve in any reasonable amount of computation time. This report presents a
hybrid solution to the problem of grasp synthesis, showing how some analysis of a specific
grasping task can be used to determine how a standard grasp can be effectively applied
in a non-standard situation.

1.1 Grasp Synthesis

This report considers the problem of identifying good grasps of a target object using
geometric information. This problem can be stated as follows. Given:

"* a geometric model of a target object,

"* a geometric model of the environment,

"* a task, and

"* geometric and kinematic models of the robot,

find a grasp of the target object that is suitable for the given task.
In the problem illustrated in Figure 1.1, for example, the information available would

include a geometric model of the hammer, as well as models of the pins and the wall

17



Figure 1.1: Given a task description, target object and environment geometry, and hand
kinematics and geometry, the robot must figure out how to grasp the hammer.

supporting the hammer. We would know that we want to use the hammer to strike a nail.
We would also have a model of the kinematics and geometry of the robot. Given all this
information, the problem would be to synthesize a grasp of the hammer so that it can be
used to strike a nail.

The simplest way to solve this problem might be to have a specialized hammer grasping
routine. Once the location of the hammer is known, a specialized hammer grasping routine
can be executed to grasp it. The routine would be designed to produce a grasp suitable
for using the hammer to strike a nail.

Such a routine might have problems, however, if a non-standard hammer design was
encountered, as in Figure 1.2, or if the environment was cluttered, as in Figure 1.3. Either
situation may present difficulties not anticipated by the standard grasping routine. It may
be difficult to determine how to best alter this routine so that the modified grasp satisfies
the new constraints, yet continues to be suitable for the given task. There may in fact
be no good grasps possible, and there may be no simple tests available to determine that
this is the case.

In situations such as those just described, a more careful examination of the space of
possible grasps is required. Unfortunately, this space is very large; it is exponential in
the number of degrees of freedom of the robot. In addition, the constraints that must be
satisfied-avoiding collisions, remaining within the kinematic limits of the hand, generat-
ing a grasp appropriate for the given task-are very different. There is no graceful way
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Figure 1.2: A non-standard tool design can make it difficult to use a grasping strategy
tailored for that tool.

Figure 1.3: A cluttered environment can also make it difficult to use a standard grasping
strategy.
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to combine these constraints, and there are no easy ways to identify the space of good
solutions.

One interesting option is to combine the standard grasp with a careful analysis of
each problem situation. A canonical hammer grasp can still be used as a reference point
in the search for a good grasp, but this canonical grasp can be generalized to cover a
wider variety of situations. It is important that the generalization used retain the original
objective of the hammer grasp-to use the hammer to strike a nail. It is also important
that there be an efficient way to map such a generalized grasp onto a new situation in all
of its complexity. This report explores this possibility.

1.2 Background

The first robot hands were simple grippers with a single degree of freedom: they could
only open and close. The problem of grasping an object with this type of gripper could be
described as the problem of maneuvering the gripper near the object and then positioning
this gripper so that a stable grasp of the object would be produced when the gripper closed.
Lozano-Perez et al. [30], Pertin-Troccaz [38], and others [26] [22] [36] have developed
systems that solve this grasping problem. They can move the robot to the object without
producing a collision, grasp the object, set it down and regrasp it if necessary, and then
place the object in a designated goal configuration.

Some work on the problem of reducing the uncertainty in the configuration of a part
(as required for the design of an automatic parts feeder) is similar to the problem of
synthesizing grasps for a simple gripper in the sense that a very limited repertoire of
operations are applied to the target object. These operations may be repeated grasping
by a single degree of freedom gripper as in Goldberg and Mason [15] and Brost [6], they
may involve passing the part through a set of fences as in Peshkin and Sanderson [39], or
they may involve tilting the table on which the part is resting as in Christiansen et al. [9]
and Erdmann et al. [12]. As in the case of performing pick-and-place operations with a
single degree of freedom gripper, the space of operations that may be performed on any
given part is sufficiently small that in simple cases (when there is assumed to be no friction
and no uncertainty in part modelling or mechanism control) the entire space of possibilities
can be analyzed. When parts feeder design is less constrained as in Caine [71, however, this
type of complete analysis is no longer practical. Instead, Caine demonstrates an interactive
design approach that helps the designer to visualize and directly modify limiting features
in a currently active parts feeder design.

As with design of a complex parts feeder, the problem of grasp synthesis for an artic-
ulated robot hand does not lend itself to a comprehensive analysis. An articulated hand
can achieve a greater variety of grasps than a single degree of freedom gripper, but it
is in general difficult to characterize the full range of possibilities. The complete search
space is simply too large. This has led to a movement away from complete tasks such
as performing a pick-and-place operation and toward more specialized subproblems. Two
specialized subproblems that are important to this report are:
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1. the selection of good points of contact on a target object, and

2. the development of tailored grasping strategies.

Work on these two subproblems is briefly reviewed here.

Finding Good Contact Sets

Before good points of contact can be found on a target object, some means for evaluating

a proposed contact set is necessary. Work on the analysis of stable grasps can be found

in Mishra et al. [32], Cutkosky [10], Kerr and Roth [23], Salisbury [42], and Salisbury and

Craig [43]. Representative of work on optimization functions, or grasp quality measures
are Li, Hsu, and Sastry [27], who measure the ability to manipulate a grasp object, and

Kirkpatrick and Yap [24], who measure the ability to apply task forces and torques to a
grasped object. Work in this area most relevant to this report is reviewed in detail in

Chapter 2.
Once an optimization function has been specified, optimal sets of contacts can be

found on a target object. In this area, Hanafusa and Asada [17] find a grasp of a two-
dimensional object by minimizing the energy stored in springs at the contacts. Baker et

al. [2] show that a stable grasp of a polygon can be formed by placing contacts at points

of intersection of the polygon with the maximum radius circle that can fit inside it. Park
and Starr [37] use a set of heuristics to optimize three-contact grasps of polygonal objects.

Markenscoff and Papadimitriou [31] find three-contact grasps that minimize the sum of
forces required to lift a two-dimensional polygon. Ponce et al. [41] use a different type of

objective function, finding four-contact grasps of polyhedral objects that maximize the size
of independent contact regions such that as long as each contact falls within its designated

region, the grasp will be a good one. Li and Sastry [28] propose an objective function
that minimizes the sum magnitude applied forces required to counter the worst case task

wrench within a given task wrench space ellipsoid. Work in this area most relevant to this

report is reviewed in detail in Chapter 3.

Developing Tailored Grasping Strategies

Work on developing grasping strategies for articulated hands is motivated by studies of hu-
man grasping. Napier [33] divides grasps into power and precision grasps. Jeannerod [21]

studies the effect of sensor feedback on hand shapes and hand trajectories during prehen-

sion tasks. Klatsky and Lederman [25] explore the use of sensors in the hand to determine
properties of objects. Iberall and MacKensie [19] contains a good overview of work in this

area.
Representative of work in the category of developing tailored grasping strategies for

robot hands is Bard and Troccaz [3], who decompose the target object into ellipsoids
and propose a grasping strategy designed for grasping ellipsoidal objects. Cutkosky and

Howe [11] construct a taxonomy of manufacturing grasps and develop an expert system

to choose between them. Vuskovic and Marjanski [45] describe some grasping behaviors
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aimed at reducing data input lines for prosthetics. Brock [5] develops tools for the con-
struction and analysis of sensor-based grasping strategies that eliminate the need to know
an object's exact configuration in the workspace. Work in this area is reviewed in detail
in Chapter 5.

Both specialized approaches to grasp synthesis-finding optimal sets of contacts and
developing tailored grasping strategies-have advantages and limitations. Although so-
lution techniques that find optimal sets of contacts have the ability to globally optimize
an objective function related to the utility of the resulting grasp, they impose many con-
straints on the problem space in order to efficiently achieve this goal. These constraints
take the form of requiring either a very small or a very large number of contacts, and
limiting the range of application of the solution to two-dimensional objects or to point
contact on the faces of a polyhedron (see Sections 2.3 and 3.2). In addition, once a set of
contacts is selected, some means of achieving this set of contacts must be found. It is not
useful to find the globally optimal set of contacts if no configuration of the robot hand
can possibly achieve these contacts.

The selection or development of a standard grasping strategy limits the capabilities
of the robot hand to the point these capabilities can be fully analyzed, at least in simple
cases, as was done with single degree of freedom grippers and some parts feeder problems.
This allows the constraints of hand kinematics and geometry to be incorporated directly
into the construction of a good grasp. Although this type of preplanned strategy can be
very robust to some uncertainties, such as uncertainty in target object location (Brock
[5]), the approach in general has not demonstrated much flexibility in the face of changes
in the geometry of the target object, as in the non-standard tool design of Figure 1.2, or
the addition of troubling obstacles, as in the cluttered environment shown in Figure 1.3.
The flexibility of the hand allows adjustments to be made to the grasping strategy, but
little work has been done on the problem of successfully making this kind of adjustment
while ensuring that the objectives of the original grasping strategy are retained.

This report demonstrates a grasp synthesis technique that combines some of the ad-
vantages of the two specialized approaches described above. The solution begins with the
selection of an example grasp, or grasp prototype, as in the second approach. The exam-
ple grasp is used to reduce the search space of the problem. This example grasp is then
generalized based on the task to be achieved. The space of grasps matching the example
grasp is precisely defined, so that any grasp within this space is guaranteed to be suitable
for the task to be performed. This space of matching grasps can be intersected with the
space of grasps possible in a given problem situation, and an objective function related to
the quality of the grasp can be optimized over the result, as in the first approach described
above, where optimal contact sets were generated.

The various steps of this grasp synthesis technique require examining the problems
of developing an objective function to measure grasp quality, finding high quality sets of
contact points, and fitting the shape of the robot hand to the shape of the target object.
Work related to each of these topics is reviewed in detail at the beginning of the first
chapter to address the topic.
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1.3 Problem Statement

The problem solved in this report can be described with the following specification:

Inputs:

a A geometric model of the target object,

* a geometric and kinematic model of a robot hand,

* a task,

* a geometric model of the environment, and

* an example grasp.

Problem:

9 Describe the space of collision-free grasps of the target object that are similar to the
example grasp and that are suitable for executing the given task.

This is illustrated in Figure 1.4 as a portion of a complete solution to the grasp synthesis
problem. The solution described in this report is shown surrounded by a preprocessing
step and a postprocessing step. From the left, constraints feed into all three steps. From
the right, one additional input, the grasp library, feeds into the preprocessing step.

The preprocessing step examines the target object geometry and the task, and pulls
from the grasp library an appropriate example grasp. The example grasp should be a
grasp that is known to be effective for the given task. It is designed as a point from which
to launch a search through the space of possible grasps. As we will see, use of the example
grasp as described in this report drastically reduces the search space of the grasp synthesis
problem.

One objective of the report is to explore the hypothesis that a very general example
grasp can be successfully used in a wide variety of situations. For example, throughout the
second half of the report, the robot hand is modelled as shown in Figure 1.5, and the very
simple example grasp of a cylinder shown in two views in Figure 1.6 is used for a range
of grasp synthesis problems. Grasps of complex objects, such as that shown in Figure 1.7
axe identified, and grasps in cluttered situations, such as that shown in Figure 1.8 are also
found, starting from the same cylindrical example grasp.

Even if an example grasp can be assumed to be widely applicable, selection of an appro-
priate example grasp is still a problem that must be addressed. This problem is discussed
briefly in Section 8.1.4, but the construction and use of a library of grasp prototypes is
left to future work.

The postprocessing step takes as input a description of the range of good hand config-
urations that both match the example grasp and are suitable for the task to be performed.
It is important to have the information on good regions of solutions provided at this point
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Figure 1.4: One solution to the grasp synthesis problem. The portion of the solution ad-
dressed by this report is framed by the black box. A complete solution has a preprocessing
and a postprocessing step.

Figure 1.5: A simple model of the Salisbury hand. The hand has three fingers, each with
three joints. The triangle represents the wrist.
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Figure 1.6: Two views of a prototype cylinder grasp.

Figure 1.7: A match of the cylindrical example grasp to a more complex object.
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Figure 1.8: A match of the cylindrical example grasp to the cylindrical object in a crowded
environment.

rather than choosing a single "optimal" solution, because there are more constraints that
must be satisfied. In particular, it is necessary to find a final arm configuration that is
free of collisions and to find a collision-free approach path into the final grasp. Figure 1.8
illustrates that it may not always be possible to find a free arm configuration or approach
path for any given grasp that is selected. Although the grasp shown is free of collisions,
it is unlikely that the hand could be maneuvered into that grasp by the robot arm unless
some of the obstacles were removed. These last steps of the solution process are left to
future work, as discussed in Section 8.1.

Providing regions of good hand configurations to the postprocessing step makes that
step more feasible, but this region information is also useful in its own right. It can be used
to compare the results obtained from using one example grasp to those obtained using a
different example grasp. It can be used to quantify the effect of various obstacles on the
space of good grasps that can be achieved. It can be used to select robust solutions, or
grasps that are less sensitive to errors in modelling, sensing, and control, and it can be
used to determine whether any grasps can be found at all. These uses are explored in the
chapters that follow.

1.4 Approach

Figure 1.9 expands the diagram of Figure 1.4 to illustrate the approach to the grasp
synthesis problem taken in this report. As described above, this approach assumes an
input of a grasp prototype, or an example grasp, such as that shown in Figure 1.6. The
output produced is a representation of the space of hand configurations forming collision-
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Figure 1.9: One solution to the grasp synthesis problem. The portions of the solution

addressed by this report are framed by the black and gray boxes. A complete solution

requires a preprocessing and a postprocessing step.
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free grasps that match the example grasp and are suitable for the task to be performed.

The approach described in this report can be divided into three steps, with the inputs
and outputs represented by icons in Figure 1.10. These steps are to generalize the example
grasp, apply it to the target object, and incorporate the constraints of hand kinematics
and environment geometry into the problem. In the first step of this process, contacts
of the example grasp are extracted, and this set of contacts is generalized to produce a
description of a range of contact sets appropriate for the given task. This step requires an
additional input, the grasp quality measure, which must be kept above some threshold to
ensure that a grasp is suitable for the given task. The region associated with each contact
in the generalized grasp description is a convex portion of wrench space, as indicated by
the plot icon in Figure 1.10. This means that the region associated with each contact can
be efficiently described, and it can be efficiently projected onto the geometry of any target
object.

In the second step of this process, the generalized grasp description is projected onto
the geometry of the given target object. This results in sets of independent contact regions
on the target object, such that as long as the robot hand makes some contact within each
of the given regions, a good grasp can be formed. The icon in Figure 1.10 shows an
example set of independent contact regions for a new target object.

In the third step of this process, the kinematics and geometry of the robot hand and
the geometry of the environment are integrated into the solution. This step requires
representing the range of collision-free hand configurations from which appropriate sets of
contacts can be achieved. A parallel algorithm is developed to exploit the independence
of the contact sets. The icon in Figure 1.10 shows one hand configuration that is free of
collisions and matches the contact regions of the previous figure.

The chapters below work step by step through this solution. Chapter 2 begins by
developing a set of tools that can be used to describe tasks and to define an appropriate
grasp quality measure. Chapter 3 uses this grasp quality measure to construct equivalence
classes of grasps based on the task and the example grasp. It shows how a given equivalence
class of grasps can be projected onto a given target object geometry to obtain sets of
independent contact regions. As long as the robot can achieve one contact within each of
the given contact regions, a good grasp of the target object can be formed. Chapter 4 shows
some examples of finding optimal sets of contact points using these concepts. This first
half of the report uses two-dimensional object models for illustration, but the procedures
developed apply to three-dimensional objects as well.

Chapter 5 shows how the constraints of the hand kinematics and geometry and the
environment geometry can be added to the problem. The parallel algorithm described in
this chapter is not very efficient, and Chapter 6 describes a variety of modifications and
tradeoffs that must be made to make this algorithm work efficiently on today's parallel
machines. Chapter 7 presents a variety of example grasp synthesis problems, describing
additional practical concerns that arise in the context of these examples. Chapter 8
presents a summary and discussion. The second half of the report uses three-dimensional
object models for illustration.
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Figure 1.10: Grasp synthesis in this report is a three-step process that begins with an
example grasp, defines a space of contact configurations that match the example grasp,
intersects this description with the contact combinations possible for a given target ob-
ject, and finds hand configurations that are free of collisions and can achieve a contact
combination within the given set.
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1.5 Contributions

The main contribution of this report is a system that:

"* incorporates a variety of problem constraints, including target object geometry, en-
vironment geometry, hand kinematics and geometry, and a task, and

"* produces a global solution: a space of wrist configurations from which high-quality,
collision-free grasps are possible.

A global solution is useful, because it allows an estimate to be made of the robustness of
a grasp to errors in wrist placement, it provides a quantitative measure of the effect of
the obstacles in the environment on the space of possible grasps, and it indicates whether
any solutions are possible. In addition, a global solution provides the flexibility needed to
execute a postprocessing step, which must incorporate arm kinematics into the solution
and find a collision-free path into one of the high-quality, collision-free grasps that have
been identified.

One important component of the system described in this report is:

* a novel technique for generalizing standard grasps and applying them to new prob-
lems.

Standard grasps are used because they can drastically reduce the complexity of the search
for a good grasp, but they can be very inflexible. The grasp generalization technique
described in this report makes a standard grasp more effective by expanding its range of
application to a wide variety of target object and environment geometries, while ensuring
that the resulting grasps are appropriate for the intended task. Because this generalization
technique allows any single standard grasp to apply to a wide range of problems, a small
library of standard grasps is sufficient to cover a large space of possibilities.

A second important component of this system is:

* a novel technique for performing a parallel search through the space of hand config-
urations.

This technique takes advantage of the fact that the grasp generalization process allows
the placement of each contact of the grasp to be independently optimized. This allows
the process of assembling good hand configurations to be transformed into a dynamic
programming algorithm. The many-dimensional space of hand configurations (this space
has fifteen dimensions in the examples of this report) can be searched for optimal solutions
by performing a small number of simple steps within a six-dimensional workspace.
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Chapter 2

Measuring Grasp Quality

The main goal of this report is to present a general technique for grasp synthesis. We
would like to synthesize only the best grasps, however, and to do this, we must carefully

consider how a grasp should be evaluated.

Within the scope of this report, two properties are important for evaluating a grasp:

1. the suitability of a grasp for the task to be performed (Figure 2.1), and

2. the robustness of a grasp to errors in modelling, sensing, and control (Figure 2.2).

The first of these properties, the match of a grasp to a task, forms the basis for the
grasp quality measures explored in this chapter. A task may require lifting the object,

resisting external disturbance forces, and applying assembly forces. A high quality grasp

will be capable of meeting these goals without the hand applying extreme forces to the
object and without the object slipping from the grasp.

The second of these properties, the robustness of the grasp, is not considered in this

chapter. Robustness is independent of the grasp quality measures developed in this chapter
in the sense that it can be expressed in ?i.ems of these quality measures: a robust grasp

can be described as a high quality gras' -. arrounded by a large, continuous region of

high quality grasps. Because grasp robustness can be evaluated as a function of the
grasp quality measures of this chapter, consideration of grasp robustness can be left to

discussions in Chapters 3 and 4.
The goal of this chapter is to explore how the fit of a grasp to a task can be captured

with a numerical value. The results of this exploration will allow us to determine, for
example, that the top grasp of Figure 2.3 is much better than the bottom grasp of the

same figure for the simple task of countering arbitrary disturbance forces. The ability to

rank grasps in this way will enable us to synthesize grasps that are a good fit to given
tasks in the chapters that follow.

It is important to note that although the pictures and examples of this chapter in-

volve only two-dimensional objects, the techniques that are developed are general. The

trivial extensions required to accommodate three-dimensional target objects are covered
in Section 2.10.
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Figure 2.1: A grasp must be capable of applying appropriate task forces. This concern
forms the basis for the grasp quality measures explored in this chapter.

Figure 2.2: A grasp is more likely to be successful if acceptable areas of contact are large
and robust to errors in modelling, sensing, and control. Grasp robustness is addressed
later in the report.
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Figure 2.3: This figure shows two grasps, each produced by applying forces at the number
contact points. The grasp in the top figure, is much better than the marginal grasp in the
bottom figure with respect to the ability to counter arbitrary disturbance forces applied
to the polygon. The quality measure provides one indication that this is the case.
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We also note that the simple and general grasp quality measure used throughout

most of this report is not new (see Section 2.3). The analysis provided in this chapter

is important, however, because it examines the assumptions behind this grasp quality

measure, and because it provides general tools for constructing grasp quality measures for

specific tasks.

The next few sections further describe the problem that will be solved. Section 2.1

gives a detailed outline of the problem and Section 2.2 outlines the notation used in this

chapter. Section 2.3 reviews previous definitions of grasp quality measures, and Section 2.4

presents a brief overview of the body of the chapter, where tools for constructing grasp

quality measures are developed.

2.1 Problem Statement

This chapter addresses the problem of selecting a quality measure that ranks the fit of a

grasp to a given task. The problem specifications for this chapter are as follows:

Definitions:

"* A grasp: a set of contacts on a target object.

"* A task: defined by the task wrench space, or the space of resultant forces and

torques that must be applied to the target object.

Inputs:

"* A geometric model of the target object,

"* a grasp,

"* a task.

Assumptions:

"* Frictionless point contacts,

"* no singular contacts (Figure 2.4),

"* no complex contacts (Figure 2.5),

"* contact torques defined about the target object center of mass.
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Figure 2.4: For contact with two-dimensional objects, point-vertex contact is considered
too fragile to be part of a good grasp.

Figure 2.5: Because they do not have a unique local contact normal, complex contacts are
not discussed in this chapter.

Problem:

9 Estimate the suitability of the grasp for the given task.

The next few paragraphs elaborate upon these problem specifications. In particular, they
describe how a grasp is specified, provide a means for measuring the capabilities of any
given grasp, and describe how a task is specified. Although the pictures and examples
of this chapter use two-dimensional objects, this is not listed as one of the assumptions

above. The techniques that are developed throughout this chapter are general, and the
examples in the second half of the report involve three-dimensional objects. Section 2.10
covers the trivial extensions needed to accommodate three-dimensional objects.

A Grasp is a Set of Contacts

This chapter considers a very simple description of a grasp. A geometric model of a target
object is given, and a grasp of that target object is formed by placing some number of
contacts on the object.

Forces and Torques can be Determined from the Contacts of a Grasp

The forces and torques that can be exerted on the target object through a grasp deter-
mine the capabilities of that grasp. The assumptions listed above make it very easy to

35



I J I

Figure 2.6: Non-singular, simple contact types for a two-dimensional object. These con-

tacts all have unique local normals.

identify these forces and torques. First, it is assumed that all contacts are non-singular,

simple point contacts. For two-dimensional objects, this includes only the contact types
illustrated in Figure 2.6: edge contact at a vertex, point contact on an edge, and point
contact on a curved surface. The examples of this chapter use only the first two of these
contact types. The third is not used simply because curved objects are not examined.

Second, it is assumed that all contacts with the target object are frictionless. For the
types of contacts that will be considered in this chapter, this means that the direction
of the force applied to the target object at any contact can be determined uniquely from
the local contact geometry. In the absence of friction, force can only be applied in the

direction of the local contact normal, which can easily be calculated for the three contact
types shown in Figure 2.6.

The torque exerted on the target object can be computed from the applied forces at the

contacts, but first a point must be selected about which to measure the torque values. For
convenience, torques are measured about the target object center of mass. This seems like
a harmless assumption, but it does affect some of the grasp quality measures described in
the sections below. This assumption is reviewed in Section 2.8, after the two grasp quality
measures have been discussed in detail.

A Task is a Space of Forces and Torques

To determine the suitability of the grasp for a particular task, a description of that task
is needed. In this report, a task is a space of forces and torques that the hand may be
required to apply to the target object as it performs some function with that object. This

space of forces and torques is referred to as the task wrench space. This chapter discusses
the derivation of one specific task wrench space in some detail.

2.2 Notation

A number of terms are used in this chapter:
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wrench due to applied force at contacti-- [-I]

f. applied force at contact i
unit outward pointing normal at contact i
scaled torque due to applied force at contact i , A (f x d-)

d -- vector from contact point to object center of mass
A = multiplier to convert torque values to units of force

n = number of contacts
ai = multiplier for applied wrench at contact i

There are several things worth special notice in this list of terms. First, note that the
wrench construct has been introduced. The term wrench comes from screw theory (see
Hunt [18] for a discussion), which is used to analyze the kinematics of mechanisms. In
this report, however, wrenches are just used to refer to a combined vector of forces and
torques.

Second, note that torque multiplier A is used to relate torque magnitudes to force
magnitudes. In this report, torque multiplier A is set deterministically for any given target
object. It equals the reciprocal of the maximum magnitude torque that could possibly
be applied to that target object using unit applied force, and it has units of Ig. This
method of weighting torques depends on the worst case torque that could be exerted on
an object, and it is one way of making the capabilities of a particular grasp independent
of target object scale. The effect of this choice of A can be summarized with the following
expression:

1'r1 <- IL l. (2.1)

Third, notice that all torques r- are defined about the center of mass of the target
object (using vector di), as stated in the assumptions of Section 2.1. This decision affects
the grasp quality measures outlined, and it is reviewed in Section 2.8.

Fourth, note how the capabilities of a grasp are expressed using the parameters listed
above. Legal values for applied forces Lf can be computed from the contacts of a grasp and
the assumption of frictionless point contacts as described in the previous section. Torques
Ti can be computed from contact points and applied forces. Contact wrenches can be
formed from these forces and torques. Given suitably normalized contact wrenches wi and
suitable limitations on wrench multipliers ai, the grasp wrench space can be expressed as
the set of vectors that satisfy:

aiw__. (2.2)
i=1

for some set of legal ai. Measuring grasp quality then becomes a problem of:

* choosing how to normalize contact wrenches w-,

* choosing limitations on wrench multipliers ai, and

* determining how well the grasp wrench space fits a given task wrench space.
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These issues will be discussed in the body of this chapter.

2.3 Previous Work

There has been a considerable amount of work directly related to the problem of selecting
a grasp quality measure. Grasp quality measures in the literature have focused on one of
three properties of a grasp:

* sensitivity to contact placement,

* ability to manipulate the grasped object, and

* ability to apply wrenches to the grasped object.

The paragraphs below briefly review work on the first two of these properties and then
explore in more detail work on the third property, which is directly related to the grasp
quality measure of this chapter.

2.3.1 Sensitivity to Contact Placement

The sensitivity of a grasp to errors in contact placement is one measure of the robustness of
that grasp. A grasp that allows some freedom in positioning each contact will be resistant
to small errors in modelling the object and small errors in controlling the hand. Robust
grasps can be constructed by maximizing the sizes of contact regions on the object such
that as long as each contact falls within its designated region, the grasp can be made stable.
Using contact region size as a quality measure, Ponce et al. [41] show how to construct
optimal four-contact grasps of polyhedral objects and Faverjon and Ponce [13] show how
to construct optimal two-contact grasps of curved objects. Nguyen [35] describes a variety
of robust contact configurations, including three-contact grasps of polyhedral objects.
Section 3.6.7 of this report describes how a similar quality measure based on contact
region size can be combined with the grasp quality measure described in this chapter,
which evaluates the space of forces and torques that can be applied to an object.

2.3.2 Ability to Manipulate the Grasped Object

When a task requires the grasped object to be manipulated by the robot hand, grasp
quality can be measured by determining how efficiently the hand can generate the required
task motion. Li, Hsu, and Sastry [27] address this question, modelling the motion of the
grasped object with a manipulability ellipsoid. They propose a grasp quality measure that
estimates how well the incremental motions that can be applied to the object by the hand
match the motions that are required for the task.

This report has the goal of generating fixed, stable grasps. The configuration of the
object within the hand is not expected to change. A grasp quality measure based on ability
to manipulate the object within the grasp is not needed for this type of grasp synthesis
problem.
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Reference Objective Task Constraints
Function

[8] nminju force closure 2 contact, 2D, curved object
[4] minm force closure 2 contact, 2D, curved object

3 contact, 3D, polyhedron,
[20] min p lift object hand in contact
[31] min -i __,I1 lift object 3 contact, 2D, polygon

[311 minEi 1,il lift, rotate object 4 contact, 2D, convex polygon

Figure 2.7: Grasp quality measures used for grasp synthesis. The objective functions given
measure the suitability of a grasp for the specified task. The last column indicates con-
straints on the solution proposed in each reference. Parameter A represents the coefficient
of friction at a contact with the target object.

Reference Objective Task
Function

[24] mrin max/fIf) task wrench space ball

[14] min Z-i If;l task wrench space ball

[141 mi (maxI fI task wrench space ball
[28] mrin i -, I task wrench space ellipsoids

Figure 2.8: Other proposed grasp quality measures. The objective functions given measure
the suitability of a grasp for the specified task.

2.3.3 Ability to Apply Wrenches to the Grasped Object

When a task requires a set of wrenches to be exerted on an object, grasp quality can be
measured by determining how effectively the hand can generate these wrenches. This is
the grasp quality measure considered in this chapter.

Ideally, this grasp quality measure is constructed using a two step process. First, the
space of torques that can be applied to the joints of the robot hand is mapped to the space
of wrenches that can be applied to the grasped object. Then, this is compared to the space
of wrenches required for the task. A very common abstraction, however, which is also used
in this chapter, is to construct the grasp quality measure from contact forces rather than
from joint torques. This is useful because it results in a grasp quality measure that is
independent of the device used to achieve the contact forces. All of the work described
below uses this abstraction. The tables in Figures 2.7 and 2.8 summarize some important
properties of the work described in this section.

If a grasp is described as a set of contacts and a task is described as a space of
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wrenches, then the basic approach to measuring the quality of the grasp is to see how
well the wrenches that can be applied to the object using legal combinations of forces

at the contacts match the wrenches required for the task. The questions that must be
answered when choosing such a grasp quality measure are how the task wrenches should
be expressed and how the penalty function on applied wrenches should be measured.

One very simple task is to achieve a force closure grasp. A force closure grasp is capable
of resisting at least some amount of external force in any direction, although the grasp
may rely on friction to counter external forces in some directions. The wrench space of
this task is an arbitrarily small ball centered at the wrench space origin. With the goal
of achieving a force closure grasp, Chen and Burdick [8] minimize the size of the friction
coefficient required to form a two-contact grasp of a two-dimensional curved object. Blake
and Taylor [4] demonstrate a fast method for finding locally optimal two-contact grasps
of two-dimensional curved objects under this same grasp quality measure. In related
work, Trinkle [44] demonstrates a linear programming technique for determining whether
a grasp is force closure either with or without dependence on friction and for any number
of contacts.

Another common task is to lift the object. The wrench space of this task can be
described as a single force vector through the object center of mass. With the goal of
achieving this task, Jameson [20] performs local grasp optimization, minimizing the coeffi-
cient of friction required to lift the object using a three-contact grasp of a three-dimensional
polyhedron. Jameson is simulating grasping using a robot hand, not just contact points,
and so he adds to his grasp quality measure potential fields designed to keep contacts of
the grasp away from the ends of the fingers, keep the joints of the hand from their limits,
and keep the fingers of the hand away from the table. Markenscoff and Papadimitriou [31]

minimize the sum magnitudes of the forces required to lift a two-dimensional object using
a three-contact grasp of that object. The object weight is assumed to lie in the third di-
mension. Markenscoff and Papadimitriou also show how to minimize the worst case sum
of the magnitudes of the contact forces of a four-contact grasp of a two-dimensional convex
polygon such that the grasp can counter a unit force in any direction. This represents
a task wrench space appropriate for lifting and slowly rotating the grasped object or for
performing translational acceleration of the grasped object.

If the task wrenches are completely unknown, the task wrench space can be described
as a ball centered at the wrench space origin. Kirkpatrick and Yap [24] propose to minimize
the sum magnitude contact forces required to counter the worst case wrench within this
task wrench space. Ferrari and Canny [14] develop this measure and propose a second
alternative that minimizes the maximum force required to achieve the same task. Because
the task wrench space now has a substantial torque component, both of these measures
require that a weighting factor be defined to relate forces and torques.

There may be enough information about the task to favor certain directions of the
task wrench space over others. Li and Sastry [28] propose the use of task wrench space
ellipsoids, and they develop a grasp quality measure that minimizes the sum magnitude
applied forces required to counter the worst case task wrench within a given wrench space
ellipsoid. Grupen and Weiss [16] perform local grasp optimization, minimizing the contact
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forces required to achieve wrenches along specified task basis vectors. These techniques
also require a weighting factor relating forces and torques.

The grasp quality measure used in the grasp synthesis examples in this report is similar

to those described in [24] and [14].

2.4 Chapter Overview

This chapter develops a set of tools for constructing grasp quality measures. The grasp
quality measure has been abstracted away from the robot hand, and so a grasp has been
defined as a set of contact points on a target object. One aim of this chapter is to show

how this abstract definition of a grasp can be used to compute the grasp wrench space.
Another goal is to determine exactly how a task wrench space might be defined. Once the
grasp wrench space is known, and a task wrench space has been given, grasp quality can
be defined as the ratio of the size of the grasp wrench space to the size of the task wrench

space.
A number of different techniques for measuring grasp quality for specific tasks were

shown in Section 2.3. Due to assumptions made in Chapter 3 of this report, which con-

strain how the grasp wrench space can be measured, and due to a desire to develop tools for
use with more general task wrench spaces, a grasp quality measure cannot be arbitrarily
chosen from Section 2.3. Section 2.5 covers the constraints imposed on the grasp wrench
space measurement, and Section 2.6 presents an example grasp wrench space. There are
fewer constraints on the task wrench space, and Section 2.7 presents one simple exam-

ple. Section 2.8 uses the example task wrench space to illustrate construction of a grasp
quality measure. This grasp quality measure proves difficult to compute, and so a simple
approximation is proposed and evaluated. Section 2.9 addresses the issue of more complex
tasks. The examples of this chapter all involve two-dimensional objects, and Section 2.10
covers the simple extensions required to form grasp quality measures for three-dimensional

objects. Section 2.11 presents a summary.

2.5 Measuring the Grasp Wrench Space

This section describes the grasp wrench space construction used in this report. It first
outlines the assumptions made in Chapter 3 that constrain this construction and then

describes how the grasp wrench space can reasonably be measured within the bounds of
these assumptions.

Chapter 3 covers the topic of forming equivalence classes of grasps from a single exam-
ple grasp. These grasp equivalence classes are defined based on the grasp quality measure,
and the constructions used in that chapter work with the convex hull of the contact
wrenches of a grasp. In other words, Chapter 3 assumes:

* The convex hull of the contact wrenches of a grasp can be used to measure grasp
quality.
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Recall that the grasp wrench space was expressed as the space spanned by

n

Z (2.3)

The assumption of Chapter 3 states that this space must be bounded by the convex hull
of the contact wrenches. This can be achieved for a grasp wrench space of magnitude W
with the following set of limits:

a >_ 0, (2.4)
n

K W, (2.5)

14 : 1. (2.6)

Then, the unit grasp wrench space can be described as follows:

e The unit grasp wrench space is bounded by the convex hull of the contact wrenches
formed from unit applied forces at the contacts of the grasp.

This answers two of the questions left open in Section 2.2: how w- should be normalized,
and how weights ai should be limited. Note that in Expression 2.6, wrench magnitudes,
rather than force magnitudes, could have been limited (using the expression lwl = 1).
Forces are limited rather than wrenches because the sum of the magnitudes of the applied
forces of a grasp is a somewhat better predictor of the physical limitations of a hand
than the sum of the magnitudes of the contact wrenches of the grasp. Contact wrench
magnitude depends on parameters such as contact placement and target object geometry,
which are related very indirectly to the physical limitations of the robot hand. It also
depends on the position of the coordinate frame about which torques are measured, which
is not at all related to the physical limits of the robot hand.

It is interesting to pursue the question of how the resulting description of the grasp
wrench space does relate to the physical constraints of the robot hand. One type of analysis
that can be performed is to roughly relate this grasp wrench space to the maximum torque
that can be applied at any joint of the robot hand. This works as follows. Given the
geometry of the hand, the maximum torque on any of the joints that may result from a
unit force applied at a single contact somewhere on the hand can be estimated. From the
worst case contact point and from the maximum torque that can be applied at each of
the joints of the hand, an upper bound can be obtained on the magnitude of any single
force that the finger can be guaranteed to resist. If there are multiple contacts on the
same finger of the hand, then their effect on the joint torques required at that finger is
additive. This results in an upper bound on the sum magnitude forces applied to that
finger. The effects of forces on independent fingers should be independent, so limiting the
sum magnitude of all applied forces results in a conservative estimate of the capabilities
of the hand when this measure is related to individual joint torque limits.
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2.6 An Example Grasp Wrench Space

The previous section presented a definition for a unit grasp wrench space. This section
derives the unit grasp wrench space for an example grasp, showing how the general con-
straints on grasp wrench space construction, the constraints imposed by target object
geometry, and the constraints imposed by a particular contact distribution progressively
limit the grasp wrench space. The paragraphs below illustrate the effect of the various
constraints by describing three wrench spaces:

" The limit wrench space is the wrench space bounded by the convex hull of the
wrenches that meet the general force and torque constraints of the problem: I fi 1
and Inil < 1.

" The object wrench space is the wrench space bounded by the convex hull of the
wrenches that meet the general force and torque constraints of the problem and can
be applied to the target object. The size and shape of this space are limited by the
target object geometry.

" The grasp wrench space is the wrench space bounded by the convex hull of the
wrenches that meet the general force and torque constraints of the problem and
form a given grasp of the target object. This is the space of Equation 2.3. The size
and shape of this space axe limited by the placement of contacts on the target object
boundary.

Note that the object wrench space of a target object is the union of all possible grasp
wrench spaces of that object. The limit wrench space is the union of the object wrench
spaces of all possible objects.

These three spaces arc illustrated using an example five-contact grasp of a two-dimensional
polygon. Figure 2.9 shows this grasp, with the contact points represented as dots in the
figure. The paragraphs below derive the limit wrench space for the problem, the object
wrench space of the example polygon, and grasp wrench space for the example grasp.

2.6.1 The Limit Wrench Space

The limit wrench space for a two-dimensional target object is constrained only by the
limits placed on applied force in Equation 2.6 and the technique used for computing a
weighted torque value from this applied force. These limits are reviewed by expanding the
wrench space constraints on any grasp of a two-dimensional object:

-[fi (2.7)

43



X 3

Y <4

Figure 2.9: Grasp of a two-dimensional polygon, represented by forces applied at the
numbered points.

subject to

ILI = 1, (2.9)
T i, = A (I. X 40)._. (2.10)

Every contact wrench wm at a contact i is composed of a force component f. of magni-
tude 1, and a torque component ri,,. The torque component depends on the vector from
the contact point to the target object center of mass (4i) and the torque multiplier A. As
in Section 2.2, A is defined based on worst case torque in order to make grasps independent
of target object scale. If X is the maximum torque arm possible for frictionless contact
with the example polygon, then A is defined as follows:

1 = 1 (2.11)

This guarantees that:

riV,2 < 1. (2.12)

The unit limit wrench space of this problem is the space of wrenches w that meet the
following conditions:

00

w aii (2.13)
i/ I

ai > , (2.14)

a, _< 1, (2.15)
i=1
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Figure 2.10: The set of normalized contact wrenches that satisfy the limit wrench space

equations for the two-dimensional grasp synthesis problem fills a two-dimensional region.

These wrenches can have any force orientation and any torque with magnitude less than

or equal to 1.

"IC
Z

1

f x

Figure 2.11: The limit wrench space for a planar problem is a cylinder in the three-

dimensional wrench space of the planar problem. The boundary of this cylinder is repre-

sented by the plot in Figure 2.10.
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Figure 2.12: Curve traced by the perimeter of the example polygon. Edges are represented
by vertical lines, because force orientation does not change with placement of a contact

on an edge, although the size of the torque arm does change.

where w. is any contact wrench that satisfies Equations 2.9 and 2.12.

