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Abstract

We investigated how the CNS lcarus tu control movewents in different dynanucal conditions. In partic-
ular. we considered the task of making reaching movements in the presence of externally imposed forees
from a mechanical environment. This environment was a force field produced by a robot manipulan-
dum. and the subjects made reaching movements while holding the end-effector of this manipulandum.
Since the force field significantly changed the dynamics of the task. subjects’ initial movements in the
force field were grossly distorted as compared to their movements in free space. However. with practice.
hand trajectories in the force field converged to a path very similar to that observed in free space. This
indicated that for reaching movements, there was a kinematic plan independent of dynamical condi-
tions. The recovery of performance within the changed mechanical environment is motor adaptation.
In order to investigate the mechanism underlying this adaptation, we considered the response to the
sudden removal of the field after a training phase. The resulting trajectories. named afier—¢ffects. were
approximately mirror images of those which were observed when the subjects were initially exposed to
the field. This suggested that the motor controlier was gradually composing a model of the force field. a
model which the nervous system used to predict and compensate the forces imposed by the environment.
In order to explore the structure of the model, we investigated whether adaptation to a force field. as
presented in a small region. led to after—effects in other regions of the workspace. We found that indeed
there were after-effects in workspace regions where no exposure to the field had taken place. i.e.. there
was transfer beyond the boundary of the training data. This observation rules out the hypothesis that
the subject’s model of the force field was constructed as a narrow association between visited states and
experienced forces, 1.e. adaptation was not via composition of a look—up table. In contrast. subjects
modeled the force field by a combination of computational elements whose output was broadly tuned
across the motor state space. These elements formed a model which extrapolated to outside the training
region in a coordinate system similar to that of the joints and mwuscles rather than endpoint forces. This
geometric property suggests that the elements of the adaptive process represent dynamics of a motor
task in terms of the intrinsic coordinate system of the sensors and actuators.
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1 Imntroduction

Children start to reach for objects that interest them at about the age of 3 months. These
goal-directed movements often accompany a “flailing”™ action of the arm. From a svstems point
of view. flailing can be seen as an attempt to excite the dvnamics of the arm: to success-
fully make a reaching movement. the motor controller needs to find the appropriate force so
that the skeletal system makes the desired motion. LEffectively. this operation corresponds
to inverting a dyvnamical transformation that relates an iuput force to an output motion. A
controller may implement this “inverse transformation™ via a combination of feedback and feed-
forward mechanisms: usually. the feedforward component provides some estimate of the inverse
transformation - called the “inverse model™ or simply the “internal model™ — while the feedback
component compensates for the ervors of this estimation and stabilizes the svstem about the
desired behavior (cf. Slotine 19%3). Therefore. the internal model refers to an approximation of
the inverse dynamics of the svstem being controlled. 1n the case of the infant. action of flailing
may be an attempt to explore this dvnamics and build an internal model.

During development. bones grow and muscle mass increases. changing the dvnamics of the
arm significantly. In addition to such gradual variations. the arm dyvnamics change in a shorter
time scale when we grasp objects and perform manipulation. The changing dvnamics of the
arm make it so that the same muscle forces produces a variety of motor hehaviors. It follows
that to maintain a desired performance, the controller needs to he “robust™ to changes in the
dvnamics of the arm. This robustness may be achieved through an updating. or adaptation.
of the internal model. Indeed. humans excel in the ability to rapidly adapt to the variable
dyvnamics of their arm as the hand interacts with the environment. Therefore a task where the
hand interacts with a novel mechanical environment might be a good candidate for studving
how the (‘NS updates its internal model and learns dvnamics.

The particular task which we have considered is one where a subject makes a reaching move-
ment while the hand interacts with a field of forces. In a reaching movement. the problem of
control can be seen as one of transforming information regarding a target position. as presented
in the visual domain. into a torque command on the skeletal svstem to move the hand. This
initially involves a set of coordinate transformations {so called “visuo-motor map”. cf. Arbib
1976): work of Andersen et al. (1983) and Soechting and Flanders (1991) suggests that the tar-
get is transformed sequentially from a retino-centric vector into a head-centered and finally a
shoulder—centered coordinate system. According to Gordon et al. (1993) this shoulder-centered
vector (representing the target) undergoes another transformation after which the target loca-
tion is described as a vector with respect to the current hand position (or end-effector position.
for exainple. in the case that the hand is holding a long rod. Lacquaniti et al. 1982). At this
point a plan is specified. describing a desired trajectory for the end-effector to follow: for un-
constrained planar arm movements. there is strong evidence that this plan is a smooth hand
trajectory essentially along a straight line to the target (Morasso 1981. Flash and Hogan 1985).
The controller. acting on antagonistic spring-like actuators (cf. Bizzi et al. 1984, Hogan 1985,
Shadmehr and Arbib 1992). then attempts to move the arm along the planned trajectory.

It is worth noting that for this task. adaptation may either occur in response to a change in
the visual environment in which the target i< presented (von Helmholtz 1923). or in response
to a change in the mechanical environment with which the hand is interacting (Flash and
Gurevich 1992). Therefore. the problem of adaptation mayv be experimentally approached from
two directions:

1. we may change the visual environment so that subjects have to modify the perceived




kine maties of movement by changing the mapping of the target from ego centric to a task
based (e.g.. hand-centered) coordinates. or

2. we may change the mechanical environment with which the hand interacts so that the
subject’s internal model of the arm has to adapt to the new dynaniics of the systen.

The first approach. i.e.. changing the visuallv perceived kinematics. has received much atten-
tion because of the observations made by Held and colleagues {Held and Schlank 1959, Held
1962. Held and Freedman 1963) regarding adaptation of the visuomotor syvstem to distortions
produced by prism glasses. It had been noted that by wearing prism glasses. the visual scene
could be shifted. for example. by r degrees laterallv. This caused a change in the kinematic
map relating target position to the arm’s configuration. With the glasses on. initially a subject
would reach to a target and miss it by r degrees. but after some practice. the subject would
learn the appropriate kinematics and hit the target accuratelv. Predictably. when the glasses
were removed. the subject would reach to a target and miss it by —u degrees. displaving the
persistence of the altered kinematic map (cf. Jeannerod 1988, pp. 52-57). This behavior has
been termed an after—¢ffect of adaptation.

Our work is along the second approach. We investigate how the motor control system re-
sponds when the arm’s dvinamics are changed. We address this issue by developing a paradigin
where subjects make reaching movements while interacting with a virtual mechanical environ-
ment. From Lackner and Dizio (1992) it iz known that after—effects exist when one performs
arm movements in an environment where Corjolis forces are artificiallv increased. Here we
show that as a subject practices arm movements in a force field. the controller builds an inter-
nal model of that field and uses this model to compensate for the expected forces during the
movement. Our goal is to understand how the nervous svstem constructs this internal model
and to reveal some of the properties of the motor adaptive process.

2 Materials and Methods

The purpose of our experiment was to observe how a subject adapted to the changed dvnamics
of a reaching task. A robot manipulandum whose handle was grasped by the subject produced
these variable dvnamics. A mathematical model was developed to provide a framework for
describing the process of adaptive motor control. Both the experiments and the modeling
procedures are described in this section.

2.1 Experimental setup

Eight right handed subjects with no known neurological history. ranging in age from 24 to
39. participated in this study. A schematic of the measurement apparatus is shown in Fig. 1:
Subjects were seated on a chair that was bolted onto an adjustable positioning mechanism and
instructed to grip the handle of a robot manipulandum with their right hand. Their shoulder
was restrained by a harness belt. their right upper-arm was supported in the horizontal plane
by a rope attached to the ceiling.

The manipulandum is a two degree of {reedom. lightweight. low friction robot (Faye 1986)
with a six-axis force-torque transducer (Lord F/T sensor) mounted on its end-effector (the
handle). Two torque motors (PMI Corp.). mounted on the base of the robot. are connected
independently to each joint via a parallelogram configuration. Position and velocity measure-
ments are made using two optical encoders and tachometers. respectivelv. mounted on the axes
of the mechanical joints. The apparatus includes a video display monitor mounted directly




Figure 1: Sketch of the manipulandum and the experimental setup. Planar ari movements were made
by the subject while grasping the handle of the manipulandum. A monitor. placed directly in front of
the subject and above the manipulandum (not shown). displayed the location of the handle as well as
targets of reaching movements. The manipulandum had two torque motors at its base which allowed for
production of a desired force field.

above the base of the robot (approximately at eve level with the subject). This was used to
display the position of the robot’s handle and give targets for reaching movements.

2.2 Experimental procedures

Each subject particinated in a preliminary training phase where the task was to move a cursor
to a target. The cursor was a square of size 2x2 mm? on a computer monitor and indicated
the position of the handle of the manipulandum. Targets were specified by a square of size 8x 8
mm?. The task was to move the manipulandum so as to bring the cursor within the target
square.

