AD-A276 795
L]

94-07588
G O

Form Approved
OBMNo. 07040188

REPORT DOCUMENTATION PAGE

manta Jaia neadod, and complet oo Sors corTimenrS NCAINg e busen SErma o '
W”"“Wm“m&w?"‘m“mm Sorvis. Deociorae o mw' 2 Recorm, 12‘1'?4.-.3&-% Sons 1204, Areggn.
LVA ar 1o the Office of M. feduction 704-01
1. AGENCY USE ONLY (Leave Blank) 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED
October 1993 technical report
4. TITLE AND SUBTITLE 5. FUNDING NUMBERS
AMAR: A Computatinoal Model of Auto: ental Phonolo
Computatinoal segm gy NSF 9217041-ASC
6. AUTHOR(S)
Daniel M. Albro
7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING CRGANIZATION
- REPORT NUMBER
Massachusetts Institute of Technology
Artificial Intelligence Laboratory AI-TR 1450
545 Technology Square
Cambridge, Massachusetts 02139
9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING/MONITORING
AGENCY REPORT NUMBER
Office of Naval Research
Information Systems
Arlington, Virginia 22217
11. SUPPLEMENTARY NOTES
None
12a. DISTRIBUTION/AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE
DISTRIBUTION UNLIMITED

13. ABSTRACT (Maximum 200 words)

This report describes a computational system with which phonologists may describe a natural
laguage in terms of autosegmental phonology, currently the most advanced theory pertaining to the
sound systems of human languages. This system allows linguists to easily test autosegmental
hypotheses against a large corpus of data. The system was designed primarily with tonal systems in
mind, but also provides support for tree or feature matrix representation of phonemes (as in
The Sound Pattern of English\), as well as syllable structures and other aspects of phonological theory.
Underspecification is allowed, and trees may be specified before, during, and after rule application.
The association convention is automatically applied, and other principles such as the conjunctivity
condition are supported. The method of representation was designed such that rules are designated in
as close a fashion as possible to the existing conventions of autosegmental theory while adhering to a
textual constraint for maximum portability.

14. SUBJECT TERMS 15. NUMBER OF PAGES
158

autosegmental phonology
computational phonology 16. PRICE CODE
computational linguistics

17. SECURITY CLASSIFICATION | 18. SECURITY Y CLASSIFICATION | 19. SECURITY CLASSIFICATION | 20. LIMITATION OF
OF REPORT OF THIS PAGE OF ABSTRACT ABSTRACT

UNCLASSIFIED UNCLASSIFIED UNCLASSIFIED UNCLASSIFIED
SN 7540-01-280-5500

Prescribed by ANS| Std. 23618

AMAR: A Computational Model of Autosegmental
Phonology

In

Daniel N, Albro

Submitted to the Department of Electrical Engineering and Computer Science
in partial fultillment of the requirements for the degree of

Bachelor of Science i Computer Science and Engineering
at the
MASSACHUSETTS INSTITUTE OF TECHNOLOGY
February 1991
(© Daniel N Albro. MCMNCIV, All rights veserved.

The author Lierebhy grants to MIT permission to reproduce and distribute publicly
paper and electronic copies of this thesis document in whole or in part. and to grant
others the right to do so.

AU NOT . o o
Department of Electrical Engineering and Computer Science
October 18, 1993

Certified Dy .
Robert (', Berwick

Professor of (‘omputer Science and Engineering and (‘omputational Linguistics
Thesis Supervisor

Accepted Dy ..
Leonard A. Gould
Chairman. Departmental Committee on Undergraduate Theses

AMAR: A Computational Model of Autosegmental Phonology
by

Daniel M. Albro

Submitted to the Departinent of Electrical Engineering and Computer Science
on October 15,1993, in partial fultilliment of the
requiremients for the degree of
Bachelor of Science in Computer Science and Engineering

Abstract

This thesis describes a computational system with which phonologists may describe a natural lan-
guage in terms of autosegimental phionology. currently the most advanced theory pertaining to the
sound systems of human languages. This systemn allows linguists to easily test autosegmental hy-
potheses against a large corpus of data. The systemi was designed prunarily with tonal systems in
mind. but also provides support for tree or feature matrix representation of phoneines (as in The
Sound Patlern of English). as well as syllable structures and other aspects of phonological theory.
Underspecification is allowed. and trees may be specified before, during. and after rule application.
The association convention is automaticaliv applied. and other principles such as the conjunctivity
condition are supported. The method of representation was designed such that rules are designated
in as close a fashion as possible to the existing conventions of autosegmental theory while adhering
to a textual constraint for maximum portability.

Thesis Supervisor: Robert (. Berwick
Title: Professor of C'omputer Science and Engineering and Computational Linguistics

Acknowledgments
I would like to thank the following people for their contributions to this thesis:

Morris Halle and James Harns, for improving my grasp of the hinguistic basis tor the
svstenn for many eulightening discussions of phonology. and tor teking the time o

see AMAR run:
Robert Berwick, for encouragenient. tolerance of my tendency 1o constantly merease the
scope of the project. the suggestions that led to ANMAR s curremt fornn. the sources

tromi which most of the examples in this paper came, and all manner of help:

Dave Baggert and Carl de Marcken, for advice, encouragement. proofreading. comie
relief. and the ideas underlying the grand new theory of Astrophouology...

In addition. I would like 1o thank Dave Baggett for giving me the itial suggestion for
this project:

Doug Jones, for much helpful advice and encouragenent:
Kristi Jenson. for letting me use her radio:

Isabel Wang, one of my greatest friends. for encouragement. humor. and a place (o stay
while writing the thesis:

and finally. Juanita Vargas, for keeping my spirits up, for sitting beside me for hours. for
flving up from Texas to help me out. and for everything else. 1 dedicate this thesis
and the AMAR system to her.

dgeession Por o
NTIS CRAXI - d
DTIC TAB 9]
Unansouncsd 0 i

Jot 121230 00 el

By_
Plstributiens _
Availability oy !
vall aud/er
Dist Snaaial

Contents

1 Imtroduction
2 Background
20 RINMIMO © o
2.2 The Delta Programming Language © . 0 0 0 000000000
3 Design and Overview
3.1 Limgwistic Overview . 0 0 0 0 0L 0L
3.2 User Interface . . . 00 00 0L o
3.2.1 Phoneme Specificationo
3.2.2 Tone Specification
3.2.3 0 Free Associates
3.24 0 Defimtions . . 0. 00000
3.25 Rule Specification0
326 Speafving Inputs . . . 0oL
3.3 Program Design 0L 0oL
330 Objects o o 0L
3.3.2 Language Specification Parser 00000000
333 Input and OQutput
334 Matching .. 0.0
3.3.5 Apphicationo
4 Examples
4.1 Simple Example . . . 0 0o
4.2 Bambara.
4.3 Spanish . oo
4.3.1 Matrix Modelo
4.3.2 Tree Model
4.3.3 Hypothetical Model o000
4.4 Arabic 0oL
5 Discussion
5.1 Improvements and Extensions 00000
5.2 Possible Uses for the Systemy 0 0 0 0L
A Full Gramunar for Specification File
B Examples Incompletely Specified in the Text
B.1 Mende00
B.2 Tagalog
B.3 Turkish

C Selected Code

!

83
83
84
L

91

ColoObjects 91
G2 Appheation 000000 11l
C3 Marchwg -0 0o : 137
Cot Input/Qutput oo 0000 115

6

List of Figures

I-1 Autosegmental Representation of a Tone 000 000000000

1-2 Mandarin Tone Shortemug Rule 0 0 . o o

2-1 Turkish High Vowel Deletion Rule 0 0 0000000000000 000000

2-2 Hyor Vowel Deletion Rule 00 00 0000 00000000000 ,

2-3 Representation of High and Rising Tones in \l”()\(emental Notation . .

2-1 Mende High Tone Assimlation Rule © . 0 0 00 00000000000 00000

2-5 Mende Rising Toue Shortening Rule 0 .00 00 0000000000000

2-6 Infixation Rule of Tagalog o e

2-7 Reduplication Rule of Tagalog o000

2-8 Nasal Coilescence Rule of Tagalogo o0 .00

2-0 Autosegmental Representation of “miiso " jazhi™ .. 000000

2-14 Partial Three-Dimensional Segment Structure . 0 00 000 0000000 000

2-11 Autosegmental Representation of Sonie Rules of Bambara . . . 0 0. . .0 0.

3-1 Featuic Matrix Representation of "a™00

3-2 Typical Syllable Steacture . 0 0 0 00000000 .

3-3 Rule Types Allowed by AMAR. with Conventional Equivalents

3-4 Inheritance Structure of Segmients within AMAR. with Corresponding Predefined
Identifiers

4-1 Internal representation of maso+dono

4-2 Interual Representation of “su DeDo™ 0 0 0000000000000

14-3 Internal Representation of Qutput from "su DeDo™ . . . 0 . 0.0 00000

4-4 Internal Representation of “un DeDo™00 o000 0000

4-5 Internal Representation of OQutput from ~un DeDo™ . . . 0 0 .0 0 00000000

4-6 Tree Structure . . L0 L

4-7 Partial Representation of “un Beso™o 0000000000000

4-8 un Beso™ after Application of Nasal Assimilation o0 000000

4-9 “un Beso” after Application of Continuancy Rule One

51 DigoEnd Run Rule . . 00000000000

5-2 Restatement of Digo End Run . . 0 0 00000000

16
16
17
17
Iv
1=
In
Ix
22

[S

29
31
36

34

B

L

-t 1
[\PL QEVEN

-l oLt
<t

29
64
1
62

76
76

List of Tables

3.0 Predefined Identitiers 00 0 0 0 L S 01
3.2 Usable Effeers under AMIAR . 0 00 0 0 - %
3.3 Special Inpum/Oatpur Charactees © 0 0 0 0 0 0 0 e 37
1.1 Conjugation of b in Classieal Avabie 0 00 000 0 . o 6}

10

Chapter 1

Introduction

Although some tools exist to assist phonologists using older representational frameworks such as
that presented in Chomsky and Halle’s The Sound Pattern of English (Chomsky and Halle 1968,
hereafter SPE). until recently there have been fow options for linguists wishing to employ computa-
tional methods for the more recent autosegmental phonology. This thesis attempts to fill the gap by
presenting a systemn--the Automated Model of Autosegmental Rules (AMAR) -embodying autoseg-
mental representation and mechanics, together with an interface designed to shorten learning titie
for lingwsts already familiar with the autosegmental notation first proposed by Pullevblank (19%86).
The goal for AMAR is to provide an abstraction barrier such that a linguist may describe natural
languages in antosegmental notation--thus allowing him or her to model ahinost any language—and
the system will take care of all computational details. As such. AMAR rules are expressed in a
notation that is as close as possible to Pulleyblank’s while remaining capable of being written within
a text-only system.

Autosegmental theory differs from linear theories such as the SPE theory in that phonemes are
not asswimed to be atomic, but are hypothesized rather to be composed of autonomous segments such
as tones or features, intercounected by association lnes and situated on independent tiers within a
chart. For example. in one version of the theory. one might partially represent a tonal phoneme as
in figure 1-1. with V on the skeletal tier representing a vowel, and T on the tonal tier representing
a tone connecting to it.

Autosegmental phonology has its roots in attempts to explain the mechanics of tonal languages
{Goldsmith 1976a. Goldsmith 1976b. Goldsmith 1976¢). Thus. the system was designed particularly
to allow the formulation and testing of tonal rules. For example. one might wish to model the tone
shortening rule of Mandarin C‘hinese. Mandarin has four tones: a high. level tone (*a"): a rising
tone ("a"): a low tone that falls slightlyv. then rises (~a™) fairly high: and a falling tone {(~a™). Of
these tones, all are of the same length except for the low tone. which is long. Thus. when a low
tone precedes another low tone, as in the phrase Wé hén kun (] am very sleepy™). Chinese avoids
an awkward concatenation of two long tones by shortening the first one. This process is. however.
rather difficult to describe in terms of linear phonology, since what apparently happens is that the
middle part of the tone (the part that “falls™) drops out. thus leaving a rising tone. fn autosegmental
theory. the Mandarin low toue is modeled as three atomic tones (3. 5. and 1) from a scale of five tones
{from the highest. 1. to the lowest. 3) attached 1o a single vowel. When two such vowels adjoin. the
5 toute is simply disconnected from the first vowel, leaving a rising tone. In autosegmental notation.
this rule would appear as in Figure 1-2. To model this aspect of Mandarin using the system to be

A%

T

Figurc 1-1: Autosegmental Representation of a Tone

11

VgV
351 351

Figure 1-2: Mandarin Tone Shortenig, Rule

discussed here, one would first provide o file specitving the phonenies and tones, plus the shortening
rule. and then specifyv (either in a file or at run-time) an put to be transformed. Thus. one might
provide the mput 16 hén kan. as above. and recetve the output We hicn ban atter the syvstem
has transformed the nput into a ter structure. applied the rule. and transformed it back mto a
human-readable string.

Ax stated above, the systemn was originally designed simply 1o handle tonal systeins such as the
one discussed for Chinese. However, it was subsequently determined that by simple additions further
aspects of autosegmental theory could be supported. and consequently the system supports feature

s, syllable structures, word and morpheme boundaries. and feature matrices (ax in Chomsky
and Halle (196%)). Supported rule operations include: deletion of segments: wnsertion of segiments:
segment connection: breaking of connections: metathesis. in which a segment is moved somewhere
else on its tier (¢.g.. ~atr” might become ~art™); spreading. in which a segment connected to another
segment on a different tier becomes connected 1o the latter segment’s neighbors': and segment
replacement. Both word-internal and sandhi? rules are supported. and the system allows (if feature
trees or matrices are used) phoneines to be underspecified. with trees or matrices being built up
before. during. and after rule application. Some language-specific parameters relating to tones may
be specified (Goldsmith 1990, page 18-19). and the systemn automatically observes the association
convention (Goldsmith 1990, pages 11-19). conditions against line crossing (Goldsmith 1990, page
47). and conjunctions against connecting segiments which do not freely associate (Goldsmith 1990,
pages 45-46) (The user specifies freely associating segments.)

In order to utilize the system, the user must first specify the language to be modeled. Oue
first provides a name for the language. and then a list of phonemes. AMAR is not limited to any
given system of orthographic characters®. so the user could. for example. specify the phonemes of
a language using Multi-Lingual Emacs (MULE) or some other such editor which allows non-ASCII
characters. Next. the user decides upon the specification method to follow. choosing from V.
CV/Matrix, X/Matrix. C'V/Tree. and X/Tree. In this section only the simplest method. ('V. will
be discussed. This method allows only three tiers—skeletal (the “skeleton.” containing (s and
Vs to which other segments are attached), tonal (containing tones). and phonemic (containing the
simplest possible representation of phonemes—their names)—thus basically permitting only rules
pertaining to tones, without reference to phonemic features.

In C'V, the user would. after having listed the phonemes. specify which are consonants and which
are vowels. Tones would next be specified, starting with whether they should automatically be
connected to a place on the skeletal tier hefore rule application. Other tonal specifications include
language specific parameters such as the number of tones in the language. the maxiimum number of
tonies per vowel and vice versa, the names of the tones, a specification of freely associating segiments
(e.g.. in most tonal languages, tones freely associate with vowels). and representations for characters

with tones (for example, in Chinese & might represent the vowel “a” assoctated with the tones 2 and
1)

The Mandarin example above would be specified by first describing the language. starting with
the name:

Language Mandarin:

1See section 3.3.5 for a more complete description of this process.

2rules which concern the interface between words—for example. a rule that moves the final tone of a word into the
following word

*although anvthing not composed of a standard alphabetical character followed by either digits or standard alpha-
betical characters will need to be enclosed in quotation marks

12

Mandarin has the following phonemes (expressed basically as i Pinyin. the orthographie system
used i nanland China):

Phonemes: a, b, ¢, ch, d, e, f, g, h, 1, j, k, 1, m, n, o, p, q,
r, s, sh, t, u, "i", w, x, y, 2, zh.

The specification method s CV
SpecMethod: CV.
OFf the phonemes, some are consonant=. and some are vowels:

Vowels: a, e, 1, o, u, "u".
Consonants: b, p, m, f, g, k, 1, n, r, s, zh, ch, sh, j, q, x, 4,
t, w, y.

We wish tones 1o be initially connected:
ConnectTones

Mandarin has five tone levels:
ToneLevels: 5.

In Mandarin there is a maximum of three tones per vowel and no maximum number of vowels per
tone.

MaxTonesperVowel: 3.
MaxVowelsperTone: INFINITE.®

We must specify how to represent tones in the input:

ToneReps:

i: a/ 11,
a: a/ 31,
a: a/ 3651,
a: a/ 24,

and so forth. Finally. we must specifv which seginents associate with others. In Chinese. as in most
{probably all) tone languages. tones associate freely with vowels. and skeletal segments associate
with phonemes:

Associates: {segment{T}, segment{V}}, {segment{X}, segment{P}}".

After the language has been specified, the user must then specify a set of rules. in the order
in which they will be applied. For example. the tone shortening rule referred to above would be
expressed as follows:

Rule "Long Tone Shortening":
NoWordBounds
NoMorphBounds
Tiers:
skeletal: V co v,
tonal: 3(5)1 361.
Connections:
3[1) -- vI[11,
5011 -- vI1],

tor leave this field blank
“this structure will be explained later

1(1] -- v{1],

3[2] -- vI[2],

5[2] -- v[2],

1[2] -- v[2].
Effects:

s[1] -> o.

Note that individual segments may be referred to in any of the following methods. as long as no
ambiguity is introduced: the name of the segment alone (if there is only one such seginent i the
chart), the name of the segment followed by a nuniber i brackets indicating which occurrence of
the segiient is to be selected (counting starting at one. from left top to right bottom). or the name
of the segment followed by, in brackets. a number indicating which occurrence it s on a given tier
and the name of that tier. For example, in the previous rule. €O could have been referred to as £0
{stuce it is unigque), COL1) (since it is the first instance of CO in the chart). or CO[1, skeletal]
(since it 1s the first instance of €0 on the skeletal tier.)

luputs may be provided directly trom the keyboard (standard input). or from a file. Outputs
will be sent to standard output. where they may be redirected to a file. if desired. For example, if
in the example above the language was specified in the file chinese. the inputs were specified in the
file chinese.ipt. and the user wishes to redirect output to the file chinese.opt. then the command

amar chinese chinese.ipt > chinese.opt

would be used. This would allow. for example, the comparison of program outputs with some file
of expected outputs. Since inputs may be taken from standard input and outputs are directed to
standard output. the system could be used in a language processing system-—for example. mput
could be redirected to come from a dictionary of some kind. and the system would be set up to
produce an output form needed by a parser. to which the output could be redirected.

Chapter 2

Background

There exist two widely-used systems for computational phonology: KIMMO - a morphologically-
oriented system based 1 an SPE-influenced two-fevel model of phonology. and the Delta Pro-
gramming Language a phonetically-oriented system based loosely on metrical and autosegmental
phonology: in addition there may be other syvstems unknown to the author.

2.1 KIMMO

The KIMMO system is based on a two-level model of phonology devised by the Finnish compu-
tational linguist Kimmo Koskenniemi and described by hin in a series of publications starting in
1983 {Koskenniemi (1983a, 1983h. 1984, 1985). Karlsson and Koskenniemi (198H)). In this model.
all phounological rules operate in parallel, with no intermediate representations-- that is. all rules di-
rectly relate the surface form to the input form. KINMO represents phonological and morphological
rules as finite state transducers: the rules. operating in parallel. niove over an input string in one
direction ouly and generate an output form for each character (including “null” characters for which
there 1s an output form and no input form.) Implementations of KIMMO exist in LISP (KIMMO,
Lauri Karttunen 1983). Xerox INTERLISP/D (DKIMMO/TWOL. Dalrymple ¢t al. 1987)1, Prolog
{Pro-KIMMO. Sean Boisen 1938), and ' (PC-KIMMO. Antworth ¢f al. 1990.)

Due to its finite transducer representation of rules and its two-level model, KIMMO runs ex-
tremely quickly for most applications. Barton. Berwick. and Ristad (1987) shows that KIMMO uses
an exponential algorithm. rather than an algorithm linearly proportional to the length of the input.
as Koskenniemi had originally claimed. but the speed is nevertheless higher than that of competing
phonological systems. Because of its morphological bent, KIMMO handles morphological rules quite
well. For example. there might be a rule adding the ending -0 to signify the plural im Esperanto.
This rule could be specified by:

PLURAL:0) & +:0 __

Thus. KIMMO could receive a lexical representation such as libr+PLIURAL and return a surface
form libroj, or it could just as easily take libroj and return Ubr+PLURAL. In a system like AMAR.
one would have to represent "PLITRAL" as some sort of plioneme or tone (cf the Arabic example in
section 4.4). and with one rule system in AMAR. one can only go in one direction. so AMAR would
only support something like Lbr+PLURAL to libroj.

KIMMO is indeed fast and adequate for many rule svstems. However. it has weaknesses in
the areas of notation, rule ordering. noulinear representations. and nonconcatenative morphology
(Antworth 1990, Anderson 1988, pages 11-12 and 530- 534, respectively). Many implementations
require the user. for each rule. to translate by hand from two-level notation to a table of state tran-
sitions. In addition. the two-level notation itself is rather foreign to traditional (non-computational)

I'This implementation accepts two-level rules written in linguistic notation and antomatically compiles them into
finite state transducers

Figure 2-1: Turkish High Vowel Deletion Rule

morph
A }1”} or

¢ Vv vV CcCVCcC
morph

Figure 2-2: Hyor Vowel Deletion Rule

linguists, who tend to be most famthar with replacemnent rules, 1.¢.. rules of the form “a becomes b
in the environment ¢.” Aside from notation, the two-level model (which. as it roughly corresponds.
under certain conditions. to a Turing machine. should be able to handle any computation) greatly
complicates development of complex rule syvstems. For example. in the Turkish language there is
a rule (Oflazer 1993, see figure 2-1) that deletes a high vowel if it is immediately preceded by a
morphente ending in a vowel. However. this rule does not apply if the high vowel is part of the
morpheme “Hyor™ (where “H™ refers to a high vowel unspecified for roundness and backness.) In-
stead. the preceding vowel is deleted. In KIMMO, this behavior is represented by finite transducers
corresponding to the three rules:

H:0 = V() +0__

which translates to “H only but not always corresponds to NULL when preceded by a vowel before
a morpheme boundary, which corresponds to a surface NULL.”

HO/< V040 __yor

which translates to “H never corresponds to NULL when preceded by a vowel and morpheme hound-
ary. both to be deleted. and followed by “yor'™ and

Abe _ 4+ UO0H<Ayvor

which translates to “A (a low. non-round vowel unspecified for backness) always and only corresponds
to NULL when followed by a morpheme boundary and Hyor, regardless of the surface representation
of H.” Of these rules. the second acts simply to tell the first rule not to apply whenever the third rule
applies. In an ordered rule system. such as that modeled by AMAR. only two rules would be needed.
since the application of a rule deleting the vowel preceding “Hyor” would modify the environment
before the “H.” and preclude it fron being deleted. In contrast. AMAR might represent such a rule:

Rule "Hyor Deletion":
Tiers:
root: 4 "Im" "m["
skeletal: V "Im" "m["
Connections:

< &=
Q<

< O
aQH

A --v[1],
H -- v[2],
y - C[i]’
o —- V[3],
r -- cf2].
Effects:
A->0,
v[1] -> O.

16

v A%

H L H
(a) (b)

Figure 2-3: Representation of High and Rising Toues in Autosegimental Notation
vV Vv

H L

Figure 2-1: Mende High Tone Assumilation Rule

(Figure 2-2 shows the conventional autosegimental representation of this rule.) This rule would then
be followed by the rule of high vowel deletion (shown in conventional notation in figure 2-1):

Rule "High Vowel Deletion":
Tiers:
high: “Im" "m{" +high,

sXeletal: V "Im" "m[* V.
Connections:

V[2] -- +high.
Effects:

vi2] -> 0.

In addition to the complications brought about by the lack of rule ordering. KIMMO's unilinear
representation (all phonological elements must be represented as a single linear string of symbols)
disallows any sort of rule relying on a multi-tiered representation (¢.g.. any rule of autosegmental
or non-linear phonology.) To handle systems best described by such rules. KIMMO must rely on
brute-force methods by simply listing all alternatives. For example. in the West African language
Mende (Antworth 1990, Halle and ('lements 1983). a lexical low-tone corresponds to a surface high
tone after a lexical high or rising tone. In an autosegmental representation, a high tone would
be represented as in figure 2-3a. whereas a rising tone would be represented as in figure 2-3b. As
seen from the right. therefore. a high tone is exactly the same thing as a rising tone. That is,
autosegmental theory would posit that any rule that matches both a high and a rising tone actually
1s matching a vowel whose rightmost tone is high. Thus. an autosegmental system could represent
the rule stimply as in figure 2-4, whereas KIMMO has to clumsily mention both high and rising tones:

TV +0(C)

If there were any other type of tone structure in Mende ending with a high tone. for example a
falling and rising tone such as the low tone of Mandarin. the autosegmental rule would correctly
match that as well. whereas KIMMO would have to mention every possible tone contour ending
with a high tone. In addition to the previous correspondence. the data for Mende also show that a
lexical rising tone before a surface high tone hecomes a surface low tone. This requires two more

rules in KIMMO:

eV 40(C)
s V40

el

L H

Figure 2-5: Mende Rising Tone Shortening Rule

17

rph morph

-

% ¢
Figure 2-6: lnfixation Rule of Tagalog
morph

root
C cC v C V

morph root

¢ ¢

¢

Figure 2-7: Reduplication Rule of Tagalog

In AMAR. this requires a single rule (shown in conventional notation in figure 2-5):

Rule "Rising to Low":

Tiers:
skeletal: V V,
tonal: L H.
Connections:
V[].] - L,
v[1l -- H,
v[2] -- H.
Effects:
v[1] -2- H.

Finally. KIMMO experiences some difficulties with nonconcatenative morphology. That is, KIMMO
has no facilities for moving or copying segments, so a language such as Tagalog. where morpheies
may require the first syllable of a word to be copied. or where morphemes need to be placed wnside of
a word. requires awkward maneuvers with large finite automata. In other words. KIMMO is not fast
for languages such as Tagalog, and its representation simply does not adequately describe the non-

morph morph
[+nasal]
place

C C

¢

Figure 2-8: Nasal ('oalescence Rule of Tagalog

I

concatenative morphology of that language. Instead. it must rely on chinsy. brute-foree methods 1o
try to simulate nonconcatenative morphologies i a concatenative way. For example. three processes
found in Tagalog are “in” ufixation. CV reduplication. and nasal coalescence (Antworth 19907, If
a word in Tagalog begius with a consonant. the inhix "1™ 1s placed between the first consonant and
vowel thus the surface form Con Vo would correspond to a lexteal form r+CV 0 In KINIMO. tis

would be represented as:
Nh=_ +0CHi0mV

wlere the infix has to be represented lexically as X477, In other words. KIMMO pretends that
the infix is somehow mysteriously already present in the proper position. and its presence is merely
signaled by some artificial infix. In AMAR the rule would be more complicated. but correspond to
the more natural “in4+". and would move the infix istead of deleting and reinserting 117

Rule Infixation:

Tiers:
vroot: i *Im" "m[" vroot,
skeletal: V C "Im" "m[" C v,
croot: n "Im "m[" croot.
Connections:
vi1] -- 1,
C[i] ~-n,
cf{2] ~-- croot,
V[2] -- vroot.
Effects:

i => "m[" _ vroot,

n -> croot _,

cl1] -> cf21 _,

v[t] -> c[2] _,
“Im"[1,skeletal] -> 0,
"m["[1,skeletal] -> 0.

Next, ('V reduplication copies the first ("V of a root. In both KIMMO and AMAR OV reduplicative
infixes are represented lexically by RE+. However. KIMMO treats "RE™ as two actual letters.
and simply has a rule for every single letter in the language. Thus, the statement “copy the first
consonant and vowel of the root™ becomes:

If the first letter of the root is "p.” replace "R™ with “p.” If the first letter is “t.” replace
“R™ with ~t.” and so forth for every consonant in the language. Next, if the second letter
of the root i1s ~a.” replace “E” with ~a.” If the second letter of the root is “e.” replace
“E” with ~e.” and so forth for every vowel in the language.

The rules would be stated as follows (where ... should be replaced by a list of all consonants or
vowels in Tagalog):

R:{ptk.. .} = _ EV+0{prk..}
E:{aju...} = R:(C_ +:0C {aiu...}

The process in AMAR proceeds regardless of whatever consonants and vowels there are in Tagalog.
It in fact does not even need to copy the vowels and consonants at all. but simply creates a new
slot. and a new V slot in the skeletal tier and connects them to the original representations of the
consonants and vowels in a manner consistent with what most linguists believe actually occurs?:

Rule Reduplication:

?Illustrated in conventional notation in figure 2-6.
*Illustrated in conventional notation in figure 2-7.

19

Tiers:
vIroot: vroot,
skeletal: C “Im" *m(* C v,
croot: RE "“Im" "m[croot.
Connections:
cl1l -- RE,
Cf2] -- croot,
V -- vroot.
Effects:
¢root ::-> C / _ C[2],
vroot ::-> V / _ C[2],

cl1]l -> o,
n]mn -> 0’
nm[n -> 0

The final Tagalog process under discussion here is nasal coilescence. m which a consonant following
“N7 (which represents a nasal unspecified for point of articulation) picks up the N's nasahty while
keeping its own point of articulation. The “N7 then disappears (or, it could be said that the “N7
coalesces with the following consonant.) For example. ma N+pide would yvield “mamili.” maN+1ah:
would yield "manahi.” and ma NV+kuha “manuha.” KIMMO represents this by declaring subsets for
labial obstruant stops (“P7). coronal obstruant stops (™17). velar obstruant stops ("K™). and nasals
(“NASTY) and declaring deletion correspondences:

p bt d k g «a

o1 o111
then using the rules (nasal deletion and nasal assimilation. respectively):

N0 = (+:0) (R:C E:V 4+:0) :NAS
{P.T.K}:{maoyt © N: (+:0) (R:C E:V +:0) __

AMAR represents this rule ast:

Rule Coalescence:

Tiers:
nasal: +nasal "Im" "m[",
place: "Im"* "m[" place,

croot: <croot "Im" "m[" croot,

skeletal: © "Tm" "m[" C.
Connections:

Cf{1] ~- crootli],

croot[1] -- +nasal,

cl2] -- croot[2],

croot[2] -- place.
Effects:

"Im"[1,skeletal] -> 0,

"m["[1,skeletal] -> 0,

croot[2] :: +nasal,

croot[1] -Z- +nasal,

cl1] -> o,

croot[1] -> 0.

Up till now. AMAR has not shown too great of an advantage over KIMMO in terms of number of
rules: simply two fewer. However. in Tagalog more than one of these processes may apply in a single

*[llustrated in conventional notation in figure 2-8.

20

word. When they do. OV reduplication precedes "7 indixation and nasal coiddeseence (the Last two
do got apply 1 the same words.) AMAR takes care of thas amtomateally, simply by ordering the
rules. In KIMMO. however, all the rules have to be rewnitten such that they take cach other into
account and the ordering is correct. Thus, for example. the fall version of the consonant halt of €'V
reduplication becomes:

Rifportimky. ..} = 0a0m) £V +0{pprakk. . pfpamanky. .}

The actual rule used by KIMMO?. which the user would have to enter i many inplementations.
would be the following:

R R R R R R 0 0 k.

pom ot 0 k 1) 1 n Voo p m t u k y
!
5

l 2 5 & It av 1 1

2. o 0 0 0 0 0 2 2 :

3. o 0 0 0 0 U 0 0 0 4 o o0 o0 0 0 0 0
| 0O 0 0 0 {) 0 0 U 0 0 I o 0 0 0 0 8
)

| SO O VR R R ¥ 0 0 o200 00 0 0 0
2.0 0 0 0 0 U 0 0 0 13 0 0 0 0 0 0 0
1300 0 0 0 0 0 0 0 0 O 0 0 0 1 0 0 0
4.0 0 0 © 0 0 4 14 15 9 O 0 0 0o 0 0 0
(5.10 0 0 0 0 0 0 0 0 6 0 0 0 0 0 0 0
6.0 0 0 0 0 0 0 0 J o 0 0 0 0 1 0 0
IT.r0 0 0 0 U 0 [VR § 0o g 0 0 0 0 0
I=.]0 0 0 0 0 0 0 0 v vy o0 o 0 0 0 0 0
.10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0

2.2 The Delta Programming Language

The Delta programming language (Hertz 1990) is a stream-based implementation of nonlinear
phonology and phonetics, descended from the linear (SPE-based) rule development svstem SRS
(Hertz 1982.) The Delta system takes a metrical approach to nonlinear phonology. as opposed 1o
AMAR’s primarily autosegmental approach. That is. the data used by the syvstem takes the form
of "“Deltas.” or groups of synchronized streams corresponding loosely to AMAR's charts made up of
tiers. Thus, the Bambara phrase “musé ' ja:bi”™ might be represented as:

word: I noun | verb

morph: | root I Toot

phoneme: {m |l uislol 131 a |bilil
Cv: lclviclvi fclviviclv]
nucleus: | inuc| inuc| } | nuc | [nucl
syllable:! syl | syl | | syl I syl |
tone: b L I B LI H }

1 2 3 4 5 6 7 8 9 10 11

Nothing is explicitly connected to anything else, but rather simply ordered with respect to one
another by means of synchronization lines. In AMAR. as in autosegmental phonology. this might

?Condensed with the false assumption that Tagalog only contains the underlying consonants “p.” “t.” and “k."

21

C VC V C VV C V
nuc nuc nuc nuc
(o) (o) (o) o
morph L H L H

word

Figure 2-9: Autosegmental Representation of “misoé ja:hi”

be represented ax in figure 2-9". In order to modify data. the user of Delta writes a program in
the Delta programming language (Hertz 1990). which nmght typically read in some portion of input.
transform it into a Delta of appropriate values and then modify svuchronization lines and stream
tokens (the equivalent of segments in AMAR) in order to simulate the application of rules.

The Delta progranuning language has great advantages in power and flexibility. The user may
program almost any desired behavior (within the lurits of synchronized streams). using the general
purpose computer language O (Kernighan and Ritchie 1988) whenever the Delta programiming lan-
guage lacks some feature. Moreover. any stream (or “tier.” in autosegmental terms) may contain
numbers or tokens with a name and any number of feafures (in Delta. objects that may be either
binary- or multi-valued. thus corresponding loosely to AMAR features and class nodes). This prop-
erty allows the user to specify phonetic information such as duration and frequency in addition to
the phonological information allowed by the current version of AMAR.