Any wrench wi that satisfies Equations 2.9 and 2.12 will lie on the curved surface of
a cylinder. This cylinder surface can be unrolled and displayed as in the two-dimensional
plot of Figure 2.10. The unit limit wrench space of Equation 2.13 is bounded by the
convex hull of the wrenches indicated in Figure 2.10. This makes it the complete cylinder
volume shown in Figure 2.11.

2.6.2 The Object Wrench Space

The object wrench space represents the best grasp of a target object that can ever be
achieved. The unit object wrench space is a subset of the unit limit wrench space, and is
derived by adding the additional condition that each wrench _i is a contact wrench due
to some contact with the target object.

The contact wrenches that result from contact with the example target object of
Figure 2.9 cover only a portion of the cylinder surface in Figure 2.10. The boundary of the
unit object wrench space is captured by tracking unit forces around the object perimeter.

This traces out a curve on the surface of the unit cylinder. Figure 2.12 shows the object
boundary curve for the example polygon. The vertical lines represent point contacts on
edges of the polygon. On an edge, force direction remains constant while torque varies
with motion along the object perimeter. If ds represents infinitesimal motion along an
edge, then infinitesimal changes in torque are given by:

dr = A ds. (2.16)

The curved lines represent edge contacts at vertices of the polygon. At a vertex, force
and torque vary as the contacting edge rotates. If d_, is the vector from a vertex to the
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object center of mass and f (0) is the unit contact force vector, we can write:

dr = -A_(d i(0)) (2.17)

The convex hull bounding the unit object wrench space of the example polygon is
constructed from the object boundary curve displayed in Figure 2.12. To display this
convex hull, the curve is sampled and a convex hull is constructed from the sampled
points. This sampled representation of the object wrench space of the example polygon
is shown in Figure 2.13. The figure shows four views of the object wrench space. The
wire frame cylinder can be used as a reference. This represents the corresponding limit
wrench space boundary. The coordinate frame at the top of this cylinder can help relate
the views to one another.

The features of the object boundary curve of Figure 2.12 can be seen in the views
of this polyhedron. The view in the lower right-hand corner of Figure 2.13 shows the
long, isolated curve that wraps around from approximately ý- radians through 21r or 0
radians to approximately 3 radians in Figure 2.12. The view directly above that shows
the muddled region centered about 7r radiam.

The object wrench space has a very definite character. Large portions of the limit
wrench space are not covered, and only certain types of grasps will be possible. If the
objective in choosing a grasp is to cover the largest amount of the object wrench space
possible, then the selection of logical contacts will be limited. For example, it will in general
be good to select contacts at torque extremes and along the curved sections representing
vertex contacts. This topic will be discussed further below.

2.6.3 The Grasp Wrench Space

Although the limit wrench space describes the volume within which the grasp wrench
space must exist, and although the target object geometry limits the space of grasps that
can be achieved, the real character of the grasp wrench space is determined by the choice
of contact points that make up a grasp. For a set of n contact points, the unit grasp
wrench space is the space of wrenches w that meet the following conditions:

n

w_ :•aiwi, (2.18)

i=1I

SŽ 0, (2.19)
n

>Z S < 1. (2.20)
i=1

where wi is any contact wrench that can be applied to the target object at a contact point
of the grasp and that satisfies Equations 2.9 and 2.12.

The contact wrenches of the grasp shown in Figure 2.9 cover only a few points on the
object boundary curve of Figure 2.12. These points are shown in Figure 2.14. This means
that the grasp wrench space, which is formed from the convex hull of these points, will
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Figure 2.13: The object wrench space of the example polygon. The entire object wrench
space falls within the limit space cylinder, and the boundary of the object wrench space
polyhedron is formed from the convex hull of the points on the object boundary curve
shown in Figure 2.12.
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Figure 2.14: Unit contact wrenches of the example grasp.

be a small subset of the object wrench space. The grasp wrench space for the example
grasp is shown in Figure 2.15. Compare this to the object wrench space, shown in Fig-
ure 2.13. Because the contact points are not distributed very evenly along the axis of
force orientation in Figure 2.14, it can be seen in Figure 2.15 that the grasp wrench space
is much wider when viewed along the x-axis (the right hand views of Figure 2.15) than
when viewed along the y-axis,

2.7 An Example Task Wrench Space

The previous sections described how the grasp wrench space is constructed and measured
in this report. The unit grasp wrench space was described as the wrench space bounded by
the convex hull of the contact wrenches resulting from unit forces applied at the contacts
of a grasp. A grasp quality measure, however, requires that both a grasp wrench space and
a task wrench space be specified. This section defines an example task wrench space. This
task wrench space is used to describe how grasp quality can be measured in the sections
that follow.

The task wrench space developed in this section is based on the following goal:

* To estimate how effectively a grasp can counter arbitrary disturbance forces.

This is one way to measure the security of a grasp when little is known about the wrenches
that will be encountered during execution of a task.

To develop a task wrench space for the task of countering arbitrary disturbance forces
means to determine how these disturbance forces can be modelled. For this example,
it is assumed that these forces follow the same rules as the contact forces of the grasp.
In other words, the disturbances are forces applied to the target object, and they result
only from non-singular, frictionless point contacts. This type of contact might result,
for example, during contact between rigid bodies with low coefficients of friction in an
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Figure 2.15: The grasp wrench space of a grasp of the example polygon. This is only a
portion of the object wrench space shown in Figure 2.13.
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assembly task. For disturbances that result from contact at multiple points, the surn
magnitude of the disturbance forces applied to the target object is measured. This assumes
that the disturbance forces are best described using an aggregate measure rather than a
measure dependent on the number of contactj.

This technique for categorizing disturbance forces does not specifically capture dis-
turbances that do not result from frictionless point contacts on the surface of the target
object. This includes, for example, the wrench due to the target object weight, the wrench
due to acceleration of the grasped object, or the resultant wrench due to a liquid contained
by the target object. These wrenches may, however, be within the task wrench space as
defined. If not, they can easily be added as described in Section 3.6.5.

Now that the rules for measuring a task wrench space have been specified, we can ask
what shape this task wrench space will take. Because it is assumed that disturbance forces
follow the same rules as the applied forces of the grasp, it is clear that a disturbance of
magnitude less than or equal to one must fall somewhere within the unit object wrench
space of the target object. A grasp that is expected to counter a disturbance force of
magnitude one as defined in this section must therefore be prepared to counter any wrench
within the unit object wrench space of the target object without losing the grasp. This
space is used as the task wrench space in one definition of a grasp quality measure in the
next section.

2.8 Two Grasp Quality Measures

The previous sections have shown how the grasp wrench space is measured in this report,
and they have presented an example task wrench space designed to represent the simple
task of countering arbitrary disturbance forces applied to a target object. This section
considers the problem of measuring grasp quality, or the fit of a task wrench space to a
grasp wrench space.

For this section and the remainder of the report, it is assumed that a task wrench
space is given. A grasp must be capable of countering all wrenches within the task wrench
space, and so a measure of grasp quality can be stated as follows:

* Grasp quality for a task is the reciprocal of the sum magnitude applied forces required
for the task wrench space to just fit within the grasp wrench space.

A grasp quality measure will exist whenever a grasp wrench space spans the full range
of directions spanned by the task wrench space. A special case exists when the grasp
wrench space completely contains the wrench space origin. When the grasp wrench space
contains the origin, then if the robot hand squeezes hard enough, a grasp can be formed
that can successfully counter all wrenches within any task wrench space. The applied
force magnitudes may be unnecessarily large, however, if the grasp wrench space bears
little resemblance to the task wrench space, and this is reflected in a small grasp quality
measure. Grasps can be compared based on the grasp quality measure for a given task.
The relative effectiveness of a grasp for executing different tasks can also be evaluated by
comparing the grasp quality measures of the grasp for the different tasks.
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2.8.1 Measuring Grasp Quality for the Example Task

The next few paragraphs describe how a grasp quality measure can be formed for the
example task of the previous section. In this task, the task wrench space was described
as the unit object wrench space of the target object.

The grasp quality measure is the reciprocal of the sum magnitude applied forces of a
grasp required for the grasp wrench space to just contain the entire task wrench space.
Because the unit object wrench space is used as the task wrench space, it is helpful to
scale both the task wrench space and the grasp wrench space by the reciprocal of the grasp
quality measure and express this grasp quality measure as follows:

e GQ 1: the scale of the largest object wrench space of a target object that fits entirely
within the unit grasp wrench space of a grasp.

Grasp quality measure GQ1 can be estimated as follows:

1. For any n-contact grasp, construct convex hull H, which bounds the unit grasp
wrench space. For the five-contact grasp of Figure 2.9, this convex hull is displayed
in Figure 2.15:

H = CH{w_ : i = 1,...,n}. (2.21)

H is composed of facets G of one dimension less than H:

G = {g : g is a facet of H}.

2. Define the following parameters for each facet g:

jg = unit outward-pointing normal of facet g,
dg = distance of facet g from the origin (positive in the 1 direction).

3. Select m points to represent the boundary of the unit task wrench space. For this
example, these could be the points of the object wrench space polyhedron in Fig-
ure 2.13:

P = {p. j ,...,m}. (2.22)

4. Then the following equation represents an estimate of grasp quality:

e = [max (max )-.(.3
gEG Rp EP dg(.3

Term Vdg is the scale factor on the unit grasp wrench space required to place point p.
dgE

on the inner half space of facet g of the grasp wrench space convex hull. If this term is
maximized over all points Ep and over all facets g, then the result is the factor by which the

unit grasp wrench space must be scaled so that it contains the unit object wrench space.
As described by the definition of grasp quality, the reciprocal of this term is the grasp
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Figure 2.16: Considering only the limit wrench space of the polygon, we observe that the
a good grasp might consist of evenly distributed forces at the torque extremes.

quality estimate e. If all points p2 of the task wrench space are scaled by factor e, then the

scaled task wrench space will fit entirely within the unit grasp wrench space. Parameter
e is an estimate of grasp quality measure GQ 1 that is as good as the point approximation
of the object wrench space represented by set P. Using the object wrench space shown in
Figure 2.13, a grasp quality measure of 0.33 is obtained for the five-contact grasp wrench
space shown in Figure 2.15. If all points of the polyhedron in Figure 2.13 are scaled by a
factor of 0.33, the scaled polyhedron will fit within the polyhedron of Figure 2.15.

We can ask what a grasp quality measure of 0.33 means. For this example task, it
means that a set of frictionless, point contact disturbance forces can be applied to the
target object such that the sum magnitude of the grasp forces required to counter the
disturbance forces is 3 times the sum magnitude of the disturbance forces.

We can also ask what properties high quality grasps will have. Looking just at the
limit wrench space cylinder, we note that a high quality grasp would have a number of
contacts evenly distributed in the space of force orientations and at both torque extremes
(Figure 2.16). We can try to approximate this effect by picking off contacts from the
object wrench space that fall at torque extremes.

One way to do this is to place contacts at the endpoints of each edge of the example
polygon. Figure 2.17 shows the grasp wrench space of this 12-contact grasp. Compare
this to the object wrench space in Figure 2.13. Using this object wrench space, a grasp
quality measure of 0.44 is obtained. This is slightly better than the grasp quality measure
of the 5-contact grasp.

Vertex contacts are needed to fill out this grasp wrench space. Figure 2.18 shows the
grasp wrench space of the 18-contact grasp formed by adding a single contact at each
vertex. This contact is oriented to bisect the range of orientations possible. Again using
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Figure 2.17: Wrench space covered by frictionless point contacts at the extreme points of

each edge. This grasp has a grasp quality measure (GQ1) of 0.44.
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Figure 2.18: Wrench space covered by frictionless point contacts at the extreme points of
each edge and one frictionless edge contact at each vertex. This grasp has a grasp quality
measure (GQ1) of 0.83.
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the object wrench space of Figure 2.13, the much higher grasp quality estimate of 0.83 is

obtained.

2.8.2 Approximating Grasp Quality for the Example Task

Calculating an accurate grasp quality measure as described above will be quite time-
consuming for problems of a realistic size. This is a result of the complexity incurred when

using the object wrench space of the target object as the task wrench space. This section
considers the question of how the grasp quality measure GQ1 might be approximated.

If we want a measure that is extremely simple to calculate and completely independent
of target object complexity, there are two obvious options: a wrench space cylinder or a
wrench space ball. The first option is derived by eliminating the constraints related to the
target object geometry. With this option, we approximate the object wrench space very
conservatively with the limit wrench space cylinder.

The second option is derived by beginning with the limit wrench space cylinder and
eliminating the torque constraint, the constraint first specified in Equation 2.1. This

allows a unit disturbance force to be associated with an arbitrarily large torque. Then
task wrenches as a whole must be limited (e.g. _w1il = 1), rather than only the force
component of these wrenches, to ensure that all disturbance torques are bounded. This
results in an approximation of the object wrench space as a wrench space ball.

The cylindrical approximation would be a good one for target objects that have a nearly
cylindrical object wrench space. This is the case when the object geometry contains many
torque extremes of approximately the same magnitude. This is true, for example, of any
regular polygon with more than a few edges. In general, though, the wrench space cylinder
will be an overly conservative approximation of the object wrench space shape, and grasps
will be designed to protect against many disturbance wrenches that are not possible.

The spherical approximation is less conservative in that the unit sphere will contain
smaller regions of disturbance wrenches that are not possible, but this approximation also
has problems. It does not capture any of the torque extremes of the object wrench space,
and it is possible that a grasp with a high quality measure using this task wrench space
will not protect against disturbance forces applied at these torque extremes. The next
chapter shows that by searching only for grasps that match a given example grasp, or
prototype grasp, we ensure that these torque extremes are often captured and that the
wrench space ball provides a good estimate of the grasp quality measure GQ1.

Based on the preceding discussion, we propose to use the following grasp quality mea-
sure as an approximation of GQ 1:

* GQ2: the size of the largest wrench space ball that fits completely within the unit
grasp wrench space.

This is the grasp quality measure proposed in [24] and [14].
To compute the grasp quality measure GQ2 for an n-contact grasp of an object:

1. Compute the convex hull of the grasp:

H = CH{w. : i = 1,...,n}. (2.24)
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Figure 2.19: Grasp quality measure GQ1 can be compared to grasp quality approximation
GQ2 (q).

H is bounded by the set of facets G:

G = {g : g is a facet of H}.

2. Define the following vectors associated with each facet g:

ýng = unit outward pointing normal of facet g,
p9 = vector from wrench space origin to an arbitrary point on g.

3. Then quality measure q, which is the minimum perpendicular distance from a facet
to the wrench space origin, can be computed as follows:

q = min (ig •p). (2.25)
gEG -

2.8.3 Comparing the Grasp Quality Measures

It is possible to compare grasp quality measure GQ1 with approximation GQ2. In par-
ticular, given a GQ2 grasp quality measure q, a lower bound can be placed on the corre-
sponding GQ1 grasp quality measure e. This lower bound is generated by fitting the limit
wrench space cylinder into the grasp quality ball (Figure 2.19). This results in the lower
bound:

e ý --1--q. (2.26)
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Grasp q (GQ2) Le (GQ1) [Worst Case e (•q)

5-Contact Grasp 0.35 0.33 0.25
12-Contact Grasp 0.44 0.44 0.31
18-Contact Grasp 0.80 0.83 0.56

Figure 2.20: Grasp quality approximation GQ2 vs. grasp quality measure GQ1 for the
grasps seen so far.

We observe that by using the actual object wrench space rather than the limit cylinder,
this bound cannot be improved. Because of the definition of weighted torque Ti,,, we know
that at least one point in the object wrench space of size •jq will have a force of magnitude

•q and a torque Triz E {`q,-'q}. This point will fall exactly on the quality ball of
radius q. Increasing the size of the object wrench space will push this point outside the
quality ball. Without knowing more about the grasp wrench space, we cannot determine
whether e is in fact greater than /q.

In practice, however, a grasp is not completely limited by the ball representing grasp
quality. Quality measure e will generally be much better than Y-2q. In fact, e may even be
greater than q, because the object wrench space of size q does not in general contain the
entire wrench space ball of radius q. All of the grasps seen so far capture the extremes of
the object wrench space sufficiently well for the grasp quality approximation represented
by parameter q to be a very good predictor of the grasp quality measure e that was
originally proposed. Figure 2.20 summarizes the GQ2 and GQ1 grasp quality measures
for the 5-contact grasp in Figure 2.15, the 12-contact grasp in Figure 2.17, and the 18-
contact grasp in Figure 2.18. The worst-case GQ1 quality measure, %q, is included in
the table for reference.

It is not surprising that the grasp quality approximation GQ2 agrees so well with
the more intuitive grasp quality measure GQ1 for the examples presented in Figure 2.20,
because these grasps were designed to capture the object wrench space of this object. It is
more interesting to examine how useful this approximation will be when a grasp that was
designed for one object is used to find a similar grasp on an object of different geometry,
as in the next few chapters.

Figure 2.21 shows a set of grasps all designed based on the grasp of Figure 2.9. These
are results from Chapter 3. The information used from the grasp of Figure 2.9 is very
general, and so the "matching" grasps may appear very different from the original grasp.
The details behind this matching process are covered in Chapter 3.

The objects in Figure 2.21 are arranged in order of decreasing similarity to the object
for which the grasp was originally designed. The table in Figure 2.22 shows the comparison
of GQ2 to GQ1 in these examples. From this table, we see that the approximate grasp
quality measure GQ2 is a very good predictor of the more complex grasp quality measure
GQ1 for all of these grasps, except perhaps in the case of object 3. This is not surprising.
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Figure 2.21: Grasps of four new objects (matc1 lug the example grasp) (UL) Grasp of
object 1, (UR) Grasp of object 2, (LL) Grasp of ,oject 3, (LR) Grasp of object 4.

Grasp q (GQ2) e (GQ1) I Worst Case e (7q)

Grasp 1 0.34 0.31 0.24

Grasp 2 0.33 0.33 0.23

Grasp 3 0.27 0.22 0.19

Grasp 4 0.29 0.28 0.21

Figure 2.22: Grasp quality approximation GQ2 vs. grasp quality measure GQ1 for the

grasps of the new objects.
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Object 3 is the most complex object, and it does not look much like the original object.
The grasp designed for the object in Figure 2.9 does not do a very good job of capturing
the shape of the object wrench space of object 3.

2.8.4 Grasp Center Placement

At this point, the validity of the assumption presented in Section 2.1 that placed the grasp
center at the target object center of mass can be examined. That section hinted that this
decision would have an impact on the grasp quality values that would be measured. First,
we note that this is not true of the grasp quality measure originally proposed, GQ1. This
grasp quality measure compares the grasp wrench space of a given grasp of a target object
to the object wrench space of that same object. As long as torques are measured about the
same point when computing the two spaces, grasp quality will not vary with the placement
of that point. In other words, the magnitude of the worst case disturbance force that can
be resisted by a grasp cannot be affected by changing the reference frame in which torques
are measured.

When the grasp quality approximation GQ2 is used, however, a different result is
obtained. Changing the way in which torques are measured does affect the validity of
the approximation of the object wrench space of an object as a wrench space ball. As
the reference point about which torques are measured is moved, some parts of the object
wrench space are compressed and others are expanded. This can cause the object wrench
space to look less and less ball-shaped. The following justifications can be stated for
choosing to measure torques about the target object center of mass:

"* A well-balanced distribution of contact wrenches that can be applied to a target ob-
ject is obtained, causing the object wrench space of the target object to be somewhat
ball-shaped.

"* The sensitivity of torque values to small changes in target object geometry is limited,
allowing for a more meaningful comparison of grasp quality measures.

2.9 Grasp Quality Measures for more Complex Tasks

Every task, no matter how simple, is associated with some specialized task wrenches. One
good example of a simple task with a known, narrow range of task wrenches is the task
of drinking from a glass. The grasp must be capable of countering the weight of the glass
and the weight of the liquid through the range of motion required for this task.

Specialized task wrenches give the task wrench space a more interesting shape, and
the equations for estimating grasp quality are not as easily accessible as Equation 2.25.
Section 3.6.5 shows that this is not a problem. The grasp synthesis techniques proposed
in that chapter can easily be adjusted to accommodate any task wrench space. We will
see that if the task wrench space does not depend on the target object geometry, even
very complex tasks can be accommodated with no extra work required at runtime.
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Figure 2.23: For grasps of three-dimensional objects, point contact on faces and edge con-
tact on edges will be used. Local normals for these contact types can be easily computed.

!0

Figure 2.24: Point-vertex, edge-vertex, point-edge, and edge-edge contacts are considered
too fragile to be part of a good grasp, unless the polyhedron vertex or edge is concave.

2.10 Working with 3D Objects

The main difference seen when moving to three dimensional objects is that there are
different contact types. Figure 2.23 shows some of the contact types that are used in
the three-dimensional examples of the second half of this report. Figure 2.24 shows the
contact types that are considered to be singular, or not sufficiently robust to be part of a
good grasp. For each of the contact types in Figure 2.23, a local normal can be computed
at each contact point, which means that a contact wrench can be computed for every
contact. Note that contacts in concavities, such as point contact in a hole or on a concave
edge, are not singular in the same way as the contacts in Figure 2.24. Frictionless contact
in a concavity can result in a range of contact wrenches, however. Section 8.1.2 discusses
how this opportunity is exploited.

For grasps of three-dimensional objects, the wrench space has six dimensions: three
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force dimensions and three torque dimensions. Each wrench is normalized, as before, so
that

fl= 1, (2.27)

and torque multiplier A is defined to ensure that

i <_ 1. (2.28)

This gives the limit wrench space the shape of a three-dimensional unit ball when projected
onto either force space or torque space.

From the contact wrenches of a grasp and from a given task wrench space, a grasp
quality measure can be computed as described in the sections above. For example, Equa-
tions 2.23 and 2.25 can be used to compute grasp quality measures e (GQ1) and q (GQ2)

respectively. The bound used to compare these two measures (e > )2q) also holds in
this six-dimensional wrench space. The argument is similar. Because of the definition of
weighted torque Ili, we know that at least one point in the object wrench space of size Iq

will have a force of magnitude '2q and a torque of magnitude -q. This is the maximum

magnitude wrench in the object wrench space of size L--q, and it has a magnitude of q. In

other words, the object wrench space of size Iq fits entirely within the wrench space ball
of radius q, and in fact, one point of this space falls on the surface of this ball. We know
then that e is at least Yf q, but without more information on the grasp wrench space, we

cannot determine whether e is greater than v•q.

2.11 Summary

This chapter introduced some techniques for constructing grasp quality measures. The
grasp quality measures considered here characterized the fit of a grasp to a given task.
This fit was measured by comparing the grasp wrench space, or the space of wrenches that
could be applied to the target object, to the task wrench space, or the space of wrenches
required to execute the given task.

Two grasp quality measures were described. The first was designed to represent the
task of countering arbitrary disturbance forces that might be applied to the grasped object.
This grasp quality measure proved difficult to compute and, not surprisingly, was highly
dependent on target object geometry. A simple approximate grasp quality measure was
then derived. This measure was chosen to be independent of target object geometry, and
it was shown to be a good predictor of the more complex measure. This second, simpler
grasp quality measure is used throughout the chapters that follow.
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Chapter 3

Optimizing Contact Placement

The previous chapter addressed the problem of measuring grasp quality, and developed
some tools for designing a grasp quality measure from a task description. The discussion
in that chapter was simplified by viewing a grasp abstractly, as a set of contacts on a target
object. This simplification was used to generate grasp quality measures independent of
the robot hand.

This chapter continues to take advantage of this abstract definition of a grasp, pursuing
the question of how to design such a grasp. The design process consists of finding a
placement of contacts on a target object that produces a grasp with a high quality measure.
This problem is interesting because of its complexity. If the goal is to design a grasp having
more than two or three contacts, then the problem space will be much too large to perform
a complete search. It is necessary to develop a means of constraining the space of grasps
that will be examined, while ensuring that much of the space of interesting solutions is
captured.

This chapter presents a novel technique for limiting the search space of this grasp
synthesis problem. It uses knowledge that might be compiled from grasping many objects
or from carefully analyzing a particular set of objects. This knowledge is compiled into a
grasp prototype. The grasp prototype is defined in Section 3.1, and the body of this chapter

describes how it can be matched to a target object to construct high quality grasps.
The technique for matching a grasp prototype to a target object is the main contri-

bution of the chapter. This technique results in a grasp synthesis algorithm with the
following properties:

"* a match of the grasp prototype to the target object is defined based on the grasp
quality measure,

"* the quality measure of the grasp prototype is preserved,

"* the search space of the grasp synthesis problem is drastically reduced,

"* prototype complexity is unconstrained,

"* target object geometry is unconstrained.
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Figure 3.1: A two-dimensional prototype grasp, represented by forces applied at the num-
bered contact points.

All of these properties are examined in the sections that follow, but the most important
of these properties are the first three. A match of the grasp prototype to the target object
is defined in terms of the grasp quality measure and the features of the grasp - contact
forces and torques - that contribute to the grasp quality measure. Because of this, it will
be possible to generate grasps of the target object that are very different in appearance
from the grasp prototype, but preserve the quality of that prototype. This provides a
substantial amount of flexibility without a large cost in either speed of the algorithm or
quality of the grasp.

The type of solution that will be obtained is illustrated in Figures 3.1 through 3.3.
Figure 3.1 shows a two-dimensional prototype grasp. Figure 3.2 shows a matching grasp
for an object very much like the prototype object, and Figure 3.3 shows a matching grasp
for an object that is very different in appearance. Note that the contact ordering is
different between the prototype grasp in Figure 3.1 and the grasp of the different object
in Figure 3.3. Even in the grasp of the similar object in Figure 3.2, contact 3 has moved
from its original position. These differences are one ` 'ication that the prototype grasp is
used in a flexible way. This chapter describes how ý.,as is done.

The examples in this chapter involve two-dimensional objects like these. The main

purpose of the chapter is to illustrate the grasp synthesis algorithm, and two-dimensional
examples are easy to visualize. The algorithm has been implemented for three-dimensional

objects, but the three-dimensional examples are deferred to Chapter 7.

Section 3.1 begins the discussion by outlining the specifics of the grasp synthesis prob-
lem considered in this chapter. This problem is popular in the literature, and Section 3.2
reviews some previous work on similarly defined problems of grasp synthesis. Section 3.3
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Quality =0.34

Figure 3.2: A matching grasp of a similar object. The most visible change is in the
placement of contact 5.

S- x

22
Y/

3 4
Quality = 0.27

Figure 3.3: A matching grasp of a different object. Contact 2 is no longer between contacts
1 and 3, and the relative positions of all the contact points are very different from those
of the example grasp.
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outlines the body of this chapter, where a grasp synthesis technique is proposed that in-

volves matching a grasp prototype to a target object. A variety of examples are presented

in Chapter 4 to illustrate the properties of this solution technique.

3.1 Problem Statement

This chapter utilizes an abstract and limited definition of a grasp. It presents a solution
technique that works within these limits to synthesize a good grasp of a target object
by matching a grasp prototype to the object. To fully define the problem solved in this
chapter, the following specifications are needed. Modifications from the problem statement

of the previous chapter are shown in italics:

Definitions:

"* A grasp: a set of contacts on a target object.

"* A task: defined by the task wrench space, or the space of resultant forces and

torques that must be applied to the target object.

"* A grasp prototype: an ezample object and a high-quality grasp of that object.

Inputs:

"* A geometric model of a target object,

"* a grasp prototype,

"* a task.

Assumptions:

"* Frictionless point contacts,

"* no singular contacts,

"* no complex contacts,

"* contact torques defined about the target object center of mass,

"* grasp quality computed as in Chapter 2.

Problem:

9 Find a high-quality grasp of the target object.
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The next few paragraphs elaborate upon these specifications. In particular, they describe
how grasp quality is computed for a proposed grasp, and they review some assumptions
related to the use of a grasp prototype in the process of grasp synthesis. As in Chapter 2,
it is important to note that although two-dimensional illustrations are used throughout

the chapter, the techniques described are general. Section 3.7 covers the trivial extensions
required to accommodate three-dimensional objects.

Grasp Quality can be Computed from the Contacts of a Grasp

As in Chapter 2, the forces and torques that can be exerted at the contacts of a grasp
can be completely specified from a description of that grasp and from the assumptions
presented above. The direction of applied force can be uniquely determined at a contact,
because non-singular frictionless point contacts are assumed. Torque can be determined
from the applied force, the contact point, the target object center of mass, and the torque

multiplier (see Section 2.2).
Once the forces and torques that can be applied to the target object at the contacts

of a grasp are known, a grasp quality measure can be computed for the given task as
described in Chapter 2. Throughout most of this chapter, the very general grasp quality

measure of Equation 2.25 will be assumed. This measure was designed to approximate the
worst case efficiency with which the grasp can counter a disturbance force applied to the
target object. Although this is a good measure to use for illustrating the grasp synthesis
technique of this chapter, it captures none of the characteristics specific to a particular

task. Section 3.6.5 below shows how the techniques demonstrated in this chapter can be
used with any given task.

Grasp Prototypes are Used in the Solution

Given a grasp quality measure, the problem of this chapter becomes one of finding a set of
contacts with the target object that produces a high grasp quality measure. The sections
below show how a grasp prototype can be used to help find high quality grasps. The

prototype will constrain the search for contact points on the target object.
One important part of the process of applying a grasp prototype to a new target object

is to find an appropriate configuration of the grasp prototype with respect to the target
object, as both have their own local coordinate systems. It is assumed in this report that
the prototype coordinate frame i- fixed to the target object center of mass, although it
is free to rotate about this point. This assumption is convenient because good solutions
will generally fall around this point. If the grasp prototype is assumed to be fixed to the
target object center of mass, there are fewer parameters left to specify. This assumption
is not necessary, however.

The problem stated here assumes that a grasp prototype has already been selected. For
the purposes of this report, the grasp prototype is provided as an input parameter, and this
chapter concentrates only on fitting it to the target object. Selection of a suitable grasp
prototype is a very real problem, however, especially if we expect that a sizable library of
grasps will be required to provide a rich sampling of the capabilities of a particular robot
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Reference Objective Task Constraints
Function I

[8] min p force closure 2 contact, 2D, curved object
[4] min p force closure 2 contact, 2D, curved object

3 contact, 3D, polyhedron,
[20] min pu lift object hand in contact
[31] min _i 1 1 lift object 3 contact, 2D, polygon
[31] rain Ei 1LI I lift, rotate object 4 contact, 2D, convex polygon

Figure 3.4: Grasp quality measures used for grasp synthesis. The objective functions given
measure the suitability of a grasp for the specified task. The last column lists constraints
on the proulem domains required for the solutions proposed in these references.

hand. Throughout the examples of this and the next chapter are problems that have been
designed to explore some of the relevant issues, such as how different a target object can
be from a prototype before the prototype is no longer useful. A discussion of the topic of
prototype selection is found in Section 8.1.4, and results from the relevant examples alt
reviewed as part of the discussion in that section.

3.2 Previous Work

This chapter addresses the problem of grasp synthesis. Approaches to this problem can be
divided into two broad groups: one focused on contact placement and the other focused
on hand shape. Because this chapter uses the abstraction of a grasp as a set of contacts
with the target object, only the first group of work, focused on optimal placement of these
contacts, is relevant here. The second group of work, focused on matching object shape
to hand shape, is reviewed in Chapter 5.

Previous work developing grasp quality measures was discussed in Section 2.3. Most of
the grasp quality measures described in that section were used in global or local searches
for optimal quality grasps. Most of the section focused on grasp quality measures used
to generate grasps optimized with respect to the forces and torques that could be applied
to the target object and the match of these forces and torques to those required for a
given task. The table outlining objective functions, tasks, and constraints on applicabil-
ity of proposed grasp quality measures is repeated here for reference (Figure 3.4). Fast
techniques for optimizing the given objective functions are found within the references
given.

Section 2.3 also stated that grasps can be optimized based on robustness of the con-
tact targets, or based on contact region size. In particular, Ponce et al. [41] show how
to construct optimal four-contact grasps of polyhedral objects using linear programnming,
Faverjon and Ponce [13] construct optimal two-contact grasps of curved two-dimensional
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objects, and Nguyen [35] describes how to identify a variety of robust contact configura-
tions, including three-contact grasps of polyhedral objects.

In addition to the wofk based on grasp quality measures, Mishra et al. [32] show that
12-contact force closure grasps of three-dimensional objects can be found in 0(n) time,
although the grasps that are found are not in general optimal by any measure.

All of these methods for solving the grasp synthesis problem employ harsh constraints
on the types of grasps that can be generated. In particular, the solutions may apply only
to two-dimensional objects, they may require very small or very large numbers of contacts,
and they may limit contact to the edges of a polygon or the faces of a polyhedral object.

If the main goal in finding good contact placements is to construct a stable, whole-hand
grasp of an object, then we will need more than just a few contacts, we will not be able
to achieve very large numbers of contacts, and we will want to make contact on features
other than the faces of the target object. Constraining the search space by restricting
grasps to match a prototype can result in more practical limitations than the solutions
described above. The sections and chapters below show that the process of matching to a

grasp prototype is sufficiently constraining to allow the solution space to be searched and
sufficiently flexible to allow a variety of high-quality solutions to be identified.

3.3 Chapter Overview

The remaining sections of this chapter present a novel algorithm for grasp synthesis. The
goal is to use a grasp prototype to reduce the search space of the grasp synthesis problem,
without sacrificing the quality of the grasps that are constructed. It is desirable to allow as
much flexibility as possible given these goals. One form of flexibility is in the description
of the grasp prototype. It should be possible to make effective use of any good grasp
that is proposed as a prototype, no matter how strange its appearance. A second form of
flexibility is flexibility in target object geometry. The range of target objects for which a
high quality grasp can be constructed from a given grasp prototype should be as broad as
possible without sacrificing search speed or grasp quality.

Section 3.4 provides some background by describing a brute force approach to the
problem of grasp synthesis defined in this chapter. An analysis of this approach reveals
the complexity of this problem and provides motivation for some means of reducing this
complexity. Section 3.5 proposes a naive technique for improving the speed of the brute
force grasp synthesis algorithm through use of a grasp prototype. This naive technique
does not create a clean division between solutions that do and do not match the grasp

prototype, and it actually expands the size of the space within which solutions might
be found. An analysis of these problems motivates an additional set of design goals,
and Section 3.6 presents a grasp synthesis algorithm that meets these design goals. This
discussion is illustrated using a very simple two-dimensional object, and Section 3.7 covers
the simple extensions required to move to arbitrary three-dimensional objects. Section 3.8
concludes with an evaluation of the grasp synthesis technique presented in this chapter.
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3.4 Examining all Contact Assignments

This section describes a brute force approach to synthesizing a high quality grasp of a
target object. This approach does not use a grasp prototype to guide the search, but
an analysis provides some background and motivation for the use of a grasp prototype.

The paragraphs below first describe the search space of the problem and then show how
optimal grasps can be extracted from this space.

The grasp synthesis problem of this chapter can be expressed as the problem of selecting

a set of contacts that will form a grasp. For the purpose of this discussion, it is assumed
that grasps will be formed that have no more than c contacts.

To place a single contact requires selecting a feature of the target object on which

this contact will be placed, and finding an exact placement of the contact on the selected

feature. As in Chapter 2 (Figure 2.6), a two-dimensional target object can be described
in terms of the following types of features: curved edges, straight edges, and vertices. To

place a contact on any one of these features requires a single parameter. On a curved
or straight edge, the position of the contact must be specified. If this position is known,

then the local normal of the contact can be determined, and a contact wrench can be

computed. On a vertex of the target object, the contact position is already known, but
the orientation of the contact force must be specified before the contact wrench can be

computed.
The complete space of grasps that are possible for a given target object can be described

as follows. For each of the c contacts, a contact feature must be chosen and a single

parameter provided to fully describe the position and local normal of the contact. Contact

ordering does not matter, however. All grasps having contacts in the same locations will

have the same grasp quality measure. If the target object boundary curve (Figure 2.12)
is quantized into p sections, the size of the search space can be described as:

c C ! ( -! c )! " (3 .1 )

From Chapter 2 we know that each of these grasps can be associated with a grasp

quality measure. To compute a grasp quality measure over this space as specified in
Equation 2.25 would require constructing and testing a convex hull for each possible
grasp.

Optimal grasps can be extracted from the search space by considering:

o the grasp quality measure, and

* variation in this grasp quality measure with errors in contact placement.

The grasp with the optimal grasp quality measure is theoretically the best grasp. This

grasp tends to be fairly robust, but in some cases small errors in the target object model

or small errors in placing the contacts can drastically reduce the quality of the grasp.

The effect of small errors in contact placement can be determined by examining how these
errors affect the grasp quality measure. Grasp robustness can be improved by finding large
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connected regions of the search space having acceptable quality measures, and choosing a
solution well within one of these regions.

Although it may be possible to develop more efficient search solutions, a naive appr'och
to finding an optimal grasp using grasp quality and grasp robustness measures would in

general require examining much of the search space. This will become difficult if there are
more than two or three contacts. This is the reason for the very aggressive restrictions
on both the problem domain and the solution space reflected in previous work. In some
special cases, clever techniques can be found to get around the combinatorics of the general

problem.

3.5 Prototypes can Reduce Quality Computation

One thing that makes the brute force search for a high quality grasp expensive, aside from
the extremely large size of the search space, is the fact that a grasp quality measure must

be computed at each point in this search space. Computing grasp quality is an expensive
operation, as it requires computing a convex hull. This section shows that the use of a

grasp prototype can make this computation unnecessary. In particular, a class of grasps
representing variations on the grasp prototype can be defined such that:

* all grasps within this class have acceptable grasp quality measures, and

* it is much more efficient to determine whether a grasp is a member of this class than
to compute the grasp quality measure from scratch.

Although the technique described in this section is not practical, it serves to introduce the
grasp prototype and to motivate the approach described in the next section, which forms
the basis of this chapter.

The intuition explored in this section runs as follows. The grasp prototype, by defini-
tion, is an example of a successful grasp. If the target object is similar to the prototype
object, then it should be possible to find a high-quality grasp of the target object that
resembles the grasp prototype. If an appropriate grasp prototype can be easily selected,
this heuristic has many advantages. For example, arbitrary constraints such as those lim-
iting allowable types of contacts or allowable numbers of contacts are avoided in the sense

that any given grasp prototype can be used as a reference point for the search.
Effective use of a grasp prototype requires a compact definition of the class of grasps

matching that prototype. It might seem desirable to define classes of grasps based on
their appearance. A continuous range of contact positions can, for example, be associated
directly with a continuous family of target object geometries. This approach is reviewed

in Section 5.3. It is appealing because grasp synthesis requires only that the target object
family be recognized. An appropriate grasp can then be extracted from the class of grasps
associated with that target object family. Unfortunately, this approach has only been
demonstrated for very simple families of target objects, and the problem of adapting the
resulting grasps to accommodate unexpected variations in target object geometry or to
respond to problems caused by obstacles has not been adequately addressed. In addition,
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a target object that is not a member of any recognized family cannot be grasped at all
using this approach.

This report explores a different approach to using a grasp prototype. This approach
does not rely on an a priori assignment of grasps to target object geometries. Instead it
classifies grasps based on the distribution of contact wrenches that can be generated at the
contact points that make up a grasp. This is a convenient way to classify grasps because
the classification is related directly to the grasp quality measure. The sections below show
that this approach creates a membership function that is easy to evaluate, guarantees
grasp quality in all situations, and can be applied to any target object geometry.