Movements took place in two regions. each of the size 15x15 em?. The position of these
regions is shown in Fig. 2. where they are labeled as the “left”™ and “right”™ workspaces. In
order to avoid inertial artifacts associated with changing the operating configuration of the
robot. workspaces were selected by moving the subject with respect to the robot.

Starting from the center of a workspace. a target at a direction randomly chosen from the
set {0°.45°.....325°} and at a distance of 10 cm was presented. After the subject had moved
to the target. the next target. again chosen at a random direction and at 10 cin was presented.
A target set consisted of 250 such sequential reaching movements. All targets were kept with
in the confines of the 15x 15 cm workspace. The targets represented a pseudo-random walk.

In some cases, the manipulandum was programmed to produce forces on the hand of the
subject as the subject performed reaching movements. These forces. indicated by the vector f.
were computed as a function of the velocity of the hand:

where & was the haud velocity vector. and B was a corstant matrix representing viscosity of
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Figure 2: Configurations of a model two joint arm. representing typical kinematies of the human arm.
at two workspace locations where reaching movements were performed. Typical shoulder and elbow

angles at these two workspaces were 15 and 100 degrees at right and 60 and 145 degrees at left.

the imposed environment in endpoint coordinates. In particular. we chose B to be:

-10.1 —11.2 | .
B—[_“'z 111 }1\..\9(‘/1])

Using this matrix. the forces defined by Eq. (1) may be shown as a field over the space of
hand velocities (Fig. 3A). For example, as a subject made reaching movements in this field. the
manipulandum produced forces shown in Fig. 3B (here we have assumed that the movements
are minimum jerk. as specified by Flash and Hogan (1985). with a period of 0.5 seconds).

Note that in the field defined by Eq. (1). forces which act on the hand are invariant to
the location of the workspace in which a movement is done. i.e.. the forces are identical in the
left and right workspaces of Fig. 2. Therefore. we say that the force field defined in Eq. (1) is
translation invariant in endpoint coordinates.

In some cases. a different kind of a force field was produced by the manipulandum. one
which was not translation invariant in endpoint coordirates. This field was represented as a
function of the angular velocity of the subject’s shoulder and elbow joints during the reaching
movements:

r=Wyg (2)

where 7 was the torque vector acting on the subject’s shoulder and elbow joints, ¢ was the
subject’s joint angular velocity, and ¥ was a constant matrix representing viscosity of the
imposed environment in joint-coordinates of the subject. We say that the field described by
Eq. (2) is translation invariant in joint-coordinates. Indeed. note that the torque field in Eq.
(2) is equivalent to the following force field (i.e.. forces acting on the hand):

f= (0w (3)

where J(q) = 0z /dq. is the configuration-dependent Jacobian of the configuration mapping
from ¢ to z. and the superscript T indicates the transpose operation. Because the Jacobian
changes as a function of the angular position of the limb. f varies depending on the workspace
where a reaching movement is performed. In particular. we chose W’ so that the force field
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Figure 3: An environment as described by the force field in Eq. (1). A: The force field. B: Forces
acting on the hand during simulated center--out reaching movements. Movements are simulated as being
minimum-jerk with a period of 0.5 sec and amplitude of 10 cm.

which resulted from Eq. (3) at the right workspace was almost identical to the field produced
bv Eq. (1). To accomplish this. the matrix W was calculated for each subject as:

W=JlBJ

where .Jy is the Jacobian evaluated at the center of the right workspace. For a tvpical subject.
we derived the following W™ matrix:

u_:[ 0.0 —1.

-1 =1

17 o—L J N.m.sec/rad

When the above joint-viscosity matrix was used to define an environment. the resulting force
field depended upon the position of the workspace where movements were being made. At the
right workspace. this field (Eq. 3) was almost identical to that produced by Eq. (1) (a correlation
coefficient of 0.99. see Appendix ). However. at the left workspace. the forces produced by Eq.
(3) were substantially uncorrelated (nearly orthogonal) to that of Eq. (1). The force field
produced by Eq. (3) is pluited for movements in the left workspace in Fig. 4A. Fig. 4B shows
the forces acting on the hand for tvpical reaching movements.

We trained subjects with either the end-point or the joint translation invariant fields at the
right workspace. Subsequently. we tested them in the field they had not been trained on at
the left workspace. Hence. we defined two distinct groups of subjects. Those in Group 1 were
exposed to a force field which was translation invariant with respect to the position of the hand
(Eq. 1). Subjects of Group 2 were exposed to a force field which was translation invariant
with respect to the angular position of the subject’s joints (Eq. 3).

Our first objective was to compare movements during conditions of no-visual feedback before
and during the initial exposure to a field. For 48 randomly chosen members of the target set.
heretofore referred to as the no-vision target set. the cursor position during the movement was
blanked. removing visual feedback during the reaching period. For the remaining members of
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Figure 4: An environment described by the field in Eq. (3). plotted as it would appear in the left
workspace of Fig. 2. A: The force field. B: Forces acting on the hand while making reaching movements
in the left workspace of Fig. 2 from the center to targets about the circumference of a circle. Movements
are simulated as being minimum-jerk with a period of 0.5 sec and amplitude of 10 cim.

the target set. hand position was shown continuously to the subject. Initially. we quantified
the performance in a null field. i.e.. with the torque motors turned off. by presenting a target
set in the right workspace. Upon completion. the hand was moved to the left workspace
and another target set presented. These hand trajectories during the no-vision target sets
represented baseline performance of the subjects in the null field.

Following this. the hand was returned to the right workspace and the target set was again
presented. except that for 24 randomly chosen members of the no-vision target set. the manip-
ulandum produced the force field assigned to the subject’s group. For the remaining targets
of this set a null field was present. These hand trajectories during the no-vision target set
represented baseline performance in the force field.

The next objective was to observe performance of the subject in response to continuous
exposure to the force field: With the hand at the right workspace and with the manipulandum
producing the force field. a target set was presented. The force field was present for all targets
except for 24 randomly chosen members of the no-vision target set. where the null field was
present. The purpose of these 24 targets in the null field was to record any after-efects of
adaptation to the force field. The target set was repeated 4 times (total of 1000 movements)

while the manipulandum produced the field. This provided time for the subject to adapt to
the field.

Having completed the adaptation phase of the experiment. the subject’s arm was moved to
the left workspace with the objective of observing any transferred after-e ffects. 72 targets were
presented sequentially and with no visual feedback. 24 randomly chosen members of this target
set were in a null field. Another 21 randomly chosen members of this target set were in the
force field on which the subject had been trained on. The remaining members of this target set
were in the force field which the subject had not been trained on.
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2.3 Producing the force fields

In order for the maunipulandum to produce a given force field. the microcomputer collected
position and velocity information from the manipulandum’s joiuts (represented by o and o) at
a rate of 100 Hz. This information was needed in order to convert the desired endpoint force
field into the torques 10 be applied by the motors. To produce the force field described by Lq.
(1). we nsed the following expression:

TH = /}]{ ])’ .l[{ ()

wliere 7 is the torque vector commanded to the motors. Jy = dr/do. be.. the Jacobian of the
robot s kinematics. and o is the joint angular velocity vector of the manipulandum. Note that
Jp is a function of robot joint angles o, and from its definition it follows that & = Jy o. In
order to prod-ice the force field described by Eq. (3). the following control law was used:

™ = ]II{ J- Ty g i o

wlere .J is the subject’s Jacobian matrix function. Calculation of J required knowledge of
the subject’s arm kinematics: At the beginning of each session. we measured the lengths of
the subject’s upperarm and forearm as well as the location of the shoulder with respect to a
fixed point with respect to the workspace of the manipulandum. These data were sufficient to
provide an estimate for .J at each position of the hand.

2.4 Data analysis

We sampled hand positions and velocities at 10 msec intervals as the subject reached to a
target. Trajectories were aligned using a velocity threshold at the onset of movement.

In order to compare hand trajectories. a technique was developed which quantified a mea-
sure of correlation between two sampled vector fields (see Appendix 1). We represented each
trajectory as a time series of velocity vectors (. sampled at 10 msec intervals) and then com-
pared the two resulting vector fields through a correlation measure. The same technique was
also used to compare force fields. In particular. the endpoint viscosity matrix B in Eq. (1) was
chosen such that when expressed in terms of a joint viscosity matrix V" (through Eq. 3). the
two resulting force fields were nearly identical at the right workspace {the correlation coefficient
p = 1}, while maximally different at the left workspace (p = 0). Specifically. the two fields had
a correlation coefficient of 0.99 and 0.12 at the right and left workspaces. respectively.

In order to plot “typical™ hand trajectories for a given target. we computed the expected
value and standard deviation of the set of measured trajectories {each a time-series of velocity
vectors) for that target. Our procedure consisted in deriving the expected value and standard
deviation of the set of measured velocity vectors across the trajectories at each instant of time.
The resulting velocity field was integrated from the start position of the movement to produce
the average + standard deviation of the hand trajectories for a given target.