Along with Delta’s advantages, and in some cases because of them, there are a few disadvantages
that will be felt more or less depending upou the intended application. Because Delta does not
assume as much as AMAR about the theoretical underpinnings of a user’s work. the user has more
flexibility. However, it may well be said that tnuch of the reason for developing autosegmental
phonology was to reduce the flexibility allowed by previous theories. That is. too much flexibility
allows the user to easily make mistakes and describe languages incorrectly or even impossibly-—the
attemipt of autosegmental theory is to describe possible human languages and only possible human
languages. In addition, Delta possesses this flexibility because it is a programming language. Thus.
the user must learn a computer language and a way of thinking significantly different from that of
the typical linguist. The Delta user must write all the code for matching and application of rules.
dealing with line crossing. application of the association convention. enforcement of conformance
with language parameters, the behavior of freely associating segments, etc.. whereas AMAR handles
all of these automatically. Thus, Delta enforces a procedural view of phonology. where the linguist
must specify in detail what is to happen at each step for any given language. as opposed to the
more descriptive model of AMAR, in which the user specifies only how a given language is different
from other languages. and the program attempts to take care of the mechanics common to all
languages®. Aside from the Delta System’s procedural nature. the major difference between it and
AMAR is that it is limited to a somewhat two-dimensional structure. Segments may “connect” or be
svuchronized with segments above or helow them, but a structure such as that in figure 2-10. where
each segment associates with three other segments, would be impossible. This limitation is quite
significant. as this sort of structure is fairly common in theories of feature geometry. for example.
Due to this two-dimensional nature. Delta cannot handle trees such as those postulated by Mohanan
{1983) (Mohanon 1983). Clements (1985b) (Clements 1985). and Sagey (1986} (Sageyv 1986). thus

¢In AMAR the user would not directly manipulate a textual representation of a phrase as would a user of Delta.

"However. the user of ANMAR must still specify the features and tree structure for each language. although these
are considered universal. This requirement follows because linguists have not come up with any more or less agreed
upon universal structure.

laryngeal

root

supralaryngeal stricture

Frgure 2-10: Partial Three-Dunensional Segment Structure

3. 4.

VG VC,V

T A
morph T

Figure 2-11: Autosegmental Representation of Sonie Rules of Bambara

exclnding much of current autosegmental theory.

The different ways in which linguistic problems are modeled in Delta and AMAR can be shown
in the African tonal language Bambara. In Bzinbara there are two tone levels. and floating tones
are used as morphemes, ¢.g. to indicate what in English would be expressed by a definite article,
Thus. an indefinite noun is distinguished from a definite noun by the addition of a floating low tone.
When a morphenme has additionally a floating high tone. there is an interaction between the two
tones. Normally. a floating high tone moves forward into the next morpheme. If it is blocked by a

low tone, however. it moves into the preceding morpheme. The rightinnst tone of each morpheme

1s then connected to the rightmost vowel. and tones pair up with vowels from right to left. with
the leftmost vowel spreading to any extra tones if there are more tones than vowels or the leftmost
tonc spreading to extra vowels if there are more vowels. Autosegmentally. these processes might be
represented by the four rules shown in figure 2-11. [n Delta. the effects would be carried out hy the
following code (in addition to the code required to specify the language and set things up. read in
the inputs. etc):

Forall rule for floating High tone assignment:
Forall floating H tones (“bh = "before H", “ah = "after H")...

forall ([%tone _“bh H '“ah] & [Y%morph _"bh ~“ahl) ->
do
if
If the floating H occurs before a floating L,
move the H tone into the end of the preceding
:: morph. Otherwise, insert the H tone at the
beginning of the following morph. Moving the H
tone is accomplished by inserting a new H tone

23

and deleting the floating one.
([%tone _"ah L !'"all & [%morph _"ah "all) ->
insert [Ytone H] ... bh;
else -> insert [%tone H] ~ah...;
fi1;

:: Delete original floating H & following sync mark:

delete %tone “bh... ah;
delete %tone ~ah;
od;

:: Forall rule for sync mark merging:
: For each morph (“bm = "begin morph", “am = "after

:: morph")...

forall [%morph _"bm <> !'“am] ->

do
:: Set “bs (begin syllable) and “bt (begin tone)
:: to "am (after morph):
“bs = "am;
bt = “am;
repeat >
do
:: Set "“bt before the next tone token to the
:: left. If there are no more tone tokens in
:: the morph (i.e., “bt has reached “bm), exit
:: the loop.
[%tone !"bt <> _~bt];
(bt == “bm) -> exit;
Set “bs before the next syllable token to
: the left. If there are no more syllable
:: tokens in the morph, exit the loop.
[%syllable !"bs <> _"bs];
("bs == “bm) -> exit;
: Merge the sync mark before the tone and the
sync mark before the syllable:
merge “bt “bs;
od;
od;

In AMAR. the user would define the following rules:

Rule "Floating High Tone Metathesis":
Tiers:

tonal: "Jm" H "m[".
Effects:

B -> "m[” _.

Rule "Floating High Tone Metathesis (part 2)":

24

Tiers:

tonal: "Im" H.
Effects:

H->_ "Im".

Rule "“Initially Connect Tones":
Tiers:
skeletal: (V) €0 "Im”,
tonal: (T) “Im".
Effects:
vV :.: T.

Rule "Spread Left":
Tiers:

skeletal: (V) CO V,

tonal: T.

Connections:

vi2] -- T.
Effects:

<< T skeletal.

The rest is taken care of automatically. Note that the Delta representation looks much like any
programming language. and would be almost completely unreadable to a linguist untrained in cotn-
puter languages. whereas the AMAR representation corresponds exactly to the autoseginental rules
depicted in figure 2-11.

25

Chapter 3

Design and Overview

The AMAR system consists of two major parts: (1) an interface, where the user specifies languages.
rues, and inputs: and (2) internals that store the specifications, apply rules to the inputs. and
so forth. Thus. the system may be viewed from three points of view: the viewpoint of general
linguistics. that of the user. and the point of view of the program itself.

3.1 Linguistic Overview

The design of AMAR involved certain decisions with regard to what sort of linguistic theories
to model, exact formalisms, and how to deal with situations in which the literature known to the
designer does not specify details about the mechanisms of autosegmental phonology. These decisions
include the following: the exact behavior of the association convention. spreading, inclusion versus
exclusion of pointers, and behavior with regard to redundant features.

With regard to the association convention, Goldsmith (1990. page 14) states:

When unassociated vowcels and tones appear on the same side of an association line,
they will be automatically associated in a one-to-one fashion, radiating outward from
the association line.

This statement does not. however, define the extent of this radiation, the behavior at boundaries, or
the exact time of application of the convention. The current AMAR system applies the association
convention about each association line produced as a result of the application of a rule. The process
occurs after each application of every rule. if the application generated one or more association
lines. In AMAR. the association convention is bounded by all directly supported boundary types
(morpheme, word, and phrase.) When the pairing process reaches a boundary in one tier but not
in another. an automatic spreading process will occur, linking all unconnected freely associating
segments to the final segment anent to the boundary reached. This spreading process has been
assumed by Goldsmith. but other phonologists have discovered systems in which the process does
not occur (Pulleyblank 1986). Therefore the next version of AMAR will most likely not perform
this spreading automatically. The final intcrpretation of Goldsmith’s statement made by AMAR is
that. in addition to vowels and tones, the association convention is assuiied to apply to all freely
associating segments.

In some theories (such as that described in Kenstowicz (1994, page 335)). spreading extends until
it violates the line crossing condition. Thus. a spreading high tone would be predicted to create a
contour tone (here. a falling tone) with the next low tone. since there would be no prohibition against
it spreading onto the vowel connected to the low tone. In the current version of AMAR, however.
spreading was implemented such that it only extends to unconnected segments. The next version of
AMAR may redefined spreading to correspond to the former. less restrictive theory. however.

When AMAR was designed. the author was under the impression that articulatory pointers. as
introduced by Sagey (1986), were not commonly used. Therefore. no facility currently exists to

27

support this feature. However. it appears that such pointers are coniing iito inereasing use. and the
next version of AMAR will include some such facility.

Occasionally a systern will oceur in which a class node will he finked to a feature such that the
class node has two of the samie feature. In this case there are three things that could happen (all three
are relied upon by different linguists expousing various theories about autosegmental phonology):
the old feature could be deleted. both features could be kept. or the old feature could be deleted
only if the two features have the same value. AMAR takes the first course. although if one uses the
“-ks” option the second will be chosen.

3.2 User Interface

From the viewpoint of the user. AMAR acts much like a programnning language. One first uses a
semi-programmatic format! to specify a language with a system of rules. and one may then filter
inputs through these rules. Within this specification file. the user provides the name of the language.
a specification of the language’™s phonemes. a deseription of the tonal system. a list of free associates,
a set of definitions (essentially mmacros used to simplify rule definitions). and the rules of the language.
The format is as follows:

The first line of an AMAR specification file must be

Language identifier:

where identifier may be an alphabetical character (upper or lower case "a” through ~z” with no
diacritics) followed by a sequence of such characters. possibly interspersed with digits. If enclosed
with quotation marks. however, an identifier may contain any characters other than tabs. spaces.
periods, new lines, sharp signs ("#"). pluses. or quotation marks. For example, in the Mandarin
example this line was “Language Mandarin:".

3.2.1 Phoneme Specification

Following the language name specification is the phoneme specification. This begins with a specifi-
cation of the names of all the phonemes, in the form:

Phonemes: identifier, ..., identifier.

that is. the word “phonemes™ followed by a colon. a list of identifiers (as above). separated by com-
mas. and a period. Note that statements in the AMAR language follow the general form of a keyword
followed by a colon. then a specification of some sort-—possibly an identifier. a comma-separated list.
or some more complicated specification—and finally ending with a period. ('apitalization does not
matter in the case of keywords such as “language,” “phoneme.” etc. Note also that. throughout the
language specification file, no two identifiers may refer to the same thing. so. for example. the lan-
guage nanie may not be the same as one of the phonemes of the language. After the specification of
phoneme names. the user must decide among the possible methods of phoneme representation: 'V
(based on the notation generally used to describe simple tone languages). ('V/Matrix or X/Matrix
(similar to the notation used in SPE), and C'V/Tree or X/Tree {(based on the notation of feature
geometry developed in Mohanan (1983). Clements (1985). and Sagey (1986).) The method chosen
would be specified by:

SpecMethod: method.

where method can be any one of CV, CV/Matrix. X/Matrix, etc.

CV is the simplest method. allowing only three tiers (tonal. skeletal. and phonemic). In this
method, the skeletal tier is occupied by (''s (consonants) and V's (vowels), as well as the various
boundaries (word and morpheme). The phonentic tier simply stores the representation of the various
phounemes (¢.g.. the representation for "a” would be “a.” as opposed to some indication that ~a” is a

!See Appendix for full grammar,

-

—consonantal
+continuant
—high

+low

+back
—round
“+xonorant

Figure 3-1: Feature Matrix Representation of ~a”

low back unrounded vowel, etc.) This representational system is sufficient for tonal languages whose
3 guag
properties are unaffected by features other than sylabicity. If 'V is chosen. the next line must be:

Vowels: identifier, ..., identifier.
and then:
Consonants: identifier, ..., identifier.

where each identifier must be identical to one of the phonemes specified earlier. Note that either
line may be left out or simply consist of the kevword followed by a colon and a period. in which case
there are assumed to be none of that list. The list of vowels must precede the list of consonants for
this reason. as. if the consonant list is first. the program will assume that the user is attempting to
say that there are no vowels. Any phoneme not defined to be a consonant or vowel is assuned to
be an X.

CV /Matrix differs from C'V only in that its phonemice tier contains. instead of simple featureless
representations. matrices of features corresponding to the notations of the SPE theory. Thus, “a”
might be represented as in figure 3-1. This system 1s primarily useful for writing rule systems in which
autosegmental notation is only relevant for the tonal and skeletal tiers. If CV/Matrix is chosen. the
user must specify the consonants and vowels as for 'V above and then the features, in three sections:
“Features,” “Defaults,” and “FullSpecs.” One specifies features first by listing all the features used
in the language. This specification is accomplished in the “Features™ section, with the same syntax
as for the “Phonemes™ section (following the keyword “Features.”) The default section builds sets of
features that correspond to all the specified phonemes—when phonemes are encountered in the input
(that to which the rules are to apply). they will be replaced with a matrix of features as specified in
this section. The matrices specified in the default section can be ambiguous. That is, the program
will work fine if two phonemes end up having the same default representation. but something must
happen to disambiguate ti:ii'. The rules can add additional features to various matrices in the
chart. and after rules have apniied, the program checks matrices in the chart (produced by applving
the rules to the input) against those built up for each phoneme in the default and full specification
sections to determine which phoneme to output. Ideally. the matrices built up from both the default
and full specification sections should not be ambiguous. Default matrices are specified as follows:

Defaults: matrixspec, ..., matrixspec.
where matrixspec refers to one of the following:

identifier -> matrix

identifier -> identifier

identifier -> identifier matrix

any -> matrix
any -> identifier

29

matrix -> matrix
vowel -> matrix
consonant -> matrix

These specifications are applied in order from top to bottom the prograni inatches phionemes against
the left hand side of the specifications (identifier matches a particular phoneme, any matches every
phoneme. matrix matches all phonemes with the features listed in the matrix®. and consonant and
vowel match all consonants or vowels. respectively) and then. if the right hand side is a matrix.
copies the features from the right hand side into the phonemes matched. If the right hand side is
an identifier, the program will copy the features from the phoueme the identifier specities mto the
phoneme matched by the left hand side. and if the right hand side contains both an identifier and
a matrix, features will be copied from first the identifier and then the matrix. If a phoneme already
has some feature being copied into it, the original feature will be replaced. One specifies a matrix
as follows:

[feature, ..., feature 1

where feature is a phonological feature (such as £voice). specified by “+". =" or nothing followed
by an identifier naming the feature. which must already have been specified in the “Features™ section.
For example. a voiceless obstruant (such as “p.” “t.” “ch.” etc.) might be specified by means of the
matrix [-voice, -sonorant].

The “FullSpecs™ section is specified in exactly the same manner as the “Defaults™ section. except
that 1t is preceded by the keyword FullSpecs.

X/Matrix is exactly the same as ("V /Matrix except that svllabicity must be specified as a feature
in the phonemic tier rather than as an element of the skeletal tier. Instead of ("'s and Vs, the
skeletal tier contains X's. This system is useful for writing rule systems similar to those for which
('V/Matrix is appropriate, but in which the rule author wishes to treat syllabicity as a feature. To
specify phonemes under X/Matrix. one proceeds as described above for C'V/Matrix. except that one
may not specify lists of consonants and vowels. and the “Defaults™ and “FullSpecs™ sections may
not use the keywords consonant and vowel to match phonemes.

CV/Tree allows the user to employ any number of tiers, and represents phonemes as trees of
features linked by class nodes, as first proposed in Mohanan (1983), Clements (1985). and Sagey
(1986). The C'V/Tree specification method allows the full range of features available within AMAR.

After one has chosen SpecMethod: CV/Tree, one must specify the consonants and vowels as
described above, and for each phoneme the phonemic tree. This involves specifying the general tree
and then defaults and full specifications, similarly to the matrix specifications. When specifying the
general tree, the skeletal tier and the tonal tier will already have been specified Ly default. Unless
otherwise specified. the skeletal tier acts as the topmost node of the tree (the root). and the tonal
tier is the immediate inferior of the skeletal tier. While specifying the tree. either of these tiers may
be freely referred to and placed anywhere within the tree structure. The following syntax must be
used in order to specify the general phonemic tree:

Tree { node, node, ..., node }
where node may be any one of:

{ identifier }
{ identifier : identifier }

or
{ identifier : identifier : [identifier], ... , [identifier] }

Of these, the first creates a topmost class node?. As mentioned previously, this is by default the
skeletal tier. but this method may be used, for example. to create a syllable structure dominating

2more on this later
A class node names both a tier and a segment. That is. there will be a tier with the name of the class node. and

this tier will contain only segments of that class node type.

30

rhyme
onset y

nucleus coda

X X X

Figure 3-2: Typical Syllable Structure

the skeletal tier. or perhaps even morphemic and word-level structures. The second tvpe of node
specification states that the class node referred to by the first identifier is an immediate iferior of
(1.¢..1s directly dominated by) the class node referred to by the second identifier. It is an error if the
second identifier has not already been defined to refer 1o some class node. but if the first identifier
has not been previously used. the program will create an empty class node and place it as an inferior
of the class node referred to by the second identifier. Note that this process of defining a class node
as inferior to another also defines elements of the tier defined along with the class node as freely
associating with the elements of the tier denined along with the other node. Finally. the third type
of node specification buiids a class node referred to by the first tdentifier (which must be unique and
previously unused). defined to be inferior to {and freely associating with) the class node referred to
by the second identifier. The class node thus built is also defined to dominate (and freely associate
with) the features specified as a list following the second identifier. Each feature is there specified
as a previously unused identifier surrounded by square brackets.

As an example, one would define a syllable structure like the one illustrated in figure 3-2 as
follows:

Tree |
{sigma},
{onset: sigma},
{rhyme: sigma},
{nucleus: rhyme},
{coda: rhyme},
{skeletal: onset},
{skeletal: nucleus},
{skeletal: coda}

}

After the general tree specification, the user will specify defaults and full specifications in a fairly
stmilar manner to that used for the matrix methods above. The defaults section consists of:

Defaults: default, ... , default.
where default may be any one of:

identifier -> segmentspec

identifier -> identifier

identifier -> identifier matrix

any -> segmentspec

any -> identifier

featureless identifier -> segmentspec
vowel -> segmentspec

consonant -> segmentspec

matrix -> segmentspec

identifier -> matrix

31

any -> matrix
vowel -> maatrix
consonant -> matrix

or
matrix -> matrix
where matrix is as defined above, and segmentspec may he any one of:

segment | segspec }
segment { segspec identifier }
segment { segspec : segmentspec, ... , segmentspec |}

or
segment { segspec identifier : segmentspec, ... , segmentspec }

where segspec should be an identifier (referring to a phoneme or class node)?. whicl may either
have been defined by the user or be one of a few predefined identifiers referring to general classes of
segiments and predefined segments, as illustrated in table 3.1. Thus, a segmentspec is a structure
built around a segspec. This structure may simiply be the segment referred to hy a segspec. or it
may have a specified tier (if the segspec is followed by an identifier naming the tier) and inferiors, if
the segspec is followed by a colon and a comuma-separated list of segmentspecs.

The defaults section matches individual phonemes (by identifier). any phoneme (by any). conso-
nants or vowels. phonemes with the features specified in a matrix, or phonemes with some particular
empty class node (by featureless identifier. where identifier refers to a particular class node).
After a phoneme has been matched. four changes could be made to it. depending on the right hand
side. If the right hand side contains an identifier. the phoneme’s definition is replaced by that of
the identifier. If there is a segmentspec, the segmentspec is added to the phoneme definition. If
there is a matrix, the features in the matrix are copied (similarly to matrix copying for the Matrix
methods) into the phoneme definition. Finally, if the right hand side contains both an identifier
and a matrix. the phoneme’s definition is replaced by that of the identifier. and the features in the
matrix are subsequently copied in. The full specification section is like the defaults section except
that it is preceded by the keyword “FullSpecs.”

X/Tree is identical to CV/Tree except that syllabicity must be specified as a feature instead of
by listing consonants and vowels. By extension. the defaults and full specification sections may not
match using the keywords “consonant”™ or “vowel.”

3.2.2 Tone Specification

After phonemes have heen specified, the user must next specify the tones of a language. or note that
it has none. The first piece of information the user may supply is whether tones specified in the
input should begin connected or unconnected to the rest of the input structure®. Tones will begin
connected if the user includes

ConnectTones

at the beginning of the tone specification section.
Next, the user must specify the number of tones in the language:

NumberofTones: number.

1A segspec may also be a matrix (referring to one or more features). a number (referring to a tone. as will be
explained later). or a segspec in parentheses, which is used when segspecs are used in rule definitions. to state that
exact matching must be used with the segment.

» According to most autosegmental theories today. tones begin unconnected to anything else. and are connected by
means of rules. The user may not wish to deal with this. however.

32

Predefined ldentifier | Meaniug
P Phoneme - refers to any phoneme,

class node. feature. or feature matrix.
Tone - refers to any tone regardless of piteh.

V Vowel - refers not to a vowel phoueme hut
rather 1o a V segient on the skeletal tier
(used 1o identity vowels 1 OV modes)

& Consonant - like V ahove

X X - refers to an X on the skeletal tier. or to a Cor V.
“ml” Morpheme begin
“f” Morpheme end
“w(Word begin
“w” Word end

Vo Zero or more vowels

(Y] Zero or nmore consonants

X0 Zero or more X's. vowels. or consonants

Table 3.1: Predefined Identifiers

If the language has no tones. this is the only essential part of the tone specification. After the
nwinber of tones, the user specifies the maximum number of tones that can be connected to a vowel
at any one time (¢.¢.. in Chinese no more than three tones at a time can be connected to a vowel.) by
following MaxTonesPerVowel: with a number or the kevword infinite. The user may then specify
the maximum number of vowels that can be connected to a tone at any one tiime. ih a manner
analogous to the previous (with MaxVowelsPerTone). If this is greater than one. then a single tone
may spread over many vowels, as commonly occurs.

By default. AMAR refers to tones by their level. For example. if there are five tones. the
individual tones will be referred to by the nutibers one through five. 1f the user wishes otherwise,
for example. if the language has a two tone system and the names L™ and "H” would be convenient,
this may be specified as follows:

ToneNames: identifier, identifier, ..., identifier.

where the identifiers must be previously unused. in order from level one to the highest level. and of
the same number as the number of tones.

In order to facilitate input and output. the user may define representations for various phonemes
connected to tones. If representations have not been defined. only floating tones (tones not initially
connected to anvthing) may appear in the input. and the program will not know how 1o print tones
in the output. so any phonemes connected to tones will not be printed. These representations are
placed in a section preceded by the keyword ToneReps:. are separated by commas and terminated
by a period. There are two types of tone representations. The first type consists of a phoneme
connected to one or more tones. which is represented:

identifier : identifier / segspec segspec ... segspec

where the first identifier must not have been previously used (this will be the representation). the
second identifier must refer to a phoneme. and the segspecs must refer to tones. For example,
the Mandarin low tone over “a” might be represented as "8" : a / 3 5 1. The second type of
tone representation is that of a floating tone. This type is completely unnecessary from a practical
standpoint. since AMAR treats stances of the tone names in the input as floating tones. but
many orthographies treat floating tones differently from connected. At any rate. the user supphies a
representation for a floating tone as follows:

identifier : / segspec

where identifier is the new representation and segspec refers to the tone.

33

3.2.3 Free Associlates

The next possible part of a language specification file consists of i list of freely associating segnments
(Goldsmith 1990, page 45). In general. only freely associating seginents may conuect ina given
language. Moreover. freely associating segnients i sotne way have a propensity toward connecting,
and so. for example. whenever two segments connect. pairs of unconnected but freely associating
segiments connect 10 one another in a pattern radiating outward from the mitial connection and
halting at “blocking™ connections {(connections whose existence would cause line crossing 1o vceur f
a pair of segments were to connect). Freely associating segiments may be spectfied thus:

Assoclates: assoC, asSsSOC, ..., ASSOC.
where assoc is a set of two segient specifications:

{segmentspec,segmentspec }

as defined above in the section on defaults. When two segments 1o ' the segmentspees, they
are free associates. As previously noted. when defining a tree strucio i~ in CV/Tree or X/Tree.

AMAR automatically defines immediate superiors and inferiors in the tiee to be freely associating.
Sometimes the user does not wish this to occur in some particular case. Therefore. one may place
1 list of non-associating segiments before the list of associating segments:

NonAssociates: assoc¢, assoc, ..., assocC.

For example, if the user had defined a class node “croot™ that only associates with skeletal (' nodes
and a class node “vroot” that only associates with skeletal 17 nodes. these class nodes would be
mitially defined to associate with any skeletal nodes (1.¢.. X' nodes). and the user would have to
provide the lists:

NonAssociates: {segment{X},segment{croot}}, {segment{X},segment{vroot}}.
Associates: {segment{C},segment{croot}}, {segment{V},segment{vroot}}.

3.2.4 Definitions

The user may find that while defining a rule long segment specifications quickly become unwieldy.
Thus. AMAR provides a definitions section (preceded by Definitions:). wherein one may define
a short identifier to refer to a segspec or segmentspec. Definitions are separated by commas and
concluded with a period. and take the following form:

Define identifier segspec
or

Define identifier segmentspec

3.2.5 Rule Specification

A phonological rule consists primarily of a situation to match against in the input (for example, an
unconnected vowel and tone at the beginning of a word) and an action to take when this match
takes place (for example. connecting the vowel to the tone.) In general. the system will match and
apply the first rule specified wherever possible. then the second. and so forth.

The rules section consists of the kevword Rules: followed by a comma-separated. period-
terminated list of rules. A rule is specified as follows:

Rule identifier:

[RtoL]

[NoWordBounds]

[NoMorphBounds]

Tiers: tier, tier, ..., tier.

Connections: connection, connections, ..., connection.
Effects: effect, effect, ..., effect.

34

The identifier names the rule. and must be unigue. If the kevword Rtol is tncluded. the rule will
apply right to left. Furthermore. including the kevwords NoWordBounds «r NoMorphBounds indicates
that the rule will ignore word or morphewe boundaries i watehing and appheation. For example,
the tone shortening rule of Mandarin specified NoWordBounds and NoMorphBounds because two low
tones do not have to he 1 the same word or morpheme for the rule to apply.

The tiers and connections sections of a rule define the situation against which the rule matches.
A tier is specitied as follows:

identifier : segspec segspec ... segspec

where identifier names the tier and the segspecs can be identifiers naming segments or definitions,
matrices, features (identifiers optionally preceded hy “4+." -7 or ~ "} numbers referring 1o tones,
segspecs in parentheses’ . or sets of segspees (specified by { segspec, segspece, ..., segspec}.)
Note that one may use as segspecs the predefined identifiers listed in table 3.1, For example. one
could use “P” to match any phoneme. class node, feature or feature matrix. or ~17 to match any
tone. Thus. the skeletal tier containing a vowel, zero or more consonants. and the word boundary
would be represented:

skeletal: V CO "lw"

In the connections section. the user specifies which of the segments must be connected to which
other segments. A counection consists of two segrefs separated by the symbol =-. where a segref
is one of the symbols used to specify a segment in the tiers above. If there 1s more than one such
symbol in the tiers, the symbol must be followed by a number in square brackets indicating which
one it is (starting from the top left of the chart and counting down to the bottom right). or a number
indicating which one it is on a given tier. followed by the name of that tier. all in square brackets.
The effects section describes what changes are to be made in the input when the rule has been
matched. The various different effects are explained in table 3.2 and illustrated n figure 3-3.

3.2.6 Specifying Inputs

AMAR attempts to follow a model of input and output in which a phrase fits onto one text line and
appears as similar as possible to standard text. Thus. phrase boundaries are marked by periods or
new lines, word boundaries can be marked by spaces. etc. Most characters that can appear i the
input or output are defined by the user in the Phonemes, ToneNames, and ToneRepresentations
sections. Regardless of whether quotation marks are used in the specification file. they should not
be used in the input. For example. a phoneme defined in the specification file as "#" should appear
in the input as fi. All strings other than those specified by the user that would be recognized in
mputs and outputs are summarized in table 3.3. Any unrecognized string appearing in the input
will be ignored. Thus. one could, for example. use tabs to break up lines and make input files more
readable.

Input may be entered from standard input (directly at the kevboard or through a pipe). or it
may be read in from a file. For the Chinese example. the file might be the following:

w3 h&n kun.
% I very tired
% ’I am very tired’

saved under the name “chinese.ipt.” In this case. assuming that the language specification file was
named “chinese.” the user would type

amar chinese chinese.ipt

Y represents . which matches either plus or minus.

"The parentheses indicate that any segment in the input which is to match the segspec must have no more
connections to segments on tiers listed in the rule than the segspec has in the rule (in any case. segments must have at
least as many connections as specified in the rule, so segspecs in parentheses mean that the matching segment must
have exactly the same connections as in the rule)

Rule InitiallyConnectTones:
Tiers:

VG

skelevzi: (V) CO *]w",
tonal: (T) "lwn
Effects: T word

Vo T.

Connect an unconnected vowel separated from the word
boundary only by zero or more consonants to the closest
unconnected tone to the word boundary.

Rule "Mutate Double High":
Tiers: A"
skeletal: Vv,
tonal: H H.
Connections:
v -- HI[1],
vV -- H(2]), H H
Effects: LN
H[2] -> L. L

Replace (or mutate) the second of two high tones
connected to a vowel with a low tone.

Rule "Insert High":

Tiers: v
skeletal: "w[® (V),
tonal: "w["
Effects:
V ri-> H / "wl[*[2] wora H =

Insert and connect a high tone to an unconnected
vowel immediately at the beginning of a word.

Define A segment{V skeletal: segment{a phonemic}}

Rule "Epenthesis":

Tiers: C V=C
skeletal: C C.

Effects:
0 ->a/ cl1] _ cl2). qd--

Tnsert a vowel and an "a" between two consonants, and
connect them.

Rule "High Tone Metathesis":

Tiers: H
tonal: *"Jm"™ H "m[".

Effects:
H -> "m["

morph morph

When a high tone is directly between two morpheme
boundaries, move the tone into the right—hand morpheme.

A

Rule "Shorten High®":
Tiers:
skeletal: V, v
tonal: H H.
Connections:
vV -- HI1],
vV o-- H[2;
Effects: H H
vV -Z- H[1].

Disconnect the first of two high tones
connected to a vowel.

Rule "Spread Left":
Tiers:

skeletal: (V) CO V, V C V
tonal: T.

Connections: A
viz2] -- T.

Effects: T
<< T skeletal.

In the environment of an unconnected
vowel, followed by zero or more
consonants and a vowel connected to a
tones, spread that connection left along the
skeletal tier.

Rule "Spread Right":

Tiers:
skeletal: vV CO (V), v C V
tonal: T. -
Connections:
V[i} -- T.
Effects: T

T >> skeletal.

In the environment of a tone connected to a
vowel that is followed by zero or more
consonants, then an unconnected vowel,
spread the tonal connection right along the
skeletal tier.

Rule "High Tone Metathesis (2)":
Tiers:
tonal: *"im"™ H.
Effects: H
H-> _ "m{". ‘
morph

When a high tone is directly to the
right of a morpheme end, move the
tone into the left—hand morpheme.

Figure 3-3: Rule Types Allowed by AMAR. with Conventional Equivalents

36

[Tl

| Deseription

segref ::

segref

C'onnect *wWo segnients

segref -Z- segref

Disconnect two segiments

segref >> identifier Apply spreading right from
segient along the ter
spectfied by the identitier

<< segref identifier Apply spreading left from

segiment along the tier
specified by the wdentitier

segref -> segref _ segref Metathesis: insert segref
bhetween the two segiments

segref -> segref _ Metathesis: insert after
the segment indicated

segref -> _ segref Metathesis: insert before
the segment indicated

segref -> segref replace the first segref
with the second

segref -> 0 delete the segref

segref ::

-> segspec / _ segref

insert segspec before the
second segref and join it to
the first

segref ::

-> segspec / segref _

insert segspec after the
second segref and join it
to the first

segref ::

-> segspec / segref _ scgref

insert segspec hetween the
second and third segrefs and
join it to the first

0 -> segspec / _ segref
0 -> segspec /
0 -> segspec /

segref _
segref _ segref

insert segspec before segref
msert segspec after segref
insert segspec between

the segrefs

Table 3.2: Usable Effects under AMAR

Character | Purpose

m[
Im

Beginuing of morpheme
End of morpheme
+ Morpheme boundary (same as Jmm[)

wl Beginning of word
1w End of word

<space> Word boundary (same as Jww[)
Word boundary (same as Jww[)
% C'omment (ignores rest of line)

End of phrase

<newline> | End of phrase

Table 3.3:

Special Input/Output Characters

to see the result. amar -d will display internal phioncme and toue 1epresentations as rule appheations
progress. Any error messages produced normally or output produced as a result of -d7 will be sent
to standard error output. Normal ouiput (e the resolts of rule application) will be seat to standard
oLtput. where 1t can be sent 1o a file. the sereen. or wherever the user wishes, To semd the output
to a file. the user would tyvpe (for the Clinese example, assuming output filename “chitnese.opt™)

amar chinese chinese.ipt > chinese.opt

By saving the output in a file. the user could compare actual outputs 1o expeeted outputs by using
a atihty such as doff . For example if the expected outputs for Chinese were stored in “chinese ept ™
the user could compare by means of the command:

diff chinese.opt chinese.ept

If there is no output tiom this commmand. the expected outputs were the same as the actual outputs.

3.3 Program Design

The Automated Model of Autosegmental Rules was written in ('++_ an object-oriented prograniming
language. as described i Bjarne Stroustrup’s The ** Programmng Language: Second Edition
{Stroustrup 1991). This language was chosen for its relative speed and portability. The program
can be divided into four major modules: the language specification parser. the input/output system.
the matching module. and the application module. Central to all of these are the objects themselves.

3.3.1 Objects

The primary objects of the system are Rules. Tiers. Charts. StrTables and Segments. A Rule
consists primarily of a name and two sets of tiers. The first set, called “original™ is used to match
against the C'hart built as a result of reading the input. When the “original™ tiers have been matched.
the application module modifies the matching section of the Chart such that it matches the other
set of tiers held in the rule. the “replacement™ tiers. In addition to the name and the tiers. a rule
also holds boolean variables specifving whethier it is a sandhi rule and whether it ignores word or
morpheme boundaries. A Tier is primarily a holder for segments. and as such consists of a name, a
list of segments, and a current position within that list. The Chart and Str'Table (~String Table™)
together hold almost all of the data used by AMAR. The chart holds the tiers into which the input
is placed after it has heen converted into autosegmental form, the name of the language. the rules
in the order they are to be applied. a map defining which segments freely associate. and language-
specific parameters such as the maximum number of tones per vowel. whether sandhi rules exist. the
number of tones. the tree structure. and whether tones should be initially connected. The other half
of AMAR's data is held in an StrTable. This structure maps strings to tiers, segments. etc.. and
contains definitions for anything to which the user refers by means of an identifier in the language
specification file.

If the chart and string table are the main containers of data in AMAR. the Segment is the main
form of that data. A Segment could actually be any of a number of ohject-oriented classes. all
of which iuherit. directly or indirectly. from the parent class Segment. as shown in figure 3-1. As
a consequence of this inheritance scheme. if a rule refers to some segment type from which other
segment types inherit, the reference will match aaything of that type or of any of the inheriting
types. All segments contain a unique identification number. a pointer to the tier they are on. and
some 1ndication of type. In addition. connectable segments (all those which inherit from Connecta-
bleSegment) contain pointers to all superior and infcrior segments, indications of whether matchi:.g
is exact or not. and information relating to spreading (whether the segment spreads right or left.
and along which connection). When segiuents are connected to one another. one segment Is always
inferior and one superior. This relationship is determined by the user’s definition of tree structure
for the Tree specification methods. and in the other methods skeletal segments are superior to tones
and phonemes. As will become apparent. most routines operating on a given segment can only affect
the segment itself and any segments connected inferior to it.