One very simple way to classify grasps based on contact wrench distribution is to
define an error term that limits the acceptable distance of the contact wrenches of a
proposed grasp from the contact wrenches of the prototype. Computing this error term
is much more efficient than computing the grasp quality measure. To preserve grasp
quality, the allowable error is limited so that all grasps with an error term below a certain
error threshold have a grasp quality above a given quality threshold. The equation below
illustrates an example error term E(w). In this equation, c is the number of contacts of
the prototype, w is the vector of individual contact wrenches w-. of a proposed grasp, and
Wi represents contact wrench i of the grasp prototype.

C

E(w) = 1w, - W.12 . (3.2)

For a given task, any set of contact wrenches w can be associated with a grasp quality
measure, represented by function Q(w). To limit error term E(w), a grasp quality thresh-
old q' is chosen that is less than or equal to the quality measure of the grasp prototype q,
and a value E(q') is found such that:

(E(w) < E(q')) :z* (Q(w) > q'), q' < q. (3.3)

Figure 3.5 illustrates this expression. The set of wrenches representing the grasp prototype
is shown with a dot in the figure. Any wrench space vector within the error ball drawn
around the grasp prototype has a quality measure greater than or equal to q'.

Expression 3.3 is always satisfied at E(q) = 0. Error term E(w) cannot be less than
0, so if it is equal to 0, then the contact wrenches of the grasp are identical to those
of the grasp prototype (w- = Wi). This means that Q(w_) will be the quality q of the
grasp prototype, which is greater than or equal to q' by definition. If q' is set to be
strictly less than q, then unless the grasp is at some sort of singularity, we expect to find a
value of E greater than 0 that satisfies Expression 3.3. Then the set of grasps that satisfy
the expression (E < c(q')) can be said to match the grasp prototype for a grasp quality
threshold of q'. The grasp quality measure is being used to define equivalence classes of
grasps about a single grasp prototype.

Expression 3.3 can be used to synthesize high quality grasps of the target object by
selecting a grasp quality threshold q' and finding the corresponding error threshold E(q').

Then error term E(w_) can be computed for all possible grasps. Any grasp having an error

72



2

grasp
prototype

q'

E(Co) P_ ==> Q(co) q'

Figure 3.5: A simple technique for defining an equivalence class of grasps about a single
example grasp, or grasp prototype. This equivalence class of grasps is defined so that all
grasps within the class have an acceptable grasp quality measure. The technique involves
surrounding the example grasp with an error ball in wrench space.

term less than or equal to E(q ) will have a grasp quality measure greater than q'. Because
computing error term E(w) is more efficient than computing the grasp quality measure for
a grasp, the grasp prototype has allowed for a more rapid evaluation of any given grasp.

Unfortunately, this use of a prototype may not result in a search algorithm that is
faster than the brute force algorithm of the previous section. Although computing the
error term E(w) is faster than computing a grasp quality measure, the search space of
possible grasps has become larger.

First, before the error term E(w) can be computed, an assignment of contacts on
the target object to contacts on the example grasp must be specified. This ordering of
contacts was not required in the original problem, since the grasp quality measurement
is independent of contact ordering, and so a factor of c! more grasps are present in the
search space of this new problem.

Second, before the error term E(w) can be computed, a transform must be specified
between the coordinate systems of the target object and the grasp prototype. The value
of this transform affects the relative orientation of the applied forces of the proposed grasp
and the applied forces of the grasp prototype, and so E(w) will certainly vary with the
value of this transform. The relative position of the target object and grasp prototype has
been fixed, because it was assumed in the problem specification of Section 3.1 that a grasp
is always defined about the center of mass of the target object. The relative orientation
of the target object and grasp prototype is not known, however. This orientation term is
required to compute the error term proposed above, but it is not required to compute grasp
quality, so the orientation dimension must be added to the search space of the problem.

73



Given the increased size of the search space, this method of using a grasp prototype
to focus the search for a high-quality grasp of a target object does not appear to be
exceptionally useful. While a mechanism has been provided for efficiently determining
that a grasp has an acceptable grasp quality measure, the search space of the problem
has been expanded by the addition of parameters required to specify contact ordering
and grasp prototype alignment. Although heuristics could be developed to indicate where
it might be promising to compute the error term, this expansion of the problem search
space is a matter of concern. The next section describes a different technique for defining
equivalence classes of grasps about a grasp prototype. This technique is shown to be very

effective in reducing the space that must be searched to find an optimal grasp matching
the prototype.

3.6 Prototypes can Reduce Search Complexity

The previous section presented a method for using a grasp prototype to determine whether
a proposed grasp of a target object was guaranteed to meet a given grasp quality threshold
without computing the grasp quality measure for the grasp. Unfortunately, the additional
parameters introduced served to expand the problem search space, negating some of the
benefits of using the prototype. In this section, the use of a grasp prototype is modified
to reduce the size of the search space despite the additional parameters needed to align
the grasp prototype to the target object.

3.6.1 Introduction

In the sections above, the size of the grasp synthesis problem led to the proposal of
constraining this problem by looking only at grasps that match a grasp prototype. The
class of grasps matching a grasp prototype should be as general as possible while preserving
grasp quality and allowing rapid identification of grasps within this class.

The previous section used a simple error function to match a grasp to a prototype. This
approach was not effective in reducing the combinatorics of a search through the space
of possible grasps. The algorithm of this section proposes to overcome this problem by
defining sets of constraints to be applied to the contacts of the grasp independently. The
set of grasps matching a prototype is described using these independent contact constraint
sets such that if each set of contact constraints is satisfied by some contact wrench of a
grasp, then the grasp will have a grasp quality measure above a certain threshold. When
each contact of the ,rasp can be independently evaluated, the combinatorics of the grasp
synthesis problem are greatly reduced.

In general it would not be possible to evaluate contact wrenches independently, because
all contact wrenches contribute to the quality measure of a grasp. By looking at a single
contact we cannot evaluate grasp quality or even guess whether a grasp will be stable.
The sections below show that when contact constraint sets are constructed around a grasp
prototype, these estimates can be made.
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To see how the grasp prototype might help in forming independent contact constraint
sets, imagine the following experiment. Suppose that a grasp prototype is given that is

a c-contact grasp with quality measure q. Imagine leaving the first c - 1 of the contacts
fixed and asking what values of contact wrench c would result in a grasp with a grasp
quality measure of at least q', where q > q. We know one contact wrench that will work:
contact wrench c of the grasp prototype. In the general case, however, there will be a
range of other contact wrench values that work sufficiently well. By describing this range

of contact wrench values, we form a contact constraint set for contact c and grasp quality
threshold q'.

The object of this section is to show how independent contact constraint sets can
be formed for all contacts of the grasp simultaneously. The union of contact constraint

sets for a given grasp prototype and grasp quality threshold represents a class of grasps
having quality measures greater than the given threshold. This class of grasps is called a
generalized grasp prototype.

The generalized grasp prototype would be even more useful if a grasp could be opti-

mized by optimizing the contacts of that grasp independently. In other words, in place
of a contact constraint set based on a given grasp quality threshold, a contact quality
measure could be defined based on the family of contact constraint sets defined over the

entire space of grasp quality thresholds. If contact quality measures can be optimized
independently, it is not necessary to worry about selecting an appropriate grasp quality

threshold for the contact constraint sets.
There are three new terms that will be described in detail in this section. For reference,

definitions of these terms are shown below:

" Generalized grasp prototype: a class of grasps, defined around a grasp proto-

type, such that every grasp within this class has a quality measure exceeding a given
threshold. A generalized grasp prototype is composed of contact constraint sets, one

for each contact of the grasp.

" Contact constraint set: a set of constraints that a contact wrench must satisfy
to be considered a component of a successful grasp of a target object. The contact
constraint set is the building block of a generalized grasp prototype. For a grasp to
match the description of a generalized grasp prototype, each contact constraint set

of that generalized grasp prototype must be satisfied by some contact wrench of the
grasp.

" Contact quality measure: a measure of the greatest grasp quality threshold for
which a given contact wrench would fall within a given contact constraint set of a
generalized grasp prototype.

3.6.2 Section Overview

The paragraphs below show how the generalized grasp prototype, contact constraint sets,

and contact quality measures can be constructed. Section 3.6.3 begins by describing a gen-
eralized grasp prototype that will work for a task wrench space of any shape. Section 3.6.4
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Figure 3.6: An example circle grasp, represented by applied forces at the numbered contact
points.

shows how this generalized grasp prototype can be tailored to the simple task wrench space
of Equation 2.25. Section 3.6.5 shows that a similar procedure can be followed for any
given task wrench space, and Section 3.6.6 considers the problem of generating contact
quality measures. Section 3.6.7 shows how the generalized grasp prototype can be used
to synthesize optimal grasps of a target object, and Section 3.6.8 presents a summary.

For all of these sections, constructions are presented using a very simple example,
the grasp of a circle shown in Figure 3.6. This is a good example because a circle grasp
has only a two-dimensional wrench space (Figure 3.7); no torques can be generated in a
frictionless grasp of a circle. A two-dimensional wrench space is used because it can easily
be visualized, but all of the expressions and equations that are presented are general and
apply to wrench spaces of any dimension as described in Section 3.7.

3.6.3 Contact Constraint Sets Independent of Task

This section shows how to construct a generalized grasp prototype that preserves the grasp
quality of a prototype for any task wrench space. That is, even if the task wrench space
is not known when the generalized grasp prototype is constructed, the generalized grasp
prototype is still guaranteed to represent a class of grasps that are at least as good as the
original prototype.

This section begins by reviewing the definition of grasp quality. The grasp quality
measure is defined as the scale of the task wrench space required for this task wrench
space to just fit within the unit grasp wrench space. To construct a new grasp with a
grasp quality measure at least as high as that of a given grasp prototype, it is necessary to
ensure that the unit grasp wrench space of the new grasp contains a task wrench space of
the same scale as that contained by the unit grasp wrench space of the grasp prototype.

If a task wrench space iq ,-•t Pvailable th,•n mn order to ensure that the grasp quality
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Figure 3.7: A circle grasp has a two-dimensional wrench space. No torques can be applied
to a circle in a frictionless grasp of that circle. This figure shows the x and y components
of the unit forces that can be applied to the circle from the contact points shown in Figure
3.6.

of the new grasp will be as good as that of the grasp prototype for any given task wrench
space, it is necessary to ensure that the grasp wrench space of the new grasp contains the
entire grasp wrench space of the prototype. Recall that the grasp wrench space is given
by the convex hull of the contact wrenches of a grasp (Section 2.5). This means that the
convex hull of the contact wrenches of the new grasp must contain the convex hull of the
contact wrenches of the prototype. To construct a generalized grasp prototype, then, we
can construct a wrench space region about each contact wrench of the grasp prototype
such that the set of wrench space regions has the following properties:

"* Each contact of the grasp prototype corresponds to and is contained within a wrench
space region.

"* If a grasp is constructed with one contact wrench in each region, then the convex
hull of the contact wrenches of this grasp will contain the convex hull of the contact
wrenches of the grasp prototype.

This will certainly satisfy the conditions posed for this problem. If the convex hull
formed from the contact wrenches of any new grasp contains the convex hull formed from
the contact wrenches of the grasp prototype, then the grasp wrench space of that new
grasp will contain the grasp wrench space of the grasp prototype, and no matter what
task wrench space is used, the grasp quality measure of the new grasp will be at least as
high as that of the grasp prototype.

For the example grasp used in this section, the contact wrenches of the grasp prototype
are shown in Figure 3.7, and Figure 3.8 shows a set of wrench space regions that satisfy the
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Figure 3.8: Independent wrench space regions that preserve the grasp wrench space of the
grasp prototype. Anty combination of one wrench in each region will result in a convex
hull that contains the complete grasp wrench space of the grasp prototype.
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conditions stated above. The regions are bounded by lines containing the segments of the
convex hull of the contact wrenches of the grasp prototype. Any new grasp that is formed
must have a wrench space point corresponding to each of the original contact wrenches,
and each of these points must lie within all of the outer half-space regions defined by the
facets of the convex hull passing through the corresponding original contact wrench.

To make this explicit, we define the following parameters from the convex hull of the
grasp prototype:

wi = contact wrench i of the grasp prototype,
gj = facet j of the grasp prototype convex hull,

3j = unit outward pointing normal of facet gj.

Let Gi represent the set of facets containing __i as follows:

Gi = {j : gj contains w-,}.

Each wrench of the new grasp wg is placed so that it meets the following conditions:

Vj EG og -A ->(n--i ] (3.4)

Equation 3.4 represents the contact constraint set for contact i. To show that these
constraints are sufficient, imagine any grasp constructed by selecting a contact wrench
within each of the wrench space regions shown in Figure 3.8. The convex hull formed
from these conta:t wrenches may not have the same ordering of facets or even the same
number of facets as the original convex hull (e.g. see Figure 3.9), but it does contain the
original convex hull. A sketch of a proof follows.

1. No facet of the new convez hull intersects the interior of the original convez hull.
Suppose that there is some such facet. Construct the hyperplane containing this
facet and call it P. Hyperplane P divides space into inner and outer halfspaces,
and by definition of a convex hull, all points of the new convex hull will either lie
within hyperplane P or in the inner halfspace of P. Since P intersects the interior
of the original convex hull, by definition of a convex hull, there must be at least
one vertex of the original convex hull in the outer halfspace of P. By definition of
the contact constraint sets in Equation 3.4, a vertex of the original convex hull that
is perpendicularly furthest to the outside of P will have its entire contact wrench
region contained in the outer halfspace of P. By construction of the new grasp, there
is a contact wrench within this region. This contact wrench is in the outer halfspace
ofP. =

2. The new convez hull contains some point in the interior of the original convez hull.
Choose any point in the interior of the original convex hull and call it p. Suppose
the the new convex hull does not contain p. Then there exists some hyperplane
P that divides space into inner and outer halfspaces and passes through p, such
that all wrenches of the new convex hull either lie within hyperplane P or in the
inner halfspace of P. The grasp prototype by definition does contain p. P must
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Figutre 3.9: Any collection of wrenches within the wrench space regions given will produce

a convex hull that contains the complete grasp wrench space of the grasp prototype.

then intersect the interior of the original convex hull. By definition of a convex hull,
the outer hallfspace of P contains some vertex of the original convex hull. By the
argument in 1 above, there is at least one point of the new convex hull within the
outer halfspace of P. •'

3. The new convez hull contains the original convez hull. By 2 above, the new convex
hull contains some part of the interior of the original convex hull. If no facet of the
new convex hull can intersect the interior of the original convex hull, then the new
convex hull must contain the entire interior of the original convex hull.

To see how well the grasp generalization technique works for the example grasp, we
can check what contacts on the circle object match the contact constraint sets given.
Unfortunately, only the original contact points satisfy these constraint sets. No other
combination of five contacts on the circle object results in a grasp wrench space that
contains the entire grasp wrench space of the grasp illustrated by the convex hull in
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Figure 3.8. This is true because of the following assumptions stated in Sections 2.2 and 2.5.

The grasp wrench space is described in those sections as:

C

Z (3.5)
i:1

subject to

a > > 0, (3.6)

Sti :S 1, (3.7)

[f 1. (3.8)

In the two-dimensional wrench space of this example, wi and so for each contact i,

Jy~il = 1. Figure 3.8 shows that within the wrench space regions illustrated, this equation

holds only for the original contact wrenches.

To obtain more flexibility in this grasp, the grasp quality requirements will have to
be lowered to some fraction of the grasp quality of the prototype. If the prototype has a

quality of q, Equation 3.4 can be modified to reflect a grasp quality of q' as follows:

Vi F •i (3.9)

The facets in G, are moved inward to a fraction of •- of their original distance from the
q

wrench space origin, and new regions are formed from this new set of facets.
Figure 3.10 shows the set of independent contact regions that results for a grasp quality

measure of at least 75% of that of the grasp prototype. As long as this object is grasped

with one contact in each of the regions shown in the figure, a grasp can be formed having

a grasp quality measure of at least 0.75q for any task wrench space. Note that the contact

region sizes in Figure 3.10 are very unequal. Section 3.6.8 explores the possibility of
adjusting the sizes of these regions.

3.6.4 Contact Constraint Sets for a Simple Task

The previous section described a very conservative method for generalizing a grasp pro-
totype. It was necessary to be very conservative because it was assumed that there was

no knowledge of the actual task wrench space. The previous approach had to form a gen-
eralization that was sure to include any task wrench space that the prototype originally

included.
This section takes a different approach. Here, knowledge of the task wrench space

is assumed, and the task of countering disturbance forces is used as an example. Recall

that this results in a ball-shaped task wrench space, as discussed in Section 2.8. The next
paragraphs show that a much greater degree of grasp generalization is possible given this

task wrench space information.
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Figure 3.10: Independent contact regions on the circle object such that one contact within
each region guarantees a grasp quality measurc of 75% of the original grasp quality mea-
sure.
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Figure 3.12: An intermediate grasp wrench space can be formed by projecting the convex
hull that bounds the complete grasp wrench space onto the task wrench space. Only this
intermediate grasp wrench space need be preserved to guarantee the same grasp quality
measure as the original grasp.

Figure 3.11 shows the quality measure of the example prototype for this task. The
contact constraint sets of the generalized grasp prototype for this quality measure must be
defined so that the convex hull formed from the new wrenches contains the grasp quality
circle shown in the figure. Much larger wrench space regions can be formed that satisfy
thi: condition. The same method is used as before, but first an intermediate convex hull
is generated. To constrain this intermediate convex hull, the new contact constraint sets
formed are defined to contain the more general contact constraint sets of the previous
section, and so this intermediate hull is constructed from segments tangent to the grasp
quality circle and parallel to the segments of the original convex hull (Figure 3.12). The
idea that this intermediate hull could be constructed differently is explored in Section 3.6.8.
Regions resulting from this intermediate hull are shown in Figure 3.13. The convex hull
formed from any set of contact wrenches within these regions will contain the intermediate
hull, and it will also contain the grasp quality ball. Compare these to the regions of
Figure 3.8.

The constraint equations can be written as follows:

Vj c- Gi, [(It!__it ij) >_ q]• . (3.10)

Every segment of the original hull is represented on the intermediate hull. Each half-
space constraint is dropped in a perpendicular direction toward the origin, not pulled
away from it, which means that the regions obtained from the intermediate hull contain
the original regions. Larger independent regions are created, but the grasp quality measure
is preserved.

To compare this generalized grasp prototype directly to that of the previous section.
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Figutre 3.13: Independent wrench space regions that preserve the grasp quality measure of

the original grasp. These regions are larger that the wrench space regions of Figure 3.8,

because only the wrench space ball must be preserved, not the entire wrench space of the

original grasp.
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Figure 3.14: Independent contact regions on the circle object such that one contact within

each region guarantees a grasp quality measure of 75% of the original grasp quality mea-

sure.

Equation 3.10 is rewritten for a reduced grasp quality measure q:

Vj C G,, f(w: .ft1) q'] . (3.11)

Figure 3.14 shows these new contact constraint sets applied to the example target

object for a grasp quality measure of at least 0.75q. Compare this to Figure 3.10 of the
previous section. The regions are much larger with the new contact constraint sets. This

illustrates the power of knowing how a grasp will be evaluated.

In some sense, however, this comparison is not fair, as Ihe example grasp is not a

very high quality grasp for the simple task of countering disturbance forces. If this were

an example of an actual grasp prototype, the grasp would have been designed with some

particular task in mind, and it would be expected to be well suited for that task.

3.6.5 Contact Constraint Sets for any Given Task

The previous section described a method for generalizing a grasp based on a ball-shaped

wrench space. The obvious shortcoming of that generalization is that it is not applicable to

task wrench spaces that differ significantly from a ball. This section describes an extension
to the previous algorithm that allows generalization of grasp prototypes for a task wrench

space of any shape. This extension is not used in any examples of this report, but the
quality measure developed here would be required if a specific task wrench space that was

not a wrench space ball were provided as an input to the grasp synthesis problem.

The extension required to the algorithm of the previous section is very simple: every
facet of the prototype convex hull is associated with a scale factor that indicates the

distance of that facet from the origin when the entire unit task wrench space is just on
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the inside of the hyperplane containing that facet. A revised contact constraint set is
then constructed as follows. Let the scale factor be -j for facet gj. Then a grasp quality
measure of q implies that:

Vj E Gi, [(__i hj) > - j q] . (3.12)

This technique can be used to improve the grasp quality approximation for the task
of countering disturbance forces illustrated in the previous section. Chapter 2 showed
how the wrench space ball was a rough approximation of a more intuitive task wrench
space: the object wrench space of the target object (see Figure 2.13 of Section 2.6). If the
object wrench space of the target object is known, a generalized grasp prototype can be
constructed using that object wrench space as the task wrench space.

Unfortunately, a task wrench space based on the object wrench space of a target object
has a major shortcoming. This task wrench space varies with target object geometry. The
generalized grasp prototype would have to be recomputed for each new target object. It
would also have to be recomputed for each new alignment of the grasp prototype to that
target object, because the 'yj factors of Equation 3.12 would change with this alignment
parameter. Clearly, the problem is that the task wrench space for this task is fixed with
respect to the target object, and has nothing to do with the grasp prototype. This is true
because the task wrench space reflects properties of the geometry of that target object
and not properties associated with the prototype grasp.

In general, however, we might expect to find task wrench spaces that are more fixed
with respect to a grasp prototype, and less dependent on target object geometry. This
assumption is important if we expect to be able to design grasps to work well for specific
tasks, such as the task of drinking from a glass. If the task wrench space can be fixed with
respect to the grasp prototype, then a complex task wrench space can be handled much
more easily. The generalized grasp prototype can be computed offline and stored as part
of a grasp library.

3.6.6 Contact Quality Measures

The previous sections described how to create contact constraint sets by generalizing
prototype grasps. Methods for creating contact constraint sets when a task wrench space
is known and when it is not known were described. This section shows how to use these
contact constraint sets to compute a contact quality measure.

Recall that the contact quality measure is defined as a measure of the greatest grasp
quality threshold for which a given contact wrench would fall within a given contact
constraint set of a generalized grasp prototype. For any given grasp quality threshold,
contact constraint sets were bounded by projections of the grasp prototype wrench space
convex hull onto the task wrench space scaled according to that grasp quality threshold
(Figure 3.13). This projection of the grasp prototype convex hull onto the task wrench
space was called an intermediate convex hull for that grasp quality threshold.

This description can be inverted to say that any contact wrench proposed as a match
to some contact of the grasp prototype supports a family of intermediate convex hulls
over a range of grasp quality thresholds. This idea is illustrated in Figure 3.15 for the
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Figure 3.1.5: Each contact wrench can independently be determined to support its corner
of a family of convex hulls corresponding to a family of grasp quality measures.
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simple ball-shaped task wrench space. The contact quality measure of any contact is the
maximum grasp quality threshold for which an intermediate convex hull can be supported
by that contact.

To optimize the contact quality measure of each contact for a task wrench space that
is a wrench space ball, simply place each new contact wrench iw such that

mrin (it, (3.13)
jEG,

is maximized.
A lower bound on the quality of the grasp can then be stated as:

Qmin = ini [ýu[min (w_•. it)]. (3.14)

An intermediate convex hull of scale Qmzn can be supported by all contacts.
To maximize the contact quality measure for a more complex task wrench space, a

weighting factor -tj is needed for each facet gj of the intermediate convex hull. Each new
contact wrench w' should be placed to maximize

ain ((3.15)jEG. 7i J 1

and a lower bound on grasp quality for this task shape is

min(min [ :.g ])(3.16), jEc• 7j J

The technique just described optimizes the quality of a grasp by independently opti-
mizing the quality of each contact wrench. This is a very powerful approach. The ability
to separate and localize the computation of contact quality measures is a key feature of
the algorithms described in Chapters 5, 6, and 7.

3.6.7 Optimizing Contact Placement

The contact constraint sets and contact quality measures described above can be used
to form optimal grasps in two ways, emphasizing slightly different properties of a grasp.

These properties are:

* robustness to errors in contact placement for a given grasp quality threshold, and

* a lower bound estimate of the grasp quality measure.

Synthesis of optimal grasps based on either of these properties requires a representation of
contact quality space. The paragraphs below first describe how this space can be computed
and then outline grasp optimization techniques based on the two properties listed above.
These techniques are demonstrated in Chapter 4.
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Computing Contact Quality Space

It is useful to sketch the dimensions of the contact quality space. A contact quality measure
can be computed as described above for every contact of a grasp, for every position of
that contact on the target object boundary curve, and for every orientation of the grasp
prototype with respect to the target object.

Figure 3.16 shows a plot of a thresholded contact quality space for contact 1 of the
five-contact grasp in the top half of the figure, given a task wrench space that is a wrench
space ball. The object boundary curve of the polygon was sampled at regular intervals,
creating a set of 609 sample points for every orientation of the grasp prototype with respect
to this polygon. Each sample along the object boundary curve corresponds to a unique
contact wrench. Combinations of prototype orientation and contact wrench that result in
a contact quality measure greater than zero are highlighted in the plot. The tails on the
highlighted regions are an artifact of the fact that a scale factor must be chosen to relate
the change in angle at a vertex contact to the change in position at an edge contact. In
this plot, that factor caused edge length to be sampled finely in comparison with vertex
angle ranges.

For a c contact grasp and a target object with an object boundary curve sampled p
ways, computation of the entire contact quality space requires cp contact quality compu-
tations for each sampled orientation in S', where S' is the unit circle.

Finding Robust Grasps

Contact quality spaces such as that shown in Figure 3.16 can be used to find robust grasps
of a target object. Suppose that an acceptable quality threshold has been chosen. Then
the size of the largest continuous region of contact points exceeding the given grasp quality
threshold can be found at any single orientation of the grasp prototype with respect to
that target object (i.e. at any single point on the x-axis of Figure 3.16). This number is
related to the allowable error in placement of the given contact. Figure 3.16 represents a
threshold of 0 quality measure. Given this threshold, there are contact regions of 66 units
at an orientation of 7r and 23 units at an orientation of 21. The first of these represents
a substantial fraction of the object boundary curve, and so a prototype orientation of ir
corresponds to a large contact region for contact 1.

The robustness measure for a given contact can be written R(i,O), a function of the
contact (i) and the relative orientation of the grasp prototype and target object (0). To
find an optimal grasp using this measure requires minimization over the contacts of a
grasp and maximization over the orientation parameter:

Rmax max (minR(i,O)) (3.17)

The best grasp will be found at the value of 0 producing Rma,. This may be different for
different grasp quality thresholds.
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Figure 3.16: The bottom figure shows a plot of the space of positive contact quality
measures for contact 1 of the grasp shown in the top figure. The region or regions of good
contact points can be large, small, or nonexistent, depending on the orientation of the
grasp prototype with respect to the target object. A good grasp requires an orientation
that has reasonably sized contact regions for all five contacts.
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Finding Optimal Quality Grasps

Contact quality spaces such as that shown in Figure 3.16 can also be used to find optimal
quality grasps. Contact quality can be expressed as Q(i, 0, s), a function of contact (i),
relative orientation of grasp prototype and target object (0), and position on the object
boundary curve (s). Then the optimal guaranteed grasp quality measure is:

Qmax : max (min (max Q(Zi, 0, s)). (3.18)

The best grasp will be found at the value of 0 producing Qma•, and the contacts will be
placed at the corresponding optimal values of s. The actual quality of the resulting grasp
will in general be greater than Qax, but it is guaranteed never to be less than Qma,,.

3.6.8 Discussion

This section showed how to construct a generalized grasp prototype as a collection of
contact constraint sets. It also showed how to define contact quality measures based
on the generalized grasp prototype definition, and it showed how to find robust or high
quality grasps based on these contact quality measures. These techniques are illustrated
by examples in the next chapter.

There are a number of issues that merit further discussion. This section:

"* reviews the reason for the constraints imposed on the grasp quality measure in
Chapter 2,

"* discusses the idea of defining contact constraint sets or contact regions in a different,
more equitable way, and

"* estimates the change in efficiency of this algorithm over the brute force algorithm of
Section 3.4.

Constraints on the Grasp Wrench Space

In Chapter 2, the grasp wrench space was limited to the space spanned by the convex hull
of the contact wrenches. This section makes it clear why this representation was used.
All of the constructions used to define contact constraint sets rely on the assumption that
the grasp wrench space is formed from the convex hull of the contact wrenches.

Adjusting Wrench Space Regions

Section 3.6.3 postponed discussion of the idea that a generalized grasp prototype might
be optimized for a particular task wrench space by adjusting the contact constraint sets
to maximize the sizes of the independent wrench space regions. Two brief notes on that
idea are stated here:

91



1. The appropriate way to measure the effectiveness of such an adjustment would be
to measure the sizes of independent contact regions on the target object, not the
independent wrench space regions of the generalized grasp prototype. Target object
geometry affects how the size of a wrench space region will map to size of an accessible
region of contact on the target object, which is what we really want to maximize.
The generality of the generalized grasp prototype would be sacrificed by requirhig
that it be readjusted for every new target object.

2. The distribution of contacts in a grasp may reflect something about an intended
task that is not reflected in the shape of the task wrench space, especially if the task
wrench space in use is a crude approximation, such as a wrench space ball. Altering
contact constraint sets is equivalent to changing the contact distribution. If we are
not certain that the task wrench space we are using exactly captures the demands
of a task, such alteration may have undesirable effects.

In this report the definitions of contact constraint sets are not adjusted to maximize
wrench space region size or independent contact region size.

Search Space Size

Both the brute force grasp synthesis algorithm presented in Section 3.4 and the generalized
grasp prototype algorithm presented in this section require (in a naive implementation)
exhaustive search through their respective quality spaces. Where the brute force algorithm
looks f-.- a large continuous region of good grasp quality measures, the generalized grasp
prototype algorithm looks for an alignment of the grasp prototype to the target object
that has large continuous regions of good contact quality measures for all contacts of
the grasp (Expression 3.17 above). Where the brute force technique optimizes the grasp
quality measure over the entire space, the generalized grasp prototype algorithm finds
an alignment of the grasp prototype to the target object that maximizes the minimum
optimal contact quality measure over the contacts of the grasp (Expression 3.18 above).

Although the computation required to derive contact quality is much simpler than
that required to derive grasp quality, the real difference between the two algorithms is in
search space size. The size of the contact quality space of the grasp synthesis algorithm of
this section is cp sampled over S'. This can be compared to the size of the contact quality
space in the brute force grasp quality calculation of c -P- Because a very conservative
description of the set of grasps that have high grasp quality measures has been used,
lower bound grasp quality measures can be computed at each contact of the grasp. This
pushes the combinatorics of contact selection inherent in the brute force approach to
the much simpler problem of selecting combinations of contacts from the contact quality
spaces computed in the grasp prototype approach. This is a much easier task, because
any combination of contacts with contact quality measures above a given grasp quality
threshold will work.
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3.7 Working with 3D Objects

When we move from two-dimensional to three-dimensional objects, the techniques used
to construct contact constraint sets and contact quality measures and to synthesize op-
timal grasps from these constructs do not change. The contact types and the required
intermediate constructs do become more complex, however. Contact types used for three-
dimensional objects were discussed in Chapter 2, and Figure 2.23 shows two of them.
Important changes in the dimensionality of intermediate constructs are listed below:

"* the wrench space is six-dimensional,

"* there is a two-dimensional object boundary surface rather than a one-dimensional
object boundary curve,

"* the grasp prototype must be aligned with the target object in the three-dimensional
orientation space SO(3) rather than the one-dimensional orientation space S 1.

This means that constructing the contact quality space requires cp 2 calculations sampled
over SO(3) rather than cp calculations over S'. Every point on the object boundary
surface has a contact quality value for each contact of the grasp and for each orientation
of the grasp prototype with respect to the target object. Exhaustive grasp optimiza-
tion can be done exactly as before, optimizing the size of continuous contact regions or
optimizing the contact quality measure, but Expressions 3.17 and 3.18 will need to be
adjusted to accommodate the increased dimensionality of the alignment parameter 6 (now
a three-dimensional orientation parameter) and object boundary parameter s (now a two-
dimensional surface).

The increased complexity of this optimization problem makes it more profitable when
synthesizing grasps of three-dimensional objects to rely more on an initial geometric fit
of the grasp prototype to the target object, as searching the entire space for the best
alignment is very expensive. It is important to note, however, that this geometric match-
ing process does not provide a completely well-defined starting point for a search when
either the target object or the grasp prototype has any orientation symmetry (a cylinder,
for example, has a one-dimensional orientation symmetry). There is no way to geometri-
cally resolve these symmetries without added information about the target object or the
environment. This problem is discussed in the second half of this report.

3.8 Summary

This chapter presented a novel technique for synthesizing grasps by generalizing a single
example grasp, or grasp prototype, and applying this generalized prototype to a new
target object. The method used for generalizing the prototype was shown to decrease the
complexity of the search for a good grasp of the target object by allowing the contacts of a
proposed grasp to be evaluated and even optimized independently. If independent contact
quality measures are all above some quality threshold, then the quality of the resulting

93



grasp is guaranteed to also be above that threshold. Some features of the grasp synthesis
technique presented in this chapter are reviewed below.

Global Region Information: The technique of finding grasps that match a general-
ized grasp prototype provides lower bound quality values over a space of possible grasps.
This region information is important, because it can be used to determine the robust-
ness of a grasp to errors in contact placement. It also provides the flexibility in contact
placement that is needed to adapt to the constraints of the robot hand kinematics.

Offline Computation: This technique allows a grasp to be optimized for a particular
task ofiline and then generalized explicitly for the given task wrench space. The generalized
grasp prototype for that given task can then be stored in a grasp library for later access.
This means that any given grasp design and task description can incorporate knowledge
gained from extensive analysis and experimentation.

Speed: No matter how complex and time-consuming the offline grasp design and
analysis may be, the runtime process of testing potential grasps can be very fast. It is
reduced from the problem of constructing a grasp wrench space convex hull and finding
the scale of the largest task wrench space that fits within that convex hull to the problem
of evaluating a few dot products for each contact of the grasp. The quality measure for
each contact can be independently calculated, thus allowing the placement of each contact
to be independently optimized. This greatly reduces the combinatorics of the problem of
finding a high-quality set of contacts on a target object.
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Chapter 4

Examples Using 2D Objects

This chapter shows how the constructs of the previous chapter, in particular the contact
constraint sets and the cont.ct quality measures, can be visualized. It also demonstrates
the use of these constructs in synthesizing both robust grasps and optimal quality grasps
of new target objects.

A single grasp prototype is used throughout this chapter. This grasp prototype is
shown in Figure 4.1. Grasp quality is computed as in Equation 2.25, where the task
wrench space is assumed to be a wrench space ball. Section 4.1 addresses the problem of
visualizing the contact constraint sets of the example grasp prototype for the given task
wrench space, and Section 4.2 demonstrates the synthesis of robust grasps of the four
new target objects in Figure 4.2 using these c-ntact constraint sets. Section 4.3 shows
how the contact quality measures of the example grasp prototype can be visualized, and
Section 4.4 demonstrates the synthesis of optimal quality grasps of the four target objects
in Figure 4.2. Section 4.5 presents a summary.

4.1 Visualizing Contact Constraint Sets

This section addresses the problem of visualizing the contact constraint sets of the grasp
prototype shown in Figure 4.1. Some examples of contact constraint sets have already
been presented in the previous chapter (for example, Figure 3.13). In these examples,
the entire wrench space was shown, with the contact constraint sets as shaded regions
within that wrench space. This was possible because the examples involved only a two-
dimensional wrench space. In general, however, two-dimensional objects have a three-
dimensional wrench space, [f, f, r"z]T, and so it is useful to move to a more efficient
format for illustrating the contact constraint sets. In particular, the interesting portions
of the contact constraint sets are really two-dimensional. We are interested in the contact
wrenches that could be used to construct the grasp wrench space of a grasp. The grasp
wrench space of any grasp is bounded by the convex hull of the contact wrenches resulting
from unit applied forces at the contacts of the grasp. Because the applied forces at the
contacts of the grasp are normalized, there are only two degrees of freedom available with
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Figure 4.1: An example grasp prototype, represented by forces applied at the numbered

contacts.
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Figure 4.2: This chapter will demonstrate synthesis of optimal grasps of these four target
objects. The objects were designed to have varying degrees of similarity to the example
target object.
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Figure 4.3: Independent wrench space regions for the five contacts of the example grasp

that guarantee a grasp quality measure of 75% of the original grasp quality measure.

These regions of normalized contact wrenches are presented in a space of force orientation
vs. weighted torque values. The normalized wrenches corresponding to the five contacts

of the original grasp are shown.

which to specify the space of possible contact wrenches. These degrees of freedom can be

captured, for example, with an applied force orientation and a torque magnitude.
Figure 4.3 shows a plot of the contact constraint sets of the example grasp in Figure 4.1.

Each point in this plot is a contact wrench. The x-axis represents orientation of the force
vector in radians, and the y-axis represents the scaled torque vector. The shaded regions

illustrate wrenches having contact quality measures of at least 75% of the grasp quality

measure of the example grasp. The numbered points within these regions represent the

contact wrenches of the example grasp. Each contact wrench falls, of course, within its
corresponding contact constraint set.

The plot used to illustrate contact constraint sets is the same plot as that used to
display the complete set of contact wrenches that could be applied to the target object,

the object boundary curve in Figure 2.12. Figure 4.4 shows the object boundary curve

overlaid on the plot of contact constraint sets. Recall that the vertical lines represent
contact with edges of the target object, since the orientation of applied force does not

vary as the contact point is moved along an edge. Curved lines represent contact with
vertices of the target object, since the torque varies in a nonlinear way with the orientation

of the edge contacting the vertex. The point-edge contacts of the example grasp fall on

the vertical lines of the object boundary curve.
The combined plot of object boundary curve and contact constraint sets tells us a

great deal about the robustness of a grasp to errors in contact placement. From this

plot we see, for example, that as long as point contacts are placed within the highlighted

regions of Figure 4.5, the resulting grasp will have a grasp quality measure of at least

75% of the example grasp. Note that the contact region corresponding to contact 3 is

discontinuous; this region overflows onto the edge containing contact 1. This can be seen
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Figure 4.4: Independent wrench space regions superimposed on the object boundary curve
of the example polygon. The object boundary curve indicates what contact wrenches are
possible for this object.

in Figure 4.4 as well: there are two nearly overlapping vertical lines intersecting region
3, which corresponds to contact regions on two separate edges of the target object. Also
note that contact regions may involve not only point-edge contacts, but also edge-vertex
contacts. For example, Figure 4.4 shows that the contact constraint set of contact 4 can
be satisfied by one of two discontinuous contact regions: the region on the edge of the
target object shown in Figure 4.5, or a separate region of edge contact on the nearby
target object vertex.

The effect due to a variety of changes in the grasp can be read from the plot in
Figure 4.4. For example, uncertainty in contact placement displaces contact points on the
object boundary curve. In addition, uncertainty in object orientation causes the curve to
slide on the orientation axis, and changes in object geometry cause the object boundary
curve to warp. As edge lengths shrink, the vertical lines shrink. As edge orientations
change, these lines move horizontally. We can get an idea of how robust a grasp might
be by noting how easily such changes can cause the contact points to slip out of the good
contact regions.

This leads to the question of object design. In other words, what changes in target
object geometry would keep some part of the object boundary curve within the given
contact constraint sets? One way to visualize a partial answer to this question is to
sample wrenches in the contact constraint sets and translate them into edge segments,
such as the highlighted segments in Figure 4.5. Point contact on these edge segments
would generate contact wrenches within the given constraint sets. Figures 4.6 and 4.7,
for example, show sampled sets of edge segments corresponding to the contact constraint
sets for contacts 1 and 4 of the example grasp. A new target object with an edge covering
part of any of these segments would contain a range of point-edge contacts satisfying the
contact constraint sets of either contact 1 or contact 4. This representation is, of course,
not a complete repi 3sentation of the contact constraint sets of contacts 1 and 4. Aside
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Figure 4.5: Independent contact regions that guarantee a grasp quality measure of 75% of
the grasp quality measure of the original grasp. Only point-edge contacts are shown. The
region corresponding to contact three overflows onto the edge containing contact one.

from the fact that the edge segments are sampled, only point contact with potential object
edges is represented. Possible edge contacts with object vertices are not shown.