2.5 Mathematical modeling

The purpose of the mathematical modeling was to provide a framewaork for describing how the
subject’s motor control svstem adapted to a force field imposed oun the hand. A significamt
component of our task was to specifv what we meant by an “internal model™ as it pertained to
the adaptation process. The end result was a system of equations which allowed us to simulate
hand trajectories for reaching movements before the subject had adapted to the force field. as




well as the after-effects when the subject had formed an internal model but the external field
was swddenly removed.

2.5.1 General framework for a model-based adaptive controller

Let us start by considering a svstem’™s dvnamies in generalized coordinates (for a review of the
idea behind generalized coordinates. see Spong and Vidvasagar 1989, p. 131). We indicate by
¢ a point in configuration space (e.g.. an array of joint angles) and by ¢ and ¢ its first and
second time derivatives. The dynamics of the motor control svstem coupled (in parallel)y with
its environment can be described by the sum of three distinct force fields: (1) a time invariant
component. D(q.q. ). representing the forces which depend on the “passive”™ or unmodulated
svstem dvnamics (bones. tendous. ligaments. connective tissues. ete. ).l (2) a time invarian
component. E(q. q. ). representing the forces which depend on the dvnamics of the environment.
and (3) a time varving component. ('{¢.qg.t1). representing the forces which depend on the
operation of the controller. Following D Alembert’s priuciple. the entire system/environment
dynamics is summarized by an equilibrium condition:

Dig.g.q)+ Elg.q.4) = Clg.q.1) {1

The force field represented by D is itself a sum of inertial and velocity dependent forces. The
inertial component of this field is due to the acceleration of the syvstem and is defined as a
vector equal in magnitude to but opposite to the direction of the rate of change of momentum
of the mass of the system. If we restrict our attention to Newtonian mechanical svstems. we
can assume that inertial forces are linearlv related to acceleration. In this case. the field D can
be written as:

D(q.q.4) = Iq) 4+ Glq.q) (5)

where [ represents the system’s mass in generalized coordinates (an mertia matrix. which may
be a function of configuration). and (v represents the rest of the position and velocity dependent
forces (i.e.. Coriolis. friction. etc.).

Let us consider a control syvstem that is capable of guiding a limb along a desired trajectory
¢™(1) in the null environment F = 0. One way to obtain this desired tracking behavior is by
picking the right hand side of Eq. (4) to be an ideal controlle r specified by 1{¢)g (1) + ({q.q).
This simplifies Eq. (4) to ¢ = ¢*(1). from which it follows that from some given initial position
and velocity. the svstem will follow the desired trajectorv. Note that this ideal control input
describes a time varying force field: for a given desired acceleration. a force vector is assigned
to each point in the state-space of the svstem. Ve name this ideal controller D. i.e..

Dig.q.t) = I{q)q (1) + Glq. ). (6)

We call this controller “ideal™ because it may well be that one cannot implement its field using
the available actuators and local controllers. However. one may be able to approximate its force
field. resulting in an internal model of the system dyvnamics. Let us call this internal model D:

D~ D(q.4.1) (7)

"There is not a single component in the scenario of biological svstems that may be properly characterized ax
“time-invariant”™—bones grow. and ligaments age. Here, however, we are primarily concerned with the scale of
the temporal intervals within which changes occur. 1n this respect. the nenromuscular controlling system operates
on the scale of 1072 seconds. In contrast. the changes in the unmodulated dynamics. D. may be assumed to

occur on a time interval that is 5 or more orders of magnitude longer.




where for the syvstem dvnamics of Eq. (5). with a ol environment. onr internal model may be
defined by the following field:
D=1ih+¢

We have just shown that the internal model for a second-order time-invariant field Dig.q. ).
is a first order thime-varving field D(g.q.£). In effect. the interual model is not a model of the
dvnamical svstem. but a model of the ideal controller for that dvnamical system.
Unfortunately. even with an exact model. e if the similarity in Fq. i7) is replaced by
an equality, the resulting coupled system will be unstable about the desired trajectory: our
controller will not he able to compensate for the slightest unexpected change iu initial conditions
or for any perturbation occurring during the movement. Que wayv to overcome this is to define
our controller (" in Eq. (1) (assuming a null environment for now) so that it combines the
internal model of Eq. (7) with an error feedback svstem designed to provide stability abont the
desired trajectory:
C(g.q.ty =D = Stqg—q™(t).q—q7 (1)) (X)

where § 15 a converging force field about the desired state of the svstem at time (. e 0t
has zero forces only when both of its arguments are zero. It can be demonstrated that by
properly selecting behavior of the field 5 about this null position. a multi-input. multi-output
non-linear system such as that of a aulti-joint arm wili be stable about a desired trajectory
despite uncertainties in initial position and errors in the internal model (Slotine and Li 1991).

Now let us apply an environment £ # 0 and consider the problem of finding a new controller
siuch that ¢*(t) is still the solution for the coupled dvnamics described by Eq. (). The procedure
is similar to the one just described: ideallv. we would like to replace the right hand side of Eq.
{4) by the field: Dig.q. 1) + E(q.¢.1). where & is an ideal control iuput chiosen such that the
differential equation E{q.q.§4) = &£(g.¢.1) has a solntion ¢7(t) from a given initial position. We
therefore express the new controller as:

(g g.)=D+E = Slqg—q (1).4— ¢ (1)) (9)

S

where £(q.q.t) is our model of the environment. expressed as a first order time varving field:

S~ Eq.q.1) (10)
Assuming that the svstem was capable of producing the desired trajectory in the absence of an
environment. then it is apparent that as & — &. the coupled dynamics is reduced back to the
form of Eq. (14). of which the desired trajectory ¢*(t) was a particular solution.

This formalism shares a key concept with the learning theory forwarded by Kelso. Saltzman
and coworkers (Kelso and Schoner 1988, Saltzman and Kelso 1989, Schoner et al. 1992). where
a motor plan is achieved through a chauge in the dyvnamics of the effector such that the new
dvnamics have an “attractor” at the to-be-learned trajectory. In other words. here we are
reiterating the classical paradigm of adaptive control. according to which in order 1o cope
with a changing environment it is sufficient to add a component to the controller which has
the specific task of identiiving the new dynamics. In this case. the identification i~ through
approximation of a time-varving force field £. which represents the ideal control input to the
environment. The goal of adaptation is 10 find &. i.e.. the internal model of the enviromuent.
such that the similarity in Eq. (10) is replaced with an equality. If this is achieved. then all
trajectories that the controller was able to perform in the null environment are equally well
performed in the non-zero environment.
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2.5.2 A model of the controller for reaching movements

We consider the hypothesis that. as a subject interacts with the environmental foree field. the
internal model of that field (i.e.. Fq. 10) becomes more and miore accurate. One way to quantify
this gradual development is through the notion of an after-effect: occasionally we removed the
field at the onset of movement and observed how the hand trajectories behaved compared to
when the subject had not been exposed to the field. If an internal model had formed. then we
should be able to predict a change in the hand trajectory based on the simulation of 4 control
svstem that attempted 1o compensate tor the expected environmental forces. Note that this
operation was made possible by the fact that the force fields in Eqgs. (1) and (3) were zero when
the hand was at rest, resulting in a situation where the subject could not determine before
initiation of movement if the field had been removed,

[ order to simulate the after-effects of adaptation. we initially considercd the task of learning
to reach to targets in the field of Eq. (1). The skeletal dvnamics of Eq. (5) were simulated for
cach subject using an inertial matrix f1g) as measnred by Diffrieut et al. (197%). aud given for
a tvpical subject in Table 1 (the Coriolis and centripetal forces which make up the (7 matrix
can be derived from the inertia tensor. cf. Slotine and Li 1991, p. 100). From Eqs. (1) and (5)
we had:

)G+ Glg. )+ 2(q) BJ(g)q=C(q.q.1) (1)

Using the notion of an internal model. the controller (" was defined for the case of a nenromus-
cular system in the form of Eq. (9):

Clg g ) =T+ G+ E= K (g= g () =V (4= ¢ (1) (12)

where K" and 17 were joint stiffness and viscosity matrices describing the behavior of the field
S in Eq. (9) about the desired trajectory. For each subject. we assumed a joint stiffness matrix
K as measured by Mussa-Ivaldi et al. (1985). a joint viscous matrix V7 as measured by Tsuji
and Goto (1993) {i.e.. same orientation and shape as that of joint stiffness. scaled by 0.15 sec).
and a desired hand path described by a minimum jerk trajectory lasting 0.65 seconds. The
particular values of these variables are summarized in Table 1.

3 Results

Our paradigni was one in which reaching movements were made while the hand interacted with
a programmable mechanical environment. This environment was a programmable force field
implemented by a light weight robot manipulandum whose end-effector the subject grasped
while making reaching movements. When the manipulandum was producing a force field. there
were forces which acted on the hand as it made a movement. changiug the dvnamics of the
arm. When the manipulandum’s motors were turned off. we say that the hand was moving in
a “unull field™.