38

Segment

MorphemeEnd
WordBegin " jme
" w ["
MorphemeBegin
WordEnd nt
L] } w L] v 0
V0
co
co X0
X0
ConnectableSegment
X
GenericTone X
T
SegmentSet
GenericPhoneme
Tone P Consonant Vowel
C v
Phonemic FeatureMatrix

Feature ClassNode

Figure 3-4: Inheritance Structure of Segments within AMAR. with Corresponding Predefined 1den-
tifiers

39

3.3.2 Language Specification Parser

The language specification parser acts mainly 1o build the objects needed by the other modules
and to provide information about how other modules should behave, The parser consists of a €
program generated automatically from a grammar file written in yace and a C++ module containing
procedures to be called upon receiving various lstructions in the language specification file. This
program receives mput from a lexical analyzer. another (' program generated automatically from a
specification written in ler. The lexical analvzer takes the input from the language specification file
and breaks 1t up into tokens. If the token happens to be an identifier (token “ID7), the procedure
install_id builds a string table entry which contains the original string entered by the user. String
table entries may additionally contain poluters to tiers. segments. full specifications. and “matches.”
which will be explained later. These entries may be used for four different processes: thev may define
a “phoneme” (here used to refer to anything that can appear in the input or output other than a
boundary or comment): they might define a tier. a class node. or a feature: they could be used for
a "match” referencing some segment®: or they could simiply be used to give a name to something.

For a “phoneme.” the entry will contain the corresponding segment. and perhaps a tull specifica-
tion (as generated in the “FullSpecs™ section. and used for matching after rules have applied.) The
form of a phoneme’s segment varies greatly depending on the specification method and the type of
phonieme. There are three phoneme types: phonemic segments (defined in the "Phonemes” section).
floating tones (defined automatically based on the number of tones and optionally by the ~Tone-
Nanmes” and “ToneRepresentations™ sections). and phonemic segments attached to tones (defined in
the “ToneRepresentations™ section.) A phonemic segment will be an object of type "Phonemic™ (a
connectable segment which also contains a string representation) in C'V mode. a “FeatureMatrix™ (a
connectable segment which also contains a list of features) in the Matrix modes. or a "ClassNode™
(a connectable segment which also contains a name) heading a tree of class nodes and features in
the Tree modes. This segment. in whatever mode, will have a “C'." V" or "X" as a superior. A
floating tone segment will simply be an unconnected “Tone” object, a connectable segment which
also contains an integer level. Finally. a phonemic segment attached to tones will be a “V.” X"
or "("." depending on the original phonetnic segment. Whichever skeletal segment it is. it will have
the tones as inferiors, along with a copy of the original phonemic segment.

When defining a tier. class node. or feature, string table entries will contain both a tier and a
segment, because in autosegmental phonology tiers may only contain specific types of segments: any
segment to be stored in the tier must match the segment stored along with that tier. Thus. the
skeletal tier contains an “X.” the tonal tier contains a “T.” and the phonemic tier® contains a “P.”
Class nodes and features may only appear on their own tier in the Tree modes, so when they are
defined (in the “Tree” section), a tier with the same name is defined and placed in the string table
entry along with the segment. In contexts where a tier is expected. the entry will be treated as a
tier, and in contexts where a segment is expected. the entry will be treated as such.

When the user defines a rule. the parser creates the “original” and “replacement™ tiers. which
are 1nitially identical (although the segments in the replacement tiers are copies of the segments in
the original tiers and not the actual segments themselves). In addition. it creates a map containing
“matches.” Each “match™ contains a copy of some segment from the rule tiers, along with the
position of that segment within the original and replacement tiers. In the “Effects” section. the
parser will take the user’s segrefs and find the “match™ segment corresponding to the reference.
In the parser. alinost all global data must be transferred in string table entries. so this “match™ is
stored in such an entry. The parser then uses the “matches,” the map. and the rule to modify the
“replacement” tier (and the map. so that later effects do not get confused) in accordance with the
desired effect.

The final. and simplest. process in which the string table is involved is simply that of giving names
to objects. Thus. charts, rules, class nodes. phonemes. features. tones. and tone representations have
names corresponding to sotne string table entry. In order to save memory and limit expensive string

A This corresponds to a segref in the specification file
“These three tiers are predefined before parsing begins.

40

copying operations. the only strings stored within AMAR are those found in the string table. and
all other objects simply contain references to them,

The only operation iy which the parser 15 involved. other than building objects and storing them
in the string table. s building objects and storing them in the chart. Thus, the parser generates the
tiers held by the chart (except for the three tiers already stated to have been predefined). the rules
to be applied to the chart (also stored i it). the map of free associates (Free associates are defined
“manually” in the “Associatexs” section and automatically when class nodes are defined iy the ~Tree”
section - class nodes automatically freely associate with their direct superiors and inferiors). and all
of the parameters: the maximum number of tones per vowel and vowels per tote. the number of
tones, whether tones connect. and whether sandhi rules and sandht rules that apply from aaght to
left exist.

3.3.3 Input and Output

The input/output system of AMAR relies primarily on the string table and the matching system.
although it provides a surprising amount of coniplexity on its own. The overall input/output system
begins by going through the string table and finding the maximum length of a phoneme. where a
phoneme is specially defined to mean a string that may legitimately appear in the input. It then
attempts to read in one word at a time from the input. If there are sandhi rules. AMAR reads in a
phrase. then applies the rules in order and outputs the phrase. deleting it from the chart. Otherwise.
the system reads in one word at a time. applies rule to it. then prints and deletes it. thus saving
memory and minimizing delay between outputs.

The Input System

The input system can be divided into a section that reads one word at a time and one that reads
a segment at a time. The former simply places a word begin at the beginning of each tier in the
chart. then calls the other section to return one segment at a time untif a word end is returned.
at which time a word end is placed at the end of each tier. Each tier’s current position is set to
the beginning of the word read in. and the section returns control to the main loop that called it.
As each segment is read in. the “read_word™ procedure checks to see whether it is a boundary, a
floating tone. a phoneme connected to a tone, or a simple phoneme. Boundaries are copied and
added to every tier of the chart. Floating tones are added to the tonal tier. Phonemes. connected
or unconnected to tones are sent to the procedure “add_skeletal_segment.,” which searches through
all the connections and adds each segment to the appropriate tier (when a segment is defined in the
parser. it is associated with its tier.)

The section that reads in one segment at a time!’ takes one character at a time from the
input. These characters are built up into a string whose maximum length equals the maximum
length of a phoneme. If the first character read by the function represents a boundary or comment
(<space>, <return>, “#". “.", “+", or “%"). the program will go through the input and eliminate
redundant boundaries and comment lines. and finally return a morpheme begin or end (for morpheme
boundaries) or a word end (for other boundaries), and set the flag “eophrase™ (“end of phrase™). if
appropriate. Otherwise, “read_segment” will attempt to find the longest string matching a phoneme
in the string table. This is accomplished by looking up the string as it is built—if the table contains a
phoneme corresponding to the string. this phoneme is stored as the tentative segment to be returned
and the length of the string at that point is stored as well. When this string matches the maximum
length. the program checks to see if a segment was found. If not. the first character of the string is
discarded (in this way. “read_segment” ignores unrecognized characters) and the rest are put back
to be read later. The procedure will then return a flag denoting that no segment was found. If a
segment was found, any characters which were read after the match are put back into the input'!.

10accessed via the function “read segment”

' Actually, for safety the program maintains a stack of characters. into which characters to be repracessed are
placed. When “read_segment” wishes to read a character, it first checks to see if there are any in the stack. and. if
so. pops off the top character.

41

Finally. the segment is returned.

The Output System

AMAR produces two types of output: “process” output used to show what is going on or report
errors. and the actual output produced when rules are applied to the input. “Process™ output is
sent to standard error. and actual output to standard output.

Error reporting is fairly straightforward: when an error oceurs. a message 1= output. and pro-
cessing halts. The other type of “process™ output only appears when AMAR is run with the =-d”
(debug™ or “demo™) option. This opiion displays the contents of the chart before rules have ap-
plied. states which rules are applyving and whether any change was made. and. if a change was
made. displays the chart contents after rule applications. The ~-d™ output is produced by “print()”
members of the ClassNode, Feature, FeatureMatrix. Tone. and Phonemic classes. which sumply priut
the information stored in the c¢lass object other than that stored in any connectable segment (thus,
names. values (plus, minus. alpha. or undefined). features, levels. and representations, respectively).
along with a unique identifier for ('lassNodes and Features so that effects such as shared nodes
become evident.

To produce actual output, AMAR goes through the skeletal tier of the chart. one segment at
a time. and calls the “print()” member for each segment encountered. Since the skeletal tier only
contains boundaries and X's!?, there are only five such members. corresponding to morpheme hegins.
morpheme ends. word begins, word ends. and X's. When a morpheme begin immediately follows a
morpheme end, the program prints a "+". Similarly, when a word begin immediately follows a word
end. the program prints a space. Otherwise. the boundary print functions do not output anything.

The print member for X's must match the segment against the full specifications stored in the
string table. if any. or the segment specifications found there. To do this, the X is marked for exact
matching. and is then matched against every phoneme in the string table, using the matching system
to be described later. If there is no match. nothing is printed. If there is only one match. AMAR
prints the string stored in the table entry containing the matching phoneme. Otherwise. AMAR will
print all of the matching strings in parentheses and separated by slashes.

3.3.4 Matching

Before a rule may be applied. it must be matched. That is. the program must search through the
chart and find a position corresponding to the situation described in the rule. In fact, the program
must find such a position for each tier mentioned in the rule, and all of these positions must be
consistent. That is. if the rule mentions that some segment in one tier is connected to some other
segment in another tier, the matching chart segments for the two tiers must connect to one another.

In order to achieve this goal, the matching section. moving from the most superior tier of the
rule!3 to the least superior tier, attempts to find a match position for each tier. Te ensure consistency
and efficiency, for a given tier the program only begins matching with the first rule segment that does
not connect to previously matched tiers. When all match positions have been found. the program
adjusts them so that each match position actually refers to the first item on that tier that was
mentioned in the rule, by checking for each tier to see whether a matched item on a previous tier
connects to some segment previous to the current match position for the tier.

The matching process for a tier occurs as follows: the procedure keeps track of a position within
the tier, starting from the recorded tier current position (either one position after the last position
at which the current rule was applied on the tier or at the beginning of the word.) and starts off by
finding the first rule segment both in the proper tier and unconnected to a previously matched tier.
This segment is matched against the segment at the current tier position. moving the tier position
forward until either the segment matches or there are no more segments in the tier. in which case
the rule does not match. If the segment did match. the position is saved as a tentative match

2and C's and V's. which are here treated the same as X's
! In matching. only the “original” tiers of a rule make a difference. Therefore. any reference to a rule tier in a
discussion of matching refers to one of the “original” tiers of that rule.

42

position. aud the procedure attempts to mateh the rest of the rule. 1f the rest matches. the saved
position 15 returned. Otherwise, the matching process begins again from the next position after the
saved position, until the tier either matches or conclusively does not mateh (by not having enough
segments after the current position to match.)

Matching occurs rather ditferently for connectable and non-connectable segmients. Any given non-
connectable segiment may either be a boundary or a “zero.” which is merely a notation matching zero
or more connectable skeletal segmients. Boundary matching is fairly simple: any boundary matches
another of the same tyvpe. A zero always successfully matches: its function 1s to move the current
tier position forward to the first position in which there is not a segment of the type of the zero. For
example, after matching against a €'_0. the current tier position will be on the next segment which
15 not a (.

For matching two individual connectable segments. there are three levels of matching: «g. equal.
and eqr. That 1s. one ascertains whether two seginents match by calling the function eq. This
function checks whether the two segments are equal. then checks for each of the rule segment's!?
inferiors whether it is equal to some other of the chart segment’s inferiors. eq also makes sure that
the rule segment’s inferiors are, within their tiers, in the same order as the chart segment’s.

The equal procedure checks first to see if the rule segment is eqr to the chart segment. If this
15 50, the tiers must have the same name. Finally, if the tiers have the same name. the segments
must match eractly or roughly. depending on whether the rule segment has been marked exact (by
surrounding it in parentheses.)!® To match exactly, the chart segiment may have fewer or more
connections than the rule segment. but within the tiers accessible from the rule segment (the tiers
to which the rule segment is connected), the chart must have the samie number of connections. To
match roughly. the chart segment must have the same number of inferiors as. or more inferiors than.
the rule segment, within the tiers accessible from the rule seginent.

For a rule segment to he eg to a chart segment, the chart segiment must generally be of the same
type as the rule segment, or of a type which inherits from the rule segment type (see figure 3-4.)
However, a feature matrix may be eger to a feature, a feature matrix, or a class node. In addition. a
segment set may be eqv to a segment or a segment set. For a feature matrix to be eqr to a feature.
every feature in the matrix must either be eqe to the feature or eqr to some feature connected to
the feature. To be egr to another feature matrix. a feature matrix must be such that every feature
in it is eqv to a feature in the other matrix. Finally, to he equ to a class node. every feature in
the matrix must be egr to an inferior of the node. For a segment set to he egr to a segment, some
element of the set must be egr to the segment. For the set to be eqr to another set, every segment
in the set must be eqr to some segment in the other set. For a tone to be eqr to another tone. the
tones” levels must be the same. For phonemes (of the 'V mode type). the representations must be
the same. For class nodes, the names must be the same. Finally, for features the names must be the
saiie, and the rule feature’s value must be “a” (specified by ™0™ since there is no a key on most
kevboards) or the values must be equal (both pluses., minuses, or unspecified.)

3.3.5 Application

After consistent matching positions have been established for every tier. the application section
begins by making a correspondence map between the rule and the chart. This map takes essentially
the same form as the map used in the parsing section. containing “matches™ consisting of a copy of
each segment in the “original™ tiers paired with the chart location of the matching segment!”. The
section next loops through the rule tiers. in the tier looping through the “replacement™ tier and the
map corresponding to it. If the current rule element is the same as the current map element (if they
have the same identification number). it. will check whether the segments have the same number

14The equality operations under AMAR are not reflexive. so for any operation of the type A = B. the segment A
will be referred to as the rule segment. and B as the chart segment. since that is the usual order in which the equality
operations are called.

% Note that by the Conjunctivity Condition (Goldsmith 1990. page 39). segments to be deleted or replaced should
be marked exact. Segments that are explicitly supposed to be unconnected should also be marked exact.

Y For more insight into the construction of this map. see the function Rule: :application in appendix ',

43

of connections. and if they do not or the connection spreads. connections will be adjusted. 1f the
segients are not the same. segments will be adjusted.

Connection Adjustment

The connection adjustiment subsection breaks any connections that exist in the map. but not m the
replacement chart. and adds those that are in the replaceiment chart but ot the map. Connection
adjustnient occurs in the map., which is fairly simple, and 1 the chart. which. as will be seen. is not
quite so simple.

The map and the rule charts do not always reflect the actual chart very exactly. If a rule shows
two segments connected. they need not be directly connected in the chart. Thus, when breaking
a connection in the chart. the procedure (break_connection) responsible for disassociation first
checks to see if the segments are directly connected. If so. they are disconnected. Otherwise, it will
check to see which of the superiors of the inferior of the two segments is connected to the superior
of the two. and will then disconnect the inferior segment from the connecting superior.

To add a connection, the procedure (add_connection) begins with two segnents to be connected:
a superior and an inferior. Next, the actual two segments to connect must be determined. The
general principle used for this is to disturb tree structure as httle as possible. Therefore. the
connection will be made as close as possible to the inferior segment, and the procedure searches for
a new superior segihent to connect to the inferior. If the superior segment provided freely associates
with the inferior. the new superior will be the same as the old. Otherwise. the procedure looks
at all the segments dominated by the superior segment and chooses the segment having the fewest
inferiors (to be as far as possible from the top of the tree} amongst those that freely associate with
the inferior segment. At this point. the procedure will search through the chart and see whether the
new connection will cross any existing connections. If it will. the crossed connections will be broken.
Finally, the connection will be made.

If a connection spreads (if. during rule construction. a segment was marked spreadleft or
spread right), the segment marked to spread will connect to every segment that meets the following
criteria: it is on the same tier as the connection along which the segment spreads. it is in the direction
of spreading, it freely associates with the spreading segment. it is not separated from the spreading
segment by any sort of boundary or crossing connection. and connecting to it will not cause a
violation of the tones per vowel and vowels per tone parameters.

Segment Adjustment

If the current map segment is not the same as the current replacement chart segment. then the rule
involved segment deletion. metathesis, insertion. or replacement. If the current rule segment is found
in the map somewhere, and the map segment is not found in the replacement chart, then the chart
segment pointed to by the current map segment must be deleted. If the rule segment is in the map
and the map segment is in the replacement chart. then the chart segment must undergo metathesis.
If the rule segment is not in the map. and the current map segment is in the replacement chart. then
a new segment must be inserted in the chart. Finally. if the rule segment is not in the map. and the
map segment is not in the replacement chart, then the chart segment must be replaced.

To delete a segment from the chart. it is first detached from all its connections. then simply
removed from the tier. The same process then occurs to the corresponding map segment.

Metathesis essentially deletes the chart segment. then reinserts it at the proper position. which
it finds by looking for the chart segment corresponding to the map segment that precedes the proper
position. This process is then repeated on the map segment that corresponded to the chart segment
moved.

Inserting a segment first involves making two surface coptes (i.¢.. copies which do not have
connections) of the rule segment to be inserted. and then insert one copy into the chart and one into
the map. Next, the insertion process duplicates the rule segment’s connections in the map and chart.
If the rule segment is connected to something that does not appear in the map. the connection is
not duplicated, as it will be taken care of when the other segment is inserted.

44

The final process. replacement. i generally identical 1o msertion of the new segment tollowed by
deletion of the old segiment except in the case where the segiuent mvolved is a feature matrix. For
a feature matrix. replacement is just a featnre change. <o this type of replacement is accomplished
by copying the new features into the chart matnx and replacing the map matrix as would happen
in a normal replaceiuent .

Association Convention

If any new conuections are wade during application of a rule. the program will attempt 1o apply the
association convention at every moditied point of connection (any connection made as the result of
a rule) mm the chart.

To apply the association convention at a given connection. the procedure!

hegins just left of
the connection aud connects pairs of unconnected (in terms of the two tiers concerned) but freely
associating segients until it reaches either a boundary or a connection between the two tiers. If a
boundary is reached, the procedure will keep attaching segiments from the tier in which a boundary
was not reached until either there are no more freely associating seginents in that tier. a boundary is
reached in that tier. a connection between the tiers is reached. or further connections would violate
restrictions on nuinbers of tones per vowel or vice versa. After the association convention has been
applied in one direction. the procedure then attempts to apply it in the other.

Back to Qutput

After the association convention has been applied. the application section returns and either the
next rule is applied. or the modified chart is printed and emptied.

17Chart : :apply.assoc_convention—see appendix '

46

Chapter 4

Examples

To give the reader a feel for the workings of AMAR. this chapter will begin with a very sinple exam-
ple based on an artificial tone language with only three phonemes and proceed through increasingly
complicated examples based on Bambara. Spanish, and finally Arabic. A listing of previously in-
completely specified examples can be found in Appendix B.

4.1 Simple Example

This section will model the imaginary language “Abc.” In Abc. there are three phonemes: “a.” ~b.”
and “¢.” The first of these is a vowel. and the rest are consonants. Abc has two tone levels—low
(L) and high (H). It allows any number of tones to be connected to a vowel, but ounly three vowels
may be connected to a single tone. Finally. Abc associates tones to vowels from right to left. and
connected tones spread to connect to toneless vowels to their left.

Thus, the language would be represented:

Language Abc:
Phonemes: a, b, c.
SpecMethod: CV.

Vowels: a.
Consonants: b, c.

ToneLevels: 2.

MaxTonesperVowel: INFINITE.
MaxVowelsperTone: 3.

ToneKames: L, H.

ToneReps: "a“: a /L, "a“: a / H, "a": a/HL, "8: a/LH "a8": a
/ H H.

Associates: {segment{T}, segment{V}}, {segment{X}, segment{P}}.

Rules:
Rule "Initially Connect Tones":
Tiers:

skeletal: (V) CO "Jw",
tonal: (T) “Ju".

47

Effects:
vV :: T.

Rule "Spread Left":
Tiers:

skeletal: (V) CO V,

tonal: T.

Connections:

vi2] -- T.
Effects:

<< T skeletal.

The parsing process would proceed as follows: The parser would first create a Chart object with the
nane “Abc.” Next. it would create three objects of the class “phoneme.” with the representations
“a.” b, and “e.” respectively. These would be stored in the string table. Then. the parsing mode
would be set to "C'V." and the phonemes would be connected to a (" or a "\ depending on
whether they were listed as “Consonants”™ or “Vowels.” The system will then note in the chart
that there are two tone levels and that there 18 no limit on the number of tones per vowel, but
that one may only associate up to three vowels to a single tone. After this. the system will react
to the “ToneNames™ field by entering “L™ and “H™ into the string table referring to low aud high
tone levels. As the last part of the tone definition section. the system will then create string table
entries corresponding to the vowel “a2" connected to a low tone, a high tone. a falling tone, a rising
tone. and a long high tone. In the ~Associates™ section. the parser enters the pairs “Tone” /“Vowel”
and “X"/~Phoneme” into an internal list of freely associating segments. signifving that tones freely
assoctate with vowels and that phonemes freely associate with X's, consonants, and vowels. At the
first rule. the parser will create a Rule object with the name “Initially Connect Tones.” It will
then create three tiers called “skeletal™: a mapping tier. an “original™ tier (for matching). and a
“replacement” tier for application. Into these tiers will go a V segment marked for eract matching. a
(0 segment. and a word-end segment. Next. three tonal tiers will be created. into whici, willgoa T
segment (which matches any tone) marked for exact matching and a word-end segment. Finally. in
the “replacement” chart and the map (but not the chart used for matching). the V will be connected
to the T. At the second rule. the parser will create the same tiers as before. putting a V' marked for
exact matching, a C0 segment, and a V into the skeletal tier and a T into the tonal. Next, in the
“original” chart. the “replacement™ chart. and the map, the second V will be connected to the T.
Finally, the T in the “replacement”™ chart will be annotated to indicate that it spreads left along its
connection to the skeletal tier.

If, after parsing. the system were to receive the input “abcaaaaacL”. the input and output section
would put a word begin on the phonemic, skeletal and tonal tiers. It would then put the segments
“abcaaaaac” on the phonemic tier, "VCCVVVVVC™ on the skeletal tier. and “L” on the tonal tier.
The segments on the phonemic tier would each be connected to a segment on the skeletal tier. but
the "L” would be a floating tone. unconnected to any other tier!. Each tier would then receive a
word-end segment.

The first rule would then look throughout the chart for an unconnected V followed by zero or more
consonants and the word end on the skeletal tier and. on the tonal tier. an unconnected T followed
immediately by the word end. This matches against the last vowel in the word (surprisingly enough.,
“a") and the low tone. These two segments are joined. and the association convention attempts to
apply. However. there are no adjoining pairs of unconnected tones and vowels. so the association
convention does not apply. The second rule then matches against the vowel/tone pair just connected
and connects the low tone to the second to last vowel on the skeletal tier. 1t then continues to spread.
attaching the low tone to the third to last vowel. However, any further attachments would cause
there to be more than three vowels attached to the tone. so spreading ceases.

! This would be the case also if the low tone were introduced as. ¢.g.. 4. in the input. If the user wished tones to
start out connected. he or she would put the keyword “Connect Tones™ before the “ToneLevels™ line.

48

Thus. the input “abeaaaaacl” produces the output “abeaadaiac” Tlis output s produced by
going through the skeletal tier and matehing cach X (consonant or vowel) in it agatust elements
i the string table. When an X matches exactly one of the “phonemes™ i the string table. the
output section prints that phoneme’s string representation. Thus. 7a” 15 the string representation
of a skeletal € connected to a phonemie Phonemie witl the representation “a.” ete.

If the mput were “baalel..” the “L7 would be counected to the last “a.” and the association
convention would conneet Imth high tones (represented by =47 and "H7) 1o the first "a.” The

spreading rule would not apply (since there would be no unconnected V oelements). aud the output
would be “bhaac.”

4.2 Bambara

After having described the imaginary language Abe. this section will turn to a small subset of
the phonology of Bambara. a Mande tone language spoken in Mali (Hertz 1990). Bambara has
a twelve-vowel system. coutaining the standard five vowels of Spanish. Japanese. and many other
languages ("a.” “e.” “1.7 0.7 and “u”) paired with nasalized equivalents. Completing Bambara's
vowel inventory are the vowels “I7 and “E.” Hertz (N‘)U) hists the following consonants: ~p.” ~bh.”
ot e d s T e) kST g and There are two tone levels. and high. low.

rising and falling tones appear on the surface. In Bdlllhdl‘d tones do not begin connected to specific
consonants, but are rather grouped with entire morphemes and attached via the two rules discussed
earlier for language Abc. Before these rules apply. however, there are two rules that apply to tones
found outside of normal morphemes (here termed “floating tones.™) In general. floating tones may
be found underlyingly in the pattern “"H™ or "HL.” The rules are as follows: when a high tone (*H™)
immediately precedes a morpheme begin. it is moved into the following morpheme. If. however. this
rule does not apply (typically because the high tone was blocked by a floating low tone (L)) the
high tone is moved into the previous morpheme.

The subset of Bambara phonology described above might be specified by the following:

Language Bambara:

Phonemes: m, n, "p”, b, d, j, g, p, r, t, ¢, k, s, i, in, I, e, en, E, a,
an, u, un, o, on.

SpecMethod: CV.

Vowels: i, in, I, e, en, E, a, an, u, un, o, on.
Consonants: m, n, "p", b, d, j, g p, 1, t, ¢, k, s.

ToneLevels: 2.
ToneNames: L, H.

ToneReps: "&" : a /H, "a*: a /L, "8 : a/H®L, "a": a/LH, "an"
an / H, "an" : an /L, "8n" : an/HL, "an" : an /L H, "i" : i
/ H, "i*: i /L, "i*: i /HL, "1 : i /LH, "in" : in / H, "in"
: in/ L, "in" : in/HL, "In" : in /L H, “é" : e/ H, "&" : e/
L, "8 : e/HL, "8" : e/ LH, "én" : en / H, "&n" : en / L, "én"
: en/HL, "8n" : en/LH, "6": o/ H, """ : o/ L, "8" : o/ H
L, "8" : o/LH, "é6n" : on/ H, "on" : on /L, "6n" : on/ HL, "3n"
: on/LH, ™" : u/H, ™M": uw/L, """ : u/HL, "t" : u/LH,
"an" : un / H, "m" : un /L, "@" : un/HL, "W : un /LK, "i
1/4 **: 1/L,"t": 1/EL, "I": I/LH, “E": E/H, "E"
E/L, "8": E/HL, "E": E/LH.

Associates: {segment{T}, segment{V}}, {segment{X}, segment{P}}

49

mus o don
cvVvCcy CcV

word morph L HL

Figure 4-1: Internal representation of maso+don

Rules:

Rule "Floating High Tone Metathesis":
Tiers:

tonal: "Im" H "m[".
Effects:

H -> "m[" _.

Rule "Floating High Tone Metathesis (part 2)":
Tiers:

tonal: "Im"™ H.
Effects:

H->_"Im".

Rule "Initially Connect Tones":
Tiers:
skeletal: (V) CO "Im",
tonal: (T) "Im".
Effects:
vV :.: T.

Rule "Spread Left™:

Tiers:
skeletal: (V) CO V,
tonal: T.
Connections:
vi2] --T.
Effects:

<< T skeletal.

The parser. upon receiving the above specification, would act in a manner almost identical to the

parsing of Abc above. except that the first two rules involve metathesis. Thus. for the first of these

rules the replacement chart differs from the original chart in that the "H™ moves to the right side of

the morpheme begin. and the second in that the “H™ moves to the left side of the morpheme end.
Upon receiving the input:

wl m{ musoL. Im H m[donL Im IJw

("It is a woman™)?. the input system enters a word begin into each tier. followed by a morpheme
begin. Next. the segments “muso” are entered into the phonemic tier. corresponding to the skeletal
“CVOV.” ~L7 is simultaneously added to the tonal tier. Input continues in this manner until the
word end is reached.

The first rule matches against the “H™ between morpheme boundaries. and moves it into the
morpheme “don.” Because of this movement. the second rule does not match. The third rule matches

2Note that the spaces between characters are actually tabs—ANMAR reads spaces as word breaks.

50

the final 0™ i "muso.” atiaching it to L7 The association convention attempts to apply. but ther
are no further 1one/vowel pairs. Next. the third rule matches the vowel “on™ o “don.” attaching it
to "L.7 The association convention then attaches the moved “H™ to the “on™ a~ well. Finally . the
fourth rule applies. spreading the counection from the first low tone to the “u™ in “muoso.” and the
output system produces “muso+don” from the imternal representation depieted w figure 1.

From the input:

wl{ m[musoL Im HL m{ donL Im Jw

(It is the woman™) the svstem behaves much as before. except that the floating “L7 blocks the tirst
rule from applying. The second rule thus matches and applies. moving the “H™ into the morpheme
“muso.” Thus, when the third rule applies. "H™ is connected to the last vowel in “muso.” The
assoclation convention now connects the “L7 1o the “u™ inwuso. Ia the morpheme “don.” onfy L7
is connected to the vowel. Thus, no vowels are left unconnected. and the spreading rule does not
apply. The output is “muso+don.”

4.3 Spanish

The aspects of Spanish phonology modeled here are continuancy specification in voiced obstruants
and nasal/lateral assimilation. In contrast to the previous examples. thix section will exanune two
models for Spanish. In addition. it will be noted that both of these models are incomplete, and a third
model will be proposed. but not fully specified. All of these models attempt to explain the following
feature of Spanish: voiceless obstruants in Spanish (written “b.” ~v." ~d.” and ~“g") are underlyimgly
unspecified for the feature [continuant] (Lozano 1978, Goldsmith 1981, Clements 1987). The voice-
less obstruants receive a value of [+continuant] in most environments, except for the phrase-initial
environment ([-continuant] is preferred. but [+continuant] is optional). the environment following a
nasal. and the environment following a lateral. if the obstruant is a coroual.

4.3.1 Matrix Model

The first. and most incomplete. model uses a feature-matrix based. non-autosegmental approach.
In this model. a consonant unspecified for [coutinuant] and preceded by a nasal® will become [-
continuant]. Otherwise. consonants unspecified for [continuant] will become [+continuant].

This model is specified as follows:

Language Spanish:

Phonemes: a, b, B, "j§§*, "¢*, d, D, "8", e, £, g, G, "y", i, x, k, 1, "\",
m, n, "#", o, p, r, rr, s, t, u, w, y.

SpecMethod: CV/Matrix.

Vowels: a, e, i, o, u.
Consonants: b, B, "g3", "&", d, b, "a", £, g, G, "y", x, k, 1, "\", m, n,
"i", p, r, rr, s, t, w, y.

Features: high. low, back, round, cont, son, ant, cons, nasal, cor, delrel,
stri, voice, asp, lat.

Defaults:

any -> [-nasal, -low, -back, -high, -stri, -delrel, -asp, -lat,
-round, -voice],

“Here represented as a skeletal (" segment connected to a feature matrix containing the feature [+nasal].

51

vowel -> [-cons, +cont, +son, -round, -ant, -cor],

a -> [+low, +back],
i -> [+high]

o -> e [+back],

u -> i [+back],

(+back, -low] -> [+round],
consonant -> [+cor, -son, +cons, +ant, -cont],

-> [-cor],

-> p [+voice],

-> p Ltrcont],

-> p [+son, +nasal],
-> b [cont],

"3* -> b [+cont],

w2 + TOC

v ->nu,
y -> 1,

d -> [+voice],

n -> [+son],

s -> [+cont],

ngn -> [-ant, +delrel, +stril,
D -> d [cont],

“d" -> d [+cont],

[+cont, -voice]l -> [+stri],

r -> n [+cont],
n -> [+nasall,
1 -> r [+lat],

rr -> r [+stri],

nﬁn ->n [-ant],
n)\u -> 1 [_ant],

[+son] -> [+voicel,

-> [-ant, -cor],
-> k [+voicel,
-> k {+4cont],

-> g [cont],

"y" -> g [+cont].

Q ¥ 0e =

Tonelevels: O.
Rules:

Rule "Continuancy 1":

NoWordBounds

Tiers:
phonemic: [+nasal]l ([contl),
skeletal: c C.

Connections:
[+nasal] -- c[1],
[cont]l -- c[2].

Effects:

[cont] -> [-cont].

Rule "Continuancy 2":
Tiers:

phonemic: ([cont]),

skeletal: C.
Connections:

[eont] -- C.
Effects:

[cont] -> [+cont].

The parsing process for this specification occurs similarly to that of the previous examples until
the keyword Features is reached. When the parser reaches this section. each identifier will be
assigned to a feature and stored i the string table. The parser will then. in the string table. go
through every phoneme defined above and represent it as an etupty feature matrix. At the defaults
section, the parser will first go through every phoneme and copy into its matrix the features [-nasal].
[-low]. [-back]. [-high]. [-stri]. [-delrel]. [-asp], [-lat], [-round]. and [-voice]. Then. it will go through
only the vowels in the string table and copy into the matrices the features [-cons]. [+cont], etc. At
the line "a =>7 the parser will copy the specified features into the matrix for the phoneme
“a.” as it will do for all other lines of this type. At the line “[+back, -low] -> [+round].” the
parser will search through the table, and for every phoneme specified [+back. -low]. it wili copy in
[+round]. At the line b -> p [+voice].” the parser will copy the specification of “p~ into “b.”
adding the feature [+voice]. The parser will ther proceed similarly until it reaches the keyword
“ToneLevels,” at which pomt it will note in the chart that there are no tones and go on to define
rules. The first rule will be defined to ignore word boundaries (as is typical for postlexical rules),
and will be represented as three phonemic and three skeletal tiers. In the “original™ phonemic tier
there will be a feature matrix containing the feature [+nasal] and a feature matrix marked for exact
matching containing the feature [cont] (i.e. the rule will match a segment specified [+nasal] followed
by a segment unspecified for [continuant]). The “replacement™ and map phonemic tiers will contain
[-cont] instead of [cont], and all three skeletal tiers will contain two (* segments. Thus. this rule
will replace an unspecified [continuant] feature will [-continuant] in the environment described. The
last rule. which does not need to ignore word boundaries, is simply defined to replace unspecified
[continuant] features with [+continuant].

Upon receiving the input su DeDeo (“his/her/your/their finger™). the system will build the rep-
resentation depicted in figure 4-2. Since there are no nasals in this input. the first rule witl not
apply. and the second rule will apply to the two “D” s, since both are unspecified for the feature
[continuant]. Thus. the chart will now contain the representation depicted in figure 4-3, and the
output will be su dedo.

From the input un DeDo (a finger™). the system will build the representation depicted in figure 4-
4. The first rule will match the D™ after “n.” specifving it [-continuant]. Next. the second rule will
match the other "D™ and specify it [+continuant]. The chart will now contain the representation
depicted i figure 4-5. and the output will be su dedo.