The real problem addressed by this report is not object design, however, but the
problem of finding the best fit of a grasp prototype to an existing target object. A
technique for synthesizing robust grasps of a given target object will be illustrated in the
next section.

4.2 Finding Robust Grasps

The previous section showed how the contact constraint sets of a generalized grasp proto-
type can be visualized. This section shows how these regions can be used to design grasps
for target objects that differ from the prototype object. Although the calculations that
will be shown below could be simplified by beginning with a geometric fit of a new target
object to the prototype object, with two-dimensional objects it is more interesting to plot
results for the entire space of possible matches.

We begin with the example polygon. The fit of this polygon to a generalized grasp
prototype can be measured by computing the sizes of the independent contact regions
that result. Contact region sizes can be approximated from the lengths of object bound-

ary curve that pass through the occupied areas in Figure 4.4. To make this approximation
work, a parameter that reasonably compares distance in the torque dimension with dis-
tance in the orientation dimension is needed. In the experiments below, the total torque
span of 2 is considered to be a distance equivalent to the orientation span of 27r.
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Figure 4.6: Sampling of legal contact segments for contact 1. Each segment could be a
good region of point-edge contact on a new target object with an edge containing that
segment.
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Figure 4.7: Sampling of legal contact segments for contact 4. Each segment could be a
good region of point-edge contact on a new target object with an edge containing that
segment.
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There is one degree of freedom in the match of a two-dimensional object to a grasp
prototype. This degree of freedom is the relative orientation of the target object with
respect to the prototype (refer to Expression 3.17). The matches that result as this
orientation is varied can be checked by sliding the boundary curve of the object across the
plot in Figure 4.4 while the legal wrench space regions remain constant.

Figure 4.9 shows the results of performing this operation. Region sizes were computed
that guarantee quality measures of 75%, 50%, and 25% of the example grasp quality
measure (see Figure 4.8). The upper plot of Figure 4.9 shows how the minimum contact
region sizes vary with orientation of the example polygon. For the most part, matches
are limited to a small region of orientations near the original solution. There seems to be
an additional match at an orientation of approximately 7r, however. The lower plot shows
this match. The 25% quality regions are also displayed in the figure, and we can see that
the match is extremely fragile. A small positive change in orientation will push the curve
out of region 5. A small negative change in orientation will push the curve out of region
2.

There is a significant amount of structure contained in a grasp prototype. We can
see something of how this will affect the range of possible matches to a prototype by
performing some simple experiments.

Figures 4.10 through 4.13 show some results for the four objects shown in Figure 4.2.
The objects show decreasing similarity to the example polygon. Minimum contact region
sizes were computed for each object that guarantee grasp quality measures of 75%, 50%,
and 25% of the example grasp quality measure. The middle plot of each figure shows
how the minimum contact region size varies with object orientation. While the first two
objects show a reasonably robust match to the grasp prototype about an orientation of
zero, this match is more questionable with the third object, and completely absent in the
fourth object.

As something of a control, the matches of these objects to a symmetrical five-contact
prototype were also computed. Regions for this prototype that guarantee quality measures
of 75%, 50%, and 25% of the example grasp quality measure are shown in Figure 4.14.
Compare these to the corresponding prototype regions in Figure 4.8. The matches of the
new objects to this symmetrical prototype are shown in the lower plots of Figures 4.10
through 4.13. Some matches are evident here, particularly in the 5.5 to 6 radian range,
but the nicely shaped curves due to the original prototype are absent. The degradation of
these matches is sharp, not graceful, because of the shapes of the contact constraint sets
of the symmetrical grasp prototype.

A robust grasp can be found for each new object using the central plots in Figures 4.10
through 4.13. Figures 4.15 through 4.18 show the results of this process. For each example,
a good shift in orientation was chosen from the central, minimum region size plot in each
of Figures 4.10 through 4.13. The shifted object boundary curve was plotted against
the 25% quality regions of the original prototype. These plots are shown in the bottom
halves of the figures. Using these plots, reasonably robust contacts were chosen and grasp
quality was calculated. These grasps and quality measures are shown in the top halves of
Figures 4.15 through 4.18.
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Figure 4.8: Independent wrench space regions for the example grasp. The regions shown
are for qualities of 0.2625, 0.175, and 0.0875, or 75%, 50%, and 25% of the grasp quality
measure of the example grasp.
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Figure 4.9" The upper plot shows the minimum contact region size on the example polygon
for three grasp quality thresholds vs. the relative orientation of the grasp prototype with
respect to the target object. The best match falls at a relative orientation of zero. The
lower plot shows the marginal match found at an orientation of r, superimposed on the
0.0875 quality regions.
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Figure 4.10: New object 1 matches to the example polygon grasp prototype. The top figure
shows new object 1. The two plots show the minimum contact region size on new object 1

for three grasp quality thresholds vs. the relative orientation of the grasp prototype with
respect to the target object. The top plot uses the wrench space regions derived from the

example grasp (Figure 4.8). The bottom plot uses the symmetrical wrench space regions
of the control grasp (Figure 4.14).
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Figure 4.11: New object 2 matches to the example polygon grasp prototype. The top figure
shows new object 2. The two plots show the minimum contact region size on new object 2
for three grasp quality thresholds vs. the relative orientation of the grasp prototype with
respect to the target object. The top plot uses the wrench space regions derived from the
example grasp (Figure 4.8). The bottom plot uses the symmetrical wrench space regions
of the control grasp (Figure 4.14).
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Figure 4.12: New object 3 matches to the example polygon grasp prototype. The top figure
shows new object 3. The two plots show the minimum contact region size on new object 3
.For three grasp quality thresholds vs. the relative orientation of the grasp prototype with
respect to the target object. The top plot uses the wrench space regions derived from the
example grasp (Figure 4.8). The bottom plot uses the symmetrical wrench space regions
of the control grasp (Figure 4.14).
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Figure 4.13: New object 4 matches to the example polygon grasp prototype. The top figure
shows new object 4. The two plots show the minimum contact region size on new object 4
for three grasp quality thresholdF vs. the relative orientation of the grasp prototype with
respect to the target object. The top plot uses the wrench space regions derived from the
example grasp (Figure 4.8). The bottom plot uses the symmetrical wrench space regions
of the control grasp (Figure 4.14).
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Figure 4.14: Independent wrenc•i space regions for a symmetrical control grasp. The
regions shown are for qualities of 0.2625, 0.175, and 0.0875, to parallel the 75%, 50%, and
25% regions of the example grasp shown in Figure 4.8.
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Figitre 4.15: New object I best match to the example grasp has a grasp quality measure of
0.34. In the plot, the object boundary curve of new object 1 has been superimposed on the
0.0875 quality regions. This object boundary curve has not been shifted with respect to
the independent contact regions of the grasp prototype. The contact wrenches of the grasp
are indicated in the plot, and independent contact region sizes for the quality threshold
of 0.0875 can be estimated by examining the plot.
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Figure 4.16: New object 2 best match to the example grasp has a grasp quality measure of

0.33. In the plot, the object boundary curve of new object 2 has been superimposed on the

0.0875 quality regions. This object boundary curve has not been shifted with respect to

the independent contact regions of the grasp prototype. The contact wrenches of the grasp

are indicated in the plot, and independent contact region sizes foi the quality threshold

of 0.0875 can be estimated by examining the plot.

110



S~2

Y

5

1

3 4

Quality = 0.27

1.00 - . .....

U3

E-0.00

100

Force Orientation

Figure 4.17: New object 3 best match to the example grasp has a grasp quality measure

of 0.27. In the plot, the object boundary curve of new object 3 has been superimposed
on the 0.0875 quality regions. This object boundary curve has been shifted by 7r with
respect to the independent contact regions of the grasp prototype. The contact wrenches
of the grasp are indicated in the plot, and independent contact region sizes for the quality
threshold of 0.0875 can be estimated by examining the plot.
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Figure 4.18: New object 4 best match to the example grasp has a grasp quality measure
of 0.29. In the plot, the object boundary curve of new object 4 has been superimposed
on the 0.0875 quality regions. This object boundary curve has been shifted by 0.6 with
respect to the independent contact regions of the grasp prototype. The contact wrenches
of the grasp are indicated in the plot, and independent contact region sizes for the quality
threshold of 0.0875 can be estimated by examining the plot.

112



Note that the qualities of all four grasps are much better than the guaranteed lower
bound of 0.0875. They are very near the quality of the grasp prototype, which is 0.35. Also
note, however, that there is a tendency to resort to vertex contacts as the object becomes
less like the prototype. The grasp in Figure 4.18, in fact, cannot be achieved at all with
frictionless hard finger contacts. It requires that two contacts at different orientations be
placed on the same vertex.

4.3 Visualizing the Contact Quality Measure

The previous sections showed how contact constraint sets can be visualized, and they
presented some examples of optimizing the sizes of independent contact regions for a
given grasp quality threshold. Contact region size is important because it provides an
indication of the robustness of a grasp to small errors in contact placement. Grasps
can also be optimized using the contact quality measure, however. Each contact quality
measure provides a lower bound on the quality measure of the grasp as a whole. Optimizing
contact quality measures individually can improve on these lower bounds and thus improve
the quality measure guaranteed for the grasp.

The contact quality measure is a measure of the greatest grasp quality threshold for
which a given contact wrench would fall within a contact constraint set of a generalized
grasp prototype. To visualize contact quality measures means to show how the wrench
space described by the contact constraint sets varies with the grasp quality threshold.

The wrench space regions that satisfied particular contact constraint sets were dis-
played in Sections 4.1 and 4.2 by plotting these regions in a space of force orientation vs.
weighted torque (e.g. Figure 4.8). The region sizes varied with the grasp quality threshold
used to define the contact constraint sets. Lower grasp quality thresholds created a larger
space of contact wrenches for each contact, and this showed up as larger regions in the
wrench space plots. Some information can be added to these contact constraint set plots
to obtain a coarse representation of the contact quality measures. Figure 4.19 shows con-
tact quality plots for both the prototype grasp (top) and the symmetrical grasp (bottom)
of the previous sections. The contact regions in these plots are striped at contact quality
intervals of 0.1, with the outer, black stripe representing contact quality measures 0 to
0.1, followed by a white stripe representing contact quality measures 0.1 to 0.2 and so on.
The largest region in the top figure has contact quality measures greater than 0.6 in its
center.

4.4 Finding Optimal Quality Grasps

Now that one representation of the contact quality space has been shown, some results of
optimizing grasps based on the contact quality measures are presented. As in Section 4.2,
the symmetrical grasp prototype can be compared to the grasp prototype from the example
polygon, and the section begins by plotting results for the entire space of possible matches
of these grasp prototypes to the original example polygon and the four target objects
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Figure 4.19: Gradient plot of independent wrench space regions for the example prototype

grasp (top) and the symmetrical grasp (bottom). The regions are striped at contact quality

intervals of 0.1, with the outer, black stripe representing the contact quality interval [0.0,

0.1).
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shown in Figure 4.2.
Expression 3.18 is used to compute lower bound grasp quality measures. As the align-

ment between the grasp prototype and the target object is varied (parameter 0 in Expres-
sion 3.18), the contact quality measure is maximized for each contact, and contact quality
measures are minimized over the contacts of the grasp.

Figures 4.20 through 4.24 show the results. Each figure shows a target object (top),
a plot of lower bound grasp quality against alignment of the example grasp prototype to
the target object (middle). and a plot of lower bound grasp quality against alignment of
the symmetrical prototype to the target object (bottom). In the plots, any y-axis values
greater than zero represent orientations from which stable grasps can be generated. The
central plots show that objects similar to the example target object tend to have large
regions of positive y-axis values around an orientation of zero, although each plot shows a
number of orientation ranges for which stable grasps are possible. Where the peaks of these
contact quality measures go above the grasp quality thresholds used to generate the plots
of Figure 4.8, non-zero region sizes are seen in the plots of Figures 4.10 through 4.13. The
contact quality measure plots provide information complementary to the contact region
size plots. Where the region size plots indicate the robustness of a grasp to small errors
in contact placement for a given grasp quality threshold, the contact quality plots show
the optimal grasp quality threshold that could be established for a given orientation.

It is possible to find the grasps that correspond to the greatest lower bound grasp
quality measure, and Figures 4.26 through 4.30 show the grasps that were identified for
these objects. These grasps can be compared to the grasps having optimal contact region
sizes in Figure 4.1 and Figures 4.15 through 4.18. The table in Figure 4.25 compares
the grasps in terms of grasp quality. This table shows the optimal lower bound grasp
quality measures (column 1), the actual grasp quality measures of grasps optimized using
the contact quality measures (column 2), and actual grasp quality measures of grasps
optimized for contact region size (column 3).

If the grasps represented by these quality measures are examined, some s.-ailarities
can be identified. The grasps of the example polygon and new objects 2 and 3 are similar,
although optimizing contact quality measures tends to push contacts out to the geometric
extremes of the target object (the vertices), resulting in grasps that sometimes have better
quality measures (e.g. grasps of the example polygon and new object 3), but may be more
difficult to achieve. Many of these grasps, for example, have contacts on or near the same
vertex.

The actual grasp quality measures of the grasps optimized using the contact quality
measures are not necessarily as good as those optimized for contact region size. This is
the case, for example, with new object 2. This is not a contradiction, because the actual
grasp quality measures are the measures formed by constructing the convex hull of the
contact wrenches and scaling this convex hull to include the task wrench space, here the
unit wrench space ball. Contact quality measures provide only a lower bound on the
actual grasp quality measure. The grasps having optimal contact quality measures will
not necessarily be the ones with the optimal grasp quality measure, as the example grasps
of new object 2 demonstrate.
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Figure 4.20: The top figure shows the example polygon. The two plots show the minimum
optimal contact quality measure on the example polygon vs. the relative orientation of
the grasp prototype with respect to the target object. The top plot uses the wrench space
gradient plot derived from the example grasp (Figure 4.19 top). The bottom plot uses
the wrench space gradient plot derived from the symmetrical control grasp (Figure 4.19
bottom). Only positive contact quality measures represent stable grasps.
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Figure 4.21: The top figure shows new object 1. The two plots show the minimum optimal
contact quality measure on the example polygon vs. the relative orientation of the grasp
prototype with respect to the target object. The top plot uses the wrench space gradient
plot derived from the example grasp (Figure 4.19 top). The bottom plot uses the wrench
space gradient plot derived from the symmetrical control grasp (Figure 4.19 bottom).
Only positive contact quality measures represent stable grasps.
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Figure 4.22: The top figure shows new object 2. The two plots show the minimum optimal
contact quality measure on the example polygon vs. the relative orientation of the grasp
prototype with respect to the target object. The top plot uses the wrench space gradient
plot derived from the example grasp (Figure 4.19 top). The bottom plot uses the wrench
space gradient plot derived from the symmetrical control grasp (Figure 4.19 bottom).
Only positive contact quality measures represent stable grasps.
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Figure 4.23: The top figure shows new object 3. The two plots show the minimum optimal
contact quality measure on the example polygon vs. the relative orientation of the grasp
prototype with respect to the target object. The top plot uses the wrench space gradient
plot derived from the example grasp (Figure 4.19 top). The bottom plot uses the wrench
space gradient plot derived from the syrmnetrical control grasp (Figure 4.19 bottom).
Only positive contact quality measures represent stable grasps.
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Figure 4.24: The top figure shows new object 4. The two plots show the minimum optimal
contact quality measure on the example polygon vs. the relative orientation of the grasp
prototype with respect to the target object. The top plot uses the wrench space gradient
plot derived from the example grasp (Figure 4.19 top). The bottom plot uses the wrench
space gradient plot derived from the symmetrical control grasp (Figure 4.19 bottom).
Only positive contact quality measures represent stable grasps.
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GQ lower bound GQ opt cq GQ opt region-size
prototype 0.35 0.38 0.35

new object 1 0.34 0.34 0.34
new object 2 0.30 0.30 0.33
new object 3 0.35 0.36 0.27
new object 4 0.20 0.31 0.29

Figure 4.25: Table comparing the optimal lower bound grasp quality measures found
by matching a prototype to a variety of target objects (column 1, taken from the top
plots in Figures 4.20 through 4.24), the actual grasp quality measures of grasps having
these optimal lower bound grasp quality measures (column 2, grasp quality measures of
the grasps in Figures 4.26 through 4.30), and the actual grasp quality measures of grasps
optimized for contact region size (column 3, grasp quality measures of the grasps in Figures
4.15 through 4.18.

For two of the objects, new objects 1 and 4, the grasps found by optimizing for contact
quality are very different from those formed by optimizing for contact region size. To make
a good selection between the two families of grasps would require consideration of both
the contact quality and the region size values.

4.5 Summary

This chapter showed how contact constraint sets and contact quality measures could be
visualized, and it used these constructs to form both robust grasps and high quality grasps
of the example polygon and four new target objects. The examples illustrated that these
grasp optimization techniques, which require only a moderate amount of computation for
two-dimensional target objects, are also fairly flexible with respect to changes in target
object geometry. Even when the new target objects were very different from the example
object, which was used to define the grasp prototype, it was possible to find a guaranteed
stable grasp of the new target object by matching it to the generalized grasp prototype.
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Figure 4.26: The best match of the example polygon to the polygon prototype grasp has

a grasp quality measure of 0.38. In the plot, the object boundary curve of the example

polygon has been superimposed on the 0.0875 quality regions. This object boundary

curve has not been shifted with respect to the independent contact regions of the grasp

prototype. The contact wrenches of the grasp are indicated in the plot, and independent
contact region sizes for the quality threshold of 0.0875 can be estimated by examining the

plot.
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Figure 4.27: The best match of new object 1 to the polygon prototype grasp has a grasp

quality measure of 0.34. In the plot, the object boundary curve of new object 1 has been

superimposed on the 0.0875 quality regions. This object boundary curve has been shifted

by 3.4 radians with respect to the independent contact regions of the grasp prototype. The

contact wrenches of the grasp are indicated in the plot, and independent contact region

sizes for the quality threshold of 0.0875 can be estimated by examining the plot.
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Figure 4.28: The best match of new object 2 to the polygon prototype grasp has a grasp
quality measure of 0.30. In the plot, the object boundary curve of new object 2 has been
superimposed on the 0.0875 quality regions. This object boundary curve has been shifted

by -0.02 radians with respect to the independent contact regions of the grasp prototype.
The contact wrenches of the grasp are indicated in the plot, and independent contact
region sizes for the quality threshold of 0.0875 can be estimated by examining the plot.
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Figure 4.29: The best match of new object 3 to the polygon prototype grasp has a grasp

quality measure of 0.36. In the plot, the object boundary curve of new object 3 has been
superimposed on the 0.0875 quality regions. This object boundary curve has been shifted
by 3.2 radians with respect to the independent contact regions of the grasp prototype. The
contact wrenches of the grasp are indicated in the plot, and independent contact region
sizes for the quality threshold of 0.0875 can be estimated by examining the plot.
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Figure 4.30: The best match of new object 4 to the polygon prototype grasp has a grasp
quality measure of 0.31. In the plot, the object boundary curve of new object 4 has been

superimposed on the 0.0875 quality regions. This object boundary curve has been shifted

by 3.7 radians with respect to the independent contact regions of the grasp prototype. The
contact wrenches of the grasp are indicated in the plot, and independent contact region

sizes for the quality threshold of 0.0875 can be estimated by examining the plot.
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Chapter 5

Optimizing Grasps: A Parallel
Algorithm

The previous chapters considered the grasp planning problem from a limited perspective.
A grasp was viewed abstractly, as a set of contact points and contact forces. This allowed
the problem of constructing a high-quality grasp to be explored without considering the
geometry of the world or the specifics of any particular robot hand. It was shown that
good solutions to this abstract problem could be obtained by using a grasp prototype
to constrain the solution space. Grasps having large independent contact regions were
generated by fitting a grasp prototype to a target object. A good grasp could be achieved

as long as each contact fell within its designated region.
When a more realistic problem domain is considered, a problem domain where the

robot hand must achieve the given contacts, it is clear that more information is needed.
An objective function derived from contact region sizes is no longer sufficient to identify
a good grasp. The target object is not likely to be floating in empty space, and the robot
hand is not infinitely flexible. A useful objective function must take into account the space

of good hand configurations.
This chapter moves toward a more compl-te solution by adding two new constraints

to the problem:

* the geometry and kinematics of the robot hand, and

* the geometry of obstacles in the environment.

A model of the geometry and kinematics of the hand is necessary to rule out solutions
such as that shown in Figure 5.1, where there is no way for the hand to reach all three
contact points at once. Knowledge of obstacles other than the target object is necessary

for situations such as that shown in Figure 5.2, where the hand may be able to reach a
contact point only by pushing its way through an obstacle.

Current solutions to this more complete problem are few, and those that do exist either
solve problems of reduced complexity or rely exclusively on local methods. Both of these
approaches have undesirable properties. Reduced complexity analyses will miss many
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Figure 5.1: The contact points of this grasp are too far apart. The hand cannot reach all
three of them.

Figure 5.2: Obstacles may cause sets of contact points to be un.reachable.

128



Figure 5.3: Two views of a prototype cylinder grasp.

solutions due to the rigid limits imposed on the problem. They may be unable to adapt
to even modest changes in the target object or in the geometry of the environment. Local
methods are able to adapt to small changes, but they provide little or no information about
the structure of the solution space. This type of information is important for estimating
the probability of achieving a good grasp or for comparing one grasp to another. It can
be used to measure the effect of obstacles in the environment, resolve free parameters or
symmetries in a grasp, or even indicate whether a solution is possible at all.

This chapter presents a parallel, dynamic programming algorithm for grasp synthesis.
The algorithm is flexible, allowing for considerable variation in both hand configuration
and target object geometry, and it generates a projective representation of the space of
good solutions. The algorithm presented in this chapter builds directly on the results of
Chapter 3. The dynamic programming advantage of this algorithm is gained by synthe-
sizing only those grasps that match a grasp prototype as defined in that chapter.

The main contribution of this algorithm is that it satisfies a number of important
grasp constraints - grasp quality, kinematic feasibility, and collision avoidance - while
solving complex grasp synthesis problems with a competence that has not been previously
demonstrated. Despite the complexity of the problem, useful global information about
a situation is extracted, and interesting grasps are synthesized that meet the problem
constraints. The algorithm does not represent a complete solution, however. Only the
geometry and kinematics of the robot hand are considered. The robot arm is ignored. In
addition, the algorithm finds only end grasps of a target object. There is no guarantee
that any of these grasps can be reached without collisions.

Figure 5.3 shows two views of the cylindrical prototype grasp used for the examples
presented in Chapter 7. Note that the example target objects are now three-dimensional.
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Figure 5.4: A simple model of the Salisbury hand. The hand has three fingers, each with
three joints. The triangle represents the wrist.

joint 3I

Figure 5.5: A model of the Salisbury hand, illustrating the axes of joint motion for the
left finger.
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Figure 5.6: A matching grasp of a complex object that matches the prototype grasp of

Figure 5.3.

The geometric model of the hand in this prototype is very simple. An isolated view of
this hand model is shown in Figure 5.4. It is a skeleton model of the Salisbury hand (a
better model is shown below in Figure 5.5), and it has the kinematics of that hand.

Figures 5.6 and 5.7 show the type of results demonstrated in Chapter 7. Figure 5.6
shows one grasp that has been identified for an object that is more complex than the
prototype object. Figure 5.7 shows a grasp that was found to be free of collisions in
a crowded environment. The second figure shows why this algorithm is only a partial

solution. Although this grasp is free of collisions, it is unlikely that a robot arm would be
able to maneuver the hand into this position.

The next few sections more completely define the problem solved in this chapter,

outline some desired characteristics of a solution to this problem, and provide some back-
ground information. Section 5.1 gives the problem specifications, and Section 5.2 presents
the notation that will be used for time complexity estimates. Section 5.3 reviews work
directly related to this problem and work directly related to the solution technique of the
next few chapters. Section 5.4 presents a plan for the remainder of the chapter, where

a parallel algorithm is derived that incorporates hand kinematics and obstacle geometry
into the grasp synthesis problem.

5.1 Problem statement

This chapter uses a definition of a grasp that includes the constraints imposed by the hand

kinematics and by obstacles in the environment. It presents a technique that accommo-
dates these new constraints while fitting a grasp prototype to a target object.
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Figure 5.7: A grasp of the prototype object in a crowded environment that matches the
prototype cylinder grasp of Figure 5.3.

5.1.1 Problem Specifications

The problem specifications of Chapter 3 must be modified to fully define the problem
solved in this chapter. The revised specifications are shown below, with modifications
shown in italics:

Definitions:

"* A grasp: a set of contacts on a target object, along with a kinematically feasible,
collision-free hand configuration from which the contacts can be reached.

"* A task: defined by the task wrench space, or the space of resultant forces and
torques that must be applied to the target object.

"* A grasp prototype: an example object and a high-quality grasp of that object.

Inputs3

* A geometric model of a target object,

* a geometric and kinematic model of a robot hand,

* a geometric model of the environment,

* a grasp prototype,

* a task.
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Assumptions:

* Frictionless point contacts,

* no singular contacts,

* no complex contacts,

o contact torques defined about the target object center of mass,

* grasp quality computed as in Chapter 2.

Problem:

e Describe the space of high-quality, collision-free grasps of the target object.

The next few paragraphs highlight the most important features of these specifications. In
particular, they describe how grasp quality is computed for a proposed grasp, they outline
the additional concerns encountered when adding the kinematic and geometric constraints
of the robot hand, and they review the role of the grasp prototype in synthesis of high

quality grasps.

Grasp Quality can be Computed from the Contacts of a Grasp

As in the previous chapter, the synthesis of any grasp requires that a set of contact points
and local contact normals be found. Contact points can be placed anywhere on the target

object - on a surface, an edge, or a vertex. There are no singular contacts, so contact
normals can be uniquely determined by examining the local geometry of each contact.
Knowing a set of contact points and the local contact normals at those points provides
enough information to compute a grasp quality measure for a frictionless grasp, except in
the case of complex contacts, which are discussed in Section 8.1.2.

Grasps are Now Found Using a Kinematic Model of a Hand

One major difference from the problem specification of the previous chapter is that a hand
configuration must be found that achieves a high-quality set of contact points. This hand

configuration must be both kinematically feasible and collision-free. If a hand configura-
tion is kinematically feasible, the hand can physically achieve that configuration. None of
the joint angles, for example, will be forced past their limits. If a hand configuration is
collision-free, then the hand in that configuration does not occupy the space filled by the
target object or by some obstacle in the environment. The models of the environment ge-
ometry, target object geometry, and hand geometry are used to ensure that this condition
is met.

A particular robot hand is used in the examples of the next few chapters, although
the various algorithms that are presented do not rely on the kinematics or geometry of
this hand. The hand that is used is the Salisbury hand, which has three fingers, each with
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three joints [42]. A model of this hand, showing the axes of motion of the joints of the left
finger, is shown in Figure 5.5. The examples of this chapter use a skeleton model of this
hand, shown in Figure 5.4. The finger and palm geometries have been simplified to form
this skeleton model, but the kinematics of the hand have been preserved.

Grasp Prototypes are Used in the Solution

The next few chapters assume that a grasp prototype and a task have been provided. The
grasp prototype represents a successful grasp of the example object. The grasp prototype
used in the examples of Chapter 7 is shown in Figure 5.3. The task assumed in these
examples is a task wrench space ball. As described in Chapter 3 (Equation 3.14), this
grasp prototype and this task together provide enough information to compute contact
quality measures for the contacts of any proposed grasp of a new target object. As
described in Expressions 3.17 and 3.18, these contact quality measures can be used to
derive objective functions for independently optimizing the placement of contacts when
synthesizing a grasp. Of course, in this chapter and the chapters that follow, any contact
placements that are used must also be associated with feasible hand configurations.

5.1.2 Desired Characteristics of a Solution

The algorithms presented in the sections below provide only partial solutions to the prob-
lem stated here, so some bases for evaluating these solutions are required. The list that
follows describes a set of capabilities that a good solution should have. The capabilities
are described briefly below, and they are reviewed when results are discussed at the end
of Chapter 7:

"* Find optimal grasps. Can we pinpoint the best grasp possibilities?

"* Evaluate how easily a grasp can be achieved. Can we determine how easily a
grasp can be achieved in the presence of model uncertainty and control error?

"* Measure the effect of obstacles in the environment. Can we determine how
the obstacles have affected the space of good grasps?

" Measure the effect of the target object geometry. Can we determine how the
difference between the geometry of the target object and the geometry of the grasp
prototype has affected the space of good grasps?

" Select good values for parameters of symmetry in a grasp. Can we exploit
the fact that variations in the geometry of the target object and variations in the
geometry of the environment break up the symmetries in a grasp and allow us to
select good values for symmetry parameters?

134



5.2 Notation

Estimates of time complexity are sprinkled throughout this chapter and the next. These
estimates require the use of the following terms:

L = total number of links in the robot hand

F = total number of fingers in the robot hand

fE = number of features (e.g. face, edges, vertices) in the environment
fT = number of features in the target object
fL = number of features in a link of the robot hand

P = number of processors available
R 3 = number of position space samples (position space is a 3D cube)
S = length of one side of the position space cube

0W = number of orientation space samples (orientation space is 3D)

dangle = size of a joint angle range
drink = length of a link, joint to joint, along the link axis

The expressions used to calculate contact quality and grasp quality values in the next
few chapters are more complex than the expressions used in Chapter 3. In addition,
these expressions are subject to a greater variety of constraints such as joint limits and
collisions. For this reason, pseudocode algorithms rather than simple expressions are used
throughout the rest of the report (e.g. Algorithm 5.1 in Section 5.6). Although the lower
level functions used in these algorithms are not described in the text of these chapters, they
are expanded in the complete algorithm listing of Appendix A. This appendix shows, for
example, that function hand configs-of(hand-model) (reference point C in Algorithm 5.1)
returns a set of configurations of the modelled robot hand, sampled over the kinematically
feasible space of possibilities.

5.3 Previous Work

Solutions to the more complete problem addressed in this chapter have been demonstrated
for grasping using a parallel jaw gripper. Lozano-P~rez et al. [30], Pertin-Troccaz [38]
and others [26] [22] [36] construct grasps for varying target object geometries and in
environments containing obstacles. Although they use heuristics to increase search speed,
much of the search space can be analyzed in a reasonable amount of time on a parallel
computer (see [29]).

Previous work on standard grasping behaviors for articulated hands allows for some
variation in target object geometry. Bard and Troccaz [3] handle varying target object ge-
ometries by decomposing each target object into ellipsoids. A standard strategy for grasp-
ing ellipsoids is tried at promising areas on the target object. Nguyen and Stephanou [34]
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parameterize standard grasps along several dimensions. Arbib et al. [1] describe an archi-
tecture for controlling ballistic motions of a robot hand into a grasp that can incorporate
some high-level visual or tactile feedback.

Brock [5] shows that grasping strategies for articulated hands can be made very robust
to uncertainty in the configuration of a known target object. His system also allows for a
limited amount of obstacle avoidance.

Local control can be used to improve a precomputed initial grasp. Jameson [20] uses
local control to improve grasp quality, and Pollard [40] uses local control to eliminate
collisions from an initial grasp.

In general, solutions that consider problems caused by non-standard object geometry
or by the presence of obstacles in the environment either apply to reduced degree-of-
freedom problems, such as grasping with a parallel jaw gripper, use abstract descriptions
of target object geometry (e.g. by decomposing the target object into ellipsoids), or use
local control to improve a precomputed starting grasp. The solution presented in this
chapter represents a different approach, one that produces a global description of the
range of grasps that match a given grasp prototype. This global information can give us
an idea of the shape of the solution space, or tell us whether any solutions are possible
at all. The algorithm presented in this chapter is unique in that it allows for substantial
flexibility ii, hand configuration while extracting this kind of global information.

5.4 Chapter Overview

The goal of this chapter is to describe the space of high quality, collision-free grasps of a
target object in a given environment. The remaining sections of this chapter present an
algorithm designed to meet this goal. This algorithm builds on the work of Chapter 3,
using a generalized grasp prototype to localize contact quality computations to the indi-
vidual contacts of a grasp. The challenge of this chapter is to add the constraints of hand
kinematics, hand geometry, and environment geometry to the grasp synreport problem.

Section 5.5 begins by presenting a brute force approach to synthesizing and searching
a space of grasp quality measures. Section 5.6 shows how the grasp prototype can be
used to avoid repeating the expensive grasp quality computation over the solution space.
Section 5.7 shows how this approach can be greatly improved to reduce search space
complexity, and Section 5.8 describes how parallelism can be added to increase processing
speed. Section 5.9 concludes with a summary of the chapter.

5.5 Examining all Hand Configarations

This section describes a brute force approach to synthesizing high quality, kinematically
feasible, collision-free grasps of a target object. This approach does not use the prototype
to guide the search, but it shows how the most general version of the problem can be
formulated. The paragraphs below first describe the search space of the problem and then
show how optimal grasps can be extracted from this space.
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The grasp synthesis problem of this chapter can be stated as the problem of finding a
hand configuration that represents a good grasp. To specify a hand configuration requires
selecting a position and orientation of the wrist and a position for each joint angle of the
hand. For a hand having j rotary joints, the search space is described by:

R3 x SO(3) x S' x ... x S' (S' j times),

where W are three parameters specifying the position of the hand, SO(3) specifies a three-
dimensional orientation of the hand, and S' x ... x S1 specifies any set of j joint angles
for the joints of the hand. The hand used in the examples of this report has 9 joints, and
so 15 parameters must be provided to completely specify a hand configuration.

For any hand configuration, a grasp quality measure can be computed. The first step
in computing the grasp quality measure is to exclude those portions of the space of hand
configurations that do not meet one of the following requirements for a grasp:

1. each of the joint angles must fall within the kinematic limits of that joint,

2. the hand in the given configuration must be free of collisions,

3. the hand in the given configuration must be in contact with the target object.

The second step in computing a grasp quality measure over this space of hand configu-
rations is to collect the contact wrenches resulting from unit applied force at the contacts
between the hand and target object. From these contact wrenches and the given task,
here a wrench space ball, grasp quality can be computed as stated in Equation 2.25. This
grasp quality measure provides an estimate of the ability of the grasp to resist unknown
disturbance forces. It requires constructing a wrench space convex hull from the contact
wrenches of the grasp and measuring the size of the largest wrench space ball that fits
within this convex hull.

The best grasp could be found, as described in Chapter 3, by optimizing grasp quality
over the space of hand configurations or by finding a large region of hand configurations
that represents a continuous space of good grasps. The former approach will find the
grasp best suited for the given task, but the latter approach will result in grasps that are

robust to errors in sensing the precise location of the target object or errors in controlling
the motion of the hand. Either approach will in general require examining large portions
of the search space. Any naive implementation of this algorithm will be able to easily
exclude only the most obviously impossible solutions. For example, hand configurations
with an illegal set of joint angles, or hand configurations too far from the target object

to achieve contact with that object can easily be eliminated from consideration. In more
complex situations, however, it becomes more difficult to eliminate poor solutions, and
the remaining search space will be large. The sections below show how a grasp prototype
can be used to avoid computing the grasp quality measure at each point in this space.
They also show how a grasp prototype can be used to drastically reduce the size of the
search space that must be examined.
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5.6 Prototypes can Reduce Quality Computation

The grasp prototype can be used as described in Chapter 3 to avoid computing grasp
quality for any hypothesized set of contacts between the robot hand and the target ob-
ject. This section presents a simple technique for combining the new constraints of hand
kinematics and obstacles into this use of a grasp prototype. The technique presented in
this section is not practical, but it does show how the grasp prototype can be used with
these new constraints, and it helps to motivate the algorithms presented in the sections
that follow.

Chapter 3 showed that the expensive operation of computing a grasp quality measure
can be avoided by using a grasp prototype. This is possible because the prototype allows
contact quality measures to be computed for each contact of a grasp independently. A
lower bound can be placed on the grasp quality measure of a hypothesized grasp by simply
taking the minimum contact quality measure over the contacts of the grasp. As long as
a contact wrench with a contact quality measure above some threshold can be found to
match each contact of the grasp prototype, the grasp quality measure of that grasp is
guaranteed to be above the given threshold.

Algorithm 5.1 shows an algorithm that could be used for computing lower bound grasp
quality measures for grasps that are kinematically feasible and collision-free. The function
Iower-bound-gq..simple requires as inputs a grasp prototype, a model of the hand, a model
of the target object at the appropriate place in the workspace, and models of a set of
obstacles also at appropriate points in the workspace. The function returns an array of
grasp quality measures computed over the search space of the problem. Although many
of the lower level functions used by this algorithm are not described in the text of this
chapter, they are expanded in the complete algorithm listing of Appendix A.

The innermost loop of Algorithm 5.1 (reference point C) samples the space of hand
configurations. In the previous section, three conditions were stated for a hand configu-
ration to be considered a possible grasp:

1. each joint angle must fall within the kinematic limits of that joint,

2. the hand in that configuration must be free of collisions,

3. the hand in that configuration must be in contact with the target object.

Checks for these conditions can be found in the inner loop of Algorithm 5.1. It is assumed
that hand-configs-of returns only kinematically feasible hand configurations. Function
no-hand -collisions? (D) ensures that each hand configuration considered further is free of
collisions between the hand and the object or between the hand and any of the obstacles.
Finally, link-contact? (E) ensures that some contact is made between the hand and the
object.

If the three conditions for a possible grasp are met, then the lower bound grasp quality
measure that is stored in array gq is computed exactly as it was inl Chapter 3. Contact
quality measures (G) are computed for each contact of the grasp. The minimum of these
contact quality measures is taken to be the lower bound grasp quality measure for the
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grasp (H). Computing this minimum is more efficient than constructing and testing the
convex hull of the contact wrenches of the grasp, and this increase in efficiency is one part
of the appeal of using a grasp prototype.

Unfortunately, in addition to this inner loop over hand configurations, which was
present in the brute force algorithm of the Section 5.5, Algorithm 5.1 has two outer loops.
These loops are required to niatch a target object to the grasp prototype and to establish
an assignment of links of the hand to contacts of the grasp prototype. The outermost
loop (A) specifies an alignment of the grasp prototype to the target object. This loop was
also present in Expressions 3.17 and 3.18 of Section 3.6 above. A relative orientation of
the grasp prototype with respect to the target object is necessary to fix the coordinate
system in which all contact quality measures are computed. This coordinate system must
be fixed because the contact quality measures depend on knowing approximate values for
the other contact wrenches of the grasp.

The second loop (B) specifies a contact-assignment, an assignment of links of the hand
to contacts of the grasp. In order to evaluate contact quality, each contact of a grasp
must be assigned to a contact of the grasp prototype. When the kinematics of the robot
hand are considered, a contact must also be associated with some link of the robot hand
(in these algorithms, the palm of the hand is also described as a link). Specifying a
contact-assignment provides this association. It ensures that a grasp contains a complete
set of contacts by specifying the link on which each contact should be found. The grasp
quality estimate then has a positive value only when a contact with a positive contact
quality measure is found for each link-contact assignment specified.

Notice that Algorithm 5.1 not only assumes that the assignment of each contact to
a link of the hand has been specified, but it also assumes that a single representative
contact wrench can be extracted for any link configuration in which the link contacts the
target object (F). This assumption restricts the contact between the link and the target
object to be approximated as a simple contact. It is possible that a contact between a link
and the target object could be best described using a space of contact wrenches rather
than a single contact wrench (e.g. if there is friction, if the link lies flat on a face of the
target object, or if the fingertip is placed in a concavity). This type of complez contact is
discussed in Section 8.1.2 below.