3.1 Hand trajectories before adaptation

Our first objective was to determine how an unanticipated velocity dependent field affected
the execution of reaching movements. The forces in the field (e.g.. Eq. 1. as shown in Fig. 3\)
vanished when the hand was at rest. that is. at the beginning and at the end of the movement.
However. as shown in Figure 4B. a siguificant force was exerted midway. when the hand velocity
was near maximum. How would this force influence the execution of a movement? Would
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Figure 5: Typical haud trajectories at the right workspace in a null force field during no - visual feedback
conditions. Dots are 1 msec apart.

subjects follow a pre-planned trajectorv that was scarcely influenced by this perturbation or
would they modifv the movement and the final position in response to the perturbing force?
To answer this question. we compared reaching movements in the null field with those in a
force field. Trajectories in the null field are shown in Fig. 5. As observed in previous reports
(Morasso 1981. Flash and Hogan. 1985). the hand path was essentiallv along a straight line to
the target. The velocity profile (see Fig. 9\) had one peak. with approximately equal times
spent to accelerate and decelerate the hand.

Once our subjects were familiar with the task of reaching within the null field. we begun
to introduce a force field in random trials as detailed in the methods. We should stress that
at this stage. subjects could not anticipate the presence of the field before the onset of the
movement because the force field was not effective when the hand was at rest and no other
clues were available. Furthermore. during the movement. the cursor indicating hand position
was blanked. eliminating visual feedback. Figure 6 shows the hand trajectories (average t
standard-deviation) of a typical subject when the movements were executed under the influence
of the field shown in Fig. 3A. Figure 9B shows the tangential velocity of hand trajectories in this
field. This field was designed to have opposing effects along two directions. At approximately
30 and 210 degrees the field produced resisting forces that opposed movement as a viscous
fluid would do. At approximately 120 and 300 degrees the forces assisted the movement. thus
producing a de-stabilizing effect.

Note that the effect of the field on the hand trajectory was quite significant and may be
divided into two parts. In the first part. the hand was driven off-course by the field and forced
towards the unstable direction of the field. Movements to targets at 0. 225, 270. and 315 degrees
are pulled toward the unstable region at 300 degrees. while movements to the remaining targets
are pulled toward the unstable region at 120 degrees. At the end of this first part. the field had
caused the hand to veer off the direction of the target and the hand decelerated and stopped
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Figure 6: Performance during initial exposure to a force field: Shown are hand trajectories to targets at
the right workspace while moving in the force field shown in Fig. 3. Movements originate at the center.
All trajectories shown are under no-visual feedback condition. Dots are 10 msec apart.

before making a second movement to the target. The pictorial effect of these two parts of the
hand trajectory appeared as a “hook™ that was oriented either clockwise or counterclockwise.
The orientation and the overall appearance of this hook was found to depend upon the position
of the target and the pattern of forces in the field. and was very similar among the % subjects.

One may interpret the hooks shown in Fig. 6 as “corrective movements™ that are generated
to compensate for the errors caused by the unexpected field. In light of the fact that no visual
feedback was available to the subjects during the movements shown in Fig. 6. this correction
might imply some explicit reprogramming of the movement based on proprioceptive information
detecting the error in the hand trajectory. Alternatively. this feature of the trajectorv might
be a byproduct of a “robust™ control system implementing a single programn: In this case. the
program would be to simply move the hand along a desired trajectorv to the target. The
corrective movements might result because of the natural interaction between the mechanical
properties of the arm. as imposed from the controller. and the force field produced by the
manipulandum. To explore this scenario. we simulated the operation of a controller acting on
the arm’s skeletal system via antagonistic muscles within the force field. The controller. which
is detailed in the Methods section (Eq. 12). was designed based on the assumption that the goal
was to move the limb along a smooth. straight line trajectory to the target. We further assumed
that the controller had. through vears of practice. composed an accurate internal model of the
skeletal dvnamics. This internal model was used to activate the muscles and produce torques
such that the svstem defined by Eq. (4) (and assuming a null field) had. in ideal conditions
(i.e.. with a perfect internal model of the skeletal dvnamics). a solution identical to the desired
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Table 1: Mechauical parameters of the simulated human arm

Upperarm  mass 1.93 ke
center of mass 0.16> m
inertia 0.0141 ke.m?
length 0.33 m

Forearm mass 1.52 kg
center of mass 0.19 m
inertia 0188 kg.m”
lenugth 0.34m

Stiffness _—1()) :l(:j ] N.m/rad

-2.3 =09

Viscosity } N.nsec/rad

-09 -24

trajectory. However. recognizing that there might be errors in this internal model. the controller
used the viscoelastic properties of the antagonist muscles to make the system stable about this
desired trajectory. i.e.. the svstem resisted perturbations (whether external or due to model
errors) as it moved along the planned trajectory. In our simulation of the initial response to a
force field. we assumed that the controller had no knowledge of the forces in the environment.
i.e.. £ = 0. Then we calculated the desired joint-trajectories. ¢*(t).4*(t).§*(t). corresponding
to straight-line movements of the hand towards the ¥ targets. Finally. given the parameters in
Table 1. we integrated Eq. (4) for producing the motion of the hand within the test field.

The results of this simulation are shown in Fig. 7. We found that there was a striking
resemblance between the result of the modeled control system (Fig. 7) and those measured in
our subjects (Fig. 6). In particular. the presence of the “hooks™ as well as their orientation
is accurately accounted for by the modeled controller. The quantitative differences between
model and data are likelv a consequence of errors and simplifications in estimating mechanical
parameters of the arm of each subject: for example, in Eq. 12, we assumed a constant stiffiness
K for the arm. This is true when the arm is near the desired position. i.e.. when ¢ — ¢” is
small. However. it is known that A becomes progressively and significantly smaller as the
distance between the actual and desired hand positions increases (Shadmehr et al. 1993). The
simulations also suffer from the fact that our dvnamical model neglects the small but non-zero
forces due to the inertia of the manipulandum.

The observed corrective movements or hooks in Fig. 6 are consistent with the operation of
a controller which is attempting to move the limb along a desired trajectory and bring it to a
specified target position. Because this controller uses muscle viscoelastic properties to define
an attractor region about the desired trajectory. the hand is eventuallv brought back to near
the target position. The hooks result from the interaction of the viscoelastic properties of the
muscles and the force field which perturbs the system from its desired trajectory. Indeed. the
results of the model suggests that the subjects may be executing a single program. i.e.. that of
moving the hand along a specified plan.

13




\,
0.1
_ 005 \
5 Y
§ oo T —
Q 1
> o . .

-0.1 -0.05 0 0.05 0.1

x-gisplacement (m)

Figure 7: Simulated hand trajectories for the skeletal dynamics of Eq. (11) with the controller of Eq.
(12) i the force field of Fig. 3 before having formed an internal model. i.e.. & = 0. Dots are 10 msec
apart.

3.2 Adaptation to the force field

After measuring the movements of the arm in the null field as well as the initial responses to
the unanticipated force field, we asked our subjects to keep executing reaching movements in
the force field. We wish to stress that we did not give any instructions regarding the trajectory
with which the targets should have been reached. Nevertheless. as the subjects practiced in the
force field. the “hooks™ shown in Fig. 6 eventually vanished and the hand trajectories became
increasingly similar to those observed in the null field (Fig. 5). The progression of hand position
traces as measured under conditions of no visual feedback and in the presence of the force field
during the first. second, third. and final target sets (each target set consisted of 250 movements)
are shown in Fig. 8. Although the force field initially caused a siguificant divergence from the
trajectory that was normally observed for a reaching movement. with practice. the subjects
tended to converge upon this straight line trajectory. This recovery of the original unperturbed
response constitutes a clear example of an adaptive behavior.

Further evidence of motor adaptation is offered by the significant change that occurred in
the hand velocity profile at the onset of exposure to the force field. and after completion of the
practice trials: Figure 9A shows the hand tangential velocity traces obtained when the hand
was moving in a null field (corresponding to the hand position traces of Fig. 5). Consistent
with previous studies (cf. Flash and Hogan 1985). these velocity traces are approximately along
straight lines and symmetric in time. The hand velocity traces at the initial stage of practice
in the force field (corresponding to the hand position traces of Fig. 6) are shown in Fig. 9B.
After practice in the force field. the velocity traces strongly resemble those recorded in a null
field: In Fig. 9C' we have the velocity traces while the subject was completing the practice trials
in the force field (corresponding to the hand position traces of Fig. 8D). Although the average
velocity of the hand trajectory is now larger (as compared to Fig. 9A). the velocity trace for

14




eaonsssssseney,

./

L)
of
o
L]
o
o
pes
Py
oto-..l"".

.
(X o
-, o oseesemmy
pidl LT PPN eseest®
o o
... - *
.. L)
o '

P LTI YL T
o

A..ooil‘l.ncoc
anh
>

Figure 8: Average + standard-deviation of hand trajectories during the training period in the force

field of Fig. 3. Performance plotted during the first, second. third, and final 250 targets (A. B, C, and
D, respectively). All trajectories shown are under no-visual feedback condition.

each target has essentially the same pattern as that observed for movements in a null field.