4.3.2 Tree Model

The second model uses an autosegmental approach to represent the relevaut features of Spanish
phonology more completely, and more elegantly. The model makes use of two rules unimodeled by
the previous example. The first is that a nasal consonant in syllable-final position will receive its
point of articulation from the consonaut to its right (Harris 1981). This process is here modeled hy
assimilation of the following consonant’s place node. The second rule states that a lateral segment
asstinilates the point of articulation of a following coronal consonaut (Harris 1964). Using these two

-t
=

—high +high
-low -low
—back +back
—-round +round
+cont +cont
—-son +Sson
+ant -=ant
+cons -Cons
—nasal —nasal
+cor —cor
~delrel —delrel
+stri —stri
—voice +voice
—asp —asp
-lat ~lat
word C v
Figure
—high +high
—low —low
—back +back
-round +round
+cont +cont
-son +son
+ant —ant
+cons —cons
-nasal —nasal
+cor -=Ccor
—delrel —delrel
+stri —stri
—voice +voice
—asp —asp
~lat —lat
word C A

Figure 4-3

-high
~low
-back
—round
cont
—son
+ant
+cons
—nasal
+cor
—delrel
—stri
+voice
—lat

C

-high
—low
—back
—round

—son
+ant
+cons
—nasal
+cor
—delrel
—stri
+voice
—asp
—~lat

C

—high
~low
—back
—round
+cont
+son
—ant
—cons
—nasal
—cor
—delrel
—stri
+voice
—lat

Vv

4-2: Internal Representation of ™

—high
-low
—back
—round
+cont
+son
—ant
—cons
—nasal
—cor
—delrel
—stri
+voice
—lat

\%

-high
—low
-back
—round
cont
—son
+ant
+cons
—nasal
+cor
—delrel
—stn
+voice
-lat

C

su DeDo™

—high
—low
—back
—round

—son
+ant
+cons
—nasal
+cor
—delrel
—stri
+voice
-lat

C

—high
~low
+back
+round
+cont
+son
—ant
—cons
—nasal
—cor
—delrel
—stri
+voice
-lat

A%

—high
—low
+back
+round
+cont
+son
—ant
—cons
—nasal
—cor
—delrel
—stri
+voice
—lat

v

: Internal Representation of Qutput from “su DeDo”

word

word

+high
~low
+back
+round
+cont
+son
—ant
—cons
—nasal
—cor
—delrel
—stri
+voice
—lat

Vv

Figure 4-4: Internal Representation of -

+high
—low
+back
+round
+cont
+son
—ant
—cons
—nasal
—cor
—delrel
—stri
+voice
~asp
—lat

\%

—high
—low
-back
—round
—cont
+son
+ant
+cons
+nasal
+cor
—delrel
—stri
+voice
—lat

C

—high
~low
—back
—round
—cont
+son
+ant
+cons
+nasal
+cor
—delrel
—stri
+voice
—lat

C

—high
-low
-back
—round
cont
—son
+ant
+cons
—nasal
+cor
—delrel
—stri
+voice
—lat

C

-high
-low
—back
—round

—son
+ant
+cons
—nasal
+cor
—delrel
—stri
+voice
—asp
-lat

C

~high
—low
-back
—round
+cont
+son
—ant
—cons
—nasal
—cor
—delrel
—stri
+voice
—lat

\Y

-high
—low
—back
—round
+cont
+son
—ant
-cons
—nasal
~cor
—delrel
—stri
+voice
—lat

\Y

—high
-low
-back
-round
cont
—son
+ant
+cons
—nasal
+cor
—delrel
—stri
+voice
—lat

C

un DeDo”

—high
—low
—back
—round
L +cont |
—son
+ant
+cons
—nasal
+cor
—delrel
—stri
+voice
—asp
—lat

C

—high
-low
+back
+round
+cont
+son
-ant
—cons
—nasal
—cor
—delrel
—stri
+voice
—lat

\Y%

—high
—low
+back
+round
+cont
+son
—ant
—cons
—nasal
—cor
—delrel
—stri
+voice
—lat

\Y

Figure 4-5: Internal Representation of Output from “un DeDo”

A
-l

rules. the current model postulates (Goldsmith 1990, pages 70 71) that a consonant unspecified for
[continuant] assimilates the value of [continuant] of the previous consonant. if the two consonants

share the same place node. Just as i the previous exanple. consonants unspecified for [continuant]
defauit to [+continuant].
The model would be specified as follows:

Language Spanish:

Phonemes: a, b, B, "g3", "z", 4, D, "o", e, £, g, G, "y", 1, x, k, 1, "\,
m, n, nﬂn’ “IJ", o, P» r, rr, s, t, u, w, y

SpecMethod: CV/Tree.

Vowels:

a, e, i, o, u.

Consonants: b, B, "j3", "“&*, d, D, "o", £, g, G, "y", x, k, 1, “A\", m, n,

llﬁ")

Tree {

}

"p", p, T, Irr, s, t, W, y.

{root : skeletal},

{stricture : root : [cons], [som], [cont], [stril, [latl},
{laryngeal : root : [voicel, [delrell},

{supralaryngeal : root},

{softpalate : supralaryngeal : [nasall},

{place : supralaryngeal},

{1abial : place : [roundl},

{coronal : place : [antl},

{dorsal : place : [highl, [low], [backl}

Defaults:

any -> segment{root : segment{stricture : segment{cons},
segment{son},
segment{cont},
segment{stril},
segment{lat}},
segment{laryngeal : segment{voice},
segment{delrel}},
segment{supralaryngeal :
segment{softpalate : segment{nasall}},
segment{place}}},

vowel -> segment{place : segment{labial : segment{-round}},
segment{dorsal : segment{-high},
segment{-low},
segment{-back}}},

vowel ~> [+cont, +son, -nasal, -cons, —-stri, -lat, +voice, -delrell,

a -> [+low, +back],
i -> [+highl,

o -> [+backl],

u

-> [+high, +back],

H6

[+back, -low] -> [+round],

consonant -> [-cont, -son, -nasal, +cons, -stri, -lat, -voice,

-delrel],

p -> segment{place : segment{labial :
b -> p [+voice],

f -> p [+cont],

m -> p [+son, +nasal],

B -> b [cont],

"y* -> b [+cont],

w->u,

y -> 1,

t -> segment{place : segment{coronal :
d > t [+voice],

n -> ¢ [+sonl,

s => t [+cont],

"g" -> t [-ant, +delrel, +stri],
D -> d [cont],
nan ->d [+C°nt] ,

[+cont, -voice]l -> [+stri],

r -> n [+cont],
1 -> n [+lat],
n -> [+nasall,

rr -> r [+stril,

.'ﬁ" _> n [-ant] >

")\" -> 1 [_anrt])

k -> segment{place :
segment{+back}}},
nUll -> k [+Son, +nasa.1],
g -> k [+voicel,

x -> k [+cont],

G -> g [cont],
HYH -> g [+C0nt] R

[+son] -> [+voice].
ToneLevels: O.

Rules:

Rule "Nasal Assimilation":

NoWordBounds
Tiers:
place: (place) place,
skeletal: C C,

nasal: +nasal .
Connections:

segment {dorsal :

segment{-round}}},

segment{+ant}}},

segment{+high}, segment{-low},

place[1] -- C[1],

place[2] -- c[2],

C[1] -- +nasal.
Effects:

place[1] -2- C[1],

c(1] :: place[2].

Rule "Lateral Assimilation":

NoWordBounds
Tiers:
coronal: coronal,
place: place place,
skeletal: C C,
lat: +lat.
Connections:

place[1] -- c[1],
c[1] ~- +lat,

coronal -- place[2],
place[2] -- c[2].
Effects:

place[1] -2- c[1],
Cl1] :: place[2].

Rule "Continuancy 1":

NoWordBounds
Tiers:
place: (place),
skeletal: C C,
cont: -cont cont.

Connections:
place -- C[1],
place -- C[2],

Cc[1] -- -cont,
c[2] -- cont.
Effects:

c[2] :: -cont,
¢l2] ~Z- cont.

Rule "Continuancy 2":
Tiers:
cont: (cont),
skeletal: C.

Connections:
cont -- C.
Effects:

cont -> +cont.

In the previous examples, there have automatically been three tiers: the skeletal tier. the phone-
mic. and the tonal. In this example, however, the parser will indeed create those three tiers auto-
matically. but, upon reading the Tree section on the specification file. 1t will create tiers for each
class node and feature defined there. In addition. it will create and place in the chart the tree
structure depicted in figure 4-6. In the default section most lines behave similarly to those in the
matrix example. and those that contain segmentspecs build tree structures. Thus. every phoneme
first receives a generic tree structure, then vowels add a dorsal and labial node. and the various

Dy

root
laryngeal
stricture supralaryngesl
[cons) flat) [voice] [delrel]
[son] [stri]
[cont]
place softpalate
labial coronal [nasal]

dorsal
[round]

fhigh] [low] [ant
[back]

]

Figure 4-6: Tree Structure

consonants add the appropriate place nodes. The rules are as discussed above. and are build in the
sanie manuner as in the previous examples.

Upon receiving the input “un Beso.” the system will build the structure depicted in figure 4-7.
The rule of nasal assimilation will match "n B” and produce the structure shown in figure 4-8.
Because the "n” (now an "m.” sharing the “B” s labial point of articulation) shares a place node
with “B.” the first continuancy rule will apply, and “B” will become [-continuant]. Thus, the chart
will contain the structure shown in figure 4-9. and the system will produce the output “um beso.”
Given the input “su Beso,” the nasal assimilation rule will not apply. so the second continuancy
rule will apply instead of the first, and the output will be “su Beso.” Similarly. ~al Gato™ produces
“al yato” (since “GG” is not coronal, and therefore the lateral assimilation rule does not apply. thus
disallowing the first continuancy rule), ~al DeDo” produces “al dedo™ (since “D” is coronal and the
lateral assimilation applies, with similar results to the case of “un Beso”). and “al Aano” produces
“aX Aano” (since “A” is a palatal. and thus its place node contains the feature [-anterior]. which
becomes shared by the previous consonant.)

4.3.3 Hypothetical Model

As it turns out. the data for Spanish suggest that the previous model is incorrect. (Personal ('ommu-
nication, Harris). There are cases in which the nasal assimilation rule is blocked. but the following
voiced obstruant still becomes a [-continuant]. Thus. another model might postulate that voiceless
obstruants assimilate the continuancy of the previous sonorant, with a default value of [-continnant].
Thus. phrase-initial obstruants would be [-continuant]. as predicted by none of the previous models
but supported by the data. Voiceless obstruants preceded by vowels would become [+continuant].
and when preceded by [-continuant] sonorants (such as "I" and “n.” but not “r") they would become
[-continuant]. The rules for this model would be as follows:

Rules:

wonﬂ

[+cont]

stricture

v

root

laryngeal
supralaryngeal
{+voice]

softpalate

1
[-nasal] Po°

labial
dorsal
[+round]
[+high]
[+back]

[+low]

[+cont]
stricture
C
root
laryngeal
supralaryngeal
[+voice]
softpalate
place
[+nasal]
coronal
[+ant]

[cont]
stricture
C
root
laryngeal
supralaryngeal
[+voice]
softpalate
place
[-nasal]
labial

Figure 4-7: Partial Representation of “un Beso™

60

word

[+cont]

stricture

\%

root

laryngeal
supralaryngeal
[+voice]

softpalate

1
[—nasal] place

labial

dorsal
[+round]

[+high] [+low]
[+back]

{+cont]
stricture
C
root
laryngeal
supralaryngeal
[+voice] a"\
softpalate
[+nasal]

[cont]
stricture
C
root
laryngeal
supralaryngeal
[+voice]
e
softpalate
labial [-nasal]

Figure 4-8: “un Beso™ after Application of Nasal Assimilation

61

word]

[+cont] [+cont]
stricture stricture \wﬁ
\Y% C C
root root root
laryngeal laryngeal laryngeal
supralaryngeal supralaryngeal supralaryngeal
[+voice] [+voice] [+voice]
softpalate softpalate place
lace softpalate
(-nasal] ° [+nasal]
labial labial [-nasal]
dorsal
[+round]
{+high] {+low]
[+back]
Figure 4-9: “un Beso™ after Application of C'ontinnancy Rule One

62

Rule "Nasal Assimilation":
NoWordBounds

Tiers:
place:(place) place,
skeletal: C c,
nasal: +nasal .
Connections:

place[1] -- c[1],

place[2] -- c{2],

C{1] -- +nasal.
Effects:

placel1] -z- c[1],

Ccf1] :: place[2].

Rule "Lateral Assimilation':

NoWordBounds
Tiers:
coronal: coronal,
place: place place,
skeletal: C C,
lat: +lat.
Connections:
place[1] -- C[1],
Cf1] -- +lat,
coronal -~ place[2],
place[2] -- c[2].
Effects:

placel[1] -2- c[1],
C[1] :: place(2].

Rule "Continuancy 1":
NoWordBounds
Tiers:
son: +son,
skeletal: X co C,
cont: Qcont cont.
Connections:
+son -- C[1],
C[1] -- @Qconmnt,
Cc{2] -- cont[2].
Effects:
Cc[2] :: @cont,
c[2] -2- cont[2].

Rule “Continuancy 2":
Tiers:
cont:{cont),
skeletal: C.

Connections:
cont —- C.
Effects:

cont -> -cont.

63

[Coujngation | Output Form
| katab
11 kattal
i kaatab
v Zaktab
v takattabh
Vi takaatab !
Vil ukatab !
VI ktatab
IX ktabab
X staktab
XI ktaabab
Xl ktawhab 1
X1 krawwab |
XIV ktanbab
XV ktanhay

Table 1.1: Conjugation of ktb in ('lassical Arabic

Note that the segment reference for [cont] in the first continuancy rule has the index ~{2]." This
index is necessary because both @cont and cont match the specification cont (since features specified
with @ match any other feature of the same name. regardless of value). so the “[2]” signifies that
the second feature matching cont is desired. Note also that this hypothetical rule cannot actually
be implemented in the current system. because one needs 1o specify where the skeletal contains ('0
that the matching system should skip over all obstruant consonants following the sonorant that are
specified for continuant. The notation for this does not vet exist in AMAR. but will be implemented
in the next version.

4.4 Arabic

The final example will deal with verbal conjugation in Classical Arabic, following to some extent
MecCarthy (1975) and Goldsmith (1990). There are fifteen basic “conjugations™ in ('lassical Arabic,
each one consisting of a pattern of consonant and vowel positions. The actual vowels making up a
conjugated verb depend on the tense and voice, and the consonants are determined lexically. Thus.
the morpheme kté would be “conjugated™ as in table 4.1.

In the case modeled here. and shown in the table. the verb is conjugated in the active perfective.
so there is only one vowel, “a,” that spreads across all vowel slots. Thus. for any given conjugation.
a rule would apply to build the proper consonantal and vowel positions on the skeletal tier, the
consonants would be connected to the (' slots by means of a connective rule and the association
convention. and the vowel “a” would be connected to the vowel slots. In addition. some of the
conjugations include prefixes or infixes. which would be added afterwards.

The (somewhat incomplete) AMAR specification for Arabic is as follows:

Language Arabic:

Phonemes: b, £, "6", "6", m, t, d, s, 2z, n, 1, r, k, "J", "8", q, x, "\",
uhn, u'fn, "ﬁ'"’ h, y’ w.

SpecMethod: CV/Tree.

Vowels: i, a, u.
64

e

Consonants: b, f, “4", "4, m, t, d, s, z, n, 1, r, k, "3", "8", q, x, "y",
.‘[l.‘, ll'{l‘, "S"I’ h, y, w'

Tree |
{vroot : skeletall},
{croot : skeletal : {sonl},
{cons : croot : [cont], [lat], (stril},
{"soft palate" : croot : [nasall},
{guttural : croot},
{"tongue root" : guttural : [RTR]},
{larynx : guttural : [stiff], [slack], [constr], [spread]},
{place : croot},
{place : vroot},
{coronal : place : [ant], [dist]},
{peripheral : place},
{dorsal : peripheral : [back], [high]l, [lowl},
{labial : peripheral : [rounded]}

}
Defaults:

vowel -> segment{vroot : segment{place :
segment{peripheral :
segment{dorsal :
segment{+back},
segment{+low}}}}},

i -> [-back, -low], u -> [-low],

consonant -> segment{croot : segment{-son},
segment{cons : segment{-cont},
segment{-lat},
segment{-stri}},
segment{"soft palate" : segment{-nasall},
segment{guttural :
segment{'tongue root":
segment{-RTR}},
segment{larynx :
segment{-stiff},
segment{+slack},
segment{-constr},
segment{-spread}}},
segment{placel}},

b -> segment{place : segment{peripheral : segment{labial}}},

b > [+stiff],

f -> b [+cont, -stiff],

m -> b [+son, +nasall,

y -> segment{croot : segment{+son}, segment{place}},

y -> segment{place : segment{coronal : segment{-ant}, segment{+dist}}},
v ->y,

w —> segment{place : segment{peripheral : segment{labiall}}},

65

t -> segment{place :

d -> t [+stiff],

"0* -> t [+cont],

"O" -> d [+cont],

s -> "t" [+stri],

z ~> "&" [+stril,

n -> d [+son, +nasal],
1 ->d [+son, +lat],

r > d [+son, -dist, +cont],
"g" -> s [-ant],

"y -> z [-ant],

k -> segment{place :

q -> k [+RTR],
x > q [+cont],
"y" -> x [+stiff],

"h* -> [+constr],
us‘u -> uhu [“'stlff],

npr —> [+constr, +stiff, -slackl,
h -> [+spread].

TonelLevels: 15.

NonAssociates:
Associates:

Rules:

Rule "Skeletal Cleansing 1":
Tiers:

skeletal: c,

croot: croot.

Connections:

C -- croot.
Effects:

C ~-Z- croot,

c -> 0.

Rule "Skeletal Cleansing 2":
Tiers:

skeletal: v,

vroot: vroot.

Connections:

V —- vroot.
Effects:

V -Z- vroot,

v -> 0.

Rule "Conjugation 1":
Tiers:
skeletal:"w[" "Ja",
tonal:"w[" 1 "lw".

66

segment{coronal :

segment{peripheral :

segment {+ant}, segment{+dist}}},

segment {dorsal}}},

{segment{X}, segment{croot}}, {segment{X}, segment{vroot}}.
{segment{V}, segment{vroot}}, {segment{C}, segment{croot}}.

Effects:

0 ->
0 ->
0 ->
Qo ->
Qo ->

O < O< O

NN NN N

_ "Ju (11,
- "Jwr1],
_ "Jwe(1],
- "lw[1],
- "Jw(1].

Rule "Conjugation 2":

Tiers:
skeletal:"w[" “Ja,
tonal:"w[" 2 "Jw".
Effects:
o->¢/ _"lu"[1],
0 ->vVv / _ "Jw1],
o ->/c/ / _ "Jutl1l,
0->¢C/ _ "le"l1],
0->Vv/ _ "lw'{1],
0->cCc/ _"lew"[1].

Rule "Conjugation 3":

Tiers:

skeletal:
tonal:

Effects:

0 ->

O O O O O
I
\2

OO <O
NN NN NN

nw[n "]W“,
"wl* 3 "Jw".

_ "Jwl1],
_ "Jw(1l,
- "Jw[1],
- "Jwt[1],
_ "Jw{1],
_ "Jw[1].

Rule "Conjugation 4":

Tiers:

skeletal:
tonal:

Effects:

0>V / _
0 ->C/ _
->C/
> v/
->C/

o O O

"V[" "]W" s
llw[u 4 "]W".

"Jw (1],
“lw[1],
- "Jw{1],
- "lw[1],
- "lwe 1]

Rule "Conjugation 5":

Tiers:

skeletal:
tonal:

Effects:

0 ->
0 ->

O O O O O
)
\Y2

Ot ON<O<
NN N N NN N

Y [u n]wu)
"W[" 5 "]W".

- "Jw"[1],
~ "Jwn 1],
_ "lw[1],
/ _ "Iw(1],
- "Jw"[1],
_ "Jwnl1],
_ "Jwl1].

Rule "Conjugation 6":

Tiers:
skeletal:"w[" "lu",
tonal:"w[" 6 "Jw".
Effects:
o ->v/ _ "lw[1],
0->¢/ _ "Juw'[1],
0 ->v/ _ "Jw(1l,
0>V / _"Jul1l,
0->cCc/ _ "lw'[1],
o ->Vv/ _ "Jwli],
0 ->c/ _ "lw([2].

Rule "Conjugatiomn i":

Tiers:
skeletal:"w[" "Jw",
tonal:"w[" 7 "“Jw".
Effects:
o->c¢c/ _ "lw(1],
0 ->Vv/ _"lw(1],
o->c/ _ "lwl1],
o->v/ _"le[1],
0->¢/ _ "Jul1l.

Rule "Conjugation 8":

Tiers:
skeletal:"w[" "lw",
tonal:"wl" 8 "Jw".
Effects:
0o->¢/ _"lw[1],
o->/c// _ "lw1],
o>V / _"Jwl1],
0->c¢/ _ "Jut1],
o->Vv/ _ "Ju"[1],
0->¢C/ _ "Jw[1].

Rule "Conjugation 9":

Tiers:
skeletal:"w[" "lw",
tonal:"w[" 9 "Jw".
Effects:
0o->c¢/ _ "lw'l1],
o->c¢/ _ "Ju"l1],
0 ->V / _ "Jw'[1],
0->¢/ _ "le"[1],
0o->v/ _"lw{1],
0 ->¢C/ _ "le'1].

Rule "Conjugation 10":

Tiers:
skeletal:"w[" "I,
tonal:"w[" 10 "Jw".
Effects:

68

0 ->vVv/ _"Ju1],
0o->¢/ _ "lwl1],
0->¢/ _ "Ju"[1],
0o ->Vv/ _ "Ju[1],
0->c¢c/ _ "luw[1].

Rule "Conjugation 11":

Tiers:
skeletal:"w([" "“Iu",
tonal:"w[" 11 "Jw".
Effects:
0->Cc/ _ "lw[1],
0->c/ _ "}u1],
0 ->Vv/ _"Jel1],
o->v/ _"lwI[1],
0->c¢/ _ "Jwli],
0 ->Vv / _ "]u"[1],
0->c¢/ _ "lw(1].

Rule "Conjugation 12":

Tiers:
skeletal:"w[" “Ju",
tonal:"w[" 12 "]w".
Effects:
0->c¢c/ _"Iu"[1],
0->c/ _ "Ju"[1],
o->v/ _ "Jw1],
0 ->/¢/ / _ "Jwrl1],
o->c¢c/ _ "lw'1],
o->vVv/ _ "lw1],
o ->c¢/ _ "Ju"l[1].

Rule "Conjugation 13":

Tiers:
skeletal:"w[" "Iw',
tonal:"w([" 13 "“Jw".
Effects:
0->c/ _ "Jul1],
0->c¢/ _ "Iw{1]l,
o ->Vv/ _"Jul1],
o ->/¢/ / _ "lw[1],
0->/¢/ / _ "Ju"l1],
0 ->Vv/ _ "lw1],
0->c/ _ "Ju"[1].

Rule "Conjugation 14":
Tiers:
skeletal:"w[" “Ju",
tonal:"w[" 14 "Jw".
Effects:
o->¢/ _"Ju{1],
o->c¢/ _ "lwl1],
o->v/ _"luw[1],
o ->/c/ / _ "lw[1],

69

0o->c¢/ _ "Juw1],
0 ->Vv/ _"Ju"[1],
0 -> c / _ "]W"[l].

Rule “Conjugation 15":

Tiers:
skeletal:"w[" “Tw",
tonal:“"w[" 15 "Jw".
Effects:
0 -—>c/ _ "Jul1],
0 ->C/ _ "lw[1],
0o ->v/ _»lw(1],
0 ->/¢c/ / _ "Ierl1],
0->c¢c/ _ "Jurl1],
0o->v/ _ "le"[1],
0 ->/¢/ / _ "lu"[1].

Rule InitiallyComnect:
Tiers:
croot: "w[" (croot),
skeletal: "w[" VO (C).
Effects:
C :: croot.

Rule "Conjugation 4":
Tiers:
croot: "w[",
skeletal: "w[",
tonal: "w[" 4.
Effects:
0 -> "7 / "wl"[1,croot] _,

won ..o ¢ / "w["[1,skeletal] _

Rule "Conjugation 5":
Tiers:
croot: "w[",
skeletal: "w[",
tonal: "w[" 5.
Effects:
0->t / "w("[1,croot] _,
t ::=>C / "w["[1,skeletall

Rule "Conjugation 6":
Tiers:
croot: "wl",
skeletal: "w[",
tonal: "w[" 6.
Effects:
0 ->t / "wl"[1,croot] _,
t ::->C / "w["[1,skeletall

Rule "Conjugation 7":
Tiers:
croot: "w[",

70

skeletal: "w[",
tonal: "w[" 7.
Effects:
0 ->n / "w("[1,croot] _,
n::->C/ "w["[1,skeletal] _.

Rule "Conjugation 8":
Tiers:
croot: "w['croot,
skeletal: "w[" C «©),
tonal: "w(" 8.
Effects:
cl2] ::-> t / croot _.

Rule "“Conjugation 10":
Tiers:
croot: "wl",
skeletal: "w[",
tonal: "w[" 10.
Effects:
0 >t / "wl"[1,croot] _,
0 ->s / "w["[1,croot] _,
croot[2] ::-> C¢ / "w["[1,skeletal] _,
croot[1] ::-> € / "wl["[1,skeletal] _.

Rule "Conjugation 12":

Tiers:
croot: croot,
skeletal: (C) VO C,
tonal: 12.
Connections:
¢[2] -- croot.
Effects:

C[1] ::-> w / _ croot.

Rule "Conjugation 13":

Tiers:
croot: croot,
skeletal: (C) VO C,
tonal: 13.
Connections:
c[2] -- crouot.
Effects:
C[1] ::-> w / _ croot.

Rule "Conjugation 14":

Tiers:
croot: croot,
skeletal: (C) C,
tonal: 14.
Connections:
Cc[2] -- croot.
Effects:

C[1] ::-> n / _ croot.

Rule "Conjugation 15":
Tiers:

croot: croot,
skeletal: (C) C,
tonal: 15.
Connections:
¢[2] -- croot.
Effects:
¢[1] ::-> n / _ croot.

Rule "Conjugation 15":
Tiers:
croot: "Jw",
skeletal: (C) "Jw",
tonal: 15 "Jw".
Effects:
¢ >3/ _ "Jerl1].

Rule InsertA:
Tiers:
vroot: "w[" "Jw",
skeletal: "w[" CO (V).
Effects:
V:i:=>a/ _ "Ju".

Rule "SpreadRight":
Tiers:
vroot: vroot,

skeletal: V CO (V).
Connections:

vroot -- V[1].
Effects:

vroot >> skeletal.

Rule Geminate:

Tiers:
croot: croot,
skeletal: (C) C.
Connections:
croot —- C[2].
Effects:

croot :: C[1].

Rule SpreadCRight:
Tiers:
croot: croot,

skeletal: C VO (C).
Connections:

croot -- C[1].
Effects:

croot >> skeletal.

Despite the large number of rules and the complicated consonants?. most of the example s deah
with i exactly the same mianner as the Spamsh example. The only major features utihized here and
not anywhere else are controls for associativity, The model used here stares that consonants and
vowels are found on different tiers (croot and rrool respectively), and therefore it is not appropnate
for O segments to freely associate with rroots or 1 segments with croofs. However. when the
tree 1s defined. AMAR automanically assumes that (oot and rreoot. as inferiors of the skeletal tier.
freely associate with all skeletal segments. Thus. the NonAssociates section is used to state that
N segments (e any skeletal segiments) do not associate freely with creol and vreotf. and the
Associates section states that (7 associates freely with creot. and V' with rroot. In addition, use
15 made of wert segments, segnients defined to be ignored during the association convention. For
example, the second conjugation builds the skeletal segments:

avy/e/eve

where the second (" segment is marked as inert. Given the mput &b, when the “k7 is connected
to the first (', the association convention will not see the second consonant position, and will thus
connect the ~t” to the third " segment. This allows a later gemination rule to spread the “t” to the
second (" as well. For input. this model expects situply a consonant morphenie (such as &b “write’
or f7ldo’) along with a number (represented as a floating tone) indicating the desired conjugation.
Frowm this, it will build an appropriate skeletal tier. connect things appropriately. conneet the vowel
“a.” and output the conjugated form. Thus. upon receiving the input “f212.7 the system will build
the skeletal segments above. connect the consonants appropriately and add “a” to produce the
output “far?al.” Simlarly. if the input had been ~kth2.” the output would be “kattab.” If the
systemn were to receive a “sentence” (1.¢.. a number of words separated by spaces and ended with a
period) such as “ktb3 214 kth14 f2110.7. the output would be “kaatab ?affal ktanbab staf?al.”

i Note that the tree used here is a slightly modified rendition of that presented in Halle (1993).

-1
o

Chapter 5

Discussion

The current systenm. while powerful and fairly useful. has nonetheless many possibilities that have not
vet been fully explored. A number of inprovements are envisioned. to be carried out by the author
and perhaps later users. However, there remains a multitude of uses for this version of ANMAR. and
for future versions. in the fields of phonology. morphology. phonetics, and speech generation.

5.1 Improvements and Extensions

In the future. nmprovements might be sought in the areas of interface. hnguistic accuracy and
generality. and reversibility. As one can see from the many diagrammatic representations of various
aspects of this thesis, autosegmental phonology lends itself rather poorly to a text-based interface
and most likely rather well to a graphical one. The user might. for example. wish to specify rules
in the exact conventional notation rather than a text-hased representation. Thus. a user-interface
could allow the user to enter the segments in a tier and draw various lines to connect them. The
general tree structure of a language might be specified simply by drawing it. It would be fairly
straightforward to implement such an interface as the one described here. The user could then
choose to edit whichever representation best suits his or her present purpose.

Currently., many aspects and mechanics of autosegmental theory remain unsupported. For ex-
ample. several recent papers (Halle 1993, Kevser and Stevens 1993) make use of “pointers,” which
are directed from one class node to another in order to indicate by which articulator various features
such as continuancy are implemented'. The system contains some internal support for pointers. but
the mechanics of pointers has not been fully fleshed out within the system, and no specification mech-
anism yet exists for the user. In addition to pointers, the svstem does not support headed trees (as
used in stress assignient). feature-containing class nodes (Halle 1993). the notion of “markedness”
(there are sonie rules that do not “see” unmarked features. and some that do (Halle. personal com-
munication)), and a number of other theoretical and niechanical aspects of autosegmental phonology.
Many of these problems could be solved simply by allowing the user to specify the contents of newly
defined tiers. For example. if a class tier were allowed to contain binary valued segments. headed
trees would be possible with the current syvstemi. In addition. class tiers containing feature matrices
would be equivalent to feature-containing class nodes. Finally. markedness could be implemented
simply by providing a flag in feature segments specifving whether or not theyv are marked. as well
as one for rules to specify whether or not they ignore unmarked features.

Leaving aside the problem of unsupported aspects of autosegmental theory. there still exists a
number of inadequacies in the features supported by AMAR. For example. word and morpheme
boundaries are treated as individual segments. For a given word boundary. the system inserts one
segment for every tier in the chart. If the user wishes to delete a boundary. each tier’s segment
must be individually deleted. This program would be fairly simple to fix. by linking all segments

I'The concept of pointers originates in Sagey (1986).

V X, V

H

word

Figure 5-1: Digo End Run Rule

V CV

H

VXX

H word

Figure 5-2: Restatement of Digo End Run

corresponding to a given hboundary and deleting the entire group when the user indicates that the
boundary should be deleted. Another flaw of the current system lies in matching. In Digo. a Bantu
language of northeastern Tanzania. there is a rule of End Run (Kisseberth 1984). in which a high
tone reassociates to the final vowel of a word (see figure 3-1.) This rule requires the system to
match "Xy V]w.” interpreted as “zero or more skeletal segments. followed by a vowel at the end
of a word.” However. actually implementing this matching behavior is fairly difficult {since “Xg~
matches the final “V" as well). and the current system, upon encountering Cy. Vi. or Xg. simply
moves forward up to the first non-matching segment—for example. the current system could handle
“Xo]w". but not “Xy V]w". or “C'y V7. but not (', C.” Presumably numerous other problems
of this nature will be discovered and. it i1s to he hoped, eliminated during the use of the system.
It may be tentatively hvpothesized. however, that any example using this sort of matching might
better he recast to avoid it. For example. the rule of end run could be restated as in figure 5-2.
This restatement would further hypothesize—most likely reasonabiy—that end run is blocked before
vowels already connected to tones.

As of now. AMAR handles generation but not recognition. That is. the user may provide an
underlying representation and be returned the surface representation for a given utterance. but
the reverse Is not possible. Since rules in AMAR are symmetrical (each rule stores a “before”
and Tafter” representation of the chart. and application changes the chart from a “before™ state
to an “after” state), any rule whose application does not cause information loss could be reversed
simply by switching the “original™ and “replacement™ charts. In addition. one could provide rules
specifically marked only to apply during generation. or only during recognition. Thus. it would not
be too difficult to provide a system which could take its own surface output and recover the lexical
form. However. converting from the autosegmental notation to the type of notation in which AMAR
receives its input involves a great deal of information loss. For example. given a simple string of
the type AMAR outputs. the system would have to somehow guess whether two adjoining symbols

that are similar in some way are such accidentally or as a result of some assimilation process. This
problem could perhaps. however. be addressed by strict compliance with well-formedness conditions
such as the obligatory contour principle. which states, more or less. that ~At the nielodic level (i.e..
on noun-skeletal tiers), adjacent identical elements are prohibited” (McCarthy 1986). Thus. in the
example given before. the system would always assume that what appears in the output as two
segments with some similarity would actually be represented as two skeletal positions sharing some
portion of their information-—for example. the output form ~mb” would he presumed to share a
place node. since both are labial.

76

5.2 Possible Uses for the System

Regardless of the nuperfections of the current systemr. AMAR presents o number of possibilities
for applications in phonology. morphology. phioueties. and computerized speech. As stated i the
mtroduction. AMAR was designed 1o allow plionologists to model huguistic systems and check theyr
hypotheses against large bodies of data. Within this geperal framework. & phonologist attempting,.
for example. to work out aspeets of Universal Phonology might try to model as many languages as
possible with a sigle set of basic mechanies and a single tree structure. Using AMAR 1t beconmes
easy to check whether a theoretical change motivated by some particular language still makes the
right predictions for the languages previously studied - one simply updates the old specifications
and checks against the inputs and expected outputs already generated. Another use for the system
15 1n the areas of computational morphology. Since. as we have seen. AMAR can perform niost,
it not all. of the computations of which the leading computational morphology system. KIMMO.
ts capable. it could be used for the applications i which KIMMO s currently employed. adding
stmplicity, elegance. and an advanced capability for describing complex structures. Work 1o pho-
netics, another field touching closely upon phionology. often begins from an underlving phonological
representation. Thus, computational phoneticians could use AMAR as a back end to provide such
representations. Furthermore, with ouly minor modifications (such as allowing floating point values
in various tiers). AMAR could become a powerful mecliantsii for phoneties in its own right. For
example, the user might be able to specify and modify in soue way tone frequencies. segment dura-
tions, or any number of similar values. Additionally. many phounetic facts may be described in the
current version of ANAR (e.¢.. the Spanish examiple of section 4.3 1s generally said to be phonetic
rather than phonological.) Finally. since AMAR converts simple unilinear strings into cotplex tree
representations - representations containing detailed articulatory instructions - it might be possible
to set up speech generation systems in which one begins with simple text and uses AMAR to con-
vert the text into articulatory instructions. which would be fed into an articulation-based speech
generator such as that developed by Stevens (1992).