The synthesis of optimal grasps of a target object would in general require searching
through the grasp quality space gq computed in Algorithm 5.1. This space could be
searched to find a grasp with an optimal grasp quality estimate, or to find large regions of
grasps having a grasp quality estimate above a certain threshold. With either approach it
is difficult to choose promising areas of the solution space from which to initiate a search,
and so the size of this space is important.

The use of a grasp prototype has made the process of estimating grasp quality for any
hypothesized grasp more efficient, but the two outer loops of Algorithm 5.1 show that it
has also expanded the size of the complete grasp quality space. In this simple algorithm,
there is little advantage to using the grasp prototype. In fact, this algorithm has two
major problems. One problem is that the solution space is too large for any significant
portion of this space to be constructed. The other is that similar information must be
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{compute entire space of lower bound gq measvres based on cq measures}
lower-bound .gq -simple (prototype, hand-model, object, obstacles)
begin

{ align grasp prototype with target object}

A for orient in workspace-orients() do
{ assign links of the hand to contacts of the prototype}

B for contact-assignment in contact assignments-of(hand -model, prototype) do
{each hand config is a possible grasp)

C for hand.config in hand configs-of(hand-model) do
begin

gq[orient, contact -assignment, hand-config] := MIN-QUALITY;

D if no-hand -collisions?(hand-config, hand-model, object, obstacles) then
begin

flower bound gq is minimum cq over contacts)

min.cq := MAX-QUALITY;

for contact in contacts.of(prototype) do
begin

link := link-of(contact, contact-assignment);
link-config := link-config-of(link, hand-config);

cq := MIN-QUALITY;

E if link-contact?(Iink, linkrconfig, hand-model, object) then
begin

F wrench := contact-wrench(link, link-config, hand-model, object);

G cq := contact-quality(orient, contact, wrench, prototype);
end

if cq < min.cq then
min-cq := cq;

end
H gq[orient, contact-assignment, hand-config] min-cq;

end
end

return(gq);
end

Algorithm 5.1:
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recomputed many times. The sections below expand upon these problems and show how
they can be overcome to make more effective use of the grasp prototype.

5.7 Prototypes can Reduce Search Complexity

The previous section described a simple algorithm ior incorporating hand kinematics,
hand geometry, and environment geometry into the grasp synthesis problem. This simple
algorithm had two major problems:

1. the search space specified was very large, and

2. similar partial solutions were recomputed many times.

The first problem is that lower bound grasp quality measures must be computed for all
hand configurations, for all contact assignments, and for all orientations of the grasp
prototype with respect to the target object. The innermost and outermost of these loops
are very expensive. For the hand used in this report, 15 parameters are required to
specify a hand configuration, and 3 parameters are required to specify the orientation
of a grasp prototype with respect to a target object. This results in an 18 dimensional
parameter space over which to compute an estimate of the grasp quality measure. Given
this dimensionality, even the solution- the space of high quality grasps-will in general
be too large to write down.

The second problem is that very similar partial solutions are recomputed many times.
For any given value of parameters orient and contact-assignment in Algorithm 5.1, contact
quality information depends on the link of the hand and the configuration of that link (F
and G). The grasp quality estimate, however, is computed by looping over the space of
hand configurations (C). The same link, at a similar link configuration may appear many
times in this space of hand configurations, and so similar contact quality estimates are
computed many times in this simple algorithm.

This section shows how both the problem of a large solution space and the problem
of repeated derivation of partial solutions can be overcome. To reduce the size of the
solution space that must be constructed, the algorithm presented in this section computes
a projection of the complete solution space. The grasp prototype makes this projection
more useful, because it constrains the possible interpretations of the projection. To enable
partial solutions to be reused, this algorithm uses the grasp prototype to compute and
store an array of contact quality measures over all configurations of all links of the hand.
It then chains the best link configurations together in kinematically feasible ways to form
complete high quality, collision-free grasps.

Section 5.7.1 begins with an overview, describing the top level functions of the algo-
rithm presented in this section. Section 5.7.2 covers the subproblem of computing the
contact quality spaces for each contact of a grasp, and Section 5.7.3 shows how the grasp
quality space can be constructed by combining results from the precomputed contact
quality spaces. Section 5.7.4 presents a summary.
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5.7.1 Algorithm Overview

The problems of the simple algorithm of the previous section are resolved in the paragraphs
below by reducing the space of solutions that must be stored, and by allowing partial
solutions to be reused. This section examines these goals in more detail and presents a
top level function for computing the grasp quality space in a way that achieves these goals.

Reducing the Size of the Solution Space

One of the problems with Algorithm 5.1 is that even after parameters orient and con-
tact-assignment are specified to align the grasp prototype with the target object and to
assign contacts of the grasp to links of the hand, the algorithm requires computing a grasp
quality measure for every hand configuration. This results in an extremely large grasp
quality space. The algorithm presented in this section also requires that parameters orient
and contact-assignment be specified, but rather than computing a grasp quality measure
over the entire space of hand configurations, it computes a grasp quality measure over the
much smaller space of wrist configurations.

Since any wrist configuration can support a large space of hand configurations, and
thus a large space of possible grasps, it is necessary to specify how a single grasp quality
measure will be attached to a wrist configuration. If we wish to find optimal grasps based
on the grasp quality measure, it is useful to store the best grasp quality measure that can
be achieved from each wrist configuration. A complete hand configuration associated with
this best grasp quality measure can also be stored for fast retrieval.

Once all wrist configurations have been associated with optimal grasp quality measures,
regions of wrist configuration space can be identified that are associated with grasp quality
measures above a given threshold. The identification of these regions provides a substantial
amount of information about the shape of the solution space. It indicates whether any
good solutions exist at all, it provides pointers to the best of these solutions, and it shows
how wrist configurations are blocked or unblocked by the addition or removal of obstacles
in the environment.

Figure 5.8 shows how a representation of the space of good wrist configurations might
be used. The shaded areas in the figures represent wrist positions from which some good
grasp can be found for the two-dimensional robot hand in the figure. These regions do not
represent the complete space of good grasps, because at any one wrist position a family
of grasps may be possible. The regions do, however, provide useful information about the
structure of the solution space. The shapes of the regions in these examples are different,
and this reflects the difference in the structure of the environment.

A representation of optimal grasp quality measures computed over the space of wrist
configurations might not seem to be sufficient, because it captures only one slice of the
complete solution space. The examples in Chapter 7 show, however, that this space does
provide useful global information. In addition, it serves as a good starting point for a
more complete search. Partial solutions constructed while computing this space allow
an efficient guided search to be performed through the entire space of legal solutions.
Section 5.9 discusses how this is done.
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0wrist

legal wrist positions

Figure 5.8: Regions of good wrist configurations indicate where solutions are possible and
how obstacles affect the range of possible solutions. This figure shows how the good space
of wrist positions for a two-dimensional robot hand is constrained by the presence of the
target object only (top) and by the target object with an obstacle (bottom).
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Figure 5.9: Relative link configurations are tightly constrained by the kinematics of the
robot hand. The contact configurations shown here do not even come close to matching
the kinematics of the hand.

Reusing Partial Solutions

The previous paragraphs outlined how the solution space of Algorithm 5.1 might be re-
duced to a space that can be computed. Algorithm 5.1 also had a second problem that
made it inefficient: in this algorithm very similar or identical partial solutions were recom-
puted many times rather than being stored and reused. In this algorithm, full advantage
is not taken of the ability of a grasp prototype to allow contact quality measures to be
computed for each contact independently.

This section proposes a better solution. Contact quality spaces are computed for each
link of the hand, for each configuration of that link. Complete solutions must be formed
by selecting a high quality link configuration associated with each contact of a grasp. The
selection of a good set of link configurations is constrained, however, by the kinematics of
the hand (Figure 5.9). The sections below show how high-quality link configurations are
computed and chained together to form complete high-quality grasps.

The Top Level Function

The top level function for the algorithm presented in this section is shown in Algorithm 5.2.
Function Iower-bound.gq-l requires the same inputs as Algorithm 5.1: a grasp prototype,
a model of the hand kinematics and geometry, and models of the target object and envi-
ronment.

The first goal of this new algorithm is to compute a projection of the complete so-
lution space. In Algorithm 5.2 (reference point D) the grasp quality array gq is indexed
by parameters orient and contact-assignment as in the simple function of Algorithm 5.1.
Function compute.gq-1 of Algorithm 5.5 (C), shows that gq is further indexed by the six-
dimensional wrist configuration parameter wrist-config rather than the fifteen-dimensional
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lower-bound gq -(prototype, handmodel, object, obstacles)
begin

{align grasp prototype with target object}
A for orient in workspace-orients() do

{ assign links of the hand to contacts of the prototype}
B for contact-assignment in contact-assignments-of(hand-model, prototype) do

begin
{compute contact quality array cq }

C cq :- compute-cq-l
(orient, contact-assignment, prototype, hand-model, object, obstacles);

{compute grasp quality array gq}
D gq[orient, contact-assignment] := compute.gq-l (cq, hand-model);

end
return(gq);

end

Algorithm 5.2:

hand configuration parameter hand-config of the simple Algorithm 5.1 (H). The grasp
quality measure has been projected from the original fifteen-dimensional space of hand
configurations onto the six-dimensional space of wrist configurations. Section 5.7.3 below
describes how this projection is performed.

The second goal of this new algorithm is to store and reuse partial solutions. In the
top level function of Algorithm 5.2, a contact quality array cq is computed first (C) and
then supplied to a second function that puts these contact quality measures together to
form the grasp quality array gq (D). Because contact quality measures must be computed
for all links of the hand and all configurations of these links, the array of contact quality
measures is indexed by a link and a config (Algorithm 5.3, reference point A).

In order to compute each space of contact quality measures, two parameters must be
specified, and these parameters are represented in the outer loops of the function. The
first of these parameters, orient (A), is the alignment between the grasp prototype and
the target object. This orientation parameter is needed, as in Chapter 3, because contact
quality measures must be evaluated with respect to the same coordinate system. If this
coordinate system is not specified, then a lower bound grasp quality measure cannot be
computed by examining each contact separately. Without a common coordinate system,
there is no guarantee that the other contacts of the grasp will play the roles that are
expected of them.

The second parameter contactassignment (B) is also needed for computing the contact
quality measure cq. This parameter indicates which links of the hand are assigned to which
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Independent contact quality
spaces for each link

6D space 6D space

contact quality not in
greater than free

zero space
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Figure 5.10: The contact quality computation generates a six-dimensional space of contact
quality measures for each link of the robot hand. Some regions will have negative contact

quality measures due to collisions between the link and some object in the environment,

or due to the absence of a contact between the link and the target object when such a
contact is expected.

contacts of the grasp. Explicitly specifying this assignment is the cleanest and easiest way

to ensure that every grasp with a positive grasp quality measure will have a contact with
a positive contact quality measure to match every contact of the grasp prototype.

5.7.2 Computing Contact Quality Space

Top level function Iower-bound-gq-l of Algorithm 5.2 begins by computing a space of

contact quality measures cq and then uses these results to construct the complete grasp

quality space gq. Computing and storing a space of contact quality measures allows these
measures to be reused. This is important because a given link in a given configuration

may form part of many different grasps.

This section shows how the contact quality space is computed. The top level function

compute-cq-l is shown in Algorithm 5.3. When this function is called, parameters orient
and contact-assignment have been specified, and so a contact quality measure can be
computed over all configurations of all links of the hand. Algorithm 5.3 simply displays
the loops over these parameters. The result of executing function compute-cq-l is a set
of spaces of contact quality measures, computed over all configurations of all links of the
hand (Figure 5.10).
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compute-cq-l (orient, contact assignment, prototype, hand-model, object, obstacles)
begin

{unwind contact quality calculation for all links and link configurations}
for link in links-of(hand -model) do

for config in workspace-configs() do
A cq[link, config] :=

computelink-cq-l
(link, config, orient, contact-assignment, prototype, hand-model,

object, obstacles);
return(cq);

end

Algorithm 5.3:

Quality of a Link Configuration

For a contact quality measure to be meaningful, a given link in a given configuration must
be free of collisions and in contact with the target object. Then a contact wrench can
be extracted from the link-target object contact and the contact quality measure can be
computed for that contact wrench. Function computelink-cq-l of Algorithm 5.4 outlines
this process. The function begins by checking that the link lies in free space (A). If the
link has not been assigned to any particular contact, this condition is sufficient for that
link to be capable of forming a part of any good grasp (B). Otherwise, if the link has
been assigned to some contact, the algorithm checks that a contact exists (C), finds a
representative contact wrench (D), and computes the contact quality measure for this
contact wrench (E). If a link in the given configuration does not meet any one of the
constraints necessary for this link to form part of a good grasp, then a negative contact
quality value is returned. The contact quality measure for a given link and configuration
can be interpreted as follows:

MIN-QUALITY • collision
MAX-QUALITY = no collision, no contact assignment

0 = no collision, contact assignment, no contact
other = no collision, contact assignment, contact

Time

The time required to compute the contact quality array varies with the size of the array
and the complexity of a single contact quality computation. Function compute cq-l of
Algorithm 5.3 indicates that the contact quality array is indexed by a link and a config
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computeJink-cq-l
(link, config, orient, contact-assignment, prototype, hand-model, object, obstacles)

begin
cq := MIN-QUALITY;
{link cannot be part of a good grasp if there is a collision}

A if no-collisions-l?(Iink, config, hand-model, object, obstacles) then
{if link has no contact assignment, it is sufficient there be no collisions}
if no-contact-assignment?(Iink, contact-assignment) then

B cq := MAX-QUALITY;
else

{if link has a contact assignment, it must make contact}
C if no/ink-contact?(link, config, hand-model, object) then

cq := 0;
else
begin

{now we can compute contact quality}
contact contact-of(link, contact-assignment);

D wrench contact wrench(link, config, hand-model, object);
E cq := contact-quality(orient, contact, wrench, prototype);

end
return(cq);

end

Algorithm 5.4:
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(A). For every link, config pair, the link is checked for collisions with the target object or
with some obstacle in the environment. This requires time dependent on the complexity
of the geometric description of the environment and the complexity of the geometric
description of the link. Time to execute function compute cq_1 of Algorithm 5.3 can be
estimated as follows (for notation see Section 5.2):

O(L (fElL + fTfL)), (5.1)

sampled over
R3 X SO(3), (5.2)

which is the complete six-dimensional space of configurations of a three-dimensional body,
in this case the link.

5.7.3 Estimating Grasp Quality Space

The previous sections have shown how a contact quality array cq can be computed for
all configurations of all links of the hand. Somehow these links must be put together in
kinematically feasible ways to form complete grasps. This section outlines how this is
done.

Algorithm 5.5 shows function compute-gqAl, used to compute a space of grasp quality
measures. This function requires as inputs only the contact quality array cq and the
parameter hand-model, which provides information describing how the links of the hand
must be connected. The return value of this function is grasp quality array gq, computed
over the space of wrist configurations (C). The space of wrist configurations is a projection
of the more complete solution space of hand configurations, and the goal is to optimize
the grasp quality estimate when performing this projection. This means that the optimal
grasp quality estimate must be computed and stored for all hand configurations associated
with any given wrist configuration.

Function compute-gq - is divided into two parts: first, the best links are strung together
to form the optimal quality fingers associated with each wrist configuration (A), and then a
simple loop is executed to compute the grasp quality measure for each wrist configuration
from the finger quality measures associated with that wrist configuration (B). Recall that a
grasp quality measure is estimated by taking the minimum of the contact quality measures
over the contacts of a grasp. As we will see, each finger quality measure is also computed
in this way; the finger quality is estimated by taking the minimum of the contact quality
measures over the contacts of a finger. The appropriate grasp quality measure for each
wrist configuration is then computed by taking the minimum of the finger quality measures
over the fingers of the hand.

Quality of a Finger

Grasp quality computation in function compute-gq-l begins with the computation of op-
timal finger quality measures. This section shows how these finger quality measures are
determined. For any given wrist configuration. we would like to find the best quality
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compute.gq-l (cq, hand-model)
begin

{compute finger quality arrays fq for all fingers}
A for tinger in fingers-of(hand -model) do

begin
prox/ink proxiink-of(finger, hand-model);

fq[finger] finger-qualityl(prox-link, cq, hand-model);
end

{compute grasp qualities gq for all wrist configurations}

B for wrist-config in workspace-configs() do
begin

{ minimize grasp quality gq over finger qualities}
gq[wrist configi := MAX-QUALITY;
for finger in fingers-of(hand-model) do

begin
prox-config := proxJink-config-of(finger, hand-model, wrist-config);

if fq[finger, prox-config] < gq[wrist config] then

C gq[wrist config]: fqlfinger, prox-config];
end

end
return(gq);

end

Algorithm 5.5:
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measure of a finger that results from some configuration of that finger based at the given
wrist configuration.

Algorithm 5.6 describes recursive function finger-quality-1, which is designed to com-
pute an array of finger quality measures. The function assumes that a finger is a serial
chain of links. It is first called with the proximal link of the given finger, the link closest
to the wrist, and it terminates when the distal link, the link containing the fingertip, is
reached (A). Each call to the recursive function works as follows:

1. The function is invoked for a particular link, with a cq array and a hand-model.

2. Finger quality values are computed for the distal neighbor of that link, nextlink, to
obtain the array subchain-quality (B), which can be indexed by a configuration of
link next/ink.

3. For each possible config of the input link (C), the qualities of the subchains that
can be reached from that link are examined. These subchains are compared by
sampling the distal joint angle of the input link, theta (D). From link, config, theta,
and the hand-model, a unique configuration of next.Jink, the distal neighbor of link,
can be found (E). This configuration, next-config, is used as an index into the sub-
chain-quality array (F), which has already been computed in step 2.

4. To maximize the quality of the finger under construction, the quality of the best
subchain reachable from a link and config over all joint angles theta is retained (G).
This quality value is stored in variable max-sq.

5. To minimize the finger quality measures over the contacts of each finger for each
config of link, the minimum of max-sq and the contact quality measure corresponding
to that link and config is retained in fq[config] (H).

6. The array of subchain qualities is returned for the subchain from the distal link of
the finger up through link for the entire space of configurations of link. Each sub chain
quality measure results from a subchain that maximizes the minimum of the contact
quality measures over the contacts of the subchain.

Figure 5.11 unwinds part of this recursive process, showing the path along which an
optimal solution for one finger at one proximal link configuration is retrieved.

Time

The paragraphs above have described an algorithm which uses an array of contact quality
measures for each configuration of each link of the hand to compute an array of grasp
quality measures over the space of wrist configurations. The function described is function
compute-gq-l of Algorithm 5.5. The most expensive part of this function takes place in
the recursive calls to function finger-quality-I of Algorithm 5.6. This function is eventually
called once for each link of the hand. Adding a link to a current array of subchain quality
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finger-quality-l(link, cq, hand-model)

begin
{terminate at distal link}

A if no.nextlink?(Iink, hand-model) then
return(cq[link]);

{get subchain quality for nezt link}
next-link := next link-of(link, hand-model);

B subchain -quality := finger-quality-l(next/ink, cq, hand-model);

{get subchain quality for current link}
C for config in workspace-configs() do

begin
{ mazimize nezt link subchain quality over joint angles}
max-sq := MIN-QUALITY;

D for theta in joint angles-of(link, hand-model) do
begin

E next-config := next Iink-config-of(theta, link, hand-model, config);
F if subchain-quality[next-config] > max-sq then

G max-sq := sub chain-quality[next-config];
end

{take minimum of link and current subchain quality values}
H fqlconfig] := min(cqllink, config], max-sq);

end

return(fq);
end

Algorithm 5.6:
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A = max cql reachable from point B
B = min (A, cq 2 (B)) = max fq2 reachable from point C
C = min (B, cq 3(C))

6D space 6D space 6D space

Link L, Link L2  Link L,
contact quality space subchain quality space subchain quality space

cql fq2  fq3

Figure 5.11: The link contact quality spaces can be chained together recursively to produce
optimal subchain quality spaces of equal size.

measures requires scanning a range of joint angles (D), and the array is filled for all link
configurations (C). This gives us a first order time estimate of:

0(L) (5.3)

sampled over

R3 x 50(3) x S', (5.4)

where R3 x SO(3) represents the sampling over link configurations, and S' represents the
sampling over range of joint angles.

5.7.4 Summary

This section has addressed two shortcomings observed in the simple algorithm of Sec-
tion 5.6. First, the size of the solution space has been rcduced. Grasp quality measures
are computed over the space of wrist configurations rather than over the much larger
space of hand configurations. Second, partial solutions are precomputed so that they can
be reused. Contact quality measures are constructed for each configuration of each link of
the hand, and then the best quality link configurations are chained together in kinemati-
cally feasible ways to produce the solution space of grasp quality estimates. Unfortunately,
this algorithm is still very computationally intensive. The next section, and the entirety of
Chapter 6 are devoted to making this algorithm practical to execute on today's computers.
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5.8 Parallelism can Increase Processing Speed

The previous section described an algorithm that used a grasp prototype to compute a
projective space of grasp quality measures. The grasp quality measures were computed
over the space of wrist configurations, and grasps were constructed from independent
contact quality spaces. These two changes greatly improved the practicality of the simple
algorithm first presented in Section 5.6. This section shows that a significant increase in
execution speed can be obtained by parallelizing parts of this algorithm. The algorithm
lends itself naturally to parallelization over workspace configurations, which can either
represent configurations of links of the hand or configurations of the robot wrist. The
computation cannot be completely parallelized, however, as the paragraphs below explain.
In particular, the process of chaining together the best links of the hand to form good
grasps requires local communication between processors in a parallel machine.

5.8.1 Notation for Parallel Algorithms

Some standard notation is necessary to indicate that a portion of an algorithm can be
parallelized, and to represent the process of local communication.

Much of the computation in Algorithm 5.2 is repeated over all configurations of a link
or over all configurations of the wrist. Ideally, there would be enough processors in a
massively parallel computer to assign each small chunk of configuration space to a unique
processor in the computer. If this were the case, the loop could be completely replaced
with a single parallel operation. This ideal transformation can be written as follows:

for config in workspace-configs() do
result[config] := process-config(config);

-becomes-

for i in processors() in parallel do
begin

config[i] workspace-config(i);
resultli] process-config(config[i]);

end

If there are enough processors, then each config of the original loop is allocated to a
processor i in a parallel machine. This results in an array of config values that can be
indexed by processor number. Where array result was computed in the original loop by
running process-config for each config sequentially, result is computed in the second loop
by running process-config on all processors in parallel.
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If there are not enough processors to cover the entire set of samples returned by function
workspace-configs(, then each processor will represent some number of virtual processors
V. Time to execute the loop above will depend on the size of V. If the number of workspace
configuration samples is written as R3 0 3, representing three sampled position parameters
R3 and three sampled orientation parameters 03, and if the number of processors is P,
then:

_ [Ro] P (5.5)

where [XI represents the smallest integer greater than X.
If there are as many processors as configuration space samples, then V = 1, and the

loop can be executed in a single step. If there is only one processor, then V = R 30 3, and
the body of the loop must be repeated for each configuration space sample, as in the serial
loop described above.

It is easy to see that when process-config is executed on all processors in parallel, the
results array that is computed will be distributed over all the processors. This is fine when
each processor must reference only its own results, but when a processor i needs to reference
an intermediate result computed by another processor j, some communication between
processors must take place. This communication is represented with a fetch function. The
fetch function is simply a reference to memory that is not local to a processor, and it is
used aq fcllows:

for config in workspace-configs() do
transformed-resulticonfig] := compute-transformed-result(conflg);

for config in workspace.configs() do
begin

next-config := transform(config);
result[config] := transformed result[next config];

end

-becomes-

for i in processors() in parallel do
begin

config[i] := workspace-config(i);
transformed-resultli] := compute-transformed-result(config[i]);

end

for i in processors() in parallel do
begin
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next-config[i] := transform(configli]);
next-procjij := proc-of(next-configlij);
result[i]:= fetch(transformed-result(next proclill);

end

The example illustrates the following operations:

1. In both versions, a transformed-result is computed over the entire set of workspace-configs(.

2. In both versions, final array result is defined to be a transformed version of trans-
formed-result. The transformation function maps one configuration to another and
is given by transform(config).

3. The serial version simply looks up the appropriate configurations of transformed result
and stores them in result.

4. In the parallel version, the required information from the transformed-result is in gen-
eral not available in internal processor memory. The processor where the information
can be found can be determined, however, using function proc-of(next-config[i]) to
obtain processor next-procji]. Each processor i must communicate with processor
next-proc[il to get the value of the transformed -result array that should be stored
in processor i as the value of resultjij. The required communication operation is
performed by the fetch function.

In general, performing fetch operations will be slow. Parallel computation is much
more efficient if all processing can be done locally than if the processors must communi-
cate. When there is communication, it is most efficient if this communication takes place
over short distances. These efficiency concerns are reviewed in detail when a machine
architecture is outlined in Chapter 6.

5.8.2 Algorithm Overview

The algorithm described in this section is a direct parallelization of function lower-bound.gq-l.
The pseudocode algorithms for this parallel version can be found in Appendix A, begin-
ning with top level function lower.bound.gq-lLparallel. The interesting parts of this revised
algorithm are displayed in the text that follows. The parts of this algorithm that lend
themselves to para lization are computation of contact quality measures over the space of
link configurations, computation of optimal finger subchains over the space of link config-
urations, and the merging of optimal fingers to form optimal grasps over the space of wrist
configurations. Parallelization of these computations is illustrated, and time estimates are
provided below.

5.8.3 Computing Contact Quality Space

Contact quality space can be computed over all link configurations in parallel. This com-
putation can be done independently; a processor representing a link configuration does not
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need to reference information stored at processors representing other link configurations.
This means that the loop:

for config in workspace-configs() do
cq[link, config] :=

computeJink-cq-l
(link, config, orient, contact-assignment, prototype, hand-model,

object, obstacles);

of function compute.cq-l can be replaced by:

for i in processors() in parallel do
begin

configji] := workspace-config(i);
cq[link, i] :=

compute-link-cq-l
(link, config[i], orient, contact-assignment, prototype, hand-model,

object, obstacles);
end

in parallel function compute.cqA-1.parallel.

Time

Parallel computation of the contact quality array over the space of link configurations
results in a linear speedup proportional to the number of processors available. Because
this part of the problem can be broken into small, independent chunks, it is well-suited
for this type of parallel computation. In Section 5.7.2, the following time estimate was
stated for the contact quality calculation:

O(L(fEfL + fTfL)), (5.6)

sampled over
x3 x SO(3). (5.7)

Because calculation of each contact quality measure can be done independently, any
ratio of configuration space samples to processors can be effectively exploited. To capture
the variation in time to compute the contact quality array with the number of processors
available, both the number of configuration space samples and the number of processors
must be specified. If the number of configuration space samples is described as R 303 and
the number of processors is P, the time estimate for this algorithm can be rewritten as
follows:

(L[R 3 31](fEfL5 +fTfL)) (5.8)
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5.8.4 Estimating Grasp Quality Space

The space of grasp quality measures can be computed over all wrist configurations in
parallel, but some amount of communication is required. Once optimal finger quality
measures have been computed, the combination of these optimal finger quality measures
to form optimal grasps can be parallelized over the space of wrist configurations. In
particular, the loop of function compute-gq-l:

for wrist-config in workspace.configs() do
begin

{minimize grasp quality gq over finger qualities}
gqlwrist-config] := MAX-QUALITY;
for finger in fingers-of(hand-model) do
begin

prox-config := proxilink-config.of(finger, hand-model, wrist-config);
if fq[finger, prox-config] < gq[wrist config] then

gq[wrist config] := fq[finger, prox-config];
end

end

can be replaced by the parallel loop:

for i in processors() in parallel do
begin

wrist-config[i] := workspace-config(i);
{minimize grasp quality gq over finger qualities}
gq[i] := MAX-QUALITY;
for finger in fingers-of(hand-model) do
begin

prox-config[i] := prox/ink-config-of(finger, hand-model, wrist config[i]);
prox-proc[i] := proc-of(prox-config[ii);

A q[i] := fetch(fq[finger, prox-procfi]]);
if q[iJ < gq[i] then

gq[i] := q[i];
end

end

in function compute-gq-l-parallel.
Notice the fetch function required in the parallel loop (A). This indicates the fact that

there exists a transformation function mapping the wrist configuration to the configuration
of the proximal link of each finger. Optimal finger information for the fingers of the hand
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is distributed over different processors representing the proximal link configurations of
the fingers, and it must be transferred to the common processor representing a wrist
configuration before it can be merged to generate an optimal grasp quality measure for
the entire grasp. This transfer step is achieved using communication from processor to
processor in the parallel machine.

Quality of a Finger

The parallel function to construct the space of optimal finger quality measures can be
parallelized over the space of link configurations, but it requires a significant amount of
processor to processor communication. Here, the loop in function finger-quality-1:

for config in workspace.configs() do
begin

{mazimize next link subchain quality over joint angles}
max.sq := MIN-QUALITY;
for theta in joint-angles-of(link, hand-model) do
begin

next-config := nextilin kconfig-of(theta, link, handmodel, config);
if subchain .quality~next-configJ > max-sq then

max-sq := subchain-quality[next-config];
end

{ take minimum of link and current subchain quality values}
fq[config] := min(cqjlink, config], max-sq);

end

can be replaced by:

for i in processors() in parallel do
begin

config[i] := workspace-config(i);
{mazimize subchain-quality over joint angles}
max-sq[i] := MIN-QUALITY;
for theta in joint-angles-of(link, hand-nodel) do
begin

next-config[i] := nextilink-config-of(theta, link, hand-model, configlil);
next-proc[i] := proc-of(next-config[ii);

A sq[i] := fetch(subchain quality[next-proc[i]]);
if sq[ii > max-sq[i] then

max-sq[iJ := sqliJ;
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end

{take minimum of link and current subchain quality values}
fqliI := min(cq[link, i], max-sqjij);

end

in function finger-quality-l-p.
Again, note the fetch function in the parallel loop (A). Recall that function fin-

ger-quality-1 operates by iteratively extending the length of all optimal subchains by a
single link. Given a link and a joint angle theta, the processor representing the configura-
tion of the nextlink can be referenced to check the quality value of the optimal subchain
originating at that link. This value will be optimized over all joint angles theta. In general,
next-config, the configuration of nextJink, will be different than config, the configuration
of link. This means that the subchain.quality value found at the processor representing
next-conflg must be transferred to the processor representing config so that these values
can be optimized, and the result stored at a common processor.

Time

The previous sections have described the parallel version of an algorithm that uses an
array of contact quality measures for each link of the hand to compute an array of grasp
quality measures over the space of wrist configurations. Section 5.7.3 noted that the serial
version of this algorithm was dominated by the recursive calls to function flnger-quality-1.
The dominant operation in this function was scanning a range of joint angles for each
configuration of each link, resulting in a time estimate of:

O(L), (5.9)

sampled over

R3 x SO(3) x S'. (5.10)

The parallel version of this algorithm is very similar to the serial version. Time is
dominated by the recursive calls to finger-quality_1_n This function is eventually called
for all links of the hand, and a function call involvz ., scan over a range of joint angles.
Configurations of each link are processed in parallel, resulting in a potential speedup
of a factor of P, the number of processors, as with the computation of contact quality
in Section 5.8.3. This speedup will not be completely realized, however, because of the
communication required to find the quality of the optimal subchain corresponding to a
link configuration. This communication step is represented by the fetch function, and
the time required to execute this function depends on the exact mapping of configuration
space onto a processor grid. Because of this dependency, the time required to compute
the grasp quality space is not formally analyzed until Chapter 6.
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It is possible to provide a time estimate that leaves the complexity of the fetch com-
mand as an expression yet to be determined. As in Section 5.8.3, the number of config-
uration space samples is defined as R 30 3 . In addition, the size of a joint angle range is
represented by dan 91e. Then time can be estimated as:

O(L R3o] (Od ie)F).(5.11)

Time is proportional to the number of links of the hand L, the number of virtual processors
each physical processor must simulate I -•1, and the number of joint angle samples
Odange, which depends both on the number of samples taken of each orientation parameter
(roughly 0) and on the size of a joint angle range. Total time is also proportional to time
to execute the fetch function, represented here as F. Parameter F is dependent on the
number of configuration space samples and the number of processors, as will be seen in
Chapter 6.

5.8.5 Summary

This section has shown that the execution time of the algorithm of Section 5.7 can be
reduced by parallelizing this algorithm over the six-dimensional space of link or wrist
configurations. The decrease in execution time that is obtained is not a simple linear
function of the number of processors used, however. This is due to the processor-to-
processor communication required when chaining together good link configurations to
form grasp quality estimates for complete grasps. This issue is analyzed further when a
parallel machine architecture is specified in Chapter 6.

5.9 Summary and Discussion

This chapter addressed the problem of adding the constraints of hand kinematics and
geometry and environment geometry to the search for a good grasp. It derived a parallel
algorithm for computing a representation of the space of good grasps. This algGrithm
made use of a grasp prototype to localize contact quality computations to individual
contacts of a grasp. Contact quality measures could be precomputed over the space of
link configurations, and the best quality link configurations could be chained together in
kinematically feasible ways to produce a space of grasp quality estimates.

Grasp quality estimates are computed by this algorithm over the space of wrist con-
figurations, not over the complete space of hand configurations. While this results in a
solution space that can actually be computed, it also means that some mechanism must
be pr,-vided to extract optimal hand configurations from this projective solution space.
It is very easy to provide access to a single optimal hand configuration at each point in
this space. The joint angles and link-target object contacts corresponding to an optimal
solution can be propagated from the fingertips to the wrist along with the optimal grasp
quality estimates. If intermediate subchain quality measures and intermediate optimal
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Checking another hand configuration

A = max cql reachable from point B
B = min (A, cq2 (B)) = max f%2 reachable from point C
C = min (B, cq%(C))

6D space 6D space 6D space

A 

'

Link L• Link L2  Link I-o

contact quality space subchain quality space subchain quality space

cql fq2  fq3

Figure 5.12: The complete space of configurations of a finger can be explored by chaining
back through the contact quality spaces of the links of that finger. This figure shows ex-
ploration of one finger configuration that is not the optimal configuration passing through
points A, B, and C.

solution information are retained, however, it is possible to quickly and easily reconstruct
the grasp quality estimate associated with any hand configuration. This means that it
is easy to search through the entire space of hand configurations using the optimal grasp
quality estimates to highlight regions of good solutions. Figure 5.12 shows the process
of working backward through the layers of partial solutions to obtain a complete hand
configuration. This process requires only a sequence of memory references. No additional
quality or collision information need be computed.

The parallel algorithm presented in this chapter is much more tractable than the simple
brute force approach described initially, but it is still too difficult to execute on today's
computers. The next chapter shows some ways in which this algorithm can be optimized
to fit a particular parallel machine architecture, and some tradeoffs that can be made to
tune the algorithm still further to the number of processors and amount of memory on a
given parallel machine.
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Chapter 6

Optimizing Grasps: Making it
Work

The previous chapter described a parallel algorithm for computing a space of grasp quality
estimates. This algorithm used a grasp prototype as defined in Chapter 3 to compute

contact quality measures for all configurations of all links of the hand, and then used

these contact quality measures to chain the best links together to form complete grasps.
Kinematics and geometry of the hand, and geometry of the environment were considered
when constructing the grasp quality space. The optimal grasp quality estimates were

computed for all configurations of the robot wrist, resulting in a solution space that is a

projection of the more complete space of hand configurations.
Both the ability to compute and reuse partial solutions represented by the array of

contact quality measures and the decision to compute a projective solution space have

made it feasible to search through a large space of possible grasps. A number of incre-
mental improvements are required to make this algorithm practical, however, and it will

be necessary to tune the algorithm to fit the hardware available. This chapter describes
the following issues:

1. Too few processors: The number of processors available does not allow each
processor to be assigned to a small chunk of configuration space. How should the
spaces of link and wrist configura ions be distributed over the processor network?

2. Too little memory: The amount of on-processor memory limits the accuracy that
can be obtained using the current, breadth-first algorithm. Should this memory-

intensive breadth-first approach be used, or will an alternative, time-intensive depth-
first approach be more effective?

3. Too little time: The amount of time available for executing this algorithm limits
the density at which hand configuration space can be sampled. If the number of

samples is small, but these samples are accurate, good solutions may be missed.

How should the desire to test accurate hand configurations be balanced with the
desire to sample the entire hand configuration space?
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The first issue listed above involves choosing a particular mapping of configuration
space onto a network of processors. There are not enough processors available to represent
an entire six-dimeasional configuration space grid, and so Section 6.1 begins by describing
the three-dimensional processor network assumed in this chapter, and Section 6.2 describes
a mapping of configuration space onto this processor network. Section 6.3 uses the given
processor network and mapping to reevaluate the time complexity of the parallel algorithm
used to compute an array of grasp quality estimates in Chapter 5. In particular, this
section describes one implemnpntation of the function used to fetch information from one
processor into another. This elaboration of the fetch function leads to two improvements
;n the parallel algorithm: Section 6.4 describes how the computation of finger quality
a.rrays can be made more efficient, and Section 6.5 describes how a simple distributed
representation of environment and target object geometries can be computed and used to
efficiently construct link contact quality measures.

The second and third issues listed above involve tradeoffs that can be made to balance
memory, time, and accuracy requirements. Section 6.6 describes an alternate algorithm
that reduces memory requirements at the cost of execution time. Section 6.7 shows how
coverage of configuration space can be maintained while this space is sampled coarsely.
This allows time to be gained by sacrificing accuracy. The actual balancing of the tradeoffs
described in Sections 6.6 and 6.7 is perforuied in Chapter 7, which describes the final
implementation of this parallel algorithm and presents examples.

6.1 A Specific Processor Network

The previous chapter presented a parallel algorithm for computing a space of grasp quality
measures. This algorithm was written to sample a six-dimensional space of link or wrist
configurations in parallel. To completely distribute a sampled six-dimensional space over
an array of processors would require an enormous number of processors. For example,
taking 32 samples of each of the 6 parameters would result in approximately one billion
grid points. A machine with one billion processors is not practical, and this section
describes the much smallei processor network assumed in this chapter.

The processor network assumed in this chapter can be described very simply. The
following assumptions are made:

"* there is a three-dimensional grid of processors, and

"* each processor is connected directly to its neighbors in all three dimensions (there
are six neighbor connections per processor).

A three-dimensional grid of processors represents a much more feasible assumption than
a six-dimensional grid of processors. If each of the 3 parameters is sampled 32 ways,
approximately 32,000 processors will be required. Machines of this size already exist. The
Thinking Machines CM200, for example, comes in a 64,000 processor version.
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6.2 Mapping Configuration Space onto the Processor Grid

The processor topology assumed in this chapter is a three-dimensional grid of processors,
where each processor is connected directly to its neighbors for fast local communication
in three dimensions. This section describes how configuration space is mapped onto this
gr'd, and it shows how the parallel algorithm of the previous chapter is revised to make
this mapping explicit.

6.2.1 Representing Position Space in Parallel

This report assumes that position space is distributed over a three-dimensional grid of pro-
cessors. Each processor within this grid represents a three-dimensional chunk of Cartesian
space. This proves to be a useful representation because collision and contact information

is mostly position-based. The environment and target object geometry can be prepro-
cessed and distributed over the processor network to simplify identification of collision

and contact conditions. For example, simple space filling algorithms can be used to mark
the processors as inside an object or within free space. Once a processor has been marked

as inside an object, the space it occupies cannot be occupied by any part of the hand in
any collision-free grasp. This local geometric information can be used many times as the
portion of space represented by a processor forms a part of many different hand config-
urations. Section 6.5 below describes how this and similar information is computed and

used.