In order to quantify the time course of adaptation. we studied how the hand trajectories
evolved as compared to those observed in the null field. For each subject. we compared the
trajectories in the null field to those obtained as the subject practiced in the force field. This
comparison was made through computation of a correlation coefficient between pairs of trajec-
tories (Appendix I). We found that the average correlation between a trajectory in the null field
and one in the force field increased with the amount of practice movements performed by the
subject in the force field. The computed correlation coefficient for trajectories performed by
all subjects are shown in Fig. 10. Remarkably. all the subjects displaved a strictly monotonic
evolution of the correlation coefficient. While the initial value was scattered between 0.5 and

0.8, after 500 movements all subjects had reached a similarity included between 0.85 and 0.9.

The convergence of the trajectories in a force field to that observed in the null field strongly
suggested the existence of a kinematic plan. or desired trajectory. independent of task dyvnamics.
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Figure 9: Tangential hand velocities before and after adaptation to the force field shown in Fig. 3.
Traces are, from top to bottom. for targets at 0°.45°.....315°. A: Hand velocities in a null field before
exposure to the force field (corresponding to position traces in Fig. 5). B: Hand velocities upon initial
exposure to the force field (corresponding to position traces in Fig. 6). Hand velocities after 1000 reaching
movements in the field (corresponding to position traces in Fig. 3D).

Our subjects did not seem to be aware of the process of adaptation and of the change in their
performance. The only subjective indication that some adaptive change had occurred was
given by a variation in the sense of effort associated with the task. During the first batch of
250 movements within the disturbing field, some subjects reported an intense sense of effort.
Paradoxically. this sense of effort diminished drastically after about 500 movements. At the
end of the training period most subjects reported that they were “not feeling” the test field
anymore.

3.3 After—effects

One way—although by no means the only way—for the subjects to recover the initial motor
performance (what we have called the desired trajectorv) after the exposure to the test field
was by developing an internal model of this field. This internal model is the term & in the
expression of our model controller (Eq. 12). On the other hand. if after the development of
an internal model the test field is removed. then one expects to see a change in the resulting
trajectory. This change is called an “after-effect™ of the adaptation.

We simulated the after—effect by setting £ = B in our controller model (Eq. 12) and E = 0
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Figure 10: The average correlation coefficient for movements in a test force field as compared to
movements in a null field. as a function of practice trials in the force field. Each line represents a
subject.

in our dyvnamics model {Eq. 4). This simulation corresponds to the assumption that subjects
developed a perfect approximation of the force field and that this approximation remained in
effect as the force field was unexpectedly changed to the null field. Again. the commanded
joint-trajectories corresponded to straight-line. minimum jerk movements of the hand towards
the 8 targets. The results of this simulation are shown in Figure 11. Qualitativelv. one can see
that the after effects are “opposite™ to the initial perturbations induced by the field and shown
in Fig. 7. In particular. (1) the hooks are oriented in opposite directions and (2) the metrics of
movements is reversed: long movements in Fig. 7 correspond to short movements in Fig. 11 and
vice versa. Indeed this qualitative result should be expected on the basis of the fact that the
differential equation which generates the after effects can be obtained by subtracting the test
field from the original dvnamics within the null field. Therefore. these two features described
above can be regarded as a strong property. almost like a “signature”. of an internal model of
the imposed force field.

Experimentally. we tested the hvpothesis that adaptation in the subjects involved develop-
ment of an internal model by removing the force field at the onst  of movement and recording
the after-effect. We removed the field at random trials during the period of adaptation to the
test field. We found that the magnitude of the after—effects grew with the length of exposure
to the force field: Figure 12 illustrates the temporal progression of after—effects. as measured
under conditions of no visual feedback and in the null field. during the first. second. third.
and final target sets. The size of the after—effect, as indicated by the deviation of the hand
trajectory from a straight line. grew with practice in the force field. By the final target set (Fig.
12D), the hand trajectory in the null field was significantiy skewed. Remarkably. the observed
after effects at the end of the adaptation period had the same qualitative features as those
predicted by our simulation of an internal model within the null field (Fig. 11). In particular.
by comparing Fig. 8 with Figure 12D. one can see that (1) all the hooks had reversed directions
and (2) the metrics of movement has changed as in the simulation.

This finding is consistent with the hypothesis that subjects adapted to the force field by
creating an internal model that approximated the dynamics of the environment. In addition.
the data shown in Fig. 12 indicate that most of the development of this internal model took
place during practice trials in the first and second target sets. as indicated by the progressive
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Figure 11: Simulated after—effect trajectories: Hand trajectories for the skeletal dynamics of Eq. (11)
in a null force field with the controller of Eq. (12). assuming that the controller had formed an internal
model of the force field shown in Fig. 3.

development of after—effects during these periods (Fig. 12A and 12B). From this observation
one would expect that performances of the subjects in the force field should have shown most
of its improvement rather early in the training. This is in agreement with the correlation curves
shown in Fig. 10: in general. for all subjects the correlation coefficient increased most rapidly
at the early stage of exposure to the field. indicating that the subjects had composed a fairly
accurate internal model of the imposed force field by the midpoint of the training session.

3.4 Transferred after—effects

Our results in Fig. (12) provide a strong indication that adaptation occurred through the
development of an internal model of the applied mechanical environment. What is the structure
of this model and how is it represented in the nervous system? A priori. there are several
legitimate hypotheses. This internal model can be regarded as a mapping between the state of
the arm (position and velocity) and the corresponding force exerted by the environment. In an
artificial svstem. one may implement such a mapping as a look-up table by storing away in some
memory location the forces encountered at each state visited during the period of adaptation
(cf. Raibert 1978, Miller 1978. Atkeson and Reinkensmeyver 1989). This tvpe of local mapping
has also been proposed in biological models. such as the one formulated by Albus (1975) for the
cerebellum. In psvchophysics. this kind of model is called a “specific exemplar model™ and has
been used to suggest a mechanism for learning a motor task (cf. Chamberlin and Magill 1992).
Of course. if the internal model were a look-up table. adaptation would occur only at (or in
the neighborhood of) the visited states. As a consequence. no after effect should be detectable
if. after the adaptation. the null field was presented at some location outside the neighborhood
visited during the training period.
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Figure 12: Afier effects of adaptation to the force field shown in Fig. 3 at the right workspace. Shown
are average * standard-deviation of the hand trajectories while moving in a null field during the training
period for the first. second. third, and final 250 targets (A. B. C. and D. respectively). All trajectories

shown are under no-visual feedback condition.

To test this hyvpothesis regarding the representation of the internal model as a local associ-
ation between states and forces. we asked our subjects to make reaching movements in the null
field at the left workspace before and after having been exposed to the test field at the right
workspace (workspaces are shown in Fig. 2). Fig. 13A shows a set of trajectories in the null field
at the left workspace. These trajectories were obtained before the subject practiced movements
in the force field at the right workspace. Figure 13B shows the average trajectories obtained
from the same subject. in the same left workspace and with the same null field. but after the
subject had adapted to the field in the right workspace. Clearly. there were substantial after-
effects in the left workspace resulting from adaptation in the right workspace. This finding is
not compatible with the hypothesis that subjects developed an internal model by building a
look-up table. that is. a local association between visited states and experienced forces. On
the contrary. the internal model appeared to extend and “generalize™ quite broadly outside the
portion of workspace explored during the period of adaptation. This pattern of generalization.
as evidenced by the transferred after—effects. was similar in all subjects. regardless of whether
theyv had trained at the right workspace in an endpoint translation invariant field (Eq. 1) or a

joint translation invariant field (Eq. 3).
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Once we had established that the internal model was not merely a local association between
states and forces. a question that remained was how the internal model extrapolated outside the
region where the subject had trained. Concerning this issue. one mayv define two broad classes
of generalizations. In one class, the generalization mav be the outcome of some cognitive
inference about the mechanical properties of the environment. For example. if we are stirring
a can of paint. from physics we know that we should experience the same forces on our hand
(for a given hand trajectory) regardless of the location of the paint can in the workspace of our
arm. In this sense. we would expect the viscous field representing the mechanical properties
of the paint to be translation invariant in endpoint coordinates. This expectation would be
reflected in the geometric structure of our internal model: the internal model would be a map
between motion and forces in an extrinsic coordinates. (C'onsistent with the properties of the
environment. it would predict identical forces acting on the hand when movements are done in
the novel region of the workspace (as compared to movements in the region where we trained).
As a consequence. the adaptation to a velocity-dependent field in the right workspace would
also imply the adaptation to the same force field in the left workspace. In order to achieve this
tvpe of generalization. it is necessary to postulate the existence of further computations that
transform predicted end-point forces (output of the internal model) into muscle torques across
the workspace.