Appendix A

Full Grammar for Specification
File

The following is a complete description of the gramnmar for an AMAR language specification file.
Words in bold face represent non-terminal symbols. Any svimbol in non-bold courier font represents
a terminal symbol. any of which would be entered by the user in the form it appears here, except that
letters do not have to be in any particular case. The syinbol — represents a regular expression. i
which expressions in square brackets represent a choice (¢.g.. [A-Za-z] matches a single alphabetical
character. regardless of case.) An expression m square brackets in which the first symbol is a caret
matches any character except for the characters found after the caret. An asterisk indicates that
there may he zero or more of the previous expression. The symbol — represents a grammar rule,
In both grammar rules and regular expressions, the symbol | represents ~or.” Finally. in grammar
rules, and wol i regular expressions, large square brackets around an expression indicate that it
s optional. and a comma-separated list with ellipses periods (e.g.. “thing. thing. thing")
represents a list with one or more items. as would be represented in more standard grammar as:

list — list . item |
item

The grammar as shown here attempts to be readable to a humau. rather than to a computer. and
1s not an immediately parsable Backus-Naur Form grammar. However. with a minimum of labor it
could be converted into such. For a parsable grammar, the start symbol would be language.

identifier — ([A-Za-z] ([A-Za-2] | digit)*) | " [~"\t.+#\u]* "
number — digit [0-9]*

digit — [1-9]

language — Language' identifier: langspec

langspec — phonemespec tonespec [associates | [definitions]
[rulespec]

phonemespec — phonemelist method spec
phonemelist — Phonemes: [identifier, identifier, ..., identificer]
method — SpecMethod: CV | CV/Matrix | X/Matrix | CV/Tree | X/Tree .

spec — cvspec | evinatrixspec

xmatrixspec | evtreespec | xtreespec

INate that capitalization does not matter for terminal symbols.

cvspee — | vowels | [eonsonants |

evmatrixspec — [vowels | [cousonants | [features |
[evmatrixdefaults | [cvmatrixfullspecs |

xmatrixspec — [features | [xmatrixdefaults | [xmatrixfullspecs |

cvtreespec — [vowels | [consonants | [tree | | everecdefaults |
[evtreefullspecs |

xtreespec — [tree | [xtreedefaults | [xtreefullspecs |

vowels — Vowels: [identifier, identifier, ..., identifier | .
consonants — Consonants: [identifier, identifier, ..., identifier]
features — Features: [identifier, identifier, ..., identifie |

evimatrixdefanlts — Defaults: [cvmatrixdefault, cvmatrixdefault,
..., cvmatrixdefault | .

xmatrixdefaults — Defaults: [xmatrixdefault, xmatrixdefault, ...,
xmatrixdefault | .

cvtreedefaults — Defaults: [cvtreedefault, cvtreedefanlt, ...,
cvtreedefault | .

xtreedefaults — Defaults: [xtreedefault, xtreedefault, ...,
xtreedefavlt | .

cvmatrixfullspecs — FullSpecs: [evmatrixdefault, evimatrixdefault,
..., cevmatrixdefault | .

xmatrixfullspecs — FullSpecs: [xmatrixdefault, xmatrixdefault, ...,
xmatrixdefault | .

cvireefullspecs — FullSpecs: [cvtreedefault, cvtreedefault, ...,
cvtreedefault | .

xtreefullspecs — FullSpecs: [xtreedefault, xtreedefault, ...,
xtreedefault | .

cvimmatrixdefault — vowel -> matrix | consonant -> matrix |
xmatrixdefault
xmatrixdefault — identifier -> matrix | matrix -> matrix |

identifier —> identifier | identifier -> identifier matrix |
any -> matrix | any -> identifier

cvireedefault — vowel -> matrix | vowel -> segmentspec |
consonant -> matrix | consonant -> segmentspec |
xtreedefault

xtreedefault — identifier ~> segmentspec | identifier -> identifier |

identifier -> identifier matrix | any -> segmentspec |

any -> identifier | featureless identifier -> segmentspec |
vowel -> segmentspec | consonant -> segmentspec |
matrix -> segmentspec | identifier ~> matrix |

any -> mnatrix | matrix -> matrix

matrix — [feature, feature, ... featurel

Wil

segmentspee — segment {segspec) | segment{segspee identifier} |
segment|{segspec @ segmentspec, segmentspee, ..., segmentspect |
segment {segspec @ identifier @ segmentspee, segmentspec, ..,

segmentspec |

segspee — identifier | matrix | feature | number | (segspee) |
{segspec, segspec, ..., segspecl

tree — Tree {node, node, ..., node}

node — {identifier} | {identificr : identifier} |
{identifier : identifier : featuredef, featuredef, ..., featuredef}

featuredet — [identifier]

tonespec — [ConnectTones | nmntones maxspec [tonenames |
[tonereps |

numtones — NumberofTones: (number | 0).

maxspee — | maxtvspee | [maxvtspec]

maxtvspee — MaxTonesperVowel: | number | infinite] .
maxvtspee — MaxVowelsperTone: | number | infinite | .
tonenames —- ToneNames: [idewntifier, identifier, ..., identifier | .
tonereps — ToneRepresentations: [tonerep, tonerep, ..., tonerep]
tonevep — identifier : identifier / segspec segspec ... segspec |

identifier : / segspec

associates — [Associates: [assoc, assoc, assoc | .]

assoc — { segmentspec, segumentspec }

definitions — Definitions: [definition, definition, ..., definition | .
definition — Define identifier segmentspec |

Define identifier segmentspec

rulespec — Rules: [rule, rule, ..., rule]
rule — Rule identifier : [RtoL | [NoWordBounds | | NoMorphBounds]
[tierspec]| [conspec] [effectspec]
tierspec — Tiers: [tier, tier, ..., tier].
conspee¢ — Connections: [connection, connection, ..., connection]
effcctspee — Effects: [effect, effect, ..., effect .
tier — identificr: segspec segspec ... segspec
connection — segref -- segref
segref — segspee | segspee[number] | segspece[number identifier]
effect — segref -Z- segref | segref @@ segref | segref > identifier |

< segref identifier | segref -> [segref | _ [segref | | segref -> 0 |
segref -> segspec | segref ::-> segspee / [sogref] C [segref] |
0 -> segspee / [segref] _ [segref |

N

Appendix B

Examples Incompletely Specified
in the Text

This appendix lists. without explanation. all working examples incompletely specified iy the text.

B.1 Mende

Specification File:

Language Mende:
Phonemes: n, a, v, m, b, o.
SpecMethod: CV.

Vowels: a, o.
Consonants: n, v, m, b.

ConnectTones
TonelLevels: 2.

ToneReps: "a" : a /2, "a" : a /1, "a" : a /12, "s" : o/ 2, "d":
o/ 1, "83" : o/ 1 2.

Associates: {segment{T}, segment{V}}, {segaent{X}, segment{P}}.
Rules:

Rule "Tone Assimilation':
NoMorphBounds
Tiers:
tonal: 2 1,
skeletal: V CO V.

Connections:
vi1] -~ 2,
vi2] -- 1.

Effects:
vi2] :: 2,
v(2] -z- 1.

83

Rule "Rising to Low":

NoMorphBounds
Tiers:
tonal: 1 2,

skeletal: V CO V.
Connections:

vi1] -- 1,

vi1] -- 2,

vi2] -- 2.
Effects:

V(1] -Z- 2.

Sample Inputs and Outpurs:

Input Qutput
navo-+ma navo+ima
mba+ma mba+ma

B.2 Tagalog

Specification File:

Language Tagalog:
Phonemes: p, i, 1, n, t, a, h, k, u, m, N, "y", RE.
SpecMethod: CV/Tree.

Vowels: a, i, u.
Consonants: h, k, 1, m, n, "y", N, p, t, RE.

Tree {
{vroot : skeletal},
{croot : skeletal},
{stricture : croot : [latl},
{supralaryngeall : croot},
{supralaryngeal2 : vroot},
{softpalate : supralaryngeall : [nasall},
{placel : supralaryngeall},
{place2 : supralaryngeal2},
{labiall : placei},
{labial2 : place2},
{coronal : placel},
{dorsal2 : place2 : [highl, [backl},
{dorsall : placel}

}
Defaults:
vowel -> segment {vroot : segment{supralaryngeal? :

segment{place2}}},

consonant -> segment {croot : segment{stricture : segment{-lat}},
segment{supralaryngeali}},

84

vowel -> segment{place? :segment{labial2},
segment{dorsal2 :segment{-high},
segment{+back}}},

i1 -> [+high, -back],
u -> [+high],

t -> segment{supralaryngeall : segment{placel : segment{coronall}},
segment{softpalate : segment{-nasal}}},

1 ~> t [+lat],

n -> t [+nasall,

RE -> segment{supralaryngeall : segment{softpalate : segment{+nasall}}},

RE -> [+lat],
% just to distinguish it from h...

k -> segment{supralaryngeall : segment{placel : segment{dorsalil}},
segment{softpalate : segment{-nasal}}},

y -> k [+nasall,

p —> segment{supralaryngeall : segment{placel : segment{labiali}},
segment{softpalate : segment{-nasall}}},

m ~> p [+nasal],

N ~> RE [-lat].

ToneLevels: 0.

Rules:

Rule "Reduplication":

Tiers:
lat: +lat,
nasal: +nasal,
vroot: vroot,
skeletal: C "Im" "m[" C v co,
croot: croot.
Connections:

C[1] -- +nasal,
cf1] -- +lat,
cl[2] -- croot,

V -- vroot.
Effects:

“Im" -> 0,

*“m{" -> 0,

cl1] -> o,

croot ::-=>C/ V _,
vroot ::-> V / _ CO.

Rule "Coalescence":

Tiers:
nasal:+nasal "Im" "m[",
placei: "Im" "m{" placel,

~3)

skeletal: (C)
croot:croot

Connections:

¢[1] -- +nasal,

c[1] -- croot[1]

c(2] -- placel,

c[2] -- croot(2]
Effects:

u]mn um[n
*Im" "m[" croot.

"Im"[1, skeletal] -> O,
m[[1, skeletal]l -> 0,
cf{2] :: +nasal,

Cc[1] -Z- +nasal,

cf1] -> 0.

Rule "Infixation':
Tiers:
back:
high:
nasal:
vroot: vroot
skeletal: V'
croot:
Connections:
-back -- V[1],
+high -- V[1],
vroot[1] -- V[1],
croot{1] -- C[1],
+nasal -- C[1],
croot[2] -- c[2],
vroot[2] -- V[2].
Effects:
0 > i / vroot[2]
0 -> n / croot[2]

-back
+high

n::->C/ c[2] _,
i::=>vVv /cl2] _,

"Im"[1, skeletall
"m["[1, skeletall
v[l] -> O’
cf1] -> o.

u]mn
ll]mll

+nasal "Im"

n]mu
C u] mu

croot "lm"

-

-> 0,
- 0’

Samgle Inputs:
pili
% ’choose’

tahi
% ’take’

kuha
% ’sew’

RE+pili

RE+tahi

RE+kuha

(orresponding Qutputs:

C,

*m[",
'm{",
"m[",
um[u
llm[u
nm[ll

maN+pili

maN+tahi

maN+kuha

vroot,
C v,
croot.

maN+RE+pili

maN+RE+tahi

maN+RE+kuha

pili pipili mamili mamimili pinili pinipili

Il

in+pili

in+tahi

in+kuha

in+RE+pili

in+RE+tahi

in+RE+kuha

tahi tatahl manahl mananahi tinahi tinatahi
kuha kukuha maijuha mapuijuha kinuha kinukuha

B.3 Turkish

Language Turkish:

Phonemes: A, I, a, e, i, o, u, "u", "o", "1", p, b, m, £, v, t, 4, s, 2,

1’ r, S, €, "§"x j; Yy, k; g’ h.
SpecMethod: CV/Tree.

Vowels: A, I, a, e, i, o, u, "a", "o", "a".

Consonants: p, b, m, £, v, t, d, s, 2, n, 1, r, "¢", ¢, "s", j, vy, k, g, h.

Tree {
{root : skeletall},
{stricture : root : [cont], [lat], [son], [stril},
{laryngeal : root : [voicel},
{supralaryngeal : root},
{softpalate : supralaryngeal : [nasall},
{place : supralaryngeal},
{labial : place : [round]},
{coronal : place : [antl},
{dorsal : place : [high], [back]}

Defaults:
any -> segment{root : segment{stricture : segment{+son},
segment{+cont},
segment{-stri},
segment{-lat}},
segment{laryngeal : segment{voice}},
segment{supralaryngeal :
segment{softpalate : segment{-nasall}l},
segment{place}}},

vowel -> segment{place : segment{labial : segment{-round}},
segment{coronal : segment{-ant}},
segment{dorsal : segment{-back},
segment{-high}}},

a —> [+back],
A -> [back],
I -> [+high, back, round],
i -> [+high],

"g" ~> [+round],
o -> a [+round],
"i" ~> i [+round],
"1" ~> i [+back],
u > "i" [+back],

consonant -> [-son, -cont, -voice],

N

p -> segment{place : segment{labiall},
f > p [+cont],

m -> p {+nasal, +son],

b -> p [+voicel,

v -> b [+cont],

t -> segment{place : segment{coronal :
d -> t [+voice],

“¢" -> t [-ant, +stri],

¢ -> d [-ant, +stri],

n -> t [+nasal, +son],

z -> d [+cont],

s -> t [+cont],

"g" -> s [-ant],

1 -> d [+lat, +son, +cont],

r -> d [+son, +cont],

y -> i,

k -> segment{place : segment{dorsal}},
g -> k [+voice],

[+son] -> [+voice],
[-voice, +cont] -> [+stril.

ToneLevels: O.

Rules:

Rule "Iyor Deletion”:
Tiers:
root: A "Im” "m[" I yor,
skeletal: V "IJm" "m[" V C V C.

Connections:
A1) -~ Vv[1],
1[2] -- v([2],
y[3] -- cl1],
ol4] -- V[3],
r[5] -- cf2].

Effects:

A1 -> o,
v[1] -> o.

Rule "High Vowel Deletion™:
Tiers:
high: "Im" "m["+high,

skeletal: V "Im" "m[" V.
Connections:

v[{2] -- +high.
Effects:

v[2] -> 0.

Rule "Back spreading":

NoMorphBounds
Tiers:

"X

segment{+ant}}},

back: @back back,
skeletal: vV CO V.
Connections:
v{1] -- evack[1],
v[2] -- back[2].
Effects:
v({2] :: @back[1].

Rule "Round spreading”:

NoMorphBounds
Tiers:
round: Qround round,
high: +high,
skeletal: \'f co V.
Connections:

v({1] -- eround[i],

v[2] -- round[2],

V[2] -- +high.
Effects:

V[2] :: @round.

Rule "Morpheme Deletion 1":
Tiers:

skeletal: "Im".
Effects:

“In" -> 0.

Rule "Morpheme Deletion 2":

Tiers:

skeletal: "m[".
Effects:

um[n -> o

Sample Inputs:

% Sing. Plural. Genetive 1ipsg. Genetive 1ppl.
Y e e e —_— -
dig.......... dig+lAr.......... dig+Im........... dig+lAr+Im
% ’tooth’ ’teeth’ 'my tooth’ ‘my teeth’
V.. ev+lAr........... ev+Im............ ev+1lAr+Im
% ’house’ ‘houses’ ‘my house’ ’houses’
gin.......... gun+lAr.......... gin+Im........... glin+lAr+Im
% ’'day’ 'days’ 'my day’ 'my days’
g0zZ.......... goz+1lAr.......... goz+Im........... goz+1Ar+Im
% eye’ ‘eyes’ 'my eye’ ‘my eyes’
bag.......... bag+lAr.......... bag+Im........... bag+lAr+Im

% ’head’ ’heads’ 'my head’ 'my heads’

kiz.......... kiz+lAr.......... Kiz+#Im........... kiz+1lAr+Im
% 'girl’ 'girls’ ‘my girl’ 'my girls’
kol.......... kol+lAr.......... kol+Im........... kol+1lAr+Im
% ’arm’ *arms’ ‘my arm’ ‘my arms’
mum. mum+lAr.......... mum+Im........... mun+1Ar+Im
% ’candle’ ‘candles’ 'my candle’ 'my candles’
masa+Im

ilag+lA+Iyor

Corresponding Qutputs:

dig
digler
digim
diglerim
ev

evler
evim
evlerim
gin
ginler
ginum
glinlerim
goz
gozler
gozim
gozlerim
bag
baglar
bagim
baglarim
kiz
kizlar
kizim
kizlarim
kr1l
kollar
kolum
kollarim
mum
mumlar
mumum
mumlarim
masam
ilaglaiyor

90

Appendix C

Selected Code

The following represents the subset of ANMAR code most clearly inplementing autosegmental phonol-
ogy. All procedures explicitly referred to 1 the text may be found here.

C.1 Objects
J« TONES.H +/

#ifndef __tonex
#define __tones |
#include <fstream.h>
#include <libc.h>
#include "strings.h”
#include "Pix.h”
#include <stdio.h>

#define TRUE (1)
#define FALSE (0)
#define STE StrTableEntry

class Rule:

class Tier:

class Chart:

class WordBoundary:
class SegmentSet:

class FeatureMatrix:

class X:

class SegList:

class RuleList:

class ("SMap:

class ConnectableSegment:
class Segment;

extern class StrTableEntry:
extern class StrStack:
extern class Map:

extern void make_tier(chars):

extern StrTableEntryvs create_topmost_classnode(StrTablebEntryx):

extern StrTableEntrys create_empty_classnode(StrTableEntevs, Str'lableEntrvs):
extern STE# create_filled_classnode{STE*. STE*. STEx*):

extern void enter_{ree_associates{STEx. STFEx*):

extern void remove_free_associates(STEx, STEx):

91

extern void create_ruleiS1TEsy:

extern void ~ort_tiers{)

extern void make_rule_ticri ST E+):

extern void enter_seg_in_tierd ST Es):

extern mainlint. chiar+s):

extern void check sandhi):

extern void mavbe_add_tonal_and_phonemic_tiersi):

extern void enmer_tone_rep(ST« STEs STE#):

extern Strlablebntryvs next_vowel(Pixd);

extern Strlablebntrvs uext_consonant({Pix-)

extern void xifv_phonemesg):

extern void fill_empty_classnode{Str'Tablebntrys, Strfablebutry«):
extern void enterseg_in_tier{StrTablebutey «):

extern void break_connection(STEx. STE#):

extern Segments fewest inferiors{Seglistxj:

extern int applvi Rule& . Charn&):

extern int ste_matches(STE*. X#):

extern void error(const chars s1. const chars =2 = "");

extern ConnectableSegmentx convert{Seglist+. Pix):

extern Pix in_map(Segment+. Map+. int. int&):

extern void spread_right{StrTableEntryvs segref, StrTablebntrvs tr):
extern void spread left{StrTableEntrvs segref. Str'TableEntrys tr):
extern void duplicate_connections{Segment+. Segments, Segment+, Segment)

int wordend:
int morphend:
int demo:

int ks:

class Rule {
Tier xxoriginal. **replacement:
int num_tiers:
iut no_worddivs:
int no_morphdivs;
int rtol:
void nit() { name = 0: no_morphdivs=no_worddivs=i~_sandhi=rtol = FALSE: }
int sz
public:
Rule{int size):
~Rule() { free((char *)original): free({char «)replacement). }
inline void operator delete{void* vd):
inline voids* operator new(size_t):

chars+ name:
int is_sandhi:

indine void set_name({char+ nm):

void set_no_worddivs() { no-worddivs = TRUE: issandhi = TRUE: }
void set_no_morphdivs() { no_morphdivs = TRUE: }

void set_rtol() { rtol = TRUE. }

int sandhi():

int rtol_sandhi{):

void application{Chart&. Pixs, int«):

int adjust _connections(ConnectableSegments. ConnectableSegment x,
Map#*. Pix, Chart&. int. ints):

Pix match{Tier&. Tier++. int. int):

int unconnected(int):

void connect_map(Map+ map):

92

void find_closest_usable _rule _segmentyint)
void sort_tiers{)

friend int applyv(Ruled rule. Chartd charty:

friend vold create_ruley> 1)

friend vold sort_tiers{):

fricnd void make_rule _tier(STEs):

friend void enter_seg_in_tieriS1 L)

friend void break_conuection(Str'TableFEntevs, Str'fablebntry s i
friend void spread_rightistrlableEntry* segref. Strlablebutrys 1r):
friend void spread_left(StrTableEntrys segref. Str'lablebntey « tr):

vold make_connection{STE+. ST+

void join{STE«. STE*):

void metathesize(STEs. STE« S TE«;.

void metathesize_after(STEF+, STE«#):

void metathesize_before(STE+. STE*):

void replace(STE». STE«):

void del(STE#):

void tnsert_joined_before(STE«, STEx, STEs):
void insert_joined_after(STEx. STE+. STE=*):
void insert_before(STE«. STE#:

void insert _after, S TE«. STE#*):

void print(int):

}:

class Rulelink {

friend class Rulelist:
private:

Rulex rule:

RuleLink* pre:
RuleLinkx suc:

RuleLink({Rule& r) { rule = new Rule(r): }
~RuleLink() { if (snc) suc—protect(): delete snc: } // delete links resively

void protect(} { rule = NULL: }
inline void operator delete{ voids vd):
inline void#* operator new(size_t):

}:

class Rulelist {
RuleLink+ head:
RulelLink+ tail:
int sz:

void init() { sz = 0: head = 0: tail = 0:}
public:
RuleList() { init(): }
RuleList(const RuleList&):
~RuleList(} { if (head) head—protect(): delete head: }

void operator delete(voidx vd) { ::free({char «)vd): }
inline void« operator new(size_t});

RuleList\- operator= {const RuleList&):

Pix hrst{) const { return i Pixitheady: |

void next(Pix& prceonst { p = ip == " v iPixpciRalebink < ipr—suer)
void prev(Pix& p) const { p = p == 0} 7 v (P RuleLink «jpyr—prea d
Ruled uperatorfficonst Pix p) const { veturn s Rulebink »ppy—rule: }

int leugthy) const { return ~/: }

int conpty () const { return thead == vj: |}

void prepend Ruled):

void append(Ruled)

void deli Pix&):

Pix ms_before(Pix. Rule&):

Pix ins_afreri Pix. Ruled):

// ARRKFE R KRR KT R F R R F AR R R SRR AR EF R A AR KA R AR R KA
// Map for dealing with Freely Associating Segments
// FREK AR R AR R KRR R AR AR KRR KRR KRR R R R KRk Rk bk AR R AT AR

class CSMap:

class C'SLink {
friend class CSMap:

private:
ConnectableSegment* kev:
ConnectableSegment+ value:

CSLinks pre:
CSLink« suc:

CSLink(ConnectableSegments k. ConnectableSegments vy { kev = ki value = v: }
~CSLink() { delete suc: } // delete alf links recursively

void operator delete{voids vd) { ::freefichar)vd): }

void protect{) { key = NULL: value = NULL: }

mline voidx operator new(size_t):;

class ('SMap {
C'SLink+ head:
CSLink# tail:
int sz:

void init{) { sz = 0 head = 0: taill = 0: }

public:
CSMap() { nit(): }
C'SMap(const CSMap&):
~CSMap() { delete head: } // delete all links recursively
void operator delete(void* vd) { :free((char x)vd}: }
mline voidx operator new{size_t):

CSMap& operator= (const ("SMapd-):

void enter(ConnectableSegments k. ConnectableSegments vj:

void remove(ConnectableSegment* k. ConnectableSegments v):
void enter_aux{ConnectableSegments k. ConnectableSegmaonts v):
void remove_aux{ConnectableSegments k. ConnectableSegments v):
SegmentSets associates(ConnectableSegmentx k):

int freely_assoc{Segment* k. Segments v):

int size() const { return sz: }

01

[Esekvrstnns/
[+ End Map */

JESTITTT TSIy

class Chant {
Tier *xtier: // lnitially null. then an array of tiers,
int num_ticrs:
RuleList rules:
CSMap free_associates;
ConnectableSegment stree:
int s/;
inline void init():
public:
Chart() { init(): }
~Charti) { }
void operator delete(voids vd) { :free({char =)vd): }
inline voids operator new{size_t):

int max_tones_per_vowel:
int max_vowels_per_tone:
int sandhi_rules_exist:

int rtol_sandhi.rules_exist:
int num_tones:

int no_connect:

chars name:

inline void set_name(char* nm):
void apply_assoc_convention(Pix. Tier&. Tier&):
void assoc_convention(int* tier_index. int num_tiers);

Tier&: operator{j(const int i) const { return =tier[ij: }
int empty():
Tier& skeletal() { return *tier{0]: }

void add_tier{Tier& tier):

void add_skeletal_seg((C‘onnectableSegment+):
void read_word(istream&: . StrStacks}:

void print_and_delete_word():

void print_and_delete_phrase():

void main_loop(istream&:):
ConnectableSegmentx tier_in_tree(Tier&):

inline int freelv_associate(Segment* s1. Segment* s2):
int is_tier_superior(Tier&. Tier&:):
int is_superior{ ConnectableSegmentx. ConnectableSegmentx):

friend int applv(Rule& rule. Chart& chart):

friend StrTableEntryv create_topmost_classnode(StrTableEntrvs):
friend STEx create_empty _classnode(STEx, STEx*):
friend STE# create_filled_classnode(STEx. STE+. STEx):
friend void enter_free_associates(STEx. STEx*):

friend void remove_free_associates(STE+. STEx*}):

friend main{int. char+s):

friend int ste.matches(STE*, Xx):

friend void check_sandhi():

friend void maybe_add_tonal_and_phonemic_tiers():
friend void enter_tone_rep{STEx. STEx. STEx#):

class Segment |
static int class_unique_num:
int wl_num:
void init(} { tvp = S wdonum = class_unique_num++: tier = 8 modihed = n:)
public:
enum { S=0, CS=1.55=2. XN=3. WE=1. WEB=5. MB=¢. ME=7. FM=s. C=v. \'=]0.
GT=11LTN=12, GP=13. P=11, Co=15. Vo=16. Xo=17. ON=15. F=19 } wvp:
Tier *tier:

int moditied:

Segment() { wmit{): }
Segment{Segment* seg) { init(): ter = seg—tier: }
virtual ~Segment{) { }

inline void operator delete{voids* vd):
inline void* operator new(size_t):

// Equality Tests:

virtual Pix matches(Pix. Tier& . Tiers*. int) { return (Pix)(-1): }

int operator==(Segment& segment) { return (segment.id.num == id_num): }
int operator#(Segment& segment) { return (segment.id_num # id_num): }
virtual int is_zero() { return FALSE: } // I~ a €0 type thing.

virtual Pix zeromatches(Pix. Tier&, Tier&:) { abort(): return NULL: }

int 1s_in_tier(Tier&-):
int is_actually_in_tier{Tier&):

/] Connection related

virtual int is_connectable() { return FALSE: }

virtual int inert() { return TRUE: }

virtual int connects_directly_to_tier(Tier&} { return FALSE: }
virtual int connects_directly_to(Segmentx) { return FALSE: }
virtual int connects_to_tier(Tier&) { return FALSE: }

virtual int unconnected(int«. int) { return TRUE: }

virtual void detach() { }

virtual void safe_detach() { }

int connect{Segment*} { abort(}: }

// Spreading:
virtual int spreads() { return FALSE: }

// Copying:

virtual Segment* copyv(} { return (new Segment{this)): }

virtual Segment* surface_copy() { return {new Segment(this)): }
virtual void csub(Segmentx seg) { seg—tier = tier; }

void make_identical_to(Segment* seg) { id.num = seg—id_num; }

friend void enter_seg_in_tier(StrTableEntry*):
friend main(int. chars+):

virtual void print{int pos = 0) { }
void print_id() { cerr < id_pum: }

virtual void print_aux(int pos = 0) { }

virtual int type_eg(Segment*) { return FALSE: }
virtual int eqv{Segment#) { return FALSE: }

96

“

int i~_a_morphemeboundary() { return (typ == MB |f tvp == ME) }

int is_a_wordboundary() { return (tvp == WB {{ tvp == W }

int is_a_boundary(} { returniis_a-wordboundary()|[is_a_morphemeboundarvi)):
int is_end() { return (1vp == ME || tvp == WE): }

int is_begin(} { return (tvp == MB || tvp == WHBj: }

class CounectableSegment : public Segment |
ConnectableNSegment ssinferior:
int infsz: // Size of #xinferior - starts out as five.
int numdinferiors:
ConnectableSegment *xsuperior:
int supsz: // Size of xssuperior - starts out as 1.
int num_superiors:
int spreads_left;
int spreads_right:
int sinferior_to_spread.along: // first el is the number of items,
int xsuperior_toxpread_along: // first el is the number of items.
inline void init(int inf. int sup):

public:
ConnectableSegment() { init(5.1): }
ConnectableSegment{const (onnectableSegment& cx) {

init{cs.infsz. cs.supsz):
num_inferiors = cs.numnferiors:
NUIM_SUPETIOrs = C$.NUIN_SUPETIors:

}

inline virtual ~ConnectableSegment();

int is_exact: // Only applies to segments in rules -- if true. the segment
// needs to be matched exactly.

int is_inert: // If true, the segment is ignored by the Association Conv.

int inert() { return is_inert: }

// Equality Tests:

Pix matches(Pix. Tier&. Tiers*. int):

int eq(ConnectableSegment*, Tierss+. int):

int ey(Segmentx. Tiersx, int) { return FALSE: }
int equal{ConnectableSegment*. Tiersx, int):

int delete_best_match(SegList*, Tiers#. int):
virtual int type_eq(Segment* s):

virtual int eav(Segment* s):

// Copying

void copy_aux(ConnectableSegment+. Map#. int. int+. Chart&. Tiers«):
virtual Segment* copy():

virtual Segment#* surface_copy():

void copy_sub{('onnectableSegmentx seg):

void csub(Segmentx seg):

// Relate to connections:

SegList xtopmost_superiors{):

int is_connectable() { return TRUE: }

int connects_directly_to_tier(Tier&):

int connects_to_tier{ Tier&:):

int unconnected(Tier«#.int):

int connect{ConnectableSegment* cs):

void disconnect(ConnectableSegmentx cs); // if seg & s are def. counected.
void safe_detach{}): // use 10 completely disconnect a seg. but leave usable.
void detach{j: // use before destroving a segment.,

97

void delete_fully(Maps. int. Chart& int«):

void break_connection{ConuectableSegments): // call this one.
Seglist *connects_to(ConuectableSegment+): // Note - tests by eqv,
int connects_directly _tofSegments seg):

int not_too_many_vowels():

int not_too_many _tones():

friend void
Rule::adjust_connections{ConnectableSegment«. ConnectableSegment s,
Mapx. Pix. Chart& | int. intx);
void ano_duplicate_features(ConnectableSegment+. Map+. int. Chann&.ints);
friend void Tier:metathesize(Pix& . Pix, Pix. int. Tiers+. Mapx):

SegList+ inferiors():
SegListx superiors{):
SegList# direct _superiors{)
void sort(}:

Tier *xxtiers_in{int& num_ters):
Tier xxadd_tiees Tier+* tlist, int& num_tiers, int& sz):

// Relates to spreading:
int spreads() { return (spreads_left || spreads_right): }
void spread(Pix, Tier&, Chart&);

friend void Chart::applv_assoc_convention(Pix. Tier&:. Tier&)
friend Scgmentx fewest_inferiors(SegListx):

// Parsing friends!

friend StrTableEntrys next_vowel(Pix&):

friend StrTableEntryx next_consonant(Pix&):

friend void fill_empty_classnode{Str'TableEntry+, StrTableEntrvs):
friend void break_connection(StrTableEntrv*, StrTableEntrys):
friend void Rule::replace(StrTableEntrv+. StrTableEntrys):

friend void enter_tone_rep(STE+. STE+. STEx*):

friend void Chart::read_word(istream& infile. StrStack#):

friend int ste_matches(STE*. Xx);

friend void Rule::connect_map(Map* map):

friend void duplicate_connections{Segment*. Segment*, Segment*, Segmentx):
friend void xifv_phonemes{):

int make_spread(Tiers):
void set_right_spread():
void set_left_spread():

virtual void print(int pos = 0) { }:
void print_aux(int):

class Seglist:

class SegLink {
friend class SeglList:

private:

Segment* seg:

SegLinks pre:
SegLinks suc:

98

SegLink{Segments) { seg = s }
~Seglink() {if (sue) suc—protecti): delete suct } /7 delete links resively

void protecti) { seg = NULL:
mline void operator delete(void xvd):
dine voids operator newisize_t):

v

class Seglist |
segLink* head:
Seglink* tail:
int sz;

void init{) { sz = 0: head = 0: tall = u:}
public:
SegList() { mit(): }
~SegList() { if (head) head—proteci(): delete head: }

SeglList{const SegList&):
SegList& operator= (const SegList&-j:

void operator delete(voids+ vd) { free((char *)vd}: }
inline voldx operator new(size_t):

Pix first() const { return (Pix)(head): }

Pix last{) const { return (Pix)(tail): }

void next(Pix& p) const { p = (p == 0) 7 0: (Pix)}(({SegLink *)p)—=uc): }
void prev(Pix& pj const { p = (p == 0) ? 0 : (Pix){{{SegLink +)p}—pre): }
inline Segmentx operator{]{const Pix p) const:

void insert_at{const Pix p. Scgment* seg) { {(SegLink *)p)—reg = seg: }
int length() const { return sz: }

int empty() const { return (head == 0): }

void prepend(Segment=):

Pix append(Segments):

void join{SegList* sl):

void del(Pix&):

Pix ins_before(Pix. Segmentx):

Pix ins._after(Pix. Segmentx):

b

class Tier {

SegList segments:

static int class_unique_num:

int id_num:

void init{) { name = NULL: current = NULL: id_num = class_unique_num-++: }
public:

Tier() { init{): }

Tier(char* nm) { init{): set_name(nm); }

Tier{const Tier& t):

~Tier() { }

void operator delete{voids vd) { ::frec({char *)vd): }
inline void* operator new(size_t):

chars name:
Pix current:

inline void set_name(char+ nm):
void make_identical_to(Tier *tr) { id_num = tr—id_num: }

99

Tierk operator= (econst Tierd 1) { segments = tsegments: return sthis: |

int operator==iconst Tier& tier) const { return (tierad_num == id_nu): |}
int operator#(coust Tier& tier) const | return (tier.dd_num # d_num): }
int name_eq{const Tier& tier) const { return (ticr.ad_num == id_num): }

PPix hrst{) const { return (segments{irst{}i- }

Pix last{) const { return (segmentslasty)i: }

void next{Pix& p) const { segments.next{p): }

void previPix& p) const { segments.previp): }

void del(Pix& loc):

Pix insert{ Pix loc. Segments seg):

Pix ins_after(Pix loc. Segment seg):

Pix append(Segment* seg):

void prepend(Segmentx seg) { seg—tier = this: segments.prepend(seg): }
Segmentx operator[] (Pix p) const { return segments[p]: }
void insert_at(conust Pix p. Segment+ seg):

int length() const { return (segmentslength()): }

int is_applicable(Tiers*. int):

Pix preceding(Segments s1. Segments s2);

int precedes{Segments s1. Segment s2):

Pix first_to_tier{ Tier& . Pix. Pix. Tier&. CounectableSegment*. Tiers=.
int. int. int):

void metathesize(Pix& . Pix. Pix. int. Tierxx, Map=):

Pix find{Segmentx):

friend void make_tier{chars):
friend void enter_seg_in_tier{ STEx):
friend int Segment:is_in_tier{ Tier&):
friend main(int. charxx):