One problem with the decision to represent the three-dimensional position space in
parallel is that the quality arrays for links, subchains, fingers, and complete grasps con-

tinue to be computed over the full six-dimensional configuration space. It is necessary to
determine where these six-dimensional results will be stored. The obvious solution is to
assume that each processor will store a full three-dimensional space of orientations in in-
ternal processor memory. Unfortunately, this solution is not currently practical due to the
large memory requirements associated with the approach, and the parallel algorithms will
be revised so that this large amount of memory is not required (Sections 6.6 and 7.2). For

the next few sections, however, it is assumed that each processor in the three-dimensional
position space grid is capable of storing a full three-dimensional orientation map.

6.2.2 A Revised Parallel Algorithm

The paragraphs above noted that in this chapter the grasp quality computation is par-
allelized over position space only. It is useful to rewrite the parallel algorithm of the
previous chapter to explicitly reflect this partitioning of configuration space loops into
serial and parallel components. The revised algorithm can be found in Appendix A, be-

ginning with top-level function Iower-bound-gq_2_parallel. The main difference from the
parallel algorithms of the previous chapter is that the loop:

for i iii processors() in parallel do
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has been replaced by a dual loop, such as:

for orient in workspace-orients() do
for i in processors() in parallel do

In addition, arrays that were previously indexed only by a processor in the original
parallel algorithm beginning with function lower-bound.gq L-parallel, when a processor
represented a chunk of the full configuration space, are now indexed by both an orientation
parameter and a processor, because each processor now represents a chunk of position
space. For example, in function compute.cq_2_parallel, contact quality array cq, previously
indexed by a link and a processor i, is now indexed by a link, a link-orient, and a processor
i:

cq[link, link-orient, i]
compute-link-cq-l

(link, link-config[iJ, orient, contact.-assignment, prototype, hand-model,
object, obstacles);

6.3 Estimating Time Complexity of the Algorithm

The execution time estimates presented for the parallel algorithm of the previous chapter
can be refined to reflect the processor topology and the mapping of configuration space onto
the processor grid described above. This section outlines these refinements. In particular,
it describes one implementation of the fetch command used for local communication in
these parallel algorithms (see functions compute-gq-2_-parallel and finger-quality_2_p). This
description of the implementation of the fetch command will lead to two improvements to
the algorithm, which are described in Sections 6.4 and 6.5.

6.3.1 Computing Contact Quality Space

The body of top-level function lower-bound.gql2_parallel consists of computing a contact
quality array and then using this contact quality array to compute an array of optimal
grasp quality estimates over the space of wrist configurations. Chapter 5 showed that
the time to compute the contact quality array, that is, the time to execute function
compute.cq-l-parallel (found in Appendix A) could be estimated as:

o1 ( L IR (f~f+ff1) (6.1)
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Because only position space is distributed over the processor grid in this chapter, a

more accurate description of the time required to execute function compute-cq-2-parallel

(Appendix A) is:

0 L0 [R UE + fTfL)) (6.2)

This captures the fact that contact quality is computed over all links of the hand L and
over all orientations of those links 03. It captures the fact that each physical processor

must duplicate all calculations over [ __1 virtual processors. It also includes the complexity

of computing a single contact quality measure, which depends on the number of features

in the environment fE and the number of features of the target object IT, as well as the

number of features in a link of the hand fL.

6.3.2 Estimating Grasp Quality Space

The analysis of the time required to compute the contact quality array is very simple,
because the contact quality computation is a local computation that can be completely

parallelized over configuration space. Execution time for the contact quality computation

depends linearly on the ratio of configuration space samples to processors.

Analysis of the time required to combine contact quality measures to produce a grasp
quality array is not as simple. This is due to the local communication required to transfer

subchain quality information from one link to the next. The grasp quality computation
is represented by function compute-gq-2-parallel in Appendix A. Time to execute this

function is dominated by the recursive calls to function finger-quality_2_p. This function
is eventually called for all links of the hand L. Time to execute each function call is

dominated by the time to repeat the fetch function over the sampled range of joint angles,

represented by Odangle, for all virtual processors represented by a single physical processor

[R'0'1. In Chapter .5, the fetch function could not be fully described, because the proces-

sor topology was not known, and the end of that chapter stated the following expression
for time complexity of the grasp quality computation:

O(L [ 3o3 (Od,,nýge)F). (6.3)

Now that the algorithm has been rewritten to operate serially on link orientations, Ex-
pression 6.3 can be rewritten as:

O(L 3 [I ] (Odangie)F). (6.4)

Expression F, representing complexity of the fetch function, was left undetermined in

Chapter 5. This section describes one implementation of the fetch function, allowing
derivation of a value for F.
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Figure 6.1: The relationship between the coordinate systems of link and nextJink is a func-
tion of joint angle. Subchain quality information is passed from the processor representing
the configuration of next-link to the processor representing the configuration of link.

Fetching Information into a Single Processor

The fetch function was originally described as a very general function that played the
role of transferring information from one processor to another. In the parallel algorithm
described in Section 5.8, however, the fetch function plays a much more specific role. This
section describes that role for the task of fetching information into a single processor, and
shows how this command might be implemented. The following section describes how
this implementation can be parallelized, so that the fetch command can be used to bring
information into all processors at once.

The fetch function is referenced in functions compute.gq-2_parallel and finger-quality_2_p
(Appendix A). The analysis of the operation of this function is similar for either reference,
and so only one reference will be examined. The following excerpt shows how the fetch
function is used in function finger-quality_2.p:

{get subchain-quality for current link}
for link-orient in workspace-orients() do

for i in processors() in parallel do
begin

configjij := workspace-config_2(link-orient, i);
{ maximize subchain-quality over joint angles}
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max-sq[i] := MIN-QUALITY;
for theta in joint angles-of(link, hand-model) do

begin

next-configui] := next lin kconfig.of(theta, link, hand-model, configi]j);

next-orient - next Jin korient-of(theta, link, hand-model, link-orient);
next-procji] proc-of(next-configji]);

sq[i] := fetch(subchain_qualityinext-orient, next-proc[aij);

if sqJiJ > max-sqJi] then
max-sqli] := sq[i];

end

{ take minimum of link and current subchain quality values}
fq[link-orient, i] := min(cq[link, link-orient, i], max-sqji]);

end

This excerpt shows the construction of finger quality array fq, which updates the

subchain quality measures of array subchain.quality so that they represent subchains one

extra link in length. To perform this operation, the function must reference the link
contact quality array cq for the current link and config and the quality measures of the

subchain-quality array for reachable configurations of the distal neighbor of link, given

parameter config. Because position space is distributed over the processor grid, a processor
will find that it must reference elements of the subchain.quality array that are not present in

local memory. Making these non-local memory references is the role of the fetch function.
This section describes a serial call to the fetch function. In other words, it describes

what happens when a single processor makes one of these non-local memory references.
When the fetch command is called, the following parameters have been specified:

link = a link of the hand

i -- processor representing the position of link
link-orient = orientation of link

theta = joint angle of the distal joint of link

From this information, the following additional parameters can be computed:

nextJink = the distal neighbor of link
next-proc[i] = processor representing the position of nextlink,

calculated from i and link-orient
next-orient = orientation of nextiink,

calculated from link-orient and theta

The goal of the fetch function is to move subchainquality[next-orient] from processor
next-procli] to processor i. The processor representing a link is determined by the position
of that link. T'e local coordinate system of each link is defined to have its origin at the

proximal joint of that link as shown in Figure 6.1. Given a position and orientation for
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link, the position and orientation of next-link varies only with joint angle theta (the joint
angle of joint Jnerthink in Figure 6.1). The goal is to collect the maximum value of the
subchain -quality array for configurations of nextilink over the entire joint angle range. A
call to the fetch function is used to collect each non-local subchain-quality value.

In this chapter, each processor represents a particular link position, and it stores an
array of subchain-quality values over a space of link orientations. This means that the
desired subchain-quality value must be extracted from the subchain-quality array on the
processor representing the position of next-link and transferred to the processor represent-
ing the position of link. To move the subchain-quality value between these two processors,
a routing-path is constructed along the axis of link, as shown in Figures 6.2 and 6.3. The
desired subchain-quality value that begins in processor next-proc[i] is passed from neighbor
to neighbor according to the relative motion commands in the routing path, ending up in
processor i.

The serial operation of the fetch command is summarized as follows:

1. Parameter next-orient is calculated from joint angle theta.

2. Parameter subchain-qualityinext-orientj is extracted from processor next-proc[i].

3. This value is routed to processor i, following the routing path for the current link
and link-orient.

4. This value is stored in temporary variable sq on processor i.

The fetch command is repeated for all theta values within the joint angle range of
joint Jneztink, and the maximum sqJiJ value that results is kept in temporary variable
max-sq[i]. The new subchain quality entry fq[link-orient, il is set to be the minimiLm of
max-sq[i] and local link contact quality value cq[link-orient, ij.

Fetching Information into All Processors

The previous section described how the fetch command works for moving subchain quality
information from one specified link configuration to another. But the fetch command is
meant to be executed for all processors, or all link positions, in parallel. This section
describes how this parallel operation works.

It is easy to parallelize this fetch command over the space of link positions, because
the direction in which information must travel at each step is the same for all processors.
Figure 6.4 shows the information transfer required for three processors in the example
two-dimensional grid. This figure shows that the routing paths all have the same shape.
This is true because each routing path is derived from the shape of the current link and
the orientation of that link. It does not depend on link position, and so it is the same for
all processors i. In other words, the relative position of next-proc[i] with respect to i is the
same for any processor i. This means that subchainquality[next-orienti can be extracted
from all processors next-proc[i] in parallel. It can be routed in parallel from processor to
processor using the routing path of Figure 6.3, and the subchain quality information will
end up in the appropriate processors i.
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Figure 6.2: Routing information from the distal joint of a link to the proximal joint of
that link along the link axis.

Joint J,-1 (next-proclj])

-Y subchain quality

" -(ýý information

Y Joint ji I -
(processor j)

x

Figure 6.3: A map to direct the routing of subchain quality information along a link axis.
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Figure 6.4: Routing paths for three processors in a grid. The vector representing travel
from the distal joint of the link to the proximal joint of that link is the same for any
processor representing the proximal joint of the link.
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It is clear from the routing path that there is a one-to-one mapping from processors i
to processors nextproc[il. No two processors i and j will try to fetch information from the
same processor k during the same instruction. In other words,

(i X j) • (next-proc[i] X next-procljl).

Furthermore, as long as all routing is synchronized, that is, as long as all processors
complete one step of the routing path before any processors initiate the next step of the
routing path, there will be no routing collisions. Each processor will send and receive
exactly one message as each step along the routing path is executed.

It is clear that this process takes time proportional to the length of the routing path.
The length of the routing path grows with the length of a link drink and with the number

of processors intersected by a line of unit length. This can be approximated as I I
where S represents the size of a side of one dimension of the position space cube, and
this dimension is sampled by P3 processors. This gives the following expression for time
complexity of the fetch function previously described as F:

F = din P . (6.5)

Combining Expressions 6.4 and 6.5 results in an estimate for time to execute function
compute-gq_2_parallel:

0 (L03 R~ (Odangie) [di~].(6.6)
o ( o I P 6.0

If there are more processors P, then more of the position space can be processed

in parallel, which makes term [jsmaller, but term [dziIP3] is somewhat larger, asW1 as

messages will have to travel a greater distance through the processor grid to get from one

link to the next.

6.4 Improving the Finger Quality Computation

The previous section described how the fetch command used in function finger-qualitv_2_p
is implemented. Given this implementation, the process of maximizing subchain quality
over a range of joint angles can be made much more efficient.

Figure 6.1 shows that the following operation is performed repeatedly for joint angles
theta sampled over the joint angle range of joint Jnt_hink:

* Calculate next-orient from link-orient and theta.

* Look up variable subchain-quality[next-orientl in processor next-procli].
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"* Transfer this variable to processor i along the axis of link.

"* If this variable is greater than max-sq in processor i, store this variable in max-sq.

The major inefficienc:, found in this loop is that an expensive processor to processor
communication step is performed only to maximize the transferred values at the des-
tination. This section simply rewrites the procedure described above to maximize the
subchain-quality values at the source, or the distal joint of link, and then transfer only
the maximum value along the link axis to the proximal joint of link. This transforma-
tion is possible because the algorithm is parallelized over positions only and because the
coordinate system of a link is located at the proximal joint of that link. Although the
configuration of nextJink changes with joint angle theta, its position does not change. This
means that all subchain.quality values stored for nextiink configurations reachable from a
given link configuration over a range of joint angles can be found within a single processor,
next-procfij.

This communication inefficiency has been removed in function finger-quality-2_p -better
(Appendix A), where the following code:

for theta in joint-angles-of(link, hand-model) do
begin

next-conflg[ij := next -ink-config-of(theta, link, hand-model, configfil);
next-orient nextJink -orient-of(theta, link, hand-model, link-orient);
next-proc[i] :- proc-of(next-config[i]);
sq[i] := fetch(subchain _qquality[next-orient, next-procji]]);
if sqji] > max-sq[i] then

max-sq[i] := sq[i];
end

{ take minimum of link and current subchain quality values}
fqilink-orient, i] := min(cqjlink, link-orient, ii, max-sq[i]);

has been replaced by:

for theta in joint-angles-of(link, hand-model) do
begin

next-orient := nextJin korient-of(theta, link, hand-model, link-orient);
if subchain_quality[next-orient, i] > max-sq[i] then

max-sq[i] := subchain_quality[next-orient, iJ;
end

{fetch mazimum subehain quality value}
next-pos[i] := nextJin kpos-of(iink, hand-model, config[iJ);
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next-proclil :-- procof-2( next_posjij);
sqli] := fetch(max sq[next proclijJ);

{ take minimum of link and current subchain quality values}
fqilink-orient, i] := min(cqllink, link-orient, i], sql]);

Note that the fetch command has been extracted from the loop over joint angles
theta. The values of subchain_quality[next-orient] are first maximized over theta, and this
maximum value is passed from joint JnetJink up to joint J1ik.

Because communication is expensive, function finger-quality-2-p-better will be signif-
icantly faster than finger-quality-2-p. The time complexity estimate can be rewritten as
follows:

0 (Lit3 [R (OdanY1ýe + [PLn])(6.7)

Compare this to Expression 6.6. The local memory references over a range of joint angles,
represented by Odange, have been separated from the transfer of subchain quality values

through the processor grid, represented by [ I .

6.5 Improving the Link Quality Computation

The previous section showed a way in which the grasp quality computation could be made
more efficient by reducing the amount of communication required between processors. This
section presents a technique used to speed the contact quality computation by doing a one-
time reduction of environment and target object geometry into a distributed representation
of local geometric information.

If a simple approximation of the geometry of each link of the hand can be made, then
local geometric information can be computed and stored at each processor. It can then
be combined to reconstruct link and subchain contact quality measures as needed. These
contact quality measures can be reconstructed by collecting local geometric information
when routing subchain quality information along a link axis as shown in Figure 6.2. This
avoids repetition of the time-consuming collision and contact calculations that were pre-
viously performed for each link configuration (see Algorithm 5.4, reference points A and
C). The next few paragraphs show how this process works.

6.5.1 Computing Local Geometric Information at a Point

Local geometric information can be distributed over the grid of processors representing
position space. This requires local representations of link geometry on a processor grid.
A very simple representation is used here:

* The geometry of a link in a given configuration is approximated with a set of spheres
centered at the processors located on the central axis of that link.
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Figure 6.5: Collecting contact quality information along a link axis. The link geometry
can be approximated as a sequence of spheres centered at grid points along the link axis.

A link approximated in this way, as a set of spheres centered on the link axis, might have a
cross section like that shown in Figure 6.5. In this figure, the link boundary is outlined in
bold, and a line has been drawn to indicate the location of the link axis. The routing path
for this link and link configuration runs from joint Jj- 1 to joint Jj along the link axis,
passing through the lightly shaded boxes. At each of these scan nodes, a darkly shaded
circle has been drawn, centered at that node. Together, these shaded circles form an
approximation of the entire link geometry. Individually, they form a simple representation
of the local link geometry at each processor on the routing path.

The representation of a link as a collection of spheres allows local collision and contact
information to be computed very simply. The processor representing each portion of a
given link in a given configuration needs to test whether its portion of the link lies in
free space and whether it is in contact with the target object. If these two conditions are
met, the contact quality measure for the contact can be evaluated. To allow this set of
operations to be performed, it is sufficient to store the following geometric information at
each processor:

1. collision-dist = the nearest distance to a collision with some object in the environ-
ment.

2. contact-dist the nearest distance to contact with the target object.

3. contact-point = the contact point corresponding to the nearest contact with the
target object.
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4. contact-feature = the contact feature corresponding to the nearest contact with the
target object.

As shown in Algorithms 6.2 and 6.3 below, parameters collision-dist and contact-dist al-
low computation of whether a portion of a link lies in free space and whether it is in
contact with the target object. This requires only a local link diameter, diam, which
can be precomputed for each step of a routing path. Using parameters contact-point and
contact-feature, Algorithm 6.4 shows how a contact wrench is computed for any contact
between a portion of a link and the target object. Algorithm 6.1 pulls these functions
together to generate a local contact quality measure that is interpreted as follows:

MIN-QUALITY = local collision
MAX-QUALITY =' no local collision, no contact assignment

0 • no local collision, contact assignment, no local contact
other - no local collision, contact assignment, contact

The paragraphs below describe how this information is used to compute link and subchain
contact quality measures.

6.5.2 Collecting Collision and Contact Information for a Link

The previous paragraphs have shown that geometric information describing the environ-
ment and the target object can be reduced to a set of local distance measurements and
local contact information distributed over a position space grid of processors. The moti-
vation behind computing this information was to speed the computation of link contact
quality measures in repeated calls to function compute-link-cq-l. Given a link and a con-
figuration of that link, a local contact quality measure, Iocal-cq, can be computed for each
point along the link axis. This section shows how this local collision and contact informa-
tion can be collected during a fetch command to generate a contact quality measure for a
given link and link configuration.

The rules for constructing a link contact quality measure from local contact quality
measures are very simple:

"* All processors representing points on the link axis must indicate that the link lies in
free space at that point. Any collision sets the link contact quality parameter link-cq
to MIN-QUALITY.

"* If there are no collisions, the link contact quality parameter link-cq is set to the
maximum of all local contact quality values Iocal-cq[i].

The following section of code (similar to a portion of function link-axis-quality-scan in
Algorithm 6.5) shows how the local contact quality values along a routing path can be
used to construct a link contact quality measure:

for i in processors() in parallel do
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compute/ocal-cq

(diam, collision-dist, contact-dist, contact-point, contact-feature, link, link-orient,

orient, contact-assignment, prototype)
begin

local-cq := MIN-QUALITY;

if no-collisionsilocal?(diam, collision-dist, contact-dist) then

begin
if no-contact assignment?(link, contact-assignmer ) then

local-cq := MAX-QUALITY;
else

if nocontactJocal?(diam, contact-dist) then
Iocal-cq 0;

else
begin

contact contact of(link, contact-assignment);

wrench contact-wrenchilocal(contact-point, contact-feature, link-orient);
local-cq contact iuality(orient, contact, wrench, prototype);

end
end
return(Iocal-cq);

end

Algorithm 6.1:

no-collisionsilocal?(diam, collision-dist, contact-dist)

begin
if (diam < (collision-dist - EPS-COLLISION)) and

(diam < (contact-dist + EPSCONTACT)) then
return(TRUE);

else

return(FALSE);
end

Algorithm 6.2:
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no-contact-local?(diam, contact-dist)
begin

if(diamn < (contact-dist + EPSCOLLISION)) and
(diam > (contact-dist - EPSCONTACT)) then
return(FALSE);

else
return(TRUE);

end

Algorithm 6.3:

contact -wrench-local' .ontact-point, contact-feature, link-orient)
begin

if is-ed e?(contact-feature) then
force := edgeinside normal-of(contact-feature, link-orient);

else
{feature has a unique inside nortmal at the contact point}

•orce := inside -normal-of(contact-feature, contact-point);

dist := subtract(GRASPCENTER, contact-point);
torque :- scale (cross(force, dist), TORQUEMULTIPLIER);
ret urn(build-wrench(force, torque));

end

Algorithm 6.4:
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link-cq[i] := 0;

for step in routing-path-of(link, link-orient, hand-model) do
begin

diam := diam of(location of(step), link, hand-model);
for i in processors() in parallel do
begin

local-cq[i]
compute-local-cq

(diam, collision d ist of(Ic-info[i]), contact distof(Ic_info[i]),

contact -point _of(Ic-info[i]), contact-feature-of(lIc info[iI), link,

link-orient, orient, contact-assignment, prototype);
if local-cq[i] MIN-QUALITY then

link-cq[i] MIN-QUALITY;
if link-cq[i] > MIN-QUALITY then

link-cqlij := max(Iocal-cqji], link-cqliJ);
end
link-cq := Iocal-fetch(link-cq, direction-of(step));

end

This operation consists of a set of simple numerical comparisons and simple local
communication steps. The numerical comparisons check that neither the local contact
quality local-cq[i] nor the current cumulative link contact quality link-cq[i] are equal to
MIN-QUALITY. If this is false, link-cq[iJ is set to MIN-QUALITY. If it is true, link-cqli] is
set to be the maximum of the two values. Each local communication step (local-fetch)
shifts the updated link-cq[i] parameter one step through the processor grid in the direction
given by the routing path (direction -of(step)).

The result of this operation is the link contact quality measure, interpreted as:

MIN-QUALITY = collision

MAX-QUALITY > no collision, no contact assignment
0 z no collision, contact assignment, no contact

other =• no collision, contact assignment, contact

An alternative way to represent this computation is to draw a circuit illustrating the
link-cq value read into a processor, the local operation performed at the processor, and
the link-cq value sent to the next processor along a routing path. Figure 6.6 shows such
a simple circuit. Inputs are on the left, outputs on the right, and information available
locally at each processor is shown coming into the top of the circuit. The top figure shows
the FREE? circuit, which outputs TRUE iff the portion of the link seen so far is free of
collisions. The bottom figure uses the output of the FREE? circuit to switch between
an output quality value of MIN-QUALITY, which indicates a collision, and the maximum
Iocal-cq value seen so far.
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Figure 6.6: The top circuit uses the local contact quality measure Iocal-cq and the link

contact quality measure link-cq to determine whether the portion of the link seen so far

lies in free space. The bottom circuit updates the link contact quality measure link-cq

by taking the maximum of the input link-cq value and the local contact quality measure

Iocal-cq if the link seen so far lies in free space.
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The inputs and outputs of the individual processor circuits are wired together as
indicated by the routing path for a link and link configuration (Figure 6.7) to obtain a
complete circuit that returns link-cq for an entire link. The input of the first box is set
to zero. The output of the complete circuit is MIN-QUALITY if there is a local collision
somewhere along the routing path, or it is the maximum of all Iocal-cq values along the
routing path. If there are no collisions, and no values of local-cq are greater than zero, the
output will be zero. A strictly positive link-cq value is required, however, for the link to
be part of a stable grasp.

This link-cq parameter can be computed during the fetch command used to access
optimal subchain values, because both operations require passing information from one
joint to the next. Algorithm 6.5 shows the complete scan function. The new set of rules
expressed by this function can be stated as follows:

"* All links that are part of a subchain must be free of collisions. Any collision sets the
subchain contact quality parameter subchain-cq to MIN-QUALITY.

"* If there are no collisions, the subchain contact quality parameter subchain-cq is set
to the minimum of the contact quality values of the links that make up the subchain.

The complete set of algorithms using function link-axis-quality-scan can be found in Ap-
pendix A under top-level function Iower-bound-gq_3_parallel.

The circuits of Figure 6.6 can be modified to collect subchain and link contact quality
information simultaneously as shown in Figure 6.8. At the origin of a routing path, the
subchain-cq input is set to zero, and the max-sq input is set to the quality value of the best
subchain reachable from the current processor and link orientation (max..sqflink-orient, i] in
function finger-quality_3_p). Because the desired solution will eventually be the minimum
of the max-sq input value and the link contact quality value computed for the current link
configuration, a MIN box is added to the circuit to keep subchain-cq at or below the level
of the max-sq line. This is not really necessary here, as a single MIN could be executed at
the end of the routing path, but as Section 6.7 will show, it is useful to keep an accurate
estimate of the quality value of the subchain seen so far rather than just a measure of the
contact quality value of the link seen so far on the subchain.cq line. The LINK-CQ boxes
of Figure 6.7 are replaced by the SUBCHAIN-CQ boxes of Figure 6.8 to make use of this
new circuit.

A revised complexity estimate is given by:

o ([Rs] ((fE + fT) + L0 3 [ditnkP])) (6.8)

Compare this to Expression 6.2. The first half of this expression is required for the one-
time computation of the local geometric information. Multiplier L0 3 has been removed
from this part of the computation. The second half of the expression represents the time
already required to execute the fetch commands that pass subchain quality information
from a link to its proximal neighbor (see Expression 6.6). During execution of these fetch
commands, a current link contact quality measure can be reconstructed from the stored,
local geometric information.
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Figure 6.7: Reconstruction of the contact quality measure for a link. This is implemented

using a scan through the processor grid, but it is equivalent to chaining together the inputs

and outputs of a number of simple circuits. This is true because each individual processor

does very little, executing only a set of very simple operations and passing the results to
the next processor along the routing path.
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Iink-axis-quality-scan
(max-sq, link, link-orient, orient, contact-assignment, prototype, hand-model, Ic-info)

begin
for i in processors() in parallel do

subchainxcq[i] := min(O, max.sq~ij);

for step in routing-path-of(link, link-orient, hand-model) do

begin
diam := diam of(Iocation of(step), link, hand-model);

for i in processors() in parallel do

begin
Iocal-cq[i]

compute_|ocal-cq

(diam, collision_dist of(Ic-infojij), contact d ist of(Icjinfojij),

contact -point-of(Ic-info[i]), contact-feature-of(Ic-info[i]), link,

link-orient, orient, contact-assignment, prototype);

if Iocal-cq[i] = MIN-QUALITY then

subchain-cq[i] := MIN-QUALITY;
if subchain.cq[i] > MIN-QUALITY then

subchain-cq[i] := min(max(local-cq[i], subchain-cq[i]), max-sq[ij);

end
subchain-cq :=-Iocal-fetch(subchain-cq, direction of(step));

max-sq :--local-fetch(max-sq, direction of(step));

end

return(subchain-cq);
end

Algorithm 6.5:
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Figure 6.8: This circuit updates the link contact quality measures, here represented with
subchain-cq, making sure that this value stays at or below the optimal subchain contact
quality value max-sq.

6.6 Working with Less Memory

Sections 6.4 and 6.5 have shown how the parallel algorithm of Chapter 5 can be made more
efficient by keeping processing as local as possible, and thereby reducing expensive com-
munication costs. Section 6.4 showed that subchain quality information can be maximized
locally before it is passed from one link to the next. Section 6.5 showed that local geo-
metric information can be distributed over the processor grid representing position space.
This information can then be used to reconstruct link contact quality measures, avoiding

the need to repeatedly perform geometric calculations dependent on the complexity of the
hand, target object, and environment geometries.

This section considers another type of problem. Although a three-dimensional grid of

processors has been assumed, six-dimensional arrays of subchain finger and grasp qual-
ity values continue to be computed and stored. It is likely that limitations on processor
memory will not allow these arrays to be stored at sufficient resolution to reconstruct kine-

matically accurate hand configurations. This section describes a modified PNgorithm that
allows for good kinematic accuracy and requires very little temporary storage space. Little
additional space over what is required to store complete solutions is used. Unfortunately,
this algorithm pays in execution speed what it gains in storage space.

A variety of problems arise with the current algorithm if orientation space is sampled
very coarsely. One such problem is represented in Figure 6.9. If orientation space is

sampled very coarsely, each sample orientation must represent a large range of orientations.

At the wrist, optimal fingers may be returned that correspond to opposing extremes of
this range. This causes the problem shown in Figure 6.9, where no configuration of the
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Figure 6.9: The three fingers correspond to different wrist orientations. A hand configu-
ration that will closely fit all three fingers may be difficult to achieve.

rigid wrist segment will fit all three fingers perfectly. This problem can be much worse
for a three-dimensional hand, where orientation space has three dimensions. Connections
between links may contain large errors that are out of the plane of motion of the joint
connecting the two links. When a hand is fit to a set of joint positions containing such
errors, it is difficult to compensate with local changes in joint angle, and these errors
propagate, affecting the entire hand configuration.

The main source of the problem is the breadth-first nature of the optimization process
described in function finger-quality-3_p (see Algorithm 6.6 below). Before a link can be
added to any optimal subchain, the entire space of subchain qualities must be computed
for the distal neighbor of that link (reference point A). The advantage of this process is
that it is fast. Optimal subchain quality values are available for reference (B), and similar
subchains do not have to be constructed and tested many times. The disadvantage of
this process is that it requires a large amount of memory. In order to approximate hand
configurations accurately, orientation space would need to be sampled finely.

An algorithm that requires much less storage than the current algorithm can be found
in Appendix A under top-level function Iower-bound-gq_4_parallel. Portions of this algo-
rithm are examined below. This algorithm does not compute and store an entire space
of subchain quality values. Instead, it calculates these values as needed. This has the
advantage that each link configuration can be tailored exactly to the hand configuration
under construction. The hand configurations that are sampled are very accurate and vir-
tually no temporary storage is required. The algorithm has the disadvantage that it can
no longer be described as a dynamic programming algorithm, as information is continu-
ally being recomputed. In this algorithm, the grasp prototype is only useful for avoiding
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computation of the actual grasp quality measure as described in Section 5.6 and for sepa-

rating the contributions of the fingers of the hand, allowing finger qualities to be optimized

independently.
It is useful to examine the differences between the original breadth-first algorithm

and the new depth-first algorithm. The first real difference is seen in functions com-

pute-gq_3_parallel and compute-gq_4_paraliel. In both, the complete finger quality array is
computed over the space of proximal link configurations of each finger, but in the depth-

first algorithm, the sampling of orientation space is pulled out of function finger-quality_4-p.

In other words, the code sequence:

for finger in fingers-of(hand-model) do

begin
prox-link prox/ink-of(finger, hand-model);

fq[finger:
finger.quality_3_p

(proxiink, orient, contact-assignment, prototype, hand-model,

local-contactinfo);
end

in function compute-gq-3_parallel becomes

for finger in fingers-of(hand-model) do
begin

prox-link := prox-link-of(finger, hand-model);

for wrist-orient in workspace-orients() do
begin

prox-orient := prox-orient-of(finger. hand-model, wrist-orient);

fq[finger, wrist-orient]
finger-quality_4_p

(proxlink, prox-orient, orient, contact-assignment, prototype,

hand-model, local-contact-info);
end

end

in function compute.gq_4_parallel.
Recursive function finger-quality-4-p has been redefined to return not an entire config-

uration space of subchain quality values, but the space of subchain quality values having

proximal links in a given orientation. This reduces the subchain quality array returned
by this function from a six-dimensional array over configurations to a three-dimensional

array over positions.
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finger-quality-3_p (link, orient, contact-assignment, prototype, hand-model, Icinfo)

begin
{find mazimal subchain quality}

if no-next/ink?(link, hand-model) then

{subchain quality can be set to MAXQUALITY}
for link-orient in workspace-orients() do

for i in processors() in parallel do
max-sq[link-orient, i] := MAX-QUALITY;

else
begin

{get subchain.quality for next link, all link orients}

next-link := nextilink-of(link, hand-model);

A subchain-quality :=
finger-quality_3-p

(next-link, orient, contact assignment, prototype, hand-model, Icinfo);

{get subchain-quality for current link, all link orients}

for link-orient in workspace-orients() do

for i in processors() in parallel do

begin
{ maximize subchain-quality over joint angles}

max-sq[link-orient, ii := MIN-QUALITY;

for theta in joint-angles-of(link, hand-model) do
begin

next-orient := nextJin korient-of(theta, link, hand-model, link-orient);

B if subchain qualityinext-orient, ii > max-sq[link-orient, i] then
max-sq[link-orient, i] := subchain-quality[next-orient, ii;

end
end

end

{collect link info along link axis, merge with subchain info for all link-orients}

for link-orient in workspace-orients() do

fq[link-orient] :=
link-axis-quality-scan

(max-sqIlink-orient], link, link-orient, orient, contact-assignment,
prototype, hand-model, Ic-info);

return(fq);
end

Algorithm 6.6:
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finger-quality_4_p
(link, link-orient, orient, contact-assignment, prototype, hand-model, Icinfo)

begin
{find mazimal subehain quality}
if no-next/ink?(link, hand-model) then

{subchain quality can be set to MAXQUALITY}
for i in processors() in parallel do

max-sq[i] := MAX-QUALITY;
else
begin

{ mazimizze subchain-quality over joint angles}
next-link := nextilin kof(link, hand-model);
for i in processors() in parallel do

max-sqji] := MIN-QUALITY;
for theta in joint angles-of(link, hand-model) do
begin

{get subchain-quality for current link and link-orient}
next-orient := nextJink-orient of(theta, link, hand-model, link-orient);

C subchain-quality :=
finger-quality_4-p (next-link, next-orient, orient, contact-assignment,

prototype, hand-model, Icinfo);
for i in processors() in parallel do

if subchain quality[ii > max-sq[i] then
max-sqli] := subchain-qualitylil;

end
end

{collect link info along link azis, merge with subchain info}
fq := link-axis-quality-scan

(max.sq, link, link-orient, orient, contact-assignment, prototype,
hand-model, Icinfo);

return(fq);
end

Algorithm 6.7:
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Other differences can be seen between functions finger-quality- 3 _p and finger-quality-4_p.
(The complete functions are shown in Algorithms 6.6 and 6.7.) The breadth-first function
in Algorithm 6.6 first constructs a complete array of subchain quality values over the six-
dimensional space of configurations of the distal neighbor of input parameter link (reference
point A). The body of the breadth-first function consists of accessing this space to fill
another six-dimensional space that extends the optimal subchains by a single link (B).
In the depth-first function of Algorithm 6.7, computation of subchain quality is not the
first step. This computation is embedded within the loop over joint angles theta (C).

This results in the transformation from a breadth-first to a depth-first algorithm. The
recursive call to finger-quality_4_p generates from scratch optimal subchains terminating in
orientation next-orient of the distal neighbor of link (C). This allows the kinematics of these
subchains to be made very accurate. Unlike before, this function does not simply extract
from a precomputed array the quality measure found in the orientation space slot that
is closest to next-orient; instead, it reconstructs the optimal subchain quality measure for
the range of subchains terminating exactly in orientation next-orient within the limitations
imposed by the sampling of position space. Embedding the recursive call within the joint

angle loop also eliminates the space required to store the subchain quality array, because
this array does not have to be precomputed. This algorithm will be slower, however, as
similar subchain quality values cannot be reused.

A time estimate for the depth-first algorithm is given by:

0 (i 3 P (Odangie+ ) (6.9)

The expression contains an outer loop over all fingers F and all wrist orientations 03. Po-

sition space is sampled in parallel using [--1 virtual processors. The number of links that

must be reconstructed to form an optimal finger quality measure depends exponentially on

the number of links in a finger (F)and the branching factor of the tree representing sam-

pled finger configurations can be approximated with O'dangle, where joint angle sampling

density 0' is now distinct from parameter 0', used to describe the number of orientation
space samples in the solution. With this algorithm, only a small number of solutions in
which hand configurations are sampled very finely need be stored. That is, parameter
0' could be relatively small and 0' could be relatively large. Each link contact quality
measure must be reconstructed by pushing information through the processor grid from

one joint to the next. Time to perform this operation can be approximated as S I.

Compare this expression to Expression 6.7. The difference between these two expres-
sions describes the tradeoff between the breadth-first and depth-first algorithms. Most
importantly, while the breadth-first algorithun depends linearly on the number of links in

the hand L, the depth-first algorithm depends linearly on the number of fingers F and
exponentially on the number of links per finger L

The memory tradeoff has also been outlined. The breadth-first algorithm requires that
six-dimensional subchain quality arrays be stored, while the depth-first algorithm requires
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Figure 6.10: Routing information along a link axis for a range of link orientations results
in a routing tree, not a unique routing path.

that three-dimensional subchain quality arrays be stored. A quantitative comparison
of these algorithms for one implementation on a specific parallel computer is given in
Section 7.2.

6.7 Working with Fewer Samples

The previous section described a technique for overcoming a particular problem: the
problem of large memory requirements. Unfortunately, the memory savings obtained using
this technique does not come for free, and the cost is paid in time required to execute the
new set of algorithms. There are few options left for keeping time requirements low, and
the most obvious of these remaining options is to limit the number of samples taken of
orientation space. In Expression 6.9, this would be to place a limit on both parameter 03,

which represents the number of wrist orientations for which a grasp quality estimate is
computed, and parameter O' in expression O'd,,ngle, which determines the number of joint
angle samples explored at each joint. The problem with greatly limiting these orientatiorn
parameters is that coverage of hand configuration space is lost. If only a widely distributed
(but accurate) space of hand configurations is examined, then important solutions may
be missed. This section describes one technique that can be used to help overcome this
problem.

Solutions can be missed using the algorithms of Section 6.5 and Section 6.6, because
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Figure 6.11: A tree to direct the routing of sub chain quality information along a link axis
for a range of link orientations.
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they assume that each configuration space sample represents a single point in configuration
space. In particular, they assume that from the position and orientation of a link and from
a joint angle, the position and orientation of the distal neighbor of that link can uniquely be
specified. This assumption is represented by the fact that the routing path of Figures 6.2
and 6.3 is a single path.

If orientation space is to be sampled coarsely, better coverage of configuration space will
be obtained by using a routing tree, as shown in Figures 6.10 and 6.11, rather than a single
routing path. This means acknowledging that the problem of finding the configuration of
the distal neighbor of a link given that link's configuration and a joint angle may result
in a range of solutions, not a unique solution. The next few sections show how routing
trees can be used rather than routing paths to reconstruct link contact quality measures
and retrieve optimal subchain quality measures.

6.7.1 Computing a Link Quality Measure

In Section 6.5.2, the rules for using a routing path to obtain a link contact quality measure
were stated as follows:

9 All processors representing points on the link axis must indicate that the link lies in
free space at that point. Any collision sets the link contact quality parameter Iink-cq
to MIN-QUALITY.

* If there are no collisions, the link contact quality parameter link-cq is set to the
maximum of all local contact quality values local-cq[il.

To expand these rules for use with a routing tree, some path must be found where the link
lies entirely in free space. The contact quality measure over all such paths is maximized.
This new set of rules can be restated as follows:

"* All processors representing points on the link axis of some path must indicate that
the link lies in free space at that point. Any collision along a path sets the link
contact quality parameter link-cq of that path to MIN-QUALITY.

"* If there are no collisions along a path, the link contact quality parameter link-cq of
that path is set to the maximum of all local contact quality values local-cqji].

"* The link.cq value for the routing tree is taken to be the maximum link-cq value for
any path in the routing tree.

Note that the contact quality measure for each path through the tree does not need to be
separately computed. Contact quality measures can be combined where any set of paths
merges. This can be described very easily by adding to the LINK-CQ circuit of Figure 6.6
some preprocessing to merge two incoming paths (Figure 6.12). The function executed at
each processor is the same except when two paths merge. Here the maximum incoming
link-cq value is retained.
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Figure 6.12: When merging two paths through a routing tree designed for reconstructing
a link contact quality measure, it is sufficient to begir Aith the maximum link-cq value
for the two paths.

Figure 6.13 gives an example of the merging process just described. A link contact
quality measure is computed by optimizing this measure over the range of link config-
urations shown. The range of link configurations maps to a tree of paths through the
Cartesian space processor grid. Free space and contact information are passed from the
leaves of this tree to the root, the proximal end of the link axis.