Alternatively, adaptation may be through composition of an internal model that does not
require further coordinate transformations: it simply represents the environment in terms of a
map between motion and forces in the coordinate svstem of its sensors and actuators. This
model would be implemented by a controller that. during execution of the task. effectively
changes the dvnamical behavior of the muscles to approximate and compensate for the force
field in the region visited during adaptation. Indeed. these changes in muscle behavior are
bound to have some effect bevond the region in which the subject was trained. For example.
by activating the pectoralis (a single—joint flexor of the shoulder) a subject may compensate a
force directed toward the elbow. Let us assume that this muscle activation is the outcome of
the internal model and that there is no other computation dedicated to perform any coordinate
transformation. Then, when the arm is at another configuration the internal model will produce
the same muscle activation if the same state of the arm is given as input. Of course this time the
output force will be different because there is a different geometrical relation between pectoralis
activation and endpoint force in the new location of the arm. In this second case. we would
expect the internal model to be translation invariant in an intrinsic coordinate system. and
generalization to be a side—effect of biomechanics.

Our experimental results clearly favor this second scenario where the forces in the environ-
ment are generalized in terms of an intrinsic coordinate system. i.e.. in terms of torques on
joints. The after—effects observed at the left workspace (Fig. 13B) were significantly different
than those observed at the right (Fig. 12D). For example. compare movements to targets at
15°, 135°, 225° and 315° in each figure. These differences suggested that hased on the internal
mode] formed after practice in the right workspace. the subjects expected to interact with very
different forces at the left workspace. We tested this hvpotheses directly by having subjects
which practiced in the field shown in Fig. 3A at the right workspace, make movements without
visual feedback in the field shown in Fig. 4A at the left workspace. The results are shown
for a typical subject in Fig. 14A: This subject belonged to Group 1. i.e.. trained at the right
workspace on the endpoint translation invariant field described by Eq. (1). Although forces in
Figs. 3A and 4A are nearly orthogonal. the subject perforined near perfectly (p = 0.91) at the
left workspace in the field of Fig. 4A. The same subject’s performance in the left workspace
was poor (p = 0.62) in the field of Fig. 3A (shown in Fig. [4B). This indicated that the subject
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Figure 13: Transferred after—effects: Average + standard-deviation of hand trajectories while moving
in a null field at the left workspace. A: Before the subject practiced movements in the field of Fig. 3
at the right workspace. B: After the subject practiced movements in the field of Fig. 3 at the right

workspace.

generalized the force field in terms of an intrinsic coordinate system.

The performance of all subjects in the two force fields at the left workspace was quantified
by computing the correlation coefficient between the trajectories in each force field and the
trajectory in the null field. These coefficients are shown in Fig. 15. The results consistently
indicated that subjects retained the kinematic features of the adapted behavior when the envi-
ronment was translated to the novel region of the workspace in joint coordinates. and not when
this translation was in endpoint coordinates. This rejected the hypothesis that the internal
model attributed a hand-based invariance to the environmental field.

4 Discussion

We used the paradigm of a programmable mechanical environment in order to study how the
motor control system adapts to a change in the dvnamics of a well rehearsed task. The task
which we considered was a reaching movement where the hand interacted with a force field
produced by a robot manipulandum. We chose a force field which significantly changed the
dynamics of the task. resulting in a large change in the trajectory that the hand took in making
a reaching movement (as compared to moving in a null field). The objective was to observe
how the subjects responded to this change in the system dynamics.

We tested the hyvpothesis that in programming a reaching movement. the (‘NS initially
specifies a desired trajectory of the hand and then uses an internal model of the limb’s dvnamics
to produce torques appropriate for moving the hand along this desired trajectory. When the
limb’s dynamics were changed (by imposing a force field on the hand). the internal model was
no longer accurate. resulting in the hand moving along a trajectory that deviated from the
desired behavior. This error. as observed over repeated movements. led to gradual updating of
the internal model so that it eventnally approximated the new dynamics of the limb. In the
current study. we found evidence regarding existence of a desired trajectory and that the motor
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Figure 14: Average + standard-deviation of hand trajectories during initial exposure to a fiekl at the
left workspace immediately after the subject practiced movements in the field shown in Fig. 3 at the
right workspace. A: Performance at the left workspace in the field of Fig. 4. B: Performance at the left
workspace in the field of Fig. 3.

controller achieved this desired performance via an explicit composition of an internal model.

4.1 Evidence for a desired trajectory

The task of moving the hand to a target position is ill-posed in the sense that the subject
may choose from an infinite set of trajectories to achieve the goal. Yet. for two-dimensional
movements with moderate accuracy requirements (such as our task). it has been demonstrated
that subjects tend to move their hand smoothly and along a straight line {(Morasso 1981,
Soechting and Lacquaniti 1981. Flash and Hogan 1985). Reaching movements are characterized
by fairly constant duration. whatever their direction or extent. and a bell-shaped curve of the
tangential hand velocity versus time (Morasso 1981). Here we confirmed this observed this
phenomenon as subjects performed the task in a null field (Figs. 6 and 9A). In addition. we
found that when the dynamics of the task were changed by imposing a force field onto the hand.
the result was hand trajectories which deviated significantly from this smooth. straight line path.
as is shown in the position traces of Fig. 7. and velocity traces of Fig. 9B. Nevertheless. through
practice. the subjects” hand trajectories converged to the trajectorv observed during null field
conditions (Figs. 8 and 10). This convergence was gradual but monotonic in all subjects.
consistent with an adaptive process whose goal was to compensate for the forces imposed by
the field and return the hand’s trajectory to that produced before the perturbation. This finding
suggests that the kinematics observed in reaching movements is not merely a consequence of
arm dvnamics but reflects the presence of a plan, i.e.. a desired trajectory.

4.2 Properties of the desired trajectory

C'an we specifv the criterion that the C'NS uses to specifv the desired trajectory? The desired
performance of a controlled system is usually established by a criterion. or optimization prin-
ciple. expressed in a particular coordinate system (e.g.. the coordinate syvstem of the task. cf.
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Group 1 Group 2

Correlation Coefficient

1 2 3 4 5 6 7 8

Subject

Figure 15: Summary of performance in the left workspace after training at the right workspace. Sub-
Jects in Group | traiued on the field given by Eq. (1). while subjects in Group 2 trained in field given by
Eq. (3). The two fields were essentially identical in the right workspace but orthogonal at the left. Shown
are average correlation coefficients for movements in the left workspace in a force field as compared to
movements in a pull field for the same subject. Light gray bars are for movements in field given by
Eq. (3) while dark gray bars are for movements in field given by Eq. (1). Performance was significantly
better in both Groups when the force field was trausferred to the left workspace in terims of joint torques
rather than end-point forces.

Flash and Hogan 1985. Jordan and Rumelhart 1992, Jordan 1993). For skilled movements of
the arm. this criterion appears to be one of smoothness. Specificallv. in the context of reaching
movements in the horizontal plane. Flash and Hogan (1983) have noted that the hand’s tra-
jectory is well described by a function which maximizes a measure of smoothness. In a similar
work. Stein et al. (1988) have shown that in the single joint case. the optimal fit to joint veloc-
ity is a Gaussian function. which is also consistent with an optimization of smoothness (Poggio
and Girosi 1990). Even in more complicated tasks such as reaching around obstacles. there is
evidence that with practice. the trajectory of the hand becomes progressively smoother { Abend
et al. 19%2, Schneider and Zernicke 1920). Therefore. this optimization of smoothness in terms
of the trajectory of the hand serves as a possible computational priuciple that the CNS might
be using to describe the desired performance during a reaching movement.

A characteristic of the above hypothesis is that the desired behavior of the arm is achieved
via a purely kinematic principle. i.e.. smoothness of the change in the position of the hand. This
is appealing as it would imply a separation between the planning and the execution stages of the
motor task: as long as the task is to move the hand to a target position. the desired trajectory
remains a smooth. straight line path (in task coordinates). regardless of whether a force field
is present. As Bernstein (1967) noted. this kind of separation of planning from execution is
inherent to a hierarchical structure where a change in the dvnamics of the controlled system
does not affect the definition of the desired behavior.

Alternatively, one can forward other computational principles which the C'NS might be
using to define a desired trajectory where the stage of planning is highly dependent on the
stage of execution. For example. consider that the ('NS could specify a desired trajectory for
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the hand such that the tareet is reached the most “etfortlessiv™. where an effort is defined as
a measure of encrgy. based on the physical cost of the movement (Nelsou 1983). or based on
changes in the forces or torques on the joints (Uno et al. 19%9). lu fact. it has been shown
that the smoothness and straight line properties of the hand trajectory may be a by-product
of a minimum torque-ch rnge criterion (Uno et al. 1989). However. in contrast to the previous
approach. based on tue this scenario the desired trajectory would change as a function of the
dynamics of the task. closelv linking the process of planning to that of execution.