}:

class SegmentSet : public ConnectableSegment {
SegList segments:
public:
SegmentSet({) { typ = S5: }
SegmentSet{const SegmentSetd: ss) : segments{ss.segments} { tvp = S5; }
~SegmentSet() { }
void operator delete(void xvd):

void insert(Segment*):

void remove(Segmentx):

Pix first() { return segments.first{): }

void next(Pix& 1) { segments.next(i): }

int empty() { return segments.empty(): }

int length{) { return segments.length(): }
Segment operator[] (Pix p) { return segments[p]: }

Segment* copy(}):
Segment* surface_copy():

int eqv(Segments* sj:

int type_eq(Segment* s) { return {(~—typ == S5): }
}:
class X : public ConnectableSegment {

public:
X0 {1vp = XX: }

100

NXtconst X&y { tvp = XX: |}

virtual inut eqviSegments s);
vittual int (vpe_eq(Segment s s):

virtual Segments copyt) { N #x = new N:copyosubixy: return x: |}
virtual Segment* surface_copy() § Nx x = new N esubfx): return x: }
void print{int}:

}:

class Consonant: public N {

public:
Consonant() { tap =1 }
Consonant{const ¢ ousonant&) { tvp = ¢ }
int eqv(Segmentx p) { return (p—typ == ') }
int tvpe_egiSegment* p) { return (p—tvp ==). }
Segment* copy() { Consonant ¢ = new Consonant: copy_sub{c); return «: }
Segment* surface_copv() { Consonant #¢ = new Consonant: csubic): return c: }

}:

class Vowel: public X {
public:
Vowel() { typ = V2 }
Vowel{const Vowel&) { tvp = Vi }

int eqv(Segment* p) { return (p—tvp == \'): }
int tyvpe_eq(Segmentx p) { return (p—tyvp == V) }

Segmentx copv() { Vowel v = new Vowel: copy_sub{v}): return v: }
Segment* surface_copy() { Vowel *v = new Vowel: csub(v): return v: }

}:

class GenericTone : public ConnectableSegment {
public:
GenericTone() { tvp = GT:)
GenericTone(const GenericTone&) { tvp = GT: }
virtual ~GenericTone() { }

virtual int eqv(Segmentx p) { return (p—typ == GT || p—typ == TN): }
virtual int type_eq{Segmentx* p) { return (p—tvp == GT || p—tvp == TN}): }

virtnal Segment* copv():
virtual Segments* surface_copy():
virtual void print(int pos =) { }

}:

class Tone: public GenericTone {

public:
Tone(int 1) : level(l) { tvp = TN: }
Tone{const Tone&: t} : level(t.level) { typ = TN: }
virtual ~Tone() { }

int level:

int eqv(Segment* t) { return (t—tvp == TN L& ((Tone *)t)—level == level): }
int tvpe_eq(Segment+ pj { return (p—typ == TN): }

Segment* copv() { Tone xt = new Tone(level): copy_sub(t): return t; }

Segment+ surface.copy() { Tone *t = new Tone(level): csub(t): return t: }

void print(int pos =0) { cerr € level € "\n": print_aux(pos): }

101

class GenericPhoneme @ public ConnectableSegment {
public:

GenericPhoneme() { tvp = GP: }

virtual ~GenericPhonemei { tvp = GP:)

virtual int eqviSegments gp:
virtual int tvpe_eqi{Segmentx gp):
virtual Segment* copyi:

virtual Segments surface_copyvi():
virtual void print(int pos=0j { }

}:

class Phonemic : public GenericPhoneme {
chay srepresentation:
void init{) { representation = NULL: typ = Pt }
public:
Phonemic() { init(): }
Phonemic{char *c) { init(): set_repic): }
Phonemic(const Phonemic& p) { init(): set_rep(p.representation): }
virtual ~Phonemict) { }

inline void set_repichars rep):

int eqv(Segment* p):

int type_eq(Segmentx p) { return (p—tyvp == P}): }

virtual Segment* copy(}:

virtual Segment#* surface_copy():

void print(int pos=0) { cerr € representation < "\n": print_aux{posi: }

}:

class WordBegin : public Segment { // w[
public:
WordBegin() { typ = WB: }
WordBegin(const WordBegin& wb) { tier = wh.tier: typ = WB: }
Pix matches(Pix seg. Tier& tier. Tier *+applicable_tier. int n):
int tyvpe_eq{Segment* wb) { return (wb—tyvp == WB): }
Segment* copyv() { return (new VWordBegin(sthis)): }
Segment+ surface_copy({) { return (new WordBegin(+this}): }
void print(int pos=0)} { if (wordend) cout « " ": wordend = FALSE: }

}

class WordEnd : public Segment { // Jw
public:
WordEnd() { tvp = WE: }
WordEnd(const WordEnd& we) { tier = we. tier: tvp = WE: }
Pix matches(Pix seg. Tier& tier. Tier #xapplicable_tier. int n);
int type_eq(Segment* we) { return (we—tvp == WE): }
Segment* copy{) { return (new WordEnd(*this)): }
Segment* surface_copyv() { return (new WordEnd(*this)): }
void print{int pos=0) { wordend = TRUE: morphend = FALSE: }

}:

class MorphemeBegin : public Segment { // m]
public:
MorphemeBegin() { tvp = MB: }
MorphemeBegin{const MorphemeBegink: mb) { tier = wb.tier: typ = MB: }
Pix matches(Pix seg. Tier& tier. Tier sxapplicable_tier. int n);
int type_eq(Segmentx mb) { return (mb—typ == MB): }
Segmentx* copy() { return (new MorphemeBegin(+this)): }
Segment* surface_copy() { return (new MorphemeBegin(+this)): }

102

void print{int pos=ty { if tmorphend) cout < "+ morphend = FALSE: |

}:

class Morphemelind : public Segment { // Jm
public:
Morphemebud(y { typ = ME: }
Morphemebndiconst Morphemebndd me) { tier = metier: typ = ME: }
Pix matches(Pix ~eg. Tier& tier. Tier sxapplicable_tier. int w):
int tvpe_eqSegments =) { return (~—typ == Mk} |}
Segments copvi) { return (new Morphemebndi«thisy): |
Segment* surface_copy() { return (new Morphemebnd(*this)): }
void print(int pos=0) { morphend = TRUE: }

}:

class C_0 : public Segment {
(‘onsonant cons:
public:
Caop {p=Co}
C_O(const CO& i) : constel.cons) { tier = cO.tier: tvp = C'i:)
int is_zero() { return TRUEL: }
Pix matches(Pix. Tier&, Tiersx. int) { abort(): return NULL: }
Pix zeromatches{Pix. Tier&. Tier&):
Segment copy() { return (new C'_0¢+this)j: }
Segmentx surface_copyv{) { return (new C_0(xthis)): }
int type_eq{Segment* =) { return (s—typ == ('0): }

}:

class V'_0 : public Segment {
Vowel vow:
public:
Vo) { typ = Vo)
V_0(const V_0& v} : vow(vO.vow) { tier = vihtier: tvp = \'0: }
int is_zero() { return TRUE: }
Pix matches(Pix. Tier&. Tier>*. int) { abort{): return NULL: }
Pix zeromatches(Pix. Tier&. Tier&):
Segment xcopy() { return (new V_0(xthis)): }
Segment *surface_copyv() { return (new _i{*this)): }
int tyvpe_eq(Segments* =) { return (s—typ == Vo) }

}:

class X_0 : public Segment {
X x:
public:
Xoo() { tvp = Xo: }
Nobfeonst X_0& xB) : x{x0.x) { tier = x0.tier: tvp = X0: }
int is_zero() { return TRUE: }
Pix matches{Pix. Tier&. Tier«*. int) { abort(): return NULL: }
Pix zeromatches(Pix. Tier&. Tier&):
Segmentx copy() { return (new X_0(*this)): }
Segment* surface_copy() { return (new X_0(xthis)): }
int type_eq(Segment* «) { return (s—typ == X0): }
|8
// The program should replace occurances of U4, ete. with € C0, ete.
J AR AR A KA KRR A AR A KAk [

[+ %/

[* Features! x/

[+

103

/*#‘**‘tttt"#‘*4#44‘**t*tt$‘ttttO‘ttta{t&‘j

class ClassNode © public GenericPhoneme |
chars name:
void init(} { name = NULL: tvp = ONDmwagoraniealator = NVLL: |
ClassNodes major_articulator: /7 Major articulator for ks mods
public:
ClassNode() { it y: }
ClassNodetconst ClassNode& cny { initg) sel_namel cnname): ter = oo tier:
ClassNodefehars o) { initii: setinamen): |}
~ClassNode() { }

line void set_nameichars nm):

int eqviSegments cu):

int type_eqtSegments on) { return fen—typ == N} |}
Segment s copy():

Segment* surface_copy():

void print(int}):

class Feature:

class FeatureMatrix : public GenericPhoneme {
Feature **feature:
int num_features;
int sz:

public:
FeatureMatrix():
FeatureMatrix{const FeatureMatrix& fin):
~FeatureMatrix{) { free((char =)feature): }
inline void operator delete{voids* vd):

void add_feature(Featurex [):

int eqv(Segments* <);

int type_eq(Segment* fm) { return (fm—typ == FM): }
Segment* copyv():

Segment* surface_copy():

void add_features_to_tree_seg(Segmentx):

void copy_features{Featui ‘Matrix+):

friend STE#* create_filled_classpode(STE«, STE*. STE«):
void print(int):

class Feature : public GenericPhoneme {
friend class FeatureMatrix:
chars name:
void init{} { name = NULL: tvp = F: }
int value: // -1 = -. 0 = unspecified. +1 = +. 2 = alpha
public:
Feature{char* nm. int val=0) { init{); set_name{nm): value = val: }
Feature(const Feature& [):
virtual ~Feature() { }

inline void set_name{chars nm):

int eqv(Segmentx f):

int tvpe_eq(Segment* f) { return ({—typ == ['}: }

int name_eq(Features f) { return (strcmp(name. f—name) == 0): }
Segment* copv():

104

Segment s surface_copyy)
\ void printiint:

S Inhines:
/7 Dedete vperators

whune void Segment - perator deletcivoids vdy
Segment es =~ _ment oonvd:
~—tier =
“frectichar onvdy:

inline void Seglhinkooperator deletegvoid svdy |
seglink e = (>eglink svd:

s—seg =)

streettchar «pvdy:

inline void RuleLink.:operator deleteivoids vy |
RuleLink #r = (Rulelbink «ivd:
r—rule = 0:
sfree{(char sjvd):

wline void Feature Matrix::operator deleteivoids vd) |
FeatureMatrix «fm = (FeatureMatrix «)vd:
sfree({char «yfm—fcature):
cfree((char »)vd):

// new operators:

inline voids« Rule:operator new{size_t size) |
voidx* ptr = malloc(size):
return ptr:

intine void+ RuleLink::operator new(size_1 size) {
voids ptr = mallocisize):
return ptr:

}

inline void* RuleList:operator new{size_t size) |
void* ptr = mallocisize):
return ptr:

inline void+ C'SLink::operator new(size_t size} {
void* ptr = malloc{size):
return ptr:

inline voids* CSMap:operator new(sizet size) |
void* ptr = ::malloc(size):
return ptr:

105

mdine voids Chartoperator newisize t size) |
voids ptr = smallocgsize)
return ptr.

inhne voids Seginent coperator newisize 1 size |
voides ptr = smallocisize)
return ptr:

idine voide Seebink coporator newisizet sivey |

voide ptr = cmallocisizey
return ptr:

wline voidy Seglistoperator new(sizet sizey |
voids ptr = mallo (size)
return ptr:

mline void« lierzoperator newisize 2t sizes {
voids pa = Smalloc(size:
return ptr:

}

// Constructors:

mhue Rules:Ruletint size=10)

{
TR
7 = N7¢
original = (Der ex)ymallociss * sizeof('Tier +)):
replacement = (Tier s+)malloctsz » sizeof(Tier +)):
num_tiers = 4

mline TiersTiertconst Tierd t) @ segments(t.segments) {
mit{): set_name(t.namel: id_num = class_unigue_num+4+:

inline Feature:Feature{const Featurel f) {
init{): set_name(f.name): valne = fvalne: tter = ftier:

intine FeatureMatrix::FeatureNMatrixt) {
sz = 10 num_features = 0:
feature = {Feature s+)imalloc(sz+sizeof{ Feature %)) tvp = FM:

inline FeatureMatrix::FeatnreMatrix{const FeatureMatrixd fm) {
int sz = fm.num_features:
feature = (Feature x*)malloc(sz*sizeof(Feature x)):
for (int i = 0: i<sz: 14+4)
featurefi] = fm.featurefi}:
num_features = sz:
tvp = FM:
'

// destructors

106

inline ConnectableSegment::~ConnectableSegment() {
free((char s hinferior):
free({char *)superior):
frec((char » hinferior_to_spread__along).
free({ehar *)superior_tospread.along):

// Set name

inline void Tier:set_name{char* nm) {
name = nm:

inline void Rule:set_name(chars nm) {
name = nm;:

inline void Chart::set_name(chars nm) {
name = nm:

inline void ClassNode:set_name{charx nmj {
name = nm:

inline void Feature::set_name(chars nm) {
name = nm:

/] copy

inline Segmentx ConnectableSegment::copy() {
ConnectableSegment *copy = new ConnectableSegment:
copy _sub{copy};
return copy:

}

inline Segment+ ConnectableSegment::surface.copy() {
C'onnectableSegment xcopy = new ConnectableSegment:
csub(copy):
refurn copy:

}

inline Segmentx SegmentSet::copy() {
SegmetSet xss = new SegmentSet:
for (Pix p = first(): p # NULL: next(p))
ss—insert{operator{}(p}):
copy _sub(ss):
return ss:

inline Segmentx SegmentSet::surface_copy() {
SegmentSet #ss = new SegmentSct:
for (Pix p = first(): p # NULL: next(p))
ss—insert{operator[}(p)):
csub(ss):
return ss;

107

_»

infine Segmentx CGeneric’lonescopy () {
Genericlone xgt = new Generic lone: copyosubigty: return gt:

!

iline Segmentx GenericPhoneme:copy() {
GenericPhoneme sgp = new GenericPhoneme: copy_snb{gp): return gp:

}

inline Segmentx Phonemic::copyi() |
Phonemic +p = ne Phonemic(representation}: copy _sub{p): return p:

}

inline Segment* (lassNodecopy() {
ClassNode x¢ = new ClassNode{name): copy_sub{c): return c:

}

inline Segments Feature:copy() {
Feature *f = new Feature(name, value): copy_sub(f): return {:

}

inline Segmentx GenericTone::surface_copy() {
GenericTone gt = new GenericTone: csub(gt): return gt:

}

inline Segments GenericPhoneme::surface_copy() {
GienericPhoneme *gp = new GenericPhoneme: csub(gp): return gp:

}

inline Szgment« Phonemic::surface_copy(} {
Phonemic #p = new Phonemic{representation): csub(p): return p:

}

inline Segmentx ClassNode::surface_copy() {
('lassNode *c = new ('lassNode(name): csub(c): return c:

}

inline Segment* Feature::surface_copyv{) {
Feature *f = new Feature(name. value): csub(f): return f:

}
/] eqv

inline int ConnectableSegment::eqv(Segment* s) {
return (s—typ == (S || s—typ == (' || s—typ == V || s—typ == 8§ ||
s—typ == GT || s—typ == TN || s—typ == GP || s—typ == P ||
= FM || s—typ == F || s—tvp == XX}):

il

s—typ == CN || s—typ

}

inline int N:eyv({Segments x) {
return (s—typ == XX || s—typ == (' || s—typ == \'}

}

inline int GenericPhoneme::eqv(Segment+ gp) {
return (gp—typ == GP || gp—tvp == P || gp~typ == CN || gp—typ ==} ||
gp—tvp == FM):
}

inline int Phonemic::eqv(Segment+ p) {

108

return (p—ivp == P L&
Istremp(i(Phonemic s jpl—representation.representation v

}

inline int ClassNodezegv(Segment s en) |
return (cn—ityvp == '\ L&
(strempiname. ({ClassNode xjeny—name) == 0} L&
({"major.articulator & N ClassNode s)enj—major_articulator) |}
(major_articulator && {((ClassNode s)en)—major_articulator &&
major_articulator—eqv ({{ClassNode #)en)—major_articnlator)y

}
/] type-ey

infine int ConnectableSegment::type_eqiSegments s} {
return (s—typ == N || s—typ == O || s—typ == \" || s—typ == 55 ||
s—typ == T {[s—=typ == TN [[s—typ == GP || s—typ == P {|
s—typ == ON || s—typ == FM || s—typ == F || s—typ == XX}

}

infine int N:tyvpe_cq(Segment* s} {
return (s—typ == XX || s—typ == O || s—typ == \'):

H

inline int GenericPhoneme::type_eq(Segments gp) {
return (gp—tvp == GP || gp—typ == P || gp—typ == CN || gp—typ == I ||
gp—tvp == FM):
}

// matches

infine Pix
WordBegin::matches(Pix seg. Tier& tier. Tier+*, int) {
Pix currpos = seg:
tier.next{currpos):
return ({type_eq{tier[seg])) ”

}

currpos : (Pix)(-1)):

inline Pix

WordEnd::matches(Pix seg. Tier& tier. Tier *. int) {
Pix currpos = seg:
tier.next{currpos):
return ((type_eq(tier[seg])) 7 currpos : (Pix)(-1)):

}

inline Pix
MorphemeBegin::matches(Pix seg. Tier& tier. Ticr #+, int) {
Pix currpos = seg:
tier.next{currpos):
return ((type_eq(lier[seg]) ?

}

currpos : (Pix)(-1)):

inline Pix

MorphemeEnd::matches(Pix seg. Tier& tier. Tier #*. int) {
Pix currpos = seg;
tier.next{currpos}:
return {(tvpe_eq(tier[seg])) ? currpos : (Pix)(-1)):

}

109

// inits

inline void ConnectableSegment:cinit(int iuf. int sup) {
typ = ('S
infsz = mf: supsz = sup:
inferior={ConnectableSegment sx)malloc(infsz xsizeofi ConnectableSegment x)):
superior={ConnectableSegment =+ jmalloc{supszssizeof(ConnectableScegment *)):
infertor_tospread_along = NULL:
superior-tospread_along = NULL:
whim_inferiors = W:
nun_superiors = -
Is_exact = is_inert = FALSE:
spreads_left = FALSE:
spreads_right = FALSE:

}

inline void Chart::init{) {
name = NULL:
sz =
tier = (Tier =x)malloc(sz*xsizeof(Tier *)):
nuni_tiers =
tree = NULL:
max_tones_per_vowel = -1;
max._vowels_per_tone = -1:
sandhi_rules_exist = FALSE:
rtol_sandhi_rules_exist = FALSE:
num.tones = (:
no_connect = TRUE:

}
// misc

inline void Phonemic::set_rep(charx rep) {
representation = rep:

}

inline Segment* SegList::operator[}{const Pix p) const {
SegLink# sl = (SegLink *)p:
return sl—seg:

}

inline Pix Tier::insert(Pix loc. Segmentx seg) {
seg—tier = this:
return (segments.ins_before(loc. seg}):

}

inline Pix Tier:ins_after(Pix loc, Segment* seg) {
seg—tier = this;
return (segments.ins_after(loc. seg)):

}

inline Pix Tier::append(Segmentx seg) {
seg—tier = this: segments.append(seg); return segments.last():

}

inline void Tier:insert_at(const Pix p. Segment* seg) {
seg—tier = this: segments.insert_at(p. seg):

}

110

mline int Chartafreely _associate{Segments ~1, Segments =2y |
returtt free_associates freelyv_associs1. s2}):

}

#endif /+ tones «f

C.2 Application

// Applv.ce
#include "Map.h”
extern Chart chart:

void make_set of_segs_in_tier(Segment* seg. SegmentSets segs, Tier& intier,
ConnectableSegment+ rseg. Tiers* ap_tier.
int num_tiers)
// lusert into the set segs all segment~ that are:
// 1. Connected to seg
// 2. equal to rseg
// 3. Iu the tier intier

if (seg—is_connectable(}} {
ConnectableSegment xcs = {ConnectableSegment)seg:
SegList* infs = cs—inferiors():

for (Pix p = infs—first(): p # NULL: infs—unext{p))
if ({*infs)[p]—is_in_tier(intier) &&
rseg—equal{convert{infs. p). ap_tier. num_tiers))
segs—insert{ (*infs)[p]):

delete infs;
}
}

Pix Tier::preceding(Segmentx s1. Segmentx s2}
// Returns position of the first of
// the two segments. or NULL if neither is in the tier.

{
Pix currpos = segments.first():
while (currpos && *segmentsfcurrpos] # *s1 && ssegments[currpos] # #s2)
segments.next{currpos):

return (currpos):

}

int Tier::precedes(Segmentx s1. Segments s2
// Is s1 found on Tier before or at the same time as <27
Pix currpos = segments_ first{):
while (currpos) {

if (#segments{currpos] == *x1)
return TRUE:
if (xsegments{currpos] == xs2)

return FALSE:
segments.next(currpos):

111

return FALSE:;

}

SegLists matching_segs{ Tier& tr. Tierd intier. Tierd ot. Pix tierpos,
int no_worddivs. int no_morphdivs)
// Returns a list of the segments in tr starting at
// tierpos that match segments
// in the rule tier ot that connect to intier

Seglists segs = new Seglist:
Pix cure = tierpos:
Pix oldc:
Pix curr:
for (curr = ot first(): curr # NULL: ot.next(curr)) {
if {ot[curr]—is_connectable()
if (((ConnectableSegment *)ot{curr])—connects_to_tier{intic 1)
segs—append(trfcurc)):
if (ot[curr]—is_zero())
do {
oldc = curc:
curc = ot{curr]—zeromatches{curc. tr. ot}:
while ((no_worddivs && trfcurc]—is_a_wordboundary(}} ||
{no_morphdivs && tr[curc]—is_a_morphemeboundary()))
tr.next({curc):
} while (curc # oldc):
else {
tr.next(curc):
while ((no.worddivs && tr[curc]—is.a_wordboundary(}) ||
{no_morphdivs && trfcurc]—is_a_morphemeboundary()))
tr.next{curc):
}
}

return segs:

}

Pix Tier::first_to_tier(Tier&: tr. Pix tierlpos. Pix tier2pos, Tier& ot.
C'onnectableSegment* rseg. Tier **ap_tier.
int ntiers. int no_wdivs. int no_mdivs)

// Finds the first position in tr that connects to a

// previously matched segment in this tier and equals

// rseg. If this position precedes tier2pos. returns it.

// Otherwise returns tier2pos. If no position is found. returns
// tier2pos.

SegmentSet xtestsegs = new SegmentSet:

Pix currpos = tierlpos:

Pix 1:

SegList* msegs = matching.segs(+this. tr. ot. tieripos. no-wdivs. no.mdivs):
if (currpos == NULL) {

delete testsegs:
return tierlpos:

}

for (1 = msegs—first(): i # NULL: msegs—next(i))
make_set _of_segs_in_tier((*msegs)[i]. testsegs. tr, 1seg, ap.tier. ntiers):

currpos = NULL:
if (tierZpos == NULL) {

112

if (Mestsegs—empty () |
1 = testsegs—firstj):
curepos = trfindt s testseg~){i]):
testsegs—next{i):
while (i # NULL) {
currpos = lr.prr-reding(lr.se'gnlvnl.\[(n|'r|m.~]. (*tt‘ﬂ.\t'g.\}[i]l:
testsegs—next{i):
!
]
} else {
currpos = tier2pos:
for (i = testregs—hrst{): 1 # NULL: testsegs—next(1))
currpos = tr.prt*(‘eding(tr..\egm(-m.\[('urrpm]. (*teslscg.\)[i]):
}

delete testsegs:
return currpos:

}

int applv(Ruled rule. Chart& chart)
// Matches rule against chart. If matched. applies
// rule to chart. and continues to match and apply in the
// order specified in rule until it no longer matches.

int stier_idx:

int applicd = FALSE:

Tier x*ap_tier:

int num_ap_tiers = 0

int different:

int i, j:

int someleft = TRUE:

Pix xorigpos = {Pix *)malioc(rule.num_tiers * sizeof(Pix)):

ap.tier = (Tier *x)malloc{rule.num_tiersxsizeof(Tier *)):
tier.idx = new int[rule.num_tiers]:

for (i=0: i<rule.num_tiers: 1++)
for ()=0: j<chart.num_tiers; j++)
if (chart[j].name_eq(srule.originalfi])) {
ap_tier[num_ap_tiers++] = &chart{jj:
tierddx[num_ap_tiers-1] = j:
break:
}

if (num_ap_tiers # rule.num_tiers)
abort{):

if (rule.is_sandhi) // Start at the beginning. so as to get word boundaries.
for (i=0: i<rule.num_tiers: i++) {
origpos[i] = chartftier_idx[i]].current:
chart[tier_idx[i]}.current = chartftier.idx[i]].first():

if (rule.rtol) // Start at end. for rtol rule.
for (i=0: i<rule.num_tiers: i++) {
origpos[i] = chartftier_idx{i]].current:
chart{tier_idx[i}].current = chart{tier_idx[i]].last():

113

Pix smatch_idx = (Pix #)malloc{rule.num_tier~ * sizeof(Pix)):
Pix sold_match = {Pix s hmalloc(rule.num_tier # sizeotiPixih:
Pix sstart_pos = (Pix simalloc{rule.num_tiers * sizeofi Pix)):

for (i=0: i<rule.num_tiers: i++) {
start_posfi] = chart[tieridxi}}.current:
old_match[i] = NULL:

}

someleft = TRUE:

while (someleft) {
for (i=0: i<rule.num_tiers: i++)

do {
match_idx(ij=rule.match(chart[tier_idx{i]].ap_tier. rule.num-tiers. i
if (rule.rtol && matchadx[i] == (Pi)(-1))

chart{tier_idx[i]].prev(chart[tier_idx[i]].current):
} while (rule.rtol L& matchidxi] == (Pix}(-1} &&
chart[tier_idx[i]].current # NULL):

// Did it actually match?
for {i=0; i<rule.num_tiers: i++)
if (match_idx[i] == (Pix)(-1)} { // Tt didn’t match. so can’t apply.
if (rule.is_sandhi || rule.rtol) // Reset so other rules won't break
for {j=0: j<rale.num_tiers: j++)
chart[tier_idx[j)].current = origpos[j]:
else if (!rule.rtol)
for (j=0: j<rule.num_tiers: j++)
chart[tier_idx[j]].current = start.pos[j}:
free{(char x)origpos):
free((char *)old_match):
free({char *)match_idx):
free((char *)start_pos}):
return applied:

}

for (i=1: i<rule.num_tiers: i++)
for (j=0: j<i: j++) {

Tier* tr = rule.originalfi}:

ConnectableSegment + ¢s = (ConnectableSegment *)(str)[tr—first()]:

match_idx[i] = chart[tier_idx[j]].first_to_tier(chart{tier_idx[i]}.
match_idx[j).
match_idxfi],
+rule.original[j].
cs. ap-tier.
rule.num_tiers.
rule.no_worddivs.
rale.no_morphdivs}:

}

different = FALSE:
for (i=0: i<rule.num_tiers; i++)
if (match_dx[i] # old-matchi])
different = TRUE:

if (different) {
// Now apply it!
rule.application(chart. match_idx, tier_idx):
applied = TRUE:

114

for (i=00 i<rule.nune_tiers: i++)
old_match[i] = match_idx[i]:

}

someleft = TRUE:
for (i=0: i<rule.num_tiers: 1++) {
if (different)
if (matchoadx[i]) // Will change if segment was deleted
chart[tier_idx[i]].current = match.idx{i:
else
chart[tier_idx[i]].current = start_posfi}:
if (rule.rtol)
chart[tieradx{i]].previchart{tier_idx[i]].current):

else
chartftier idx[i]].next{chart[tier_idx[i]].current):
if (chart[tieradx[i]].current == NULL)

someleft = FALSE:
}
}

if (rule.is_sandhi || rule.rtol) // Reset so other rules won’t break
for (j=i: j<rule.num_tiers: j++)
chart[tier_idx[j]].current = origpos[j}:
else if ('rule.rtol)
for (j=0: j<rule.num_tiers: j4+)
chart[tier_idx[j]].current = start_pos{jJ:
free((char *)origpos):
freet{char *)old_match,.
free((char *jmatch_idx):
free((char *)start_pos):
returu applied:

}

Pix matches_any_map_el(Segment* seg. Map *map, int i)
// Does seg match any element in map tier number i?
// Returns the position in map if so. or NULL.
{
for (Pix ¢ = map[i].first(): ¢ # NULL: map[i].next{(c))
if (+seg == *(mapli][c]—rule_seg))
returi c;
return NULL:

}

Pix matches_any_replacement_.el(Segment* seg. Tier **replacement. int i)
// Does seg match any element in replacement. tier number
// i?7 Returns the position in replacement if so. or NULL.
{
for (Pix ¢ = replacement[i]—first{): ¢ # NULL: replacement{i]—next{c))
if (#seg == *(sreplacementi})[c])
return c:
return NULL:

}

Pix in_map(Segment* seg. Map *map. int map_size. int& i)
// Finds rule segment seg in map (which has map_size
// tiers). Sets i to the tier on which seg is found. and
// returns the location on the tier (or NULL if not found)
{
for (i=0: i<map.size: 1++)
for (Pix j=map{i].first(); j # NULL: map[i].next(j}))

115

if (x{map(i]l)]—rule_seg) == wneg)
return j:
return NULL:

!

Pix skeletal_in_mapiScgment« seg. Mapx map. int map_size. int stier_idx.
Chart& chart, jntd 1)
// Finds chart segiment seg in map (which has map_size
// tiers). Sets i to the tier on which seg is found. and
// returns the location on the tier (or NULL if not found)
{
Segments mseg:
for (i=0: i<map._size: i++)
for (Pix p = mapl[i].fiest{(): p # NULL: mapi].next(p)) {
mseg, = chart{tier_idx[i]]{map[i][p] ~chart_pox]:
if (xmseg == *seg)
return p:

}

return NULL:

}

Pix in_replacement .chart{Segment * seg. Tier **replacement. int num_tiers,
int& o
// Finds rule segment seg in replacement (which has
// num_tiers tiers). Sets i to the tier on which seg
// is found. and returns the location on the tier (or NULL if not found)
{
for (i=0: i<num_tiers: i++)
for (Pix j=replacement[i]—first(): j # NULL: replacementfi]—next(j))
if («(xreplacement[i])[j] == *seg)
return j:
return NULL:

}

void (onnectableSegment::sort{()
// Puts inferiors and superiors in the order they are found on their tiers.

int i, j:
int swapped = TRUE:
(‘onnectableSegment* tmp:

while (swapped) {
swapped = FALSE:
for (i=0: i<num.inferiors: i++4)
for (j=i+1: j<rum_inferiors: j4++)
if (inferior(ij—tier && inferior{j]—tier L&
inferior(i] —~is_actually_in_tier(*inferiori]—tier) & &
inferior{j]—is.actually_in_tier(*inferior[jj—tier) &&
sinferior[ij—tier == sinferior[j]—tier £ &
inferior[j]—tier—precedes(inferior{j]. inferior(i]}) {
tmp = inferiorfi}:
inferior[i] = inferior(j}:
inferiorfj] = tmp:
swapped = TRUE:
}
for (i=0; i<num_superiors: i++}
for (j=i+1: j<num_superiors; j++)
if (superiorfij—tier && superiorjj—tier &&
superior(i]—is_actually_in_tier(*superiorfij—tier) L&

116

superior[jl—is_actually _in_tierg ssuperior[j]—tiery L&
ssuperiorfi] —tier == esuperior(jl—tier &&
superior[jj—tier—precedestsuperior[j]. superior(i}}) {

tmp = superior[i}:

superior(i] = snperior[j]:

superior(j] = tmp:

swapped = TRUL:

int CounectableSegment::not_too_many_tones()

}

// Returns FALSE if this is a Vowel cornected to a number of tones
// greater than or equal to the maxumum allowable. Otherwise. returns TRUE.

if {tvp # \)
return TRUE:
int num.tones = 0:
for (int 1=0: i<num_inferiors: i++)
if (inferior{i] —typ == TN)
num_tones-+-4:
if (chart.max_tones_per_vowel == -1 || num_tones < chart.max_tones_per_vowel)
return TRUE:
return FALSE:

int ConnectableSegment::not_too_many_vowels()

}

// Returns FALSE if this is a tone connected to a number of vowels
// greater than or equal to the maximum allowable. Otherwise. returns TRUE.

if (typ # TN)
return TRUE:
int num._vowels = [
for {int i=0: i<num_superiors: 1++)
if (superior{ij—typ ==V}
num_vowels-+:
if (chart.max_vowels_per_tone == -1 {| num_vowels<chart.max_vowels_per_tone)
return TRUE:
return FALSE:

int ConnectableSegment::connect(ConnectableSegment* seg)

// Requires -- this segment is assumed to be the SUPERIOR. and seg is
// assumed to be the INFERIOR.

// Effects: Modifies this and seg such that they are connected.

// dealing with the case where the connection would exceed the

// tone/vowel connection limit.

int i. j. delete_num:
int connected_properlv = TRUL:
for (i=0: i<num_inferiors: i++) // Make sure is not already connected.
if (xthis == *seg)
return TRUE;

ConnectableSegment #=*inf;

Vowelx vow = new Vowel:

Tonex t = new Tone(1):

if (t—tvpe_eq(seg) || not.too_many_tones())
if (num_inferiors < infsz)

inferior[nuniinferiors++4] = sew:
else |
infsz = 2+infsz: // Double the number of connections pussible!
il = (ConnectableSegment «+)ymalloctinfszssizeof(ConnectableSegment +)):
for (i=0: i<num_inferiors: 1++)
indfi} = mferior(i}:
inflnum_inferiors++) = sep:
free{ (char *)inferior):
inferior = inf:
}
else {
connected_properly = FALSE:
for (i=0: i<nuni.inferiors: 14+
if (t—tvpe_eq(inferior[i])) {
for (j=0: j<inferior[i]—num_superiors: j++)

if (sinferior{ij—=uperior[j] == =this) {
delete_num = j:
break:

}
for (j=delete_num: j<{inferior[i] —num_superiors-1); j++}
inferior[i}—superior{j] = inferior(i]—superior[j+1]:
inferior[i]—num_superiors--:
inferior[i] = seg:
break:

}

sort():

// Connect seg to this segment.
ConnectableSegment *#sup:
if (lvow—type_eq(this) || seg—not_too_many_vowels())
if (seg—num_superiors < seg—supsz)
seg—superior[seg—num_superiors-+-+] = this;
else {
seg—supsz = 2 * seg—supsz: [/ Double the number of connections possible
sup = (ConnectableSegment s+)malloc(seg—supsz *
sizeof(ConnectableSegment *)):
for (i=0: i<seg—num_superiors; i++}
supli] = seg—superiorfi]:
sup[seg—num_superiors++] = this:
free{{char *)seg—superior);
seg—superior = sup:
}
else {
connected_properly = FALSE:
for (1=0: i<num_superiors: i++)
if (vow—type_eq(superior[i]}) {
for (j=0: j<superior[i]—num_inferiors: j++)

if (+superior{i]—inferior[j] == #thix) {
delete_num = j:
break:

}
for {j=delete_num: j<{superior{ij—num_inferiors-1): j4++)
superior[ij—inferior[j] = superior[i)]—inferior[j+1]:
superior[l]—num_inferiors--:
superiorfi] = seg:
break:

118

seg—sori(}:

delete t;

deb te vow:

return connected_properly:

void ConnectableSegment::disconnect{ ConnectableSegment = seg)
// Requires: this is the superior. seg is the inferior
// Efect: disconnects the segments.

int delete_num = num_inferiors+1. i:
for (1=0: i<num_inferiors; 1+-+)
if (xiinferior(i]) == *~eg) |
delete_num = i:
break:
}
if (delete_num > num_inferiors)
return: // Not connected.
for {i=delete_num: i<{num_inferiors-1); i++)
inferior(i] = inferior[i+1]:
num_inferiors--;

delete_num = seg—num_superiors+1:
for (i=0: i<seg—num_superiors: i++)

if (#(seg—superior[i]) == *this) {
delete_num = 1
break:

}
if (delete_num > seg—num_superiors)
return: // Not connected.
for {i=delete_num: i<{seg—num_superiors-1): i++)
seg—superior(i] = seg—superior[i+1]:
Seg~— U _SUPEriors--:

void break_crossings('onnectableSegment+ segl. ConnectableSegments seg?)
// Breaks any association lines crossed by the connection of segl
// and seg2. Requires that segl and seg? are not
// vet connected.