Figure 6.14 shows the example, along with a target object and an obstacle. Taking
the diameter of the link into account, it can be seen that some paths through the grid will
register collisions, and some paths will register contact.

Figure 6.15 shows an abbreviated representation of the merging process for this ex-
ample. The tree of paths represents the proximal seven nodes of the routing tree for the
problem shown in Figure 6.14. Symbols X, Y, and -Y indicate the direction in which
information is passed when moving from node to node up the tree. Identical nodes are
indicated by squiggly lines, but paths cannot be merged at these nodes because they di-
verge both above and below the coincident points. Finally, collisions are indicated with
shaded boxes, and contact is indicated with a number giving the local quality value of the
contact. One safe path through the tree exists.

Figure 6.16 shows a step by step illustration of how information is passed up the tree.
Collisions are propagated upward, unless some free path can be found. When there is a
free path, the maximum quality value is stored. The result of this scan shows that there
is a path that is free of collisions and in contact with the titrget object, with quality 0.3.
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Figure 6.13: A scan to collect collision and contact quality information along a range of
link orientations.
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Figure 6.14: A scan to collect collision and contact quality information along a range of
link orientations. An obstacle and the target object have been added to the figure. Some
link orientations in this range are in collision with the obstacle. Some are in contact with
the target object.
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Figure 6.15: A routing tree, indicating local collision conditions and contact quality values.
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Figure 6.16: A step by step illustration of the scanning process. This tracks optimal
link-cq values as information is passed from the proximal to the distal end of the link.
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6.7.2 Computing a Finger Quality Measure

Section 6.5 noted that subchain contact quality values could be passed up a link axis
while the link contact quality measure was constructed. This was more efficient than
performing two nearly identical fetch operations, and the effect of including the subchain
contact quality value was very simple, as illustrated in the circuit of Figure 6.8. The
subchain-cq value was simply kept below the max-sq value at all times.

This approach can also be used when there is a routing tree instead of a single routing
path, but the situation is somewhat more complicated. In particular, the value on the
max-sq line must always reflect the best max-sq value reachable along any path free of
collisions.

The pair of circuits shown in Figure 6.17 illustrates the function required to merge two
paths in the routing tree. A set of SUBCHAIN-CQ boxes from Figure 6.8 and SUBCHAIN-
CQ-MERGE boxes from Figure 6.17 can be strung together as determined by the structure
of a routing tree to extend the subchain contact quality value to a subchain one additional
link in length.

In a pseudocode version, function link-axis-quality-scan (Algorithm 6.5) would have
a routing tree in place of a routing path. This tree could, for example, be traversed
depth-first. The pseudocode version is not shown here.

6.8 Summary and Discussion

This chapter described three problems encountered when implementing the parallel algo-
rithm of Chapter 5:

1. Too few processors: The number of processors available does not allow each
processor to be assigned to a small chunk of configuration space.

2. Too little memory: The amount of on-processor memory limits the accuracy that
can be obtained using the current, breadth-first algorithm.

3. Too little time: The amount of time available for executing this algorithm limits
the density at which hand configuration space can be sampled. If this sampling is
coarse, but accurate, good solutions may be missed.

The first problem was addressed by mapping the three-dimensional space of positions of a
link or of the robot wrist onto a three-dimensional grid of processors rather than attempt-
ing to assign a unique processor to each six-dimensional link or wrist configuration. This
mapping allowed a particular implementation of the fetch function to be defined, and the
algorithm was optimized for this implementation. It also allowed a distributed represen-
tation of target object and environment geometries to be used, avoiding the repetition of
expensive collision and contact detection operations.

The second problem was addressed by proposing an alternative depth-first algorithm
that consumes much less storage space, but requires considerably more execution time.
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Figure 6.17: Circuits to merge two paths during computation of optimal subchain quality
measures. The subchain-cq line must be kept below the quality measure of the best free
subchain (the best max-sq value for a free subchain.)
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The third problem was addressed by proposing the use of routing trees to allow for
complete coverage of hand configuration space even when the sampling of this configura-
tion space is very coarse. A continuous tradeoff can be made between sampling accuracy
and executiGn time.

Although order notation is used to compare the various algorithms throughout the text
of this chapter and Chapter 5, it is helpful to plug in one set of values for the parameters
in these expressions to obtain a quantitative comparison of the algorithms. Figure 6.18
shows one list of parameter values similar to those that will be used in Chapter 7. It also
shows a breakdown of four of the algorithms into the following operations:

9 Lk-Env Coil: Determine whether there is a collision between a link of the hand
and any object or obstacle in the environment.

* Pt-Env Coil: Find the distance from a point to the nearest object or obstacle.

* Vect Prod: Compute a six-dimensional dot product or cross product.

"* Float Comp: Decide if one floating point number is greater than, less than, equal
to another.

"* Fetch: Each processor gets some (small) amount of information from another pro-
cessor.

" Local Fetch: All processors get some (small) amount of information from a neigh-
boring processor. The neighboring processor is one of its six nearest neighbors in
the three-dimensional grid, and the direction of information transfer (i.e. up, down,
east, west, north, south) is the same for all processors.

The values in the table represent the number of times each operation is repeated during
construction of the grasp quality space for a given orientation of the grasp prototype
with respect to the target object and for a given assignment of a link of the hand to a
contact of the grasp (i.e. for a given value of parameters orient and contact -assignment in
the algorithms). For the parallel algorithms, these are the number of operations required
for each physical processor. The amount of memory required (per processor) for each
algorithm is estimated in the far right-hand column. It is assumed that none of these
algorithms use routing trees.

The first algorithm in Figure 6.18, Iower-bound.gqi1, is the original serial algorithm
for computing a grasp quality space using a grasp prototype. The second algorithm,
Iower-bound-gq-l.parallel, is the original parallel version of this algorithm, presented in
Chapter 5. Because there are assumed to be 8000 physical processors, the second algorithm
performs approximately a factor of 8000 fewer operations in each physical processor. Some
communication is required, but it will probably have a small effect.

The third algorithm in Figure 6.18, Iower-bound-gq_3_parallel, represents the parallel
algorithm after the three-dimensional Cartesian space of link or wrist positions has been
mapped onto the processor grid and the breadth-first algorithm has been optimized for
this mapping, as described in Sections 6.4 and 6.5. The most obvious change from function
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lower-bound-gq-l 70M 0 770M 1.1B 0 0 370MB
lower-bound-gq-l parallel 8.6K 0 95K 140K 28K 0 46KB
lower-bound-gq_3_parallel 0 4 470K 640K 0 32K 46KB
lower-bound-gq_4_parallel 0 4 3.3M 5B 0 162K 23KB

Figure 6.18: A quantitative comparison of some of the algorithms presented.
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Iower-bound-gq-l-parallel is that the collision and contact detection operations have been
converted into a number of vector operations. The tradeoff seems to be a good one. This
z.1gorithm will be at least as fast as the smartest collision-detection algorithms that do
not use a distributed representation of the target object and environment geometry. and
it is much simpler. In addition, because the mapping of configuration space onto the
processor grid is known, the general fetch conumands have been translated into local-fetch
conmmands.

The fourth algorithm, Iower-bound-gq_4-parallel, represents the depth-first version of
the third algorithm. Here each tree of finger configurations is expanded to allow for greater
accuracy in sampling. From the numbers in Figure 6.18, it seems that this algorithm will
be approximately 8 times slower than the breadth-first version. Note that the depth-first
algorithm requires approximately half the memory of the others for this set of parameters.

It is not clear just from looking at the example in Figure 6.18 whether the breadth-
first algorithm or the depth-first algorithm would be more effective. With the paraineterb
given, there is little difference in memory requirements (a factor of two). Although the
breadth-first algorithm will be significantly faster, it may not be sufficiently accurate. In
addition, the entries in the table do not reflect the use of routing trees as described in
Section 6.7. Given the sparse sampling of orientation space that was chosen to generate
the entries in the table, routing trees will be needed to ensure that good solutions are not
missed.

In general, the tradeoffs proposed in Sections 6.6 and 6.7 allow the algorithm to be
tuned to balance the following parameters for a particular parallel hardware configuration:

* Accuracy: are the optimal solutions that are constructed kinematically accurate?

* Time: how long does it take to build the grasp quality space?

* Space: how much storage space is required for the temporary quality variables and
for storage of the solution array?

The breadth-first algorithm is relatively fast, but it requires large amounts of memory to
obtain an accurate sampling of hand configuration space. The algorithm of Section 6.6
is slow, but it samples hand configuration space very accurately, and it requires little
more space than that required to store a solution. The use of routing trees as outlined in
Section 6.7 allows time and space to be gained at the expense of accuracy.

Chapter 7 addresses the problem of tuning the algorithm, using some quantitative
results obtained using a particular parallel machine. These results are used to select
between the breadth-first and depth-first algorithms and to choose the set of sampling
parameters that are employed in grasp synthesis examples in that chapter.
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Chapter 7

Examples Using 3D Objects

Chapter 5 described a parallel algorithm for grasp synthesis, and Chapter 6 reviewed a
number of improvements to this algorithm, as well as a number of modifications that could
be used to make tradeoffs between execution time, accuracy, and memory requirements.

This chapter describes the hardware that was used to test the grasp synthesis algorithm,
and it describes a set of experiments that were performed to tune this algorithm for the

given hardware configuration. The tuned algorithm was employed to compute spaces of
grasp quality measures for a variety of objects using a cylindrical grasp prototype, similar
to the grasp shown in Figure 7.1. These results are presented and analyzed below.

The breakdown of sections in this chapter can be described as follows. Section 7.1

covers the hardware setup that was used to implement the grasp synthesis algorithm of this

report. Section 7.2 describes a set of experiments designed to select between the algorithms

described in Chapter 6 and tune them for the given hardware configuration. Section 7.3

covers the problem of friction, which is necessary for the cylindrical examples that will

be shown. The cylinder example grasp relies on friction to prevent slipping in two of the

six wrench space dimensions. Section 7.4 shows a variety of examples, which illustrate
an ability to find grasps of objects more geometrically complex than the prototype object

and to find grasps of objects in cluttered environments. Some of these grasps are verified

using the Salisbury hand, and photos of these grasps are shown. Section 7.5 presents a
summary.

7.1 Hardware

The parallel grasp synthesis algorithm was run on a Thinking Machines Connection Ma-

chine CM2. This is a Single Instruction Multiple Data (SIMD) machine, which means that
all processors simultaneously execute the same instruction on their local data set. Instruc-
tions are broadcast from a front-end machine (here a Sun-4). The particular CM2 used

in these experiments has 8000 processors, each with 64K bytes of memory. The machine
does have floating point hardware, but every 32 processors share a floating point accel-

erator. The machine can be configured for fast local communication when all processors
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Figure 7.1: A prototype grasp of a cylinder.

send messages in the same direction.
Grasps were tested using the Salisbury hand [421, a three-fingered hand with three

joints per finger.

7.2 Depth-first vs. Breadth-first Grasp Optimization

The previous chapter described a set of tools that allowed tradeoffs to be made when
implementing an algorithm to compute an array of grasp quality estimates over the space
of wrist configurations. The tradeoffs were to be made between:

"* Time required to compute an array of grasp quality estimates.

"* Space required to store the solution and to store the temporary quality values.

"* Kinematic accuracy of the hand configurations associated with the grasp quality
estimates of the solution space.

That chapter described a breadth-first algorithm that was relatively fast, but required large
amounts of storage space (Iower.bound-gq_3_parallel). It described a depth-first algorithm
that required much less storage and was capable of achieving greater accuracy, but this
algorithm was relatively slow (lower-bound.gq_4.parallel). It also described a technique

(routing trees) that could be applied to either algorithm to increase speed and save space
at the cost of accuracy (Section 6.7).

This section describes a pair of experiments performed using the hardware described
in Section 7.1. The experiments were designed to quantify, for this hardware setup, the
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tradeoffs associated with the tools of the previous chapter. The goal was to select a
complete algorithm to meet the following specifications:

1. Kinematic accuracy is acceptable. It will almost always be possible to achieve
a good fit of the robot hand to an optimal hand configuration returned by the
algorithm.

2. Coverage of hand configuration space is nearly complete. Good solutions
in general will not be missed.

3. The algorithm is as fast as possible given the first two constraints.

7.2.1 Experiment 1: Tuning the Breadth-first Algorithm

Because the main objective for this algorithm is really that it be as fast as possible
given constraints on kinematic accuracy and hand configuration space coverage, the faster
breadth-first algorithm was tried first. This algorithm constructs each space of optimal
subchain quality measures by first constructing the complete space of quality measures
for the distal link of the chain and then iteratively extending this space for each link of
the subchain. It is fast because optimal subchain information is stored and can be reused,
but it is only as accurate as the sampling of configuration space used to compute this
information allows.

Representing Configuration Space

The first decision made was in how to represent configuration space. Position space was
sampled using a 32x32x32 grid. This created 32K grid elements, each representing a cube
0.5" on a side. The 32K grid elements were distributed over the 8K processors of the
machine so that each physical processor simulated 4 virtual processors.

Each physical processor has 64K bytes of memory, so 16K bytes of memory was avail-
able for each virtual processor. Each processor needed space to store optimal solutions
and grasp quality estimates for 2 complete orientation maps. A slot in an orientation map
had to be large enough to store approximately 256 bits of information. Some working
storage was also required for performing a variety of vector operations. The maximum
size orientation map that could be acconmnodated given these constraints was found to be
a map of 180 orientations.

Tuning the Routing Trees for Complete Configuration Space Coverage

An orientation map having only 180 orientations made it very important that slots in
these orientation maps be represented as ranges and not points in orientation space. In
other words, it was necessary to use routing trees rather than routing paths as described
in Section 6.7. The next decision that had to be made was in how broad to make the
routing trees.
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Figure 7.2: A range of link configurations can be represented using a cone. The link can
be rotated about the joint Ji no more than an angle of 0 from the nominal orientation.
The length of the link is allowed to have error of ±AI.

Each routing tree was designed to collect subchain quality information for a range
of link orientations. When embedded in Cartesian space, the routing trees are seen to
collect information from a circular portion of the surface of a sphere (Figure 7.2). Links
with their proximal joint (joint Ji in Figure 7.2) fixed at a point and having the nominal
link orientation indicated by the central axis from joint Ji to joint Ji- 1 can, because of
uncertainty in the actual link position and orientation, have their distal joint in any part
of the shaded volume shown in Figure 7.2. The parameters associated with defining the
portion of space over which subchain quality information is collected are:

"* The maximum acceptable variation in link orientation, represented in the cone angle
(0 in Figure 7.2).

"* The maximum acceptable variation in link length, represented in the thickness of
the sphere surface (Al in Figure 7.2).

The second stage of the experiment consisted of tuning these parameter• to achieve
fairly complete configuration space coverage. Configuration space coverage was tested in
the following way. Given a particular wrist configuration and particular finger, the finger-
tip grid points that should be reachable in an exact representation of finger configuration
space were tested against the fingertip grid points reachable using the breadth-first al-
gorithm and a particular set of routing trees. The parameters of the routing trees were
adjusted until the region of grid points reachable by the fingertip was seen to be continu-
ous. Variation in link length was calibrated with respect to variation in link orientation by
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attempting to make the region of reachable fingertip points resemble as much as possible
the accurate region of reachable fingertip points. This resulted in a cone angle of 0.4
radians and a link length tolerance of 0.3 inches. (A typical joint angle range is 7r radians,
and a typical link length is 1.5 inches.)

Results from Experiment 1

The results of the experiment are shown in Figure 7.3. This figure shows two repre-
sentations of the position space grid, one on the left, another on the right. Each small box
represents a horizontal slice taken along the xy plane of this position space, and the boxes
are read top to bottom, left to right up the z axis of this space. The left figure shows the
fingertip points that should be reachable by a given finger based at a given wrist orien-
tation. The right figure shows the fingertip points reachable by the tuned version of the
breadth-first algorithm. It is clear that this reachable fingertip region is not very accurate.

Running this test took 15 seconds. The fetch command required to pull information up a
routing tree from one joint to the next was called 1080 times.

7.2.2 Experiment 2: Tuning the Depth-first Algorithm

Because the first experiment produced results that were not very accurate, a second ex-
periment was run to test the depth-first algorithm. This algorithm does not construct
complete intermediate subchain quality spaces. Subchain quality information is instead
constructed as needed. This algorithm should be more accurate than the breadth-first
algorithm of experiment 1 because subchains can be accurately constructed. It will be
slower because subchain quality information is not stored and cannot be reused. The hope
in performing this second experiment was that greater accuracy could be achieved with a
minimal cost in execution time and no increase in storage space.

Representing Configuration Space

Configuration space was represented much as in Experiment 1. Position space was sampled
using a 32x32x32 grid, set up using 4 virtual processors per physical processor. A solution
space of 180 wrist orientations was stored, and the number of joint angle samples taken
for each joint of the hand was set to be approximately the same as in Experiment 1. Only

3 joint angle samples were tested for a typical joint angle range of 7r.

Tuning the Routing Trees for Complete Configuration Space Coverage

Configuration space coverage was tested exactly as in Experiment 1. A wrist configura-
tion and a finger were specified, and the routing tree parameters were tuned to obtain a
continuous region of reachable fingertip points that looked as much like the exact region

of reachable fingertip points as possible. The routing parameters of Experiment 1-a cone
angle of 0.4 radians and a link length tolerance of 0.3 inches-were also found to work
well in this experiment.
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Figure 7.3: Tip positions reachable by a single finger at a single wrist orientation are
shown in these figures. The figures are read left to right, top to bottom, and show 32
slices perpendicular to the z-axis. The left picture shows the tip points that should be
reached; the right picture shows those that are reached by a breadth-first sampling scheme
in a 180 element orientation space.
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Results from Experiment 2

The results of this experiment are shown in Figure 7.4. The left figure shows the fin-
gertip points that should be reachable by a given finger based at a given wrist orientation.
The right figure shows the fingertip points reachable by the tuned version of the depth-
first algorithm. By comparing this figure to Figure 7.3, it is clear that the depth-first
algorithm has substantially better accuracy. Running this test took 90 seconds, 6 times
longer than in Experiment 1. The fetch command required to pull information from one
joint to the next was called 30,780 times, a factor of 28.5 more calls than were required
for Experiment 1. This factor of 28.5 is not reflected in the execution time because the
breadth-first algorithm of Experiment 1 relies on intermediate subchain quality maps and

it must spend a substantial amount of time accessing local memory to read these maps.
hIe depth-first algorithm of Experiment 2 has no such maps. Virtually all the execution
time of this algorithm is spent running the fetch command.

7.2.3 Summary and Tool Selection

Experiment 1 was designed to determine whether the breadth-first algorithm could be
used. Memory limitations restricted the orientation space map to 180 slots, and the
resulting hand configurations were found to have insufficient accuracy. Experiment 2 was
designed to test the more accurate, but slower depth-first algorithm. Wrist orientation
space sampling and joint angle sampling in Experiment 2 were set to be approximately
the same as that in Experiment 1, not because of memory limitations (especially in the
case of joint angle sampling), but in order to keep execution time as low as possible. Much
more accurate results were obtained at a cost in execution speed of a factor of 6.

The examples below all use:

"* the depth-first algorithm (Iower-bound-gq_4_parallel)

"* with routing trees collecting information from

- a cone of angle 0.4 radians (0 in Figure 7.2), and

- a link length tolerance of +0.3 inches (Al in Figure 7.2).

7.3 Friction

Throughout this report, frictionless grasps have been assumed. This is a reasonable as-
sumption, because a high-quality frictionless grasp will only have a better grasp quality
measure when friction is considered. The grasp prototype in this chapter is a cylinder
grasp, however (Figure 7.1). This grasp prototype is designed to rely on friction. If the
target object was an ideal frictionless cylinder, it would slide right out of the grasp when
the robot tried to lift it. It would also have no resistance to torque about the vertical
cylinder axis. To estimate the quality of this grasp, friction must be considered, and this
section describes how this can be done.
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Figure 7.4: Tip positions reachable by a single finger at a single wrist orientation are
shown in these figures. The figures are read left to right, top to bottom, and show 32
slices perpendicular to the z-azdis. The left picture shows the tip points that should be
reached; the right picture shows those that are reached by the depth-first sampling scheme
used here.

212



contact point

tan-1 111

fiction cone

allowable unit
contact forces

Figure 7.5: A cone representing the space of legal unit forces at a contact with friction.
The size of the friction cone is limited by the coefficient of friction p.

One way to generalize and apply a grasp prototype with friction is to fully incorporate
friction into the solution process, so that grasp quality measures can be computed in the
full six-dimensional wrench space. This approach was tried, but it has some problems.
The presence of friction means that there is a range of contact forces that can be applied at

each contact (Figure 7.5). The technique used to generalize grasps in Chapter 3, however,
relies on a grasp described using a discrete number of contact wrenches. The space of
contact wrenches corresponding to each contact with friction must be sampled to obtain
a set of discrete contact wrenches (Figure 7.6). If there are m samples per contact, a

c-contact grasp would be transformed into an (mc)-contact grasp.

Now, to match a new grasp to this (mc)-contact grasp prototype, mc contacts must
be generated on the new target object. In general, it would be desirable to match the
prototype using a c-contact grasp with friction. This means that for each of c potential
contacts on the target object, m samples must be taken to represent the range of contact
wrenches that can be applied at that contact. In addition, the m samples of each contact
of a new grasp must be aligned with the m samples from a contact of the grasp prototype.

The choice of samples and the phase of this alignment are important, as they can drastically
affect the cumulative quality measurement derived for the contact (Figure 7.7). In general,

this process of approximating a range of wrenches at each contact is time-consuming and
does not work very well.

The approach that was taken in the examples below is quite different. A frictionless
grasp prototype is constructed in a space of reduced dimension. For the example prototype
grasp shown above, the prototype is designed to cover four degrees of freedom in wrench
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Figure 7.6: Sampled unit forces at a contact with friction. The convex hull formed from the
contact wrenches corresponding to these sample contact forces approximates the boundary
of the space of unit wrenches possible from this contact.

space without relying on friction. The grasp can easily resist forces perpendicular to the
cylinder axis and torques that are not about the cylinder axis. A potential match to this
prototype is evaluated by ensuring that there is sufficient friction for each contact wrench
to point into this reduced dimensional space without slipping, projecting each contact
wrench of the proposed grasp into this four-dimensional space in the way requiring the
smallest coefficient of friction, and evaluating the resulting reduced dimensional grasp by
matching it to the reduced dimensional prototype.

If the coefficient of friction is high enough to create a grasp that does not slip in this
four-dimensional space, then the quality measure that is calculated for the grasp reflects
the effectiveness with which the grasp will be able to respond to task wrenches in that
four-dimensional space. The effectiveness with which the grasp can respond to any task
wrenches in the other two dimensions of wrench space depends on the difference between
the coefficient of friction available and the coefficient of friction required in order for the
wrenches that make up the four-dimensional proposed grasp to lie within the friction
cones at the contacts. If this difference is small, the hand will have to squeeze very hard
to counter forces in these other two dimensions. Of course, this particular separation
of dimensions into friction and frictionless dimensions is artificial and is only necessary
for obtaining lower-bound grasp quality measures in the reduced dimensional space. If
there is any doubt about the actual stability of a particular grasp, it is easy to test it
more completely by sampling the friction cones at the contacts of a proposed grasp and
evaluating the quality of that particular grasp in the full six-dimensional wrench space.
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Figure 7.7: To estimate grasp quality from independent contact quality measurements,
each sample contact wrench from a contact of a grasp prototype must be matched with
a sample contact wrench from a contact of a proposed grasp. The ordering of this match
affects the cumulative quality measure derived for the contact.
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7.4 Grasps of Cylinders

This section shows that a cylindrical prototype grasp, such as that shown in Figure 7.1
can be used to solve two complex, related problems:

"* Classification of possible grasps when obstacles are not present. The range of grasps
matching the cylindrical prototype is illustrated for three target objects of increasing
complexity.

"* Avoidance of obstacles. Two of the three target objects are used to compare the
range of grasps possible in a crowded workspace to the range of grasps possible when
no obstacles are present.

To set up these problems, this section first analyzes the cylindrical prototype grasp
in some detail. Then the two problems listed above are addressed. Finally, this section
describes two grasps of real objects that were found by this grasp synthesis technique.
These grasps were verified using the Salisbury hand.

7.4.1 A Prototype Cylinder Grasp

The prototype grasp used in the examples of this section is a grasp of a cylinder, similar
to that shown in the two views of Figure 7.1. It consists of seven contacts: one contact
on each of the two distal links of each of the three fingers and one contact on the palm.

The grasp is designed to span four dimensions of the complete six-dimensional wrench
space without relying on friction. The four good dimensions are horizontal forces, and
torques about the horizontal axes. Grasp quality measures and contact quality measures
are computed using only these four dimensions.

The two dimensions of vertical force and torque about the vertical axis rely on friction.
If there were no friction, the object would slide right out of the grasp. The examples of this
section assume a coefficient of friction of 0.6. All contact forces must be able to generate
contact wrenches that point into the four-dimensional space of horizontal forces and torque
about the horizontal axes without exceeding this coefficient of friction at a contact. The
projected contact forces and their corresponding torques are used to compute contact
quality and grasp quality measures.

Independent Contact Regions of the Prototype

For the examples in this chapter, grasp quality is measured as defined in Expression 2.25.
This grasp quality measure was designed to approximate resistance of a grasp to distur-
bance forces, and the wrench space of this task is given as a wrench space ball.

Using this task wrench space, the independent contact regions of the prototype object
can be computed as for the two-dimensional prototype grasp of Chapter 4. The prototype
grasp of that chapter is shown in Figure 4.1 and a corresponding set of independent contact
regions is shown in Figure 4.5.
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Figure 7.8: Positive quality contact regions corresponding to a 7-contact, 4-dimensional
cylinder grasp. The figure shows three views of these regions when the cylinder axis is
aligned with the prototype axis.

Results for the prototype cylinder grasp are shown in three views in Figure 7.8. This
is a seven-contact grasp, and the seven regions corresponding to a contact quality measure
greater than zero can be seen in the figure. The rightmost view shows two large regions.
These correspond to the contacts on the distal link of the right and left fingers. The
leftmost view shows the smaller regions corresponding to the middle link of the right and
left fingers. The center view shows the three thin contact regions corresponding to the
contacts on the two distal links of the thumb and the contact on the palm.

7.4.2 Aligning the Grasp Prototype to the Target Object

The cylindrical grasp prototype of this chapter has a problem of symmetry when aligning
it to a new target object: it is symmetrical for rotation about the vertical axis of the
cylinder. This means that while a new target object can be aligned to the cylindrical
grasp prototype by placing the center of mass of the target object and the center of the
grasp prototype at the same point and aligning the two cylinder major axes, there is still
one orientation degree-of-freedom that must be resolved: relative orientation about these
major axes.

Ideally, it would be sufficient to just sample this single orientation degree of freedom.
Unfortunately, the thin strip of thumb and palm regions shown in Figure 7.8 proves to be
a weak point with this grasp prototype, and it is necessary to allow some rotation of the
prototype about an axis orthogonal to the axis of symmetry.

This rotation of the prototype axis away from a target object axis will affect the sizes
and shapes of the independent contact regions on the target object. It is interesting to see
what effect this has when these regions are computed for the prototype object. Figure 7.9
shows the results from tilting the prototype axis M radians away from the cylinder axis

6
in two opposite directions. This does not affect the sizes of the thumb and palm regions,
but it does affect the sizes of the finger regions. One of the regions nearly disappears
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Figure 7.9: Posit:ve quality contact regions corresponding to a 7-contact, 4-dimensional
cylinder grasp. The rows show the regions that result when the cylinder axis is tilted
radians away from the grasp prototype.

(the long, vertical, wispy region in the left hand figures). This is because the prototype
axis passes very near that region, and sufficient torques cannot be generated to meet the
contact constraints corresponding to that region. Two of the other regions (in the right
hand figures) are smaller than in the neatly aligned prototype, and they have jagged edges.
The slanted segments of these jagged edges run parallel to the prototype axis. Contact
wrenches on one side of these segments point into the friction cone when projected into the
four-dimensional "frictionless" space of the prototype, and contact wrenches on the other
side of these segments point out of the friction cone after this projection. These figures
illustrate some of the limitations of using this type of reduced-dimensional prototype in a
situation that is less than ideal.

In the examples below, 180 alignments are sampled. These represent 90 right-handed
grasps and 90 left-handed grasps at evenly spaced orientations about the cylinder major
axis. Every third sample is tilted 1 radians away from the cylinder axis. The sample
following is tilted 1 radians in the opposite direction. The sample following is not tilted6
away from the cylinder axis.
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7.4.3 Extracting Solutions

The solution obtained from running the grasp synthesis algorithm is a set of optimal
hand configurations distributed over the six-dimensional space of wrist configurations.

In the examples below, only good wrist positions are illustrated. Figure 7.10 shows an
example using the prototype object. Boxes represent horizontal slices through the three-

dimensional Cartesian space processor grid, and the figure is read left to right, top to

bottom, down the axis of the cylindrical target object. Grey regions represent the cylinder.
White regions represent wrist positions from which some good grasp (a grasp with a quality

greater than zero) can be achieved. Note that this is a three-dimensional projection of
the complete six-dimensional solution space. White regions are wrist positions for which
a good grasp can be achieved at some wrist orientation. To find out what orientation or

orientations are represented and to extract the best solution found for a wrist position, it
is necessary to query the processor representing that wrist position.

Each wrist configuration stores not only a boolean value indicating whether any good
grasps are reachable from that wrist configuration, but also the lower-bound grasp quality
measure of an optimal solution and an optimal hand configuration reachable from that
wrist configuration. As might be expected from the coarse grid sampling and the large

tolerances, the optimal hand configurations that are stored do not always fit the hand well.
This is because each solution consists of a set of link configurations that can approximately,
but not exactly, be fit together given the constraints of the hand kinematics. It is necessary
to fit the hand model to this approximate solution, and this is done deterministically. If
the fingertip positions and the wrist orientation are known, then a hand configuration

can be determined. There is only one ambiguity in this solution with the kinematics
of the Salisbury hand-does the distal joint bend up or down? This is decided using
the expected position of this joint from the approximate solution. Unfortunately, this
technique sometimes results in a hand configuration visibly different from the approximate

solution used to find this hand configuration. This can be seen in the results that are

presented below. There will be visible collisions between the hand and target object, and
there will be cases where the hand does not seem to contact the object in exactly the

right places. These problems could be eliminated by adding a local control step after
the deterministic matching process. The fit of the hand to the intended contact points
could be optimized and collisions could be avoided. With more processing power or more
time, it would even be possible to do local optimization on the full grasp quality measure

instead of its lower-bound approximation obtained from the independent contact quality

measures.

Figure 7.11 shows an example solution format. This solution shows a graphical illus-
tration of a grasp similar to the cylinder prototype in two views in the top row, and it

shows the seven contact points of the grasp in the middle row. For this grasp, a grasp
quality of 0.26 is guaranteed. The contact points are used to compute an actual grasp

quality measure for the grasp. The actual quality found for this grasp is 0.41. The grasp
is then used to form a new grasp prototype, and the regions corresponding to the new

prototype and a grasp quality greater than 0.2 are shown in the bottom row. A11 solutions
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Figure 7.10: This figure shows wrist positions from which a good cylinder grasp can be
achieved. Each box represents a horizontal slice of three-dimensional Cartesian space.
The slices are read left to right, top to bottom, down the cylinder axis. The grey object
is the cylinder. The white areas represent good wrist positions.
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Figure 7.11: A match of the cylinder prototype to a cylindrical object. The top row shows
the grasp, the middle row shows the contact points, and the bottom row shows the contact
regions calculated for this grasp and a quality measure of 0.2.
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illustrated will have this format.

7.4.4 Grasp Classification

This section presents some grasp classification results, using the cylinder grasp prototype
that was described in detail above. Three target objects are tested.

Grasps of the Prototype Object

The first object is the prototype object-a simple cylinder. Figure 7.10 shows the wrist
positions from which a grasp matching the prototype can be achieved. Many of the
solutions in this space are very similar to the grasp prototype, such as that solution shown
in Figure 7.11. In this solution, the prototype axis is exactly aligned with the cylinder axis.
There is a continuous range of solutions of this type, covering about 1.5" vertically and the
full range of orientations about the cylinder axis. There are also solutions corresponding
to a prototype axis tilted with respect to the cylinder, but these solutions have a lower
guaranteed grasp quality. One such solution is shown in Figure 7.12. It has a guaranteed
grasp quality measure of 0.15 and an actual grasp quality measure of 0.25.

Grasps Requiring more Accurate Contact Placement

When the target object differs from the prototype object, the variety of good solutions
may not be as large. Figure 7.13 summarizes the solutions available for a more complex
object, a cylinder intersected by two toroidal objects. The solutions cover roughly the
same vertical area, but they are much more sparse. This means that solutions will be
more sensitive to contact placement in this example.

Figure 7.14 shows the best grasp found for this object. As with the cylinder, a range
of solutions can be found about the target object axis. Figures 7.15 and 7.16 show two
more solutions in this range. The three solutions are shown from the same points of view
with respect to the target object. Notice that the placement of the thumb is very different
in the three figures.

As with the cylinder, there are also solutions where the prototype axis is tilted with
respect to the target object axis. Figure 7.17 shows one such solution. This grasp in general
would not be presented as one of the best grasps, because there are many candidate grasps
with higher guaranteed grasp quality measures in the solution space. Such a solution would
only be extracted as a good candidate if these other solutions were somehow blocked.

Grasps Requiring more Accurate Wrist Placement

The solution in Figure 7.17 would not normally be extracted as a good grasp of the example
object in that figure. This section presents an object for which this class of grasps is very
important. A bar has been added through the center of the object to eliminate the best
solutions of the previous example. To grasp this object, the hand must go over or under
this bar. Figure 7.18 shows a summary of the results. The sampling is sufficiently sparse
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Figure 7.12: A match of the cylinder prototype to a cylindrical object. The top row shows
the grasp, the middle row shows the contact points, and the bottom row shows the contact
regions calculated for this grasp and a quality measure of 0.1.
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Figure 7.13: This figure shows wrist positions from which a good grasp of the more complex
cylindrical target object can be achieved. Each box represents a horizontal slice of three-
dimensional Cartesian space. The slices are read left to right, top to bottom, down the
target object axis. The grey object is the target object. The white areas represent good
wrist positions.
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Figure 7.14: A match of the cylinder prototype to a more complex object. The top row
shows the grasp, the middle row shows the contact points, and the bottom row shows the
contact regions calculated for this grasp and a quality measure of 0.2.
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Figure 7.15: A match of the cylinder prototype to a more complex object. The top row
shows the grasp, the middle row shows the contact points, and the bottom row shows the
contac. regions calculated for this grasp and a quality measure of 0.2.
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Figure 7.16: A match of the cylinder prototype to a more complex object. The top row
shows the grasp, the middle row shows the contact points, and the bottom row shows the
contact regions calculated for this grasp and a quality measure of 0.2.
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Figure 7.17: A match of the cylinder prototype to a more complex object. The top row
shows the grasp, the middle row shows the contact points, and the bottom row shows the
contact regions calculated for this grasp and a quality measure of 0.2.
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and the grasp sufficiently sensitive that only a few solutions are identified. The solution
space can be understood fairly well by examining these solutions, however.

Figure 7.19 shows the best solution found. Although the sampling algorithm does not
find all qualitatively different variations of this solution, it is clear that there will be eight:
the object has two symmetrical halves; the hand can go over or under either bar; and it
can do this left or right handed.

For each of these variations, there is a small range of solutions. Figures 7.20 and 7.21
illustrate solutions in other parts of this range. All three grasps are shown from the same
views. Notice the variation in placement of the thumb with respect to the object cavity.

7.4.5 Obstacle Avoidance

The next few examples show how the solution technique presented in this chapter
can be used to find grasps that avoid obstacles in the environment. An environment
was constructed that had eight randomly placed, roughly spherical obstacles. Figure 7.22
shows a summary of the results in this environment for the cylindrical target object. The
new grey areas are areas occupied by the obstacles. Compare this to Figure 7.10. The
symmetrical pattern of Figure 7.10 has been broken by the introduction of obstacles into
the environment.

Figures 7.23 and 7.24 show two of the solutions in this range. It is difficult to visualize,
but both of these solutions are free of collisions. This example points out the insufficiency
of using this algorithm alone, however. Although the grasps are collision-free, it is difficult
to imagine that the hand could successfully extract the object from this environment
without moving at least some of the obstacles.

Figure 7.25 shows results for the more complex cylindrical object in the same environ-
ment. Compare this figure to Figure 7.13. The obstacles have eliminated all but a small
range of solutions.

Figure 7.26 shows one solution within this range. This is very similar to the solution
shown in Figure 7.23.

7.4.6 Experiments

Two real objects-a toy plane and a bubble gun-were modelled (Figure 7.27) so that the
resulting grasps could be verified using the Salisbury hand. Both objects were treated as
cylinders, with the major axis of the plane passing from the front of the plane to the back
of the plane through the body, and the major axis of the bubble gun passing through the
centers of the three spheres making up the barrel of the gun. The center of mass chosen
for the bubble gun reflected only the masses of these three spheres. The cylindrical parts
of these two objects have much smaller diameters than the example cylinder. The plane
diameter has a maximum value of 2.5 inches, and the bubble gun diameter a maximum
of 2.25 inches, while the diameter of the example cylinders was 3.5 inches. Nevertheless,
the same grasp prototype was used for these new objects. Figures 7.28 and 7.29 show the
results, which are sparse for both objects.
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Figure 7.18: This figure shows wrist positions from which a good grasp of an even more
complex cylindrical target object can be achieved. Each box represents a horizontal slice of
three-dimensional Cartesian space. The slices are read left to right, top to bottom, down
the target object axis. The grey object is the target object. The white areas represent
good wrist positions.
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Figure 7.19: A matcb of the cylinder prototype to a more complex object. The top row
shows the grasp, the middle row shows the contact points, and the bottom row shows the
contact regions calculated for this grasp and a quality measure of 0.2.
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q > 0.00 q > 0.00

Figure 7.20: A match of the cylinder prototype to a more complex object. The top row
shows the grasp, the middle row shows the contact points, and the bottom row shows the
contact regions calculated for this grasp and a quality measure of 0.
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Figure 7.21: A match of the cylinder prototype to a more complex object. The top row
shows the grasp, the middle row shows the contact points, and the bottom row shows the
contact regions calculated for this grasp and a quality measure of 0.
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Figure T.22: This figure shows wrist positions from which a good grasp of the original
cylinder object can be achieved in an environment with obstacles. Each box represents a
horizontal slice of three-dimensional Cartesian space. The slices are read left to right, top
to bottom, down the target object axis. The grey objects are the target object and the
obstacles. The white areas represent good wrist positions.
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Figure 7.23: One collision-free grasp of the cylindrical target object found in a crowded
environment.

Figure 7.24: A second collision-free grasp of the cylindrical target object found in a
crowded environment.
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Figure 7.25: This figure shows wrist positions from which a good grasp of a more complex
target object can be achieved in an environment with obstacles. Each box represents a
horizontal slice of three- dimensional Cartesian space. The slices are read left to right, top
to bottom, down the target object axis. The grey objects are the target object and the
obstacles. The white areas represent good wrist positions.
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Figure 7.26: One collision-free grasp of the more complex target object found in a crowded
environment.