The force fields that we imposed on the hand as a reaching movement was attempted changed
the dynamnies of the arm quite drastically (ef. Fig. 6). Nevertheless. through practice. the sub-
jects” hand trajectories converged upon the trajectory observed during unperturbed conditions,
as shown in Fig. % and quantified in Fig. 10. The ouly major difference was an increase in
peak velocity {(on average, peak velocity increased by %19 with respect to movements in a null
field. ef. Fig. 9C"). a phenomenon which has been linked to repetition of a motor task by other
investigators (cf. Kerr 1992). This observed convergence to the unperturbed trajectoiv argues
for an explicit description of a desired trajectory whose kinematics are essentially independent
of the dvnamics of the task. in line with the notion of a separation of the planning from an
execution stage.

Recent results from Flash and Gurevich (1992) have provided evidence supporting this
idea of an invariant kinematic plan for a task where the hand intoracted with a static load.
Siwilarly. Lacquaniti et al. (1982) found that subjects which were asked to move a 2.5 kg
weight did so. after some practice trials. along essentially the same trajectory as when moving
the hand without the weight. Qur work has shown that even when the change in the dvnamics
of the limb is fairly severe. the response is a convergence to the trajectory observed before the
change. albeit this convergence may take place over a fairlv long practice period (300 to 1000
movements in our case, as shown in Fig. 10). This is similar to the conclusion reached for single
degree of freedom movements by Ruitenbeek (1984). who found that when a subject interacted
with a manipulandum with variable dvnamics. practice led to a trajectory that was invariant
with respect to the dvnamics of the manipulandum. These results are not compatible with the
idea that the process of planning is mainly influenced by the dvnaniics of the task. as one would
expect different desired trajectories for different environments since a change in the environment
causes a change in the svstem’s dynamics. Indeed. invariance of the plan with respect to the
dvnamics suggests that there mav be specific elements in the motor control hierarchy which are
concerned with the description of a desired behavior of a limb in terms of pure kinematics.

4.3 Adaptation through composition of an internal model

Convergence of the hand trajectories while interacting with the novel force field is an indica-
tion of the adaptation of the motor controller. We hypothesized that this adaptation was via
composition of an internal model of the imposed force field. 1 this scenario. the internal model
is a mechanism by which the nervous system predicts the forces that would be acting on the
hand as it performs the task.

The force field which was imposed on the hand had the property of being dependent on
the velocity of the hand. resulting in a situation where the subject did not know whether the
field was “on™ or “off " until the movement was actually initiated. However. during the training
period. in 91% of the movements the field was on. presumably facilitating formation of a model
of the force field which the ('NS might use as a part of a control system to move the hand along
the desired trajectory (for the remaining movements the field was off in order to measure anyv
after—-effects of adaptation). We suggested that this control system may be represented as the
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sum of three components: an internal model describing the dvnamics of the skeletal svstem of
the arm when moving in a null field. an internal model describing the dvnamies of the force
field imposed on the hand. and a viscoelastic or feedback svstem intended to stabilize the arm
about the desired trajectory in case ol errors in these models.

Initially. the subject had not formed a model of the force field. resulting in a discrepancy
between the expected dvnamics of the arm and the dvoamics actually preseut. This “model
error” led to hand trajectories (Fig. 7) which were significantly different than the desired trajec-
tories. Indeed. we found excellent correspondence hetween trajectories produced by the model
controiler (Fig. 7) and those observed in the movements of the subjects {Fig. 6). In particu-
lar. we observed that the responses to the sudden presentation of the field were characterized
by a sharply curved trajectory that we described as a “hook™. A possible interpretation for
this hook would be that the hand starts the movement along a wrong direction and that the
resulting error is corrected by a secoud movement. However, there is a simpler interpretation
of the same result that does not make appeal to explicit correction processes. According to
this interpretation. the corrective movement is a byv-product of the interaction between the
mechanical properties of the arm as imposed by the controller (the function .5 in Eq. 9) and the
force field imposed on the hand. Presence of the hook as well as the initial error in movement
direction are systematically predicted by the simulation of the dvnamics of this model. We
wish to emphasize that our reason to favor this hvpothesis. at present. rests uniquely on its
computational simplicity as compared to the hypotheses which requires an explicit correction
process.

If the adaptive process was via composition of an internal model of the imposed force field.
then we argued that by removing the field. once again there should be a discrepancy between
expected and actual dvnamics of the svsten. To test this. in 99 of the movements during the
training period the force field was returned to its null condition. Our simulation of the adaptive
controller suggested that there would be after—effects of adaptation (Fig. 11). We found that
when the field was unexpectedly removed. the subjects produced trajectories similar to those
predicted by the simulation. The “magnitude” of the observed after—effects increased gradually
with the practice period (Fig. 12). This progressive buildup of after—effects was further evidence
that the ('NS improved performance via an explicit composition of an internal model.

Of course. it is easy to envision a svstem whose performance in response to a perturbation
improves not because of an internal model, but due to an increase in the stiffness of the system
about the desired trajectory. This alternative strategy mayv be achieved by an increase in the
coactivation of the muscles. As a consequence, movements would become more insensitive to
changes in the external forces. It is easy to show that modest increases in arm stiffness (about
3 folds with respect to the values measured in posture) leads 10 almost perfect performance
in the force field. However. if this strategy is chosen as the mode of adaptation. then it is
evident that exposure to a force field would not cause an after—effect in a null field. Indeed.
the fact that practice does cause progressively larger after-effects (Fig. 12) is strong evidence
against the hyvpothesis that the convergence of trajectories is due to a mechanism such as global
coactivation of muscles. This is in agreement with measurements of van Emmerik (1991) where
it was shown that during learning of a novel arm movement the stiffness of the limb decreases
slightlv.

4.4 Transfer properties of the internal model

As a subject practiced reaching movements in a force field. the after-effects suggested that an
internal model of that field was being composed. We can represent the information contained




in this internal model as a map whose input is the state of the arm and whose output is a force.
Indeed. this output is the force predicted by the iuternal model  that wounld be imposed by
the environment as the arm passed through a given state. Therefore. the internal model was a
map which approximated the force field imposed by the mechauical environment. and the task
for the subject was to learn to perform this approximation from a set of examples (where the
examples were provided as the subject made arm movements in the force tield). What are the
mechanisms underlving this approximation”? The after effects can again serve as a powerful
tool to reveal some of the properties of the internal model.

The description of a biological learning task can often be represented as approximation of
a sensorimotor map. This approach has recently been implemented by a distributed technique
inspired by the architecture of the nervous syvstem. In this approach. the mapping is formed via
interaction of a set of non-linear computational elements which represent neuron -like structures
{cf. Barto 1989, Poggio 1990). For example. for the task of motor learning. combinations of
non-linear basis functions have been used to implement an internal model which represents
the inverse dvnamics of a multi-joint limb (Raibert and Wimberly 19X.1. Kawato 1989, Jordan
1990. Shadmehr 1990. kawato and Gomi 1992. Jordan 1993). mapping states of the limb to
forces (e.g.. Eq. 6). These results have provided an algorithm by which an internal model
may be constructed by an intelligent svstem. However. little has been learned regarding the
properties of the computational elements with which the nervous system might be performing
this adaptive process.

C'onsider that a property of the computational elements (e.g.. basis functions or “neurons”
in a neural network) used in learning a map is their spatial bandwidth. i.e.. the size of their sup-
port or “receptive field” in the input space.? The size and location of the receptive fields greatly
influence how the learning system interpolates between states which it has visited during train-
ing. and whether it can generalize to regions beyvond the boundary of its training data (Poggio
and Girosi 1990). In fact. research in visual perception has used the notion of generalization
to make an inference regarding the receptive fields of the computational elements used by the
visual system to learn a map: in a hvperacuity task. Poggio et al. (1992) have shown that if
the computational elements have narrow receptive fields similar to those found in components
of early vision. a subject should not be able to generalize to tasks which are slightly different
than those on which the subject had been trained on—a prediction which agrees with results of
experiments (Poggio et al. 1992). Simply said. this is because during the learning of the task.
only the “weights™ of those elements which are activated by the input are changed. and if these
elements respond to only a narrow range of inputs, then the svstem can not generalize to a
region outside the training data. Computation emerges from the superposition of the receptive
fields of the activated elements. The implication is that for some visual recognition tasks. the
nervous system approximates a map in terims of these “low-level” elements which encode visual
information using fairly narrow receptive fields (Poggio 1990).

In a motor task. the equivalent low-level elements are muscles and their associated spinal
(Bizzi et al. 1991) and supra-spinal (Berthier et al. 1993) neural control pathways. For example.
Giszter et al. (1993) have quantified behavior of some of the neural circuits and the associated
muscles in a frog’s spinal cord: each circuit is a collection of interneurons connected to a group of
motor units. When a circuit is activated through microstimulation. the muscles generate a time -
varving force. This force depends on the configuration of the limb and mayv be represented as a
force field. e.g.. an endpoint force as a function of the position of the tip of the limb. Therefore.

?The support of a function is that region of the function’s domain over which the output value is different
from zero. In neurophysiology. the support of a function which represents the input--output behavior of a cell is
often referred to as a “receptive tield”.
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computationally the behavior of the low level elements in the motor control hierarchy is to
produce an output force as a function of the input activation to the spinal neural circuitry and
the position of the limb and time (Mussa-Ivaldi et al. 1990).