Pix slpos = segl—tier—find{=egl):
Pix s2pos = seg?—tier—find(seg2):
Pix 1. j:

‘onnectableSegment #si. *s2:

~

1 = slpos:
1 = s2pos:
segl —tier—prev(i):
seg2—tier—next(j):
while (i # NULL && j # NULL) {
if((xsegl—tier){i]—connects_directiy_to((sseg2—tier }[j])}
{
sl = (ConnectableSegment *)((*segl—tier)[i}):
52 = {ConnectableScgment)({+seg2—tier)[j]):
sl—disconnect(s2):
}
segl—tier—prev(i):
seg2—tier—next(j});

}

119

1= ~1pox:

it

| = s2pos
seg l—tier—uextii):
segl—tier—previg):
while (1 NULL L0y # NULLY
i esegt—tier)[i] —connects_directhy totfeseg 2—tier i)
{
~t= (ConnectableSegment s 4iaseel —tier ’[i]hs
=2 = (ConnectableSegment « pasen 2—tieri[j]i:
s —disconnectis2):
}
sep I —tlier—nextii);

sepl—tier—previj)

Seglist «hud _free_associatestSeglistx choces. ConnectableSegments seg,.
Chart& charr)
// Return all the elements of choices that freely associate with
// ~eg.
{
Seglist #list = new Seglist:
for {Pix p=choices—tirst{): p # NULL: choices—next(p))
if {chart freely _associate{ (*choices)[p]A seg))
list—appendifxchoices)[p]):
return list;

void ConnectableSegment::no_duplicate_features(ConnectableSegment * seg,

Mapx map. int ntiers.
ChartA chart, int+ tieradx)

// Requires - this has not vet been connected to seg. and

// this is not connected to more than one feature with

// the same name.

// Effects - If this is a classnode and seg i~ a feature.

// disconnects this from any features with the same name ax

/1 ses.

ClassNode* cn = new ClassNode:
Featurex f = new Feature("blah"):
int loc:
Pix match:
if (cn—type_eq(this) L& f—tyvpe_eq(~eg))
for (int i=t: i<num_inferiors: i++)
if (f—type_eqiinferior]i]) L&
({Feature x)inferior{i])—name_eqi(Feature *)seg)) {
match = skeletal_in_map(inferior[i]. map. ntiers. tier_idx, chart.loc):
if (match) {
C'onnectableSegment «minf. xmsup:
minf = (ConnectableSegment *)mapfloc][match]—rule_seg:
match = skeletal_in_map(this. map. ntiers. tier_idx. chart. loc):
if (match) {
msup = (ConnectableSegment *)maploc][match]—rule_seg:
msup—disconuect{minf)

}
}

disconnect(inferior(i]):
break:

120

}

delete cn:
delete I

void add_.connection{ConnectableNegments sup. ConnectableSegments inf.
Chart& chart. Map* map. int ntiers, int* tier_idx.
int remove_dups =0}
/] Make a connection between sup aund inf. accounting for things lke
/] freely associating segments. line crossing. and language-specific
// tonal parameters.
// Note - assumes sup is superior to inf.

ConnectableSegment* seg;

if (chart.freely _associate(sup, inf))
sep = sup:
else {
SegList xinfs = sup—inferiors():
SegList sfass = find_free_associates(infs. inf. chart);
if {fass—empty())
error{"Unable to make connection.”):
seg = (('onnectableSegment x)fewest_inferiors(fass);
}
break_crossings(seg. inf):
if (remove_dups L& Tks)
seg—no_duplicate_features(inf, map. ntiers. chart, tier_idx):
seg—modified = TRUE:
inf—modified = TRUE:
seg—connect{inf):

void ConnectableSegment::copy_aux((onnectableSegment* seg.
Map *+map, int num_tiers,
int stier_index. Chart& chart.
Tierx* replacement)
// Modifies this to have approximately the same connections as
// seg. and modifies the map appropriatelv.

int i:

// Note -- don’t need to add any connections not already in the map --
// they’ll be added later.

// Later Note -- unless, of course. they aren’t in the replacement

// chart either {except as inferiors or superiors. of course)

ConnectableSegment xsup. *inf:
Segment *mel:

Pix match:

int maplevel:

int was_replace:

was_replace = FALSE:

// Connect in the chart. for replacement.
maich = in_map(this. map. num_tiers. maplevel):
map[maplevel].next(match);
if (match) {
mel = map[maplevel][match]—rule_seg:

121

was_replace = 'matchies_any _replacement _el{mel. replacement. maplevel):

if (was_replace) |
match = map[maplevel]match]—chart_pos:
inf = (ConnectableSegment *)chart[tier_index[maplevel]][mateh]:
for (i=0: i <inf—num_superiors; i++)
add_connectionfinf—superior(i]. seg. chart. map.nunm_tiees. tier_index):
for (i=0: i<imf—num_inferiors: i++)
add_connection{seg. inf—inferior[i]. chart, map.num_tiers tier_index):
}

}

// Connect based on the map.
if (num_superiors) {
match = in_map(this, map, num_tiers. maplevel):
in{ = (ConnectableSegment *)map{maplevell{match}—rule_seg:
}
for (i = 0: i<num_superiors: 1++) {
match = in_map(superior[i]. map. num_tiers. maplevel):
if (match) {
sup = (CounnectableSegment *)map[maplevel][match]—rule_seg:
sup—connect{inf):
if ('was_replace) {
match = map[maplevel][match]—chart_pos;
sup = (ConnectableSegment *)(chart[tier.index[maplevel]][match}):
add_connection(sup. seg. chart. map, num_tiers, tier.index):

}
} else {

match=in_replacement_chart(superior[i].replacement. num_tiers. maplevel):

if (match == NULL) {
ConnectableSegment* tmp = superiorfi]:
superior[i]—disconnect(this):
sup = (ConnectableSegment *}tmp—copy():
add_connection{sup. seg. chart. map. num_tiers. tier_index):
tmp—connect(this);

)

}
}

if (num_inferiors) {
match = in_map{this, map. num_tiers, maplevel):
sup = (ConnectableSegment x)map[maplevel][match]—rule_seg:
1
for {i = 0: i<num.inferiors: i++) {
match = in_map(inferior[i]. map, num_tiers. maplevel):
if {match) {
inf = (ConnectableSegment x)map[maplevel][match]—rule_seg:
sup—connect(inf):
if ('was_replace) {
match = map[maplevel][match]—chart_pos:
inf = (ConnectableSegment *)(chart[tier.index[maplevel]}{match]):
add._connection{seg. inf. chart. map. num_tiers. tier_index):

}

else {

—_—

match=in_replacement_chart(inferior[i].replacement. num_tiers, maplevel):

if (match == NULL) {
inf = (ConnectableSegment «)inferior{i]—copy():
add_connection(seg. inf. chart. map. num_tiers. tier_index):

}

122

}
}
}

void ConnectableSegment::detachi)
// Detach from all connections prior to deletion ol this.
{
while (num_superiors)
superior[0]—disconnect(this):
while (num_inferiors)
disconnect(inferior[i}]):
free({char *)superior):
free((char * hinferior):
superior = NULL:
inferior = NULL:

}

void Tier::del(Pix& loc)
// Delete segment at loc. and remove it from the tier.
{
Segment* seg_to.be_deleted = segmentsfloc):
seg_to_be_deleted—detach(): // Make sure nothing else connects to it.
segments.del{loc}.
delete seg.to_be_deleted:

}

void Tier::metathesize(Pix& map.index. Pix matchldoc. Pix curr. int i,
Tier *xreplacement. Map *map)
// Move segment at map-index to the next position after
// matchloc. in both the chart and map. Note that the locations
// mentioned are in the map. which should contain the chart locations as

/] well.

Pix match_index. index. oldidx, find_index. precede.index:
Segmentx seg = segments[map(i][map_index]—chart_pos]:

// Update the chart:

// Remove segment from original position:
match_index = map{i][map-index]—chart_pos:
segments.del{ match_index):

// Find the place to put the segment:
index = curr:
find_index = match_loc:
do {
while (index # find_index) {
oldidx = index:
replacement[i]—next(index):
}
precede_index = matches_any_map.el({*replacement[i])[oldidx]. map. i)
if (precede_index == NULL)
find_index = oldidx:
} while (precede_index == NULL):

// Put it there:
index = segments.ins_after(mapli][precede_index]—chart_pos. seg):

// Update the map:

123

match_data* md = uew match_data:
md—rule_seg = map[i)[map_index]—rule_ seg—surface_copy()

if tmap(ij[map-ndex]—rule_seg—is_connectable()) |
ConnectableSegment xcopyee, scopy:
copvee = (ConnectableSegment s)ymap(i][mapindex]—rule_seg:
copy = {Connectablesegment #)md—rule_seg;
int i;
while (copyee—num_inferiors >) {
copy—connect{copvee—inferior[u]):
copyee—disconnect(copyee—inferior[0]):
}
while {copyee—num_superiors > 0) {
copvee—superior{ilj—connect(copy):
copvee—superior[t]—disconnect(copyee):
}
}

md—chart_pos = index:
map[i].del{map.index):
mapli].ins_after(precede_index. md):

int min{int *d, int num)
// Return the minimum element of d[]

int min = 99999499;
int i

for {i=0: i<num: 1++)
if (dfi] # -1 && dfi]<min)

min = d[i]:
if (min == 99999999)
min = -1:

return min:

}

C'onnectableSegment* generalized_eqv(ConnectableSegments a}
// Return closest segment matching a that would be found in the
// chart tree.

Vowel tvow = new Vowel:
(‘onsonant *cons = new Consonant:
Tone xt = new Tone(1):

Phonemic *p = new Phonemic:
C'onnectableSegment xastandin:

if (a—tvpe_eq(vow) || a—type_eglcons)) {
astandin = new X;
delete vow: delete cons: delete t: delete p:
return (astandin):

}

if (a—type_eq(t)) {
astandin = new Generic’Tone:
delete vow: delete cons: delete t: delete p:
return (astandin):

}

if (a—type.eq(p)) {
astandin = new GenericPhoneme;

124

delete vow: delete cons: delete t delete pr
return {astandin):

}

return {a):

}

int contains(Seglists list, Segment* seg)

{

// Doaes list contain something like seg”
Pix p:

for (p = list—first{}); p # NULL: list—next{p};
if (seg—eqv((*list){p]))
return TRUE:
return FALSE:

}

SegLlist *ConnectableSegment::inferiors()
// Return the recursive inferiors of this

SegList xlist = new SegList:

for (int i=0; i<num_inferiors: i++) {
list—append(inferior[i]):
list —join(inferior[i]—inferiors()):

}

return list:

}

SegList *ConnectableSegment::superiors()

{
SegList *list = new SegList:
for (int i=0; i<num_superiors: i++) {
list—append(superior{i}):
list—join{superior[i]—superiors(}):
}

return list;

}

// Return the recursive superiors of this

SegList *ConnectableSegment::direct_superiors()

// Return the direct superiors of this
{
SegList #list = new SegList:

for (int i=0: i<num_superiors: i++) {
list—append(superior[i]):

return list:

}

int C'hart::is_superior(ConnectableSegment a. ConnectableSegment* b)
{
if (tree—eqv(a))
return TRUE:
else if (tree—eqv(b))
return FALSE:
else {
SegList #list = tree—connects_to(generalized eqv{a)):
ConnectablcSegment* aaa = convert{list. hst—first()):
if (contains{aaa—inferiors(}. generalized_eqv(b}})

125

return TRUE:
return FALSE:
}
}

Segment *fewest_inferiors(SegList* choices)
// Friend to ConnectableSegment

int min = 999999499;
Segment* fewest = NULL:

for {Pix p=choices—first{): p # NULL: choices—next(p))
if (convert{choices. p)—num_inferiors < min) {
min = convert{choices, p)—num_.inferiors:
fewest = (xchoices)[p]:
}

return fewest:

}

Pix Tier::find(Segment* seg}
// Return the location of seg in tier. or NULL if not found.
{

for (Pix | = segments.first(): i # NULL: segments.next(1))
if (ssegments[i] == *seg)
return i:
return NULL:

}

int ConnectableSegment::connects_directly_to(Segmentx* seg)
// Does this connect directly to seg?

if (seg—is_connectable(}) {
ConnectableSegment *cs = (ConnectableSegment x)seg;

int i:
for (i=0: i<num.inferiors: i++)
if ((#inferior{i]) == *cs)

return TRUE:

for (i=0: i<num_superiors: i++)
if ((*superior[i]) == #cs)
return TRUE:

return FALSE:

} else
return FALSE:
}

int exactly_contains(SegList* list, Segmentx seg)
/] Tests by ==
/] ls seg in list?
{
for (Pix p = list—first(): p # NULL: list—next{p})
if (+seg == *(#list)[p])
return TRUE:
return FALSE:

}

void ConnectableSegment::break_connection{(‘onnectableSegment* seg)
// Assumes this is superior to seg.

{

int i:

126

if (connects_directly _tof{~eg}) {
disconnect(seg):
return:

}

for (1=0: i<seg—num_superiors: 1++)
if (exactly_contains(seg—superiorfi]—superiors{). this))
seg—superior(i]—disconnect(seg):

}

void ConnectableSegment::spread(Pix spreadpos. Tier& ctier. Chartd& chart)
// spreads along ctier starting from spreadpos. in chart.

Pix 1
C‘onnectableSegment xseg:
int num:

int is_sup = FALSE:
Vowel *vow = new Vowel:
Tone *t = new Tone(1):

if (contains(inferiors(), ctier[spreadpos])) { // this is superior to csp
num = num.nferiors:
is.sup = TRUE:

} else {
nuin = NUM_SUperiors;

}

if (spreads_right) {
1 = spreadpos:
ctier.next(1):
while (i # NULL &&
(is_sup 7 t—type_eq(ctier[i]) || not.too_many_tones(} :
Ivow—type_eq(ctier[i}) || not_too-many_vowels()) & &
!ctier[i]—connects_to_tier{xtier) && Ictier[i]—is_a_boundary())
{
if (ctier[i]—is.connectable()) {
seg = (ConnectableSegment *)ctier(i):
if (chart.freelv_associate(this. seg})
if (is_sup)
connect{seg):
else
seg—connect(this):
}

ctier.next(1);

}

if (spreads_left) {
i = spreadpos;
ctier.prev(i);
while (i # NULL &&
(is_sup ? t—type_eq(ctier{i]) || not_too_many_tones({) :
lvow—type_eq(ctier(i]) || not_too_many_vowels()} &&
Ictier[i]—connects_to.tier(xtier) && !ctier[i]—is.a_boundary(}))

if (ctier[i]—is.connectable()) {
seg = (ConnectableSegment *)ctier[i]:
if (chart.freely_associate{this. seg))
if (is_sup)

conuect{xeg):
else
seg—connect{this}:
ctier.prev(i):
}
delete 1:
delete vow:

}

int Rule::adjust_connections(ConnectableSegment+ crel.

Connectabl»Segment* cmel.
Map *map. Pix mpos.
C'hart& chart, int i, int stier_index)

// Returns true if made a connection.

/] Adjust chart and map conuections of the segment pointed to by cel

// such that thev match the connections of crel. and apply spreading

// if necessary.

Tier& tier = chart[tierindex[i]]:
Pix match oc:

int loc:

int made_connection = FALSE:
C'onnectableSegment *sup. xinf:

if {crel—num_inferiors # cmel—num_inferiors ||
crel—num_superiors # cmel-—num_superiors) {
int . jj:
for (ii=0: li<crel—num_.inferiors: ii++) {
int has_that_one = FALSE:
for (jj=0: jj<cmel—num_inferiors; jj+-+)
if (#(crel—inferior[ii}) == *(cmel—inferior{jj]}))
has.that_one = TRUE:
if (thas_that_one) {
match_oc = in.map(crel—inferior{ii]. map. num_tiers, loc):
if (matchloc # NULL) {
Tier& tier2 = chart[tier_index[loc]}:
inf=(ConnectableSegment *){tier2[map[loc}[match_loc]—chart_pos]):
sup=(ConnectableSegment #*){tier{map{i}[mpos]—chart_pos]):
add_connection(sup. inf, chart. map. num_tiers. tier_index. TRUE):
inf = (ConnectableSegment *)map{loc][match_loc]—rule_seg:
sup = (ConnectableSegment *)map(i][mpos]—rule_seg:
sup—connect(inf};
made_connection = TRUE:
} // Otherwise, wait, and it'll all work out. ..

}
} // end for
for (ii=0; ii<crel—num_superiors: ii++) {
int has_that_.one = FALSE:
for (j)=0: jj<cmel—num_superiors: jj++)
if {+(crel—superior[ii]) == *(cmel—superior[jj]})
has_that_.one = TRUE;
if (thas_that_one) {
match_Joc = in.map(crel—superiorfii]. map. num_tiers. loc):
if (matchJoc # NULL) {
Tier& tier? = chart[tie-_index{loc]}:
inf={ConnectableSegment *)(tier2[map[locj[match_loc}—chart_pos]):
sup=(ConnectableSegment *)(tierfmap{i]{mpos]—chart_pos]):

128

add_connectionyinf. sup. chart. map. num_tiers. tievindex. TRUER
sup = (ConnectableSegment #imap{ij[mpos]—rule_seg:
inf = (ConnectableSegment *)ymap[loc)[match_loc]—rule_seg:
sup—connect{inf):
made_connection = TRUE:
} // Otherwise. wait. and it'll all work out. ..
}
} // end for
for (ii=0: li<cmel—num_inferiors: ii++) {
int has_that_one = FALSE:
for (jj=0: jj<crel—num_inferiors:)j++)
if {#{cmel—inferiorfii]) == #{crel—inferior[jj]))
has_that_one = TRUE:
if ('has_that_one) {
match_loc = in_replacement _chart{cmel—inferior[ii].
replacement. mum_tiers. loc):
if (match_doc # NULL) {
matchdoc = in_map(cmel—inferior[ii]. map. mum_tiers. loc):
Tier& tier? = chart[tier_ndex[locl]:
inf=(ConnectableSegment #){tier2[map(loc][match_loc]—chart -pos]):
sup=(ConnectableSegment *)(tier[map[i][mpos]—chart _pos]):
sup—break_connection{inf):
inf = (ConnectableSegment #)map(loc][match_loc]—rule_seg:
sup = (ConnectableSegment *)mapf{i][mpos]—rule_seg:
sup—disconnect(inf):
} // Otherwise. wait. and it'll all work out. ..
} // end if
} // end for
for (ii=0: ii<cmel—num_superiors: ii++) {
int has_that_one = FALSE:
for (jj=0: jj<crel—~num_superiors: jj++)
if (*{cmel—superior[ii]) == *{crel—superior{jj]})
has_that_one = TRUE:
if (!has_that_one) {
match_loc = in_replacement_chart{cmel—superior{ii].
replacement. num_tiers. loc):
if (match_loc # NULL) {
match_loc = in_map{cmel—superior[ii]. map. num_tiers. loc):
Tier& tier? = chart[tier_index{loc]]:
sup=(ConnectableSegment *)(tier2[map[locj{match_loc]—chart _pos]):
inf=(ConnectableSegment *)(tier[map[i][mpos]—chart_pos]):
sup—break_connection(inf):
sup = (CounnectableSegment #)imap[loc][match_loc]—rule_seg:
inf = (ConnectableSegment *)maplij[mpos]—rule_seg:
sup—disconnect(inf}:
} // Otherwise. wait. and it’ll all work out. ..
} // end if
} // end for
} // end if (same number connections?)
else {
if (crel—spreads()) {
int i, num:
Pix chartpos:
ConnectableSegment *cseg:
if (crel—inferior_to_spread.along # NULL)
for (ii=1: ii<crel—inferior_to_spread_along[0]: ii++) {
pum = crel—inferior_to_spread_alonglii]:
cseg = (ConnectableSegment *)tier[maplil{mpos]—chart_pos]:
cseg—spreads_right = crel—spreads_right;

129

cseg—spreads_left = crel—spreads_left:
matchdoc = in_map(crel—inferior[uum]. map. num_ters loc):
chartpos = mapfloc]match_loc]—chart_pos:
cxeg—spread(chartpos. chart[tierandex{loc]]. chart):
made_connection = TRUE:

}

if {crel—superior_tospread_along # NULL)

for (ii=1: ii<crel—superior_to_spread.along[0]: ii++) {
num = crel—superior-tospread along[ii):
cseg = (ConnectableSegment s jtier[map{i]{mpos]—chart_pox):
cseg—spreads_right = crel—spreads_right:
cseg—spreads_left = crel—spreads_left:
match_oc = in_map(crel—superior[num]. map. num_tiers, loc):
chartpos = map[loc][matchdoc]—chart_pos:
cseg—spread(chartpos. chart(tier_index[loc]]. chart):
made_counection = TRUE:

}
}

return made_connection:

}

void Chart::apply_assoc_convention(Pix conlpos, Tier& tierl, Tier& tier2?)
// needs to be a friend of connectable_segment. ..
// Applies the association convention to tiers 1 and 2.

ConnectableSegment *seg = (ConnectableSegment x)(tierl[conlpos]):
ConnectableSegment *conseg. *inf. *sup:

Pix con2pos, p, pl. oldpl, q:

int i;

C'onnectableSegment **segconnection:

int segnc:

int superior = FALSE;

Vowel *vow == new Vowel:

Tone *t = new Tone(1);

if (is_tier_superior(tierl. tier2)) {
segconnection = seg—inferior:
segnc¢ = seg—nume-inferiors:
superior = TRUE:

} else {
segconnection = seg—superior:
segne = seg— NUM_superiors:

}

for (i=0: i<segnc: i++)
if (segconnection[i] —is-in_tier(tier2)} {
conZpos = tier2.find(segconnection[i]}:
// Associate from right to left:
p = conlpos: ¢ = con2pos;
tier2.prev(q):
oldpl = p:
while (p # NULL && tierl[p]—is.a_boundaryv{} &&
q # NULL && tier2[q]—is.a_boundary() &&
'tier2[q]—connects_directly_to_tier(tier1)) {
pl = p:
tierl.prev(pl):
while (pl # NULL && ftierl{p1]—is_a_boundary() &&
Itierl[p1l]—connects_directly_to_tier(tier2) &&

130

{(tieri[pl]—inert(} || tier2{q]—inert() ||
Hreely associate{tier1{p1]. tier2[4)i)
tiert.previpl):
if ipl # NULL L& Mieri{pl]—is_a_boundary () &&
ierl[pl]—connects_directly_to_tier(tier2)) |
oldpl = pl:
if (superior) {
sup = (ConnectableSegment *)tieri[pl):
inl = (ConnectableNegment *)tier2[y]:
} else {
inf = (ConnectableSegment *)tierl{pl1]:
sup = {ConnectableSegment *)tier2[q):
}

sup—counect(inf);
p=nph
tier2.prev(q): }
else // pileup?
if ((pl == NULL || tieri[pl]—is_begin()) &&
{oldpl # NULL & & ttierl{oldpl]—inert() && ttier2[q]—inert() &&
freelv_associate(tieri[oldpl]. tier2[q]}}) {
conseg = (ConnectableSegment *)(tier1foldpl]):
if (superior) {
if (It—type_eqftier2[y]) || conseg—not_too_many_tones()) {
conseg—connect((ConnectableSegment *)tier2[q]):
tier2.prev(q):
} else
break:
} else {
if (lvow—type_eq(tier2[y]) || conseg—not_too_many_vowels()) {
({ConnectableSegment «)tier2[q])—connect(conseg):
tier2.prev{y):
} else
break:
}

}

else
tier2.prev{q):
}
// Associate from Left to Right
p = conlpos; q = con2pos:
tier2.next(q):
oldpl = p:
while (p # NULL & & 'ierl{p]—is_a_boundaryv() &&
q # NULL && 'tier2[q]—is_a_boundary() &&
'tier2[q]—connects_directly _to_tier(tierl)) {
pl = p:
tierl.next{pl):
while {(pl # NULL && 'tierl{pl]—is.a_boundary(} &&
'tier1[p1]—connects_directly_to_tier(tier2?) &&
(tier [pl}—inert() || tier2[y}—inert() ||
'freely_associate(tier1[pl1]. tier2[g])})
tierl.next(pl}):
if (pl # NULL && ttierl[pl]—is_a_boundary({) &&
itieri[p1]—connects_directly_to_tier(tier2)) {
oldpl = pl:
if (superior) {
sup = (ConnectableSegment *jtier1{p1]:
inf = (ConnectableSegment *)tier2[q):
} else {

131

inf = (ConnectableSegment *)teri[pl]:
sup = (ConnectableSegment)tier2[g]:
}
sup—conunect(inf):
p=ph
i 2.next(q): }
else // pileup?
if ((pt == NULL {] tier}pl]—is_end()) & &
{oldpl # NULL L& ttierl{oldpl}—inert() L& 'ter2[y]—inert()
L& freely_associate(tierl[oldpl]. tier2{y]))) {
conseg = (ConnectableSegment s)(tierl{oldpl]):
if (superior) {
if ('t—type_eq(tier2[q)) }] conseg—not_too_many_tones()) {
conseg—connect{{ConnectableSegment *)tier2[q]):
tier2.next(q):
} else
break:
} else {
if (Ivow—type_eq(tier2{q]) {| conseg—not_too_many_vowels(}) {
({ConnectableSegment *)tier2[y])~—connect{conseg):
tier2.next(q);
} else
break:
}
}
else
tierZ.next(y):

}
}

delete vow:
delete t;

}

// Note that we must guarantee that anvthing on a given tier A must be
// aniformly superior or inferior to anyvthing on any given tier B.

ConnectableSegment* Chart::tier_in_tree{Tier& tr} {
if (tree—tier—name_eq(tr)})
return tree:
SegList* infs = tree—inferiors():
ConnectableSegmentx cs:
for (Pix p = infs—first(): p # NULL: infs—next(p))
if ((*infs)[p]—tier—name_eq(tr)) {
cs = {ConnectableSegment *)(*infs)[p]:
delete infs:
return cs;
}
delete infs:
return (ConnectableSegment #)0;

}

int Chart::is_tier_superior(Tier&: tierl. Tier& tier2)
{

ConnectableSegment *tl. *t2;

tl = tier.in_tree(tierl);

t2 = tier_in_tree{tier2):

if (11 && t2) |

if (contains(t1—inferiors{). t2))
return TRUE;

132

return FALSE:

!

void Chart::assoc_convention{int stier_index. int nnm_tiers)
// Finds places to apply the association convention. and apphies it
{
int i. j:
Pix p:
for (i=0; i<num_ters: i++)
for {j=i+1: j<unm_tiers: j++) {
Tier& tierl = #tier[tier_index[i]]:
Tierd: tier? = tierftier_index[j]]:
for (p = tiexLfirst(): p # NULL: tierLuext(p))
if (tier1[p]—modified L& tieri[p]—connects_directly to_tier{tier2j)
apply _assoc_convention(p. tierl, tier2):

}

void Rule::connect_map(Map+ map)
// Connects the map segments to match the connections in rule.

int i. ii. jj. loc:

Pix p. :

int has_that_one:

Pix match_loc:
(‘onnectableSegment xsup. *xinf:

for (i = 0: i<num_tiers; i++)
for (p = original[i]—first(). ¢ = map[i].first(): p # NULL && q # NULL:
original[i]—next(p). map[i].next(q))
if ((*originalfi])[p}—is_connectable()) {
ConnectableSegments rseg = ((‘onnectableSegment «)(*original[i]){p]:
ConnectableSegment* mseg = (('onnectableSegment s)map[i]{y]—rule_seg:
int& rinfs = rseg—num-_inferiors:
Int& rsups = rseg—num_superiors:
int& minfs = mseg—num_inferiors:
int& msups = mseg—nun_superiors:
if (rinfs > minfs)
for (ii=0. ii<rinfs: ii++) {
has_that_one = FALSE:
for (jj=0: jj<minfs: jj++)
if (*(rseg—inferiorfii]) == *(mseg—inferior[jj}))
has_that.one = TRUE:
if ('has_that_one) {
matchoc = in_map{rseg—inferiorfii]. map. num_tiers. loc):
if (match_loc # NULL) {
inf = (ConnectableSegment +)map(loc][match_toc]—rule_seg:
sup = (ConnectableSegment)mapl(i]ly]—rule_seg:
sup—connect(inf):
}
}
}
if (rsups > msups)
for (ii=t: ii<rsups: ii++) {
has_that_one = FALSE:
for (jj=0: jj<msups: jj++)
if (*(rseg—superior(ii]) == +(mseg—superior[jj]))
has_that_one = TRUE:

133

r e

if (thas_that_onc) |
matchdoc = m_maptrseg—-uperior[i]. map. num_tiers, locy:
if (match loc # NULL) |)
sup = (ConnectableSegment s pmapli]fg]—rule_seg:
ind = (ConnectableSegment s ymaplloc][match_loc]—rule seg:
sup—counectinfi:
}
!
}

void ConnectableSegment::delete_fully{ Map+ map. int num_tiers, Chart& chart,
int stier_idx)

// Delete a segment and all its inferios not found i the map.
{
ConnectableSegments tmp:
Pix match:
int loc:
while {(num_superiors)
superior[0}—disconnect (this):
while (num_inferiors) {
tmp = inferior{0]:
if (tmp—num_superiors < 2) {
if (!{skeletal.in_map(tmp. map. num.tiers. tier_idx. chart. loc))) {
tmp-—delete_fullv{map. num_tiers. chart. tier_idx):
if (tmp—tier) {
match = tmp—tier—find(tmp):
if (match)
tmp—tier—del{match):

} else
disconnect{tmp):
} else
disconnect{tmp):

void delete_segment(Tier& tier. Map+ map. int tier_.num. Pix& mpos. int ntiers,
C'hart& chart. int *tidx)
// Delete a segment found in the map and chart but not in the replacement

// chart.

Pix loc = map{tier_num][mpos]—chart_pos:
if (tier[loc]—is_connectable())
{{C'onnectableSegment *)tierfloc])—delete_fullv(map. ntiers, chart. tidx};
tier.del(loc):
map{ticr_num][mpos]—rule_seg—detach():
delete map[tier_-num][mpos]—rule_seg:
map[tier_.num]j[mpos]—rule_seg = NULL:
delete map{tier_.num][mpos}:
map{tier_num].insert_at(mpos. NULL}:
map(tier_num].del(mpos):

void Rule::application(Chart& chart. Pixx match_index. int stier_index) {
// Requires:
// (1) Each Pix match_index[i] in match.index points to the first
// segment of a portion of tier chart{tier_index[i]]. a portion

134

|

// that matches the tier replacement[i] of the rale of which this is

// a member function. The match must be appropriate to the type of
// this rule (That is. each segment marked for exact matching mus
// match exactly. by having the same number of connections to

// tiers mentioned in the rule.) Furthermore. there must be the same
// nmumber of elements in the arrayvs original. replacement,

// matchiindex. and tier_index.

/7 12} Any uon-connectable segment in xoriginal must also be found in
// *replacement. Furthermore, it must be in the same element (tier)
// i soriginal a~ in *replacement. and within a given element. the

// *orders of non-connectable segments must be the same between the
// element of *original and the corresponding element in sreplacement.
// (3) The arravs original, replacement. match_index. and tierindex must
// be set up such that. for any given i greater than or equal to zero
// aud less than num.tiers {(a slot in the rule). the tiers referred to

// by original[i]. replacement(i]. match_index{i]. and

/[chart{tierindex[i]] all correspond (They must be name_cq.

/] etel)

// Modifies: chart. and conceivably any tier or segment referred 1o directly
// or indirectly by it.

// Effects: applies rule to chart, and applies the association convention
// afterwards, if possible.