Figure 7.27: Models of two real objects-a toy plane and a bubble gun.
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Figure 7.28: This figure shows wrist positions from which a good grasp of the toy plane
can be achieved. Each box represents a horizontal slice of three-dimensional Cartesian
space. The slices are read left to right, top to bottom, down the target object axis. The
grey object is the target object. The white areas represent good wrist positions.
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Figure 7.29: This figure shows wrist positions from which a good grasp of the toy gun can
be achieved. Each box represents a horizontal slice of three-dimensional Cartesian space.
The slices are read left to right, top to bottom, down the target object axis. The grey
object is the target object. The white areas represent good wrist positions.
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In the grasp of the plane, the fingers must get around the two wings. There are eight
possible grasps, each with a small amount of room to move, much as in the example
shown in Figure 7.19. Figure 7.30 shows one of these solutions, a left-handed grasp,
and Figure 7.31 shows two views of the hand grasping this object in the right-handed
permutation. This was found to be an easily achievable and very solid grasp.

In the grasp of the bubble gun, there is only a small range of solutions because the
robot is forced to use the trigger of the gun to expand the effective radius of the barrel of
the gun by a small amount. A variable radius prototype cylinder grasp would have helped
here. Figure 7.32 shows one solution that was found. Figure 7.33 shows the hand grasping
this object. This was also a solid, easily achievable grasp.

7.5 Summary

This chapter has shown a variety of cylinder grasps, all found by applying the same cylin-
drical grasp prototype to a set of new target objects. This set of examples demonstrated
that this grasp prototype is flexible with respect to variation in target object geometry.
The cylinder with a bar through it (Figure 7.19) and the airplane (Figure 7.30) both
required grasps different in appearance from the original prototype grasp.

In addition, this set of examples showed how the global overview of the solution space
provided by the grasp synthesis algorithm, as shown in Figure 7.22, for example, can be
very helpful in determining the effect of variation in the target object geometry on the
shape of the solution space (compare Figures 7.13 and 7.10) and the effect of variation in
the geometry of the environment on the shape of the soLtion space (compare Figures 7.22
and 7.10). This information provides a good starting point for a more complete algorithm
that must find an arm configuration that is free of collisions and compute a collision-free
path into a good solution. It is only worthwhile to look for complete solutions where the
hand is free of collisions and can achieve a good grasp of the target object.

Now that these examples have been presented, the goals described in the beginning of
Chapter 5 can be reviewed:

" Find optimal grasps. A hand configuration having a globally optimal lower-bound
grasp quality measure (as described by Expression 3.18) can be easily extracted from
the solution space. This is not in general the globally optimal grasp as defined by
the grasp quality measure of Expression 2.25, for example, but it is guaranteed to
be a high-quality grasp.

" Evaluate how easily a grasp can be achieved. Once a grasp has been selected,
this grasp can be used to find good regions of contact placement for each contact of
"a grasp (e.g. see the bottom row of Figure 7.11). The sizes of these regions provide
"a measure of how easily a matching set of contacts can be achieved.

"* Measure the effect of obstacles in the environment. By comparing the size
and shape of the space of good wrist configurations for a grasp of a given target object
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Figure 7.30: A match of the cylinder prototype to the toy plane. The top row shows the
grasp, the middle row shows the contact points, and the bottom row shows the contact

regions calculated for this grasp and a quality measure of 0.
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Figure 7.31: Two views of the Salisbury hand grasping the toy plane.
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q > 0.00 q > 0.0

Figure 7.32: A match of the cylinder prototype to the toy bubble gun. The top row shows
the grasp, the middle row shows the contact points, and the bottom row shows the contact
regions calculated for this grasp and a quality measure of 0.
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Figure 7.33: Two views of the Salisbury hand grasping the toy bubble gun.
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in environments with and without obstacles (e.g. compare Figure 7.10 to Figure 7.22)
the effect of obstacles on this projective solution space can be determined.

" Measure the effect of the target object geometry. By comparing the size and

shape of the space of good wrist configurations for grasps of two different target ob-

jects in an environment without obstacles (e.g. compare Figure 7.13 to Figure 7.10)

the effect of variation in the target object geometry can be determined.

" Select good values for parameters of symmetry in a grasp. By sampling

the solution space over the parameters of symmetry of a grasp (such as symmetry
in the orientation of the cylindrical grasp prototype about a target object major

axis), good values for these parameters of symmetry can be selected. The difference

between Figures 7.22 and 7.10, for example, highlights directions from which the

hand might approach the cylinder object in the environment with obstacles.

In summary, although some compromises have been made-only a projective solution
space is computed, and the grasp quality measures optimized are lower-bound estimates

of the real thing-the grasp synthesis technique presented here does address all of the

capabilities described as goals in the beginning of Chapter 5. This technique can be used
to extract good solutions as well as to obtain a global overview of the solution space and

measure the effect of geometric variations on this solution space.
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Chapter 8

Summary

This report has addressed the problem of applying standard grasps in non-standard sit-
uations, situations where the geometry of the target object or the geometry of the envi-
ronment differ from the geometry represented by the standard grasp. A grasp synthesis
algorithm was presented that takes as input a single example grasp and produces as out-
put a set of hand configurations representing good grasps of a new target object. These
grasps are guaranteed to be free of collisions and suitable for the intended task.

The technique that was used to generate the solution space consists of three steps:

1. generalizing the example grasp for a given task,

2. applylng this generalized grasp to a new target object to obtain good sets of contacts
on that target object, and

3. finding collision-free hand configurations from which these good contact sets can be
reached.

These three steps are reviewed here.

Generalizing the Example Grasp

Tue first step of the process is to extract the contacts of the example grasp and generalize
this contact set so that it reflects a space of contact sets guaranteed to be appropriate
for che intended task. The generalization process, which was described in Chapter 3, pro-
vides the flexibility necessary to accommodate a variety of target object and environment
geometries. The generalization step is performed using the wrench space description of
the grasp prototype, and not a position space description, or the shape of this prototype.

This means that a generalized grasp description includes only constraints relevant for the
given task, which is also expressed as a space of wrenches.

Two features of this grasp generalization process are especially interesting. First, it is
designed to work equally well for any given task, as long as the task can be expressed as
a space of wrenches applied to the target object. The example grasp can be generalized
for any given task, no matter how complicated, in an offline process. This offline process
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involves constructing a wrench space convex hull from the example grasp and determining
the scale at which the entire task wrench space fits within this convex hull. The time
required to execute this offline process is proportional to the complexity of the task, but
the result is not. The process of matching a proposed new grasp to the generalized grasp
can be accomplished by minimizing a small number of dot products for each contact of
the grasp. The complexity of the matching process does not vary with the complexity of
the task.

A second interesting feature of the grasp generalization process is that it allows contacts
to be optimized for measures of contact quality and robustness to contact placement
without knowing the values of the other contact wrenches of a grasp. This is possible
because these other contact wrench values are approximately defined by the generalized
grasp description. The ability to locally optimize the placement of each contact of a grasp
allows the search for good contact sets to be parallelized over these contacts.

Finding Good Contact Sets

The second step of the process is to apply the generalized grasp description to the new
target object for various alignments of the grasp prototype to that target object. Good sets
of contacts on the new target object are extracted from this process. Once an alignment of
the grasp prototype to the target object has been specified, identification of good contact
sets is very simple, requiring only the computation of a few dot products at sampled
contacts with the target object features. Any geometric information that is available can
be used to simplify the task of selecting good alignments to test.

Finding Good Hand Configurations

The third step of the process is to search the space of hand configurations using a parallel,
dynamic programming algorithm. The result is a representation of the space of wrist
configurations from which good sets of contacts can be reached. This process produces
a global overview of the space of good solutions. This global overview can be used to
determine the effect of variation in the target object geometry on the size and shape
of the solution space. It can also be used to determine the effect of obstacles in the
environment on the size and shape of the solution space,

In addition to providing a global overview of the space of good solutions, this parallel
optimization algorithm highlights a set of optimal hand configurations associated with
good regions of wrist configuration space. These hand configurations can be examined to
obtain a more complete idea of the types of solutions available than can be obtained by
examining the size and shape of the space of good wrist configurations. This topic was
explored in the many examples of Chapter 7. A hand configuration can be selected from
this set to be used as the grasp to be achieved by the robot hand.

In addition, if intermediate results are retained from executing the parallel optimiza-
tion algorithm, a search can be performed through the complete space of hand configura-
tions. This search can be guided by the lower-bound grasp quality measures used in the
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optimization, so unpromising areas of this very large space can be avoided. This search
requires no additional calculation, only repeated references of local processor memory.

The grasp synthesis problem is extremely complex when the constraints of target object
geometry, environment geometry, hand kinematics and geometry, and a task description
are considered. Even so, the use of a standard grasp was shown in this report to make the
grasp synthesis problem almost tractable. A global overview of the space of good solutions
could be generated for grasps using a cylindrical grasp prototype in approximately one
hour on available hardware. The global nature of the solution was very satisfying because
it provided a good summary of the effect of variations in target object geometry or en-
vironment geometry on the size and shape of the solution space. The use of the simple
cylindrical grasp prototype as described in this report was shown to be sufficiently flexible
to apply to a wide range of target object and environment geometries.

8.1 Future Work

In order to round out this work, a number of additional topics must be considered, ranging
from better consideration of friction and complex contacts to consideration of the prepro-
cessing and postprocessing steps needed to form a complete grasping system. These topics
are considered in the sections below.

8.1.1 Curved Objects

No curved objects were used as prototype objects, and no grasps of curved objects were
synthesized in this report. Nevertheless, curved objects do not pose any new problems
for this grasp synthesis technique. A point contact on a curved surface has a unique local
normal. This local normal can be used to compute the frictionless forces and torques that
can be applied at the contact and to compute the contact quality measure for the contact,
just as with point contact on a planar surface. Because the algorithm proposed in this
report uses a parallel distributed description of local target object geometry (Chapter 6),
the only additional work required to accommodate curved objects is the work required to
load the parallel computer with this geometric information.

8.1.2 Friction and Complex Contacts

Chapter 7 dealt with the problem of friction in an ad hoc way, and this report did not deal
at all with complex contacts, such as contacts involving concavities. Complex contacts do
not have a unique local normal, and so these contacts are similar to contacts with friction
in the sense that the direction of applied force at a contact can fall within a range of
possibilities.

The problem with friction and with complex contacts is that the grasp synthesis tech-
nique described in this report works best when matching a relatively small number of
uniquely defined contact wrenches of a new grasp to the same small number of uniquely
defined contact wrenches of a grasp prototype. Substituting wrench space regions for
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these uniquely defined contact wrenches introduces substantial difficulties into this grasp
synthesis algorithm.

Chapter 7 described some of the difficulties involved with one approach that attempted
to transform wrench space regions into sets of unique contact wrenches by sampling the
boundaries of these regions. This approach did not work well because it cluttered up the
grasp prototype. It was difficult to find contact wrenches on the new target object to
match each of the inflated number of prototype contact wrenches.

A better approach would be to find some way of streamlining the grasp prototype
description as much as possible, keeping the number of contact wrenches used to describe
that prototype to a minimum, while capturing most of the range of the prototype grasp.
Complex contacts on the new target object could then be used in a flexible way to match
one or more of the streamlined prototype wrenches. A twist on this would be to allow small
sets of contacts on the new target object to match a single contact of the grasp prototype.
All of these techniques introduce some additional complexity into the problem, but allow
synthesis of a wider range of grasps.

8.1.3 Directional Tasks

Some tasks have non-zero components in some dimensions, but do not contain the wrench
space origin in those dimensions (Figure 8.1). The task of drinking from a glass, assuming
no arbitrary external wrenches are expected, falls into this class. Although the glass must
be supported against gravity throughout the drinking motion, it does not matter if the
grasp would let the glass fall if it were turned upside down. This type of task can be called
a directional task, and it must be treated somewhat differently from tasks that do contain
the wrench space origin in all dimensions in which they have non-zero components.

Figure 8.1 shows a two-dimensional example, including wrench space descriptions of
both a grasp and a task. The main difference in generalizing such a grasp to fit the task
is that the wrench space origin is included in the construction of the grasp space convex
hull (Chapter 2). Contact constraint sets can be computed as described in Chapter 3,
but when the grasp space is collapsed to form an intermediate convex hull tangent to the
given task, then the facets of the grasp space convex hull that contain the wrench space
origin must remain fixed to that wrench space origin (Figure 8.2). One interesting area of
future work is to complete the description of the construction of contact constraint sets
for some directional tasks and to use this construction to synthesize a range of grasps of
new target objects.

8.1.4 Prototype Selection

The grasp synthesis algorithm described in this report requires a preprocessing step: some-
how, a grasp prototype must be selected. Chapter 7 showed that a single grasp prototype,
in particular the cylinder grasp prototype, can apply to a fairly wide range of target ob-
jects. This would tend to limit the size of the grasp library that would be required, and
thus make the process of selecting an appropriate grasp prototype simpler. The question
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Figure 8.1: Wrench space of a directional grasp and a directional task. The grasp and
task have two non-zero dimensions in which their wrench spaces do not contain the wrench
space origin.

of how to perform suc i a selection in a principled way is difficult to answer, however.
It would also be interesting to see if a grasp library could be constructed that would be
guaranteed to cover a reasonably complete space of target objects and tasks.

8.1.5 Arm Constraints and Planning a Path

This report described a grasp synthesis technique that produced as output a space of
collision-free hand configurations representing grasps of a new target object suitable for
the intended task. A complete grasp plan, however, requires that a collision-free arm con-
figuration be identified and a collision-free path be found from the current configuration
of the robot into some high-quality, collision-free grasp. These are both hard problems,
but the technique described in this report, which identifies a space of good hand configu-
rations, provides a good starting point. This space of good hand configurations drastically
constrains the space of good arm configurations and paths that may be found, but it also
allows some flexibility in the final placement of the hand. This flexibility would not be
present if only a single, optimal hand configuration had been identified.
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Figure 8.2: Contact constraint sets for a directional task. The wrench space origin is used
as part of the construction.
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Appendix A

Complete Algorithm Listing

This appendix presents a complete listing of all pseudocode functions presented or refer-
enced in the body of the report. Functions are in alphabetical order by function name.

build wrench(force, torque)
begin

return(the wrench formed from the force and torque vectors);
end

collision dist of(Iocal-contact-info) begin
return(Iocal-contact-info.collision-dist);

end
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compute-cq_] (orient, contact-assignment, prototype, hand-model, object, obstacles)
begin

{unwind contact quality calculation for all links and link configurations}
for link in links-of(hand-model) do

for config in workspace-configs() do
cqjlink, config] :=

computeJink-cq-l

(link, config, orient, contact-assignment, prototype, hand-model,
object, obstacles);

return(cq);
end

compute-cq-l-parallel

(orient, contact-assignment, prototype, hand-model, object, obstacles)
begin

(unwind contact quality calculation for all links and link configurations}
for link in links-of(hand-model) de

for i in processors() in parallel do
begin

link-configli] := workspace.config(i);
cq[link, i] :=

computelink-cq-l
(link, link-config[ii, orient, contact-assignment, prototype, hand-model,

object, obstacles);
end

{ return parallel contact quality variable}
return(cq);

end
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compute-cq -2_parallel
(orient, contact-assignment, prototype, hand-model, object, obstacles)

begin
{ unwind contact quality calculation for all links and link configurations}
for link in links-of(hand-model) do

for link-orient in workspace-orients() do
for i in processors() in parallel do
begin

link-configlil := workspace-config_2(link-orient, i);
cq[link, link-orient, i :

computeJink-cq-l
(link, link-configli], orient, contact-assignment, prototype, hand-model,

object, obstacles);
end

{return parallel contact quality variable}

return(cq);

end
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computejgq-l (cq, hand-model)
begin

{ compute finger quality arrays fq for all fingers}
for finger in fingers-of(hand -model) do
begin

prox-link proxJink-of(finger, hand-model);
fq[fingerl finger-quality-l(proxiink, cq, hand-model);

end

{compute grasp qualities gq for all wrist configurations}
for wrist-config in workspace-configs() do
begin

{minimize grasp quality gq over finger qua'ities}
gq(wrist-config] := MAX-QUALITY;
for finger in fingers-of(hand -model) do
begin

prox-config := proxlink-config-of(finger, hand-model, wrist-config);
if fqIfinger, prox-config] < gq[wrist config] then

gq[wrist config] := fqlfinger, prox-config];
end

end
return(gq);

end
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compute gq-1-parallel (cq, hand-model)

begin

{compute parallel finger qualities fq for all fingers}

for finger in fingers-of(hand-model) do

begin
proxJink proxJink-of(finger, hand-model);

fq[fingerl - finger-quality-lp(proxJink, cq, hand-model);

end

{compute grasp qualities gq over all processors}

for i in processors() in parallel do

begin
wrist-configlil := workspace-config(i);

{minimize grasp quality gq over finger qualities}

gqjiJ := MAX-QUALITY;

for finger in fingers-of(hand-model) do

begin
prox-config[i] := proxJink-config-of(finger, hand-model, wrist configlil);

prox-proc[i] := proc.of(prox-config[i]);

qjij - fetch(fq[finger, prox-proc[i]j);

if qjiJ < gqji] then
gq[i] := q[i];

end

end
return(gq);

end
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compute-gq_2_parallel (cq, hand-model)
begin

{compute parallel finger qualities fq for all fingers}
for finger in fingers -of(hand -model) do
begin

proxiink proxJink-of(finger, hand-model);
fq[fingerl finger-quality_2_p(proxJink, cq, hand-model);

end

{ compute grasp qualities gq over all processors}

for wrist-orient in workspace-orients() do
for i in processors() in parallel do
begin

wrist-configli] :- workspace.conflg.2(wrist orient, i);
{ minimize grasp quality gq over finger qualities}

gqjwrist-orient, iJ := MAX-QUALITY;
for finger in fingers-of(hand-model) do
begin

prox-config[i] := proxJink-config-of(finger, hand-model, wrist configji]);
prox-orient prox-orientof(finger, hand-model, wrist-orient);
prox-proc[i] proc-of(prox-config[ij);

q[i] :- fetch(fq [finger, prox-orient, prox-proc[i]D);
if qjij < gq[wrist-orient, ii then

gq[wrist-orient, i] := qJ i];
end

end
return(gq);

end

258



compute gq 3-parallel

(orient, contactassignment, prototype, hand-model, local contact-info)
begin

{ compute parallel finger qualities fq for all fingers}
for finger in fingers-of(hand.-model) do
begin

proxilink proxlink-of(finger, hand-model);
fq~finger]

finger-quality_3-p
(proxiink, orient, contact-assignment, prototype, hand-model,

local-contactinfo);
end

{compute grasp qualities gq over all processors}
for wrist-orient in workspace-orients() do

for i in processors() in parallel do
begin

wrist-config[i] := workspace-config.2(wrist-orient, i);
{ minimize grasp quality gq over finger qualities}
gqfwrist-orient, if := MAX-QUALITY;

for finger in fingers-of(hand -model) do
begin

prox-config[i] := proxJink-config-of(finger, hand-model, wrist config[i]);
prox-orient prox-orient-of(finger, hand-model, wrist-orient);
prox-prociI: proc-of(prox-configfij);
q[i] := fetch(fq[finger, prox.orient, prox-proc[i]]);
if qjij < gqlwrist-orient, i] then

gq[wrist-orient, i] := q[i];
end

end
return(gq);

end
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com pute-gq _4parallel

(orient, contact-assignment, prototype, hand-model, local contactinfo)
begin

{compute parallel finger qualities fq for all fingers}

for finger in fingers of(hand-model) do
begin

proxiink := proxJink-of(finger, hand-model);
for wrist-orient in workspace-orients() do
begin

prox-orient := prox-orient-of(finger, hand-model, wrist-orient);
fqjfinger, wrist-orient]

finger-quality_4_p
(proxlink, prox-orient, orient, contact-assignment, prototype,

hand-model, local-contact-info);
end

end

{ compute grasp qualities gq over all processors}
for wrist-orient in workspace-orients() do

for i in processors() in parallel do
begin

wrist-config[i] := workspace-config_2(wrist orient, i);
{ minimize grasp quality gq over finger qualities}
gq[wrist-orient, i] := MAX-QUALITY;
for finger in fingers-of(hand-model) do
begin

prox-configji] := proxJink-config-of(finger, hand-model, wrist -configli]);
prox-procjij := proc-of(prox-config[ii);
qji] := fetch(fq[finger, wrist-orient, prox-proclill);
if qjiI < gq(wrist-orient, i] then

gq(wrist-orient, ij := q(ij;
end

end
return(gq);

end
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compute/ink-cq-l
(link, config, orient, contact-assignment, prototype, hand-model, object, obstacles)

begin
cq := MIN-QUALITY;
{link cannot be part of a good grasp if there is a collision}
if no-collisions-l?(link, config, hand-model, object, obstacles) then

{if link has no contact assignment, it is sufficient there be no collisions}
if no-contact-assignment?(link, contact-assignment) then

cq := MAX-QUALITY;
else

{if link has a contact assignment, it must make contact}
if noJink-contact?(Iink, config, hand-model, object) then

cq := 0;
else
begin

{ now we can compute contact quality}
contact contact -of(link, contact assignment);
wrench contact-wrench(link, config, hand-model, object);

cq := contactquality(orient, contact, wrench, prototype);
end

return(cq);
end

computeJocal-contact info (object, obstacles)
begin

local-contact -info.collision dist
{ nearest distance to contact with one of the obstacles};

local-contactjinfo.contact dist :=
{nearest distance to contact with the object};

local contact-info.contact-point :=
{nearest point of contact with the object};

local contact-info.contact-feat u re :=
{feature of object associated with the nearest point of contact};

ret urn({ local-contact-info});

end
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computeJocal-cq
(diam, collision-dist, contact-dist, contact-point, contact-feature, link, link-orient,

orient, contact-assignment, prototype)
begin

Iocal-cq := MIN-QUALITY;
if no-collisionsJocal?(diam, collision-dist, contact-dist) then
begin

if no-contact-assignment?(link, contact-assignment) then

local-cq := MAX-QUALITY;
else

if no-contactJocal?(diam, contact-dist) then
Iocal-cq 0;

else
begin

contact contact-of(link, contact-assignment);

wrench contact-wrench-local(contact-point, contact-featu re, link-orient);
local-cq contact-quality(orient, contact, wrench, prototype);

end
end
ret urn(local-cq);

end

contact-assignrments-of(handcmodel, prototype)
begin

return( all assignments of contacts-of(prototype) to lin ks.of(hand -model)

such that there is exactly one link assigned to each contact);
end

contact constraint-set-of(prototype, contact)
begin

return(all vectors of the contact constraint set corresponding to contact of

prototype);
end
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contact _dist _of(local -contact -info)
begin

ret urn(local-contact-info.contact _dist);
end

contact feat u re-of(local-contact-info)
begin

ret urn(local -contact -info.contact -feat u re);
end

contact of(link, contact-assignment)
begin

return( contact assigned to link);

end

contact-point-of(local-contact-info)
begin

ret urn(Iocal-contact info.contact-point);
end

contactquality(orient, contact, wrench, prototype)
begin

min-contact-quality := MAX-QUALITY;
for vector in contact-constraint-set of(prototype, contact) do
begin

tvector := transformsvector(vector, orient);
cq := dot(tvector, wrench);
if cq < min-contact-quality then

min-contact-quality := cq;
end
return(min-contact-quality);

end
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contacts-of(prototype)

begin
return(indices to all contacts of prototype);

end

contact wrench(link, config, hand-model, object)
begin

return(some contact wrench from contact between link and object);
end

contact-wrenchJocal(contact-point, contact-feature, link-orient)
begin

if is-edge?(contact-feature) then
force := edgeinside normalIof(contact-featu re, link-orient);

else
{feature has a unique inside normal at the contact point}
force := inside-normal of(contact-feature, contact-point);

dist := subtract(GRASPCENTER, contact-point);
torque := scale(cross(force,dist), TORQUEMULTIPLIER);
return(build-wrench(force, torque));

end

cross(vectorl, vector2)
begin

return(vector cross product of the two inputs);
end

diam-of (location, link, hand-model)
begin

return({local diameter of link at the given location});
end
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direction-of (step)
begin

return({ direction of motion in the processor grid to move from the
location of this step to the location of the nezt step});

end

dot(vectorl, vector2)
begin

return(vector dot product of the two inputs);

end

edge-inside-normal-of(edge, link-orient)
begin

return(the inside normal of edge, perpendicular to the link vector);
end
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finger-quality-l(link, cq, hand-model)
begin

{terininate at distal link}
if no..nextiink?(Iink, hand-model) then

return(cqjlinkj);

(get subchain quality for next link}
nextilink :=next-link-of(link, hand-model);
subchain -quality :=finger-quality-l(nextJink, cq, hand-model);

{get subchain quality for cur-rent link}
for config in workspace-conflgs() do
begin

{ maximize nexet link subchain quality over joint angles}
max-sq :=MIN-.QUALITY;
for theta in joint-angles-of(link, hand-miodel) do
begin

next-config :=next link-config-of(theta, ln, hand-model, config);
if subchain-qualityfnext-config] > max-sq then

max-sq :=subchain..quality[next-conflgi;
end

{ take minimum of link and current subchain quality values}
fq~conflg] : min(cqjlink, config], max-sq);

end
return(fq);

end
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finger-quality-lp(link, cq, hand-model)
begin

{ terminate at distal link}
if no-nextJink?(Iink, hand-model) then

return(cqllinki);

{get subchain..quality for next Iink}
nextiink :=next-link-of(Iink, hand-model);
su bchain-quality :=finger-quality-l-p( nextiink, cq, hand-model);

f{get subchain..quality for current link}
for i in processors() in parallel do
begin

confilgiJ : workspace-config(i);
f maximize subchain quality over joint angles}
max-sq(i] : MIN-QUALITY;
for theta in joint-angles-of(Iink, hand-.model) do
begin

next-config[i] : nexti-in kconflg-of(theta, link, hand-.model, confilgiJ);
next-proc~ii := procnf(next-config(ij);
sq~iJ : fetch(su bchainq uality[next-proc[iJI);
if sq~iJ > max-sq[i] then

max-sq~i] := sq[i];
end

{take minimum of link and current subchain quality values}

end
ret urn(fq);

end
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finger-quality_2_p(link, cq, hand-model)
begin

{terminate at distal link}
if no-next/ink?(link, hand-model) then

return(cqjlink]);

{get subchain.quality for next link}
nextlink := next/ink-of(link, hand-model);
subchain-quality := finger-quality_2_p(nextlink, cq, hand-model);

{get subchain-quality for current link}
for link-orient in workspace-orients() do

for i in processors() in parallel do
begin

config[i] := workspace-config-2(link -orient, i);
{ mazimize subchain quality over joint angles}
max-sqJi] := MIN-QUALITY;
for theta in joint angles-of(Iink, hand-model) do
begin

next-config[il := next-Iink config-of(theta, link, hand-model, configliI);
next-orient next Jink-orient-of(theta, link, hand-model, link-orient);
next-proci]j proc-of(next-configji]);
sqji] := fetch(subchain quality[next-orient, next-proc[ill);
if sq~i] > max-sq[i] then

max-sq~i] := sq[i];
end

{take minimum of link and current subchain quality values}
fqllink-orient, i] := min(cq[link, link-orient, i], max-sqlil);

end
return(fq);

end
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finger-quality-2-pbetter(Iink, cq, hand-model)
begin

{terminate at distal Iink}
if no-nextlink?(link, hand-model) then

return(cq[IinkJ);

{get subchain. quality for next link}
nextilink :=nextilink-of(link, hand-model);
subchain-quality :=finger-quality-2-p-better( nextiink, cq, hand-model);

{get subchain...quality for current link}
for link-orient in workspace-orients() do

for i in processors() in parallel do
begin

config[i] : workspace-conflgl(Ilink-orient, i);
I{maximize subchain..quality over joint angles}
max..sqjij: MIN-QUALITY;
for theta in joint-angles-of(Iink, hand-mnodel) do
begin

next-orient :=next Jink-orient-of(theta, link, hand-model, link-.orient);
if subchain-qualityinext-orient, iJ > max- ;qli] then

max-sqjij : subchain -q uality[next orient, il;
end

{fetclz maximum subchain quality value}
next-poslil nextiink-pos-of(Iink, hand-model, configlil);
next-proclil proc-of-2(next-pos[ii);
sq~i] : fetch (max..sq (next -proc[ifl);

{ take minimum of link and current subchain quality values}

fqIlink-orient, ii : min(cq[Iink, link-orient, il, sq[i]);
end

ret urn(fq);
end
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finger-quality_3_p (link, orient, contact assignment, prototype, hand-model, Icinfo)

begin
{find maximal subchain quality}
if no-nextJink?(link, hand-model) then

{subchain quality can be set to MAXQUALITY}
for link-orient in workspace-orients() do

for i in processors() in parallel do
max-sq[link-orient, il := MAX-QUALITY;

else
begin

{get subchain-quality for nezt link, all link orients}

next-link := next Jink-of(link, hand-model);
subchain-quality :=

finger-quality-3-p

(next-link, orient, contact-assignment, prototype, hand-model, Icinfo);

{get subchain-quality for current link, all link orients}
for link-orient in workspace-orients() do

for i in processors() in parallel do
begin

{ mazimize subchain-quality over joint angles}

max-sq~link-orient, i] := MIN-QUALITY;
for theta in joint angles-of(link, hand-model) do

begin
next-orient := nextJin korient-of(theta, link, handjnodel, link-orient);
if subchain qualityinext-orient, ii > max-sq[link-orient, i] then

max-sq(link-orient, ii := subchain-quality[next-orient, i];

end
end

end

{collect link info along link azis, merge with subchain info for all link-orients}
for link-orient in workspace-orients() do

fq[link-orient] :=
link-axis-quality-scan

(max-sq[link-orient], link, link-orient, orient, contact-assignment,
prototype, hand-model, Icinfo);

return(fq);
end
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finger _q uality-4_p
(link, link-orient, orient, contact-assignment, prototype, hand-model, Icinfo)

begin
{find maximal subchain quality}
if no-nextJink?(link, hand-model) then

{subehain quality can be set to MAXQUALITY}
for i in processors() in parallel do

max-sq[i]:= MAX-QUALITY;
else
begin

{ mazimize subchain-quality over joint angles}
next-link :=- next lin kof(link, hand-model);
for i in processors() in parallel do

max-sqlil := MIN-QUALITY;
for theta in joint angles-of(link, hand-model) do
begin

{get subchain.quality for current link and link-orient}
next-orient := nextJink-orient-of(theta, link, hand-model, link-orient);
subchain-quality :=

finger-quality-4_p (next-link, next-orient, orient, contact-assignment,
prototype, hand-model, Icinfo);

for i in processors() in parallel do
if subchain quality[i] > max-sq[i] then

max-sq[i] := subchain-quality[i];
end

end

{ collect link info along link azis, merge with subchain info}
fq := link-axis-quality-scan

(max-sq, link, link-orient, orient, contact-assignment, prototype,
hand-model, Icinfo);

ret urn(fq);
end
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fingers-of(hand-model)
begin

return(unique indices to the fingers of hand -model);
end

hand configs-of(hand -model)
begin

return(all legal configs of the hand);
end

inside-normal-of(contact-feat u re, contact-point)
begin

return( the inside normal of contact-feature at contact-point);
end

is-edge? (contact-feat u re)
begin

if contact-feature is an edge then
return(TRUE);

else
return(FALSE);

end

joint-angles-of(link, hand-model)
begin

return( all 1D legal joint angles for the distal joint of link);
end
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link-axis-quality-scan
(max-sq, link, link-orient, orient, contact-assignment, prototype, hand-model, Icinfo)

begin
for i in processors() in parallel do

subchain-cq[i] := min(O, max.sqjij);

for step in routing-path-of(link, link-orient, hand-model) do

begin
diam := diam of(location of(step), Sink, hand-model);

for i in processors() in parallel do

begin
Iocal-cq[i]

compute-local-cq
(diam, collision_dist of(Ic-info[ij), contact dist of(Ic-infolil),

contact -point _of(Ic-infolij), contact-feature-of(ic-infolil), link,
link-orient, orient, contact assignment, prototype);

if local-cq[i] = MIN-QUALITY then

subchain-cqli] := MIN-QUALITY;
if subchain.cq[i] > MIN-QUALITY then

subchain-cqfij := min(max((ocal-cq(ij, subchain-cq[iI), max-sq(i]);
end

subchain.cq := local-fetch(subchain-cq, direction-of(step));

max-sq := local-fetch(max-sq, direction of(step));

end
return(subchain-cq);

end

link-config-of(link, hand-config)
begin

return(config of link corresponding to hand.config);

end
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link-contact?(link, config, hand-model, object)
begin

if link in configuration config is in contact with object then
return(TRUE);

else
return(FALSE);

end

link-of(contact, contact-assignment)
begin

return(the link corresponding to contact of contact-assignment);
end

links-of(hand -model)
begin

return(unique indices to links of hand-model);
end

location-of (step)
begin

return({location of step of the routing path in the local link coord system});
end
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lower-bound gq-l(prototype, hand-model, object, obstacles)

begin
{align grasp prototype with target object}

for orient in workspace-orients() do

{assign links of the hand to contacts of the prototypel
for contact assignment in contact-assignments-of(h and-model, prototype) do

begin
{compute contact quality array cq }
cq := compute-cq-l

(orien' contact-assignment, prototype, hand-model, object obstacles);

{compute grasp quality array gq}
gq~orient, contact-assignment] := compute-gq-l (cq, hand-model);

end
return(gq);

end

lower-bou nd gq - parallel (prototype, hand-model, object, obstacles)

begin
{align grasp prototype with target object}
for orient in workspace-orients() do

{assign links of the hand to contacts of the prototype}

for contact assignment in contact-assignments-of(hand-model, prototype) do
begin

{compute contact quality array cq }
cq := compute-cq-l-parallel

(orient, contact assignment, prototype, hand-model, object, obstacles);
{ compute grasp quality array gq}
gqforient, contact assignmentj :- compute-gql -parallel (cq, hand-model):

end
return(gq);

end
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Iower-bound gq_2_parallel (prototype, handmodel, object, obstacles)

begin
{align grasp prototype with target object}

for orient in workspace-orients() do
{assign links of the hand to contacts of the prototype}
for contact-assignment in contact-assignments-of(hand model, prototype) do
begin

{ compute contact quality array cq }
cq := compute-cq_2_parallel

(orient, contact-assignment, prototype, hand-model, object, obstacles);
{compute grasp quality array gq}
gq[orient, contact-assignment] := compute-gq-2-parallel (cq, hand-model);

end
return(gq);

end

lower-bound-gq_3_parallel (prototype, hand-model, object, obstacles)
begin

{ align grasp prototype with target object}
for orient in workspace-orients() do

{assign links of the hand to contacts of the prototype}
for contact-assignment in contact-assignments of(hand-model, prototype) do
begin

{ compute local collision and contact structure local-contact-info}
localIcontact info := computeilocal-contact jnfo(object, obstacles);

{compute grasp quality array gq}
gqJorient, contact-assignment)

compute.gq -3 -parallel
(orient, contact-assignment, prototype, hand-model, local-contact-info);

end
return(gq);

end
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lower-bound gq_4_parallel (prototype, hand-model, object, obstacles)

begin
{align grasp prototype with target object}

for orient in workspace-orients() do
{assign links of the hand to contacts of the prototype}
for contact-assignment in contact-assignments-of(hand-model, prototype) do
begin

{ compute local collision and contact structure local-contact-info}
local-contact-info := computelocal-contactinfo(object, obstacles);
{compute grasp quality array gq}
gq[orient, contact-assignment]

compute.gq_4_parallel
(orient, contact assignment, prototype, hand-model, local-contact-info);

end
return(gq);

end
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{compute entire space of lower bound gq measures based on cq measures}
lower-bound.gq simple (prototype, hand-model, object, obstacles)
begin

{align grasp prototype with target object}
for orient in workspace-orients() do

{ assign links of the hand to contacts of the prototype}

for contact assignment in contact assignments of(hand model, prototype) do
{each hand config is a possible grasp}

for hand-config in hand configs-of(hand-model) do
begin

gq[orient, contact -assignment, hand-config] := MIN-QUALITY;
if no-hand-collisions?(hand .config, hand-model, object, obstacles) then
begin

{lower bound gq is minimum cq over contacts}

min-cq := MAX-QUALITY;
for contact in contacts-of(prototype) do
begin

link := link-of(contact, contact-assignment);
link-config := link-config-of(link, hand-config);
cq := MIN-QUALITY;

if link-contact?(link, link-config, hand-model, object) then
begin

wrench := contact-wrench(link, link-config, hand-model, object);
cq := contact_quality(orient, contact, wrench, prototype);

end

if cq < min-cq then
min-cq := cq;

end
gqlorient, contact-assignment, hand-config] min-cq;

end
end

return(gq);
end
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next link config of(theta, link, hand-model, link-config)
begin

return(the config of next link-of(link, hand-model) corresponding to
link-config of link of hand-model and joint-angle theta);

end

nextJink-of(link, hand-model)
begin

return(an indez to the distal neighbor of link link in hand-model);
end

nextJin korien tof(theta, link, hand-model, link-orient)
begin

return(the orient of nextJink-of(link, hand-model) corresponding to
link-orient of link of hand-model and joint angle theta);

end

nextJink-pos-of(link, hand-model, link-config)
begin

return(the position of next Jink-of(link, hand-model) corresponding to
link-config of link of hand-model);

end

no-collisions-l?(link, config, hand-model, object, obstacles)
begin

if link of hand-model lies in free space then
return(TRUE);

else
return(FALSE);

end
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no-collisions-local?(diam, collision-dist, contact-dist)
begin

if(diam < (collision-dist - EPS-COLLISION)) and
(diam < (contact-dist + EPSCONTACT)) then
return(TRUE);

else
return(FALSE);

end

no-contact-assign ment?(link, contact-assignment)
begin

if contact of(lin k, contact-assignment) = NULL then
return(TRUE);

else
return(FALSE);

end

no-contact/ocal?(diam, contact-dist)
begin

if(diam < (contact-dist + EPSCONTACT)) and
(diam > (contact-dist - EPSCONTACT)) then

return(FALSE);
else

return(TRUE);
end

no-hand-collisions?(config, hand-model, object, obstacles)
begin

if there is a collision between the hand of hand-model in
configuration config and either object or obstacles then
return(FALSE);

else
return(TRUE);

end
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noJink-contact?(link, config, hand-model, object)
begin

if link in configuration config is in contact with object then
return(FALSE);

else
return(TRUE);

end

no-nextJink?(Iink, hand-model)
begin

if there is a link distal to link in hand-model then
return(FALSE);

else
return(TRUE);

end

processors()
begin

return(all available processors in the parallel machine);
end

proc-of(config)
begin

return(processor in a configuration space processor grid closest to config);
end

proc-of_2(position)
begin

return(processor in a position space processor grid closest to position);
end
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proxilink-config-of(finger, hand-model, wrist-config)
begin

return(the config of prox/ink-of(finger, hand-model)
corresponding to wrist configuration wrist-config);

end

prox-link-of(finger, hand-model)
begin

return(an indez to the prozimal link of finger from hand-model);
end

prox-orient-of(finger, hand-model, wrist-orient)
be-in

return(the orient of the prozimal link of finger corresponding to wrist-orient);
end

routing-path-of (link, link-orient, hand-model)
begin

return({ sequence of steps to move from the distal joint of link to the prozimal
joint of link given orientation link-orient .. each step consists of a
location on the link in the local link coord system and the direction to
move to get to the next location});

end

scale(vector, value)
begin

return(vector scaled by value);
end

subtract(vectorl, vector2)
begin

return(vector difference of vectorl and vector2);
end
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transform-vector(vector, orient)
begin

return(vector resulting from the rotation of vector into the coordinate system
represented by orient);

end

workspace-config( processor)
begin

return(configuration represented by processor on a configuration space processor grid);
end

workspace-configl2(orient, processor)
begin

return(configuration represented by the combination of orient and processor
on a position space processor grid);

end

workspace-configs()
begin

return(all configs in the workspace);
end

workspace-orients()
begin

return(all orients in the workspace);
end
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