In a general framework. it seens more plausible to assumne that the pattern of forces gen-
erated by such a spinal controller depends upon velocity of the limh as well as its position.
Therefore. we can describe the output force for a given amount of activation of a spinal cir-
cuitry as a time varving vector valued function o(q. ¢.t|c). where ¢ is an activation parameter.
This time varving force field is essentially a wave expressing the input-output behavior of a
motor computational ¢lement within the central nervous system. In theory. a collection of these
computational elements can be used in a motor learning task: A finding of the spinal micros-
timulation experiments (Bizzi et al. 1991. Giszter et al. 1983) has been that the simultaneous
stimulation of two separate sites resulted in the summation of the fields obtained from the sep-
arate stimulation of each site. In other words. the output of the motor computational elements
add when two are activated. Based on this property of superposition. a simple framework for
motor learning in terms of these computational elements can be proposed: (‘onsider the force
field which results when all the motor computational elements are simultaneously activated:
3 i 0ilq.g.t]e;). This expression assumes a particularly tractable form if the control parameters
of the computational elements can be considered as linear scaling coefficients: 3, ¢;0,(q.¢.1).
In this context. the problem of producing a desired motor behavior is equivalent to that of
approximating the field described by the controller in Eq. (8). i.e.. solve for ¢; such that:

Z(',’O,‘(([,().f) ~D(g.q.t) = S(g—q (t).¢— ¢ (t))
t

In the above we have the controller for arm movements implemented via a set of motor compu-
tational elements. where each element is a time-varyving force field. or wave. Mathematically.
the idea is to think of the muscles and their spinal circuitry as a ¢ :mputational element in a
motor approximation task (Mussa-Ivaldi 1992. Mussa-Ivaldi and Giszter 1992). In relation to
other theories in motor learning. each computational elements can be thought of as a primitive
movement. or motor schema (Arbib 1985).

This idea of implementing a controller via a distributed network of motor computational
elements may be easily extended to the task of building an internal model < an environmental
force field: given a desired field £(¢.¢.t). the adaptive controller must find a set of control
parameters. ¢; such that:

> €i0ilq.4.1) ~ Elg.4.1)

Using this notation. our proposal consists in separating an invariant “task representation™, i.e..
a set of coeflicients. ¢;. from an “environment representation™. i.e.. a set of coefficients. ¢;. such
that the net controller is defined by:

Clg.g.t) = (e; + €)oi(g. 4. 1)

4

In summary, the idea is that the force field described by the biological motor controller of Eq.
(12) may be implemented by the nervous system through a weighted sum of motor compu-
tational elements. with each element representing the time-varving force field produced by a
spinal circuitry.

A relevant feature of these motor computational elements is their convergence toward an
equilibrium location within the limb’s reachable space. i.e.. a location where forces go to zero
(Giszter et al. 1993). Because the output force is non-zero for the rest of the workspace.
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the “motor receptive field” of each element is. by definition. rather wide. This is unlike the
properties of elements iu early vision which are involved iu learning a hvperacuity task (Poggio
et al. 1992). It follows that if a learning task required approximation of a force field. the broad
motor receptive fields of the computational elements should lead to generalization well bevond
the neighborhood of the training data. To test this idea. we limited the input space for which
training data were provided and tested the nervous svstem’s ability to generalize to a region
outside of the boundary of the training data. Our scenario was one in which information about
the environment was available for only a small part of the workspace: this was achieved by
limiting the region where the subject practiced a movement. Ouce adaptation had occurred.
the subject performed movements in a novel region where no training had been provided. We
found that exposure to an environment resulted in after-effects bevond the novel region. i.e..
there was a transferred after-effect (Fig. 13B). This indicated that the internal model was used
by the nervous system to predict behavior of the environment well bevond the boundary of the
training region.

From the after—effects at the novel region we can state that the computational elements with
which the nervous system formed a model of the environmental forces had wide motor receptive
fields. These elements produced a significant response for a region of the workspace well bevond
th~ neighborhood where training data were provided. This property of the adaptive controller is
inconsistent with the approach where motor learning takes place via construction of a look-up
table in which local association is made between visited states (address of the memory cells
in the table) and experienced forces (contents of the cells). On the contrarv, adaptation is
via computational elements which give the property of generalization to the composed internal
model.

The alter-effects at the left workspace suggest that the internal model generalized the
environmental forces to a specific pattern. Interestingiv. from the trajectory of after—effects
(Fig. 13B). it was apparent that the expected force field at the left workspace was very different
than the one that the subject had been trained on. We hvpothesized that this difference could
be accounted for if the field was generalized not in terms of forces on the hand. but in terms
of torques on the joints. The idea was that perhaps the relative position of the computational
elements in the motor control hierarchy dictated the coordinate system in which information
about the environment was generalized: if these elements resided near the plan stage of the task.
where a desired hand trajectory is specified. then they might encode the environmental dvnamics
as a mapping between the state of the arm and imposed forces in an extrinsic frame of reference.
Assuming that these elements broadly encoded the input space. then local adaptation might
produce an internal model which generalized to similar endpoint forces for similar endpoint
trajectories. Alternatively. the computational elemonts might reside at a lower stage. perhaps
near the effectors. where information is received in a coordinate system defined by the afferents
and the muscles. Here the internal model would be a mapping between observed states of the
arm and the imposed forces in an intrinsic frame of reference. As opposed to the high-level
model. local adaptation here might produce a map which generalizes to similar joint torques
for similar joint trajectories.

We tested the merits of these alternate scenarios by a direct experiment. After practicing
in a field at the right workspace. the subjects were asked to make reaching movements at the
left workspace. The field presented at the novel region (left workspace) was one of two kinds.
In some trials. this field was a translation of the training field in endpoint coordinates. while in
the other trials the field presented was a translation of the training field in joint coordinates.
Consistently we found that the performance of the subjects was near optimum when the field
was translated in joint coordinates (Figs. 14A and 15). This finding is in sharp contrast with
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the hypothesis that subjects adapted to the imposed field by building a model in endpoint
coordinates. On the contrary, our finding suggests that the subjects represented the imposed
force field as a map between motion and forces iu the intrinsic coordinate system of the afferents
and actuators,

In conclusion. this choice of the coordinate system for the internal model suggests that
the planning and control of a reaching movement are undertaken by fundamentally different
computational elements in the nervous syvstem. While the planned trajectory for the arm is
in an extrinsic frame of reference. the model for the dyvnamics of the task is in an intrinsic
frame. What results is a scenario where learning a motor task. sav hitting a golf ball. entails
both formation of an appropriate Kinematic plan. i.e.. golf club trajectory. and composition of a
mode] of the task’s dvnamics so that the plan may be executed. i.e.. forming an internal model
oi the club’s dvnamics. Here we have reported on some ot the properties of the computational
elements with which the nervous svstem forms the internal model for task’s dvnamics. It
remains to be seen whether computational elements which are involved in learning kinematics
of a task produce a model which fundamentally has a different geometric property than that
which results while learning dvnamics. Perhaps eventually the combination of elements involved
in learning kinematics an dynamics can form a kind of alphabet for the language of movement.
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Appendix I: Correlation of two sampled vector fields

Here we describe a mathematical technigue that quantifies the similarity between two sampled
fields. We used this techuique for comparing force fields as well as hand trajectories. This
technique was based on the notion of inner product of two sampled vector fields (Gandolfo and
Mussa-Ivaldi 1993).

Empirically. a time series of vectors. as well as a vector field. may be regarded as a finite
ordered set of vectors. sampled at subsequent instance of time. or in a given arrangement of
spatial locations. In mathematical terms. a finite ordered set of vectors. ['. is a mapping that
assigns to each element. 1. of the index set. (1..... n) € N.a vector u;. Then the expected
value of [". denoted by (I'). is a mapping from the same index set to the set of vectors {¢,}.

where
l r
vi= = — u
: =D
J=1
According to this definition. the expected value of " is a constant set (v; = v, Vi.j). It
follows that: (s(U")) = =(I"). Now consider the task of comparing two sets [ and Y. where
Y =(y1-y2. ... yn). Let us define the inner product of " and Y as the scalar:

<I'.)'>=§:u,~y;

=1

where the symbol - on the right side indicates the dot product operation between two vectors.
We define the expected value of this inner product as:

1
(< UY >) = - < .y >
Then. we may use the above expressions for defining the co-variance of two vectorial sets:
Cov(l'.Y) (< U —¢(U)Y —<(Y)>)
= (< U.Y >)=<e(U).e(Y) >

Furthermore. the correlation coefficient between two sets. p({'.Y ). is given by the ratio of the
co-variance of the time series and the product of their standard deviations:

<y Cov(lY)
LYY = () oY)

where standard deviation of an ordered set of vectors is the scalar:

™

a(U) = (U — =(U)))/?

and ||U7]| is defined as: ||U]]| = (< U.17 >)1/2. It follows that —1 < p({.Y) < +1.
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