Map *map = new Map[num_tiers}):

match_data scurr_el:

Pix curr. curc. oldc. mpos, match loc, oldmpos:

int i

int me = FALSE: // Made connection

int made_connection = FALSE:

FeatureMatrix *fm = new FeatureMatrix:

// Make map.
for {i = U: i<num_tiers: i++) {
Tierx map.tier = new Tier:
map_tier—set_name(originalfi]—name);
map_tier—make_identical_to(originaifi]):
curc = match_index[i]:
for (curr = originalfi]—first(): (curr # NULL) && (curc # NULL):

original{i}—next(curr))

while ((no_worddivs &&
chart{tier_index{i]][curc]—is_a_wordboundary()}
|| (no_morphdivs &&
chart[tier_index[i]][curc]—is_a_morphemeboundary(})}
chartftier_index[i]].next{curc):
curr_el = new match_data:
curr_el—rule_seg = (*original[i})[curr]—surface_copy():
curr-el—rule_seg—make_identical_to({xoriginal[i])[curr]):
curr_el—rule_seg—tier = map_tier:
curr_el—chart_pos = curc:
map(i].append(curr_el):
if (carr_el—rule_seg—is_zero()) // Skip zero things.
do {
olde = cure:
cure = curr_el—rule_seg—zeromatches{curc. chart[tier_index{i]].
soriginal[i]):

while ((no_worddivs & &
chart[tier_index[i]){curc]—is_a_wordboundary(})
|| (no_morphdivs &&
chart[tier_index[i]][curc]—is_a_morphemeboundary()))

chart[tierandex(i]l.next(curc):
} while (cure # olde):
else
chart{tier_index[i]].next(curc):

}

connect.maptmap):

for (i=0: i<num.tiers; i++} {
Tier& tier = chart{tier_index(i]}:
curr = replacement[i}—first():
mpos = map(i].first():
oldmpos = NULL:
while (curr # NULL || mpos # NULL) {
Segment* rel = NULL:
Segment* mel = NULL:
if (curr == NULL) { // Delete segment.
if (mapli][mpos]—-chart_pos == match_index]i])
match_ndex[i] = o:
delete_segment (tier. map. i. mpos. num_tiers. chart. tier_index):
continue:
}
if (mpos == NULL) { // Insert segment.
rel = (sreplacement(i])[curr]:
Segment* seg = rel—surface_copy():
match_data *md = new match_data;
md—rule_seg = rel—surface_copy():
md—rule_seg—make_identical to(rel):
md—rule_seg—tier = mapf{i][oldmpos]—rule_seg—tier:
md—chart_pos = tier.ins_after(map[i][oldmpos]—chart_pos. seg):
mpos = mapli].append(md):
if {rel—is_connectable()) {
ConnectableSegment* ¢s = (ConnectableSegment *)rel:
ConnectableSegment* cseg = (ConnectableSegment #)seg:
cs—copy-aux(cseg. map, num_tiers, tier_index. chart. replacement):

}
}
rel = (sreplacement(i]){curr]:
mel = map[i][mpos]—rule_seg:
if (xrel # *mel) {
if (matches_any_map_el(rel. map. 1)} {
match.Joc = matches_any.replacement_el{mel. replacement. i}:
if (matchdoc # NULL) // Metathesize segment.
tier.metathesize(mpos. match_loc. curr. i. replacement. map):
else { // Delete segment
oldmpos = mpos:
if (map{i][mpos]—chart_pos == match_index[i])
match_index[i] = ¢
delete_segment(tier, map. i, mpos, num_tiers, chart. tier_index):

} else { // Insert segment
if (!matches_any_replacement_el(mel. replacement. i) &&
fm—tyvpe_eq(rel)) {

FeatureMatrix *chartfm. *relfm:
chartfm = (FeatureMatrix)tier{mapf{i]{mpos]—chart_pos]:
relfm = (FeatureMatrix «)rel:
relfm—copy_features(chartfm):
mapli][mpos]—rule_seg—make_identical_to(rel):

136

—

// A is a cheap hack to make identical without messing with cons.
} else {
Segments seg = rel—surface_copy():
match_data smd = new match._data:
md—rule_seg = rel—surface_copy{):
md—rule_seg—make_identical_to(rel):
md—rule_seg—tier = map(i][mpos]—rule_seg—tier:
md—chart_pos = tier.insert {map(i][mpos]—chart_pos. seg):
oldmpos = mpos:
mpos = map(i].ins_before(mpos. md):
if (rel—is_connectable()) {
ConnectableSegment* ¢s = (CounectableSegment xjrel:
ConnectableSegment* cseg = (ConnectableSegment *)seg:
cs—copy_aux(cseg.map.num_tiers. tier_index, chart. replacement):
}
}
} // end if (matches. ..)
} /7 if (rel # mel)
else { // Adjust connections:
if (rel—is_connectable()) {
ConnectableSegment* crel = (ConnectableSegment *)rel:
C'onnectableSegment* cmel = (ConnectableSegment *)mel;
mc = adjust_connections(crel. cmel. map. mpos, chart, 1. tier_index):
made_connection = (mc || made_connection):
} // if (rel.is_connectable())
replacement[i]—next(curr):
oldmpos = mpos;
map{i].next(mpos):
} // end if (rel # mel)
} // end while
} // end for
delete{] map:
delete fm:
// Association convention.
if (made_connection)
chart.assoc_convention(tier_index, num_tiers):

C.3 Matching

// matching.cc

#include “tones.h”
extern ConnectableSegment* convert{SegList. Pix}:

int Tier:is_applicable(Tier **applicable_tier. int num_tiers)
// s this an applicable tier (is it mentioned in the rule?)
{

for (int i=0: i<num_tiers; i++)
if (id_num == applicable_tier[i]—id_num)
return TRUE:
return FALSE:

}

nt matches_exactly(ConnectableSegment+ rseg. ConnectableSegmentx seg.
Tiers* ap_tier, int num)
/] Does seg match rseg exactly?

137

int num_applicable_connections =t
int num_connections =i
SegLists sups = rseg—superiors():
sSeglistx infs = rseg—inferiorsi):
Pix p:
for (p = sups—first(}: p # NULL: sups—next{p))
if (*sups)[p]—tier || (xsups){p]—tier—is_applicable(ap_tier. num))
num_connections+—+:
for (p = infs—first(): p # NULL: infs—next(p))
if (!(xinfs)[p]—tier {] (+infs)[p]—tier—is_applicable(ap_tier. num))
num_connections+-+:
delete sups:
delete infs:

sups = seg-—superiors{):
infs = seg—inferiors():
for (p = sups—first(): p # NULL: sups—next{p))
if ((#sups)[p]—tier || (*sups){p]—tier—is.applicable(ap_tier. num))
num_applicable_connections++:
for (p = infs—first(): p # NULL: infs—next(p))
if (1(xinfs)[p]—tier || (+infs)[p]—tier—is_applicable{ap_tier. num))
num_applicable_connections++:
delete sups;
delete infs:
if (num_applicable_connections # num_connections)
return FALSE;
return TRUE:
}

int matches_roughlv(ConnectableSegment+ rseg. ConnectableSegment* seg,
Tierx#+ ap_tier. int num)
// Does seg match rseg roughly?

int num_applicable.connections = 0:

int num_connections = ¢;

Pix p:

SegList* infs = rseg—inferiors();

for (p = infs—first(); p # NULL; infs—next(p))

if ({=infs)[p]—tier || (*infs)[p]—tier—is_applicable(ap_tier, num))

num_connections+:

delete infs;

infs = seg—inferiors():
for (p = infs—first(): p # NULL: infs—next(p))
if ({«infs)[p]—tier || (*infs)[p]—tier—is_applicable{ap_tier, num))
num_applicable_connections++:
delete infs:
if (num_applicable_connections < num_connections)
return FALSE:
return TRUE:

}

Pix ConnectableSegment::matches(Pix seg. Tier& tier.
Tier xxapplicable_tier,
int num_tiers)

// Does the segment at location seg match this? If so
// return the next position. If not. return NULL.

138

Segments segment = tier[seg):
Pix currpos = seg:

tier.next{currpos);

if (segment—is_connectable()) {
ConnectableSegment* ¢s = (ConnectableSegment *)segment:
return ((eq{cs. applicable_tier, num_tiers)) 7 currpos : {Pix)(-1)):
} else
return ({egi{segment. applicable_tier, num_tiers)) 7 currpos : {Pix){-1)):
}

int ConnectableSegment::equal{ConnectableSegment* seg. Tiersx ap_tier.
int num_tiers)
// Is seg equal to thix?

return (eyv(seg) L& (ltier || lseg—tier || tier—name_eq(xseg—tier)) &&
(is.exact || matches_roughlyv(this. seg, ap_tier. num_tiers)) &&
(Yis_exact || matches_exactly{this. seg. ap_tier. num_tiers))):

}

void sort dist{SegList* sl)
// Sort list of segments based on tier position.

if (sl—empty())
returi:

Pix p. g:
int swapped = TRUE;
Segment* tmp:

while (swapped) {
swapped = FALSE:
for (p = sl—first(): p # NULL: sl—next(p))
for (q = p. sl—next(q): q # NULL: sl—next(qg))
if ((*s])[p]—tier && (xsl)[q]—tier &&
(*sl)[p]—is_actually_in_tier(*(xsl)[p]—tier) &&
{(*sh)[y]—is_actually_in_tier(»(*st){q]—tier) &&
x(*sl)[p]—tier == (*sl)[q]—tier &&
(#s1}[q]—tier—precedes((*sl)[q], (*s)[p])) {
tmp = (*sl)[p):
sl—insert_at{p. {xsl)[q]):
sl—insert_at(q. tmp):
swapped = TRUE:

}
}

int in_order(ConnectableSegment* seg. SegList* choices,
Tier #xap_tier. int num)
// Is seg the first thing on its tier within choices?
// Requires - the segs in choices are connectable.
{
for (Pix p = choices—first{): p # NULL: choices—next(p)) {
ConnectableSegmentx cseg = (ConnectableSegment #)(xchoices)[p]:
if (seg—equal{cseg. ap_tier, num)}
return TRUE:
if (seg—tier L&
{1{xchoices)[p]—tier ||

139

seg—ticr—natne_eqi *{ *('hoices)[p] —tier)))
return FALSE:

return TRUE:

}

int ConnectableSegment::delete_best_match{SegLlists choices, Tier sxap_tier.
int num) {
int min = Y999994;
Pix minloc:

for (Pix p = choices—first(}): p # NULL: choices—next(p))
if ({*choices)[p]—is-connectable(}) {
ConnectableSegment xcs = (ConnectableSegment *)(+choices)[p]:
if (equal(cs, ap_tier, num) && in_order(cs. choices. ap_tier. num)
L& (cs—num.superiors + cs—num.inferiors < min)) {
min = cs—num.superiors + c¢s—numn.inferiors;
minloc = p:
}
}

if (min == 9999994)
return FALSE;
else {
choices—del(minloc);
return TRUE:
}
}

int ConnectableSegment::eq(ConnectableSegmentx seg. Tiers* ap_tier, int numtrs)
{
if (lequal(seg. ap-tier. numtrs))
return FALSE;

SegList#* rinflist = inferiors();
SegListx cinflist = seg—inferiors():
ConnectableSegment* cs:

int matches;

int not_exact = TRUE:

Pix p. q:

for (p = rinflist—first{): p # NULL: rinflist—next(p))
if (convert(rinflist. p)—is.exact) {
not_exact = FALSE:
break:

}

p = cinflist—first(}):
while (p # NULL)
if (not_exact £& lis_exact && (xcinflist)[p]—tier &&
!(*cinflist)[p]—tier—is_applicable(ap-tier. numtrs))
cinflist—del(p):
else {
matches = FALSE:
for (q = rinflist—first(): q # NULL: rinflist—next(q)}
if (convert{rinflist, q)—equal(convert(cinflist. p). ap-tier. numtrs))
{
matches = TRUE:
break:

140

}

if (matches)
cinflist—unext(p):

else
cinflist—del(p):

}

sort _list(rinflist):
sort _list{cinflist):

for (p = rinflist—first(): p # NULL: rinflist—next(p)) {
cs = convert(rinflist. p}:
if (les—delete_best_match(cinflist. ap_tier. numtrs))
{
delete rinflist:
delete cinflist:
return FALSE:

}

delete rinflist;
delete cinflist:
return TRUE:

}

Pix C_0::zeromatches(Pix seg. Tier& ctier, Tier& rtier)
Pix c:
int i, count1=0, count2=0;

¢ = rtier.current;
rtier.next(c):
while {c # NULL && cons.type_eq(rtier[c])) { // num matching in rule tier.
countl+4-+;
rtier.next(c):
}
¢ = seg:
while (¢ # NULL && cons.type_eq(ctier(c])) { // num matching in chart tier.
count2++;
ctier.next(c):
}
if (count? < countl) // The rule can’t possibly match.
return ({Pix){-1)):
else {
for (i = 0: i<countl: i++)
ctier.prev(c):
return c:
}
}

Pix V_0::zeromatches(Pix seg, Tier& ctier, Tier& rtier)
{

Pix c:

int i, count1=40. count2=0;

¢ = rtier.current;

rtier.next{c):

while (¢ # NULL && vow.type_eq(rtier[c])) { // num matching in rule tier.
countl+4+:

141

rtier.next{c);

}

¢ = seg:

while (¢ # NULL && vow.type_eyictier[c])) { // num wmatching in chart tier.
count2++:
ctier.next{c):

}

if {(count? < countl) // The rule can’t possibly match.
return ((Pix)(-1)):

else {
for (i = 0: i<countl; i++)

ctier.prev{c):

return ¢

}

!

Pix X_0::zeromatches(Pix seg. Tier& ctier. Tier& rtier)
Pix ¢
int i. countl=0. count2=);

¢ = rtier.current:
rtier.next{c):
while (c # NULL && x.type_eqg(rtier[c]}) { // num matching in rule tier.
countl++:
rtier.next(c):
}
¢ = seg:
while (c # NULL && x.tvpe.eq(ctier[c])} { // num matching in chart tier.
count 24+
ctier.next{c}:
}
if (count2 < countl) // The rule can’t possibly match.
return ((Pix){(-1)):
else {
for (i = 0: i<countl: i++)
ctier.prev(c):
return c:
}
}

int ConnectableSegment::connects_directly_to_tier(Tier& ctier) {
int 1;

for(i=0: i<num_superiors: i++)
if (superior[i]-—is_in_tier(ctier))
return TRUE;
for(i=0: i<num_inferiors; i++)
if (inferior[i]—is_in_tier(ctier})
return TRUE:
return FALSE:

}

int Segment::is_in_tier(Tier&: intier) {
return (tier—name_eq(intier));

}

int Segment::is_actually_in_tier(Tier&: intier) {
if (tier || xtier # intier)

142

return FALSE:
for (Pix p = intier.hrst{): p # NULL: lntier.nextip))
if (xintier[p] == *«this)
return TRUE:
return FALSE:

}

int ConuectableSegment::connects_to_tier{ Tier& ctier) {
SeglList *xsups = topmost_superiors{);
Seglist #infs = new Segli-r:
Pix p:

for (p = sups—fhrst{): p # NULL: sups—next(p)) {
if ((+sups)[p]—is_in_tier(ctier)) {
delete sups:
delete fs:
return TRUE:
}
infs—join(convert{sups. p)—inferiors()):

}

for {p = infs—first{); p # NULL: infs—next(p))
if {(*infs)[p]—is_in_tier{ctier)) {
delete sups:
delete infs:
return TRUE:
}
delete sups:
delete infs:
return FALSE:
}

void Rule::find_closest_usable_rule_segment(int this_tier) {
Tier& ot = xoriginal[this_tier]:

if (this_tier) // If there are done tiers, get the first unconnected instead.
while (ot.current # NULL && 'unconnected(this_tier))
ot.next{ot.current):

}

int Rule::unconnected{int this_tier) {
Tier& ot = xoriginal[this_tier]:
if (ot[ot.current]—is_connectable()) {
SegList sups = ((ConnectableSegment #*)ot[ot.current])—superiors():
int unconnected = TRUE:

for (int 1=0: i<this_tier: i++)
for (Pix p = sups—first{): p # NULL: sups—next(p))
if {(*xsups)[p]—is_in_tier{*original[i]}) {
delete sups:
return FALSE:

}

delete sups:

}

return TRUE:

}

Pix Rule::match(Tier& tier. Tier **+applicable_tier. int num_tiers.

143

int this_tier)
// U the rule matches tier at any point cluding or after tier.current.
// returns the index (Pix) of the match. Otherwise. returus (Pixi-14.
// Does NOT modify tier.current.
{

Tierd ot = soriginal[this_tier]:

Pix currpos, oldpos. matchpos:

int matched:

currpos = tier.current:
matchea = FALSE:
matchpos = NULL,
ot.current = ot.firsty):
find_closest _usable_rule_segment{this_tier)-
if (ot.current == NULL) {
matched = TRUE:
return matchpos:

}

Segment s first_seg = ot[ot.current]:

while ('matched) {
do {
oldpos = currpos:
if (first_seg—is_zero())
currpos = first_seg—zeromatches{currpos. tier. ot);
else
currpos =first_seg—matches(currpos. tier. applicable_tier. num_tiers):

if (currpos == (Pix)}(-1)) {
matched = FALSE:
currpos == oldpos:
tier.next{currpos): }
else
matched = TRUE;
} while (lmmatched && currpos # NULL && currpos # (Pix)}(-1)):

if (‘matched)
return {{Pix)(-1}):

// The first position has matched -- save the position and check the rest.
matchpos = oldpos:

while (matched && ot.current # NULL]J {

ot.next{ot.current):

if (ot.current == NULL)
break: // The tier matches.

while ((no.worddivs & & tier[currpos]—is_a_wordboundary{)) ||

(no.morphdivs && tier[currpos]—is_a_morphemeboundary(}))

tier.next(currpos);

if (currpos == NULL) {
matched = FALSE:
break;

}

Segment* test_seg = ot[ot.current}:
if (test_seg—is_zero(})
do {
oldpos = currpos:
currpos = test_seg~—zeromatches(currpos, tier, ot):

144

while ((nooworddive L& tier[currpos]—is_a_wordboundary()) ||
(no_murphdivs L& tier[currpos]—isa_morphemeboundary(i)y
ticr.next{ourrpos):

} while (currpos # oldposi:
else

carrpos = testoseg—matchesgeurrpos. tier. applicable_tier. num_tiers):
if ((currpos == (Pix}i-1)))

matched = FALSE:

}

if (!matched) {
ot.current = ot first{}:
find_closest _usable_rule_segment(this_tier):
currpos = matchpos:
tier.next{currpos}):

}
}

return {(matchpos):

C.4 Input/Output
/] in.cc

#include "StrTable.h”
#include "StrStack.h”

int longest_phoneme;
int eof:

int eophrase:

int duple:

extern Chart chart:
extern Strlable tbi:

int is_valid_ste(StrTableEntry* ste) {
return{ste—segment && (ste—is_phoneme || !ste—segment—is_connectable(})):

}

void determine_longest_phoneme()

{

longest_phoneme = 0:
for (Pix p = tbl.first(): p # NULL: tbl.next(p))
if (is_valid_ste(tbl{p]} && strlen(tbl[p]—name) > longest_phoneme)
longest_phoneme = strlen(tbl[p]—uname):

)

int is_word_div{char ch) {
return (ch == """ || ch == "#'):

}

int is_phrase_div(char ch) {
return (ch == \n" || ch == " || ch == "%"):

!

void erroriconst chars ~i. const chars =2 = "} {
cerr € sl € <2 € \n':
exit(l):

}

char get_char(istreamd infile. Strstacks stk) {
char c:
if (¢ = stk—pop())
recurn o
else {
if {linfile.get{c)) |
eof = TRUE:
return \0"
} else
return c:
}
}

void eat_word_divs(istream& infile. StrStacks stk) {
char ch = get_char(infile. stk):
while (ch & & is_word_div(ch}))
ch = get_char{infile. stk):

if (infile.eof())
eof = TRUE:
else

stk—push(ch):

}

void eat_line(istream&: infile. StrStackx stk) {
char ch = get_char(infile. stk):
while (ch L& ch # \n’)
ch = get_char(infile. stkj:
if (infile.cof())
eof = TRUL:
}

void eat_word_and_phrase_divs(istream& infile. StrStack* stk) {
char ch = get_char(infile. stk}):
while (ch && (is-word_div(ch) || is_phrase_div(ch)}) {
if (ch == "%")
eat line(infile. stk):
ch = get_char{infile, stk);

if (infile.eof())
eof = TRUE:
else

stk—push(ch):

}

void StrStack::push(char c)
{
if ({top - rtep + 1) > sz) {

SZ = 2 % s2:
char* newrep = (char *)malloc(sz):
strcpy(newrep. rep):
top = newrep + (top-rep):
free(rep):

146

rep = newrep:

}

stop++ = ¢
char Strstack:popy)
it (top == rep)
return \0':
else
return *--top:

Segments read segment{istream& infile. StrStacks stk {
StrifableEntry #seg = NULL:
strTableEntey trial:
char sreading = {char *)malloc{longest _phoneme):
int length = 0;
int goodlength = u:
char ch;

while {length < longest_phoneme) {

if ({(ch = get_charlinfile. stk})) {
eof = TRUE:
break;

}

if ((is.word.div(ch) || ch == "+ |} is.phrase_divich}) & & length > 0) {
stk—push(ch):
break:

}

if (is_phrase_div{ch)) {
cophrase = TRUE:
eat_word.and_phrase_divs(infile. stk):
seg = thlfind("Je"):
break:

}

if (is.word_div(ch)) {
eat_word_divs(infile. stk):
seg = tbl.find("}w"):
break:

}

if (ch == "+7 L& length == 0) {
seg = tbl.find{"Im"):
duple = TRUE:
break:

if (ch == "% L& length == 0) {
eat_line(inftle. stk):
eophrase = TRUE:
eat.word._and_phrase_divs(infile. stk):
seg = tbl.find("1w"):
break:

reading[length++] = ch:

reading[length] = "\0":

if (strcemp(reading. "Jw") == 0)
eat_word_divs(infile. stk):

if ({trial = tbl.find(reading)) && is_valid_ste{trial)) {
goodlength = length:

147

}

seg = tnal:
}
}
if (seg &L seg == thhtind{"w (")} {
while (goodlength < length)
stk—pushirewding[--length]):
freeireading)
eat_word_divsiinhle, stk):
return (read_segment(inhle, stkj):
}
if (seg & & goodlength < length)
while (goodlength < length)
stk—pushireading[--lrngth]):
if (seg) {
free{reading):
return seg—-scginent:
} else { // Only ignore ONE bad character at a time.
while (length > 1)
stk—push(reading[--length]):
frec{reading):
return {Segment *):

}

void ('onnectableSegment::safe_detach{) {

}

while {num_superiors)
superior[0]—disconnect(this):

while (num_inferiors)
disconnect(inferior[0]):

void disconnect_tones(ConnectableSegment* cx)

{

}

SegListx infs = cs—inferiors(}:
GenericTone #tn = new GenericTone:
for (Pix p = infs—first(): p # NULL: infs—next(p))
if (tn—type_eq({*infs)[p])} {
convert(infs, pj—safe.detach(}:
break:
}
delete tn:
delete infs:

void Chart::add_skeletal_seg(ConnectableSegmentx cs)

{

SegList* infs:
cs—tier = tier{d):
tier[0]—append(cs):
infs = cs—inferiors{):
for (Pix p = infs—first(}): p # NULL: in{s—next(p))
for (int i=0: i<num_tiers; 14++)
if (tier[i]—name_eq(+{xinfs)[p]—tier)) {
tierfi]—append({*infs)[p]}:
break:
}
delete infs:
if {(no_connect)
disconnect_tones(cs):

148

}

void Chart::read_word{istream& infile. Strotacks stk)
// friend of ConnectableSegment
{
WordBegin «wbegin = new WordBegin:
WordEnd swend = new WordEnd:
Morphemebnd smend = new Morphemetbind:
Segment #xeg = NULL:
int i:
Pix p:
for (i = 0: i<num_tiers: i++) {
p = tier[ij—append(wbegin—copy{}}:
tier[i] —current = p:
}
GenericPhoneme *gp = new GenericPhoneme:
X *x = new X:
Generic'Tone *tn = new Ceneric’Tone:
(‘onnectableSegment* cx;
while (leof £& seg == NULL)
seg = read_segment(infile. stk):
while (leof & & 'wend—tvpe_eq(seg)) {
if (seg—is_connectable()) {
if (x—type_eq(seg)) {
cs = (ConnectableSegment *)seg—copy():
add_skeletal_seg(cs):
} else if (tn—type_eq(seg) || gp—type_eq(seg)) {
cs = (ConnectableSegment *)seg:
if (cs—num_superiors == 1) {
cs = (ConnectableSegment *)cs—superior[tt]—copy():
add_skeletal_seg(cs):
} else if {(cxs—num_superiors == 0\ {
for (i = 0: i<num-tiers: i4++}
if (verfi]—name_eq(xcs—tier)) {
tier[i]—append{cs—copy{)):
break:
}
} else
error("Uncaught parse error."):
} else
error{"Uncaught parse error."):
} else {
if (mend—type_eq(seg) & duple) {
duple = FALSE:
for (i = : i<num_tiers: i++)
tier[i)—append(seg—copy()):
seg = new MorphemeBegin:
}
for (i = 0: i<num_tiers: i++)
tier[i]—append(seg—copy(}}:
}

seg = NULL:
while (leof && seg == NULL)
seg = read_segment(infile. stk):
}

for (i=0: i<num_tiers; i++)

tier[i]—append(wend —copy()}):
delete tn:

149

delete gp:
delete x:
delete whegin:
delete wend:
delete mend:

}

void Chart::print_and_delete_word()
{
Pix p:
WordEnd *+we = new WordEnd:
for (p = tier[]—first(): p # NULL && twe—type_eq((xtier[0])[p]):
tier[0]—next(p))
(*tier[0]}[p]—print():
if (p # NULL)
(*tier{0])[p]-—print():
if (eophrase) {
cout € "\n";
wordend = FALSE:
eophrase = FALSE:

}

cont flush();

// Delete the word.
for (int i = 0: i<num_tiers: i++) {
p = tier{ij—first(%
while (p # NULL && 'we—tvpe_eq({*tiet[i])[p]))
tierfi}—del(p):
if (p # NULL)
tier{i]—del(p):
}

delete we:

}

void Chart::print_and_delete_phrase()
{
Pix p:
for (p = tier[0]—first(): p # NULL: tier[0]—next{p))
{*tier[0])[p}—print():

cout € "\n™:
cout.flush():

// Delete phrase.
for (int 1 = 0: i<num_tiers; i++)
for (p = tierfi|—first(): p # NULL: tier[i]—del{p}):
wordend = FALSE:
eophrase = FALSE:

}

int ste_matches(StrTableEntrvx ste. X* x)
// Friend of chart & connectableSegment.
{

Tierss ap_tier = (Tier xx)malloc(chart.num_tiers * sizeof(Tier *)):
int i;
for {(i=0: i<chart.num_tiers: i++)
ap.tier[i] = chart.tier[i]:
C'onnectableSegment *cs:

if (ste—fullspec)
if (ste—fullspec—num_superiors == 1)
cs = ste—fullspec—superior{v]:
elze if (ste—fullspec—num_superiors == 0)
s = ste—fullspec:
else
error{"Uncaught parse error."):
else |{
s = (ConnectableSegment *)ste~—segment:
if (cs—nuni_superiors == 1)
¢s = cs—superior[t]:
else if (cs—num_superiors > 1)
error{'"Uncaught parse error."}):
}

x—is_exact = TRUE:
return (x—eq(cs. ap_tier. chart.num_tiers)):

}

void X::print(int pos=0)
{
char+ output = 0:
Pix p:
int times_matched = 0:
for (p = tblfirst(): p % NULL: thlnext(p))
if (tbl[p]—is_phoneme && ste_matches(tbi[p]. this))
if (Mtimes_matched++) {
if (output) free(output):
output = (char *)malloc{strlen(tbl[p]—name)+1):
strepy(output. thi[p]—name):

}

else if (times_matched == 2
cout & "(" < output < "/" < thl[p]—name:
else

cout € "/" & tbl[p]—name:
if (times_matched > 1)
cout € ")
else if (times_matched == 1)
cout < output:
}

void Feature::print(int pos=0)

{

char c:
switch (value) {
case -1:
¢ = -": break:
case 1:
¢ = '+ break:
case 2:
c = "a": break:
default:
c="\0"
}
if (modified)

cerr < "x ";
cerr L "[":
if e #\0)
cerr < ¢
cerr € name & "] ("

print_id{):
cerr € "\n";
print_aux{pos):

}

void FeatureMatrix::print(int pos=0)
{
if (modihed)
cerr < "*x "
cerr € "[™:
char c:
for (int i=0: i<num_features-1: i++} {
switeh (feature[il—value) {

case -1:

¢ = -": break:
case 1:

¢ = '+ break:
case 2:

c = "a’; break:
default:

¢ = "\0":

}
if (¢ # \0")
cerr £
cerr € feature[i]—name € ", ™
}
if (num_features) {
switch (feature[num_features-1]—value) {

case -1:

¢ = -"; break:
case 1:

c = "+ break:
case 2:

¢ = "@’; break:
default:

c="\0";

}
if {(c # \0°)
cerr L .
cerr & feature[num_features-1}—name < "1\n":
}
}

void ClassNode::print(int pos=0) {
if (modified)
cerr & "x "
cerr € name & " ("
print_id():
cerr € ")\n":
print_aux{pos}):

}

void Rule::print(int applied)
{
cerr € "\nApplying " < name < "...
if (applied)
cerr < "Applied.\n\n":
else
cerr < "No match.\n\n":

n.

}

void Nspaces{int n) {
for {int i=0: i<n: i++)
) cerr € "

}

void ConnectableSegment::print _aux(int pos=0) {
for (int i = 0: i<num_inferiors: i++) {
Nupaces(pos):
inferior{i]—print(pos+2}):
}
}

void demo_print.tier(Tier& tr) {
if (demo)
for (Pix p = tr.carrent: p # NULL: tr.next(p)) {
tr{p]—print_aux():
if (tr[p]—is_connectable())
getchar():

}

int Chart::empty() {
for (int 1=0; i<num_tiers: i+4)
if {tier[i]—length() > 2)
return FALSE;
return TRUE;

}

void Chart::main_loop{istream& infile)
{
Pix p. q:
int i. applied;
eof = FALSE:
eophrase = FALSE:
duple = FALSE:
infile.clear{):
determine_longest_phoneme(}:
StrStack sstk = new StrStack:
if (!sandhi_rules_exist) {
do {
read._word(infile. stk):
if (lempty()) {
demo_print_tier(chart{0]):
for {p = rules.first(): p # NULL: rules.next(p)) {
applied = apply(rules{p]. xthis):
if (demo) rules{p)].print(applied):
if (applied) demo_print_tier{chart[0]):

}

print_and_delete_woruj }:
} while ('eof):
} else {
while (!eof) {
while (leof && leophrase) read_word(infile. stk):
if (lempty()) {
for (i=0: i<num_tiers; i++)
tierfi]—current = tier[i]—first{}):

demo_print_tier(chart[8)]):
for (p = rules.first(): p # NULL: rules.next{p)) {
applied = apply(rules[p]. *this):
if (demo) rules[p].print{applied):
if (applied) demo_print_tier(chart{0]}:
!
}
print_and_delete_phrase():
]
}

delete stk:

Bibliography

Anderson. S. R. 1988, Morphology as a parsing problem. Linguesties 26:521- 5-44.

Antworth. E. L. 1990. PC-KIMMO: A4 Two-Level Processor for Morphological Analysis. Dallas.
Texas: Sumner Institute of Linguistics. Inc. 1-233. Occasional Publications in Academic Com-
puting.

Barton. G. E.. R. C. Berwick, and E. S. Ristad. 1987, Computational Complerity and Natural
Language. Cambridge. MA: MIT Press.

Boisen, S. 1988. Pro-KIMMO: a Prolog implementation of two-level morphology. In K. Wallace
(Ed.). Morphology as a Computational Problem, no. 7 in Working Papers in Morphology. Los
Angeles. Department of Linguistics. University of California.

Chomsky. N. A.. and M. Halle. 1968. The¢ Sound Pattern of Enghsh. New York. NY: Harper and
Row.

Clements, i. N. 1985. The geometry of gcometrical features. Phonology Ycasbook 2:223-52.

Clements, G. N. 1987. Phonological feature representation and the description of intrusive stops.
In A. Bosch. B. Need. and E. Schiller (Eds.). 24rd Annual Regional Meeting of the Chicago
Linguistics Society. Part Two: Parasession on Autosegmental and Metrical Phonology. Chicago
Linguistics Society.

Dalrymple, M.. R. Kaplan, L. Karttunen, M. Kay. A. Kornai. K. Koskenniemi. S. Shaio. and
M. Wescoat. 1987. DKIMMO/TWOL: a development environment for morphological analy-
sis. Technical report, Xerox Palo Alto Research Center and Center for the Study of Language
and Information, Stanford, C'A.

Goldsmith, J. A. 1976a. Autosegmental Phonology. PhD thesis. Massachusetts Institute of Technol-
ogy.

Goldsmith. J. A. 1976b. An overview of autosegmental phonology. Linguistic Analysis 2:23-6%.

Goldsmith, J. A. 1976¢c. Tone melodies and the autosegment. In R. K. Herbert. (ed.). Proceed-
ings of the Sirth Conference on African Linguistics, Ohio State University Working Papers in
Linguistics. no. 20: 135-47.

Goldsmith, J. A. 1981. Subsegmentals in Spanish phonology. In Linguistic Sympostum on Romance
Languages. Washington, D.C'. Georgetown University Press.

Goldsmith. J. A. 1990. Autosegmental and Mctrical Phonology. Cambridge. MA: Basil Blackwell.
Inc.

Halle, M. 1993. Feature geometry and feature spreading. Unpublished.
Halle, M., and Gi. N. Clements. 1983. Problem Book in Phonology. Cambridge, MA: MIT Press.
Harris, J. W. 1969. Spanish Phonology. Cambridge, MA: MIT Press.

155

Harris. J. W. 1984, Autosegimental phonology. lexical phonology and Spanish nasals. In AL Aronof!
and R. Oelirle (Eds.). Language Sound Structurve: Studies tn Phonology Prescnted to Morres
Halle by his Teachcr and Students. Cambridge, MA: MIT Press.

Hertz, S. R. 1982, From text to speech with SRS, Journal of the Acoustical Society of America
T2:1155- 1170.

Hertz. S. R. 1990. The Defta programming language: an integrated approach to nonlinear phonology.
phonetics, and speech synthesis. In J. Kingston and M. E. Beckiman (Eds.). Between the Grammar
and Physics of Speech. chapter 13. 215-257. New York. NY: Cambridge University Press,

Karlssou, F. 198). Computational morphosyntax: a report on research 19811984, Technical Re-
port 13, Umversity of Helsinki Department of General Linguistics.

Karttunen, L. 1983. KIMMO: a general morphological processor. Teras Linguestic Forum 22:217-
228.
Kenstowicz, M. 1994. Phonology tn Generative Grammar. Cambridge. MA: Basil Blackwell. Inc.

Kernighan. B. W.. and D. M. Ritchie. 1988. The C Programming Language. AT&T Bell Laboratories.
second edition.

Keyser, S. J.. and K. N. Stevens. 1993. Feature geometry and the vocal tract. Working paper. MIT
Department of Linguistics, Cambridge, Massachusetts.

Kisseberth. C". 1984. Digo tonology. In G. N. Clements and J. A. Goldsmith (Eds.). Autosegmental
Studies in Bantu Tone. Dordrecht. Holland: Foris.

Koskenniemi, K. 1983a. Two-level morphology: A general computational model for word-forin
recognition and production. Phd thesis. University of Helsinki, F-lsinki. Finland.

Koskenniemi. K. 1983b. Two-level morphology for morphological analysis. In Proc. of the &th
International Joint Conference on Artificial Intelligence. 683-5.

Koskenniemi, K. 1984. A general computational model for word-forni recognition and production. In
COLING STANFORD: International Conference on Computational Linguistics, 1T8-181. Stan-
ford. CA. Jjohn von Neumann Society for C'omputing Sciences.

Koskenniemi, K. 1985. A general two-level computational model for word-form recognition and
production. In F. Karlsson (Ed.). Computational Morphosyntar: a Report on Research 1941-
1984, 1-18. University of Helsinki.

Lozano. M. C. 1978. Stop and Spirant Alternations in Spanish Phonology. PhD thesis, Indiana
University.

McCarthy, J. J. 1975. Formal probiems in Semitic phonology and morphology. Phd thesis, Mas-
sachusetts Institute of Technology. Cambridge, Massachusetts. June.

McCarthy. J. J. 1986. OCP effects: Gemination and antigemination. Linguistic Inquiry 17:207-263.
Mohanon. K. P. 1983. The structure of the melody. Massachusetts Institute of Technology.
Oflazer. K. 1993. Two-level description of Turkish morphology. Bilkent University. Turkey.
Pulleyblank. D. 1986. Tone in Lerical Phonology. Dordrecht: Reidel.

Sagey, E. 1986. The Representation of Features and Relations in Nonlinear Phonology. PhD thesis.
Massachusetts Institute of Technology.

Stevens, K. N. 1992. Speech synthesis methods: Homage to Dennis Klatt. In G. Bailly, . Benoit.
and T. R. Sawallis (Eds.), Talking Machines: Theories. Models and Designs, 3-6. Amsterdam.
Holland: Elsevier Science Publishers.

Stroustrup, B. 1991. The C++ Programming Language. ATLT Bell Laboratories, second edition.

156

